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We show that the existence of a minimum measurable length and the related generalized uncertainty

principle (GUP), predicted by theories of quantum gravity, influence all quantum Hamiltonians. Thus,

they predict quantum gravity corrections to various quantum phenomena. We compute such corrections to

the Lamb shift, the Landau levels, and the tunneling current in a scanning tunneling microscope. We show

that these corrections can be interpreted in two ways: (a) either that they are exceedingly small, beyond the

reach of current experiments, or (b) that they predict upper bounds on the quantum gravity parameter in

the GUP, compatible with experiments at the electroweak scale. Thus, more accurate measurements in the

future should either be able to test these predictions, or further tighten the above bounds and predict an

intermediate length scale between the electroweak and the Planck scale.
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We know that gravity is universal. Anything which has
energy creates gravity and is affected by it, although the
smallness of Newton’s constant G often means that the
associated effects are too weak to be measurable. In this
Letter, we show that certain effects of quantum gravity are
also universal, and can influence almost any system with a
well-defined Hamiltonian. The resultant effects are generi-
cally quite small, being proportional to the square of the
Planck length ‘2Pl ¼ G@=c3. However, with current and

future experiments, bounds may be set on certain parame-
ters relevant to quantum gravity, and improved accuracies
could even make them measurable.

An important prediction of various theories of quantum
gravity (such as string theory) and black hole physics is the
existence of a minimum measurable length. The prediction
is largely model independent, and can be understood as
follows: the Heisenberg uncertainty principle (HUP),
�x� @=�p, breaks down for energies close to the
Planck scale, when the corresponding Schwarzschild ra-
dius is comparable to the Compton wavelength (both being
approximately equal to the Planck length). Higher energies
result in a further increase of the Schwarzschild radius,
resulting in �x � ‘2Pl�p=@. The above observation, along
with a combination of thought experiments and rigorous
derivations suggest that the generalized uncertainty prin-
ciple (GUP) holds at all scales, and is represented by [1]

�xi�pi � @

2½1þ �ðð�pÞ2 þ hpi2Þ þ 2�ð�p2
i þ hpii2Þ�;

i ¼ 1; 2; 3; (1)

where p2 ¼ P3
j¼1 pjpj, � ¼ �0=ðMPlcÞ2 ¼ ‘2Pl=2@

2,

MPl ¼ Planck mass, and MPlc
2 ¼ Planck energy � 1:2�

1019 GeV. Implications of the GUP in various fields, in-
cluding high energy physics, cosmology and black holes,

have been studied. Here, we examine its potential experi-
mental signatures in some familiar quantum systems. It is
normally assumed that the dimensionless parameter �0 is
of the order of unity. However, as we shall see in this
article, this choice renders quantum gravity effects too
small to be measurable. On the other hand, if one does
not impose the above condition a priori, current experi-
ments predict large upper bounds on it, which are compat-
ible with current observations, and may signal the
existence of a new length scale. Note that such an inter-
mediate length scale, ‘inter �

ffiffiffiffiffiffi
�0

p
‘Pl cannot exceed the

electroweak length scale �1017‘Pl (as otherwise it would
have been observed). This implies �0 � 1034. [The factor
of 2 in the last term in Eq. (1) follows from Eq. (2) below.]
It was shown in [2], that inequality (1) is equivalent to

the following modified Heisenberg algebra:

½xi; pj� ¼ i@ð�ij þ ��ijp
2 þ 2�pipjÞ: (2)

This form ensures, via the Jacobi identity, that ½xi; xj� ¼
0 ¼ ½pi; pj� [3]. Next, defining

xi ¼ x0i; pi ¼ p0ið1þ �p2
0Þ; (3)

where p2
0 ¼

P
3
j¼1 p0jp0j and x0i, p0j satisfying the canoni-

cal commutation relations ½x0i; p0j� ¼ i@�ij, it is easy to

show that Eq. (2) is satisfied to order � (henceforth we
neglect terms of order �2 and higher). Here, p0i can be
interpreted as the momentum at low energies (having the
standard representation in position space, i.e., p0i ¼
�i@d=dxi), and pi as that at higher energies.
Using (3), any Hamiltonian of the form

