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Abstract 

This thesis used a rodent model of skilled forelimb training and 

intracortical microstimulation to examine the relationship between learning and 

cortical reorganization. This thesis examines how reorganization is related to the 

specific changes in forelimb movements during learning. It also examines the 

role that task repetition plays in driving motor cortex reorganization and showed 

that once the skilled motor task had been acquired it was necessary to repeat the 

task sufficiently to produce motor cortex reorganization. This thesis also 

examines reorganization following skilled reach training was related to the 

consolidation of motor skill, finding that animals that learned the skilled 

reaching task after five days of training also showed cortical reorganization, 

which persisted for one month. These experiments show that the distribution 

and subsequent redistribution of movement representations within motor cortex 

is related to changes in motor performance that occur during motor training. 
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CHAPTER ONE 

GENERAL BACKGROUND 

Many adult behaviours involve the expression of some acquired motor 

skill and the process of motor skill learning is familiar to us all. At first, skilled 

movements are difficult and must be continually modified. With time and 

continual practice, the skill becomes intrinsic and you are able to perform the 

behaviour without having to 'think' about it. Further, with enough practice, you 

are able to go for long periods of time without performing the task, and not lose 

the skill. Despite the importance and predominance of the ability to encode and 

maintain a novel motor skill, little is known about how motor skill is encoded by 

the motor system of the brain. Given that skill learning is characterized by 

significant changes in motor behaviour, some form of biological alteration within 

motor regions of the central nervous system must be occurring. 

The brain is a highly dynamic organ that is continually changing 

throughout the life of an organism. The ability of the brain to change is referred 

to as 'plasticity'. Plasticity refers to the brain's capacity to maintain many aspects 

of its structure and function while at the same time changing others. Structural 

plasticity includes dendritic growth, axonal sprouting and the formation of new 

synapses (Uylings et al., 1978; Diamond et al., 1976; Darian-Smith & Gilbert, 

1994; Kleim et al., 2002) and is also not limited to neurons. Glial hypertrophy 

(Forgie, Gibb & Kolb, 1996) and angiogenesis (Sirevaag & Greenough, 1987; 

Kleim, Cooper & VandenBerg, 2002) also occur. Functional brain plasticity can 
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be observed at a number of levels. Individual neurons can undergo long term 

changes in their firing rates or resting membrane potentials (Aizenman & 

Linden, 2000) Plasticity across populations of neurons can be observed as 

changes in excitatory postsynaptic potentials and population spikes (Pinsker & 

Kandel, 1977; Suzuki et al., 2001). Finally, changes in the global pattern of 

activity can be observed using imaging techniques such as functional magnetic 

resonance imaging or positron emission topography (Roux et al., 2001; Thiel et 

al., 2001) (see Tablel). 

Table 1: Examples of Brain Plasticity. 

T y p e o f p la s t i c i ty M a n i f e s t a t i o n o f p l a s t i c i ty 

Structural plasticity Dendritic growth 

Structural plasticity Axonal sprouting 

Structural plasticity Synapse formation 

Structural plasticity Glial hypertrophy 

Structural plasticity Angiogenesis 

Functional plasticity Changes in neuronal firing rates 

Functional plasticity Changes in membrane potentials 

Functional plasticity Changes in excitatory post-synaptic 

potentials 

Functional plasticity Changes in population spikes 

Functional plasticity Changes in global patterns of brain 

activity 
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Plasticity occurs in response to many factors, including brain injury, drug 

use, or learning (Kolb & Cioe, 2000; Robinson et al., 2001; Kleim et a l , 2002). 

Although plasticity is enhanced during development, it is not limited to 

development. It is believed to mediate changes in behaviour that occur in 

response to changing behavioural demands that occur throughout life such as 

those associated with learning. With this in mind, the present thesis is based on 

the hypothesis that motor learning is supported by plasticity within the motor 

system. 

Arguably, the motor cortex is the primary motor structure in the brain and 

motor skill learning has been related to motor cortex plasticity. Although motor 

learning is likely encoded in the cortex in a variety of ways, this thesis focuses on 

changes in the topography of stimulation evoked movement representations 

within the motor cortex. 

In this introduction, I will present a historical overview of the 

phenomenon of functional cortical plasticity. I will then examine some of the 

factors that induce plasticity. Further, I will present an overview of the history of 

brain stimulation, and how stimulation is used to investigate functional 

plasticity. Specifically, I will discuss how it is used to study the plasticity of 

movement representations in the motor cortex. Finally, 1 will discuss some of the 

factors that lead to motor cortex reorganization, focusing on motor learning 

induced plasticity. 

3 



1.1 Early History of Brain Plasticity 

Johann Gaspar Spurzheim was one of the first scientists to propose that 

the brain was a dynamic organ. He hypothesized that if muscles increased in 

size with exercise, then the 'organs' of the brain would respond similarly to use. 

He knew that there was an increase in blood flow with exercise, and that blood 

flow provided 'nutrition' for the body, so he hypothesized that with increased 

blood flow, the brain should likewise be affected (Spurzheim, 1815). 

Alexander Bain (1818-1903) was the first to incorporate plasticity into a 

specific neural theory of learning. Bain argued that learning occurred through 

modifications in connections between neurons. He believed every new 

experience produced the reorganization of movements and sensations, and that 

this reorganization involved growths at cell junctions (Bain, 1855). William 

James proposed a similar theory years later. He believed new habits were 

acquired through 'voluntary repetition' so that new neural connections could be 

formed (James, 1890). 

In 1895 Ramon y Cajal extended the idea of Bain and James. Using Golgi's 

staining technique, Ramon y Cajal found that there were discrete nerve cells in 

the developing chick brain. Believing that neurogenesis, the growth of new 

neurons, did not occur in the brain, he suggested that 'cerebral exercise' led to 

new, more developed connections in the cortex. 
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Despite decades of speculation that the brain was plastic, however, there 

was no direct experimental evidence to support the hypothesis. The first indirect 

evidence came from the work of Karl Lashley. Lashley trained animals on a 

complex maze task and performed lesioning experiments to determine where 

memory was located in the brain. Lashley found that the intact brain had the 

ability to resume the lost function of a damaged brain area. Lashley also found 

that task performance was affected by the amount of cortex that was lesioned, 

rather than the location of the lesion. 

1.2 Evidence that Differential Experience Alters the Brain 

In 1947 Donald Hebb demonstrated that artimals raised in a complex 

envlfbnmenT showed increased cognitive performance. The complex 

environment was a large cage enriched with toys and other objects for the 

animals to explore. Later experiments showed that animals raised in a complex 

environment also performed better on maze learning tasks than their control 

counterparts (Bingham et a l , 1952; Rosenzweig, 1971; Jura ska et al., 1984). 

