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Abstract
The usefulness and the utility of the next generation sequencing (NGS) technology are

based on the assumption that the DNA or cDNA cleavage required to generate short

sequence reads is random. Several previous reports suggest the existence of sequencing

bias of NGS reads. To address this question in greater detail, we analyze NGS data from

four organisms with different GC content, Plasmodium falciparum (19.39%), Arabidopsis
thaliana (36.03%), Homo sapiens (40.91%) and Streptomyces coelicolor (72.00%). Using

machine learning techniques, we recognize the pattern that the NGS read start is positioned

in the local region where the nucleotide distribution is dissimilar from the global nucleotide

distribution. We also demonstrate that the mono-nucleotide distribution underestimates

sequencing bias, and the recognized pattern is explained largely by the distribution of multi-

nucleotides (di-, tri-, and tetra- nucleotides) rather than mono-nucleotides. This implies that

the correction of sequencing bias needs to be performed on the basis of the multi-nucleotide

distribution. Providing companion software to quantify the effect of the recognized pattern

on read positioning, we exemplify that the bias correction based on the mono-nucleotide

distribution may not be sufficient to clean sequencing bias.

Introduction
NGS is the most popular high-throughput sequencing technology in biological and medical
research. DNA or cDNA fragment reads are mapped to a reference genome and the read
enrichment is measured for experiments such as genome sequencing and transcriptome profil-
ing [1,2]. The technology assumes that the DNA or cDNA cleavage is random and so the read
start position is independent of the genomic sequence [3]. It therefore allows to use the number
of reads mapping to certain regions of the genome as a quantitative measurement. Number of
different techniques is used to reduce the size of DNA or cDNA molecules to accommodate
them for sequencing that generate short reads. Shearing methods include physical methods,
such as acoustic shearing, sonication and nebulization, chemical methods, such as use of high
temperature and divalent metal cations, and enzymatic methods that include the use of restric-
tion endonucleases or transposases. If, however, there is a bias in the pattern of DNA shearing
that is dependent on certain DNA sequence context as well as the type of shearing used (or
combination of sequence context and shearing method used), this bias may alter quantification
of the results generated by NGS.
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Previous reports indeed suggest that the sequencing bias around the read start position
exists. Dohm et al. analyzed the sequences and number of the reads starting in a 1 kbp sliding
window on the reference genome and found the positive correlation between the read fre-
quency and the GC content [4]. Regions with elevated GC content contained increased number
of reads, namely, windows with a GC content of 40% had almost twice as many reads as win-
dows with 30% GC. In addition, analysis of sequencing errors in a particular sequence context
revealed G nucleotide being the most frequent base immediately preceding erroneous base.
Schwartz et al. examined the first twenty positions of all reads mapped to the reference genome
and noticed the nucleotide biases at the beginning of reads, with more prominent bias observed
in mRNA-seq (cDNA-seq) as compared to ChIP-seq (DNA-seq) data [5]. Benjamini et al.
stratified the randomly sampled positions on the basis of the GC count in a sliding window,
counted the number of read starts in the sampled locations, and derived the GC curve by esti-
mating the mean read rates for each stratum [6]. They obtained the unimodal GC curve on
which the read frequency increases with increasing GC in the low GC regions and the read fre-
quency decreases with increasing GC in the high GC regions [6]. In addition, Poptsova et al.
calculated the ratio between the numbers of nucleotides at the read start positions normalized
by the average frequencies of the nucleotides in the ranges of -10 to -20 and +10 to +20 bp posi-
tions around the read start position, and observed the biases of nucleotides around the read
start position [3].

Since the sequencing bias causes the improper under- or over-enrichment of reads over
genomic regions, it may hamper the research effort leading to generation of false or misinter-
preted data. Therefore it is demanded that the source of the sequencing bias is identified and
its negative effect is reduced. It is therefore important that the pattern that decides the depen-
dence between the read position and the genomic sequence is recognized. Previous work
reports vague GC bias without specifying the magnitude to which the bias affects sequencing,
and accomplishes the bias correction on the basis of G and C counts which may not be suffi-
cient to clean sequencing bias [3–6].

