
This thesis was typeset with LATEX, using a modified version of the University of
California PhD dissertation class file, ucthesis.cls. Unless otherwise noted, all figures
in this thesis were created by the author using IDL R© CorelDraw R© or the GNU Image
Manipulation Program (GIMP).

OPTIMISATION OF THE
INSTRUMENTAL PERFORMANCE OF IRMA

Regan Eugene Dahl

B.Sc. Computer Engineering, University of Alberta (2004)

A thesis

submitted to the School of Graduate Studies

of the University of Lethbridge

in partial fulfilment of the

requirements of the degree

MASTER OF SCIENCE

Department of Physics

University of Lethbridge

Lethbridge, Alberta, Canada

c© Regan Eugene Dahl, 2008

To Jillian and David
for your patience and support during my Master’s Program.

iv

Abstract

The Infrared Radiometer for Millimetre Astronomy (IRMA) is a passive atmo-

spheric water vapour monitor developed at the University of Lethbridge. It is a compact,

robust, and autonomous instrument, which is capable of being operated remotely. The

latest model is based on a PC/104 running an AMD 133 MHz SC520 processor, which

allows for more flexible control of the unit. The modifications and upgrades to the software

required for the transition to this new platform are discussed in this thesis. In addition to

software optimisation, a new calibration method has been developed as the unit has become

better understood. This method has been verified through test campaigns carried out in

Lethbridge and Chile. The results of these tests are included in this thesis.

v

Acknowledgements

This thesis is the result of contributions by many people. It would never have been
completed without the assistance of numerous others. Some have helped me directly, while
others I have stood on the shoulders of their pervious work, in order to reach a little higher.
I would especially like to thank my supervisor, David Naylor, for welcoming me into the
Astronomical Instrumentation Group to complete my Masters degree.

I would like to acknowledge those who have made IRMA what it is today.
Graeme Smith, for starting the ball rolling with the construction of the IRMA

prototype.
Ian Chapman, for his work on atmospheric modelling, allowing us to take IRMA

anywhere in the world.
Ian Schofield, for all his work on the control and communication software.
Robin Philips, for his work as IRMA Project Manager during the first year of my

Masters, and for all the help and guidance he gave me.
Richard Querel, for working with me on the IRMA project for these past two years.
Greg Tompkins, for all the insight and entertainment he brought to the group, as

well as his electronics expertise.
Frank Klassen, for his machining work supporting the IRMA project.
Brad Gom, for his mechanical work as well as the additional time he took from

his other projects to help with IRMA.
Matthias Schöck for acting as Project Manager for a month helping to calibrate

the TMT units. As well as the entire TMT site selection team.
Karim Ali, Scott Jones, Dan Sirbu, and Amy Smedes for the summers they worked

on IRMA.
Locke Spencer for always being willing to help out with LATEX or IDL.
Thanks to Drs. Peter Ade and Carole Tucker, University of Cardiff, for supplying

us with specially designed IR filters. Thanks to Fluke for loaning us the Ti20 Thermal
Imager. Thanks also to NSERC, HIA and NRC for funding the IRMA project.

vi

Table of Contents

Abstract iv
Acknowledgements v
List of Figures ix
List of Tables xii

CHAPTERS

1 Introduction 1
1.1 Overview . 1
1.2 Precipitable water vapour . 2

1.2.1 Importance of Measuring PWV . 2
1.2.2 Measuring Water Vapour . 6

1.3 The IRMA Solution . 7
1.3.1 The Instrument . 7
1.3.2 The Atmospheric Model - BTRAM 8

1.4 Summary . 10

2 IRMA Hardware 12
2.1 Overview . 12
2.2 Optical System . 12

2.2.1 Parabolic Mirror Design . 14
2.2.2 IR detector and filter design . 15
2.2.3 Chopper wheel . 16

2.3 Mechanical Design . 16
2.3.1 IRMA Module . 18
2.3.2 Alt-Az mount . 19

2.4 Electronics . 20
2.4.1 Overview . 20
2.4.2 PC/104 . 22
2.4.3 Diamond Systems - Emerald-MM-DIO 22
2.4.4 Pre-Amplifier . 22
2.4.5 IRMA motherboard . 23
2.4.6 Cryocooler Controller . 23
2.4.7 Alt-Az Electronics . 23

2.5 Summary . 29

Table of Contents vii

3 IRMA System Software 30
3.1 History . 30
3.2 Rabbit based IRMA . 30

3.2.1 Command Processor . 31
3.2.2 CP - MC Communication . 39
3.2.3 Master Controller . 40
3.2.4 MC - AAC Communications . 42
3.2.5 Alt-Az Controller . 42

3.3 PC/104 based system . 45
3.3.1 Porting the Master Controller . 46
3.3.2 Autonomous Control . 49
3.3.3 AAC Updates . 49

3.4 Queue Server . 51
3.5 AutoTasks . 52

3.5.1 Software Structure . 52
3.6 Housekeeping Tasks . 54
3.7 Summary . 55

4 IRMA Control and Data Analysis Software 56
4.1 IRMA Control Interface . 56

4.1.1 Software Structure . 57
4.1.2 Requirements and Execution . 66

4.2 IRMA Archive Interface . 66
4.2.1 Requirements and Execution . 68

4.3 IRMA PWV . 69
4.4 Summary . 69

5 Instrument Calibration and Field Performance 72
5.1 Calibration . 72

5.1.1 Calibration Basics . 72
5.1.2 Calibration Issues . 74
5.1.3 Improved Calibration Method . 79
5.1.4 Results . 85

5.2 Field Performance . 96
5.3 Summary . 102

6 Future Directions 104
6.1 Overview . 104
6.2 Future Mechanical and Optical Development 104

6.2.1 New Cryocooler . 105
6.2.2 Larger Primary Mirror . 106
6.2.3 New Weather Shutter Design . 106

6.3 Future Software Development . 107
6.3.1 System Software Enhancements . 107
6.3.2 Front End Software Development . 110

6.4 Final Thoughts . 110

Table of Contents viii

A IRMAscript 112
A.1 Overview . 112
A.2 IRMAscript Language Summary . 113
A.3 IRMAscript Language Definition . 115

A.3.1 List Manipulation . 115
A.3.2 Utility Functions . 116
A.3.3 Variable Manipulation . 117
A.3.4 Delays . 118
A.3.5 Flow Control . 118
A.3.6 Input / Output Commands . 119
A.3.7 System Commands . 120

B AltAz Commands 134

C Configuration and Installation 135
C.1 CP configuration file options . 135
C.2 Perl Module Installation . 136

C.2.1 System Software Perl Modules . 137
C.2.2 Control and Visualisation Software Perl Modules 137

C.3 Sample Daily Tasks File . 138
C.4 AutoTasks.conf . 138

References 139

ix

List of Figures

1.1 Atmospheric windows . 2
1.2 A photograph showing an IRMA unit deployed in front of the Gemini South

telescope in Chile. 4
1.3 A photograph showing three IRMA units deployed on one of the Chilean sites

being considered as part of the Thirty Meter Telescope (TMT) project. . . 4
1.4 A schematic of the cause of atmospheric phase distortion of a celestial signal. [1]. 5
1.5 A photograph showing IRMA attached to the side of one of the antennas of

the Smithsonian Millimeter Array telescope on Mauna Kea, Hawaii. 7

2.1 A photograph of the original IRMA instrument. 13
2.2 A schematic of the equivalent optical system of IRMA. [1] 14
2.3 A rendered model of IRMA in its Altitude-Azimuth fork mount. 17
2.4 A photograph of the electronics side of the IRMA module. The optical com-

partment is located immediately on the other side of the vertical wall shown
in the image. 21

2.5 A Block Diagram of the new configuration of the IRMA Master Controller
showing how the PC/104 interfaces with the various subcomponents of the
radiometer. 24

2.6 A photograph Alt-Az electronics board with Rabbit RCM 2010 microproces-
sor attached (centre left). 25

2.7 A Block Diagram of the IRMA Alt-Az Controller showing how the Rabbit
RCM2010 interfaces with motor control system. 26

3.1 A System diagram for the Rabbit-based IRMA. 32
3.2 A flowchart of Rabbit-based system software. 35
3.3 An overview of the IRMA directory structure. 36
3.4 A summary of the IRMA network communications handshaking sequence. . 39
3.5 A schematic of the IRMA master control software task structure during scan-

ning. 41
3.6 The description of the IRMA serial communications packet string. 42
3.7 IRMA serial communications protocol between the Master Controller and

the slave Alt-Az Controller. 43
3.8 A schematic of the IRMA Alt-Az controller task structure. 43
3.9 A Flowchart of PC/104-based system software. 48
3.10 A flowchart of the AutoTasks execution path. 53

List of Figures x

4.1 A screen shot of the IRMA Control Interface GUI. 57
4.2 A screenshot of the Queue Status area of the IRMA Control Interface showing

the blackbody ON command running with the Refresh command waiting in
the Queue. 58

4.3 A screenshot of the Current unit status area of the IRMA Control Interface
showing the current status unit showing the chopper on, the shutter moving
and the blackbody off. 59

4.4 A screenshot of the dialog box that the operator uses to point IRMA. . . . 60
4.5 A flowchart showing the execution path of the IRMA Control Interface. . . 61
4.6 A screenshot showing a zoomed region of the Unit Stat area of the GUI

showing that unit 12 is connected while unit 3 is disconnected. 62
4.7 A screenshot showing a zoomed region of the graphical display area of the

IRMA Control Interface. The right hand graph shows a calibration cycle
followed by sky observation. 63

4.8 A screenshot of the dialog box that the operator uses to configure AutoTasks. 65
4.9 A screenshot of the dialog box that the operator uses to select GUI options(A)

and Queue Server information(B). 65
4.10 A screen shot of the IRMA Archive Interface GUI. 68
4.11 A flowchart describing the steps involved in calculating the PWV from the

raw data. 70

5.1 Normalised IRMA instrument response function 74
5.2 Thermal image of an internal lid blackbody 75
5.3 Potential error in atmospheric flux introduced through two-point extrapolation 76
5.4 Mapping the IRMA field of view . 77
5.5 IRMA aperture . 78
5.6 External view of the large reference blackbody 79
5.7 Typical LBB and lid calibration process run in the lab 81
5.8 Three IRMA units on the roof at the University of Lethbridge 84
5.9 Raw voltage data for three co-located IRMA units in Lethbridge 85
5.10 PWV values for three co-located IRMA units in Lethbridge. 86
5.11 Scatter plot of PWV data from three co-located IRMA units in Lethbridge. 86
5.12 Flux comparisson with heated IRMA unit 88
5.13 Three co-located IRMA units in Chile . 89
5.14 Correlation of Chile data using original coefficients 90
5.15 Time series PWV data from three co-located IRMA units in Chile 91
5.16 Scatter plot of PWV data from three co-located IRMA units in Chile . . . 91
5.17 Correlation of Lethbridge data using the statistically derived coefficients . . 92
5.18 Time series PWV data from three co-located IRMA units in Chile based on

sky calibration . 94
5.19 Scatter plot of PWV data from three co-located IRMA units in Chile based

on sky calibration . 94
5.20 Time series PWV data from three co-located IRMA units in Lethbridge based

on sky calibration . 95
5.21 Scatter plot of PWV data from three co-located IRMA units in Lethbridge

based on sky calibration . 95

List of Figures xi

5.22 Emission spectra at 1 mm PWV . 99
5.23 Curve-of-growth profile corresponding to Figure 5.22 99
5.24 IRMA skydip data . 101
5.25 IRMA skydip data . 101

6.1 New IRMA mechanical/optical design . 105
6.2 Block diagram of original Queue Server functionality 107
6.3 Block diagram of proposed Queue functionality 108

xii

List of Tables

3.1 pseudo code description of the the IRMAscript interpreter. 34
3.2 An example unit configuration file which is used to initialise instrument pa-

rameters. 37

5.1 Correlation coefficients for Lethbridge test data 87
5.2 Correlation coefficients for Chile test data 92
5.3 Correlation Coefficients for Chile test data based on sky calibration 93
5.4 Correlation Coefficients for Lethbridge test data based on sky calibration . 96

A.2 CS5534 ADC gain settings in IRMAscript. 127
A.3 CS5534 ADC sample resolution settings in IRMAscript. 127
A.4 CS5534 ADC polarity settings in IRMAscript. 128

B.1 IRMA AAC command codes sent over MC AAC serial link. 134

1

Chapter 1

Introduction

1.1 Overview

The Infrared Radiometer for Millimetre Astronomy (IRMA) is an instrument used

to measure the amount of water vapour in the atmosphere, usually expressed as precip-

itable water vapour (PWV). It was developed as a collaboration between the University

of Lethbridge and the Herzberg Institute of Astrophysics to be a fast, relatively simple,

robust radiometer which could be used to determine PWV at high altitude sites around the

world. Central to IRMA is a sensitive infrared photoconductive detector, used to measure

the atmospheric emission of a carefully selected spectral band centred at ∼20 µm. The

total radiant infrared flux received from the atmosphere is converted into PWV by use

of an atmospheric model, BTRAM (Blue Sky Transmittance and Radiance Atmospheric

Model) [2], which has been developed by our research group.

Section 1.2: Precipitable water vapour 2

1.2 Precipitable water vapour

Water vapour is simply water in the gaseous phase. Precipitable water vapour

(PWV) is a measure of the columnar abundance of water vapour in the atmosphere. PWV

refers to the depth of liquid water present upon condensing a column of atmosphere. PWV

is a linear parameter referred to in units of mm. For example, 1 mm PWV condensed over

an area of 1 m2 would correspond to 3.34 × 1025 molecules of water in the atmosphere.

1.2.1 Importance of Measuring PWV

Figure 1.1: The atmospheric opacity as a function of wavelength. The graphs show with regions of the electro-

magnetic spectrum are visible from ground based sites. Courtesy of NASA/JPL-Caltech.

Astronomical objects emit light at all wavelengths of the electromagnetic spectrum.

By and large, this light travels vast distances through space relatively unimpeded until it

Section 1.2: Precipitable water vapour 3

reaches the Earth’s atmosphere. While our atmosphere is transparent to some forms of

radiation, it is opaque to many wavelengths as shown in Figure 1.1 [3]. The dominant

source of opacity for infrared wavelengths is due to atmospheric water vapour. Therefore,

the best infrared observing sites require low column abundances of water vapour. This is

why the world’s best observatories are located at high and dry mountain tops, which place

them above most of the atmospheric water vapour.

Since water vapour is the primary source of atmospheric opacity, quantifying its

abundance, usually expressed in terms of PWV, is critical for the calibration of astronomical

data at observatories around the world. For this reason it is also key factor in deciding the

location of future ground based observatories. IRMA has been used as both an opacity

meter for existing observatory sites (Figure 1.2), as well as in a site testing role (Figure

1.3).

Water vapour is also a cause of phase delay in submillimeter interferometric arrays.

These submillimeter arrays are ground-based observatories which are able to synthesize a

massive receiving antenna whose diameter equals the length of the maximum baseline of the

array. The maximum baseline is the distance between the two farthest-separated antennas

in the array.

Section 1.2: Precipitable water vapour 4

Figure 1.2: A photograph showing an IRMA unit deployed in front of the Gemini South telescope in Chile.

Figure 1.3: A photograph showing three IRMA units deployed on one of the Chilean sites being considered as

part of the Thirty Meter Telescope (TMT) project.

Section 1.2: Precipitable water vapour 5

Figure 1.4: A schematic of the cause of atmospheric phase distortion of a celestial signal. [1].

At millimeter wavelengths, water vapour found in the Earth’s atmosphere is present

in sufficient amounts to slow down the incoming wavefront of a celestial signal. Studies have

shown that for every 1 mm of precipitable water vapour along the line of sight of a millimeter

telescope, the optical path length through the atmosphere increases by 6 mm [4]. More-

over, the distribution of water vapour in the atmosphere is neither spatially nor temporally

homogeneous inside the column projected from the antenna’s receiving dish. For example,

with a wind speed of 20 m/s, which is not uncommon at the altitude of many observatories,

the mass of air in the column above the telescope changes every ∼0.5 s. Thus, in general

the amount of water vapour along the line of site of each receiving antenna will be different.

The effect of atmospheric phase distortion is illustrated in Figure 1.4, which shows

an interferometric array with two antennas. The antenna pair observe the same object,

whose wavefront appears planar in the upper atmosphere. The wavefront above the left

Section 1.2: Precipitable water vapour 6

hand antenna passes through a region of water vapour, which adds excess optical path

length, d, to the incoming signal. Interferometry requires the precise measurement of the

time the wavefront was received at each antenna. The apparent direction of the observed

object is perpendicular to the planar wavefront. A slight phase error manifests itself as

a slight change in the immediate apparent angle of the astronomical source, decreasing

the spatial resolution of the interferometer. Real-time knowledge of the PWV above each

antenna would allow for a partial correction of this phase delay.

IRMA is well-suited for phase correction. It has been designed such that it samples

the same patch of sky as a 10 m antenna, as described in §2.2. Importantly, IRMA is a

passive radiometer and therefore, does not require any radio frequency (RF) components

which may interfere with the RF instrumentation of a radio telescope. Figure 1.5 shows

IRMA mounted to one of the antennas at the Smithsonian Millimeter Array (SMA) on

Mauna Kea in Hawaii during phase correction testing in June 2004.

1.2.2 Measuring Water Vapour

Many methods have been described in literature to measure the water vapour

content of the atmosphere. These include: 183 GHz radiometer [5], 225 GHz Radiometer

(Caltech Submillimeter Observatory (CSO) Taumeter) [6], tropospheric delay measurements

using GPS signals [7], and infrared radiometer [8]. IRMA is the only method to employ a

passive infrared radiometer. Moreover, it is also compact, robust, and able to be operated

remotely.

Section 1.3: The IRMA Solution 7

Figure 1.5: A photograph showing IRMA attached to the side of one of the antennas of the Smithsonian

Millimeter Array telescope on Mauna Kea, Hawaii.

1.3 The IRMA Solution

1.3.1 The Instrument

The IRMA instrument will be the main focus of my thesis. IRMA is essentially a

very sensitive infrared thermometer, which measures the emission from the atmosphere in

a narrow spectral band where only water vapour contributes to that emission. The IRMA

device consists of an optical system which focuses the emission onto a photoconductive

detector, which will be discussed in §2.2. Finally, this flux can then be converted into PWV

using an atmospheric model, BTRAM, which has been developed by the Astronomical

Instrumentation Group at the University of Lethbridge and is briefly described in the next

Section 1.3: The IRMA Solution 8

section. A mechanical system, described in §2.3, has been designed such that IRMA can be

pointed in any direction, and gives it the ability to protect itself from the elements with a

weather shutter which doubles as a calibration source. The electronics, discussed in §2.4,

facilitate the control of the instrument through software, which will be discussed in Chapter

3. Other software, discussed in Chapter 4, has also been designed which allows for remote

access and control of the IRMA unit in addition to data reduction routines.

1.3.2 The Atmospheric Model - BTRAM

To determine the relationship between the detected flux and PWV, IRMA em-

ploys the atmospheric model BTRAM (Blue Sky Transmittance and Radiance Atmospheric

Model). BTRAM [9] (originally known as ULTRAM [2]) is a line-by line, layer-by-layer ra-

diative transfer model used to simulate transmission, emission, or opacity of a user-definable

atmosphere.

The impetus for developing BTRAM, was that IRMA could be deployed in lo-

cations where standard models do not apply. The main goal in developing BTRAM was

to provide the user with the flexibility to model radiative transfer under local conditions.

It was originally designed as a customisable GUI with a simplified subset of geometries

available in Fast Atmospheric Signature Code (FASCODE) [10]. FASCODE was difficult

to customise due to the volume of code, causing modifications to one aspect of the model

would have unpredictable consequences in other parts of the code. BTRAM has been de-

veloped into an independent, easy to use, fully customisable atmospheric model using the

HITRAN 2004 database of spectral lines [11].

Within BTRAM there are nine pre-built atmospheric profiles: Antarctic Summer,

Section 1.3: The IRMA Solution 9

Chajnantor Winter, Mauna Kea, Mid-Latitude Summer, Mid-Latitude Winter, Sub-Arctic

Summer, Sub-Arctic Winter, Tropical, and U.S. Standard Atmosphere 1976. A customised

atmospheric model is built by either modifying one of the pre-built profiles, or creating

one based on radiosonde data when available. A radiosonde is a suite of meteorological

instruments carried by a weather balloon, which makes in situ measurements of pressure,

temperature, wind speed, and dew point or relative humidity. These data are then used

to determine inputs for the creation of a site-specific atmospheric model, such as the scale

height and the adiabatic lapse rate.

Astronomical observations must account for the variable transmission through the

earths atmosphere. While IRMA measures emission from of the Earth’s atmosphere, by

application of Kirchoff’s Laws the transmission can be derived and a suitable correction

applied to the astronomical observation. Previous studies have shown that, at a wavelength

of 20 µm, water vapour is the primary source of emission in the atmosphere [12]. Thus, by

measuring the emission at these wavelengths, the detected flux can be converted to water

vapour abundance through the use of an atmospheric model.

From any site there are natural variations of temperature and pressure, which must

be taken into account when generating the model. Using the range of local temperatures and

pressures common to the desired site, BTRAM is run in a batch mode to generate a series

of model files. These files are combined to form a lookup table relating flux to PWV for

the given range of local meteorological conditions. The operator uses the atmospheric flux

values obtained by IRMA, along with the concurrent temperature and pressure, to determine

the corresponding PWV value from the lookup table. The final accuracy of the retrieved

PWV value depends not only on instrumental uncertainties, but also on uncertainies in the

Section 1.4: Summary 10

atmospheric model. For this reason, where possible, nearby radiosonde data are used to

generate the models used by IRMA. Error analysis studies have also been performed on the

models and show that the contribution to the total error budget is driven by the accuracy of

the scale height, and the adiabatic lapse rate. A detailed analysis of how the key parameters

affect the resulting PWV output from the model has been performed. The scale height of

water vapour was found to be the parameter most affecting PWV sensitivity. While scale

height of water vapour is critical to the accuracy of the model, it remains the most difficult

to measure in real-time [13].