Further work revealed that rats raised in a complex environment from a 

young age had a greater cortical thickness than their socially or individually 

caged littermates (Rosenzweig et al., 1962; Diamond et al., 1967; Diamond et al., 

1972). Further work showed that changes in dendritic branching and neuronal 

density occur in animals raised in an enriched environment, compared to 

animals that were not (Volkmar & Greenough, 1972; Beaulieu & Colonnier, 1989). 
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In addition, synapse numbers increase in animals exposed to the enriched 

environment (Turner & Greenough, 1985). There are also increases in 

acetylcholine production and RNA synthesis found in enriched animals (Bennett 

et a l , 1964; Ferchmin & Eterovic, 1987). Although these experiments clearly 

showed how differential experience could alter the brain, they do not provide 

any information on how these changes are related to learning. Thus the specific 

relationship between structural plasticity and learning is not evident. 

1.3 Learning-Dependent Plasticity 

Further experiments have demonstrated that plasticity also occurs in 

response to specific learning tasks. Padeh and Soller found that there was an 

mcrease in the brain weights of mice that were trained On a double T-maze and a 

Y-maze compared to mice that were trained on these tasks, but were not able to 

learn them (Padeh & Soller, 1976). Greenough et al. (1979) found that after 

training animals on a Hebb-Williams maze there was an increase in dendritic 

spine density in layer IV of the visual cortex. They also found that this effect was 

specific to the occipital cortex corresponding to the trained eye (Chang & 

Greenough, 1982). Further, Moser et al. (1994) trained animals on the Morris 

Water Maze and showed that there was a significant increase in the spine density 

along hippocampal pyramidal neurons. 

Although these experiments demonstrate learning-dependent structural 

plasticity, it is unclear how exactly the changes might support these behaviours. 

6 



In order to study the relationship between learning and plasticity we need an 

experimental model that meets three important criteria. First, a behaviour with 

characteristics that can be easily measured during learning is required. Second, 

this behaviour needs to be dependent upon a specific brain area so that we know 

where to look for plasticity. Third, there must be some way to derive a measure 

of the functional organization of this brain area that can be related to the 

behavioural changes during learning. 

Rat skilled forelimb behaviour provided an excellent model to study the 

relationship between learning and plasticity. First, changes in motor 

performance can be readily measured. Second, forelimb movements are 

dependent upon forelimb motor cortex (Whishaw et al., 1991). Third, the 

functional organization of motor cortex can be defined through intracortical 

microstimulation. Finally, intracortical microstimulation has shown changes in 

the functional organization of motor cortex with motor learning (Nudo et a l , 

1996; Kleim et al., 1998). This thesis relies on intracortical microstimulation to 

measure functional plasticity. Therefore, some background on the technique is 

necessary. 

1.4 History of Motor Cortex Stimulation 

Some of the first evidence for the presence of a motor map within the 

cortex came from anecdotal observations made by John Hughlings Jackson (1835-

1911). He noticed there was a pattern to the epileptic seizures his wife 
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experienced. Seizures often started in a specific location on her body and spread 

throughout her body in a cascade, progressing to adjacent body parts. 

Hughlings Jackson also noticed that the seizure would start on one side of the 

body and spread to the other. This led him to conclude that cortical motor 

representations were in the form of a map of the body and were present in both 

cerebral hemispheres (Jackson, 1931). 

Gustav Fritsch (1838-1927) worked at a hospital helping wounded Russian 

soldiers. He was treating a soldier with a head injury, dressing a head wound, 

when he discovered that movement could be provoked through wound 

irritation. Fritsch went on to conduct further studies of this phenomenon with 

his colleague Eduard Hitzig (1838-1907). They demonstrated that electrical 

stimiilation to certain areas in the frontal cortex of a lightly anaesthetized dog 

provoked movement. Hitzig continued this research, eventually defining the 

motor cortex borders of the dog and the monkey (Hitzig, 1874). 

Sir David Ferrier (1843-1928) continued Fritsch and Hitzig's work and 

found a topographical map of movement representations within the precentral 

gyrus. He also studied the postcentral areas in the monkey and the dog and 

found that they would produce movement when stimulated. 

Soon after the work done by Fritsch and Hitzig, Roberts Bartholow 

attempted the first direct stimulation of the human cortex through electrode 

placement to the scalp (Bartholow, 1874). One of Bartholow's servants had scalp 
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cancer that thinned regions of the skull. Bartholow stimulated her scalp and 

produced weak muscle contractions on the contralateral side of her body. 

Sir Victor Horsley continued the work done by Fritsch, Hitzig and Ferrier. 

His experiments helped further the argument that the motor cortex was located 

in the precentral gyrus. He produced motor maps that included stimulation sites 

that were located in the base of sulci (Horsley & Schafer, 1888; Beevor & Horsley, 

1890). In addition to these more detailed maps, Horsley found motor 

representations that were precentral, but outside of the primary motor cortex. 

These areas were later described as premotor areas. Horsley also showed that 

there is an ambiguous area between the precentral and postcentral gyrus that 

responds to both motor and sensory stimulation. 

The debate continued as to whether the cortex representing movement 

was limited to precentral areas. In the early 1900s Sir Charles Sherrington found 

he could only elicit motor responses in the precentral cortex using unifocal 

stimulation to produce near-threshold responses (Grunbaum & Sherrington, 

1901; Leyton & Sherrington, 1917). In 1905, Korbinian Brodman and Alfred 

Walter Campbell independently published the first papers on the 

cytoarchitectonics of the neocortex. Their findings showed there was a difference 

in cortical thickness and lamination between the precentral and the postcentral 

regions of the cortex. The anatomical differences in these cortical areas provided 

more evidence for Leyton and Sherrington's argument of a distinct functional 

difference between the two areas. 
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Wilder Penfield produced the first motor maps of humans. He described 

them in terms of a motor homunculus, a representational map of the body, with 

the size of the body parts drawn relative to the amount of motor representations 

(Figure 1) (Penfield & Boldrey, 1937; Penfield & Rasmussen, 1957). Although the 

homunculus was the first of its kind, it was based on low-resolution motor maps 

of epileptic patients. Interestingly, recent work has suggested that motor maps 

can be influenced by seizure activity, and so seizure-induced motor maps may 

not be representative of 'normal' motor maps. 
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Figure 1: Penfield's motor homunculus. Adapted from Penfield and Rasmussen, 

1950. 
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1.5 Recent Advances in Brain Stimulation 

