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Behaviour Development: A Cephalopod Perspective 

 
Jennifer A. Mather 

University of Lethbridge, Canada 
 

This paper evaluates the development of behaviour from the viewpoint of the intelligent and learning-
dependent cephalopod mollusks as a contrast to that of mammals. They have a short lifespan, com-
monly one to two years, and most are semelparous, reproducing only near the end of their lifespan. In 
the first two months of life, Sepia officinalis cuttlefish show drastic limitation on learning of prey 
choice and capture, gradually acquiring first short-term and then long-term learning over 60 days. 
This is paralleled by development of the vertical lobe of the brain which processes visually learned 
information. In the long nonreproductive adulthood, Octopus species show major flexibility in prey 
choice and continued mobility across the sea bottom. This results in large behaviour variability within 
and between individuals and both exploration and simple play-type behaviour. During the short re-
productive period, Sepioteuthis sepioidea squid gather for choice and competition, including flexible 
strategies in use of their skin display system. At the end of the life cycle, Sepia officinalis cuttlefish 
have a swift decline in memory capacity and also brain degeneration during their short period of se-
nescence. The emphasis on different behaviour capacities during these four stages is contrasted with 
those of the mammalian model of behaviour development. 
 

Because we have a normal model of mammals, we assume that learning-
dependent animals have a long life, parental care, and strong social organization 
(Humphrey, 1976). Yet the cephalopod mollusks are heavily dependent on learning 
(Mather, 1995; Wells, 1978) and have none of these. How is their learning and be-
haviour affected across the lifespan? Behaviour and learning capacity are not the 
same over any animal's life, as a view of any lifespan development text (e.g., San-
trock et al., 2003) will reassure the reader. Thus we can read in humans about sen-
sitive periods in childhood, brain-behaviour development linkages, the transition of 
adolescents from parental care to adulthood, the rise and recession of gender dif-
ferences, and the acquisition of wisdom in old age. All these aspects of lifespan 
development of behaviour take the mammalian model for granted (see Gandelman, 
1992). It is assumed that these lifespan differences are the normal ones for any 
animal that relies heavily on learning, yet this need not be the case. Cephalopod 
molluscs such as octopuses and squid (Hanlon & Messenger, 1996) change 
throughout their lifespan, not necessarily in the same pattern as the social mam-
mals. This paper attempts to look at behavioural development from the perspective 
of these cephalopods and see what lessons can be learned from this different 
model. 

The cephalopod lifespan and natural history are not the same as the mam-
malian one (see Figure 1). First, octopuses and squid have short lives, somewhere 
between three months and two years. It is logical to ask why animals with such a 
short life should rely heavily on learning and to what extent their learning is 
shaped by this short duration. Second, they have little to no parental care (in con-
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trast see Fleming & Blass, 1994). Female octopuses care for their eggs but die 
shortly after they hatch and most squid die shortly after egg laying (Boyle, 1987). 
This means no parental care, no imprinting (Bischof, 1994), little buffering of 
young from the harsh environment and no transitions of weaning and adolescence 
(Gandelman, 1992, Chapter 9). This difference is made even larger as the cephalo-
pods are generally solitary. Some squid swim in schools, by Ritz's (1994) defini-
tion, but their social interaction appears limited and most have little or no social 
contact for much of their lives (Hanlon & Messenger, 1996). Thus they have envi-
ronment-dependent rather than social-dependent learning (Humphrey, 1976, but 
see Milton, 1988). This means no social pressure, no status interactions, no imita-
tion and little need to learn parental behaviour (e.g., Hauser, 1988, for alarm calls). 
All this is imposed on a different reproductive strategy as cephalopods are se-
melparous and thus reproduce only once, at the end of their lives. They usually 
produce many small offspring and the young octopuses or squid are at high risk of 
mortality, a risk that extends for much of their lifespan.  
 

 
 

Figure 1. A comparison of the division of the lifespan of a representative mammalian and coleoid 
cephalopod species into ‘childhood’, early and reproductive adulthood and senescence. 

 
Figure 1 demonstrates that the lifespan of any animal can be divided into 

four sections, childhood, nonreproductive adulthood, reproductive adulthood and 
senescence. The proportion of the lifespan that is allocated to the different stages is 
quite different between the mammalian and cephalopod models, with the majority 
of time of the cephalopods spent in prereproductive aduthood and the mammals in 
the reproductive part. This paper will focus on each of the four life stages in turn 
and evaluate where possible what pressures and capacities might be emphasized 
for cephalopods in each stage. 