1.4 Summary

Water vapour is an important component of the atmosphere. Due to its inter-

ference with astronomical signals, understanding the quantity of water vapour in the at-

mosphere is especially important for astronomy. IRMA provides a method of measuring

the columnar abundance of water vapour, PWV, for astronomical applications. This thesis

describes the work that I have done in optimising the instrumental performance of IRMA,

specifically improving the performance of the control and data acquisition software and

refining the calibration schema of the radiometer.

Chapter 2 gives a brief history as well as an overview of the current optical, me-

chanical and electronics design of the IRMA Hardware. Having a knowledge of the physical

instrument is required for an understanding of the system software. Chapter 3 presents an

overview of the previous version of the IRMA software. My work involved implementing

and improving the previous distributed version of IRMA onto a new platform. Chapter 4

describes the control and data analysis software, which allow the unit to be controlled re-

Section 1.4: Summary 11

motely and the calibrated data products to be reduced. Chapter 5 introduces an improved

calibration schema, which was verified through test campaigns both in our laboratory in

Lethbridge and on a remote mountain top in Chile. In the second part of Chapter 5, a case

study is presented demonstrating how the software was able to be reconfigured to acquire

scientific data in the event of an unexpected hardware failure. Chapter 6 concludes the

thesis with the future directions of the IRMA project as well as some final thoughts.

12

Chapter 2

IRMA Hardware

2.1 Overview

The IRMA concept has evolved from a barebones prototype into a compact, au-

tonomous, remotely operated instrument. During this evolution, most of the original pro-

totype was redesigned. The IRMA hardware can be divided into three main categories:

Optics, Mechanical Design, and Electronics. A brief history, along with the current design,

will be presented in this chapter.

2.2 Optical System

The IRMA optical system is the most important part of the unit, since it enables

the unit to observe the sky, as well as calibration sources. The prototype, IRMA I, shown

in Figure 2.1, was developed by a previous graduate student, Graeme Smith [1]. The unit

mounted on a three-legged optical table and consisted of a plane scanning mirror, which

directed light to an off-axis parabolic mirror, which subsequently focused the light at the

Section 2.2: Optical System 13

Figure 2.1: A photograph of the original IRMA instrument.

detector. The scanning mirror provided a range of observable zenith angles from 0 to 70.38◦,

which represent an airmass range from 1 to 3. The prototype was unable to move in the

azimuth direction and therefore, was fixed when the instrument was deployed.

The initial design was improved by obtaining a detector with higher responsivity

and using a bandpass filter that more closely matched the desired spectral range. Fur-

thermore, a complete mechanical and electrical redesign was undertaken to make the unit

more compact, autonomous, and robust. As part of this redesign, the scanning mirror was

removed and the parabolic mirror was mounted in a compact box, such that the system

Section 2.2: Optical System 14

could be pointed in any arbitrary direction by use of an Alt-Az mount, as shown in Figure

2.3. By replacing the original 45◦ off-axis parabolic mirror with a 90◦ off-axis parabolic

mirror, the optical system became more compact.

2.2.1 Parabolic Mirror Design

A 90◦ off-axis paraboloid was chosen as the focusing optic to avoid obscuring part

of the optical beam by a secondary mirror assembly, and therefore maximize the optical

throughput. The focal length of the optical system was determined by the size of the

detector element, 1 × 1 mm, and the atmospheric sampling criterion, which was chosen to

sample a ∼10 m patch of sky at an altitude of ∼1 km, thus defining a field of view of about

1/100 radian.

Figure 2.2: A schematic of the equivalent optical system of IRMA. [1]

Referring to the schematic of the optical system in Figure 2.2, conservation of the

Section 2.2: Optical System 15

throughput of the optical system requires that

AdΩd = ApΩp (2.1)

where Ad is the area of the detector, Ωd is the solid angle viewed by the detector, Ap is

the area of the paraboloid, and Ωp is the solid angle subtended by the 10 m diameter patch

of atmosphere viewed at a distance of 1 km. The solid angle subtended by the sampling

area As at the parabolic mirror at a distance R can be approximated as Ωp = As/R
2,

and, similarly, the solid angle subtended by the paraboloid at the detector is Ωd = Ap/f
2.

Equation 2.1 can then be rearranged to specify a focal length

f = R

√

Ad

As

= R

√

d2
d

d2
s

(2.2)

where dd is the diameter of the detector element and ds is the diameter of the source area.

The focal length of the paraboloid is the determined by dd, ds, and R, which have been

previously determined, and is independent of the diameter of the paraboloid. Inserting the

values into equation 2.2 gives a focal length of

f = (1000)

√

0.0012

102
= 0.1 m (2.3)

Thus, a 10 cm diameter f/1 off-axis parabolic mirror was chosen as a good compromise

between collecting area and compact design.

2.2.2 IR detector and filter design

The incident infrared radiation is focused by the parabolic mirror onto a Mercury-

Cadmium-Telluride (MCT) photoconductive detector, supplied by Kolmar Technologies

[14], which is cooled to 77 K. Since the development of IRMA I, improved detectors have

Section 2.3: Mechanical Design 16

been obtained, which have better detectivity and responsivity, helping to increases the

observed signal-to-noise ratio. The resistance of the detector changes as a function of

infrared radiation which falls upon it. When biased with a constant current source, this

resistance change is detected as a change in voltage across the detector. This voltage signal

can then be amplified and digitized by an analog-to-digital converter. While initially cooled

with liquid nitrogen, to allow for remote operation, the IRMA detector is now cooled by a

closed cycle Stirling cooler.

In order to restrict the incoming radiation to the desired spectral region, 450 − 500

cm−1, a bandpass filter is placed in front of the detector. The second generation IRMA

II included a filter, provided by Professor Peter Ade of Cardiff University, Wales, which

uses resonant capacitive and inductive micro-elements [15]. These filters provide superior

performance over commercially available filters.

2.2.3 Chopper wheel

A five-blade reflective chopper modulates the incoming optical beam at ∼450 Hz.

The detector alternates between views of the radiation from the sky and from an unfo-

cused view of itself, which produces a chopped signal of high stability over a wide range of

temperature variations. This signal is then detected using a standard lock-in amplifier.

2.3 Mechanical Design

As mentioned earlier, the prototype IRMA I was constructed on a three legged

instrument platform. This platform contained all of the optical components, two blackbody

references and an LN2-cooled infrared detector dewar assembly. This configuration worked

Section 2.3: Mechanical Design 17

Figure 2.3: A rendered model of IRMA in its Altitude-Azimuth fork mount.

well for initial testing and proof-of-concept, but a more compact, and robust design was

required for autonomous remote operation. The IRMA unit was designed to fit into a

compact box such that it could be mounted on the side of a radio antenna when used in a

phase correcting role, see Figure 1.5. An Alt-Az mount was also designed to allow IRMA to

be pointed in any direction when not attached to an antenna. The wet cryostat was a major

stumbling block to remote operation since it required an operator to refill the dewar every

4 to 6 hours. Moreover, the wet cryostat could not be attached to the side of an antenna

because had to be kept vertical. To address this problem and allow for remote operation,

the wet cryostat was replaced with a Stirling cycle cooler, which was able to achieve liquid

Section 2.3: Mechanical Design 18

nitrogen temperatures without the use of cryogens.

2.3.1 IRMA Module

The main IRMA module can be divided into four main compartments: optical,

electronics, weather shutter, and power supplies. The module is designed to require only

mains power and an ethernet connection. The mains power is routed to the bottom of the

module where the power supplies provide 24 V and 5 V DC to the unit. The 24 volt supply

powers the Stirling-cycle cooler, the lid motor and the temperature controlled calibration

source, while the 5 volt supply powers the IRMA computer and the other electronics. Also

mounted in the bottom compartment is the Stirling cooler controller, which regulates the

temperature of the cold finger of the cooler.

On one side of the module is the optical compartment, which is visible in Figure 2.3.

This occupies the majority of space in the IRMA module. The optical system is discussed

in section 2.2. The IR flux from the atmosphere enters the unit through a 117 mm diameter

aperture, which is directly above the parabolic mirror. The 90◦ off-axis parabola directs

radiation to the detector, which is mounted horizontally to the end of the cold finger of a

Hymatic NAX025-01 Stirling-Cycle Cooler. A vacuum chamber surrounds the cold finger

which is evacuated to 1 × 10−4 mbar. This vacuum is designed to last five years and must

have a leak rate no greater than 1 × 10−15 mbar cm−2 s−1 in order to allow the cryo-cooler

to operate at its target temperature of 70 K. Also mounted inside the vacuum chamber

on the detector block are the bandpass filter and a cold stop. The window of the vacuum

chamber is made of anti-reflection coated ZnSe [16]. The cold stop was designed to restrict

the viewing angle of the detector to the size of the mirror. However, during tests in the

Section 2.3: Mechanical Design 19

lab it was found that there was some spill-over of the beam, §5.1.2, which was corrected

by adding a second aperture to the exterior of the ZnSe window. The optical chopper is

mounted such that the blades pass in front of the exterior aperture.

Due to the fast optics of the IRMA, if the unit is pointed directly at the Sun,

the focused light is sufficiently intense to burn a hole in the infrared filter and damage the

detector. Unfortunately, this occurred twice on previous IRMA models. To prevent this

from recurring, a solenoid operated shutter was incorporated into the design such that if

the unit moves within 15◦ of the Sun it blocks the beam. This Sun shutter is activated

independent of software, by a phototransistor mounted in a small hole on top of the unit

on axis with the IRMA field of view; it may also be controlled via software.

The electronics are mounted on the side opposite the optical system and include

the PC/104, the IRMA motherboard, and the pre-amplifier. The electronics are described

in more detail in §2.4.

A narrow compartment at the top of the IRMA unit contains a weather shutter.

The shutter can be positioned via a lead screw to cover the main aperture in case of

inclement weather. The shutter serves a dual purpose, as a blackbody calibration source is

mounted on its underside. When the shutter is closed, the detector views the blackbody,

which is used to provide radiometric calibration.

2.3.2 Alt-Az mount

An Alt-Az mount is provided to allow full range of motion when the IRMA is not

attached to the side of a radio antenna. In this case, power and Ethernet are connected

to the bottom of the Alt-Az mount and then provided to the main IRMA box through an

Section 2.4: Electronics 20

umbilical cable. Alt-Az articulation is powered by two Maxon EC167129, low-noise, 50 W

brushless DC motors, each coupled with a Maxon 1QEC50V digital motor control unit.

Axis rotation for each direction is geared down substantially by a 1621:1 gear head. An

additional 8:1 gear reduction is provided by belts connecting the motors to their respective

axes.

For the azimuth direction, the motor is mounted in one arm of the mount and

connected via a belt to a fixed central gear about which the unit rotates. The unit is

capable of rotating ∼370◦ about its azimuth axis; this range, being defined by optical limit

switches, restricts the rotation to prevent damage to the wiring connecting the articulating

parts. The altitude motor turns a gear in the arm of the mount which is fixed to the main

IRMA box and allows rotation of ∼185◦. To prevent rotation beyond these limits and

prevent the main IRMA module from contacting the Alt-Az mount, optical limit switches

are again used. The motors are disabled when the switch is interrupted by one of two metal

tabs attached to the rotating housing.

Limit detection is independent of software in order to eliminate the risk of runaway

axis movement damaging the mount if the software were to fail. Attached to each of the

axis are US Digital E6M optical encoders, which provide positional data to a resolution of

8192/360 counts/degree as discussed in §2.4.7.3.

2.4 Electronics

2.4.1 Overview

The IRMA electronics have evolved significantly since the original prototype. The

original system was very basic, being controlled through the parallel port of a laptop com-

Section 2.4: Electronics 21

Figure 2.4: A photograph of the electronics side of the IRMA module. The optical compartment is located

immediately on the other side of the vertical wall shown in the image.

puter. This system was first upgraded to allow commands to be sent to the laptop over

the internet for remote operation. With the new mechanical design, the electronics were

integrated into the IRMA unit. This system was based on an 8-bit Rabbit Semiconductor

RCM2100 microcontroller [17], which could be controlled remotely over the internet but

still required a command processor (CP) computer for the issuance of commands. If the

network link between the RCM2100 in the IRMA and the CP were severed, the unit would

cease to function. Furthermore, in order to upgrade the software, it was necessary for an

operator to reprogram the microcontroller manually on site. To address these issues, in the

Section 2.4: Electronics 22

latest version of IRMA, the CP and the 8-bit microcontroller have been replaced by a 32-bit

PC/104 inside the IRMA unt. A significant part of my thesis has involved migrating and

optimising the code to run efficiently on the PC/104.

2.4.2 PC/104

At the heart of the electronic system (Figure 2.5) is a Winsystems PCM-SC520

PC/104 running an AMD 133 MHz SC520 processo [18]. PC/104s are true IBM PC com-

patible computers capable of running a standard desktop operating system. The PC/104

is responsible for the communication, control and data acquisition of the IRMA unit. The

PCM-SC520 is robust and designed for extreme conditions and temperatures of −40 ◦C to

85 ◦C. It contains an onboard Intel 82551ER 10/100 Ethernet controller and an onboard

Compact Flash socket, which is used for data storage.

2.4.3 Diamond Systems - Emerald-MM-DIO

The PCM-SC520 lacks sufficient I/O lines to be able to control the IRMA unit.

A Diamond Systems Emerald-MM-DIO [19] connects through the 16-bit PC/104 bus and

provides 48 bi-directional digital I/O (DIO) lines as well as four serial ports. The Emerald-

MM-DIO is also rated for operating temperatures of −40 ◦C to 85 ◦C.

2.4.4 Pre-Amplifier

The measured signal from the MCT detector is very small, having a noise floor

of ∼ 10 nV, and first needs to be amplified in order to make efficient use of the full range

of the ADC. The detector signal is connected to a low noise pre-amplifier, with a gain of

10,000, before passing to the IRMA motherboard.

Section 2.4: Electronics 23

2.4.5 IRMA motherboard

The IRMA motherboard is a custom electronics board, designed and built in-

house in our electronics fabrication laboratory. It contains most of the electronics required

to control the IRMA unit. The PCM-SC520 interfaces with the IRMA motherboard though

the Emerald-MM-DIO board. The 48 digital I/O lines are divided between two connectors

(JP5 and JP6), each containing 24 I/O lines, which plug into the IRMA motherboard. In

order to simplify the configuration, JP5 was used for input and JP6 was used for output.

The motherboard contains the electronics for the data acquisition system including signal

conditioning, lock-in amplifier, temperature sensor multiplexing, weather shutter control,

blackbody control, chopper control, and GPS.

2.4.6 Cryocooler Controller

The cryocooler controller communicates with the PC/104 through a serial port

on the Emerald-MM-DIO board. It is a specialized controller from Hymatic designed to

regulate the temperature of the NAX025-001 cryocooler [20].

2.4.7 Alt-Az Electronics

The Alt-Az controller (AAC) is responsible for pointing the IRMA within its Alt-

Az mount. The AAC, a custom built electronics board designed around the Rabbit Semi-

conductor RCM2010 [21] (Figure 2.6), connects to the PC/104 over a serial connection

through the umbilical cable. It acts as a slave processor to the main computer and its

primary function is motor control, which consumes the majority of DIO lines on the AAC

Rabbit.

Section 2.4: Electronics 24

Figure 2.5: A Block Diagram of the new configuration of the IRMA Master Controller showing how the PC/104

interfaces with the various subcomponents of the radiometer.

2.4.7.1 Rabbit RCM2010

The RCM2010 controller module is the control computer that handles motion

control and communication for the AAC. It is fitted onto the main Alt-Az electronics board

through two 2x20 pin dual-in-line headers. These headers allow the DIO of the RCM2010 to

interface with the motor controllers, limit switches, and optical encoders. A block diagram

of these connections is shown in Figure 2.7.

Section 2.4: Electronics 25

Figure 2.6: A photograph Alt-Az electronics board with Rabbit RCM 2010 microprocessor attached (centre left).

2.4.7.2 Maxon Motor Controllers

As seen in Figure 2.7, the RCM2010 does not connect directly to the Alt-Az motors.

Instead, a Maxon 1QEC50V digital motor control unit is used for each motor. Using the

control units allows for digital control of the 24 V motors. Altitude and azimuth motor

controller enable lines are mapped to output lines 6 and 7, respectively, on parallel port B.

Motor controllers are enabled by setting these lines, while clearing these lines disables the

controllers. A braking system is also available and used to hold the axes stationary. Braking

is applied by setting bits 4 and 5 (for altitude and azimuth respectively) on parallel port A.

Altitude and azimuth motor direction is controlled by DIO output lines 6 and 7, respectively,

Section 2.4: Electronics 26

Figure 2.7: A Block Diagram of the IRMA Alt-Az Controller showing how the Rabbit RCM2010 interfaces with

motor control system.

on parallel port A. Setting either of these two lines sets the corresponding axis into clockwise

(CW) rotation, while clearing puts the corresponding axis into counterclockwise (CCW)

rotation. Altitude CW and CCW limits are respectively mapped to input DIO lines 2 and

0 on parallel port B. Azimuth CW and CCW limits are respectively mapped to input DIO

lines 1 and 3 on parallel port B. When a limit line is set, a limit has been encountered,

otherwise, the axis angle is within safe rotational limits.

The speed of the motor is set by supplying an analog voltage of 0 to 2.5 V to

the controller. An 8-bit, 2-channel, Maxim 5223 serial digital to analog converter (DAC) is

Section 2.4: Electronics 27

used to generate the required analog voltage. The 5223 has a 3-wire serial communications

interface involving a chip select line (CS), a serial clock line (SCLK) and a data input

line (DIN). All the communication lines are mapped to Rabbit parallel port A: CS (active

low), SCLK, and DIN, are mapped to pins 1, 2, and 3 respectively. Voltage is individually

adjustable on each of the two analog outputs of the 5223, A and B. Voltage can be set

between 0 V to full scale (the input reference voltage) in 256 equal steps. Analog output

channel A is mapped to the azimuth motor controller, while analog output B is mapped to

the altitude motor controller.

Using dip switches on the motor controllers, the speed is limited to a range of 500

to 12,500 RPM. However, the maximum manufacturer recommended rotational speed of

the gear box is 8000 RPM, a limit which is set within the software.

2.4.7.3 Optical Encoders

The AAC determines the position of the Alt-Az mount through the use of two US

Digital E6M optical encoders [22], which are interfaced with the RCM2010 through a US

Digital LS7266R1 encoder chip [23]. The optical encoders employ 2048 lines per revolution

optical encoder wheels. However, the LS7266R1 can obtain 8192 lines of resolution per

revolution, or 2 arc seconds per encoder step, by operating in quadrature mode. To operate

in quadrature mode, a filter clock with a frequency in the range 10 to 35 MHz must be

connected to the LS7266 (LS7266 pin 2). The filter clock is supplied by a 10 MHz oscillator.

The LS7266R1 detects and counts ticks from the encoders (in either mode), where the count

is relative to a software determined location.

Section 2.4: Electronics 28

The LS7266 optical encoder chip is capable of reading the position from two en-

coders and interfaces to the RCM2010 using 12 DIO lines. Data sent to, and received

from, the LS7266 is carried over an 8-bit bidirectional data bus, mapped to pins 0 through

7 on parallel port D. The software must set the appropriate data direction depending on

whether data are being written or read. Since the chip select (active low) line is connected

directly to ground, there are four pins used for controlling the LS7266: read, write, con-

trol/data and X/Y axis select, connected to pins 0 to 3 on parallel port E respectively. The

control/data line (LS7266 pin 13) selects whether data registers (low) or control registers

(high) are selected. Read and write (LS7266 pins 16 and 14 respectively) are active low, and

are used for enabling reading or writing to the chip. Similarly, the X/Y axis line (LS7266

pin 13) determines whether the azimuth axis counter (low) or altitude axis counter (high)

is selected.

The LS7266 requires three input lines from each encoder, two analog inputs, la-

beled A and B, and an index marker. The azimuth axis encoder is connected to the X axis

inputs of the LS7266, while the altitude axis encoder is connected to the Y axis inputs.

The A/B inputs for both axes are enabled by setting the A/B input enable lines (LS7266

pins 18 and 28) high. These lines are permanently tied high on the AAC main board. Each

encoder contains a unique index mark, which generates a pulse signal when detected. This

signal from the altitude and azimuth encoders are connected to pins 1 and 19 of the LS7266

respectively, and can be used to either reset the counter or load a preset value. While the

index mark could be used for initialisation, as the mechanical limit switches are currently

preferred.

Section 2.5: Summary 29

2.5 Summary

The IRMA hardware can be divided into three main components: optics, mechan-

ics, and electronics. Each of these areas have evolved significantly since the first prototype.

The optics have been fitted into a compact box, which can either be mounted to the side

of a radio antenna or in a specially designed Alt-Az mount. Through the use of custom

electronics, embedded computer systems now allow for remote, autonomous control of the

IRMA unit.

30

Chapter 3

IRMA System Software

3.1 History

As the IRMA hardware has evolved, so has its software. In the beginning, the

software consisted of a simple C++ program, running on a laptop, which controlled IRMA

through its parallel port. Subsequently, a Common Gateway Interface (CGI) was incor-

porated into the original program so that it could be operated over the Internet with a

web browser. Though it was still controlled through the parallel port, this enabled remote

operation. However, with the mechanical redesign, IRMA became a more complex system,

necessitating a complete software redesign.

3.2 Rabbit based IRMA

With the mechanical redesign, the IRMA became a distributed system running

over three processors. As shown in Figure 3.1, these were the Command Processor (CP),

the Master Controller (MC), and the Alt-Az Controller (AAC). The CP was a standard

Section 3.2: Rabbit based IRMA 31

desktop PC running Linux, which provided the operator access to the system. The MC,

based on an 8-bit Rabbit Semiconductor RCM2100 [17], was located inside the instrument

itself. It handled the communication with the CP and interfaced directly with the hardware

to control the instrument. The Alt-Az tasks, however, were off-loaded to another Rabbit

processor (RCM2010), the AAC, which acted as a slave to the MC. It was located in the

Alt-Az mount and was connected to the MC via a serial link through the umbilical cable,

which can be seen in Figure 2.3. This system was programmed by a previous graduate

student, Ian Schofield, and formed the basis of his Master’s thesis [24]. Though most of my

work involved the PC/104 based system, it was necessary for me to understand the Rabbit

based system, in order to maintain the Rabbit based IRMA units currently deployed. I

was also able to make some improvements to this system, the most significant of which was

to add a software package [25], which allowed for remote reprogramming of the RCM2100.