In the 1960s, technology had advanced so that experimenters could use a 

microelectrode to penetrate into the deeper layers of the cortex (Asanuma & 

Sakata, 1967). This intracortical microstimulation technique allowed researchers 

to lower a microelectrode into layer V, the output layer of the motor cortex, and 

elicit movements at very low current levels. The microelectrode enabled 

experimenters to produce motor maps while minimizing cortical damage that 

had been formerly produced using larger electrodes. It also allowed high-

resolution cortical maps to be produced (Recanzone et al., 1992a; Maldonado & 

Gerstein, 1996). The motor cortex is an area that has been extensively examined 

with intracortical microstimulation (Nudo et al., 1990; Nudo et al., 1996; Kleim et 

al., 1998). Detailed motor maps show a 'fractured somatotopy', a mosaic-like 

pattern of movement representations (Figure 2). Although the area of the rat 

motor cortex is fairly stable, the pattern of movement representations is different 

from animal to animal (Neafsey et al., 1986). The intracortical microstimulation 

technique has allowed researchers to confirm previous motor map details, such 

as the overlap of motor and sensory cortices in the rat (Sievert & Neafsey, 1986; 

Hummelsheim & Wiesendanger, 1985). Researchers were also able to make 

discoveries about the motor cortex. Using intracortical microstimulation, it was 

found that there is a second forelimb area in the rat motor cortex (Neafsey & 

Sievert, 1982). Use of the intracortical microstimulation technique also allowed 

researchers to examine the effects of various manipulations on the organization 
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of the motor maps. There is now considerable evidence that motor maps are 

highly dynamic and can be altered by a variety of internal and external factors. 
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Figure 2: A topographical map of the motor cortex. The rat motor cortex is 

divided into three areas: the rostral forelimb area (RFA), the caudal forelimb area 

(CFA), and the hindlimb area (HLA). The different colours of the map represent 

different movement representations. Yellow represents neck movement 

representations, red represents digit movement representations, green represents 

wrist movement representations, light blue represents elbow movement 

representations, dark blue represents hindlimb movement representations and 

grey represents unresponsive sites. The neck representation sites and the 

unresponsive sites are used to determine the borders of the three areas of the rat 

motor cortex. 

UNSKILLED REACHING CONDITION 

* * • 
• • * * • 

' • • a » 
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* * 

« • 
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1.6 Plasticity of Movement Representations Within Motor Cortex 

Since brain stimulation was first introduced, many scientists have used 

this technique to study how the organization of the motor cortex responds to a 

variety of manipulations. Some of these manipulations are artificially produced, 

such as cortical stimulation, limb amputation and cortical damage (see Table 1.2). 

Brown and Sherrington (1912) conducted one such experiment combining motor 

cortex stimulation and an experimental manipulation, which led to one of the 

earliest noted observations of cortical map plasticity. Stimulating one point in 

the motor cortex produced a weak muscle response, whereas stimulating the 

same point a short time later produced a much stronger response, and thus, the 

threshold of the motor representations could change. They also noticed that 

responses could change over time. For example, an extension response, upon 

further stimulation, produced a flexion response, leading Sherrington to label 

these sites as 'points of instability'. They also found that the size of motor maps 

could enlarge with stimulation. These findings represent the first evidence that 

motor maps are dynamic rather than static. 

1.6.1 Cortical Stimulation 

Since Brown and Sherrington's observations, cortical stimulation has been 

found to alter movement representations. Nudo and colleagues produced 

detailed motor maps of the rat motor cortex, and then stimulated movement 

representations on the border of the motor map for one to three hours. They 
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found that repeated intracortical stimulation of the motor cortex permanently 

expanded the borders of the movement representations (Nudo et al., 1990). 

Similarly, VandenBerg and Kleim (2002) have shown that an hour following 

intracortical microstimulation the border of the motor cortex had expanded. 

Mapping the animals twenty-four hours later, the borders had returned to their 

original dimensions. Pathological seizure activity has also been implicated in 

changing the motor map (Uematsu et al., 1992). Kindling, a type of stimulation 

that produces seizure activity in the brain, has recently been shown to 

dramatically increase the area of movement representations in the motor cortex. 

After repeated kindling sessions involving cortical potentiation, movements are 

elicited outside of the normal borders of the caudal forelimb area (Teskey et al., 

2002). 

Focal transcranial magnetic stimulation can be used as a non-invasive 

method to evoke movements in a conscious human. Movements are elicited by 

applying a magnet to the scalp overlaying the motor cortex. It has been found 

that repetitive stimulation through transcranial magnetic stimulation also 

produces changes to the human motor cortex (Berardelli et al., 1998). 

1.6.2 Limb Amputation 

Forelimb removal in neonatal rats leads to reorganization of remaining 

muscle representations in place of the removed musculature (Donoghue & Sanes, 

1988). Similar changes have also been observed in adult primates. The 
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remaining muscle group representations expand into the area that was once 

devoted to the amputated musculature, and now produces movements of 

neighboring musculature (Wu & Kaas, 1999; Qi et al., 2000). In humans, 

functional magnetic resonance imaging was used to study amputees while they 

made imagined voluntary movements of the missing limb (Roux, Ibarrola, 

Lazorthes & Berry, 2001). Movement representations were activated during the 

virtual movement of their missing limbs. The experimenters concluded that 

cortical representations of missing limbs persist for several years after 

amputation. While amputation changes movement representations in the cortex, 

less dramatic manipulations, such as sensory denervation via nerve transection 

alone is enough to produce plasticity (Garraghty & Kaas, 1991). Rats that 

undergo facial nerve transection show a shift in the corresponding motor cortex 

from vibrissae representations to forelimb representations within a few hours of 

transection (Sanes et al., 1988). 

1.6.3 Cortical Damage 

Glees and Cole (1950) conducted some of the earliest research on motor 

map plasticity following motor cortex damage. They identified and lesioned 

thumb representations within Ml of a rhesus monkey. Two days later they 

remapped the motor cortex and found that there were no thumb movements 

elicited in the lesioned area. However, there were thumb representations in 

areas that had previously been dedicated to the hand. 
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Although some spontaneous reorganization occurs following damage to 

the motor cortex (Nudo & Milliken, 1996), the amount and type of reorganization 

that occurs after cortical damage is dependent on post-lesion experience. Nudo 

et al. (1996) trained monkeys to retrieve pellets from small wells, using skilled 

digit movements. After the animals were sufficiently trained, topographical 

maps of the motor cortex were derived, using intracortical microstimulation. 

After the animals were mapped they were given a stroke in the hand area in 

order to affect task performance. The animals were then retrained for three to 

four weeks on the pellet retrieval task, until their task performance was equal to 

pre-lesion performance. When the animals were mapped after rehabilitation, it 

was found that there was a significant increase in hand representations, 

compared to animals that had not received rehabilitation. In a related study 

Nudo and Friel (1998) demonstrated that after giving an animal a stroke, 

restraint of the unaffected limb must be accompanied by forced use of the 

affected limb, or the cortical representations are not retained or recovered. 