We systemically recognize the pattern on read positioning and analyze its influence, using
machine learning techniques. We define the classification problem to identify whether the read
start exists or not at a given genomic position, and generate new features from sequences
around read start positions over various read frequencies. Then we recognize the pattern that
the NGS read start is positioned in the local region where the nucleotide distribution is dissimi-
lar from the global nucleotide distribution, and quantify the effect of the recognized pattern on
read positioning.

Methods

Illumina Sequencing data
Illumina NGS data of Arabidopsis thaliana, Plasmodium falciparum, Human, and Streptomyces
coelicolor which contain various GC contents were downloaded (see Table 1). Also their refer-
ence genomes used for the specific data sets were downloaded from the data repositories indi-
cated in the references. The raw sequencing file of Streptomyces coelicolor was mapped to the
reference genome by Tophat with the option "-g 1" for no multiple alignment [7]. For data sets
other than Streptomyces coelicolor, the downloaded bam files were used.

Sequence data pools
Genomic positions were randomly selected and the frequencies of reads starting at the selected
positions were extracted from data sets of four organisms mentioned above (see Table 2). Then
data pools were created for each organism by using the reference sequence in the range of
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+/-20 bp from the selected positions as feature values and the frequency of reads starting at the
selected position as target values (see Fig 1). Therefore, each data pool consists of 41 features, 1
target, and instances as many as the number of the selected positions. Note that the values of
the first, 21st, and 41st features of the data pool were the nucleotides at -20 bp from the selected
position, at the selected position, and at the +20 bp from the selected position, respectively.

Distance between global and local nucleotide distributions
Global nucleotide distribution was calculated by counting the mono- and di-nucleotides in all
the genomic regions indicated in Table 2. Similarly, the local distributions were created by
counting the mono- and di-nucleotides over various frequencies in the sequence data pools.
Each mono-nucleotide was normalized by the total number of mono-nucleotides and each di-
nucleotide by the total number of di-nucleotides. Then the Euclidean distance between the
global and local nucleotide distributions was calculated as

p
(∑n (P1(n)–P2(n))

2), where
p

is
the square root, n indicates a nucleotide, and P1(n) and P2(n) are the local and global nucleo-
tide distributions, respectively.

Table 1. Data types and sources.

Data Type and mapped reads Source

Arabidopsis
thaliana

Illumina DNA sequencing data (The sequence data were
produced by the DOE Joint Genome Institute). Mapped
reads: 64610953

http://1001genomes.org/data/JGI/JGIHeazlewood2011/releases/
2012_05_30/TAIR10/strains/Alc-0/Alc-0.bam

Plasmodium
falciparum

Illumina RNA sequencing data. Mapped reads: 7586787 http://www.genedb.org/artemis/NAR/Malaria_RNASeq/version2.1.4/
MAL_0h.bam

Human Illumina DNA sequencing data. Mapped reads: 98428276 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/HG00106/alignment/
HG00106.mapped.ILLUMINA.bwa.GBR.low_coverage.20120522.
bam.csra

Streptomyces
coelicolor

Illumina RNA sequencing data. Mapped reads: 26590790 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1378112

doi:10.1371/journal.pone.0157033.t001

Table 2. Read start positions selected randomly. Chromosome numbers indicate the chromosomes used to create data pool, the number of positions is
the number of positions selected randomly from the chromosomes, and the selected ratio is the ratio of the number of the randomly selected positions to the
total number of positions on the chromosomes.