 
Childhood 

 
Eggs of many cephalopods species are tiny, a couple of millimeters long 

(Boletzky, 1998), and the newly-hatched paralarvae drift off in the plankton where 
many live for several months until they settle out near the shore. While the demand 
of this part of the life history must be interesting and the transition offers specific 
challenges (Boletzky, 1987), this makes them very hard to study. 
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Such a transition may resemble the sensitive period of young mammals af-
ter birth, as social and olfactory cues determine mammals’ later dietary and sexual 
preferences (Gandelman, 1992, Chapter 4). One possibility to trace change through 
this transition is the relatively large egged Octopus joubini (mercatorius). They are 
initially pelagic but settle to the bottom and assume the adult nocturnal activity 
pattern and den occupancy within a couple of weeks (Mather, 1984). Presentation 
of different settlement substrates and available prey at this time would offer them 
an opportunity to learn responses that might guide their future choices across the 6-
month lifespan. 

In contrast the young of the cuttlefish Sepia officinalis are relatively large 
at 1-2 cm length and occupy the same near-shore sandy bottom habitat as adults. 
The cuttlefish has been a good species in which to study learning because it has a 
relatively simple visual attack on shrimp or prawn prey (Messenger, 1968). Two 
elastic extensible tentacles are shot out to grasp the prey, and the third of three at-
tack phases (attention, positioning, and tentacle ejection) is open-loop. Adult cut-
tlefish can learn fairly quickly to cease attacking a prawn that has been placed in a 
glass test tube (Messenger, 1977), as attacks in this situation result in (possibly 
painful) strikes on the glass and no prey capture. 

When the visual attack was evaluated in newly-hatched cuttlefish, Wells 
(1962) found that they were somewhat different from adults. Young cuttlefish 
readily attacked their common prey, Mysis crustaceans, yet the visual search image 
was quite narrow and they would fail to attack a visual image that was unlike that 
of mysids. The first capture attempts shortly after hatching were accurate and ef-
fective, so release of the behaviour did not depend on learning. However, when a 
mysid was placed in an appropriate-sized test tube the little cuttlefish continued 
striking at the prey—they could not learn to modify their attack behaviour. Wells 
(1962) found that by the age of one month cuttlefish could learn to stop this behav-
iour and begin to take prey other than mysids. Thus the restricted preprogrammed 
and automatic behaviour found at birth was modifiable by one month of age. 

Messenger (1973b) was able to add anatomical evidence to this story. A 
series of studies of learning in octopuses (Wells, 1978) had established their exten-
sive learning capacity (though see Boal, 1996, for a critique of these studies), and 
that the neural basis for visual learning was established in a special area of the 
brain, the vertical lobe. Cuttlefish with the vertical lobe removed could not hunt 
visually for prey (Sanders & Young, 1940). When Messenger (1973b) evaluated 
the amount of development of the vertical lobe in newly-hatched cuttlefish, he 
found that there was very little. They could not learn to stop futile attempts at prey 
capture because they did not have the area of the brain by which to learn it. 

Dickel has recently taken up a more detailed study of the behaviour devel-
opment. He found that predatory behaviour did not develop for the first three days 
of life, during which cuttlefish were nourished by the inner yolk sac (Dickel, 
Chichery, & Chichery, 1998). Pursuit behaviour, which might need short-term 
memory, took several days to develop. He charted the gradual increase in the vol-
ume of the vertical lobe during this time, and found that the maturation of the ver-
tical-subvertical lobe tracts appeared to be correlated particularly well with the ap-
pearance of pursuit of prey and thus short-term memory. 
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Messenger (1973a) had earlier studied the long-term retention of informa-
tion in memory by adult cuttlefish and he found a biphasic response function that 
suggested both short-term and long-term memory. Dickel, Chichery, and Chichery 
(1998) refined this approach with young cuttlefish to look at the two memory sys-
tems. After training to withhold tentacle strikes, cuttlefish from 8 days onward 
were significantly less likely to strike 5 min after training and this difference was 
not affected by age up to 90 days (of a 22-month lifespan). In contrast, retention at 
60 min delay was not significant until 30 days, and it was significantly better than 
that at 60 days. In other words, short-term memory was present a week after birth 
but long-term memory took weeks more to develop. Looking in detail at brain 
anatomy, Dickel, Chichery, and Chichery (2001) found that relative growth of the 
vertical and superior frontal lobes of the brain was strongly correlated (r > 0.8) 
with this improvement in long-term memory. 