The Rabbit based IRMA is briefly described below to aid the reader in understanding the

current design.

3.2.1 Command Processor

The Command Processor was built around a standard Linux installation. At the

core of the CP was the IRMAscript interpreter irmaExec.pl. Whether commands are sent

to the IRMA unit directly through the command line (§3.2.1.3), through the Control In-

terface GUI (§4.1), or programmed to execute automatically using AutoTasks (§3.5), all

commands ultimately get sent through irmaExec.pl. IRMAscript is a custom scripting

language used to control the unit. It provides a highly flexible, fine-grained control mecha-

nism for the instrument. A comprehensive description of the IRMAscript language can be

Section 3.2: Rabbit based IRMA 32

Figure 3.1: A System diagram for the Rabbit-based IRMA.

found in Appendix A.

3.2.1.1 irmaExec Software Structure

irmaExec.pl, written in Perl [26], a popular systems programming language, is the

interpreter for IRMAscript. Interpreters and compilers translate instructions from one form

to another. Interpreters typically translate statements into actions as they are encountered,

while compilers translate source code into machine language instructions to be executed on

the target machine at a later time.

Compilers and interpreters are built using similar mechanisms. A typical compiler

consists of a scanner, a parser, a scope checker, and code generation. An interpreter, such

as irmaExec.pl, is also built using these components, except that it will typically execute

the statements rather than generating code.

Section 3.2: Rabbit based IRMA 33

The scanner is responsible for recognising tokens or strings of a language statement.

irmaExec.pl accomplishes this by reading in the source file, ignoring white space and

comments, and separates each line into tokens. Tokens may be either literals, strings,

variables, constants, or reserved words, words which are commands of the language. The

statements of each line are then stored in an associative array, or hash table, using the

generated line number as the key to access the statements.

The parser is responsible for determining if a sequence of tokens conform to a

language statement. Since IRMAscript uses a finite automaton, or finite state machine,

and does not allow for nested statements, the parser in irmaExec.pl is greatly simplified.

Basic syntax for hardware commands consists of 3 tokens:

[Command] [Modifier field 1] [Modifier field 2]

These are followed by n parameters, as needed. This structure helps make the language

more readable and also allows the commands to be divided into families. For example, the

commands relating to the chopper wheel are shown below.

CHOP READ STATE

CHOP STATE ON

CHOP STATE OFF

The three token hardware commands are converted into 3 digit command codes and embed-

ded in network command packets. The command set is stored in an Excel spreadsheet which

is parsed using the Perl module Spreadsheet::ParseExcel. The parser stores variables in

a hash table and also handles nested loops.

Scope checking and type checking are generally combined in a compiler. Since

IRMAscript is typeless, and all variables are considered global, that is, visible throughout

the program, this stage is not included in the interpreter.

Section 3.2: Rabbit based IRMA 34

Table 3.1: pseudo code description of the the IRMAscript interpreter.

initialize command code hash table

open irmascript file (read)

do

read line from file

split line into fields, put into array

put array in source code hash table with key = line count

increment line count

until reach EOF

initialize program counter "pc" to 0

do

get statement from source code hash table using key = pc

pattern match statement on command, modifier1 and modifier2

look up command code using keys command, mod1 and mod2

make command packet

send command packet to MC according to network comm protocol

while pc < total lines in program

A compiler translates the verified language statements into lower level, machine

readable codes. This code may then be executed on the target machine at a later time. By

contrast, interpreters execute the statements on the target machine immediately after they

are parsed. For irmaExec.pl this involves either generating a binary packet to send over

the network to the MC, or, in the case where a statement does not command the IRMA

hardware, such as a variable assignment or flow control, the interpreter will execute the

statement directly within the irmaExec.pl process.

The basic functionality of the IRMAscript interpreter can be described by the

pseudo code in Table 3.1.

Section 3.2: Rabbit based IRMA 35

Figure 3.2: A flowchart of Rabbit-based system software.

Section 3.2: Rabbit based IRMA 36

Figure 3.3: An overview of the IRMA directory structure.

3.2.1.2 Directory Structure and Configuration Files

The software requires the defined directory structure shown in Figure 3.3. The base

directory for the software is named IRMA and located in the users home directory, usually

denoted ~/. Within the base IRMA directory, there are four subdirectories: ~/IRMA/IRMA/,

where the custom IRMA Perl modules are located, ~/IRMA/Config/, where configuration

files are stored, ~/IRMA/SCRIPTS/, scripts to be executed with irmaExec.plmust be located

in this directory, and finally ~/IRMA/HelperProgs/, where irmaExec.pl is located.

The interpreter is initialized via configuration files. The first is the command

set, which is stored as an Excel file and shows the association of each command with is

corresponding numeric code. By default, is is named IRMAscript.xls and is located in the

~/IRMA/HelperProgs/ directory.

In addition, each IRMA unit has a unique configuration file, box <box number>.cfg,

stored in the ~/IRMA/Config/ directory. The configuration file shown in Table 3.2 provides

Section 3.2: Rabbit based IRMA 37

Table 3.2: An example unit configuration file which is used to initialise instrument parameters.

**

2006-01-01T00:00:00

IPaddress 128.171.116.72

Data_port 10072

Cooler TR282

Board 1

Dummy calibration data for this time period

CalibrateLow 77_7.74e6

CalibrateHigh 319_6.82e6

**

2006-08-09T15:00:00

Unit returned from Hawaii

IPaddress 142.66.41.40

ElevGearReduction 128

AzimGearReduction 128

BeltReduction 8

MinMotorRPM 500

MaxMotorRPM 25000

MaxGearRPM 8000

elev_kProp 10.0

elev_kInteg 1.0

elev_kDeriv 1.0

azim_kProp 1.0

azim_kInteg 1.0

azim_kDeriv 1.0

**

the CP with the IP address and data port of the master controller, and supplies the gear

reduction ratios, servo parameters and detector calibration constants to the MC. The file

is broken into parameter blocks, which are delimited by lines of repeating asterisks. A

time stamp appears at the head of the block, which establishes the date/time when the

parameters, immediately following, took effect. The parameters within a block include all

lines following the time stamp, up to but not including the next block delimiter line. A

parameter line consists of a label followed by a value, and is terminated with a carriage

return. A whitespace separates the label from the value.

Section 3.2: Rabbit based IRMA 38

When irmaExec.pl is executed it reads in the box file specified by the box number

command line parameter, accepting parameter fields whose time stamp is closest to the

current time/date. For example, using the configuration file in Table 3.2, if irmaExec.pl

were executed on 2006-09-01, it would accept the IP address values from the command

block dated 2006-08-09T15:00:00, because this is the most recent entry.

For a complete list and description of parameters that can be defined in a CP

configuration file see Appendix C.1. If parameters are not defined, default parameters are

assigned.

3.2.1.3 CP software requirements and execution

As described earlier, the system is designed to run on a desktop or server PC

running Linux. All CP software has been designed to run with Perl 5.8.6 and later. In

addition to having the Perl interpreter installed, additional Perl modules are also required.

Appendix C.2 lists the modules, and installation instructions.

Scripts are executed on an IRMA unit by issuing a command following the form:

./HelperProgs/irmaExec.pl <box number> <IRMAscript name> [IRMAscript.xls]

where <box number> is the assigned unit number for the IRMA, and <IRMAscript name> is

the name of the script to be executed. This script must be located in the ~/IRMA/SCRIPTS/

directory. The IRMAscript.xls is shown in square brackets to show that it is optional. It

directs the interpreter to the Excel file which defines the formal language of IRMAscript.

Unless the file is renamed it is not necessary to include it as a parameter, since the interpreter

will use the default filename.

As an example, if an operator wanted to open the weather shutter on IRMA

unit 1 and had written a script named shutterOpen.irma, he would copy the script into

Section 3.2: Rabbit based IRMA 39

the ~/IRMA/SCRIPTS directory of the CP for IRMA Unit 1. He would then execute the

following command from the base IRMA directory ~/IRMA/:

./HelperProgs/irmaExec.pl 1 shutterOpen.irma

3.2.2 CP - MC Communication

The binary network packets generated by irmaExec.pl are sent over the network

to the MC. Due to the fact that the CP - MC communication is over Ethernet, transmission

could not be guaranteed. For this reason a communication structure based on the Euro-

pean Space Agency (ESA) Packet Telecommand Standard [27] was used. This protocol is

shown in figure 3.4. After the command is received, the MC responds by sending an ac-

knowledgment packet, a packet indicating the requested activity has begun, a data packet (if

applicable), and finally a packet indicating the requested activity has concluded. For the in-

Figure 3.4: A summary of the IRMA network communications handshaking sequence.

Section 3.2: Rabbit based IRMA 40

terpreter, this funtionality was encapsulated in a separate Perl module IRMA::PacketComm.

3.2.3 Master Controller

The Master Controller (MC) is a real-time multitasking program using the MicroC/OS-

II real-time kernel. In this type of program, high-priority tasks perform their tasks in short

bursts, then sleep for a defined interval or block on an event, in order to open up time in

which the next lower-priority tasks can execute. The order of execution continues down the

priority hierarchy until all the tasks have completed.

Task priority was assigned according to the degree to which a task can tolerate

being preempted. In priority-based preemptive multi-tasking, tasks can only preempt other

tasks having lower priorities than themselves. It is important to determine which tasks can

be preempted and for how long, giving the most critical task the highest priority. All tasks

are subject to preemption if an interrupt service routine (ISR) is present. This should not

pose a problem, however, since ISRs, should execute and return to the interrupted process

as fast as possible.

The task structure of the MC is shown in Figure 3.5. The dispatcher task is the

most active task within the MC, and is primarily concerned with receiving commands from

the CP. Since the majority of commands are classed as short-duration, meaning they take

less than a second to execute, they are allowed to execute within the dispatcher task. Long

duration commands such as scans, however, must be executed outside the context of the

dispatcher task, otherwise the dispatcher would be unable to accomplish its primary duty of

listening for incoming commands until the task was completed. When a scan is requested,

the dispatcher task forks the scan task (as shown in Figure 3.5), then returns to wait for

Section 3.2: Rabbit based IRMA 41

Figure 3.5: A schematic of the IRMA master control software task structure during scanning.

incoming commands. This allows short duration tasks to run concurrently with the long

duration scan task.

The scan task is responsible for the data collection process. It also handles the

construction of data packets and their transmission to the CP. The scan task starts the

metronome task, and enables the ISR to trigger on the external interrupt provided by the

chopper blade. The metronome, whose priority is greater than the scan task, counts the

data points collected by the ISR, fetches the current Alt-Az coordinate from the AAC for

each data point, and signals the scan task (by means of an event flag) to construct and

transmit the data packet when a full frame of data are collected. Once the scan task has

successfully transmitted the data packet, it returns to wait on the data transmit event flag,

shown as a dotted arrow in Figure 3.5. When data collection is terminated, the scan task

and metronome task are both instructed to terminate themselves.

Section 3.2: Rabbit based IRMA 42

3.2.4 MC - AAC Communications

If the dispatcher task of the MC receives an Alt-Az command, it forwards the com-

mand onto the slave AAC. The MC communicates with the AAC over a 2-wire serial link

operating at 19.2 kbit/s, which travels through the umbilical cable linking the IRMA to the

Alt-Az base. While it was originally planned to use a similar communication protocol as the

CP - MC Communications, this was not possible due to the limited bandwidth of the serial

communications. Therefore, the communication protocol needed to be significantly simpli-

fied. Serial packets were transmitted as a 6-field colon delimited ASCII character string,

consisting of a command field, four data fields, and a CRC checksum field, encapsulated

between STX (start transmission) and ETX (end transmission) characters. An example of a

serial communications packet string appears in Figure 3.6. The MC - AAC Communication

has remained the same for the PC/104 based IRMA.

Figure 3.6: The description of the IRMA serial communications packet string.

The MC - AAC communication protocol uses simple handshaking. The MC sends

the serial communications packet to the AAC, which then converts it from ASCII to binary,

and performs the function. Once the task was complete, the AAC responds with the same

packet, except with data fields populated, if applicable.

3.2.5 Alt-Az Controller

The AAC software exists as a bootable software image that resides in the flash

memory of the Rabbit microcontroller. Similar to the MC, MicroC/OS-II real time kernel

Section 3.2: Rabbit based IRMA 43

Figure 3.7: IRMA serial communications protocol between the Master Controller and the slave Alt-Az Controller.

Figure 3.8: A schematic of the IRMA Alt-Az controller task structure.

was used to provide a real-time, multitasking environment, which is required for the servo

control loop. The task structure of the AAC, shown in Figure 3.8, is very similar to that

of the MC. The serial communication task, analogous to the MC’s dispatcher task, waits

for commands from the MC. It is a real-time task devoted to monitoring serial data traffic.

When it reads a STX character, it proceeds to read up to 80 characters or when an ETX

character is encountered. If the packet is received without error, the command is decoded

and executed. For a complete list of the possible AAC commands and their associated

integer codes see Appendix B. Most AAC commands are short-duration, such as querying

Section 3.2: Rabbit based IRMA 44

the current position, and therefore, are executed within the communication task. Long-

duration tasks, such as axis movements, must be run in their own task, otherwise serial

communication would not be possible until the task was complete. The job task waits for

an event flag to be set by the serial communication task. Once the flag is received, it carries

out the desired task in parallel with the communication task, such that short duration task

can still be handled. If axis movement is requested, the job task starts either the single axis

move task or the dual axis move task depending on the request.

To ensure accurate speed control, a proportional-integral-derivative (PID) servo

tracking loop is used. The axis move task waits on a 10 Hz servo tick event flag, set

by the metronome task, the highest priority task of the AAC to ensure accurate timing,

which signals the move task to update the servo loop calculations. The servo loop must

be updated exactly at this rate for the servo control algorithm to function correctly. The

ability to meet deadlines in a multi-tasking environment is the defining attribute of real-

time programming [28]. Once the movement has completed, the move task sets an event

flag, which signals to the job task that the axis rotation has completed. The metronome

and move axis tasks then suspend themselves, waiting on another event flag to signal a new

request.

It was necessary to introduce a second mode of axis movement to handle extremely

slow movement, that is, movement slower than 500 RPM, which is the minimum speed which

can be selected with the motor controller (§2.4.7.2). This second movement mode is referred

to as slewing, meaning long range motion around the altitude or azimuth axis. Slews have

the ability to perform periodic steps over a long period of time, thus lengthen the time

to rotate from the initial to destination angle. The serial communication task signals the

Section 3.3: PC/104 based system 45

job task to wake up and start the appropriate axes control tasks. Each axis movement

is controlled in its own task: one exists for altitude movement, and another for azimuth.

Both axis tasks can be run concurrently, which requires that they each have unique priority

levels. Since both tasks cannot have the same priority, the slew elevation task has a slightly

higher priority than the azimuth slew task. Given that skydip operations, discussed in §5.2,

which involve slewing the altitude axis, are performed more often than azimuth movements,

preference was given to elevation movements. Slew tasks and the servo move tasks have

priority levels that place them below the metronome task priority, but above the serial

communications task, and the job task.

When a task is completed successfully, the AAC will respond with the same packet

requesting the task, except with the command field populated with the MSCOMM SUCCESS

code (integer value 100) and, where applicable, data is returned in the four data fields, and a

checksum value is calculated and placed in field 6. If an error occurs in the communications

the command packet is populated with the MSCOMM FAILURE code (integer value 101),

and each of the four data fields are populated with the associated error codes.

3.3 PC/104 based system

Though the Rabbit based system worked well, it was limited by its requirement

of the CP. If the network connection between the CP and the MC was lost, the MC would

be unable to receive commands and would not be operational. To overcome this problem

the 8-bit Rabbit microcontroller of the MC was replaced by a 32-bit PC/104. The PC/104

is a true IBM PC compatible computer capable of running a standard desktop operating

system. IRMA uses the Slackware 10.2 Linux distribution. With the increased computing

Section 3.3: PC/104 based system 46

power of the PC/104, a separate CP was no longer necessary, and was merged with the

MC.

3.3.1 Porting the Master Controller

The first step to running IRMA with a PC/104 was to rewrite the MC for execution

on the PC/104. Ian Schofield started the task of porting the original code, written in

Dynamic C R© [29], a proprietary C variant by Rabbit Semiconductor, to ANSI C. The

code was organized by having a separate file encapsulate the functions for each command

family. These functions were called by the dispatcher function which was responsible for

interpreting the binary packets sent by the CP. The main function simply initialized the

system and opened a socket to listen for incoming command packets and forward them to

the dispatcher. This code was compiled into a single executable named irmamc.

Originally, the PC/104 based MC was a direct port of the Rabbit based MC, and

the CP software was simply installed on the PC/104. This meant that the IRMAscript

interpreter was still encapsulating the commands in binary packets and sending them to

the MC which was now located on the same machine. Also, the same communication

protocol was still used even though the packets were not being sent over the network. The

complexity of the distributed system was being carried over to the PC/104 based system.

Since the CP and MC were merged into one processor, it was no longer necessary

to encode commands with the interpreter, send them over a TCP socket, and decode the

commands and execute them on the MC. Additionally, PC/104 based systems do not have

the same resources of a standard desktop PC so the additional overhead caused delays on

the order of ∼10 seconds in executing commands.

Section 3.3: PC/104 based system 47

Running a distributed system on a single processor is inefficient as shown by the ex-

ecution delay. To optimise the performance of the embedded system, I ported irmaExec.pl,

which was written in Perl and designed to run on a powerful desktop PC, to C and then

incorporated it into irmamc. The C version of the interpreter followed the same design

as described in section 3.2.1.1. The scanner was written as a separate function called

readScript. Receiving a string containing the name of the script to be tokenized, the func-

tion read the script from the ~/IRMA/SCRIPTS/ directory and removed any comments and

additional whitespaces and returned a two dimensional array, where one dimension was the

line number and the other was the individual tokens in the line. This array was then passed

to the parser (runScript),which is identical in functionality to the parser in irmaExec.pl,

except that instead of generating a network command packet when a command was to be

issued, runScript simply executes the function to perform the desired task directly.

One difficulty in porting irmaExec.pl into C, was the handling of typeless vari-

ables. As mentioned IRMAscript is a typeless language. In the original implementation

this was trivial since the underlying language, Perl, is also typeless. To handle this in C

additional checking had to be performed to determine the type of the variable. The under-

lying variables were then stored as either strings or double precision floating point numbers,

which is similar to the method Perl uses for typeless variables.

Merging irmaExec.pl into irmamc dramatically reduced the complexity of both

programs as the network packet handling functions could be removed. Also, since the Perl

interpreter was no longer need, the compiled C code executed much more quickly. As a result

of these improvements scripts now start executing over an order of magnitude faster than

the previous configuration, which brings an important real-time response to the Operator’s

Section 3.3: PC/104 based system 48

Console. Moreover, a reduction of ∼11,200 lines of code of the original 68,000 lines of code

was achieved.

Figure 3.9: A Flowchart of PC/104-based system software.

Section 3.3: PC/104 based system 49

Scripts are still executed in the same form as described in §3.2.1.3. However,

the new irmaExec.pl simply passes the script name to irmamc, and outputs the returned

results.

3.3.2 Autonomous Control

Running embedded Linux allows for increased autonomous control of the IRMA.

When IRMA is operating at remote sites it is important for it to be able to recover from

power failures without intervention. Through the startup file, /etc/rc.d/rc.local, the

system is initialised. First it verifies if the Alt-Az mount is initialised, and if not it performs

the initialisation. For the case where the PC/104 is simply rebooted the AAC will not

be affected and therefore will remain initialised. After initialising the mount, the unit

moves to the Park position while it checks the current weather conditions. If favourable

conditions exist, the unit will point up to zenith and resume normal operations. Additional

autonomous control is handled through AutoTasks §3.5.

3.3.3 AAC Updates

Though the MC processor was replaced with a PC/104, the AAC remained Rabbit

based. Therefore, much of the original AAC software remained intact. However, I identified

several upgrades, which made the AAC run more efficiently.

3.3.3.1 Faster Initialisation

During initialisation, the previous version of the AAC would seek both the counter-

clockwise, and the clockwise limits. This made initialisation a time consuming task; taking

up to 10 minutes to complete. Since the physical distance between the limits remains con-

Section 3.3: PC/104 based system 50

stant once the unit is built, it is only necessary to seek one limit and load the predetermined

distance to the other limit. Also, the original software was only capable of initialising one

axis at a time. An additional function was written to allow for a dual axis initialisation,

which further improved the startup time.

3.3.3.2 Software Initialisation

In some cases, such as after a power cycle, the position of the Alt-Az is known

to the operator, but the unit has not been initialised. In these cases it would be desirable

to be able to load the position directly without having to perform an initialization. This

additional functionality was added to the latest version of the AAC software.

3.3.3.3 Uninitialised movements

Previously, the AAC was designed to accept movement commands only after the

Alt-Az mount was initialised. This was due to the fact that the input parameters to these

commands were required to be an absolute position, i.e. an elevation of 30◦. However, if a

limit switch fails, the IRMA unit will be unable to complete the initialisation. For this rea-

son, functionality was added which would allow the operator to move to a relative position,

i.e. increase elevation 20◦. These additional commands provided invaluable flexibility, and

proved useful when problems were encountered in the field, see §5.2.

3.3.3.4 Offset handling

The AAC is capable of applying offsets to each direction to allow the unit to adjust

the value to North in the azimuth direction and the horizon for elevation. The position data

are then returned in accurate altitude and azimuth coordinates. In the Rabbit based system,

Section 3.4: Queue Server 51

the values were set in the AAC, but could not be queried. A copy of the values were stored

in the MC, and it was this copy that was returned when the value was queried. In the

PC/104 based unit, the MC is not as closely coupled to the AAC. Since irmamc is simply a

program running under Linux on the MC, it may restarted or the computer may be rebooted

without affecting the AAC, which would cause incorrect offset values to be returned. The

MC was modified to forward Alt-Az offset queries to the AAC, which would respond with

the current value.