Read
frequency

Arabidopsis thaliana Plasmodium falciparum Human Streptomyces coelicolor

Chromosomes 1–5 Chromosomes 1–14 Chromosomes 1–22 Complete genome

Number of
positions

Selected
ratio

Number of
positions

Selected
ratio

Number of
positions

Selected
ratio

Number of
positions

Selected
ratio

0 5000 0.00 10000 0.00 2000 0.00 3000 0.00

1 500 0.00 1000 0.00 200 0.00 300 0.00

2 500 0.00 1000 0.00 200 0.00 300 0.00

3 500 0.00 1000 0.01 200 0.00 300 0.01

4 500 0.00 1000 0.01 200 0.02 300 0.01

5 500 0.01 1000 0.02 200 0.04 300 0.02

6 500 0.02 1000 0.03 200 0.05 300 0.03

7 500 0.04 1000 0.04 200 0.07 300 0.05

8 500 0.06 1000 0.06 200 0.08 300 0.07

9 500 0.09 1000 0.08 200 0.09 300 0.09

10 500 0.14 1000 0.10 200 0.11 300 0.11

11 or more 5000 0.08 10000 0.14 2000 0.15 3000 0.08

doi:10.1371/journal.pone.0157033.t002
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Sequence data sets for classification
Sequence data sets for the binary classification of whether reads exist at a certain position or
not were generated from the sequence data pools. To prevent classifiers from being biased to
the majority class and thus generalized incompetently, balancing data between positions with
and without reads was performed by sampling the equal number of instances from each class
[8,9,10]. The instances with the target value of 0 in each sequence data pool were equally split
into two sets of the train and test data and labeled as the class 0. Then the same number of
instances with target value greater than 0, 5, and 10 were randomly selected from each
sequence data pool, labeled the class 1, and added to the train and test sets without overlapping.
Therefore, three train and three test sets were created for three classification problems to clas-
sify the positions with no read and with 1 or more reads, 6 or more reads, and 11 or more reads
for each organism. Finally, the target values were replaced with the class labels. The class labels
0 and 1 indicate the states of the read existence in which the read either does not exist or does
exist at the selected position, respectively. Therefore each classification data set consists of 41
features, 1 target, and instances as many as the number of the instances with the target value of
0 in the sequence data pool. Also, random data sets were generated by randomly shuffling the
target values of each of train and test sets 10 times. The classification of the sequence data sets
was performed by C4.5 decision tree and Bayesian network of Weka [11,12]. Those classifiers
were employed for visualization of the pattern in the sequence data. Whereas other classifiers
are too slow to be run on large size data or not applicable to non-numeric sequence data, or
generate non-graphical outputs, decision tree and Bayesian network are relatively fast to run
and allow simple graphical output [13,14,15].

Feature extraction for pattern recognition
New features were extracted from the sequence data for classification. The local nucleotide dis-
tribution of each instance was calculated by counting the mono-, di-, tri-, and tetra-nucleotides
in the instance and normalizing each mono-, di-, tri, and tetra-nucleotide count by the total
number of mono-, di-, tri-, and tetra-nucleotides in the instance as follows: (Mi / ∑i = 1 to 4 Mi),
(Dj / ∑j = 1 to 16 Dj), (TRk / ∑k = 1 to 64 TRk), (TTm / ∑m = 1 to 256 TTm), whereMi, Dj, TRk, and
TTm indicate the counts of the ithmono-, jth di-, kth tri-, andmth tetra-nucleotides in the
instance. The normalized counts in the local nucleotide distribution were used as the new fea-
ture values of the instance. Therefore new data sets which were composed of 4 mono-, 16 di-,
64 tri-, and 256 tetra-nucleotide distribution features and 1 target were generated for the pat-
tern recognition on read positioning.

Fig 1. Generation of sequence data pool.Gray circles on reference genome indicate random positions,
and black bars above reference genome indicate read starts at a given random position. Character “F” in data
pool means feature.

doi:10.1371/journal.pone.0157033.g001
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Classification for the pattern recognition
K-nearest neighbor classifier was employed for classification of the data which were composed
of the extracted features [16]. K-nearest neighbor chooses the K number of train instances
nearest to a test instance, takes a vote with the class labels of the training instances chosen, and
then assigns the majority class label to the test instance. The distance between instances can be
calculated using Euclidean distance metric,

p
(∑x (F1(x)–F2(x))

2), where
p

is the square root, x
indicates a feature, and F1(x) and F2(x) are the feature values of two instances. The 3-NN clas-
sifier of Weka with the Euclidean distance metric was used as the implementation of K-nearest
neighbor classifier [11,12].

The aim of classification was not to build a prediction model but to validate the distance-
based observation that the distribution of positions with reads was significantly far from the
distribution of positions with no reads in the Euclidean distance. The sophisticated classifiers
such as the support vector machine and random forest or ensemble methods such as LibD3C
sometimes achieve high accuracy in classification problems [11,8,17]. However, for validating
the Euclidean distance-based observation, the classifiers that do not apply directly the Euclid-
ean distance to classification are not useful, and ensemble methods to combine the outcomes
of these multiple classifiers are not meaningful. Therefore, the K-nearest neighbor classifier
directly applying the Euclidean distance to classification without changing data space was
employed for the validation of the distance-based observation. Also data generated from differ-
ent NGS experiments generally hold various degrees of sequencing bias since experiments are
performed in the heterogeneous environment. Thus, the classification accuracy to express the
magnitude of the pattern effect on read positioning was measured using the train and test sets
generated from the same NGS experiment.