H ¼ p2

2m
þ Vð ~rÞ ½~r ¼ ðx1; x3; x3Þ� (4)
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can be written as [4]

H ¼ H0 þH1 þOð�2Þ; (5)

where

H0 ¼ p2
0

2m
þ Vð ~rÞ and H1 ¼ �

m
p4
0: (6)

Thus, we see that any system with a well-defined quantum
(or even classical) Hamiltonian H0, is perturbed by H1,
defined above, near the Planck scale. In other words,
quantum gravity effects are in some sense universal. It
remains to compute the corrections to various phenomena
due to the Hamiltonian H1. In this article, we study its
effects on three such well-understood quantum phe-
nomena: the Lamb shift, the Landau levels, and the scan-
ning tunneling microscope (STM).

I. The Lamb shift.—For the hydrogen atom, Vð~rÞ ¼
�k=r (k ¼ e2=4��0 ¼ �@c, e ¼ electronic charge). To
first order, the perturbing Hamiltonian H1, shifts the
wave functions to [5]

jc nlmi1 ¼ jc nlmi þ
X

fn0l0m0g�fnlmg

en0l0m0jnlm
En � En0

jn0l0m0i (7)

where n, l,m have their usual significance, and en0l0m0jnlm �
hn0l0m0jH1jnlmi. Using p2

0 ¼ 2m½H0 þ k=r� [4]

H1 ¼ ð4�mÞ
�
H2

0 þ k

�
1

r
H0 þH0

1

r

�
þ

�
k

r

�
2
�
: (8)

Thus,

en0l0m0jnlm
4�m

¼ ðEnÞ2�nn0 þ kðEn þ En0 Þhn0l0m0j 1
r
jnlmi

þ k2hn0l0m0j 1
r2

jnlmi:
It follows from the orthogonality of spherical harmonics
that the above are nonvanishing if and only if l0 ¼ l and
m0 ¼ m. Thus, the first order shift in the ground state wave-
function is given by (in the position representation)

�c 100ð ~rÞ � c 100ð1Þð~rÞ � c 100ð ~rÞ ¼ e200j100
E1 � E2

c 200ð ~rÞ

¼ 928
ffiffiffi
2

p
�mE0

81
c 200ð ~rÞ: (9)

Next, consider the Lamb shift for the nth level of the
hydrogen atom [6]

�En ¼ 4�2

3m2

�
ln
1

�

�
jc nlmð0Þj2: (10)

Varying c nlmð0Þ, the additional contribution due to GUP in
proportion to its original value is given by

�EnðGUPÞ
�En

¼ 2
�jc nlmð0Þj
c nlmð0Þ : (11)

Thus, for the ground state, using c 100ð0Þ ¼ a�3=2
0 ��1=2

and c 200ð0Þ ¼ a�3=2
0 ð8�Þ�1=2, where a0 is the Bohr radius,

we get

�E0ðGUPÞ
�E0

¼ 2
�jc 100ð0Þj
c 100ð0Þ ¼ 928�mE0

81

� 10�0

m

MPl

E0

MPlc
2
� 0:47� 10�48�0: (12)

The above result may be interpreted in two ways. First, if
one assumes �0 � 1, then it predicts a nonzero, but vir-
tually unmeasurable effect of quantum gravity–GUP. On
the other hand, if such an assumption is not made, the
current accuracy of precision measurement of Lamb shift
of about 1 part in 1012 [4,7], sets the following upper bound
on �0

�0 < 1036: (13)

This bound is weaker than that set by the electroweak
scale, but not incompatible with it. Moreover, with more
accurate measurements in the future, this bound is ex-
pected to get reduced by several orders of magnitude, in
which case, it could signal a new and intermediate length
scale between the electroweak and the Planck scale.
II. The Landau levels.—Next consider a particle of mass

m and charge e in a constant magnetic field ~B ¼ Bẑ,

described by the vector potential ~A ¼ Bxŷ and the
Hamiltonian

H0 ¼ 1

2m
ð ~p0 � e ~AÞ2 (14)