While this suggests a major role of preprogrammed development in the 
maturation of memory, further research (Dickel, Boal, & Budelmann, 2000) has 
suggested that the environment does have an effect. Cuttlefish were reared in an 
impoverished environment (singly in bare, opaque tanks) or an enriched one 
(grouped and with sand, rocks, shells, and plastic seaweed). Those reared in the 
enriched condition grew significantly more in the first month than those reared in 
the impoverished one, a parallel to findings with rats (Gandelman, 1992, Chapter 
6). At one month the cuttlefish reared in enriched conditions showed signs of long 
term memory and their performance was better than that of the impoverished group 
even at 3 months. This strongly suggests an effect of environment on plasticity and 
also sends a message long known for those studying vertebrates (Würbel, 2001), 
that lab animals may be significantly impeded by the impoverishment of their 
standard environment. This plasticity can be a specific rather than a general effect. 
Poirier, Chichery, and Dickel (2005) found that cuttlefish raised in the laboratory 
in tanks that provided a sandy bottom were both more likely to dig into the sand in 
a novel tank and more effectively covered themselves when doing so. Similarly, 
although diversity in prey choice switched in for cuttlefish after one month, expo-
sure to alternate prey, such as crabs, could rapidly modify this preference (Dar-
maillacq, Chichery, Poirier, & Dickel, 2004). 

The conclusions drawn from the information in this section will be of no 
surprise to researchers studying behaviour development in mammals (see Renner 
& Rosenzweig, 1987). What is surprising is the clear parallel between cephalopods 
and mammals. Both groups show the presence of preprogrammed behaviour near 
birth, then the advent of learning and the loosening of such programming. This 
parallel in unrelated groups suggests that it is the single best way to produce a 
learning-dependent animal who has to survive infancy first. Such preprogramming 
of early behaviour seems necessary even despite mammalian parental care. 

 
Nonreproductive Adulthood 

 
 Much of the lifespan of cephalopods is spent in this stage (Boyle, 1987). 
Before the relatively short period of reproduction, they use their excellent conver-
sion efficiency of food of 50%, compared to the mammalian 10%, to gain weight 
and grow body tissue. During this time they are relatively uninterested in members 
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of the other sex and most species are solitary and asocial (Hanlon & Messenger, 
1996). In this period, development and use of their intelligence is not concerned 
with conspecifics but with coping with predator pressures and finding and consum-
ing prey. This section will evaluate some of the ecological pressure and responses 
that octopuses make during the long nonreproductive period of their lives. 

The near-shore ocean environment, particularly that of the tropical coral 
reefs, is one of the most complex on the planet and thus contains a large array of 
potential predators for a vulnerable octopus. Randall (1967) examined the stomach 
contents of fishes in the Caribbean and found that 29 species had remains of octo-
puses or squid. Most did not have a large percentage of them in their diet, which 
means that they were opportunistically preying on the cephalopods. The predatory 
behaviour of each may be different. Thus barracuda stay motionless in the water 
until potential prey cease to notice them, groupers dart out from hiding under a 
rock, peacock flounders emerge from hiding in the sand and moray eels snake 
through rock crevices. Marine mammals also prey on octopuses, and Scheel (2002) 
found that octopuses were absent in the subtidal region of the coast of Prince Wil-
liam Sound in Alaska, likely removed by the pressure of sea otter foraging. This 
implies that octopuses are always in danger and must avoid predation all the time 
and by a wide range of species and techniques.  

Predator pressure by fish in particular has shaped the excellent camouflage 
of the chromatophore based skin display system in octopuses; Packard (1972) sug-
gested that fish were the designers of cephalopod skin. Direct neural control means 
that chromatophores can contract and skin appearance change in 30 ms and over an 
area as small as one square millimeter (Messenger, 2001). But many animals, such 
as stonefish and flounder in the ocean and moth and sloth in the forest, have the 
ability to blend into the background. Octopuses can not only blend but also change 
their appearances quickly over time (see Figures 2a and 2b), they can eject ink as a 
screen or pseudomorph and disappear into cracks and holes in the background. 
Hanlon, Forsythe, and Joneschild (1999) followed escaping Octopus cyanea and 
showed that their kaleidoscope of display changes in appearance were both many 
(3 times per minute) and unpredictable. Such a sequence can effectively break a 
predator's search image (Curio, 1976); what was striped is now mottled, and 
through the ink screen what used to be a dark shape is now a quite different pale 
one. The authors point out that such sequencing of appearances must involve 
choice of behaviour, assessment of results and repeated choice until the octopus is 
caught or escapes, quite a different matter from simply appearing like the back-
ground. Such evaluation and choice of programs must use learning to assist them.  