Feature selection using genetic algorithm
When the feature selection methods in the filter approach were applied to the extracted feature
data, K- nearest neighbor classifier achieved worse performance. Therefore, genetic algorithm was
employed to select features relevant to the target concept for each data set. Genetic algorithm is a
search and optimization algorithmwhich simulates the process of the natural selection in biology
[18,19]. The population of feature sets is randomly generated in the initial generation, and then
the optimal feature set is searched through the genetic operators of selection, crossover, and muta-
tion in following generations [20]. The size of binary population was 50 and the number of gener-
ations was 20. The population values of 1 and 0 indicate that the corresponding feature is selected
and not selected respectively. The probabilities of crossover and mutation were 0.8 and 0.05
respectively, and the elitism that the best individual in current generation replaced the worst indi-
vidual in next generation was applied. The fitness value was the accuracy of test set classified by
the 3-NN classifier trained on the corresponding train set. Since the aim of feature selection was
not building a prediction model but identifying features important for the pattern recognized on
the analyzed data, the test set was used in the fitness function. The algorithm was implemented in
Java, importing the 3-NN classifier of Weka with Euclidean distance metric [11,12].

Feature selection with genetic algorithm is the wrapper approach that uses the induction
algorithm to evaluate the selected subsets of features. Since the wrapper approach required sub-
stantial computation for data sets in large size, the running time of feature selection was mea-
sured with the processor of Intel Core i7 2.00GHz on Debian Linux 3.2.0-4-amd64 system.

Quantification of pattern effect
A novel metric, pattern effect index (PEI) was defined as ((accuracy % of K-nearest neighbor
classifier– 50) / 50). The PEI value 1 indicates that read positioning completely follows the
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pattern and the PEI value less than or equal to 0 means that read positioning is random. The
mean and standard deviation of classification accuracies on random data sets related to Table 3
were 49.98% and 0.81, respectively. The 3 standard deviation from the mean accuracy is
52.41% of which the corresponding PEI value is 0.0482. Therefore, the PEI value greater than
0.05 was interpreted as read positioning affected by the pattern.

Companion software to calculate PEI is provided at GitHub: https://github.com/PatternEffect/.
The software was written using the R packages of Biostrings, class and gtools [21,22]. Because of
the time-consuming procedure to extract features from sequence data, the software processes an
individual chromosome instead of whole genome.

Before and after the correction of sequencing bias, PEIs were calculated by the companion
software on the chromosome 1 of Arabidopsis thaliana. The bias correction was accomplished
by correctGCbias of deepTools which removes reads from the GC-rich regions and adds reads
to the AT-rich regions according to Benjamini’s method [6,23]. The effective genome size of
deepTools was set to 85% of the Arabidopsis thaliana genome as indicated in [23].

Complexity of sequences
The complexity of a sequence was calculated by TraMineR as

p
((q(s)/qmax)×(h(s)/hmax)),

where
p

is the square root, q(s) the number of transitions in the sequence, qmax the maximum
number of transitions, h(s) the within entropy, and hmax the theoretical maximum entropy
[24]. The classification of the complexity data sets was performed by the 3-NN classifier of
Weka with Euclidean distance metric [11,12]. For the classification based on the complexities
of sequences, the data sets which were composed of 1 complexity feature and 1 target were
generated.

Results

Classification of read start positions
In the classification problems to classify the states of the read existence, if read positioning
holds some pattern, the classifiers trained on the train sets should be able to predict the class
labels of the test sets. The existence of the pattern on read positioning was examined by C4.5
decision tree and Bayesian Network (BN).

After the class labels of the test set were predicted by the classifier which was trained on the
corresponding train set, the percentages of the test instances classified correctly were measured
as the classification accuracy. While the overall average and standard deviation of classification
accuracies on the data sets with the randomly shuffled target values are 49.98% and 0.81
respectively (data not shown), the original data sets show the classification accuracies higher
than 60% (see Table 3). On the original data sets, all classifiers achieve relatively lower accura-
cies in the classification problems of 0 vs. 1 or more reads, and perform better in the problems
in which the positions with no read and with higher read frequency have to be classified.