3.4 Queue Server

The Rabbit based IRMA could only handle one TCP connection at a time. If a

second command was sent while the first was executing, the second command would receive

a "Connection Refused" error. This problem was solved by writing a non-proirty queue

server. Programs which wanted to send a command to an IRMA unit would first submit

the request to the associated queue server. The queue server would then notify the program

when it was free to execute the IRMAscript. This was only of limited use, however, because

any commands executed directly from the command line would bypass the queue server and

potentially cause "Connection Refused" errors.

With the increased flexibility of the PC/104, irmamc automatically queues up to

10 simultaneous commands in the TCP stack, making the functionality of the queue server

redundant. At present, the queue server is still included on the PC/104 based system

because it was very tightly integrated into some of the software such as AutoTasks, which

will be discussed in the next section.

Section 3.5: AutoTasks 52

3.5 AutoTasks

AutoTasks helps the unit run more autonomously, by monitoring the system and

executing tasks.

3.5.1 Software Structure

AutoTasks is written entirely in the perl scripting language. It is designed to

run in the background as a service. As shown in Figure 3.10, AutoTasks is simply a loop

which performs various tasks at defined intervals. These tasks include: weather monitoring,

cryocooler logging, daily tasks, and skymaps. Each of these tasks are described below.

3.5.1.1 Weather Monitoring

The IRMA unit must be able to operate over a wide variety of environmental con-

ditions. The weather must be continually monitored. If the weather becomes unfavourable,

as determined by the relative humidity, the unit will close the weather shutter and move

to a parked position. The relative humidity threshold is set in the autoTasks.conf file

with the humidity humid parameter. If an external weather station is available at the site

a special function can be added to the IRMA::Weather module to parse the output. This

information is then read at a specified interval. If external weather sources are unavailable

the unit can be configured to use its own on board humidity sensor.

3.5.1.2 Cryocooler Logging

The cryocooler must be observed constantly to ensure that it is maintaining a

proper temperature. It is also important to record the amplitude of the cooler drive as

Section 3.5: AutoTasks 53

Figure 3.10: A flowchart of the AutoTasks execution path.

this may lead to early detection of a vacuum leak. It is possible to monitor the cooler

temperature, drive amplitude and oscillator frequency with the cooler monitoring function

by setting their respective parameters within autoTasks.conf. The cryocooler logging

function is executed at a time interval specified in autoTasks.conf, and the information is

be stored in a cooler statistics file.

3.5.1.3 Daily Tasks

AutoTasks also allows for the scheduling of scripts. This provides functionality

similar to cron [30] on linux systems. At a regular time interval set by daily tasks delay

Section 3.6: Housekeeping Tasks 54

in autoTasks.conf, AutoTasks will check if a scheduled task is ready to run. Task file

must be placed in the ~/IRMA/Tasks/.box <box no>/ directory. AutoTasks will first check

if a special task file for the current day is present, which is determined by the filename,

i.e. 2007-05-12.task. If no such file is present, the file default.task will be used. Any

changes to the task file while AutoTasks is running will be detected automatically and the

updated scheduled tasks will be loaded. A sample daily task file is included in Appendix

C.3.

3.5.1.4 Sky Maps

Sky maps are obtained by scanning the entire sky with the IRMA unit to provide

an all-sky map of the PWV. Though skymaps have been performed manually in the lab,

the process has not yet been automated in AutoTasks. It is present in AutoTasks as future

development.

3.5.1.5 autoTasks.conf

The main configuration file for AutoTasks is autoTasks.conf. The different tasks

within AutoTasks can be activated by setting their respective on parameter to 1. How often

the task is performed is given in seconds by the delay parameter. A sample configuration

file is shown in Appendix C.4.

3.6 Housekeeping Tasks

There are various other smaller scripts which assist IRMA. As mentioned in §1.3.2,

to determine PWV the local temperature and pressure are required. Using the same Perl

Section 3.7: Summary 55

module used by the weather monitoring task, IRMA::Weather, a script, logger.pl, was

written to generate a weather file, which records the local temperature, pressure, and hu-

midity. This file is stored with the data files. The default directory is

/IRMAdata/IRMA <Box number>/<year>/<year>-<month>-<day>/

Due to the limited amount of storage space available on the Compact Flash drive,

1 GB, data must be copied to a remote server and removed from the IRMA unit before

the available storage space is exhausted. The program data sync.pl was written to handle

this task. It synchronizes the data to a remote server using rsync [31]. Then, if the rsync

was successful, it removes any IRMA data more than one day old.

Both of these tasks are executed on a regular basis using the cron [30] scheduler.

3.7 Summary

The IRMA control and communication software has evolved significantly over the

course of the project. From its humble beginnings, when IRMA was controlled through

the parallel port of a laptop, the system has evolved into a complex distributed system

involving three processors, a PC and two 8-bit Rabbit Semiconductor microprocessors. I

joined the project and was able to successfully deploy the latest generation of IRMA based

on a PC/104. This latest system added significant computing power and flexibility to

the unit by integrating a 32-bit processor, capable of running a standard Linux operating

system. At the same time the complexity of the overall system was reduced by eliminating

the need for an external PC. Improvements were also made to the software to make it more

robust and autonomous.

56

Chapter 4

IRMA Control and Data Analysis

Software

The IRMA control and data analysis software resides on a remote computer. This

software allows the operator to control any IRMA unit and to view and interpret the

collected data.

4.1 IRMA Control Interface

In order to control the IRMA unit, the operator has the option to either connect to

the unit remotely via ssh and run desired commands from the command line, as described

in §3.2.1.3, or use the IRMA Control Interface. The Control Interface, shown in Figure 4.1

provides a simple, intuitive graphical user interface (GUI) to the unit. The GUI was written

by a previous undergraduate student, Ms. Amy Smedes, and is able to provide real-time

status information for multiple IRMA units. It also allows for basic control of the unit.

For more complex controls, however, the operater must write the desired functionality in

Section 4.1: IRMA Control Interface 57

Figure 4.1: A screen shot of the IRMA Control Interface GUI.

IRMAscript and execute it from the command line §3.2.1.3 or through AutoTasks §3.5. After

Ms. Smedes finished her work term, I learned the code and was responsible for maintaining

it; I subsequently improved the performance such as improving the data handling routines

for the graphs, and allowing for more flexible cryocooler monitoring.

4.1.1 Software Structure

The IRMA Control Interface is a high level control and monitoring program writ-

ten in Perl/Tk. Tk is a powerful graphical toolkit which has been ported to Perl, a popular

systems scripting language, for the rapid development of graphical interfaces. Various pre-

programmed graphical elements, called widgets, are included, such as control buttons, text

boxes, radio buttons, etc. Like most GUI programs, Perl/TK programs are event driven;

meaning a main loop waits for events, such as clicking on a button, to occur and then

Section 4.1: IRMA Control Interface 58

Figure 4.2: A screenshot of the Queue Status area of the IRMA Control Interface showing the blackbody ON

command running with the Refresh command waiting in the Queue.

executes associated funtions called callbacks. Some events are handled automatically within

the Tk core, while others are associated with custom written callback routines [26].

The primary purpose of the IRMA Control Interface is to provide remote, real-

time status monitoring and control of the IRMA unit. The IRMA Control Interface can

also be used to monitor the data from the unit, and setup and control AutoTasks remotely.

The functionality of the Control Interface is described in this section.

4.1.1.1 Queue Status

The Queue Status area is shown in Figure 4.2. Here, the operator is able to view

the connection status of the selected unit. Also shown, is the script currently executing,

as well as, a list of scripts waiting to execute. For example, in Figure 4.2, the executing

Section 4.1: IRMA Control Interface 59

Figure 4.3: A screenshot of the Current unit status area of the IRMA Control Interface showing the current

status unit showing the chopper on, the shutter moving and the blackbody off.

script is bbOn, and Refresh is waiting to execute. The list of scripts waiting to execute

includes scripts which were initiated by the current operator, an operator at another location

controlling the same unit, or scripts executed automatically by AutoTasks. IRMAscripts

executed directly from the command line, however, will not be listed. The operator is able

to remove any queued items by right clicking on the item and selecting remove.

4.1.1.2 Current Unit Control and Status

The Current Unit Control and Status is located to the right of the Queue Monitor

as shown in Figure 4.3. The unit is selected from the drop-down list located at the top

of this section. This selection also affects the Queue Status and Data Monitoring sections.

Control of the unit is accomplished by use of a column of command buttons; one for each

function. The function of the button is determined by the status of the Unit. For example,

Section 4.1: IRMA Control Interface 60

Figure 4.4: A screenshot of the dialog box that the operator uses to point IRMA.

if the chopper wheel is currently turned on, the button will display Chop Off indicating

that the chopper wheel can be turned off by clicking the button. If the status of the

unit is unknown, the button will be disabled. In order to enable it, the user simply clicks

the Refresh button to force a query of the unit status. Since Alt-Az motion cannot be

accomplished through a simple control button, Alt-Az functions are accessed though a

menu option under Engineering. The Move Alt-Az Mount dialog box is shown in figure

4.4. The Alt-Az mount can also be initialised by selecting the appropriate menu item.

The sun shutter is also controlled through the Engineering menu. Under normal

operating conditions, it will only be controlled by the hardware when the sun sensor is

illuminated however, provision is made for manual control during testing.

To send a command to the IRMA unit, the Control Interface executes the process

Section 4.1: IRMA Control Interface 61

Figure 4.5: A flowchart showing the execution path of the IRMA Control Interface.

Section 4.1: IRMA Control Interface 62

Figure 4.6: A screenshot showing a zoomed region of the Unit Stat area of the GUI showing that unit 12 is

connected while unit 3 is disconnected.

shown in Figure 4.5. Immediately to the right of the control buttons, the status of the

current unit is displayed. Each aspect of the IRMA unit is listed with a corresponding status

indicator light. The indicator lights will be green for ‘on’ or ‘open’, yellow for ‘unknown

status’, and red for ‘off’ or ‘closed’. The status will be updated automatically at regular

intervals if this option is selected in GUI options under the Options menu. Otherwise, the

status can be updated manually at any time.

4.1.1.3 Unit Status

The Unit Status is located below the Queue Window (Figure 4.6). It provides an

at-a-glance overview of all the units being monitored by the Control Interface. For each

unit it shows whether or not it is connected to the units associated Queue Server, what

the ping latency is for the unit, and the status if the shutter, cooler and scan. Again

green indicates ‘on’ or ‘connected’, yellow indicates ‘unknown status’, and red indicates

‘off’ or ‘not connected’. Units may be added or removed through ‘GUI options’ under the

Section 4.1: IRMA Control Interface 63

Figure 4.7: A screenshot showing a zoomed region of the graphical display area of the IRMA Control Interface.

The right hand graph shows a calibration cycle followed by sky observation.

‘Options’ menu.

4.1.1.4 Data Monitoring

The Data Monitoring section is capable of graphing any data channel from an

IRMA unit. Channels are selected though a dialog box which is displayed by right clicking

on the graph. This is the same for the smaller graphs. The time range is selected by

entering the start and end times in ISO 8601 format [32] in their respective text boxes.

Conveniently, time ranges can also be set by clicking on the ‘Hour’, ‘1/2 Hour’, or ‘10

min’ buttons which will select the corresponding most recent time interval. For example,

the last 10 min. The graph will be displayed in the units selected from the drop-down

list. Selecting ‘Spectral Power’ or ‘PWV’ for a channel other than channel 1 (the detector

signal) will result in the units being shown in the appropriate calibrated units (◦C, mbar, %

humidity). Double clicking on a small graph will cause this graph to exchange places with

the graph currently in the large graph area.

Section 4.1: IRMA Control Interface 64

The data from the cryocooler can also be monitored using the IRMA Control In-

terface. This is accomplished by selecting Display Cooler Stats under the Engineering

menu,which opens a new window and displays the cryocooler temperature and amplitude.

Time ranges are selected in the same manner as the main graphing windows.

4.1.1.5 Message Window

The message window is located at the bottom right of the GUI, seen in Figure

4.1. It displays information such as connection attempts, raw output from IRMAscripts

and other debug messages.

4.1.1.6 Managing AutoTasks

As discussed in §3.5, Autotasks may be configured manually on the IRMA unit.

Autotasks can also be managed from within the IRMA Control Interface. The options for

the autoTasks.conf file, described in §3.5.1.5 can be set with the IRMA Control Inter-

face by selecting AutoTask Options under the Options menu. Once selected, the Control

Interface connects to the unit and retrieves the current autoTask.conf file and displays

the information in the dialog box shown in Figure 4.8. At this point, the options may be

modified. The new options are then written to the remote autoTask.conf file when the

operator selects ‘Apply’.

The Daily Tasks application within AutoTasks may be managed through the Daily

Tasks sub-menu, located under the Engineering menu. There are two items under the

Daily Tasks sub-menu. The first, Edit Task, allows the operator to create or edit .task

files without requiring any knowledge of the file format described in §3.5.1.3. The .task

files may then be loaded to the current unit through the second option, Organize Tasks.

Section 4.1: IRMA Control Interface 65

Figure 4.8: A screenshot of the dialog box that the operator uses to configure AutoTasks.

Figure 4.9: A screenshot of the dialog box that the operator uses to select GUI options(A) and Queue Server

information(B).

Tasks may either be setup to run on a specific day of as the default task file. Clicking Apply

will upload the .task file as well as any associated IRMAscript files.

4.1.1.7 IRMA Control Interface Setup

Additional dialog boxes are provided under the Options menu to allow the op-

erator to customize the IRMA Control Interface. The GUI Options dialog (Figure 4.9A)

allows the operator to select which units to control as well as other options such as automatic

status queries and graphing.

The Queue Server Options dialog (Figure 4.9 B) is used to associate unit num-

Section 4.2: IRMA Archive Interface 66

bers to the Queue Servers. This dialog is also used to setup the Queue Server information,

which includes the IP address, username and password for remote login and SSH port. The

standard SSH port is 22, however, some IRMA units are setup with non-standard ports.

4.1.2 Requirements and Execution

As mentioned earlier, the control GUI is written in Perl/Tk. Therefore, in order

to use the program the Perl interpreter must be installed. A complete list of Perl modules

required by the IRMA Control Interface, along with installation instructions, is found in

Appendix C.2.

As with the IRMA software installed on the PC/104, the IRMA software running

on other machines must follow the same directory structure listed in §3.2.1.3. The IRMA

Control Interface is executed from the command line from the ~/IRMA/ directory with the

./IRMA.pl command.

4.2 IRMA Archive Interface

The IRMA Archive Interface shown in Figure 4.10 is used for viewing data from the

IRMA units. It is similar to the data monitoring portion of the IRMA Control Interface. In

fact, through modular programming, the graphing functions written by Ms. Amy Smedes

for the IRMA Control Interface are re-used in the IRMA Archive Interface. It also has

many features which are not included in the Control Interface. These additional features

relate to data processing. The IRMA Archive Interface has no menu items and all options

and controls are selected through the checkboxes and buttons on the GUI. The IRMA

Archive Interface has been a continually evolving program. As different data reduction

Section 4.2: IRMA Archive Interface 67

fuctions were needed, they have been added to the interface. For example, after completing

a testing campaign at the Smithsonian Millimeter Array (SMA), where IRMA was used in

a phase correction role (see Figure 1.5), a button was added which would overlay the SMA

phase correction data. Some of the other key features of the Archive Interface include,

binning data, taking the difference of two data sets, adjusting data for elevation angle of

the unit, saving and printing the graph, and saving the processed data to a file. There

are also functions to overlay other relevant data on the graphs, such as weather data or

command history.

In addition to maintaining this program, I made several additions and improve-

ments, such as the ability to overlay the weather, selectable axis ranges, and an auto mode,

which would automatically update the graph every minute with the last 10 minutes of data.

The improved data handling routines written for the IRMA Control Interface were also

used by the Archive Interface, since the module is accessed by both programs.

The IRMA Archive Interface also shares some funtionality with the IRMA Control

Interface, namely the ability to display the cryocooler data, and calibrate the temperature

diodes.

As will be discussed in Chapter 5, as the performance of the radiometer has be-

come better understood, the calibration method for the IRMA units has been modified and

improved, and with it the algorithm for converting detector signal voltage to PWV has

become more complex. The new algorithm was not incorporated into the IRMA Archive

interface, but written in IDL R© and is discussed in §4.3.

Section 4.2: IRMA Archive Interface 68

Figure 4.10: A screen shot of the IRMA Archive Interface GUI.

4.2.1 Requirements and Execution

As with the other Perl based programs which have been discussed, the IRMA

Archive Interface requires that additional Perl modules be installed, as well as custom

IRMA modules to be present. The IRMA Archive Interface depends on many of the same

Perl modules as the IRMA Control Interface, a complete list of required modules, and

installation instructions are given in Appendix C.2.

The Archive Interface is located in the same directory as the IRMA Control In-

terface, ~/IRMA/, and is executed with the ./viewirma.pl command.

Section 4.3: IRMA PWV 69

4.3 IRMA PWV

As will be discussed in §5.1, the IRMA units were once calibrated using a sim-

ple, two point calibration method. However, it was discovered that the output voltage of

the detector is also dependent on other factors such as internal box temperature. There-

fore, changes were made to the calibration method, which modified the conversion algo-

rithm, and therefore, new calibration software was required. IRMA PWV was written in

IDL R©(Interactive Data Language) because it is well suited for large arrays of data, and

its integration of complex mathematical functions such as multivariable linear regression

and interpolation functions. Built in plotting functions, greatly simplify the visualisation

of IRMA data.

IRMA PWV is still in the early stages of developement. It is currently a simple

program, which performs the specific task of converting the IRMA signal voltage to PWV.

The conversion process performed by the software is described in Figure 4.11. It is envisioned

that this software will form the basis of the next generation of data reduction and control

software, replacing both the IRMA Control Interface and the IRMA Archive interface. The

proposed future development is discussed in §6.3.2.

4.4 Summary

The front end and visualisation software allows the user to control the IRMA unit

and analyse data remotely. The IRMA Control Interface provides an intuitive GUI for

real-time unit status and data monitoring, in addition to remote AutoTasks configuration.

The IRMA Archive Interface is used for viewing and analysing the IRMA data. While

Section 4.4: Summary 70

Figure 4.11: A flowchart describing the steps involved in calculating the PWV from the raw data.

these programs were written by a previous student, I was able to learn the code structure,

maintain and make bug fixes in the code. I also improved the performance of the programs

and added new functionality as needed.

With the development of a new calibration method, new calibration software was

written. The new calibration program IRMA PWV, was written in IDL R© because of its

Section 4.4: Summary 71

efficient handling of large arrays of data, and built in graphical display functions. Though

IRMA PWV is currently only used for conversion of IRMA signal voltage to PWV, future

plans are to expand its development into a full suite of IRMA control and data processing

function, thereby replacing both the IRMA Control and Archive Interfaces.

72

Chapter 5

Instrument Calibration and Field

Performance

5.1 Calibration

IRMA detects the radiated infrared flux from the atmosphere and, by use of an at-

mospheric model, this value is converted to precipitable water vapour (PWV). The accuracy

of the final measurement is determined by sources of error in the instrumental measurement

and the accuracy of the model. This section addresses the instrument calibration. For more

details on the atmospheric model see [2], [13], and [33].

5.1.1 Calibration Basics

To first order, the response of the IRMA infrared detector is linear with respect to

infrared flux, Φ. A flux-to-voltage relationship is established by measuring the signal voltage

while observing two calibration sources at different temperatures. This can subsequently

Section 5.1: Calibration 73

be used to convert any signal voltage to a measured flux. The calibration method described

in this section was adopted for the prototype, IRMA I. Although it still forms the basis of

the calibration used today, in the most recent IRMA design, which is an enclosed system, a

more complex calibration procedure is required. Improvements to this calibration method

are discussed in §5.1.3.

In the basic calibration method, the detector observes two blackbody calibration

sources of different temperature. For a blackbody of temperature T in Kelvin, the spectral

radiance L(σ,T) is given by the well known Planck equation:

L(σ, T) =
2h c2 1004 σ3

exp

(

h cσ

kB T

)

− 1

[W m−2 sr−1 (cm−1)−1], (5.1)

where σ is the wavenumber in cm−1, h is Planck’s constant in Js, kB is Boltzmann constant

in J/K and c is the speed of light in m/s. Calculating the radiant flux, Φ, detected by IRMA

required knowledge of the instrumental throughput, AΩ, and the spectral response function

of the detecting system, Fσ. The flux is calculated by integrating over the normalised

spectral bandpass of the detection system, 450 to 575 cm−1 (equivalent to 17 to 22 µm),

shown in Figure 5.1, and is given by:

Φ(σ, T) =

∫

575

450

2h c2 1004 σ3

exp

(

h cσ

kB T

)

− 1

AΩ Fσ dσ [W]. (5.2)

The measured signal voltage is related to the calculated flux by an equation of the form

Φ = A V + Φ0 [W]. (5.3)

After observing the two calibration sources, the gain, A, and offset, Φ0, of the voltage to

flux relationship are established by the following formulas.

A =
Φ2 − Φ1

V2 − V1

, (5.4)

Section 5.1: Calibration 74

Figure 5.1: Normalised IRMA instrument response function as measured at 70 K using an ABB Bomem FTS,

model MB102. The profile is the end-to-end instrument response (the convolution of the filter transmission

profile, transmission of the anti-reflection coated ZnSe window, and the photodetector response over the given

spectral range).

Φ0 = Φ1 −
V1 (Φ2 − Φ1)

V2 − V1

[W]. (5.5)

Once calibrated, these parameters can subsequently be applied to the measured signal

voltage during sky observations using Equation 5.3 to determine the infrared flux radiated

by the atmosphere. Finally, the atmospheric flux can be related to PWV by using an

appropriate atmospheric model as described in §1.3.2.