¼ p2
0x

2m
þ p2

0y

2m
� eB

m
xp0y þ e2B2

2m
x2: (15)

Since p0y commutes with H, replacing it with its eigen-

value @k, we get

H0 ¼ p2
0x

2m
þ 1

2
m!2

c

�
x� @k

m!c

�
2
; (16)

where !c ¼ eB=m is the cyclotron frequency. This is
nothing but the Hamiltonian of a harmonic oscillator in x
direction, with its equilibrium position given by x0 �
@k=m!c. Consequently, the eigenfunctions and eigenval-
ues are given by

c k;nðx; yÞ ¼ eiky�nðx� x0Þ; (17)

En ¼ @!c

�
nþ 1

2

�
; n 2 N; (18)

where �n are the harmonic oscillator wave functions.
Following the procedure outlined in the introduction, the

GUP-corrected Hamiltonian assumes the form

H ¼ 1

2m
ð ~p0 � e ~AÞ2 þ �

m
ð ~p0 � e ~AÞ4 (19)
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¼ H0 þ 4�mH2
0 (20)

where in the last step we have used Eq. (14). Evidently, the
eigenfunctions remain unchanged, which alone guarantees,
for example, that the GUP will have no effect at all on
phenomena such as the quantum hall effect, the Bohm-
Aharonov effect, and Dirac quantization. However, the
eigenvalues shift by

�EnðGUPÞ ¼ 4�mh�njH2
0j�ni ¼ 4�mð@!cÞ2

�
nþ 1

2

�
2
;

or
�EnðGUPÞ

En

¼ 4�mð@!cÞ
�
nþ 1

2

�
� �0

m

MPl

@!c

MPlc
2
:

For an electron in a magnetic field of 10T, !c �
103 GHz and we get

�EnðGUPÞ
En

� 2:30� 10�54�0: (21)

Once again, if �0 � 1, this correction is too small to be
measured. Without this assumption, an accuracy of 1 part
in 103 in direct measurements of Landau levels using a
STM (which is somewhat overoptimistic) [8], the upper
bound on �0 follows

�0 < 1050: (22)

This bound is far weaker than that set by electroweak
measurements, but compatible with the latter (as was the
case for the Lamb shift). Once again, better accuracy
should tighten this bound, and perhaps predict an inter-
mediate length scale.

III. Potential barrier and STM.—In a STM, electrons of
energy E (close to the Fermi energy) from a metal tip at
x ¼ 0, tunnel quantum mechanically to a sample surface a
small distance away at x ¼ a. This gap (across which a
bias voltage may be applied) is associated with a potential
barrier of height V0 > E [9]. Thus

VðxÞ ¼ V0½�ðxÞ � �ðx� aÞ�; (23)

where �ðxÞ is the usual step function. The wave functions
for the three regions, namely x � 0, 0 � x � a, and x � a,
are c 1, c 2, and c 3, respectively, and satisfy the following
GUP-corrected Schrödinger equation (dn � dn=dxn)

d2c 1;3 þ k2c 1;3 � ‘2Pld
4c 1;3 ¼ 0;

d2c 2 � k21c 2 � ‘2Pld
4c 2 ¼ 0;

where k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mE=@2

p
, k1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðV0 � EÞ=@2p

. The solu-
tions to the above to leading order in ‘Pl, � are

c 1 ¼ Aeik
0x þ Be�ik0x þ A1e

x=‘Pl ; (24)

c 2 ¼ Fek
0
1
x þGe�k0

1
x þH1e

x=‘Pl þ L1e
�x=‘Pl ; (25)

c 3 ¼ Ceik
0x þD1e

�x=‘Pl ; (26)

where k0 � kð1� �@2k2Þ and k01 � k1ð1� �@2k21Þ. Note
the appearance of new exponential terms, which drop out
in the ‘Pl ! 0 limit. In the above, we have omitted the
left mover from c 3 and the exponentially growing terms
from both c 1 and c 3. The boundary conditions

dnc 1jx¼0 ¼ dnc 2jx¼0; n ¼ 0; 1; 2; 3 (27)

dnc 2jx¼a ¼ dnc 3jx¼a; n ¼ 0; 1; 2; 3 (28)

on wave functions (24)–(26) yield the following transmis-
sion coefficient:

T ¼
��������
C

A

��������
2¼

�
1þ ðk02 þ k021 Þ2sinh2ðk01aÞ

ð2k0k01Þ2
��1

: (29)

The reflection coefficient R ¼ jB=Aj2 ¼ 1� T. Using
Eq. (29) and the definitions of k, k1, k

0, k01, it can be shown
that when k1a 	 1, which is the limit relevant for STMs,
the transmission coefficient is approximately

T ¼ T0

�
1þ 4m�ð2E� V0Þ2

V0

þ 2�a

@
½2mðV0 � EÞ�3=2

�
;

(30)

where

T0 ¼ 16EðV0 � EÞ
V2
0

e�2k1a; (31)

T0 being the standard tunneling amplitude. The current I
flowing from the tip to the sample is proportional to T, and
is usually magnified using an amplifier of gain G. From
Eq. (30) the enhancement in current due to GUP is given by

�I

I0
¼ �T

T0

¼ 4�
mð2E� V0Þ2

V0

þ 2�a

@
½2mðV0 � EÞ�3=2

¼ 4�0m

MPl

ð2E� V0Þ2
V0MPlc

2
þ 4

ffiffiffi
2

p
�0a

‘Pl

�
m

MPl

�
3=2

�
�
V0 � E

MPlc
2

�
3=2

:

Then, assuming the following approximate (but realistic)
values [9]

m ¼ me ¼ 0:5 MeV=c2; E � V0 ¼ 10 eV;

a ¼ 10�10 m; I0 ¼ 10�9 A; G ¼ 109;

we get

�I

I0
¼ �T

T0

¼ 10�48�0 and �I � G�I ¼ 10�48�0 A:

(32)

Thus, for the GUP induced excess current �I to add up to
the charge of just one electron, e � 10�19 C, one would
have to wait for a time
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� ¼ e

�I
¼ 1029��1

0 s: (33)

If �0 � 1, this is far greater than the age of our Universe
(1018 s). However, if the quantity �I can be increased by a
factor of about 1021, say by a combination of increase in I
and G, and by a larger value of �0, the above time will be
reduced to about a year (�108 s), and one can hope to
measure the effect of GUP. Conversely, if such a GUP
induced current cannot be measured in such a time scale,
it will put an upper bound

�0 < 1021: (34)

Note that this is more stringent than the two previous
examples, and is in fact consistent with that set by the
electroweak scale. In practice, however, it may be easier to
experimentally determine the apparent barrier height
�A � V0 � E, and the (logarithmic) rate of increase of
current with the gap. From Eq. (30) they are related by [9]

ffiffiffiffiffiffiffi
�A

p ¼ @ffiffiffiffiffiffiffi
8m

p
��������
d lnI

da

��������
�
1� �@2

4

��������
d lnI

da

��������
2
�
: (35)

The cubic deviation from the linear
ffiffiffiffiffiffiffi
�A

p
vs j d lnIda j curve

predicted by GUP may be easier to spot and the value of �
estimated with improved accuracies.

To summarize, our results indicate that either the pre-
dictions of GUP are too small to measure at present (�0 �
1), or that they signal a new intermediate length scale
(�0 	 1). It is not inconceivable that such a new length
scale may show up in future experiments in the Large
Hadron Collider. Perhaps more importantly, our study
reveals the universality of GUP effects, meaning that the
latter can potentially be tested in a wide class of quantum
mechanical systems, of which we have studied just a

handful here. Promising areas include statistical systems
(where a large number of particles may offset the smallness
of �), study of whether normally forbidden transitions and
processes can be allowed by the GUP-corrected
Hamiltonian, and processes which may get corrected by
a fractional power of �0. We hope to report on some of
these in the near future. In the best case scenario, this could
open a much needed low-energy ‘‘window’’ to quantum
gravity phenomenology.
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