Table 3. Classification accuracies of indicated classifiers. Accuracies were averaged over four organisms. The number in parentheses is the standard
deviation. 0 vs. 1 or more, 0 vs. 6 or more, and 0 vs. 11 or more indicate problems for classification of the positions with no read and with 1 or more reads, 6 or
more reads, and 11 or more reads respectively. Random shuffling was performed 10 times for each data set.

Data set Classifier 0 vs. 1 or more 0 vs. 6 or more 0 vs. 11 or more

Randomly shuffled data C4.5 49.84% (0.82) 50.01% (0.67) 49.84% (0.78)

Randomly shuffled data BN 50.08% (0.81) 50.00% (0.89) 50.14% (0.88)

Original data C4.5 60.06% (3.90) 63.28% (6.21) 65.94% (6.00)

Original data BN 63.53% (9.21) 65.49% (10.63) 66.98% (12.13)

doi:10.1371/journal.pone.0157033.t003
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The higher classification accuracies on the original data than the random data imply that
there is some pattern on read positioning. However, during training process, C4.5 and BN gen-
erated complex tree and networks which used almost full features, and therefore no concrete
knowledge of the pattern on read positioning was acquired from these tree and network.

Global and local nucleotide distributions
The GC contents around the position with no read are similar to the typically known GC con-
tents, and the positions with high read frequency have GC contents that are higher or lower
than typical GC contents in analyzed genomes (see Table 4 and Fig 2). Typical GC contents are
36.03% in Arabidopsis thaliana, 19.39% in Plasmodium falciparum, and 40.91% in human,
72.00% in Streptomyces coelicolor [25].

Also, the local nucleotide distributions around the positions with no read are almost the
same as the global nucleotide distribution, whereas the local distributions around the position
with reads deviate from the global distribution (see Fig 3). In Euclidean distance, the nucleotide
distribution of the positions with reads is significantly farther from the global distribution than
the distribution of the positions with no read (see Table 5).

Pattern recognition on read positioning
It was observed that the nucleotide distribution around the position with reads is dissimilar to
the nucleotide distribution around the position with no read, and the distributions are signifi-
cantly far from each other in Euclidean distance. For validation of the distance-based observa-
tion, K-nearest neighbor classifier directly using Euclidean distance was employed to classify the
instances with and without reads for the features representing the nucleotide distribution. The
classification accuracies were measured for the three feature sets of mono-nucleotides, multi-
nucleotides (di-, tri-, and tetra- nucleotides), and all nucleotides (mono- and multi-nucleotides).

K-nearest neighbor classifier on the data sets with the extracted features outperforms C4.5
decision tree and Bayesian Network on the original classification data sets (see Tables 3 and 6).

Table 4. GC contents around the positions with various read frequencies. Numbers of 0, 1 to 5, 6 to 10, and 11 or more indicate the read frequencies.

Data set Whole genome 0 1 to 5 6 to 10 11 or more

Arabidopsis thaliana 36.03% 36.28% 35.30% 40.17% 43.24%

Plasmodium falciparum 19.39% 18.92% 24.46% 27.48% 30.54%

Human 40.91% 41.56% 36.60% 36.80% 38.38%

Streptomyces coelicolor 72.00% 72.47% 69.30% 66.44% 60.45%

doi:10.1371/journal.pone.0157033.t004

Fig 2. GC contents around the positions with various read frequencies. X-axis shows the organism
analyzed and Y-axis displays the ratio of GC count to the total nucleotide count. Numbers of 0, 1 to 5, 6 to 10,
and 11 or more indicate the read frequencies.

doi:10.1371/journal.pone.0157033.g002
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In particular, the classifier achieves the accuracies higher than 70% for the multi-nucleotide
and all nucleotide feature sets in the classification problems of 0 vs. 6 or more reads and 0 vs.
11 or more reads (see Table 6).

Given the observation on nucleotide distribution and the high classification accuracy of K-
nearest neighbor classifier, we recognize the pattern that the read start is positioned in the local
region where the nucleotide distribution is dissimilar from the global nucleotide distribution.
The more deviated the local distribution is from the global distribution, the more reads are
present in the region.