Rehabilitation-induced cortical plasticity following cerebral ischemia has 

also been observed in rats (Goertzen et al., 2001) and humans (Liepert et al., 

2000). Goertzen et al. (2001) trained rats on a skilled reaching task and then used 

intracortical microstimulation to derive topographical maps of the motor cortex. 

The animals then received a stroke. Following recovery, the animals were 

divided into three groups. The skilled rehabilitation condition animals received 

training on the original skilled reaching task. In this task the animal learns to use 
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its wrist and digits in a skillful manner, which forces the animal to increase 

forelimb use. In the unskilled rehabilitation condition, animals were trained on a 

task that involved increased forelimb use with no skillful digit and wrist 

movements. The non-skilled rehabilitation animals did not use their forelimbs. 

Animals in the non-skilled rehabilitation condition did not recover any of the lost 

elbow, shoulder, wrist or digit representations, while the unskilled rehabilitation 

condition animals regained some of the lost elbow and shoulder representations. 

The skilled rehabilitation animals regained both elbow and shoulder as well as 

wrist and digit representations. This study provides evidence that the type of 

rehabilitation is directly involved in functional recovery seen in the motor cortex. 

1.6.4 Motor Learning 

Although the motor cortex can alter its organization in response to 

artificial or pathological manipulation, natural differential motor experience can 

also produce motor cortex reorganization. Skilled reach training has been widely 

used to study plasticity of the motor representations in rodents and primates. 

Nudo et al. (1996) trained monkeys to perform a task that involved learning 

novel digit movements. The animals had increased digit representations and 

decreased elbow representations. Thus, areas in the motor cortex that once 

produced elbow movements subsequently produced wrist movements. 

Although motor learning tasks are useful to study functional cortical 

plasticity, the increased motor activity of the task is a confounding variable. To 
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compensate for the increase in motor activity Kleim et al. (1998) trained rats in an 

unskilled reaching condition. These animals were taught to press a bar to receive 

a food pellet, which increased the amount of forelimb activity that the animals 

experienced. The motor maps of the unskilled reaching condition animals were 

then compared to maps of skilled reaching condition animals. They found that 

animals in the skilled reaching condition had a significant increase in the number 

and size of distal forelimb representations, whereas the unskilled reaching 

condition animals did not (Figure 3). Plautz, Milliken and Nudo (2000) provide 

further evidence that skilled motor learning is required to produce changes to the 

motor map. Monkeys were trained to retrieve a pellet from a large well. This 

simple motor task involved a small amount of finger movements to successfully 

retrieve the pellet. The purpose behind this simple task was to see if the motor 

cortex reorganizes with the repetition of a non-challenging task. They found that 

there were no changes in the movement representations of the animals. 

Therefore, learning a skilled movement drives functional plasticity in the motor 

cortex. 

20 



Figure 3: Topographical motor maps from animals trained on the skilled 

reaching condition and the unskilled reaching condition. In the caudal forelimb 

area (CFA), green and red represents distal (wrist and digit) movement 

representations, and light blue represents proximal (elbow and shoulder) 

movement representations. 
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Finally, Kleim et al. (2002) found that rats that had access to running 

wheels had motor maps that were similar to rats in an inactive condition, Remple 

et al. (2001) found that rats that had been trained extensively on a forelimb 

strengthening task did not significantly differ from reaching controls. Both 

results suggest that motor learning is necessary to produce functional 

reorganization in the motor cortex. 

The time course of cortical reorganization in skilled reach trained rats has 

also been studied. A recent experiment found that although rats typically reach 

the asymptote of behavioural performance after seven days of training, the motor 

maps show reorganization only after ten days of training (Kleim et al., 2001) 

(Figure 4). This study also showed that after ten days of training, these plastic 

changes persist in the absence of training for as long as 220 days. 
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Figure 4: Time course of plasticity in motor cortex. Motor skill acquisition 

precedes synaptic changes in the motor cortex, which precedes motor map 

reorganization. 



There have been similar findings in humans. Kami et al. (1995) found that 

training subjects on a digit sequence-learning task over a period of a few weeks 

produced changes in motor cortex activation, which persisted for several 

months. These changes in activation may reflect motor map reorganization. 

Classen et al. (1998) found, using standard transcranial magnetic stimulation 

techniques that the motor cortex has the ability to adapt rapidly to new skills. 

Transcranial magnetic stimulation is a procedure that involves placing a magnet 

on top of the skull, so that the brain can be stimulated externally. Classen and 

colleagues used transcranial magnetic stimulation to elicit a unidirectional 

thumb movement. After a brief training session in which the subjects produced 

thumb movements in the opposite direction of the original stimulated response, 

transcranial magnetic stimulation now evoked the trained thumb direction. 

These movements reverted back to their original direction after a brief time 

period. This experiment demonstrated that functional changes could be 

produced through a short training session, and that these changes were transient. 

1.7 Summary of General Introduction 

Motor learning is essential to mammalian survival. Motor learning 

provides the ability to respond to a continually changing environment. Motor 

behaviours are supported in many areas of the brain. The motor cortex is one of 

the primary motor areas, and has been shown to possess the capacity to change. 
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This plasticity likely supports motor learning. This thesis will examine the 

relationship between functional cortical plasticity and motor skill learning. 

1.8 Thesis Objectives 

Although there is substantial evidence for changes in movement 

representations in motor cortex with motor learning, the relationship between 

map plasticity and motor skill training is still unclear. With the exception of one 

prior experiment (Kleim et al., 2001), all previous experiments have examined 

motor maps only after extensive training. 

My thesis will involve training rats on a skilled reaching task, and then 

deriving maps of motor cortex using intracortical microstimulation. The 

experiments will address the following three questions: 

1. Do changes in motor map organization reflect specific changes in motor 

behaviour that occur during learning? The first experiment will 

examine exactly how forelimb movements change during learning and. 

then relate these findings to the functional reorganization in motor 

cortex. 

2. What role does practice/repetition play in driving motor map 

reorganization? We have previously found that motor maps change 

after the skill has already been acquired. The second experiment 

examines two possible hypotheses that explain this result. The first 

hypothesis is that the cortex may require a sufficient amount of time to 
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reorganize. The second hypothesis is that the skill must be practiced 

after the initial acquisition in order to produce cortical reorganization. 

