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Abstract

Sedimentation velocity experiments performed in the analytical ultracentrifuge are modeled using

finite element solutions of the Lamm equation. During modeling, three fundamental parameters

are optimized: the sedimentation coefficients, the diffusion coefficients, and the partial

concentrations of all solutes present in a mixture. A general modeling approach consists of fitting

the partial concentrations of solutes defined in a two-dimensional grid of sedimentation and

diffusion coefficient combinations that cover the range of possible solutes for a given mixture. An

increasing number of grid points increases the resolution of the model produced by the subsequent

analysis, with denser grids giving rise to a very large system of equations. Here we evaluate the

efficiency and resolution of several regular grids and show that traditionally defined grids tend to

provide inadequate coverage in one region of the grid, while at the same time being

computationally wasteful in other sections of the grid. We describe a rapid and systematic

approach for generating efficient two-dimensional analysis grids that balance optimal information

content and model resolution for a given signal-to-noise ratio with improved calculation efficiency.

These findings are general and apply to one- and two-dimensional grids, although they no longer

represent regular grids. We provide a recipe for an improved grid point spacing in both directions

which eliminates unnecessary points, while at the same time providing a more uniform resolution

that can be scaled based on the stochastic noise in the experimental data.

Introduction

Sedimentation velocity (SV) experiments performed in an analytical ultracentrifuge provide

information about composition, size and anisotropy, and for some experimental designs

information about density of colloidal molecules in solutions. They measure the

sedimentation and diffusion transport of a colloidal particle in a centrifugal force field, and

provide the partial concentration of each solute in a mixture. The observed signal is typically

convoluted with systematic and stochastic noise. Where possible, systematic noise

contributions can be removed mathematically [1], leaving only the stochastic noise to the

residuals of a fit. We have developed a number of optimization routines to solve the problem

of fitting experimental data in an unbiased approach, and to extract the sedimentation and

diffusion coefficients and partial concentrations of mixtures of analytes [2, 3, 4, 5, 6, 7]. For
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all of these methods, the ability to recover these parameters is limited by the magnitude of

the stochastic noise present in the data. The magnitude of the noise determines the minimum

amount of signal that the fitting method needs to be able to resolve. Any signal larger than

the noise is not lost in the noise and the grid must therefore be able to resolve differences

between grid points that are equal or a slightly smaller than the noise signal. In other words,

the underlying model must be able to explain the sedimentation and diffusion transport

present in the experimental data with slightly higher resolution than the resolution necessary

to account for the magnitude of the stochastic noise. This transport, when performed in a

sector-shaped centrifugation cell under ideal solution conditions (constant temperature,

absence of pressure dependence, constant speed, and under dilute conditions), is described

by the Lamm equation L (Equ. 1) [8]:

Equ. 1

where r is the radial distance from the rotor center, s and D are the sedimentation and

diffusion coefficients, C is the partial concentration of a solute, and is the angular velocity

of the rotor. Inspection of Equ. 1 reveals that fitting an experimental dataset consists of

adjusting the sedimentation and diffusion coefficient, and finding the appropriate

concentration C. In the general case, one must allow for the presence of multiple solutes Ci,
where i indicates the ith species in a mixture. For non-interacting mixtures of solutes, the
general solution for a multi-component mixture with n unknown species is given by:

Equ. 2

where ci is the partial concentration of the ith solute. In the general case, n, ci, and Li are not
known and need to be determined with a degenerate fitting approach that does not impose

any user bias or prior knowledge upon the solution. Furthermore, a rigorous solution to this

problem requires that s and D for each solute are allowed to vary independently, requiring a

two-dimensional fitting approach that can account for variable distributions in both

sedimentation and diffusion coefficient. Previously we proposed a two-dimensional

spectrum analysis (2DSA) approach to solve this problem [2, 3]. 2DSA begins by building a

regular two-dimensional grid of sedimentation coefficients in one dimension and frictional

ratios in the second dimension. This results in a two-dimensional grid of unique solutes,

where each solute is defined by a unique combination of sedimentation and diffusion

coefficients. Next, the finite element solution for the entire experiment is calculated and a

full set of scans and radial absorbances is simulated for each individual solute, using the

experimental and boundary conditions of the actual experiment (rotor speed, buffer

conditions, meniscus position, and bottom of cell). The simulated datapoints for each unique

solute represent a basis vector of a linear combination of all solutes represented by the two-

dimensional grid. The optimization problem is solved by forming a linear combination (Equ.