Interestingly, the classification accuracies for multi-nucleotide features are much higher than
the accuracies for mono-nucleotide features and are similar to the accuracies for all nucleotide fea-
tures (see Table 6). This implies that the mono-nucleotide distribution underestimates the pattern
and the recognized pattern is explained largely by the multi-nucleotide distribution. For the

Fig 3. Global and local nucleotide distributions. X-axis shows mono- and dinucleotides and Y-axis
displays the normalized nucleotide count. Numbers of 0, 1 to 5, 6 to 10, and 11 or more indicate the read
frequencies.

doi:10.1371/journal.pone.0157033.g003

Table 5. Euclidean distances between the distribution of all local nucleotides and the global nucleotide distribution. Numbers of 0, 1 to 5, 6 to 10,
and 11 or more indicate the read frequencies. The number in parentheses is the p-value of t-test, where the alternative hypothesis is that the nucleotide distri-
bution of the positions with no read is closer to the global distribution than the distribution of the positions with reads.

Data set 0 1 to 5 (p = 0.0312) 6 to 10 (p = 0.0077) 11 or more (p = 0.0020)

Arabidopsis thaliana 0.0044 0.0118 0.0549 0.0921

Plasmodium falciparum 0.0074 0.0747 0.1157 0.1556

Human 0.0081 0.0632 0.1300 0.1683

Streptomyces coelicolor 0.0059 0.0381 0.0746 0.1503

doi:10.1371/journal.pone.0157033.t005
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identification of features important for the recognized pattern, genetic algorithmwas also
employed. The classification accuracies of classifiers using the features selected by genetic algo-
rithm are shown in Table 7. Nine features were selected for all of the analyzed 12 data sets in the 3
classification problems for the 4 organisms, and the mono-nucleotides of A, C, G, and T were
selected only for 2 or 3 data sets (see Table 8). This means that multi-nucleotides are more rele-
vant to the explanation of recognized pattern than mono-nucleotides. Therefore, it is suggested
that the correction of sequencing bias is performed on the basis of the multi-nucleotide
distribution.

Quantification of pattern effect on read positioning
PEI was calculated from the classification accuracies. According to PEIs in Table 6, read posi-
tioning in the analyzed data sets are affected substantially by the pattern recognized. Especially
the PEI values for Arabidopsis thaliana and human are greater than 0.6, which means that the
pattern dominates read positioning in the data sets.

The correction of sequencing bias for Arabidopsis thaliana was accomplished based on G
and C counts, and PEIs of the chromosome 1 were calculated by the companion software (see
Methods). Although PEIs for the corrected data are lower than those for the uncorrected data,
read positioning is still affected by the recognized pattern (see Table 9). In particular, PEI in
the classification problem of 0 vs. 11 or more reads is 0.64 after the correction. This suggests
that the bias correction based on the mono-nucleotide distribution may not be sufficient to cor-
rect sequencing bias.

Discussion
NGS is the most popular sequencing technology, assuming that the read positions are random
and independent of the genomic sequence. Sequencing bias around the read start position was

Table 6. Classification accuracies ofK-nearest neighbor classifier and pattern effects. 0 vs. 1 or more, 0 vs. 6 or more, and 0 vs. 11 or more indicate
problems for classification of the positions with no read and with 1 or more reads, 6 or more reads, and 11 or more reads respectively. Mono, multi, and all indi-
cate the data sets which are composed of the features extracted from the distributions of mono-nucleotides, multi-nucleotides (di-, tri-, and tetra-nucleotides),
and all nucleotides (mono- and multi-nucleotides), respectively. PEI was calculated from the classification accuracy for the feature set of all nucleotides and
averaged over three classification problems.

Data set 0 vs. 1 or more 0 vs. 6 or more 0 vs. 11 or more Average PEI

Mono Multi All Mono Multi All Mono Multi All

Arabidopsis thaliana 58.06% 70.84% 71.20% 62.56% 79.62% 79.50% 66.02% 89.12% 88.84% 0.60

Plasmodium falciparum 63.80% 67.70% 67.81% 67.24% 72.80% 72.84% 68.71% 78.11% 78.26% 0.46

Human 71.20% 82.55% 82.15% 74.85% 92.25% 92.20% 77.75% 93.75% 94.20% 0.79

Streptomyces coelicolor 65.10% 64.77% 65.37% 72.03% 73.90% 73.77% 77.03% 82.73% 82.87% 0.48

doi:10.1371/journal.pone.0157033.t006

Table 7. Classification accuracies ofK-nearest neighbor classifier for features selected by genetic algorithm. The value in parentheses indicate the
running time in hour: minute.