3. Does motor map reorganization represent consolidation of motor skill? 

If performance levels on the skilled reaching task are associated with 

cortical reorganization, and if this cortical reorganization persists in 

the absence of practice, it is plausible that motor cortex reorganization 

represents the permanent neural encoding of the skill. 
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CHAPTER TWO 

DEVELOPMENT OF NOVEL SKILLED FORELIMB MOVEMENTS AND 

REDISTRIBUTION OF FORELIMB MOVEMENT REPRESENTATIONS WITHIN 

RAT MOTOR CORTEX 

Theresa M. Hogg 
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2.1 Abstract 

Adult rats were trained for thirteen days on a skilled reaching task. Frame 

by frame video analysis was performed on reaching movements each day to 

assess changes in forelimb movement sequences and accuracy. Intracortical 

microstimulation was then used to define the topography of movement 

representations within contralateral forelimb motor cortex. Results showed that 

increased accuracy was accompanied by the acquisition of skilled wrist and digit 

movements. The development of the skilled movement sequences was 

associated with an expansion of wrist and digit movement representations in 

forelimb motor cortex. The results show that changes in movement 

representations within rat motor cortex that are driven by learning a novel motor 

skill can be directly related to specific changes in movement sequences that 

mediate improved motor performance. 
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2.2 Introduction 

The topography of movement representations within adult motor cortex is 

highly dynamic and can be altered in response to a variety of manipulations 

(Jacobs & Donoghue, 1991; Huntley, 1997). The capacity for functional 

reorganization is thought to support the development of novel motor skills. 

Within rat motor cortex, skilled forelimb training has been shown to cause an 

expansion of wrist and digit movement representations into regions of elbow 

and shoulder representations. This reorganization does not occur in response to 

extensive repetition of unskilled movements (Kleim et al., 2002) or increased 

forelimb strength (Remple et al., 2001) suggesting that the plasticity is dependent 

upon learning a novel skill. Despite the robust nature of the reorganization, 

however, there has been no demonstration that the expansion of wrist and digit 

representations reflects specific changes in distal forelimb movement sequences 

during training. All previous experiments have measured reaching accuracy 

during training (Kleim et al., 1998; Kleim et al., 2002) without examining exactly 

how forelimb movement sequences change. If the expansion of distal (wrist and 

digit) movement representations is related to the performance of skilled reaching 

behaviour, then changes in distal movement sequences should be observed over 

the course of training and be related to improved performance. In the present 

experiment we examined changes in both distal and proximal forelimb 

movement sequences across several days of skilled reach training. These 

changes in movement strategy were then related to changes in success on the 
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task and the topography of movement representations within the forelimb motor 

cortex. 

2.3 Materials and Methods 

2.3.2 Subjects: Animals were housed in standard animal housing cages and were 

kept on a steady 12:12 light/dark cycle throughout the experiment. Prior to 

training they were placed on a restricted diet (approximately 15 g of food/day 

for 2-3 days) until they reached approximately 90% of their original body weight. 

2.3.2 Reach training: All animals were trained for 2-3 days on a pre-training task 

in order to familiarize them with the food pellets and assess paw preference. The 

pretraining task used was the Whishaw Tray Reaching Task (see Whishaw, 

2000). The animals were trained to reach out of the front of plexi-glas cage 

towards a tray of food pellets located at the front of the cage. After they 

successfully retrieved ten food pellets in one training session, they were 

randomly assigned to either a Skilled Reaching Condition (SRC; n=8) or a Non-

Reaching Condition (NRC; n=8). SRC animals were trained on a single pellet 

reaching task for thirteen consecutive days (see Figure 5). The task required the 

animals to reach through an opening in the front of a Plexi-Glas box to retrieve a 

food pellet (Bioserv, 45 mg) located on a platform outside the front of the cage 

(see Dunnett et al., 1987). Each training session lasted for ten minutes and was 
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videotaped for further analysis. NRC animals were only trained on the pre­

training task to assess their paw preference. 

2.3.3 Movement Analysis: The first ten successful reaches from each training 

session were analyzed using a movement rating system based, on the ten element 

system developed by Whishaw et al. (1993). A reach qualified as successful if the 

animal retrieved a pellet from the platform on the front of the reaching box and 

placed the pellet in its mouth in the first attempt. The nine components of the 

reach were: (1) Digits Close, the palm is supinated and the digits are semi-flexed 

in anticipation of the reach. (2) Aim, the elbow is brought towards the midline of 

the body and the palm is brought to midline. (3) Advance, the elbow is kept in 

midline and the limb is advanced towards the target. (4) Digits Open, the wrist is 

not fully pronated and the digits open. (5) Pronation, the elbow is turned outward 

as the palm is placed over the food pellet in an arpeggio. (6) Grasp, the arm is 

kept still as the digits close over the pellet. The palm is then lifted from the shelf. 

(7) Supination I, the elbow is rotated inward and the palm is turned at a 90° angle 

as it leaves the slot. (8) Supination II, the palm is turned straight up in anticipation 

of the animal eating the pellet. (9) Release, the digits are opened and the animal 

puts the food in its mouth (see Figure 5). 

These movements were rated on a 0 to 2 point system, in which 0 

represented the complete performance of a movement, 1 represented an 

intermediate performance of the movement, and 2 represented the absence or 
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poor performance of a movement. The nine reach components were then 

categorized as either a predominantly proximal (elbow and shoulder) 

movement, or a predominantly distal (wrist and digit) movement. The aim and 

advance components were classified as proximal movements, and the digits 

close, digits open, pronation, grasp, supination i, supination ii and release 

components were classified as distal components. 
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Figure 5: Elements of movement analysis (taken from Whishaw, 2000). The lift 

component of the elements was not used in this experiment because it did not fit 

into the distal or proximal movement category. Further, the advance and digits 

open components are represented in a single heading on the chart, and the 

release component of the scale is not present on the chart. 

Pronation Grasp Supination 1 Supination 2 
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2.3.4 Reaching Accuracy: Three, two minute samples of the videotaped training 

sessions were analyzed for reaching accuracy from each day of training for each 

SRC animal. The number of successful reaches was divided by the number of 

total reaches attempted. This produced the accuracy percentage within the 

training session. 

2.3.5 Intracortical Microstimulation: The day following the final training session, a 

map of the motor cortex was produced for each animal. A map of the motor 

cortex contralateral to the trained paw was derived using standard intracortical 

microstimula tio n (ICMS) techniques. 

The animals were first anesthetized with ketamine hydrochloride (70 mg/ 

kg ip) and xylazine (5 mg/kg im). The animals received supplementary 

injections of ketamine (20 mg/ kg ip) and acepromazine (0.02 mg/ kg ip) as 

needed. 