5.1.2 Calibration Issues

In the IRMA I prototype, the lower temperature blackbody source consisted of a

large dewar of liquid nitrogen (LN2), ∼77 K (∼73 K at the summit of Mauna Kea). The

second calibration blackbody was a large aluminum plate coated with carbon black doped

Section 5.1: Calibration 75

Figure 5.2: A thermal image of an internal lid blackbody taken with a Fluke Ti20 7-14(left). A cross-sectional

temperature profile of the image taken through the middle. µm camera.

thermally conductive epoxy, which tracked the ambient temperature. Since the effective sky

temperature falls between these two extremes, it allowed for a direct interpolation of the

measured atmospheric flux from the signal voltage. As discussed in Chapter 2, the IRMA

unit was redesigned to provide robust, remote, and autonomous operation. This redesign

necessitated removing the dependence on LN2, which is not available at remote sites, both

in the wet cryostat and the calibration blackbody. As has been discussed (§2.3.1), the

wet cryostat has been replaced by a Stirling cryocooler. The original calibration sources

were replaced by a blackbody attached to the underside of the weather shutter (§2.3.1),

which could be heated to a temperature of 20 K above ambient. The two-point calibration

was then accomplished by observing the blackbody at ambient and elevated temperatures.

Unfortunately, in this method the temperature of both calibration points lies above the

effective temperature of the sky and an extrapolation of the calibration data is needed to

determine the atmospheric flux. Modeling has shown that in order to measure PWV to an

accuracy of 10% the effective temperature must be know to a precision of ±0.1 K [13].

In the original design, two temperature sensors were embedded in the blackbody

Section 5.1: Calibration 76

Flux vs. Voltage

7 8 9 10 11 12
Flux (W)

1.050

1.100

1.150

1.200
V

ol
ta

ge
 (

V
)

6 oC

11 oC

Warm
Ambient
Sky

Figure 5.3: Potential error in atmospheric flux introduced through a two-point extrapolation. The flux calculation

for the ambient reading is taken to have small error bars and acts as a fulcrum point. Warm blackbody flux variance

equivalent to ±3 K, results in an extrapolated error equivalent to ±5.5 K at typical sky temperature.

to determine the effective temperature; one sensor in the center and the other located near

one of the edges. Under ambient conditions the blackbody temperature is uniform across

its surface, but when heated, a temperature gradient was found to exist, as shown in Figure

5.2, which shows a thermal image obtained with a Fluke Ti20 infrared camera kindly made

available by Fluke Electronics Canada. The temperature profile shows that the centre of

the blackbody was measured at 50 ±0.2 ◦C (323 K), while the edge was 46 ±0.2 ◦C (319

K).

Initially, it was unclear how the two temperature readings from the heated black-

body, related to the effective temperature of the surface. Since the blackbodies on individual

IRMA units are custom-made, each has unique gradients, which lead to errors in their re-

spective calibration. This results in different flux values being reported by two IRMA units

Section 5.1: Calibration 77

Figure 5.4: A photograph showing how the IRMA field of view was mapped using a soldering iron.

observing the same atmosphere, which is clearly unacceptable. Moreover, this error is fur-

ther amplified by the extrapolation process described above. To illustrate this point, Figure

5.3 shows the resultant extrapolation error due to a ±3 K error in the effective tempera-

ture of the hot calibration source. At ambient temperatures, the blackbody is assumed to

be in a state of thermal equilibrium, and therefore, accurately represented by the internal

temperature sensors. The smaller error of the ambient measurement causes this point to

act as a fulcrum for the extrapolation. The ±3 K results in an error equivalent to ±5.5 K

at typical sky temperatures, which is the key driver for the ±0.1 K accuracy requirement

for the heated blackbody.

During rigorous laboratory testing, it was determined that a difference in lid gra-

Section 5.1: Calibration 78

Figure 5.5: A photograph of the additional aperture which was attached to the cryo-cooler window to better

define the field of view.

dients was not the only source of the offset observed between IRMA units when viewing the

same atmosphere. To explore this further, it was decided to view a dewar of liquid nitrogen,

LN2, since at this temperature there is essentially zero emission at 20 µm. The IRMA unit

was carefully turned upside-down and held above an LN2 dewar. A signal, indicative of a

stray radiation component, was detected, prompting further investigation. A hot soldering

iron was slowly moved around the expected field of view of the detector to further inves-

tigate this phenomenon (Figure 5.4). These tests confirmed that the detector was viewing

past the primary mirror. To correct for this over-illumination an additional aperture was

mounted onto the cooler window, as shown in Figure 5.5. Though reducing the aperture

size lessened the effect of the stray internal box radiation, it did not eliminate it.

Section 5.1: Calibration 79

Figure 5.6: A photograph of the the large reference blackbody (LBB), which is mounted in a wooden frame that

can be accurately positioned atop an IRMA unit. Inset in the image is a representative mapping of the embedded

temperature sensors.

In the next phase of the investigation, 11 of the 16 temperature sensors were placed

throughout the optical cavity to study the temperature distribution inside the IRMA unit

in an attempt to determine the cause of the stray radiation. At the same time, a new

calibration procedure was developed.

5.1.3 Improved Calibration Method

To address the issues arising from the box-to-box variance in blackbody emis-

sion, a new process was adopted, which involved the development of a large external black

body (LBB). The LBB would serve as a primary reference to which all of the individual

IRMA blackbody sources would be calibrated. To overcome the limitations of the internal

calibration sources which, by virtue of the available space, were small, found to exhibit un-

expectedly large temperature gradients, and only contained two temperature sensors, the

reference blackbody was designed with a higher power heater and a much larger surface

Section 5.1: Calibration 80

to avoid edge effects. The large blackbody had 16 temperature sensors embedded into its

surface, arranged in the pattern shown in Figure 5.6, to allow for the accurate mapping of

its surface temperature profile. The sixteen sensors were calibrated by placing the entire

large blackbody in a convection oven and referencing each sensor to a calibrated Lakeshore

temperature diode [34]. Initially, and creatively, the temperature sensors of the LBB were

read using a PC/104 and a spare IRMA motherboard. The IRMA software required only

minor modifications to acquire the temperature data from the 16 sensors. This was later

replaced with a dedicated Data Translation DT9803 [35] high-performance USB data ac-

quisition module. A wooden housing was built to allow for repeatable positioning atop the

IRMA viewing port, shown in Figure 5.6. Several of the internal IRMA temperatures were

also incorporated into the calibration in an attempt to identify and account for the effects

of stray internal radiation measured by the detector.

The calibration was performed by taking a series of LBB measurements inter-

spersed with internal lid blackbody measurements as shown in Figure 5.7. A typical cali-

bration scheme consists of viewing the LBB at four distinct temperatures of approximately

22 ◦C, 35 ◦C, 60 ◦C and 90 ◦C.

Once the calibration data were obtained, a linear, least-squares fit was performed

between the effective LBB temperature being viewed by IRMA, the internal IRMA tem-

peratures to account for stray radiation, and the photodetector signal voltage. This fit

was then used to calibrate the internal blackbody temperature against the LBB such that

it could be used as a secondary calibration source in the field. The complete calibration

procedure was done in three steps.

Section 5.1: Calibration 81

Figure 5.7: A typical calibration sequence performed in the laboratory. The black line is detector voltage, the red

(square) highlighted sections correspond to measurements of the primary calibrator (LBB), the green (asterisk)

highlighted sections correspond to the measurements of secondary calibrator (lid blackbody).

5.1.3.1 Primary calibration

The primary calibration is responsible for determining the influence of internal

unit temperatures on the signal voltage. Originally, a relationship involving the effective

temperature of potentially contributing components of the signal voltage was used in the

analysis. However, the signal voltage is linear with respect to radiant flux, not effective tem-

perature. Therefore, a special scaling function was required to linearise the signal voltage-

to-temperature relationship. Once the effective temperature of the sky was calculated, this

value could be converted to flux using Equation 5.2. The scaling function was potentially

Section 5.1: Calibration 82

a source of error in the flux calculation, because it had to be pre-calculated for a range

of temperatures. If the actual sky temperature was found to be outside the pre-calculated

range, extrapolation errors would be present when the scaling function was applied.

The primary calibration is accomplished by observing the LBB shown in red in

Figure 5.7. Due to stray radiation within IRMA, the detector voltage is not simply a result

of the flux from the LBB, ΦLBB, but also contains some additional flux. The detector voltage

can, in general, be expressed as a linear combination of all possible sources of emission:

V = V0 + cLBB ΦLBB +

n
∑

i=0

ci Φi [V] , (5.6)

where V is photodetector voltage, V0 is the offset term, cLBB is the coefficient associated to

the flux emitted by the LBB, and ci are the n coefficients associated with the flux emitted

from the n areas inside the IRMA unit used to account for stray internal radiation, Φi. This

equation can be rearranged to solve for ΦLBB:

ΦLBB =

V − V0 −

n
∑

i=0

ci Φi

cLBB

[W] . (5.7)

The offset and coefficients were calculated by performing a linear, least squares fit to the

flux emitted by the LBB.

Selecting the internal temperature sensors to use in the fit was a non trivial task.

Any of the 11 temperature sensors located in the optical compartment can potentially be

used to account for the stray internal radiation. Originally, a statistical approach was

taken to determine which of the 11 sensors should be used. All relevant combinations of

sensors were fitted to a set of primary calibration data using Equation 5.6. The standard

deviation, σ, of the difference between the fits and the measured TLBB were computed. The

combination of temperature sensors resulting in the lowest σ was chosen. Later, a more

Section 5.1: Calibration 83

general approach was taken. An initial fit was performed using all available temperature

sensors. The temperature sensors with the largest coefficients from the fit were selected.

In each case, the dominant sensor was the same one selected using the statistical method.

However, the secondary sensor differed in each case.

5.1.3.2 Secondary calibration

A secondary calibration is performed to relate the internal blackbody to the LBB.

Calibrating the internal blackbody to the LBB allows for periodic verification of the calibra-

tion while the unit is operating remotely. For this secondary calibration, the data from the

internal blackbody during the calibration sequence are used (shown in green in Figure 5.7).

Once the primary calibration has been completed the infrared flux of the lid is determined

similar to Equation 5.7 by:

ΦeffLID =

V − V0 −
n

∑

i=0

ci Φi

cLBB

[W] . (5.8)

The correlation between the flux associated with readings from the embedded temperature

sensors and the effective flux of the internal blackbody is determined by fitting to the

equation:

ΦeffLID = Φ0 + c1 Φ1 + c2 Φ2 [W] , (5.9)

where Φ0 is an offset term, Φ1 and Φ2 are the calculated flux associated with the lid diode

temperatures, and c1 and c2 are their respective fit coefficients.

5.1.3.3 Calibrated sky measurement

When the IRMA units are operating at remote sites, periodic calibrations are

performed using the internal blackbody, which acts as a secondary standard. By applying

Section 5.1: Calibration 84

Figure 5.8: Three IRMA units on the roof above our laboratory at the University of Lethbridge. The lower unit

is fitted with a heating cable and insulating jacket (cardboard) to test the ability of the fitting routine to correctly

account for and remove the systematic offset due to heating.

the coefficients determined in Equation 5.9 the effective flux seen at the detector can be

calculated. A new set of internal temperature coefficients are then calculated by applying a

linear, least squares fit similar to Equation 5.7 except replacing ΦLBB with ΦeffLID. Once these

new coefficients are calculated the infrared flux from the atmosphere can be determined by

equation:

ΦSky =

V − V0 −
n

∑

i=0

ci Φi

ceffLID

[W] . (5.10)

The flux associated with this temperature is found using equation 5.2. This flux value, along

with the local temperature and pressure, can be converted to PWV using a pre-calculated

Section 5.1: Calibration 85

Figure 5.9: Raw data for the three co-located IRMA units operating in Lethbridge, shown in Figure 5.8. Inter-

spersed with measurements of the atmosphere are three calibration sequences.

atmospheric model, as discussed in §1.3.2.

5.1.4 Results

To verify the performance of the improved calibration method, three IRMA units

were calibrated independently using the procedure described in §5.1.3. These units were

then placed side-by-side on the roof of University Hall at the University of Lethbridge,

Section 5.1: Calibration 86

3 4 5 6 7
Hours (UT)

7

8

9

10

11

12

13

14

P
W

V
 (

m
m

)
Unit 10
Unit 11
Unit 12

Figure 5.10: Derived PWV values for the three co-located IRMA units in Lethbridge, shown in Figure 5.8.

7 8 9 10 11 12 13 14
PWV (mm)

7

8

9

10

11

12

13

14

P
W

V
 (

m
m

)

10 vs 11
10 vs 12
11 vs 12

Figure 5.11: Inter-comparison scatter plot of PWV data from three co-located IRMA units in Lethbridge, showing

a pairwise comparison. The solid line is the ideal unity slope reference line, while dashed lines are the ±10%

tolerance limits.

Section 5.1: Calibration 87

Table 5.1: Correlation coefficients for the pairwise comparison of Lethbridge test data shown in Figure 5.11.

Data Set 1 Data Set 2 Correlation Coefficient

Box 10 Box 11 0.9768
Box 10 Box 12 0.9774
Box 11 Box 12 0.9652

directly above our laboratory, as shown in Figure 5.8 and allowed to view the same atmo-

sphere. The raw, unprocessed voltage data from each of the units is shown in Figure 5.9.

From this figure, it can be noted that each unit has different offset and gain characteristics,

which are due mainly to differences in the gain and offset of the pre-amplifier of each unit.

However, despite these differences, once the initial calibration coefficients were applied to

the data the resulting PWV measurements were well correlated, as can be seen in Fig-

ure 5.10. To better illustrate the correlation, resulting PWV from each unit was plotted

against the PWV from the other two (Figure 5.11). The near unity linear relationship, with

correlation coefficients listed in Table 5.1, demonstrated that the calibration method was

successful, and the units were ready for testing under more optimal conditions.

Once in the field, the units are subjected to a wide variety of environmental con-

ditions. To demonstrate that the IRMA calibration was independent of environmental

conditions, one on the boxes was fitted with a heater while the units were observing on the

roof in Lethbridge, the lower unit in Figure 5.8. The heater caused the internal temperature

of IRMA to rise ∼10 K above the ambient operating conditions. Despite the large difference

in unit temperature, the calibration routine was able to successfully remove the systematic

effects due to the heating. The results are shown in Figure 5.12.

Section 5.1: Calibration 88

Flux for 2006-11-22

0 1 2 3
Hours (UT)

6.5

7.0

7.5

8.0

8.5

9.0

F
lu

x
(W

)

Unit 10
Unit 12

Flux for 2006-11-22

0 1 2 3
Hours (UT)

6.5

7.0

7.5

8.0

8.5

9.0

F
lu

x
(W

)

Unit 10
Unit 12

Figure 5.12: Flux values for two co-located IRMA units in Lethbridge while unit 10 was heated 10 K above

ambient temperature. The upper plot does not account for the effective stray light. The lower plot includes a

correction for stray light based on the method described in the textwhile the bottom plot does.

Section 5.1: Calibration 89

Figure 5.13: A photograph showing three IRMA units deployed on one of the Chilean sites being considered as

part of the Thirty Meter Telescope (TMT) project with myself in the foreground. Mr. Greg Tompkins can be

seen in the background checking one of the Units.

5.1.4.1 Field Tests in Chile

The sensitivity of IRMA to PWV measurements is a non-linear function of the

altitude of the observing site and the amount of water vapour in the atmosphere. IRMA is

designed to have maximum sensitivity at high altitude sites. In fact, it is not expected to

perform well at the lower altitude, and thus wetter site above our laboratory.

For this reason, in Lethbridge, it is not possible to evaluate the performance of

IRMA in the operating conditions for which it is designed. Therefore, to test the units

under more optimal conditions, the three units were shipped to Chile. In January 2007, I

had the opportunity to travel to Chile where we carefully drove the IRMA units across the

Section 5.1: Calibration 90

2 3 4 5 6
PWV (mm)

2

3

4

5

6

P
W

V
 (

m
m

)

10 vs 11
10 vs 12
11 vs 12

Figure 5.14: Inter-comparison scatter plot of PWV data from the three co-located IRMA units in Chile, analagous

to Figure 5.11. These data were derived using the original calibration coefficients calculated during the original

test campaign in Lethbridge. As can be seen and as expected this site is significantly drier than Lethbridge. It

can also be seen that the systematic errors are outside our error budget target of 10% for PWV.

desert in 4x4 trucks to a 3000 m high mountain. The units were unpacked and set up side-

by-side, as shown in Figure 5.13. Here, the testing procedure was repeated, and the three

units were once again operated co-located observing the same atmosphere. While on site,

the correlation between the units was verified. However, a small offset was evident between

the units shown in Figure 5.14. It was assumed that this was because a thorough study of

the internal box temperatures had not yet been completed. Upon my return to Lethbridge,

the statistical study of the contributing temperature sensors was used to determine new

coefficients. The results of the test campaign in Chile, using the new coefficients, are shown

in Figure 5.15 [36]. Figure 5.16, with corresponding correlation coefficients listed in Table

5.2, shows that the data points are more closely correlated than with the Lethbridge data.

Section 5.1: Calibration 91

2.454118•106 2.454119•106 2.454120•106 2.454121•106

Julian Day

2

3

4

5

6

P
W

V
 (

m
m

)
Box 10
Box 11
Box 12

Figure 5.15: A time series plot of the three co-located IRMA units in Chile. The gaps in the data correspond

to calibration sequences.These data were derived using the calibration coefficients calculated using the statistical

approach described in §5.1.3.1.

2 3 4 5 6
PWV (mm)

2

3

4

5

6

P
W

V
 (

m
m

)

10 vs 11
10 vs 12
11 vs 12

Figure 5.16: Inter-comparison scatter plot of PWV data from the three co-located IRMA units in Chile, analagous

to Figure 5.11. These data were derived using the calibration coefficients calculated using the statistical approach

described in §5.1.3.1.

Section 5.1: Calibration 92

Table 5.2: Correlation coefficients for the pairwise comparison of the Chile test data, shown in Figure 5.16, using

the calibration coefficients calculated using the statistical approach described in §5.1.3.1.

Data Set 1 Data Set 2 Correlation Coefficient

Box 10 Box 11 0.9836
Box 10 Box 12 0.9939
Box 11 Box 12 0.9886

8 10 12 14 16 18
PWV (mm)

8

10

12

14

16

18

P
W

V
 (

m
m

)

10 vs 11
10 vs 12
11 vs 12

Figure 5.17: Inter-comparison scatter plot of PWV data from the three co-located IRMA units in Lethbridge;

compare to Figure 5.11. These data were derived using the calibration coefficients calculated using the statistical

approach described in §5.1.3.1. It can also be seen that the systematic errors are outside our error budget target

of 10% for PWV.

However, when these new calibration coefficients were applied to the Lethbridge data an

offset was present, as seen in Figure 5.17.

The difficulty in obtaining a single set of coefficients, which would adequate cali-

brate both the Lethbridge and Chilean testing campaigns, raised questions about the accu-

racy of the primary calibration method. While the method is fundamentally sound, there

may be issues with the design of the large blackbody. When the large blackbody is placed

on top of an IRMA unit during calibration, it completely encloses the unit. As a result,

Section 5.1: Calibration 93

Table 5.3: Correlation coefficients for the pairwise comparison of the Chile test data, shown in Figure 5.18, using

the calibration coefficients calculated using the Chilean sky relative to Unit 10 as the calibration source.

Data Set 1 Data Set 2 Correlation Coefficient

Box 10 Box 11 0.9896
Box 10 Box 12 0.9869
Box 11 Box 12 0.9953

when it is heated to temperatures up to 90 ◦C, there is significant internal heating of the

IRMA unit, which may cause exaggerated contributions to the signal voltage from some

areas of the box, resulting in errors in the calculated coefficients.

In an attempt to calibrate the units under normal operating conditions, we de-

cided to use the Chilean sky as a calibration source. Since the actual atmospheric flux is

unknown, a relative calibration was performed where Unit 10 was selected as the reference,

and used to determine the radiated flux from the atmosphere. The internal blackbody was

then calibrated using the method described in §5.1.3, except the flux from the atmosphere,

as determined by Unit 10, was used in place of the large blackbody. A set of lid coefficients

was generated for each day of the testing campaign. The average value for each of the

coefficients was determined, and used to process the data. A time series plot of the Chilean

data is shown in Figure 5.18, while Figure 5.19 shows the correlation of the boxes with the

correlation coefficients listed in Table 5.3. The correlation coefficients do not show a signif-

icant improvement over those calculated for the other calibrations because the coefficients

do not account for an absolute calibration.

The coefficients were then applied to the data obtained in Lethbridge, and are

shown in Figures 5.20 and 5.21. Reassuringly, there was found to be excellent correlation

between the boxes (Table 5.4) and virtually no offset.

Section 5.1: Calibration 94

2.454118•106 2.454119•106 2.454120•106 2.454121•106

Julian Day

2

3

4

5

6

P
W

V
 (

m
m

)

Unit 10
Unit 11
Unit 12

Figure 5.18: A time series plot of the three co-located IRMA units in Chile. The gaps in the data correspond to

calibration sequences. These data were derived using the calibration coefficients calculated using the Chilean sky

relative to Unit 10 as the calibration source.

2 3 4 5 6
PWV (mm)

2

3

4

5

6

P
W

V
 (

m
m

)

10 vs 11
10 vs 12
11 vs 12

Figure 5.19: Inter-comparison scatter plot of PWV data from the three co-located IRMA units in Chile, analagous

to Figure 5.11. These data were derived using the calibration coefficients calculated using the Chilean sky relative

to Unit 10 as the calibration source.

Section 5.1: Calibration 95

2 3 4 5 6 7
Hours (UT)

8

10

12

14

16

18

P
W

V
 (

m
m

)
Unit 10
Unit 11
Unit 12

Figure 5.20: A time series plot of the three co-located IRMA units in Lethbridge. The gaps in the data correspond

to calibration sequences. These data were derived using the calibration coefficients calculated using the Chilean

sky relative to Unit 10 as the calibration source.