2) of the basis vectors li=Li (s, D), representing simulated solutions for each s, D for all n
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solutes defined in the grid. This linear system can be written as Ax=b where A is the matrix

of basis vectors li, x is the vector of unknown concentrations ci, and b is vector with
experimental data. This problem is solved with the non-negatively constrained least squares

algorithm (NNLS) [9], which results in a vector x containing positive concentrations ci for
solutes Ci contributing to the NNLS fit and zero for all other solutes not found in the
experimental data. Clearly, the model resolution obtained from the fit will be proportional to

the number of solutes included in matrix A, with the resolution increasing with the size of A.

In any case, for a typical experiment A will be very large (on the order of several gigabytes).

As the size of A increases, so does the computational effort and the required calculation

time. The exact scaling of the computational effort with resolution is difficult to generalize,

since it depends on the number of components present in the experimental data, the size of

A, the number of parallel processors available, and the number of partitions employed in the

2DSA. Therefore, a compromise has to be made between the desired resolution and the

available computational resources. An obvious question therefore is: What exactly is the best

set of grid points to use in a two-dimensional grid to obtain a desired model resolution for a

given problem? A good rule of thumb is to use a grid layout where elimination of any grid

point in the two-dimensional grid would introduce an error slightly less in magnitude than

the stochastic noise inherent in the experimental data. If the grid point density is high

enough to where the removal of a grid point does not affect the root mean square deviation

(RMSD) of the fit within the magnitude of the noise, then any solute present in the

experimental data can be distinguished reliably, and the chance for missing a solute is

minimized.

According to Equ. 1, each solute measured in an analytical ultracentrifugation (AUC)

experiment gives rise to a sedimentation and diffusion coefficient, and NNLS optimization

recovers the partial concentration of each solute in the grid of solutes (which may be zero).

Once sedimentation and diffusion coefficients with non-zero concentrations are determined,

additional properties of the found solutes are available. From the diffusion coefficient, we

can derive the frictional coefficient:

Equ. 3

where R is the gas constant, T is the temperature in Kelvin, and N is Avogadro’s number. If

the partial specific volume( ) is available, we can derive the molar mass, M:

Equ. 4

where is the density of the solvent. Once molar mass and partial specific volume are

available, we can assume a hypothetical spherical particle with the same volume as the

actual solute and calculate the volume V and hydrodynamic radius r0 of the spherical
particle:
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Equ. 5

Using the Stokes-Einstein relationship, we can derive the frictional coefficient of this

hypothetical sphere:

Equ. 6

Finally, the frictional ratio, or anisotropy k can be derived:

The latter property describes how non-globular a molecule is. For a perfectly spherical

molecule, f = f0, and k = 1.0, for all other molecules k > 1.0.

To aid in the interpretation of AUC results, it is frequently more convenient to express the

results by using parameterizations of the sedimentation and diffusion coefficients, and to

present the results in terms of more intuitive parameters, for example, as functions of molar

mass and anisotropy or partial specific volume and molar mass instead of sedimentation and

diffusion coefficients. As was shown in [6], it is straightforward to express a range of solute

properties of interest in terms of any combination of another type of grid. In this work we

evaluate the resolution, and contrast the computational requirements of several regular grid

layouts, and show that all of these regular grids are either computationally wasteful or lack

the ability to describe an experimental system with the desired resolution for each region of

the grid equally. With the recent introduction of the Beckman Optima AUC instrument, a