An equally demanding situation for octopuses is the choice and consump-
tion of prey. Octopuses are generalist foragers; Ambrose (1984) found that O. bi-
maculoides took 55 species on Bird Rock in California, Mather (1991a) that O. 
vulgaris selected 28 in one small bay in Bermuda over a few weeks. Such selection 
also varies from region to region in Enteroctopus dofleini, the giant Pacific octo-
pus, across the west coast of North America (Hartwick, Thorarinsson, & Tulloch, 
1978; Vincent, Scheel, & Hough, 1997). Nevertheless, the prey remains discarded 
by specific individuals are often of one or a few species, suggesting they might be 
learning specific prey availability and becoming specializing generalists. In order 
to find the snails, clams, and crabs that comprise their diet, octopuses become cen-
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tral place foragers. An octopus hides in a central den, moves out to find prey and 
returns several times per day (Mather, 1991a). The lack of simple following along 
the outbound path indicates that octopuses may be using spatial memory (see Boal 
et al., 2000) to make these return trips (Mather, 1991b). When an octopus goes out 
for another foraging trip it does not return to an area it has already covered, indi-
cating it may have some form of working memory of where it already hunted. In 
addition this suggests a win-shift foraging strategy, a reasonable one since having 
found prey hiding in crevices, algae or sand, octopuses cannot expect an immediate 
replacement. This ability suggests octopuses could be tested for spatial memory 
similar to that found by Roberts (1991) for rats on radial mazes (see Dyer, 1998; 
Sherry, 1998). Mather (unpublished results) tested O. rubescens on an aquatic ana-
logue of a radial maze and was unable to find such ability. However, this species 
apparently does not return to specific den sites; O. vulgaris and O. cyanea, which 
do, would be better subjects. 

Such pressure on a memory system (Laughlin & Mendl, 2004) may ac-
count for why octopuses have developed both a visually-based and a tactile-based 
memory system (see Mather, 1995), each in a separate area of the brain (Wells, 
1978). But the pressure is even greater, as octopuses in this stage of the lifespan 
occupy small home ranges without any territorial defence and switch home ranges 
after an average of ten days' occupancy (Mather & O'Dor, 1991). Unlike territorial 
vertebrates who can learn paths and subareas of a larger area, octopuses must learn 
new locations, prey, and predators over and over again in this lifespan stage. Per-
haps this is also a necessity in this variable environment (Wingfield, 2003). The 
ten days occupancy of a home range suggests that octopuses' spatial memory 
should not be long-term memory. West-Eberhard (2003) pointed out the impor-
tance not only of learning but also of forgetting, and it is possible that the duration 
of spatial memory in the octopus is restricted (as, for instance, bees' learning of 
flowers is much better with particular colours; Menzel, 1985). 

Catching a prey animal does not assure easy consumption and once again 
adult octopuses have flexibility. To penetrate into a snail or clam shell, they have 
several options. E. dofleini can pull out the snail, pull apart the clam valves or 
break the shell with the pull of their strong arms, chip off the edge of a clam valve 
with their beak to open a hole for venom penetration or drill a hole in the shell with 
the salivary papilla to allow access for their paralytic toxin. O. vulgaris try the 
quick but energy-expensive technique of pulling first (Fiorito & Gherardi, 1999; 
McQuaid, 1994) by trial and error, only going to the time-consuming drilling if 
pulling fails. If the Venerupis clams which are normally pulled apart are kept 
closed with a twist of wire, the octopus switches its technique to drilling (Ander-
son & Mather, 2005). 

Drilling is also not random in position, rather over the retractor muscle at-
tachment of the snail and the body or the adductor muscles of the clam (Ambrose 
& Nelson, 1983; Cortez, Castro, & Guerra, 1998; Hartwick, Thorarinsson, & Tul-
loch, 1978; Wodinsky, 1969), depending on the octopus species. The accurate po-
sition is learned by small octopuses within a few trials (Anderson, personal com-
munication) and can be relearned. Wodinsky (1973) blocked the spire of conch 
snails so holes could not be drilled. O. vulgaris drilled right through dental cement, 
pulled off a rubber coating and, when foiled by a metal coating on the spire, drilled 
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as close to the edge of the metal as they could. There appears to be some monitor-
ing of the condition of one's own body in this choice of technique as well. Wodin-
sky (1973) found that female octopuses who were brooding eggs, and thus had lost 
the function of the posterior salivary gland that supplied the venom, simply pulled 
snails out of their shell without attempting to drill. 

    

 
 

Figure 2. (A) Picture of a common octopus. O. vulgaris in camouflage on the end of the rusty beam. 
(B) Picture of a common octopus, O. vulgaris, in Bonaire taken 60 seconds after the picture in Figure 
2 and taken from above shows the startle deimatic display. (Reproduced with permission from James 
B. Wood.) 

 
What does this ecological pressure mean for behaviour in the laboratory? 

First, it means that octopus are highly exploratory. Octopuses are notorious for 
taking apart things in their tank, and Wells (1978) mentioned that the average life-
span of a floating thermometer in a tank containing an O. vulgaris was 10 min. 
Anderson (personal communication) commented about an E. dofleini (named, per-

A 

B 
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haps appropriately, Lucretia McEvil) that destroyed her support system overnight. 
She dug through a layer of sand several centimetres thick, bit through wires hold-
ing the undergravel filter plate to the corner of the tank, pulled the platform out of 
the sand, tore it into pieces and left the pieces floating in the aquarium tank. An 
octopus will approach any novel item that is dropped into its tank, grasp it with all 
arms, and explore with the suckers on the ventral surface of the arms. Such explo-
ration is one of the critical components of learning (West-Eberhard, 2003). 