8 10 12 14 16 18
PWV (mm)

8

10

12

14

16

18

P
W

V
 (

m
m

)

10 vs 11
10 vs 12
11 vs 12

Figure 5.21: Inter-comparison scatter plot of PWV data from the three co-located IRMA units in Lethbridge,

analagous to Figure 5.11. These data were derived using the calibration coefficients calculated using the Chilean

sky relative to Unit 10 as the calibration source.

Section 5.2: Field Performance 96

Table 5.4: Correlation coefficients for the pairwise comparison of the Lethbridge test data, shown in Figure 5.21,

using the calibration coefficients calculated using the Chilean sky relative to Unit 10 as the calibration source.

Data Set 1 Data Set 2 Correlation Coefficient

Box 10 Box 11 0.9766
Box 10 Box 12 0.9918
Box 11 Box 12 0.9935

5.2 Field Performance

IRMA is often deployed at remote sites where there is little physical interaction

with the unit. For this reason, the units must be robust, but it is possible that a mechanical

failure may occur in the field. IRMA is designed to minimise single point failures, such that

when such mechanical failures occur, it may still be possible to operate the unit and obtain

meaningful data.

In previous versions, it was only possible to move the Alt-Az mount to an absolute

position, i.e. Elevation: 70◦, Azimuth: 350◦ West of North. However, thanks to recent

updates to the Alt-Az Controller (AAC) (§3.3.3), commands were added which allowed the

Alt-Az mount to make relative movements, i.e. move clockwise 30◦ in azimuth.

In April 2007, while a unit was deployed atop Mauna Kea in Hawaii, failures oc-

curred which previously would have made normal operation of the unit impossible. First, a

problem with the elevation drive was discovered, which was traced to a failure in an optical

switch. During an initialisation routine, the unit would not recognize one of the elevation

limits. This meant that the elevation initialisation routine could not be completed, and

therefore, the standard move commands could not me used. At this time, the initialisa-

tion involved moving one direction, assigned counter-clockwise (CCW), until the limit was

reached, then rotating in the other direction, assigned clockwise (CW), to the CW limit.

Section 5.2: Field Performance 97

With the CW limit switch not responding, the initialisation routine would continue to drive

the motor seeking the CW limit. Using the relative movement commands it was possible

to verify that the elevation drive still had a full range of motion ∼190◦, and it was pointed

to zenith using the new commands. However, the weather protection routine uses absolute

movements and therefore requires a fully initialised unit.

After a standard elevation initialisation, the unit stops in the CW limit and sets

its position to 0 degrees elevation even though it is actually pointing below the horizon. An

offset is applied to correct this. Before a unit is shipped, the offset between the limit and

the true 0 degrees is calculated and stored in a file on the unit. It was determined that we

could simulate an initialisation by using an offset value to compensate for the uninitialised

value, 90,000 optical encoder (OE) counts. By applying an offset of 90,000 plus the original

offset, the unit would appear initialised. This solution corrected the Alt-Az problems until

a repair could be scheduled.

During this same period, and before the unit could be repaired, the motor on

the weather shutter failed in the open position. With the weather shutter not functioning,

IRMA was seriously compromised, as it was no longer possible to calibrate the unit. Had the

shutter failed in the closed position it would have been impossible to view the atmosphere

at all. Although we were not able to obtain calibration measurements, we could still observe

the atmosphere and so during this time, a sequence of skydips were performed.

Skydipping consists of taking measurements at increasing zenith angles and in-

verting the measurements to retrieve the column abundance of water vapour. In essence,

a skydip is a method of increasing the number of observed water molecules in a controlled

manner. Assuming a homogeneous parallel-plane atmosphere with an effective height h,

Section 5.2: Field Performance 98

the effective path length along the line of sight at the zenith angle θ is given by

l =
h

cosθ
[m] . (5.11)

Airmass is the path length relative to the height of the atmosphere at zenith, which under

the same assumptions can be approximated as:

airmass =
1

cosθ
= secθ (5.12)

For example, at a zenith angle of 60◦ the airmass = 2, therefore IRMA is observing the

emission of twice the amount of water molecules. As the airmass increases so should the

observed flux, in a well defined manner.

For a single spectral water vapour line, the peak emission increases with the num-

ber of molecules, until the peak reaches the Planck envelope. At this point the increased

emission is due solely to the broadening of the line. IRMA observes many lines in its spectral

window (450 – 575 cm−1), a portion of which can be seen in Figure 5.22 plotted at vari-

ous airmasses. From this Figure it can be seen that the amplitude of the emission spectra

increases in a complex manner. Integrating the spectra with respect to wavenumber, and

then plotting the radiant flux against the respective airmass gives the curve shown in Figure

5.23, which is known as a curve-of-growth. The atmospheric opacity, τ , can be calculated

from this curve, and is proportional to the precipitable water vapour in the atmosphere.

On the summit of Mauna Kea, the Caltech Submillimeter Observatory (CSO) Tau

Meter also measures PWV by performing skydips with a 225 GHz radiometer [6], at a fixed

azimuth of 316 degrees, every 10 minutes to determine the atmospheric opacity, τCSO. IRMA

was pointed to approximately the same azimuth as the CSO Tau Meter while the skydips

were performed. 149 skydips were performed over the course of 19 hours. Following this

Section 5.2: Field Performance 99

480 490 500 510 520
Wavenumber (cm-1)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

R
ad

ia
nc

e
(W

 m
2 sr

-1
(c

m
-1
)-1

)

Figure 5.22: Theoretical emission spectra of the atmosphere in the 20 µ spectral region, produced by BTRAM [9].

These spectra correspond to 1 mm PWV and span an airmass range from 1 to 5.

1 2 3 4 5
Air Mass

10

12

14

16

R
ad

ia
nc

e
(W

 m
-2
sr

-1
)

Figure 5.23: A theoretical curve-of-growth calculated by integrating flux underneath the spectra shown in Figure

5.22 as a function of airmass. The symbols represent the 5 discrete integrals and the solid line represents the

continuous curve of growth.

Section 5.2: Field Performance 100

the unit was powered down and covered to await repair.

The data from the 149 skydips were compared with the CSO tau data. The τCSO

values were first converted to PWV using a relationship which has been published in the

literature for Mauna Kea, given by [37]:

PWV = 20(τCSO + 0.016) [mm] . (5.13)

A curve-of-growth, similar to the one shown in Figure 5.23, was then generated by BTRAM

using the meteorological data, and the PWV, as determined from τCSO. This curve of

growth was then fitted to the IRMA skydip data. Although, as mentioned above it was

not possible to calibrate IRMA due to the weather shutter/calibration source failed in the

open position, it is instructive to compare the IRMA skydip data with the that derived

from CSO tau. During these complemetary observations, a storm front was approaching

the Hawaiian islands from the North-West direction. An example of an IRMA skydip

and corresponding curve-of-growth for τCSO=0.032 (PWV=0.74 mm) taken when the storm

front is distance, is shown in Figure 5.24 together with a satellite PWV image showing the

location of storm front . The asterisks represent the raw IRMA skydip data, while the

smooth curve represents the modeled, scaled curve-of-growth based upon the independent

CSO tau data. Figure 5.25 shows the corresponding data three hours later when the storm

from was approaching the Mountain. At this time the τCSO=0.062 (PWV=1.37 mm), and

the IRMA skydip deviates from the modeled curve-of-growth.

Generally, there is seen to be good agreement between the IRMA measured and

the CSO tau derived curves-of-growth when the storm front was far away, but as the storm

approached Mauna Kea there was an increasing discrepancy between the two data sets.

These differences can be attributed to the fact that CSO and IRMA radiometers view

Section 5.2: Field Performance 101

1 2 3 4
Airmass (1/cos)

1.02

1.03

1.04

1.05

1.06

1.07

1.08

S
ig

n
al

 (
V

)

Figure 5.24: A GOES-10 satellite image of the Hawaiian Island chain taken at 05:00 UT April 24, 2007 (left).

The IRMA skydip (asterisks) and the modeled curve-of-growth derived from the independent CSO tau data taken

at the same time (right). There seem to be good agreement between the IRMA and the CSO tau data.

1 2 3 4
Airmass (1/cos)

1.02

1.04

1.06

1.08

1.10

S
ig

n
al

 (
V

)

Figure 5.25: A GOES-10 satellite image of the Hawaiian Island chain taken at 08:00 UT April 24, 2007, three

hour after Figure 5.24 (left). The IRMA skydip (asterisks) and the modeled curve-of-growth derived from the

independent CSO tau data taken at the same time (right). It can be seen that as the storm has advanced there

are now significant differences between the IRMA and CSO tau data.

different parts of the sky and have different beam sizes, which become more pronounced

as the storm front approaches Mauna Kea. Although the uncalibrated IRMA data are of

limited scientific value Figures 5.24 and 5.25 shows the effectiveness of IRMA in sensing

impending inclement weather.

Section 5.3: Summary 102

5.3 Summary

The prototype IRMA used a simple, two-point, linear calibration method. How-

ever, the latest mechanical designs posed some problems for this method. With the elim-

ination of wet cryogens, the two calibration points moved from liquid nitrogen, LN2, and

ambient temperatures to ambient and ∼20 K above ambient temperature. As a result, the

calibrated sky measurements need to be extrapolated, rather than interpolated, from the

calibration points, increasing the required precision of the thermometry. A gradient was

found to be present across the internal blackbody calibration source when heated making

it more difficult to accurately determine its effective temperature. In addition, it was found

that the signal voltage was also sensitive to stray internal radiation.

To address these challenges, an additional aperture was attached to the window of

the cryocooler, which helped reduce, though not eliminate, the sensitivity to stray radiation.

A large reference blackbody was constructed to act as a primary calibration source. A new

calibration method was developed, which associated the internal blackbody (secondary) to

the reference blackbody (primary) and determined the signal dependence on stray radiation.

Once calibrated, three units were tested in Lethbridge side-by-side, viewing the

same atmosphere. It was shown, using the new calibration method, that there was very

good agreement between the units. In order to evaluate the performance of the units under

the operating condition for which IRMA was designed, the units were sent to Chile where

they again observed the same atmosphere while on a mountain at an altitude of ∼3000

m. As expected, the units showed an even better correlation, with measured inter-unit

correlation coefficients of 0.99 under these conditions.

The second section of this chapter demonstrates the flexibility of the IRMA unit.

Section 5.3: Summary 103

During a time of instrumental failure it was possible to modify the operation of the unit

remotely such that useful data could be obtained. With the Alt-Az mount damaged and

the weather shutter stuck open, skydips were performed in the same direction as the Cal-

tech Submillimeter Observatory (CSO) taumeter, an independent measure of water vapour.

These results were compared and showed a good correlation.

104

Chapter 6

Future Directions

6.1 Overview

Since the development of the prototype, evolution has occurred in all aspects of

the IRMA design. The latest improvements have been discussed in my thesis. This chapter

outlines some of the areas where further improvements will allow IRMA to better perform

its task of measuring atmospheric water vapour. Improvements in software will make the

unit more autonomous, reliable, and robust. Modifications to the mechanical and optical

design will improve the signal quality, reduce noise, and also contribute to the robustness

of the instrument.

6.2 Future Mechanical and Optical Development

Work is currently underway to build the next generation of IRMA, which features

a redesign of the mechanical and optical systems (Figure 6.1). Fortunately, the electronics

and control software are largely unaffected by these changes.

Section 6.2: Future Mechanical and Optical Development 105

Figure 6.1: New IRMA mechanical/optical design. Courtesy of Brad Gom.

6.2.1 New Cryocooler

The redesign was driven by the the decision of Hymatic, the makers of the cooler,

to discontinue the cryocooler model NAX025-001, used in the previous design. The new

cryocooler from Hymatic, model SAX101 was chosen for the next generation IRMA. The

new cryocooler provides many improvements over the previous model. It made use of

two dual opposed linear compressors mounted on a central block. The dual opposed pistons

minimize the vibration and acoustic noise from the cooler, while doubling the cooling power.

Section 6.2: Future Mechanical and Optical Development 106

Reducing the vibrations should also improve the signal to noise ratio of the detector. The

SAX101 cryocooler has the advantage of using the same cooler controller as the current

version of IRMA, so the hardware and software interfaces to the cooler will be identical to

the present model of IRMA. Unfortunately, however, the SAX101 cryocooler is larger than

the previous model, which necessitates mounting the cooler such that the detector is at an

45◦ angle to the mirror, as shown in Figure 6.1. Mounting the cooler in this way may pose

challenges to aligning the detector.

6.2.2 Larger Primary Mirror

As mentioned, fitting the new cooler into the restricted dimensions of the IRMA

module, necessitated installing it at an angle. While mounting the cooler in this way poses

some challenges, it allows for the installation of a larger, 12.5 cm diameter, primary mirror.

Having a larger primary mirror increases the collection area and therefore increases the

amount of flux incident on the detector. The increase in flux will increase the signal from

the detector and thereby increase the signal to noise ratio.

6.2.3 New Weather Shutter Design

The 12.5 cm diameter mirror requires a larger viewport for IRMA. Thus, the design

of the weather shutter needed to be modified. The redesign provided an opportunity to find

solutions to some of the problems with the shutter design. The current weather shutter has

been the source of some failures such as the incident mentioned in §5.2. In the new design,

rather than retracting inside the unit, the weather shutter rotates out of the beam, which

will result in less heating of the optical cavity. The blackbody, on the underside of the

new weather shutter, will contain an array of sixteen temperature sensors, rather than only

Section 6.3: Future Software Development 107

Figure 6.2: Block diagram of original Queue Server functionality.

two, which will allow for a more accurate mapping of any temperature gradients accress

the blackbody surface and a more accurate calculation of the effective temperature of the

blackbody calibration source.

6.3 Future Software Development

The IRMA related software will continue to evolve. This includes enhancements to

both the system software, resident on the PC/104 discussed in Chapter 3, and the front-end

software discussed in Chapter 4.

6.3.1 System Software Enhancements

6.3.1.1 Queue Server Integration

As mentioned in §3.4, the Queue Server is not required to prevent two scripts

from attempting to access irmamc on the PC/104 based IRMA since the TCP/IP requests

Section 6.3: Future Software Development 108

Figure 6.3: Block diagram of proposed Queue functionality.

are queued on the TCP stack. However, there are some features of the Queue Server,

not related to conflict resolution, which would still be desirable on the system. These

include the ability to view scripts waiting to execute, removing items from the queue,

and modifying the priority of a queued item. Rather than simply continue to use the

current implementation, the Queue Server should be integrated into irmamc. Currently

the Queue Server simply acts as a “take-a-number box”, yet has no direct interaction with

the IRMAscript interpreter, as shown in Figure 6.2. This adds complexity to the programs

which use the Queue Server, such as, AutoTasks and the IRMA Control Interface, because

they must include the communication protocols for both the Queue Server as well as the

IRMAscript interpreter. Additionally, the current Queue Server implementation does not

allow for scripts to be added through the command line, and therefore these scripts are not

visible from the Queue Server.

If the Queue Server is integrated into the Master Controller, all executed scripts,

regardless of how they are executed, would be inserted into the queue, shown in Figure 6.3.

Unlike the original Queue Server, the queue functionality will be completely abstracted from

Section 6.3: Future Software Development 109

the user, or programs sending commands to irmamc. Whenever a IRMAscript is received, it

will automatically be entered into the queue. Additional commands will be added to query

the status or modify the queue. Having the Queue Server tightly integrated into irmamc,

will greatly simplify the design of programs which will interact with irmamc.

6.3.1.2 Improved Autonomous Operation

Currently, irmamc is only capable of executing IRMA scripts. Autonomous control

is carried out by additional programs which generate scripts and send them to irmamc, such

as Autotasks (§3.5). With the adoption of the PC/104 based platform, all of the system

software is executed on the same processor, so these programs can be integrated into irmamc.

This would reduce overhead and allow for more efficient operation. In addition, with the

integration of the Queue Server and AutoTasks into the Master Controller the system would

be written almost entirely in C; perl, which runs slowly on the PC/104 due to the increased

overhead of the Perl interpreter, would be used only for very simple housekeeping tasks.

6.3.1.3 IRMAscript Modification

IRMAscript allows for flexible control of the radiometer. However, in most cases

instrument control is handled by short scripts which handle an individual task. This is

due to the fact that only one script can be executed at a time; if a large complex script

were executing, all other scripts would be required to wait. The subsequent delay could be

catastrophic if, for example, the command in the queue is a weather protection command.

Future software development will likely see IRMAscript reduced from a full scripting lan-

guage with variables and flow control to a series of instrument control commands. The flow

control would then be handled by the program interfacing with the IRMA unit. Reducing

Section 6.4: Final Thoughts 110

IRMAscript in this a manner would not only reduce the complexity of the IRMA code, but

make it easier for an operator to write custom interfaces with the unit.

6.3.2 Front End Software Development

As discussed in §4.3, improvements in the calibration method required writing a

new data reduction program, IRMA PWV which was written in IDL R© and performed

some of the functions of the IRMA Archive Interface (§4.2). Future development of IRMA

PWV will include adding a GUI interface, as well as a complete suite of data reduction and

viewing functions rendering the IRMA Archive Interface obsolete. It is also foreseeable that

IRMA control commands will be added as well, which would incorporate the functionality of

the IRMA Command Interface. As a result, all of the data reduction and control functions

would be contained in one convenient package which could be run on any platform using

the IDL R© Virtual Machine.

6.4 Final Thoughts

Since the development of the IRMA prototype in 1999, the IRMA project has been

continually progressing. To date, the IRMA project has been the subject of 4 theses from the

Astronomical Instrumentation Group at the University of Lethbridge [1] [33] [24] [13]. Two

of these theses focused on the instrumentation and software design. I joined the group as

the IRMA project was entering its latest design change; moving from a distributed Rabbit

based system (§3.2) to the current PC/104 based system (§3.3). To support all of the

existing systems, it was necessary to become familiar with both IRMA designs, in addition

to the graphical interfaces which supported them. In all, this involved familiarising myself

Section 6.4: Final Thoughts 111

with over 68,000 lines of code.

As I gained greater understanding of the system, I was able to make improvements

to the operation, from minor bug fixes to the design changes mentioned in this thesis. The

most significant update, was the porting of the IRMAscript interpreter from Perl to C,

and incorporating it into the Master Controller (§3.3.1). This allowed for over an order of

magnitude improvement in the execution time and reduced the complexity of the system by

eliminating the need for a special communication protocol between the Command Processor

and Master Controller. Approximately 2,800 lines of code were added for this change, while

∼14,000 lines of code were eliminated. During this time, we increased our understanding of

the IRMA instrument, which lead to the development of an improved calibration method

(§5.1.3). IRMA has now been deployed around the world and will continue to improve and

evolve.

Fin.

112

Appendix A

IRMAscript

A.1 Overview

An IRMAscript statement is structured simply. For commands that directly con-

trol IRMA, a command statement consists of a command type, followed by two modifiers,

and zero to fifteen arguments. The command type and its two modifiers define a unique

command. The arguments are provided in order to pass information pertinent to the com-

mand to IRMA. Most command statements, with the exception of the Alt-Az moveto/slewto

commands, have zero or one argument. In addition to IRMA commands, IRMAscript pro-

vides variables, data assignment, arithmetic, system commands (such as reading system

time), looping mechanisms, lists, and flow control, and console I/O. They do not follow the

same command structure described above.

Whitespace is used to delimit, or separate, each of the elements (command type,

modifiers and arguments) that make up an IRMAscript statement. Whitespace can consist

of spaces or tabs. Each statement must terminate with a carriage return. Only one state-

Section A.2: IRMAscript Language Summary 113

ment can appear on one line, which precludes IRMAscript from being a free form language,

such as C or C++. IRMAscript is caseless; it does not matter whether IRMAscript state-

ments are written in upper or lower case letters. Within the interpreter, all statements are

converted to uppercase.

A.2 IRMAscript Language Summary

The following table lists all IRMA system commands addressable within the IR-
MAscript language. Non-system commands, such as flow control commands, are not listed.

Command Modifier 1 Modifier 2 Arguments

STARTPROG SOCKET OPEN

ENDPROG SOCKET CLOSE

CRYO STATE ON

CRYO STATE OFF

CRYO SET MANUAL MODE

CRYO SET AUTO MODE

CRYO SET STOPPED MODE

CRYO SET SET POINT tempKelvin

CRYO READ COMP AMP

CRYO READ SET POINT

CRYO READ MODE

CRYO READ CURR TEMP

CRYO READ OSC FREQ

CRYO SERIAL OPEN

CRYO SERIAL CLOSE

GPS READ DATE TIME

GPS READ EPOCH TIME

GPS READ LAT LON

GPS SERIAL OPEN

GPS SERIAL CLOSE

ADC INIT RESYNCH

ADC INIT RESET

ADC INIT RW TEST

ADC SET CSR chan,gain,wordRate,polarity

ADC SET GAIN channel, gainValue

ADC SET OFFSET channel, offsetValue

ADC SAMPLE NO INT channel

ADC SAMPLE ON INT channel

Section A.2: IRMAscript Language Summary 114

ADC READ CSR channel

ADC READ GAIN channel

ADC READ OFFSET channel

ADC READ CONFIG REGISTER

SHUTTER STATE OPEN

SHUTTER STATE CLOSE

SHUTTER READ LIMIT

SHUTTER READ OVERCURRENT

SHUTTER SET OC RESET

CHOP MOTOR STATE ON

CHOP MOTOR STATE OFF

CHOP MOTOR STATE MEASURE RPM ON

CHOP MOTOR STATE MEASURE RPM OFF

CHOP MOTOR READ STATE

CHOP MOTOR READ RPM

BB STATE ON

BB STATE OFF

BB READ STATE

ALTAZ MOVE TO DMS elD,elM,elS,azD,azM,azS,spd

ALTAZ STATE POSLOG poslog enable/poslog disable

ALTAZ STATE HALT

ALTAZ STATE REBOOT

ALTAZ INIT PING

ALTAZ INIT ALTAZ

ALTAZ INIT AXES ELEVATION/AZIMUTH

ALTAZ INIT SERVO

ALTAZ INIT MOTOR

ALTAZ SET ALT OFFSET offset

ALTAZ SET AZ OFFSET offset

ALTAZ READ POSITION

ALTAZ READ TASK STATUS

ALTAZ READ ALT OFFSET

ALTAZ READ AZ OFFSET

ALTAZ READ POSLOG RANGE

ALTAZ READ POSLOG DATA

ALTAZ READ POSLOG STATE

ALTAZ SERIAL OPEN

ALTAZ SERIAL CLOSE

ALTAZ SLEW TO DMS elD,elM,elS,azD,azM,azS,spd

RTC SET DATE TIME

RTC READ DATE TIME

RTC SET ARBITRARY TIME YYYY-MM-DDThh:mm:ss

SCAN SIGNAL ON INT

SCAN SIGNAL STOP

Section A.3: IRMAscript Language Definition 115

SCAN READ STATE

IRMA STATE OFF

IRMA READ UPTIME

SUN SENSOR READ STATE

SUN SENSOR READ SHUTTER STATE

SUN SENSOR STATE SHUTTER OPEN

SUN SENSOR STATE SHUTTER CLOSE

NOTCH FILTER STATE 60HZ IN

NOTCH FILTER STATE 60HZ OUT

NOTCH FILTER STATE 120HZ IN

NOTCH FILTER STATE 120HZ OUT

NOTCH FILTER READ 60HZ

NOTCH FILTER READ 120HZ

BANDPASS FILTER STATE IN

BANDPASS FILTER STATE OUT

BANDPASS FILTER READ STATE

A.3 IRMAscript Language Definition

A.3.1 List Manipulation

INITIALIZATION

Construct (initialize) a list with one or more elements.