significant enhancement of the data quality and signal to noise ratio is realized, which

suggests that commensurate enhancements in the data analysis resolution are desirable. This

raises the question of the exact distribution of solutes in Equ. 2 that will provide the optimal

compromise between resolution and computational requirements. In this manuscript we

present a systematic evaluation of the performance of traditionally employed regular grids,

and propose an adaptive grid layout providing improved solute point positions for s and D,
which are easily computed, and which still can be converted to any custom grid application

proposed in [6]. The new grid optimizes the retrieval of available information while at the

same time minimizing the computational effort as a function of resolution, performing

significantly better than any other regular grid layout tested by us.

Methods

1. Testing grid performance and simulation

We define grid performance as the reciprocal product of the computational effort times the

number of grid points required to obtain a constant grid resolution. In order to compare grid

performance, a resolution metric needs to be established. A convenient resolution metric is
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the signal difference between the experimental data from two simulated solutes with equal

loading concentration [10]. Here, the simulations are for two adjacent grid points, and

simulated to match the experimental run conditions. An optimal grid layout will feature a

resolution and grid spacing such that the difference between Lamm equation solutions from

adjacent grid points equals tolerance t, which should be slightly less than the RMSD

originating from stochastic noise in the data. We suggest a constant value e which should be
half of the expected RMSD. This difference needs to be satisfied in both dimensions of the

grid:

Equ. 7

It is important to point out that contributions to the signal difference between two points in

the grid depend on several experimental conditions, including rotor speed, the radial range of

the fitted data, the interval between scans, the partial concentration of a solute, and the

duration of the experiment, and should be derived from the UltraScan edit profile, which sets

data range limits. We investigated regular grid types parameterized by k vs. s, k vs. M, D vs.

s, and a new improved k vs. s grid with point spacings based on the first derivative of the
Lamm equation with respect to s and D. In each case, we attempted to cover the same
domain in s and D, regardless of parameterization. For all grids, the number of total grid
points, Ngrid, was kept constant at 210 points in order to approximate equal computational

effort across all grids. The total number of grid points was chosen such that the grid

coverage was visually comparable across all grids. Generating grids should be fast and

efficient, so numerical routines that empirically identify grid spacings satisfying a given

resolution, for example through a line search or root finding algorithm, are not desirable due

to their large computational overhead (data not shown). In contrast, our proposed improved

grid can be generated quickly and is suitable for parallel methods implemented on

supercomputers [11]. To compare the efficiency of all grid types an empirical method using

finite element simulations was needed. For this purpose, a new UltraScan module was

developed, reusing already available data structures and processing methods in the UltraScan

C++ class library. RMSD values were determined by subtracting two finite element solutions

representing adjacent grid points from each other as follows: Scans for each component

were simulated with equal time increments, and over the experimental duration. Only points

having less than one-half of the plateau concentration were included in the calculation, and

any scans where the midpoint of the boundary was to the right of the bottom b of the cell
with meniscus m according to b= mes

2t were excluded from the RMSD calculations. Any

points located to the left of a point 0.025 cm to the right of the meniscus were also excluded

from the RMSD computation. This approach assured that steep gradients in the back-

diffusion region are excluded from the fitting range due to refractive artifacts in this region,

and because absorbance values at the bottom of the cell tend to exceed the dynamic range of

the detector. The simulated time of the experiment was 6.8 hours, and was chosen such that

the midpoint of the boundary from the average sedimentation coefficient of the grid’s s-
value range would cross the bottom of the cell according to Equ. 14. For each experiment,
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100 equidistant scans in time were simulated. All finite element simulations were performed

for a 40,000 rpm rotor speed, using 200 simulation points for ASTFEM grid. For

sedimentation coefficients larger than the mean sedimentation coefficient, sedimentation

time was shortened such that the RMSD calculation ignored scans after the faster of the two

components pelleted. This prevented calculated RMSD values from being underestimated

due to the inclusion of baseline values from pelleted solute states. For all grids, we used a

sedimentation coefficient range from s1 = 1.1 x 10−13 s to s2 = 9.9 x 10−13 s, and a frictional
ratio range from k1 = 1.2 to k2 = 3.8. These ranges were chosen to prevent the program from

simulating unreasonable frictional coefficients below 1.0 during RMSD isobar calculations.