The skull directly over the motor cortex, contralateral to the trained paw, 

was removed. The dura mater was removed, and the skull was covered with 

warm silicon oil. A digital image of the brain was taken for use as a guide for 

microelectrode penetrations. A 375 um grid was superimposed over the digital 

image of the cortex. Using a hydraulic microdrive, a glass microelectrode was 

lowered to a depth of approximately 1500 um, which corresponds to cortical 

layer V. A 40-ms train of thirteen thousand, two hundred-us monophasic 

cathodal pulses delivered at 350 Hz from an electrically isolated, constant current 
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stimulator was used to stimulate the cortex. The animal was in a prone position, 

with its trained paw held slightly extended in front of the rat in a constant 

position. At each penetration site, the current was gradually increased until a 

movement was evoked (threshold current). The current was increased at most to 

60 uA. If no movement was evoked at 60 uA, the site was labeled non-

responsive. 

The caudal forelimb area (CFA) of the motor cortex was the area that was 

mapped, because it is the only area of the rat motor cortex that has been shown 

to undergo reorganization in response to the skilled reaching task (Kleim et al., 

1998). Forelimb movements were categorized as either distal representations 

(digit and wrist movements) or proximal representations (elbow and shoulder 

movements). The head, neck, vibrissae, and non-responsive sites were used to 

determine the border of the CFA. 

After the motor maps were derived, a computer program (Canvas 3.5.4) 

was used to determine the area of each type of representation. 

2.4 Results 

2.4.1 Reaching Accuracy: A repeated measures ANOVA with DAY as a within 

subject factor revealed a significant effect of DAY on reaching accuracy in the 

SRC animals (F(6, 72) = 13.481; p<0.001). The mean reaching accuracy 

significantly increased with training (Figure 6). 
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Figure 6: Reaching accuracy on the skilled reaching task across thirteen days. 
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2.4.2 Movement Analysis: A repeated measures ANOVA with DAY as a within 

subject factor revealed a significant of DAY on the percentage of successful 

reaches containing specific movement elements. The results are summarized in 

Table 2. 

Table 2: Elements of movement analysis 

Movement T y p e Significantly 
Changed 

Digits Close Distal No (F(12,78) = 1.4) 

Aim Proximal No (F(12,78) = .74 

Advance Proximal No (F(12,78) = .80 

Digits Open Distal Yes (F(12,78) = 5.0 

Pronation Distal Yes (F(12,78) = 6.5 

Grasp Distal Yes (F(12,78) = 6.2 

Supination I Distal Yes (F(12,78) = 12.0 

Supination II Distal Yes F(12,78) = 8.5 

Release Distal Yes (F(12,78) = 2.6 
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2.4.3 Topography of Movement Representations: A Student's t test (p<0.05) showed 

the SRC animals to have a significantly greater percentage of the CFA occupied 

by distal forelimb representations than untrained animals (t(12) = 3.32; p<0.01). 

Conversely, untrained animals had a significantly greater proportion of CFA 

occupied by proximal representations than SRC animals (t(12) = 3.32; p<0.01). 

2.5 Discussion 

Several experiments have recently shown that skilled forelimb training 

leads to an expansion of distal movement representations in rat forelimb motor 

cortex (Kleim et al, 1998; Kleim et al, 2002). Although the trained, stereotyped 

reach of the rat has been demonstrated to be predominantly proximally-driven 

(Whishaw et al., 1990), it is in fact the distal components of the reach that change 

and develop as the animal is learning the task. The present experiment 

demonstrates that this functional reorganization is accompanied by the 

development of skilled distal movement sequences. Although the individual 

components of the movement sequence may be present prior to motor learning, 

it is the grouping of these movements into a skilled movement sequence that 

drives motor learning. The existing motor map supports existing movement 

sequences. Prior to training, the animals are able to produce a wide variety of 

movements, and thus the animals are learning to produce novel movement 

sequences in a skillful manner, which in turn requires cortical reorganization. 

The development of skilled distal movements also occurs at the same time that 
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reaching accuracy improves indicating that these novel sequences are related to 

improved performance. The results are consistent with similar experiments in 

primates where an increase in movement representations resembled those used 

during training on a skilled digit task was found (Nudo, 1996). 

These data show that novel motor sequence learning drives specific 

physiological changes within motor cortex that reflect the acquired skill. 

However, a recent experiment has shown that the functional reorganization and 

improved accuracy do not occur at the same time. Despite an increase in 

reaching accuracy after seven days of training, no significant changes in motor 

cortex organization were observed until ten days of training (Kleim et al., 2000). 

Thus the acquisition of skilled movements alone is not sufficient to induce 

functional reorganization. Further work has shown that acquired skilled 

movements must be sufficiently repeated before the cortex undergoes 

reorganization (Hogg et al., 2001). Similar findings in humans have shown that 

one training session transiently alters the activation pattern of the motor cortex 

(Kami et al., 1995), while more extensive training is required to alter the pattern 

of activation permanently (Classen et al., 1998). Collectively, these experiments 

show that changes in motor behaviour are reflected as functional reorganization 

in the motor cortex and that this reorganization requires the acquisition and 

repetition of novel skilled movement sequences. 
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CHAPTER THREE 

REORGANIZATION OF FORELIMB MOVEMENT REPRESENTATIONS 

WITHIN RAT MOTOR CORTEX IS DEPENDENT UPON SUFFICIENT 

REPETITION OF NOVEL SKILLED FORELIMB MOVEMENTS 

Theresa M. Hogg 
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3.1 Abstract 

Motor learning is associated with a redistribution of movement 

representations within the motor cortex. However, the relationship between 

cortical reorganization and learning is still unclear. Recent work found that rats 

trained on a motor learning task acquired the skill well before significant changes 

in the organization of movement representations occurred (Kleim et al., 2002). 

The present experiment examined the role movement repetition plays in driving 

functional reorganization. Intracortical microstimulation (ICMS) was used to 

derive topographical maps of the caudal forelimb area (CFA) of the motor cortex 

from rats on three different training schedules. Adult male rats were trained on 

a skilled (SRC) or an unskilled reaching condition (URC) for 3 or 13 days. 