Data set 0 vs. 1 or more 0 vs. 6 or more 0 vs. 11 or more

Arabidopsis thaliana 73.56% (16:09) 83.42% (16:11) 91.90% (16:49)

Plasmodium falciparum 69.92% (45:35) 74.70% (41:12) 79.01% (54:36)

Human 85.80% (02:41) 95.50% (02:29) 97.00% (02:25)

Streptomyces coelicolor 70.23% (05:45) 77.07% (05:39) 84.67% (05:32)

doi:10.1371/journal.pone.0157033.t007
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previously reported [3–6]. Schwartz et al. (2011) [5] and Poptsova et al. (2014) [3] detected the
nucleotide bias around read start positions regardless of read coverage, whereas Dohm et al.
(2008) [4] observed the positive correlation between GC content and read coverage where the
number of reads increased as GC content increased. According to our observation, while GC
content is positively correlated to read coverage in the data sets of Arabidopsis thaliana, Plas-
modium falciparum, and human, it is negatively correlated in the data set of Streptomyces coeli-
color. Benjamini et al. (2012) analyzed the fragment rate as the continuous function of GC
content and discovered the unimodal relation between the fragment rate and GC content, in
which there was increasing coverage at the low GC content locations and decreasing coverage
at the high GC content locations [6]. This approach is different from ours in that we analyzed
GC contents as the discrete function of four read frequency groups.

The dependency of read coverage on sequence complexity was also previously reported [5].
The high sequence complexity may cause high coverage due to high mappability of reads. To
explore the dependency, sequence complexities were calculated from the sequences of classifi-
cation data and used as the feature to classify the read start positions. According to Tables 10
and 11, there exists a weak dependence between sequence complexity and read coverage and
positions with higher read frequency are more predictable. However, the classification accura-
cies are relatively low.

Fragmentation protocols can alter the quality of the sequencing runs by introducing bias if
the fragmentation pattern is not random. In addition, the use of chemical or enzymatic meth-
ods can result in carryover of chemicals/enzymes into the library preparation, again influencing
the read quality. Knierim et al. compared three fragmentation methods, namely, nebulization,
sonication and enzymatic fragmentation and analyzed the quality scores at the 30-ends of the
fragments sequence using Roche 454 technology [26]. The authors did not find any significant
differences in the quality scores obtained with the three different fragmentation methods.

Various fragmentation methods might introduce other types of DNA damage besides dou-
ble strand breaks. Enzymatic fragmentation methods are prone to introduction of additional

Table 8. Features selected by genetic algorithm and the number of data sets for which the features
were selected. Features which were selected for 4 to 10 data sets are not shown.

Selected features Number of data
sets

TC, GAT, AAAA, CAAG, CGCG, CGGC, CGTA, GAAT, TCTT 12

AT, CA, GC, GT, TT, AAG, ACG, AGC, CCA, CCG, GGT, GTT, TTC, TTT, ACAC,
ACAT, ACGT, AGCG, AGCT, AGGA, AGGG, ATCA, CACG, CAGG, CCAT, CCCT,
CCTC, CGCA, CGGT, CGTC, CGTT, CTAA, CTAC, CTGA, CTGG, GAAA, GCAT,
GGAT, GGCA, GTAC, GTTA, TATA, TCCC, TCGC, TGGC, TTGT, TTTG

11

A, C, T, CACC, GCTG, GTAA, TGGG 3

G, ATC 2

doi:10.1371/journal.pone.0157033.t008

Table 9. Pattern effect index for chromosome 1 of Arabidopsis thaliana. Original and corrected data
indicate that reads are uncorrected and GC-corrected, respectively. 0 vs. 1 or more, 0 vs. 6 or more, and 0 vs.
11 or more indicate problems for classification of the positions with no read and with 1 or more reads, 6 or
more reads, and 11 or more reads, respectively. PEIs were measured 5 times by the companion software and
averaged. The number is the average PEI and the number in parentheses is the standard deviation.