To measure grid resolution, RMSD isobars were calculated around each grid point by

measuring the RMSD difference along the polar coordinate lines from zero to 2 in two

degree increments with each grid point at its center, producing 180 RMSD points around

each grid point. The required length of the polar coordinate line was determined by testing

the RMSD at points from the 4 corners of the grid. We found that constant multipliers

proportional to the regular s · k grid spacing were more than sufficient to capture all RMSD

isobars of interest. Furthermore, the chosen constant scaling also ensured that all RMSD

values along the polar coordinate line allowed for a linear extrapolation (data not shown).

This approach was repeated by iterating over all other solute points in a test grid projected

on to the s · k plane. Linear interpolations between 0 and 0.5% RMSD were used to generate

RMSD error ellipsoid isobars (see Figure 1). Equations for the linear approximations needed

for the generation of the ellipsoid isobars were then stored in an output file to allow

ellipsoids for different RMSD values to be generated without simulating every grid point

and its associated sample points again.

2. Improved grid generation

Our improved grid is based on the rate of change of the concentration as a function of s and
D. This can be represented by the derivative of the Lamm equation with respect to s and D.
Since an analytical solution to this problem is not readily available, and numerical solutions

require computationally demanding algorithms, we chose to use the Faxén approximation to

the Lamm equation [12]. Starting with the Lamm equation (Equ. 1), we first introduce

dimensionless variables x, and :

Equ. 8

where m and b are the meniscus and the bottom of the cell, respectively. Then the Lamm

equation can be transformed to:

Equ. 9

It is evident that the solution C depends on parameter only. When 1, and x near 1, the
solution to the Lamm equation can be approximated by the Faxén solution:

Kim et al. Page 6

Eur Biophys J. Author manuscript; available in PMC 2019 October 01.

A
u
th
o
r
M
a
nu
script

A
uth

or
M
anu

script
A
uth

or
M
anu

script
A
uth

or
M
anuscrip

t



Equ. 10

where

Equ. 11

is the error function, and

Equ. 12

Taking the partial derivative with respect to yields:

Equ. 13

To evaluate the magnitude of we need to specify a meaningful time interval. We note that

a typical experiment will be finished when the midpoint of the solute’s boundary reaches the

bottom of the cell, which occurs at:

Equ. 14

Therefore, we use the time interval [0, t*] to evaluate the magnitude of . More precisely,

we introduce the norm of in the domain 0 ≤ ≤ * = 2s 2t*= 2ln(b/m) and 1 ≤ x ≤ x* =

(b/m)2 as follows:

Equ. 15

For fixed values of m, b and rotor speed this norm is dependent on only. Unfortunately,

there is no explicit formula for the norm as a function of . A numerical evaluation of the
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norm suggests that for typical ranges of s, D and , is approximately proportional to

−3/4. See Figure 2 for a log-log plot of || || as a function of in the case of m = 6.5, b =

7.2, and = 60,000 rpm.

A careful study shows that is inversely proportional to the 3/2-th power of the product s ·
k, more precisely,

Equ. 16

Let µ = (s · k)−1, then we have = O (µ3/2), and thus:

Equ. 17

Using the chain rule for differentiation

Equ. 18

which implies that:

Equ. 19

Since || || is approximately constant along a curve s · k = const, when designing an s-k

grid system, the grid points can be picked along various curves , j=1,2,…,N where

the values of µj, j=1,2,…,N, are selected so that the RMSD error isobars are approximately

uniformly distributed. We observed that when is evenly spaced, the distribution of the