LENGTH

Return the length of a list.

INDEX

Reference an element of a list, where the index ranges from 0 (the first element) to n.

SUBSTRING

Retrieve a substring from a colon delimited data record. In IRMA commands that return

multiple data items, such as ALTAZ INIT PING, data is returned as a colon delimited string.

This command splits the data string into its constituent data items and returns the desired

Section A.3: IRMAscript Language Definition 116

datum, based on an index value.

A.3.2 Utility Functions

DEG2DMS

Convert an Alt-Az coordinate expressed as floating point degrees into degree-minute-second

(DMS) format. The degrees, minutes and seconds must be variables because the deg2dms

function places values in these variables. They are not input variables.

STARTPROG SOCKET OPEN / ENDPROG SOCKET CLOSE

Open and close a TCP/IP stream socket connection to the IRMA master controller. If a

script contains instructions to execute on the IRMA master controller, a network socket

must be established to the IRMA MC, as low-level IRMA system commands and data flow

over this connection. If a script does not contain IRMA hardware control commands, it is

not necessary to wrap a script with these statements.

LOCALHOST

This command handles system functions performed by the host computer’s operating sys-

tem.

localhost log open
Open the log file. A log file name must be created using the new log filename

command before logging can commence.

localhost log close
Close the log file.

NEW

The new family of functions creates new data items of various types, such as filenames and

time stamps.

new log filename
Automatically generate and return a filename, and create a directory path for
the new file. Filenames generated by this function follow the ISO time format:

Section A.3: IRMAscript Language Definition 117

YYYY-MM-DDTHHmmSS.dat

and end with the .dat extension. File paths follow the structure:

/IRMAdata/IRMA <boxNumber>/YYYY/YYYY-MM-DD

where /IRMAdata/ is a link (or filesystem shortcut) to some directory where
IRMA data is stored, <boxNumber> is the IRMA unit’s identifier number,
YYYY is the year in which the data/log file was created, and YYYY-MM-
DD is a year-month-day time stamp. This directory format organizes data files
chronologically according to the particular unit.

new iso timestamp
Create a time stamp string conforming to the ISO date-time format:

YYYY-MM-DDTHH:mm:SS.sss

Where YYYY refers to year, MM to month (1-12), DD to day (1-31), HH to
hour (0-23), mm to minute (0-59), SS to second (0-59), and sss to milliseconds
(0-999). The symbols -, T, and : are delimitation symbols.

A.3.3 Variable Manipulation

ASSIGN

Assign a value to a variable. The source of the assignment can be literal or another variable.

Literal values can be numeric or strings. Strings can be defined with or without enclosing

double quotes. When quotes are used, it is permitted to include whitespace in the string.

INCR / DECR

Increment or decrement a value contained in a variable. This operation does not work with

literals, as literals cannot have values assigned to them.

EVAL

Perform arithmetic operations and assign results to a variable. This command precedes

a simple arithmetic statement involving two operands and one operator. The operations

Section A.3: IRMAscript Language Definition 118

available are addition, subtraction, multiplication, division, modular division, and expo-

nentiation. The operands can be literals or variables, but the result must be assigned to a

variable.

A.3.4 Delays

WAIT

Delay execution of the script by N seconds. N can be a real value, ranging from 0 to some

arbitrary value.

A.3.5 Flow Control

DO .. WHILE

While loops repeatedly execute a block of statements while some arbitrary condition is

logically evaluated to be true. With do .. while statements, the condition is tested at the

end of the block, as opposed to the beginning of the block, which occurs in while loops.

A do .. while loop in IRMAscript opens with a do statement, and closes with a while

condition statement. Any number of IRMAscript statements, including other do .. while

loops, can be included in this block. There is no limit to the number of do .. while loops

that can be nested within one another.

The condition can take two forms: a simple comparison involving two operands, or

a compound conditional statement that logically ANDs or ORs two comparisons. For exam-

ple, a simple conditional statement takes the form $x < $y, while a compound conditional

is structured $x < $y or $a = $b.

Four kinds of comparison are available: less than (<), greater than (>), equality

(=), and inequality (!=). Logical ANDing and ORing can be specified in a compound

Section A.3: IRMAscript Language Definition 119

conditional using the symbols and and or. Do not use the symbols && or ‖ to perform

logical evaluations.

REPEAT .. ENDLOOP

Repeat execution of a block of statements. This structure is equivalent to a for loop that

increments from 0 to n.

GOTO

The most basic flow control mechanism is the goto statement. When the IRMAscript inter-

preter executes goto label statement, program control jumps to the IRMAscript statement

immediately following the label labelName statement. Using GOTOs as a form of pro-

gram flow control can lead to unstructured, unmanageable code. However, in the context

of IRMAscript, whose scripts tend to be quite short (less than a printed page long), the

issue of structured GOTO-less programming is not important. Given the relatively prim-

itive flow control mechanisms available in IRMAscript, GOTO allows the programmer to

develop sophisticated flow control within an IRMA script. With labels, the use of a colon

after the label name is optional.

A.3.6 Input / Output Commands

PRINT

Feedback from an executing IRMAscript can be directed to the console (or shell) by means

of the print command. The argument to the print command can be a literal or a variable.

In its most simple form, print can accept bare literals, either text or numeric, which is

inconsequential to IRMAscript, as it is a typeless language. If a string literal enclosed in

double quotes is passed as the parameter, the user can format the output, mixing variables

Section A.3: IRMAscript Language Definition 120

and literals together. The only stipulation is that each item in the string, whether literals

or variables, must be separated by commas, and there must not be any whitespace between

the quotes. The reason for the prohibition on whitespace is that the IRMAscript interpreter

divides statements into their constituent parts (tokens) along whitespace divisions. Two

special literals can be used within printf strings: the \s symbol defines a single whitespace,

while the \n symbol defines a linefeed, and is often called a newline character.

Output can be directed to an open log file by including the log modifier imme-

diately after the print command. The methods for defining the string format is identical

to the standard print command. The localhost command has methods to open and

close logfiles. Furthermore, the assign command can be used to define strings that can be

assembled using the print command.

A.3.7 System Commands

The following group of commands are responsible for controlling and/or reading

data from IRMA’s hardware components, which includes the AAC.

NOTCH FILTER

The notch filter state [filter] commands enable or disable the 60 Hz notch filter. The

filter is enabled with the 60hz in parameter, and disabled with the 60hz out parameter.

Reading 60 Hz notch filter state can be done with the notch filter read 60hz command.

A return value of 0 (zero) indicates that the filter is not enabled, while a return value of 1

indicates that the filter is enabled.

BANDPASS FILTER

Section A.3: IRMAscript Language Definition 121

The bandpass filter state [in/out] is used to enable or disable the 455 Hz bandpass filter,

whose job is to filter out all frequencies above and below the 455 Hz chopper wheel frequency.

The filter is enabled with the in parameter, and disabled with the out parameter. The state

of the bandpass filter can be read with the bandpass filter read state command. A return

value of 0 (zero) indicates that the filter is not enabled, while a return value of 1 indicates

that the filter is enabled.

SHUTTER

The command shutter state [open/close] signals the shutter control circuitry to respec-

tively open or close the shutter. Once this command is issued, it cannot be aborted. The

shutter will open or close until it has reached its destination position. Shutter condition

during actuation can be read with the shutter read limit command. The following integer

codes are returned: 3 - shutter is in the process of moving during shutter movement, 2 -

shutter is closed (covering the optical aperture), and 1 - shutter is in the open position

(optical aperture is exposed). Shutter jams can be detected by looking for an increase in

the amount of current going to the shutter motor. The shutter overcurrent bit is set when

this condition occurs. Calling the shutter read overcurrent statement returns the value

of the overcurrent bit: 1 when the overcurrent condition exists, and 0 when it does not.

When the overcurrent condition bit has been set, it must be reset to zero by calling the

shutter set oc reset command.

BB

The bb state [setting] command enables or disables the blackbody shutter heater. The

heater is turned on by calling this command with the argument on, while off turns the

blackbody heater off. The state of the heater can be read by calling the command bb read

Section A.3: IRMAscript Language Definition 122

state. The return value 1 indicates that the blackbody heater is on, while a return value

of 0 (zero) indicates that it is off.

CHOP MOTOR

The 450 Hz chop wheel is controlled and monitored by means of the chop motor family

of commands. The chop wheel is turned on or off by the chop motor state setting

command, where setting can be set to on or off. chop motor read state reads the chop

wheel status, returning the value 1 if the chop wheel motor is on, and 0 if it is off.

To read the chop wheel’s angular speed in revolutions per minute (RPM) IRMA

counts the number of interrupt pulses from the chop wheel over a selected period of time.

Consequently, one cannot simultaneously perform a data collection scan and measure chop

wheel angular speed. To perform a measurement, one turns the chop wheel on, then issues

the command chop motor state measure rpm on. The next step is to wait for a period

of time, using the wait seconds command. The longer the time spent in angular speed

measurement mode, the more accurate the average angular speed value will be. Wait

periods ranging between 30 and 60 seconds provide adequate results. After the wait period

has passed, one takes IRMA out of measurement mode with the command chop motor

state measure rpm off, then reads the resulting value with the command chop motor

read rpm.

RTC

Current time on the MC’s RTC is read with the command rtc read date time. Returned

is a colon-delimited string containing the current date time: year : month : day : hour

: minute : second . As an example, February 12, 2005, at 3:37:49 PM would be returned

as 2005:2:12:15:37:49. Months range from 1 to 12, days range from 1 to 31, hours range

Section A.3: IRMAscript Language Definition 123

from 0 to 23, and minutes and seconds range from 0 to 59.

Current time can be read using the rtc read epoch time command. This com-

mand is convenient for timing events within an IRMA script, as it returns a 32-bit unsigned

integer number representing the current time as the number of elapsed seconds since mid-

night of January 1, 1980.

User-defined date-time can be set using the the command rtc set arbitrary time

ISOtimeString . An ISO formatted date time string has the following format: YYYY -

MM -DDThh :mm :ss, where YYYY is a four-digit year, MM is month (1 - 12), DD is

day-of-month (1-31), hh is hour (24-hour format), mm is minute, and ss is second. The

punctuation contained in this format (the T and dashes -) must be left as shown.

The second method of setting date-time, using the GPS receiver, requires that

the serial channel to the GPS board be opened. Not doing so will result in the call to set

the RTC to timeout and fail. Once the serial channel has been opened, the command rtc

set date time will read the current date time from the GPS receiver, convert it to 1980

epoch format, and write it to the RTC. The GPS emits a time synchronization signal every

second. Date-time is written to the RTC as soon as this time synch signal goes high. One

concludes the RTC setting session by closing the serial channel to the GPS.

GPS

The GPS family of commands involves the reading of time-date and location information

from the IRMA MC’s GPS receiver board. The GPS is interfaced to the MC by means

of a 4800 bps serial channel. Consequently, all commands to the GPS must be preceded

by issuing the command to open the GPS serial channel: gps serial open. After the

transaction with the GPS has been completed, the GPS serial channel should be closed

Section A.3: IRMAscript Language Definition 124

using gps serial close.

Datetime is read from the GPS receiver using the command gps read date time.

The data returned is contained in a colon-delimited string: year : month : day : hour

: minute : second . Epoch time, returned in 1980 epoch format, is read by calling gps

read epoch time. Latitude-longitude data is read with the command gps read lat lon.

Data is returned as a colon-delimited string.

IRMA

This family of commands is used to perform system-level activities on the IRMA system

as a whole. The statement irma state off forces the IRMA MC software to reboot. The

statement irma read uptime returns the number of elapsed seconds since the IRMA MC

was powered up or last rebooted. The value returned by this command is represented in

floating-point seconds.

SUN SENSOR

The solenoid-controlled shutter protecting the filter and IR detector can be controlled by

the software using the sun sensor commands. The state of the sun shutter is read using

sun sensor read shutter state. A return value of 0 indicates that the shutter is closed

(covering the filter and detector), while a value of 1 indicates the shutter is open. A photo

cell coupled with discrete logic automatically closes the sun shutter when IRMA’s line of

sight comes within ± 15◦ of the sun (or any bright light source), is read using the command

sun sensor read state. A return value of 1 indicates that the sun sensor is detecting a

bright light source in its line of sight. A value of zero indicates the opposite.

CRYO

The Stirling engine (cryo cooler) that cools the IR detector is controlled by the cryo family

Section A.3: IRMAscript Language Definition 125

of commands. Before attempting to send commands to the cyro cooler, the serial com-

munication channel to the cooler must be opened with the command cryo serial open.

Likewise, the channel is closed with the command cryo serial close.

cryo read comp amp
Returns the compressor amplitude value as a floating point value.

cryo read set point
Returns the cryo cooler’s set point temperature in Kelvin. The return value is
a floating point number.

cryo read mode
Returns an integer code representing the operational mode of the cryo cooler
controller.

cryo read curr temp
Returns the current temperature in Kelvin of the cryo cooler’s cold finger. The
return value is a floating point number.

cryo read osc freq
Returns the cryo cooler’s oscillation frequency, which is the frequency of the
piston inside the cold finger. The oscillation frequency is expressed in cycles per
second (Hz).

cryo set manual mode
This command sets the cryo cooler into manual mode, which powers the cryo
cooler down.

cryo set set point temperature
This command sets the desired temperature of the cryo cooler’s cold finger.
This command will successfully execute only when the cryo cooler is in man-
ual mode.

cryo set auto mode
The cryo cooler begins to cool when this command is received. Cooling is a
gradual process, taking roughly 30 minutes according to the cryo cooler con-
troller’s internal configuration settings. When target set point temperature is
reached, the controller will maintain this temperature as long as it is in auto
mode.

ADC

Control of the Cirrus CS5534 Delta-Sigma ADC is handled by the adc family of commands.

Before A/D conversions can be performed, the ADC must be first initialized using the

Section A.3: IRMAscript Language Definition 126

resynch command, adc init resynch, then reset using the reset command, adc init

resynch. The last step involves configuring each of the ADC’s four channels with the

command: adc set csr arguments. The following list describes each of the CS5534

IRMAscript functions in depth.

adc init resynch
Calling this command puts the ADC’s serial port into a known state. When
using the ADC for the first time, it is recommended that this command be called
in order to ensure that the ADC will successfully accept serial commands. At
low level, this command serially writes 15 bytes of the value 0xFF, followed by
1 single byte valued 0xFE.

adc init reset
This command resets the ADC and sets its fundamental parameters. At low
level, the reset command sets the RS bit in the CS5534’s configuration register,
which has the effect of forcing a system reset.

adc set offset channel value
Set offset command allows the user to configure each of the CS5534’s four input
channels’ offset registers. Channels 1 through 4 can be specified, while the value
field can accept offset values ranging between −223 and 224. The offset value
represents the fraction of the input span that must be applied to the output
value of the ADC to shift it up or down. Offset values must be defined in ADC
units. For example, an offset of 255 refers to a positive offset of 255/224 of the
ADC ’s input span. ADC channels configured for taking unipolar samples have
an input span of 224, while channels configured for bipolar mode have an input
span of 223 [38]. The CS5534’s default offset setting is 0.

adc set gain channel value
Similar to the set offset command, set gain allows the user to manually set a
gain value, ranging from 64 to 2−24, to channels 1 through 4. When a channel’s
gain register is set, the offset is subtracted from the A/D sample value, after
which this result is multiplied with the gain value. IRMA currently does not use
custom gain settings. Instead, gain and offset are applied to the data in post
processing. The CS5534’s default gain value is 1.

adc read gain channel
adc read offset channel
These two commands read the current gain and offset values from the CS5534
ADC.

adc set csr channel gain word-rate polarity
Each of the CS5534’s four input channels can be configured in terms of signal
gain, accuracy (word rate) and input span (polarity). Channel settings are

Section A.3: IRMAscript Language Definition 127

stored in the CS5534’s four channel setup registers (CSR). Gain as defined in the
CSR is separate from the gain contained in the channel gain registers described
earlier. Gain values can be defined with the IRMAscript constants or their
respective numeric values, as shown in Table A.2.

Table A.2: CS5534 ADC gain settings in IRMAscript.

Gain Value

CS5534 GAIN 1 1

CS5534 GAIN 2 2

CS5534 GAIN 4 4

CS5534 GAIN 8 8

CS5534 GAIN 16 16

CS5534 GAIN 32 32

CS5534 GAIN 64 64

Resolution refers to the number of noise free bits contained in the A/D sample
value. The longer the ADC integrates the analog signal, the greater the accu-
racy (or resolution) of the digitized sample. Table A.3 lists the different sample
resolutions in terms of noise-free resolution bits, integration time (in millisec-
onds), and word-rate. Input span of digitization can be either unipolar, where
A/D values contain values ranging from 0 to 224 - 1, or bipolar, which allow
signed values ranging from −223 to 223 -1. Table A.4 lists constants and their
respective numeric values that can be applied to the polarity field.

Table A.3: CS5534 ADC sample resolution settings in IRMAscript.

.

Resolution Bits Integration ms Word rate

CS5534 RES 23 23 CS5534 INTEG 538 538 7

CS5534 RES 22 SLOW 22 CS5534 INTEG 269 269 15

CS5534 RES 22 FAST 22 CS5534 INTEG 136 136 30

CS5534 RES 21 SLOW 21 CS5534 INTEG 69 69 60

CS5534 RES 21 FAST 21 CS5534 INTEG 35 35 120

CS5534 RES 18 18 CS5534 INTEG 19 18.2 240

CS5534 RES 17 SLOW 17 CS5534 INTEG 10 9.9 480

CS5534 RES 17 FAST 17 CS5534 INTEG 6 5.7 960

CS5534 RES 16 16 CS5534 INTEG 4 3.6 1920

CS5534 RES 13 13 CS5534 INTEG 2 1.5 3840

adc read csr channel
The contents of each of the CSR channels can be read using this command. A
colon-delimited string having the following format is returned:

channel : gain : word-rate : polarity

Section A.3: IRMAscript Language Definition 128

Table A.4: CS5534 ADC polarity settings in IRMAscript.

.

Polarity Value

CS5534 UNIPOLAR 1

CS5534 BIPOLAR 2

adc init rw test
Primarily used for troubleshooting and verification, the read-write test command
tests the ADC to ensure that the IRMA software can communicate with it. An
arbitrary value is written to one of the CS5534’s offset registers, then that value
is read back from the offset register. If the two values are identical, the test is
deemed a success, and a value of 1 is returned. A failed read-write test returns a
0 (zero). This command should be followed with an ADC system reset in order
to clear the dummy value in the offset register.

adc sample sample type channel
This command initiates an A/D sample on a given ADC channel. The re-
turned value is given in ADC units, thus it must be interpreted according to
the channel’s polarity setting: bipolar or unipolar. Two types of samples can be
taken: those synchronized to the 450 Hz chop wheel, specified with the on int
parameter, or samples not synchronized to the chop wheel, specified with the
no int parameter. When the on int parameter is specified, the A/D sample
commences when the chop wheel signal reports a logic level of 1. The channel
parameter is mapped to 19 separate channels (only 11 channels are present in
the older Rabbit based implementation).

SCAN

The scanning process involves repeatedly sampling the IR signal and temperature / pressure

/ humidity channels at some interval. Scanning differs from reading an ADC channel directly

in that the A/D sampling process is contained separate real-time task, and uploads the data

to a separate network port on the IRMA CP. This allows the MC to service other commands

while the data collection process is executing, such as moving the Alt-Az mount, or querying

the status of the cryo cooler. The Alt-Az serial communications channel must be opened

Section A.3: IRMAscript Language Definition 129

before executing the scan command. Additionally, it is vital that the Alt-Az channel be

left open for the duration of the scan. Closing the channel during a scan will lead to scan

failure, which results in the scan terminating itself.

scan read status
Returns the value 1 if a scan is currently executing on the MC, otherwise the
value 0 is returned.

scan signal on int
Forks the data collection process task, where the IR signal is sampled on the
positive edge of the notch notch interrupt signal. Temperature, pressure and
humidity channels are each sampled following one IR signal sample in a round-
robin fashion.

scan signal no int
IR signal, temperature, pressure and humidity are sampled, but the IR signal
A/D conversion is not synchronized to the notch interrupt.

ALTAZ

Movement and control of the altitude and azimuth axes is handled by the altaz family of

commands. Given that the AAC is connected to the MC over a serial communications link,

the AAC-MC serial connection must be opened before any altaz command can be sent.

Failing to open the serial port when sending AAC commands produces subtle errors that

are hard to track down. Each of the altaz command groups will be examined in detail.