When given such an article repeatedly, octopuses perform different behav-
iours over the period of eight days. As one might expect, they rapidly habituate to 
a “toy” (Kuba, 2004; Mather & Anderson, 1999). Yet after a period of several days 
the octopus returns to interaction with the object and sometimes shows activity that 
fits in the category of object play (see Burghardt, 2001, on criteria for play). 
Mather and Anderson (1999) watched two of their eight subjects send a floating 
pill bottle to the opposite end of their aquarium tank where it was picked up by the 
inflow siphon and returned, only to be blown away again—in one case, 20 times 
over. Kuba's (2004) in-depth analysis of such play-like behaviour showed that the 
only significant influence on its development was days of study, with a peak at 
days 3 and 4 of 8. Kuba (2004) had seven quite small (mantle length 3-4 cm) and 
seven nearly adult (mantle length 11-17 cm) subjects, and there was no difference 
in play-like behaviour between the two groups. This is very different from the 
situation in mammals, where play is generally a feature of juveniles although it can 
be seen in adults at a much lower level (Pellis & Iwaniuk, 1999).  

Perhaps stimulated by the tendency to move into a new home range after a 
period of days, octopuses in the laboratory are also known for their escape behav-
iour. Their considerable arm strength (Trueman & Packard, 1968) can be utilized 
to push up an aquarium cover and their compressible soft body can be squeezed 
through a very small opening. The result is a notorious ability to escape from tanks 
(Wood & Anderson, 2004), sometimes to their death on the floor below. Following 
the win-shift foraging strategy demonstrated in the field (Mather, 1991a), an octo-
pus in the Brighton Aquarium became well-known when it several times climbed 
out of its tank, slipped into the tank next door to it and returned after the capture 
and consumption of a lumpfish. Note that these were all very well-fed octopuses 
that had no “need” to go foraging for food but did so anyway. 

The combination of exploratory behaviour, win-shift foraging, and indi-
vidual differences is so strong that they can be called personalities (Mather & 
Anderson, 1993; Sinn, Perrin, Mather, & Anderson, 2001). This may lead re-
searchers to have difficulty training octopuses in traditional tasks. Studies of octo-
pus learning, ranging from Wells' (1978) with O. vulgaris, Boal's (1991) with O. 
bimaculoides, to Papini and Bitterman's (1991) with O. cyanea have all had diffi-
culty getting the animals to reach a normal criterion of correct choices. Papini and 
Bitterman (1991) commented that octopuses could easily reach a criterion of 7/10 
correct choices and yet did not go further, preferring to sample the previously un-
rewarded stimulus. Variability in choices is probably well fitted for an animal in a 
variable environment. The necessity to move to and explore a new area and the 
sampling of unrewarded choices in the laboratory makes sense when one realizes 
that win-stay strategies would not be appropriate for the natural history of the oc-
topus in its normal environment. Darmaillacq, Dickel, Chichery, Agin, and Chich-
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ery (2004) have demonstrated taste aversion learning in cuttlefish; it would be in-
teresting to see if such aversion is long lasting.  

What does this show in a comparison with adult learning in mammals? 
First, it reminds us that natural strategies, such as the emphasis on exploration and 
win-shift foraging of the octopus, will shape the learning of each animal and may 
be quite different from that of a mammal with a fixed territory and parental care 
duties as an adult—and note that parrots appear to learn some tasks well in a social 
context (Pepperberg, 2004). The difficulty of surviving in this complex environ-
ment with many different predators and prey and different challenges for capture 
and preparation are clearly a sufficient background for an environmental rather 
than a social basis for learning, which also controls some primate learning capacity 
(Milton, 1988). And the presence of simple play that is not different from early to 
late in the lifespan suggests that the blossoming of play in juvenile mammals is 
indeed made possible by the parental protection and care that allows the young 
time to play, possibly also necessary to help the young animal fit into its social 
context. 

A less visible piece of information from this phase of the octopuses' life-
span is that, is contrast to mammals (Galea et al., 1994), no consistent differences 
in behaviour have been reported between the two sexes. This information is tenta-
tive both because negative results are not generally published and because animals 
may not have been identified to sex internally when they were used, as it would 
require the death of the animal. Nevertheless there are no sex differences reported 
for the long series of learning studies by Wells (1978), and for the personality re-
search of Mather and Anderson (1999). It is logical that this should be the case as 
sex simply is not manifested at this time, but is a distinct difference from mam-
mals, where sex differences in behaviour show themselves during the juvenile pe-
riod and are enlarged thereafter (Field & Pellis, 1998). 