RMSD error isobars is the closest to uniformity. Thus we select µj values accordingly for the

grid generation. A detailed description of the creation of the s-k grid system follows:

Suppose in a 2DSA analysis the sedimentation coefficient s is between limits s1, s2 and the
frictional ratio k is between k1 and k2, then the range for µ = (s · k)−1 is between and µ1 = (s1
· k1)−1 and µ2 = (s2 · k2)−1. Let N be the number of partitions we would like to place in

between µ1 and µ2. Then an equidistribution of µ−1/4 can be achieved approximately by
using the dividing points:
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Equ. 20

To generate the improved grid, we calculate all yj = 1/(µj · s1) where µj−1 ≥ s1 · k2 and all xi,j
= 1/(µi · yj), satisfying s1 ≤ xi,j ≤ s2. Then the grids on the s-k plane is the collection of all
points (xi,j, yj), satisfying s1 ≤ xi,j ≤ s2 and µj ≤ s1 · k2.

3. Adjusting the resolution of the improved grid

The resolution of the improved grid is proportional to the total number of grid points, Ngrid.

It can be controlled by adjusting N, the number of partitions between µ1 and µ2. An estimate
of Ngrid can be obtained as follows: First, ensuring µj ≤ 1/(s1 · k2), we have 0 ≤ j ≤ Ja with:

Equ. 21

For each j ≤ Ja, to ensure that s1 ≤ xi,j ≤ s2, we have:

Equ. 22

Consequently, the total number of gridpoints, Ngrid, is given by:

Equ. 23

A plot of Ngrid vs. N is displayed in Figure 3. Furthermore, a least squares fit shows that

Ngrid is approximately a quadratic function of the number of partitions as given by:

Equ. 24

A comparison of the estimated total number of grid points using the above formula is also

shown in Figure 3, which indicates a good match of Equ. 23 with the prediction by Equ. 24.

Therefore, in practice, in order to generate an improved grid containing Ngrid points we can

select as the number of partitions to produce the improved grid.

Results

One of the best metrics for grid performance is the RMSD distance between adjacent grid

points. When the grid points are identical, the RMSD difference between these points is
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zero, the further the two grid points move apart along either the s and D direction, the larger

the RMSD difference will become between finite element solutions for these grid points.

The comparison cannot just be made in one dimension, because both s and D contribute to

this RMSD difference. As is shown in Figure 1, a constant level of RMSD difference around

a grid point is best described by an ellipsoid, which varies in aspect ratio and orientation,

depending on the position of the grid point in the two-dimensional grid space. Ideally, the

RMSD difference between adjacent grid points should be slightly less than the RMSD level

encountered in the stochastic noise in the data to assure all solute concentrations that exceed

the noise level can be detected. To this end, we plotted the location and RMSD ellipsoids for

five different RMSD levels (0.001 – 0.005), corresponding roughly to the noise level ranges

observed in commercially available analytical ultracentrifuges, for a fixed number of grid

points and several regular grid types, as well as for the improved grid based on the Faxén

solution. Regular grid types offer the advantage of being intuitive in terms of the variable

that they represent (for example, frictional ratio and molar mass) and can be quickly

generated. They avoid the computational overhead of numerically optimized grids that will

result in equi-distant RMSD grid points. Furthermore, such optimized grids are difficult to

generate in more than one dimension. On the other hand, the computational overhead for the

improved grid (Equ. 8 – Equ. 24) is trivial and well suited for methods like the 2DSA or

genetic algorithms [4, 5], where hundreds of grids need to be computed. We investigated

regular grids where s and D values were based on s vs. k, M vs. k, and s vs. D on a range

consistent with a sedimentation coefficient range for s from 1–10 x 10−13 sec, and a

frictional ratio range for k from 1–4. Our comparison of the performance of the improved

grid with different regular grids revealed significant differences when error distances

between adjacent grid points were evaluated. These differences are clearly seen when their