Commands destined for the AAC are sent over the MC/AAC serial link using the

serial packet communications protocol.

altaz serial open
altaz serial close
These commands respectively open and close the serial channel from the MC to
the AAC.

altaz init altaz
Once the Alt-Az serial channel has been opened, the first command that should
be sent to the AAC is the init altaz command. This command has the effect
of initializing the AAC’s two-channel optical encoder chip that is responsible
for digitizing axis encoder positions. Upon initializing the optical encoder chip,
altitude and azimuth axis positions are set to 90,000 encoder units. There are
8192 encoder units in one revolution.

Section A.3: IRMAscript Language Definition 130

altaz init axes axis
Upon using the AAC for the first time, or where re-initialization is required, the
axes should be sent to their default positions. The init axes command performs
a homing operation, whereby it determines the clockwise and counter-clockwise
optical limits on both axes. When axis homing has completed, altitude and
azimuth positions are set to position 0 (in encoder units). The axis parameter
can be defined in three ways: altitude, elevation , or azimuth .

altaz init motor
The gearboxes and motor controllers used in the IRMA AAC differ from unit to
unit. In order to deal with these variations, gear ratios, motor RPM values, and
other configuration information unique to the given IRMA unit is contained in a
configuration file. By issuing this command, the CP uploads motor configuration
information, stored in the particular IRMA unit’s configuration file, into the
AAC. Without this information, the AAC cannot calculate motor speeds or
slewing times. Therefore, it is vital that init motor be called before any axis
movement is attempted.

altaz init servo
The AAC uses a servo loop, based on proportional-integral-derivative (PID)
motion control algorithm, to control axis movement. The PID servo control
algorithm has three constants, P, I and D, which are unique to each Alt-Az
mount. The init servo command loads the PID constants for the altitude
and azimuth axes into the AAC. If the servo-controlled movement move to
command is going to be used, servo parameters must be loaded into the AAC
beforehand. The slew to non-servo movement command does not require servo
parameters to be set. The command init servo may be called while the AAC
is idle (not moving) as many times as required, which is particularly helpful if
the user is “tuning” the servo algorithm.

altaz init ping
The Alt-Az ping command is used to check if the AAC is on-line, ready to
receive commands. If the AAC is alive and on-line, it returns a three-field,
colon delimited string of the form:

987654321 : 123456789 : uptime

If the AAC is not on-line or unresponsive, the three fields will contain the code
999999999. The Uptime field indicates the number of elapsed CPU ticks since
the IRMA MC was booted. Each CPU tick is 1/64 seconds, therefore to convert
this value to elapsed seconds, divide it by 64. Uptime can also be read using
the command altaz read uptime.

altaz set alt offset offset value
altaz set az offset offset value
The set offset commands are provided in order to allow the user to define vir-
tual fiducial points, thus avoiding the necessity of physically orienting IRMA’s

Section A.3: IRMAscript Language Definition 131

fiducial (the axis limits) to external physical references, such as zenith for el-
evation, or North for azimuth. By providing an offset value defined in optical
encoder units, IRMA’s AAC calculates all axis moves relative to the offset po-
sition instead of the default physical limit. Axis offsets is the angle between the
physical limit and the position where the physical reference is determined to be.
The default offset value for both axes is zero.

altaz state poslog action
AAC position logging is controlled using this command. Three separate activ-
ities can be performed: log initialization, log enabling and log disabling. Upon
AAC start-up, the position log is allocated, zero-filled, and its index pointer
is pointed to the first element in the position log array. This action should
be explicitly called before using the position log by using the log clear con-
stant in the action parameter. One begins logging an axis movement by calling
this command using the log enable constant. Logging is stopped by using the
log disable constant.

altaz state halt
Stop movement immediately in both axis.

altaz state reboot
Perform a soft reset (or reboot) of the AAC software running on the Alt-Az
controller. The master controller software is not affected.

altaz move to axis alt d alt m alt s az d az m az s speed
Servo-controlled movements, which track a theoretical velocity versus position
profile, are performed using the move to command. Three parameters must
be provided: the axis to be moved, the destination angle, and the axis rota-
tion speed, specified in degrees per second. Options available for axis include:
altitude, azimuth, and dualaxis.

The destination angle is defined in degree-minute-second format, where altitude
degrees, minutes and seconds occupy fields 4, 5 and 6 respectively (assuming
field 1 refers to the ”altaz” symbol). For single-axis movement, altitude or
azimuth destinations should be written to fields 4, 5 and 6, while fields 7, 8 and
9 should be zero-filled. For dual-axis movements, altitude should occupy fields
4, 5 and 6, and azimuth should occupy fields 7, 8 and 9. Field 10 is populated
with the desired axis speed. In the case of dual-axis movement, the speed refers
to the diagonal speed between the two moving axis, or rather, the speed required
for both axes to meet at the final altitude/azimuth coordinate.

Since this is a servo-controlled move command, movements are continuous, and
are consequently limited to the speed options provided by the given Alt-Az
mount’s gearing. The slowest speed possible with this command occurs when
the axis motor is driven at 0 volts, which corresponds to 500 motor RPM. The
axis will rotate considerably slower than the minimum motor RPM, due to the
motor’s gear box and drive belt. Be aware that it is impossible to perform
movements slower than the minimum motor RPM. For performing movements
slower than the minimum achievable speed, there is the slew to command.

Section A.3: IRMAscript Language Definition 132

altaz slew to dms axis alt d alt m alt s az h az m az s speed
Usage of the slew to command is identical to move to. What differs is the
range of speeds available, and the fact that movement is not servo controlled.
When a speed less than the minimum achievable speed is selected, slew to goes
into stepping mode, where the given slew path is broken up into sub-degree, one
encoder unit steps. The axis (or axes) rotate for the duration calculated from
the slew path length and the requested speed.

Mention should be made about the relationship between offset angles and axis
moves. Offset angles for each axis are measured from the counterclockwise limit
switch in the clockwise direction. The AAC rotates to the requested angle,
to which is added the currently defined offset angle. The offset angle should
be considered as zero degrees. Altitude angles less than the offset angle are
reported as negative angles, while azimuth angles less than the offset wrap at
360 degrees, because the azimuth axis has the ability to rotate a full 360 degrees.

Full rotational movement allows for the possibility of destination angles that lie
beyond the far (clockwise) limit. In such cases, the AAC rotates the azimuth
axis in the opposite direction to the target angle lying beyond the far limit.
In the case of low-speed, small-distance movements that result in destinations
crossing the rotational limit, the AAC drives the axis to the destination angle
in the opposite direction at high speed in order to eliminate the annoyance of
slewing nearly 360 degrees as low speed.

altaz read position
This command returns a three-value colon-delimited string containing altitude
and azimuth values respectively. The third field contains scan status: 1 when a
scan is executing, and 0 when no scan is running.

altitude : azimuth : scan status

read position is the most common query request to the AAC because during
scans, the MC requests axis positions for each data point collected.

altaz read task status
In order to remain responsive to incoming commands, the AAC executes axis
movements separate from the main dispatcher task. read task status allows
external processes, such as an executing IRMA script, to check up on an ongoing
AAC movement, and determine when the operation has completed. Task status
is returned as one of three codes: code 0 indicates there is no axis movement
task operating, while code 2 indicates a task is executing. Code 1 is returned
when the AAC is dispatching a long-duration job to one of its available tasks.
It is rare that this code would be encountered, and should be considered simply
as a running task.

altaz read alt offset
altaz read az offset
These two commands respectively return the currently defined altitude and az-
imuth offset values in optical encoder units. There are 8192 units per revolution.

Section A.3: IRMAscript Language Definition 133

altaz read poslog state
The poslog commands are used primarily for Alt-Az servo tuning. They allow
the user to collect axis motion data necessary for tuning the AAC’s PID servo
control loop. The read poslog state command returns the current operation
mode of the position log, the table in the AAC that is used to store servo and
position data. Three states can be reported: code 1 indicates the position log
is enabled. Code 0 indicates the position log is disabled. Code 2 is returned
if the position log was not initialized during AAC start-up. This can happen
if an extended memory allocation failure occurred on board the AAC Rabbit
processor.

altaz read poslog range
Calling this command returns the dimensions of the position log, a memory array
aboard the AAC containing position and servo data. A four field colon-delimited
string is returned:

min array index : max array index : curr array index : NULL

The range of data readable from the AAC’s position log is found between the
minimum array index and the current array index inclusive. Reading values
beyond the maximum array index will result in a memory read error on the
AAC.

altaz read poslog data index
Given some index value, this command returns the position log entry at that
index. A four field, colon-delimited array is returned:

DAC val : rel pos : theor pos : error val

DAC val contains the 8-bit unsigned integer that is written to the AAC’s DAC,
which in turn controls axis speed. Rel pos refers to the actual position of the
axis relative to its start position, and is given in optical encoder units. Theor
pos is the calculated theoretical axis position, also given in optical encoder
units. It is this theoretical displacement path that the PID servo must track.
The last field, error val, contains the PID algorithm error value. All four data
are necessary in the servo tuning process.

134

Appendix B

AltAz Commands

Table B.1 contains a list of the command codes and their respective aliases used

in communication between the IRMA Master Controller and the Alt-Az Controller.
Code Alias

1 ALTAZ READ CURRENT POSITION

2 ALTAZ MOVETO

3 ALTAZ HALT

5 ALTAZ PING

6 ALTAZ SET ALT OFFSET

7 ALTAZ SET AZ OFFSET

8 ALTAZ SET RTC

9 ALTAZ SLEW STATUS

10 ALTAZ MOVE AXIS

11 ALTAZ INIT

12 ALTAZ INIT AXES

13 ALTAZ INIT SERVO ELEV

14 ALTAZ INIT SERVO AZIM

15 ALTAZ INIT MOTOR

16 ALTAZ SLEWTO

17 ALTAZ RD POSLOG RANGE

18 ALTAZ RD POSLOG DATA

19 ALTAZ INIT POSLOG

20 ALTAZ POSLOG STATE

21 ALTAZ REBOOT

22 ALTAZ READ ALT OFFSET

23 ALTAZ READ AZ OFFSET
Table B.1: IRMA AAC command codes sent over MC AAC serial link.

135

Appendix C

Configuration and Installation

C.1 CP configuration file options

A complete list and description of parameters that can be defined in a CP config-

uration file is given below.

Data Port
The TCP/IP socket port that is used by the MC to send scan data to.

Antenna
The identification number of the antenna that the given IRMA unit is associated
with. This parameter is not always used.

ElevGearReduction
The gear reduction ratio of the gear box driving the elevation axis.

AzimGearReduction
The gear reduction ratio of the gear box driving the azimuth axis.

BeltReduction
The gear reduction ratio caused by the drive belt. The total gear reduction ratio
of a given gear is the sum of its gear box reduction ratio and the belt reduction
ratio.

MaxMotorRPM
This is the vendor-specified maximum motor rotational rate, generated when
full scale voltage is applied to the motor controller unit.

MinMotorRPM
This is the vendor-specified minimum motor rotational rate, generated when
zero volts is applied to the motor controller unit.

Section C.2: Perl Module Installation 136

MaxGearRPM
The maximum recommended rotational rate of the gear head (not the motor).
This value is provided by the motor vendor.

elev kProp, elev kInteg, elev kDeriv
Servo constants for the elevation axis motor. The three constants refer to the
proportional, integration and derivative constants (PID), which must be deter-
mined by the user by tuning the servo algorithm.

azim kProp, azim kInteg, azim kDeriv
Servo constants for the azimuth axis motor. The three constants refer to the
proportional, integration and derivative (PID) constants, which must be deter-
mined by the user by tuning the servo algorithm.

Location
This refers to the name of the site where this given IRMA unit is located.

Cooler
The model number of the cryo cooler associated with this given IRMA unit

Board
An ID number which identifies the IRMA motherboard associated with this
given IRMA unit.

CalibrateLow
This is the ADC count when the IR channel measures the unpowered shutter
blackbody calibration source (cold). Calibration of the calibration target in hot
and cold states (powered and unpowered) relates the IR measurement with a
temperature reading from the same target.

CalibrateHigh
This is the ADC count when the IR channel measures the powered-up (hot)
shutter calibration source. See the description of CalibrateLow for calibration
details.

C.2 Perl Module Installation

Additional Perl modules must be installed for the IRMA software to run properly.

Perl modules can be installed using the Comprehensive Perl Archive Network (CPAN) using

the following command

sudo perl -MCPAN -e shell

This will bring up a cpan> prompt. At this prompt, simply enter the command

cpan> install <module_name>

Section C.2: Perl Module Installation 137

To install custom IRMA modules, the files simply need to be copied into the

~/IRMA/IRMA/ directory.

C.2.1 System Software Perl Modules

The following modules must be installed on the PC/104 for the system software

to operate properly.

IO::Handle

IO::Socket

Net::Ping

Socket::IO

SpreadSheet::ParseExcel

Time::Local

Time::Piece

IRMA::CCIT16_CRC

IRMA::commander

IRMA::packetComm

C.2.2 Control and Visualisation Software Perl Modules

Time::Piece;

Time::Seconds;

List::Util qw{max min};

Tk;

Tk::Balloon;

Math::Round qw(:all);

Math::Trig;

Expect;

IRMA::Data;

IRMA::scripter;

IRMA::queue;

IRMA::BoxInfo;

IRMA::gui_graph;

Section C.3: Sample Daily Tasks File 138

C.3 Sample Daily Tasks File

Shown below is a typical daily tasks file, which monitors the status of the unit

every 10 minutes, and performs a calibration routine every two hours.

| 1 accuracy allowance function id label repeat reptime time

At|5|script status_check.irma|5699|status|1|00:10:00|00:04:00

At|5|script shutterOpen.irma|5700|shutterOpen|1|02:00:00|00:40:00

At|5|script shutterClose.irma|5703|shutterClose|1|02:00:00|00:00:00

At|5|script bbOn.irma|5704|bbOn|1|02:00:00|00:10:00

At|5|script bbOff.irma|5706|bbOff|1|02:00:00|00:41:00

C.4 AutoTasks.conf

Shown is a typical autoTasks.conf file. It must be located in the ~/IRMA/Config/

directory.

daily_tasks on 1

daily_tasks delay 30

daily_tasks boxes 1

daily_tasks unkhumidrun 1

skymap on 0

skymap delay 20

skymap boxes 1

skymap unkhumidrun 1

humidity on 1

humidity humid 70

humidity delay 60

humidity boxes 1

cooler on 1

cooler comp_amp 1

cooler temp 1

cooler delay 30

cooler boxes 1

cooler osc_freq 0

139

References

[1] Graeme J. Smith. An Infrared Radiometer For Millimeter Astronomy. MSc thesis,
University of Lethbridge, Lethbridge, AB (2000).

[2] Ian M. Chapman and David A. Naylor. Fourier Transform Spectroscopy/ Hyperspectral
Imaging and Sounding of the Environment. In (edited by editor). Technical Digest
(CD), paper HTuD2, OSA (2005).

[3] “Infrared Windows.” Infrared Processing and Analysis Center. URL
http://www.ipac.caltech.edu/Outreach/Edu/Windows/irwindows.html.

[4] O. P Lay. “MMA Memo 209: 183 GHz Radiometric Phase Cor-
rection for the Millimeter Array.” ALMA Memos (1998). URL
www.alma.nrao.edu/memos/html-memos/abstracts/abs209.html.

[5] M. C. Wiedner and R. E. Hills. Imaging at Radio through Submillimeter Wavelengths.
In Mangum, J. G. and Radford, S. J. E. (edited by editor), 217:327–+ (2000).

[6] S.J.E. Radford and R.A. Chamberlin. “MMA Memo 334: Atmospheric Transparency
at 225 GHz over Chajnantor, Mauna Kea, and the South Pole.” ALMA Memos (2000).
URL www.alma.nrao.edu/memos/html-memos/abstracts/abs334.html.

[7] J. Duan, M. Bevis, P. Fang, Y. Bock, S. Chiswell, S. Businger, C. Rocken, F. Solheim,
T. van Hove, R. Ware, S. McClusky, T. A. Herring, and R. W. King. “GPS Meteo-
rology: Direct Estimation of the Absolute Value of Precipitable Water.” Journal of
Applied Meteorology, 35:830–838 (1996).

[8] D. A. Naylor, I. M. Chapman, and B. G. Gom. Proc. SPIE Vol. 4815, p. 36-45,
Atmospheric Radiation Measurements and Applications in Climate,. In Shaw, J. A.
(edited by editor), 4815:36–45 (2002).

[9] “Blue Sky Transmittance and Radiance Atmospheric Model.” Product in-
formation from Blue Sky Spectroscopy, Lethbridge, AB, Canada. URL
http://www.blueskyinc.ca/.

[10] H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, and L. S.
Rothman. “FASCODE: Fast Atmospheric Signature Code (Spectral Transmittance and
Radiance).” Technical Report AFGL-TR-78-0081, Air Force Geophysics Laboratory,
Hanscom AFB, Massachusetts, U.S.A. (1978).

References 140

[11] L.S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L.R. Brown, M.R.
Carleer, Jr., C. Chackerian, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M.
Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y.
Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson,
R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner. “The HI-
TRAN 2004 molecular spectroscopic database.” Journal of Quantitative Spectroscopy
and Radiative Transfer, 96(2):139–204 (2005).

[12] D. A. Naylor, R. T. Boreiko, T. A. Clark, R. J. Emery, B. Fitton, and M. F. Kessler.
“Atmospheric emission in the 20-micron window from Mauna Kea.” Publications of
the Astronomical Society of the Pacific, 96:167–173 (1984).

[13] Richard Querel. IRMA As A Site Testing Instrument. MSc thesis, University of
Lethbridge, Lethbridge, AB (2007).

[14] MCT infrared detector #KMPC19-1-SP, Kolmar Technologies, Inc. URL
http://www.kolmartech.com.

[15] C. Lee, P. A. R. Ade, and C. V. Haynes. “Self Supporting Filters for Compact Focal
Plane Designs.” ESA SP-388, p. 81 (1996).

[16] Robin R. Phillips, Vic Haynes, David A. Naylor, and Peter Ade. “Simple method for
antireflection coating ZnSe in the 20 µm wavelength range.” Appl. Opt., 47(7):870–873
(2008). URL http://ao.osa.org/abstract.cfm?URI=ao-47-7-870.

[17] Rabbit Semiconductor, Inc., Davis, CA. RCM2100 RabbitCore Data Sheet (2005).
URL www.rabbitsemiconductor.com/products/rcm2100/rcm2100.pdf.

[18] WinSystems, Inc. 715 Stadium Drive, Arlington, Texas, 76011, USA. URL
http://www.winsystems.com/.

[19] Diamond Systems Corporation. Emerald-MM-DIO Quad RS-232 + 48 Digital I/O
PC/104 Users Manual. Newark, CA (2002). URL www.diamondsystems.com.

[20] Honeywell Hymatic, Redditch, Worcestershire, UK. URL
http://www.hymatic.co.uk/.

[21] Rabbit Semiconductor, Inc., Davis, CA. RCM2000 RabbitCore Data Sheet (2005).
URL www.rabbitsemiconductor.com/products/rcm2000/rcm2000.pdf.

[22] US Digital Corporation, Vancouver, WA. E6 Optical Kit Encoder (2005). URL
www.usdigital.com/data-sheets/E6 Data Sheet.pdf.

[23] US Digital Corporation, Vancouver, WA. LS7266R1 Encoder to Microprocessor Inter-
face Chip (2004). URL www.usdigital.com/products/ls7266/.

[24] Ian Sean Schofield. The IRMA III Control and Communication System. MSc thesis,
University of Lethbridge, Lethbridge, AB (2005).

[25] SHDesigns Download Managers, SHDesigns. URL
http://shdesigns.org/rabbit/download.shtml.

References 141

[26] Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl. 3rd edition.
O’Reilly Media, Inc.: Sebastopol, CA, U.S.A (2000).

[27] European Space Agency. “Packet Telecommand Standard.” PSS-04-017 Issue 2 (1992).

[28] Z World, Inc., Davis, California. MicroC/OS-II User’s Manual (2003). URL
www.zworld.com/documentation/docs/manuals/DC/DCModules/ModUcos.pdf.

[29] Z World, Inc., Davis, California. Dynamic C User’s Manual (2004). URL
www.zworld.com/documentation/docs/manuals/DC/DCUserManual/DCPUM.pdf.

[30] crontab, The Open Group Base Specifications Issue 6,IEEE Std 1003.1, (2004). URL
http://www.opengroup.org/onlinepubs/009695399/utilities/crontab.html.

[31] Andrew Tridgell. “Rsync, remote file syncronization system.” URL
http://rsync.samba.org.

[32] International Organization for Standardization. ISO 8601:2004. Data elements and
interchange formats — Information interchange — Representation of dates and times.
International Organization for Standardization: Geneva, Switzerland (2004). URL
http://www.iso.ch/cate/d26780.html.

[33] Ian Myles Chapman. The Atmosphere Above Mauna Kea At Mid-Infrared Wavelengths.
MSc thesis, University of Lethbridge, Lethbridge, AB (2003).

[34] Lake Shore Cryotronics, Inc. 575 McCorkle Blvd, Westerville, Ohio, 43082, U.S.A.
URL http://www.lakeshore.com/.

[35] Data Translation, Inc., Marlboro, MA. DT9800 Series User’s Manual (2007). URL
ftp://ftp.datx.com/Public/DataAcq/DT9800Series/Manuals/um9800.pdf.

[36] Regan Dahl, Richard Querel, and Matthias Schöck. Proc. IR, THz and MMW Appli-
cations in Astronomy, Atmospheric and Environmental Science. In (edited by editor)
(2007).

[37] G. R. Davis, D. A. Naylor, M. J. Griffin, T. A. Clark, and W. S. Holland. “Broadband
Submillimeter Spectroscopy of HCN, NH 3, and PH 3 in the Troposphere of Jupiter.”
Icarus, 130:387–403 (1997).

[38] Cirrus Logic, Inc., Austin, Texas. CS5531/32/33/34 Product Data Sheet (2004). URL
www.cirrus.com/en/pubs/proDatasheet/CS5531323334 F1.pdf.