Data set 0 vs. 1 or more 0 vs. 6 or more 0 vs. 11 or more

Original data 0.22 (0.03) 0.43 (0.03) 0.73 (0.06)

Corrected data 0.08 (0.05) 0.14 (0.03) 0.64 (0.12)

doi:10.1371/journal.pone.0157033.t009
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DNA damages, such as single strand breaks, resulting in deletions or point mutations, espe-
cially when insufficient amounts of ligase were added. Analysis of sequencing data performed
by Knierim et al. did not show any significant difference of point mutation rates between the
three fragmentation methods [26]. Also, indels were similarly frequent in sequences obtained
after nebulization and sonication fragmentation methods, but occurred more often in
sequences obtained after enzymatic fragmentation.

Analysis of ultra-short sequence reads generated by Illumina after DNA fragmentation by
nebulization (Helicobacter acinonychis) or sonication (Beta vulgaris) did not reveal any
sequence bias near the immediate vicinity of read start positions [4]; the authors concluded
that fragmentation step generated random nucleotide fragments.

Benjamini et al. supposed that PCR was a source of the GC bias because sequences gener-
ated from a PCR-free protocol contained a reduced CG bias [6]. After investigating genomic
sequences in diverse GC contents during the library preparation steps, Aird et al. confirmed
that PCR indeed was a source of base-composition bias [27].

Processing and analyzing the large-scale NGS data is laborious and time-consuming. It is
probable that a parallel computing framework, such as MapReduce, leads to the scalable and
efficient performance in the alignment, mapping, and assembly of NGS sequences [28,29]. Fur-
ther research of the parallel computing framework in processing and analyzing NGS sequence
data is needed [29].

Conclusions
We analyzed NGS data of four organisms with different GC contents using machine learning
techniques. We found that the nucleotide distribution around the position with read was signif-
icantly dissimilar to the nucleotide distribution around the position with no read. Moreover,
using K-nearest neighbor classifier measuring Euclidean distance between the nucleotide dis-
tributions around the positions with no read and with reads, we recognized the pattern that
NGS read start was positioned in the local region where the nucleotide distribution was dissim-
ilar from the global nucleotide distribution. It was observed that more deviation of the local dis-
tribution led to more reads positioned. Also providing the companion software to quantify the
effect of the recognized pattern on NGS read positioning, we demonstrated that the mono-
nucleotide distribution underestimated sequencing bias and the correction based on the mono-

Table 10. Sequence complexity. The numbers of 0, 1 to 5, 6 to 10, and 11 or more indicate the read frequencies. The numbers outside and inside parenthe-
ses are the average and standard deviation of sequence complexities, respectively. The complexities were calculated from the sequence data pools.

Data set 0 1 to 5 6 to 10 11 or more

Arabidopsis thaliana 0.65 (0.06) 0.65 (0.06) 0.67 (0.05) 0.67 (0.06)

Plasmodium falciparum 0.66 (0.10) 0.69 (0.08) 0.70 (0.07) 0.71 (0.07)

Human 0.69 (0.21) 0.74 (0.08) 0.75 (0.10) 0.74 (0.13)

Streptomyces coelicolor 0.81 (0.05) 0.83 (0.05) 0.83 (0.05) 0.84 (0.04)

doi:10.1371/journal.pone.0157033.t010

Table 11. Classification accuracies of K-nearest neighbor classifier on the sequence complexity data.

Data set 0 vs. 1 or more 0 vs. 6 or more 0 vs. 11 or more

Arabidopsis thaliana 48.78% 52.22% 59.82%

Plasmodium falciparum 54.93% 55.20% 55.76%

Human 60.65% 62.00% 64.75%

Streptomyces coelicolor 56.87% 60.47% 62.73%

doi:10.1371/journal.pone.0157033.t011

Read Positioning in Next Generation Sequencing

PLOS ONE | DOI:10.1371/journal.pone.0157033 June 14, 2016 11 / 13



nucleotide distribution might not be sufficient to clean sequencing bias. Therefore we suggest
that the bias correction is performed on the basis of the multi-nucleotide distribution.
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