RMSD error isobars are visually compared (Figure 4). We observe the following

characteristics for each grid: the conventionally used s vs. k grid (Figure 4A) suffers from
low resolution in s for the left half of the grid, but performs well for s in the right half of the
grid. For k, the resolution increasingly suffers in the upper left quadrant of the grid, and is
computationally very wasteful in the right half of the grid, where adjacent grid points

overlap strongly in the k dimension. By far, the worst performing grid is a regular grid based
on molar mass M and frictional ratio k (Figure 4B). Drastic loss of resolution in the lower
left quadrant of the grid in both dimensions is accompanied by significant overlap in both

dimensions in the entire right half of the grid, and especially strong in the center for k. A
regular grid based on s vs. D (Figure 4C) performs reasonably well for s throughout the s-

domain, with a slight loss in resolution in the upper left quadrant of the grid for k, similar to
the error seen in the s vs. k grid (Figure 4A). In the right half of the grid significant overlaps
are seen in the lower k regions of the grid, indicating significant computational
inefficiencies. The most evenly distributed RMSD error over the entire grid is evident from

the improved grid based on the Faxén solution (Figure 4D).

Remarkably, the improved grid provides excellent coverage for the lower left quadrant (see

Figure 5 for a magnified view of the lower left quadrant for a 0.0005 (red) and 0.001 (blue)

RMSD error level), demonstrating no overlap and nearly touching isobars. Similarly,

overlaps in the right half of the grid are essentially absent, though spacing in the s-range
suggests slight resolution loss in the upper right quadrant of the grid. It should be noted that
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diffusion resolution is very low in the upper right quadrant since solutes in this portion of the

grid have a small diffusion coefficient to begin with, and then they are sedimenting rapidly,

leaving little time for diffusion, which decreases diffusion signal and explains lower

resolution in D. Consequently, isobars are very elongated in the k-direction and white space
at the upper right quadrant is caused by missing solute points that would be centered at

frictional ratios > 4 which were not considered in this simulation. The same effect is very

clear also in Figure 4C, where large regions were not simulated since they fell outside of the

range of 1 ≥ k ≥ 4, and solute regions outside of this range would be required to fill these
white spaces. The current grid generation function for UltraScan’s 2DSA produces a

regularly spaced grid of solute points in terms of sedimentation coefficient and frictional

ratio. Although this method can effectively analyze AUC experimental data, it does not

necessarily do so in the most computationally efficient way. When using a regular s · k grid,
there are often cases in which groups of two solute points on the grid are sufficiently similar

in terms of their simulated behavior that when the stochastic noise of the experimental data

is taken into account, the two are functionally identical. This is problematic because it

requires the program to unnecessarily simulate a solute, a cost that can become significant

for large grids with many redundant simulations.

Summary

We have presented a novel method for a computationally efficient s · k grid that substantially
improves resolution for a given number of simulation points in a two-dimensional grid used

for fitting sedimentation velocity experiments, while simultaneously minimizing

computational effort and required memory. This innovation will reduce needed computer

time on national supercomputing infrastructures like XSEDE and PRACE, and improve

resolution when fitting sedimentation velocity data.
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Figure 1.
RMSD error isobars for a solute point (black) in the 2DSA grid.
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Figure 2.

A plot of the norm of as a function of in the case of m = 6.5, b = 7.2, = 60000rpm.
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Figure 3.
Total number of grid points Ngrid vs. the number of partitions N using Equ. 23 and

approximate Equ. 24
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Figure 4.
RMSD error isobars for an equal number of grid points from three regular grids (A: s vs. k,

B: M vs. k, C: s vs. D, and D: Improved grid based on the Faxen solution. Here, increasing

white space between the outermost error isobar indicates reduced resolution, while overlaps

between adjacent red isobars indicate wasteful inefficiencies. Ideally, red isobars should

touch, but not overlap.
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Figure 5.
Detail of lower left corner of improved grid based on the Faxen solution, demonstrating

excellent coverage without overlaps and without resolution gaps (simulated resolution in

blue: RMSD=0.001).
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