 
Reproductive Adulthood 

 
The switch from somatic to reproductive growth in semelparous animals 

like the cephalopods is a major transition. Cephalopods are permanently male or 
female although their sex does not manifest itself until maturity. The maturation is 
triggered by development of the optic gland (Wells, 1978), a hormonal gland 
which is under control of the pedunculate lobe of the brain. Light appears to acti-
vate its suppression, although many cephalopods are not strictly seasonal in repro-
duction and so it is not just day length that triggers change but also temperature 
and lifespan (Calow, 1987; van Heukelem, 1979). Somatic growth is constant and 
longer growth at the same general rate allows some cephalopods to live longer 
(Wood & O'Dor, 2000). When suppression is removed and the optic gland ma-
tures, protein synthesis in the muscles is much reduced, resulting in free amino 
acids that are taken up in the reproductive organs and ducts. Such a process results 
in gradual wearing away of the octopus' body and death, although Wodinsky 
(1977) was able to reverse this in brooding female O. hummelincki (filosus) by re-
moval of the optic gland. Hormonal control is not so clear in males, as Wells and 
Wells (1972) were able to remove the gonads and even the ducts of males, and 
they still attempted to mate with females (as do male mammals, see Gandelman, 
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1992, Chapter 3). Nevertheless, reproduction generally shortly precedes death in 
cephalopods. A more detailed investigation of the hormonal control of behaviour 
in these animals is overdue. How do hormones mediate the appearance of squid 
sexual displays, octopus migrations, and male-male competition in cuttlefish? 
Could optic gland extract trigger the changes, and what brain areas would show 
growth or decline, in cell density or connections?  

There has been surprisingly little investigation of the development of the 
switch in behaviour from growth-related to reproductive in cephalopods, although 
casual observation has reported that at maturity males octopuses become more ac-
tive and females less so. Is there a two-stage tuning for and appearance of sexual 
behaviour as in mammals (Gandelman, 1992)? Some cephalopods, including octo-
puses and cuttlefish, migrate to a specific area for mating and egg-laying (Corner 
& Moore, 1980; Hall & Hanlon, 2002). Squid and cuttlefish form short-term con-
sortships; males compete for access to females with tactics including female mim-
icry (Norman, Finn, & Tregenza, 1999) and are especially likely to show agonistic 
behaviour near egg masses (King, Adamo, & Hanlon, 2003). Female choice of 
which males to accept is important in some species, especially the cuttlefish (Naud 
et al., 2004). 

The author's long-term observational field study of the display system of 
the Caribbean reef squid, Sepioteuthis sepioidea, in Bonaire has begun to give 
some answers about reproductive strategies (Mather, 2004). This is a particularly 
good species in which to study behaviour in the reproductive phase of life (Mather, 
2004; Moynihan & Rodaniche, 1982) because these squid are found permanently 
in groups of up to 50 or so, normally approximately 20, and individuals can be 
identified. Young squid are attracted to and swim parallel with others but appear 
not to interact otherwise. The first indications of sexual behaviour are displays 
which seem critical in the information exchange before sperm transfer. The agonis-
tic Zebra with irregular dark stripes is exchanged between males and the sexual 
Saddle (pale-mantle with brown ring) is produced, often without male response, by 
newly-mature females (Mather, unpublished results). Short-term consortships of up 
to several days (the group separates at night to feed) are maintained during the few 
weeks of sexual maturity. Sexual displays, including the male Stripe of longitudi-
nal dark mantle stripes exchanged with the female Saddle and the male pre-mating 
on-off Flicker (see Figure 3) as well as the agonistic Zebra, appear to be very vari-
able (Mather, 2004; Mather, Greibel & Byrne, in sub; Moynihan & Rodaniche, 
1982), but there is little indication that their form is any different in subadults than 
in adults. However, subadults may produce displays out of the normal sequence 
(for instance, a Flicker without Saddle-Stripe first) or may produce them to an in-
dividual of the wrong sex (a Flicker to another male, resulting in a Zebra re-
sponse). Females produce their agonistic Zebra quite late in their lifespan to repel 
males, after they presumably have mated a sufficient number of times that they 
have stored a good supply of sperm in their spermatophoric gland for fertilization 
of the eggs when they lay them. 

Variability in the male Zebra display on mantle and arms comes from three 
sources: area on which it is produced, contrast between the dark stripes and the 
background (which can be varied in this sophisticated display system by darkening 
of stripes or paling of background), and increase of the apparent area by spread of 
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the arms (Mather, 2004). If this variation of display intensity (see Messenger, 
2001, for a discussion of the chromatophore system's variability) is catalogued on a 
scale from 0.5 (half the arms on a pale brown background) to 10 (all arms and 
mantle on a white background, arms spread 280 degrees to alongside the mantle), 
the intensity can be related to which of a pair of males is the winner or loser. Is the 
display an honest one or is it, as Krebs and Dawkins (1984) suggest, manipulation 
of the receiver? A data base of 1,213 Zebra displays was collected from observa-
tions in the field during 1999 and 2000. Each display was scored for intensity, sex 
of receiver (closest individual or closest on the side of the Zebra display) and be-
havior of sender and receiver, before and after the display was produced. 71% of 
the displays were male-male and an additional 16% were female-male. When the 
behaviour after a male-male Zebra was catalogued, 73% of the time the winner 
made a more intense Zebra display. 
 