Another group of animals was trained for 3 days on either the URC or the SRC 

and left without training for 10 days before the cortex was mapped. Animals in 

the SRC that were trained for 13 days had a significant increase in the percentage 

of distal (wrist and digit) representations in the CFA in comparison to URC 

animals. No significant differences were found between the URC or SRC 

animals that were trained for 3 days, or trained for 3 days and then left for 10 

days. These results suggest that motor cortex reorganization requires acquisition 

of motor skill and sufficient performance of the skilled movements. 
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3.2 Introduction 

It has been well documented that the organization of representations 

within the neocortex is not fixed but can change in response to a variety of 

manipulations. Cortical damage, electrical stimulation and peripheral damage 

have all been shown to change topographical representations in various cortical 

areas, including auditory cortex (Roe et al., 1990; Schwaber, Garraghty & Kaas, 

1993; Maldonado & Gerstein, 1996), visual cortex (Chino et al., 1992; Godde et a l , 

2002), somatosensory cortex (Rasmusson, Turnbull & Leech, 1985; Garraghty & 

Kaas, 1991) and motor cortex (Glees & Cole, 1950; Nudo et al., 1990). Although 

the motor cortex is capable of changing in response to a variety of invasive 

manipulations, cortical reorganization is thought to mediate the development of 

new motor behaviours. Motor learning has been shown to induce reorganization 

of movement representations in humans (Cohen et al., 1993), primates (Nudo et 

al., 1996), and rodents (Kleim et al., 1998). Further, this reorganization is learning 

but not activity dependent. Kleim et al. (1998) trained animals on an unskilled 

reaching condition, in which they were taught to press a bar in order to receive a 

food pellet. This task does not require the animals to make skillful wrist and 

digit movements. It was found that training on the unskilled reaching condition 

did not lead to motor cortex reorganization. Plautz et al. (2000) trained monkeys 

on a pellet reaching task that required the animals to use their digits to retrieve a 

food pellet from a large well. The task involved repetitive movements without 

motor skill acquisition. When the pre-training motor maps and post-training 
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motor maps were compared there were no significant differences. Finally, 

animals exposed to running wheels for a month did not undergo cortical 

reorganization but did exhibit an increase in blood vessel density within motor 

cortex (Kleim et al., 2002). Activity alone is insufficient to drive cortical 

reorganization, while learning novel motor skills (i.e. novel motor sequences) 

drives functional plasticity in the motor cortex. 

Despite the evidence that motor skill learning induces motor map 

reorganization, the temporal nature of this relationship is unclear. Recent work 

has shown that rats trained on a motor skill task showed motor map 

reorganization only after the skill had been acquired (Kleim et al., 2002). There 

are two possible interpretations of these results. The first is that the cortex 

simply requires time to reorganize after the initial motor learning has taken 

place. The second interpretation is that once the motor task has been acquired, it 

must be sufficiently repeated before the cortex will reorganize. The present 

experiment attempts to distinguish between these two possibilities and 

determine if motor map changes are time or practice dependent. 

3.3 Materials and Methods 

3.3.1 Subjects: Forty-eight adult male Long-Evans hooded rats (350-420 g) 

were group housed (2 animals/cage) in standard laboratory cages on a 12:12 

hour light/dark cycle for the duration of the experiment. The animals were 

randomly distributed into a Skilled Reaching Condition (SRC; n = 24) or an 
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Unskilled Reaching Condition (URC; n = 24). Animals from both the unskilled 

and the skilled reaching conditions were then divided equally into three training 

schedules: a DAY 3 group (n = 16), a DAY 3 - 10 group (n = 16) and a DAY 13 

group (n = 16). Animals in the DAY 3 condition received three days of training 

on either the SRC or the URC. Animals in the DAY 3 - 1 0 group were trained for 

three days on the SRC or the URC, followed by no training for another ten days. 

Animals in the DAY 13 group were trained on either the SRC or the URC for 

thirteen days. 

3.3.2 Reach training: Over the course of several days, animals were placed 

on a restricted diet, until they reached approximately 90% of their original body 

weight. All the animals were given several brief pre-training sessions on the 

Whishaw Tray Reaching Task (see Dunnett et al., 1987). The animals were 

placed in test cages (10 cm x 18 cm x 10 cm) with floors constructed of 2 mm bars, 

9 mm apart edge-to-edge. A tray (4 cm wide x 5 cm deep) filled with food pellets 

(Bioserv, 45 mg) was mounted on the front of the cage. The rats were required to 

reach outside the cage and retrieve pellets from the tray. The purpose of this task 

was to familiarize the animals with the pellets, as well as to determine the paw 

preference of all of the animals. All rats remained in pretraining until they had 

successfully retrieved 10 food pellets (approximately 1 hour/day for 2 days). 

Following pre-training, both groups of animals were trained in a Plexi-Glas cage 

(11 cm x 40 cm x 40 cm) with a 1 cm slot located at the front of the cage. SRC 
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animals were trained for 10 minutes each day to reach through the slot and 

retrieve a single food pellet from a platform attached to the front of the cage 

(Whishaw and Pellis, 1990). Each session was videotaped and was later used to 

assess reaching performance. A successful reach was scored when the animal 

grasped the food pellet, brought it into the cage and to its mouth without 

dropping the pellet. The percentage of successful reaches was then calculated [(# 

successful retrievals/total # of reaches) x 100J. 

To control for the added effect of increased motor activity of the SRC, 

URC animals were trained on a variation of the skilled reaching task. The URC 

animals were also trained to reach for a food pellet outside of the slot. However, 

the pellet was placed out of the animal's reach. This provided the animal with 

the impetus to reach, without successfully retrieving the pellet. Thus, the URC 

animals would reach for but never obtain the food pellet and therefore not 

develop skilled reaching movements. To keep the animal reaching, the 

experimenter dropped the pellet into the cage after the animal had reached 

several times. Thus, the SRC and the URC animals experienced similar amounts 

of forelimb activity, but only the SRC animals developed motor skill. 

3.3.3 Topography of Movement Representations: The day following the final 

training session, the motor cortex contralateral to the trained paw was mapped 

using standard intracortical microstimulation (ICMS) techniques. The animals 

were first anesthetized with ketamine hydrochloride (70 mg/ kg ip) and xylazine 
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(5 mg/kg im). The animals received supplementary injections of ketamine (20 

mg/ kg ip) and acepromazine (0.02 mg/ kg ip) as animals needed. The skull 

directly over the motor cortex, contralateral to the trained paw, was removed. 

The dura mater was removed, and the skull was covered with warm silicon oil. 

A digital image of the brain was taken for use as a guide for microelectrode 

penetrations. A 375 um grid was superimposed over the digital image of the 

cortex. Using a hydraulic microdrive, a glass microelectrode was lowered to a 

depth of approximately 1500 urn, which corresponds to cortical layer V. A 40-ms 

train of thirteen thousand, two hundred-us monophasic cathodal pulses 

delivered at 350 Hz from an electrically isolated, constant current stimulator was 

used to stimulate the cortex. The animal was in a prone position, with its trained 

paw held in a constant position. At each penetration site, the current was 

gradually increased until a movement was evoked (threshold current). The 

current was increased at most to 60 uA. If no movement was evoked at 60 uA, 

the site was labeled non-responsive. 