 
 
Figure 3. A flow chart of the sequence of behaviours and displays in the courtship of the squid Sepio-
teuthis sepioidea and its interruption by peripheral males. 

 
However, there is one interesting situation in squid in which the winner is 

not the one who produces the more intense Zebra display. A mature male, usually 
in a short-term consort pairing with a mature female, gives a specific Flicker dis-
play indicating his intent (p = 0.3) to pass spermatophores to a willing female (see 
Figure 3). In this situation there is a high (p = 0.5) probability that a subadult male 
will make a Zebra display and interrupt the courtship (see Shier, 2002, for eaves-
dropping). Given this challenge the courting male will break off, approach the 
subadult and often display Zebra in return. In this case the subadult may be less 
than “honest” as it will be much more likely (56% of the time) make a more in-
tense Zebra display than the adult.  

This display intensity may be a deceptive message of status by a subadult 
male who could not win a physical contest, which rarely happens in this species, or 
take over the consortship. Such deception can be evaluated for its fit into three 
categories (Guzeldere, Nahmias, & Deaner, 2002). Deception can be defined as 
"an agent producing or witholding an act or signal so that it is misinterpreted by 
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another to the advantage of the agent" (Guzeldere et al., 2002, p. 353). The first 
category is hardwired deception, where the deceptive animal simply has the per-
ceptual message permanently, such as the camouflage of a moth on tree bark 
(Kamil & Bond, 2002). A second category of deception occurs where the deceiver 
assumes a deceptive communication because it has learned that it will result in a 
payoff. What payoff might the subadult squid acquire in this situation? Since fe-
male squid mate with approximately 10 males over a period of approximately three 
weeks and collect sperm from all of them, it might pay the subadult male to dis-
courage courtship if it results in him gaining successful copulation later on when 
he is larger. Thus it is probably not the third category of deception, where the de-
ceiver intends to decieve as it understands how its behaviour affects the receiver 
and thus manipulates the receiver's mental state. But it is difficult to tell precisely 
what a squid “knows” or “represents” with a visual display. There is obviously 
some sophistication of control of squid sexual displays, and see Adamo and Han-
lon (1966) for those of cuttlefish. 

We see from this section that this shift from a solitary or asocial to a sex-
ual lifestyle plunges the squid into a demanding but short-term (approximately a 
month) lifestyle of courtship, choice and competition perhaps like an iteroparous 
mammalian female's short period of receptivity. It is much simpler than the mam-
malian long-term knowledge of social relationships (Seyfarth & Cheney, 2002), 
yet might also demand social cognitive ability. 

 
Senescence 

 
The short stage of senescence in the lifespan of cephalopods is the almost 

inevitable outcome of the physiological changes that accompany sexual maturity. 
As the focus of growth changes from somatic to reproductive tissues (O'Dor and 
Wells, 1978; Tait, 1987), the digestive glands cease to function properly and feed-
ing slows or stops. As somatic growth ceases, brain tissue begins to degenerate 
(Chichery & Chichery, 1992a). In a relatively short time the body simply shuts 
down. 

Senescence is probably much more noticeable and a longer period of a 
cephalopod's life in captivity than in the wild, and it is the aquarium keepers of 
octopuses who have brought this period of life to our attention (Anderson, Wood, 
& Byrne, 2002). Researchers or aquarists commonly see an octopus which seems 
to be in excellent health stop eating, develop skin lesions and decline over a period 
of weeks. This period is present in both sexes but is masked in females as they stay 
in their den and tend eggs, only coming out after eggs have hatched if they survive 
that long. Interestingly, senescent male octopuses both lose their normal activity 
rhythm and double the amount of time they are active, from around 40% to over 
80% (Meisel et al., 2003). Such a pattern of activity would place an octopus in 
imminent danger of predation in the wild and senescent octopuses probably do not 
survive long. 

Besides the changes in physical condition, senescent cephalopods change 
their behaviour. Aquarists report that senescent octopuses lose coordination and 
crawl through stinging sea anemones that they would have previously avoided 
(Anderson et al, 2002), as well as drastically cutting their food intake. In the wild, 
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senescent female squid which have presumably laid their eggs give agonistic Zebra 
displays to all comers and often end up either solitary or schooling with one or two 
other females. Senescent large males move from group to group, challenging other 
males with a Zebra display and perhaps exchanging a Stripe-Saddle display with 
the largest females, yet not moving further to Flicker displays or mating (Mather, 
personal observation). Such attenuation of behaviour sequences was also reported 
for senescent cuttlefish by Chichery and Chichery (1992a). In their two-week pe-
riod of decline, cuttlefish first underestimate the distance to a prey item and thus 
undershoot with the tentacles, later detect but fail to pursue the shrimp prey and 
finally cease even to orient to the shrimp. 

Such failures in behaviour sequencing were linked to brain structure by 
Chichery and Chichery (1992a, 1992b). Two-year old cuttlefish were both slower 
to learn the same avoidance task that they had used on the very young cuttlefish, 
had lesser retention and were also, as is found in human elders (Santrock et al., 
2003), much more variable in learning than one year olds. Neurohistological 
analysis showed an accumulation of granules representing axon degeneration in the 
cuttlefish brains, particularly in the motor centers of the peduncle area and the 
basal lobes. Interestingly enough, despite the lack of learning the vertical lobe was 
spared but there were many degenerating fibres in the tracts leading to and from 
this structure. This degeneration of the motor output areas correlates nicely with 
the initial decline not in perception of prey but in response to it and may be a paral-
lel to the initial degeneration of the hippocampus in Alzheimer's disease in humans 
(Santrock et al., 2003).  

Cephalopod senescence appears to be similar to but much swifter than that 
of mammals (Promslow, 1991). It reminds us of the overwhelming role that physi-
ology appears to play in guiding behaviour in these animals. Without the buffering 
of the social group in terms of assistance, increased status and continuing contribu-
tion to care of offspring, the cephalopod completes its semelparous reproductive 
effort and just dies. The physiological changes that shift the animals from growth 
to reproduction simply continue their shift to speedy decline and death (van Heu-
kelem, 1979).  
 
 

 
 
Figure 4. A depiction of the major features of ecology and behaviour in the lifespan stages of coleoid 
cephalopods. 
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Conclusion 
 
This comparative look at development of behaviour (Figure 4) places the 

“normal” mammalian path in a wider perspective. The fixity of behaviour in young 
cephalopods makes it appear that the buffering of childhood by the presence and 
care of parents is not enough to erase the necessity for a learning-dependent animal 
to start off without learning. The extreme learning dependence of the mobile octo-
puses with wide prey choice and avoidance of many predators shows how envi-
ronment can be the only pressure to make a learning-dependent animal. Nev-
erthless, in this prereproductive period play-like behaviour is at a low but constant 
level, suggesting that the protection of parents allows a young mammal to play at a 
fairly high level while its continuous presence in social groups may make it neces-
sary. There appear to be few sex differences in behaviour during this long prere-
productive period of cephalopods. Nevertheless, when the semelparous cephalo-
pods do mature, due to a simple hormonal system, they assume the system of male 
competition and female choice that most other species groups do. Squid use this 
considerable behavioural flexibility to compete, court and mate. At the end of the 
lifespan, the cephalopods are unprotected by any social group and their swift de-
cline and short senescent period seems the inevitable end point of physiology, the 
switch from somatic to sexual growth that began with their delayed maturation.  

What cephalopod might be used as the model to study behaviour develop-
ment? The subclass Coleoidea (most of the modern cephalopods) is a fairly diverse 
group and so there is no single choice for a model species. Octopuses, especially 
O. vulgaris, have had much research attention, mostly in the laboratory (Wells, 
1978, but see Mather 1991a, 1991b). They adapt well to lab situations, are some-
times large but mostly have a planktonic young stage and are solitary. Both vision 
and chemotactile senses are important to them. Cuttlefish have had research atten-
tion in the laboratory but almost none in the field so the context of their behaviour 
is often completely lacking. They are very visual and their relatively large young 
are perfect for a focus on early stages of behaviour development; they are solitary 
until reproduction but our fragmentary knowledge of their reproductive strategies 
in the field (see Hall & Hanlon, 2002) blocks our understanding. Squid are the so-
cial cephalopods but they are open ocean species in many cases and that makes 
understanding their behaviour a practical problem. They are predominantly visual 
and use their display system for sexual interaction (Mather, 2004; Moynihan & 
Rodaniche, 1982) but are difficult to keep in the laboratory. The small sepiolid 
squid (Sinn & Moltschaniwskyj, 2005), are easy to keep in the laboratory across 
their 5-month lifespan and might be an ideal group to use as a model. However, 
they are probably solitary although essentially nothing is known of their natural 
history and most are strictly nocturnal. As in any other group, the choice of a 
model cephalopod organism will have to depend on the specific question about 
development of behaviour. But there are many interesting questions to ask and 
much to learn from the cephalopods as models of behaviour development. 
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