The caudal forelimb area (CFA) of the motor cortex was the area that was 

mapped, because it is the only area of the rat motor cortex that has been shown 

to undergo reorganization in response to the skilled reaching task. A previous 

study found that the total area of the CFA did not significantly changes after 

skilled reach training. Rather, the area of the distal representations (sites that 

elicited digit and wrist movements) increases at the expense of the area of the 

proximal representations (sites that elicited elbow and shoulder movements) 
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(Kleim et al., 1998). Forelimb movements were categorized as either distal 

representations or proximal representations. The head, neck, vibrissae, and non-

responsive sites were used to determine the border of the CFA. 

After the motor maps were derived, a computer program (Canvas 3.5.4) 

was used to determine the area of each type of representation as well as the total 

area of the CFA. 

3.4 Results 

3.4.2 Reaching Accuracy: A repeated measures ANOVA with DAY as a between 

subject factor revealed a significant effect of DAY on reaching accuracy for 

animals in the 3 (F(10,20) = 30.13; p<0.01), 3-10 (F(7, 21) = 10.65; p<0.01) and 13 

conditions (F6,72) = 13.48; p<0.01). Animals in all three conditions showed 

significant improvements in reaching accuracy with training (Figure 7). 

However, animals in the 3-10 condition exhibited a significant reduction in 

reaching accuracy between their last day of training and the probe trial ten days 

later (Fisher's PLSD; p<0.05). 
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Figure 7: Accuracy on the skilled reaching task. 
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3.4.2 Topography of Movement Representations: A two way ANOVA with TIME 

and CONDITION as between subject factors revealed a significant TIME x 

CONDITION interaction for % of CFA occupied by Distal (F(2,42) = 3.43; p<0.05) 

and Proximal (F(2, 42) = 3.51; p<0.05). Subsequent multiple comparisons 

(*Fisher's LSD; p<0.05) showed the SRC animals to have a greater proportion of 

distal movement representations and a smaller proportion of proximal 

representations within the CFA than the URC animals after thirteen days of 

training but not after 3 or 3-10 days of training (Figure 8). See Figure 9 for 

examples of topographical maps of all training schedules. 
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Figure 8: Percentage of distal movement representations in caudal forelimb area 

following three training schedules. 
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Figure 9: Topographical motor maps of the caudal forelimb area. Green 

represents distal movements and blue represents proximal movements. A) 

Animal was trained for 3 days on the unskilled reaching condition (URC). B) 

Animal was trained for 3 days on the skilled reaching condition (SRC). C) 

Animal was trained for 3 days on the URC, and was mapped after 10 days of no 

training. D) Animal was trained for 3 days on the SRC, and was mapped after 10 

days of no training. E) Animal was trained for 13 days on the URC. F) Animal 

was trained for 13 days on the SRC. 

DAY 3 URC -.SRC 

DAY 3-10 URC DAY 3-10 SRC D 
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DAY 13 URC E DAY 13 SRC 
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3.5 Discussion 

The present results confirm those of previous studies showing that 

reorganization of movement representations within motor cortex is dependent 

on learning and not simply increased motor activity. Yet, activity is critical, 

because once the skill is acquired, it must be sufficiently repeated to induce 

reorganization. 

These results and others have lead to the following theory. When learning 

a novel motor skill, initially many errors are made and occasionally a successful 

movement will occur. These movements are soon coordinated together to 

produce a movement pattern that results in consistent successful task 

performance. This rapid learning is associated with improved performance, but 

no motor map reorganization (Kleim et al., 2000). This rapid learning is followed 

by a period in which the animal makes minute adjustments in task performance, 

until the movement becomes stereotyped. The animal, however, is repeating the 

learned task and reinforcing the neural activity that supports it. Small 

improvements in the motor skill and significant changes in motor cortex 

reorganization distinguish this stage of learning, making it likely that once the 

skill is acquired, repetition is necessary to drive motor map reorganization, as 

this experiment has demonstrated. This theory is supported by a previous 

proposal by Kami et al. (1998) in which they suggest that there are two phases of 

motor learning. The first type is a fast learning phase, during the initial training 

sessions. This fast phase is characterized by fast progression in the acquisition of 
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a novel skilled motor task. This phase is followed by a slow learning phase. In 

the slow phase of learning, there is a slow, gradual improvement in behavioural 

performance. Several studies have shown that there is a change in motor cortex 

activation after a brief training session (Shadmehr & Brashers-Krug, 1997; 

Classen et al., 1998; Kami et al., 1998; Gandolfo et al., 2000). However, these 

changes in motor activity are transient, only persisting for several minutes 

following the training session (Classen et al., 1998; Liepert et al. 1999; Rosenkranz 

et al., 2000). This suggests that more training is required before these changes 

become resistant to decay. 

The present experiment utilized several short training schedules to 

determine the effects of time on cortical reorganization. Although it has been 

shown that there is a time course to motor cortex reorganization (Kleim et al., 

2000), training schedule may be an important factor. Previous memory 

consolidation experiments have shown that massed training versus spaced 

training produces differences in learning. Spaced training is more conducive to 

forming long term memory. It has been shown that memory formation requires 

protein synthesis in order to occur, and that a spaced training schedule produces 

more protein synthesis than a massed training schedule (Tully et al., 1994). Thus, 

it is possible that using a massed, rather than spaced, training schedule, in which 

the animal produced the same number of movements of the spaced training 

schedule, could yield different results. 
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Neuromod ula tory systems may also play a role in cortical plasticity. 

Norepinephrine can act as a neuromodulator in the cortex, increasing the effects 

of other neurotransmitters. Bickford (1993) found that rats with a deficit in 

modulatory norepinephrine in the cerebellar cortex were slower to learn a skilled 

motor task than those animals with normal norepinephrine. Thus, it is possible 

that the existing levels of neurotransmitters could produce variations in cortical 

reorganization. It is also possible that manipulating neurotransmitter levels 

could produce variations in motor skill learning. 

Several experiments have shown that skill learning is necessary for motor 

cortex reorganization, and that animals trained on an unskilled task do not show 

cortical reorganization (Plautz et al., 2000; Kleim et al., 1998; Kleim et al., 2002). 

It is unclear, however, what is neurophsyiologically different between skilled 

and unskilled behaviours. Behavioural relevance may play a role in learning-

dependent cortical reorganization. The nucleus basalis has modulatory 

projections throughout the cortex, and has been implicated in providing the 

somatosensory cortex with information about the importance of behavioural 

stimuli (Mesulam et al., 1983; Rye et al., 1984). Neurons in the nucleus basalis are 

activated when an animal is attending to an important behavioural stimulus 

(Richardson & DeLong, 1991). Kilgard and Merzenich (1998) have shown that 

extraneous activation of the nucleus basalis paired with a tone led to auditory 

cortex reorganization. The auditory cortex responded to the tone as if it was a 

significant stimulus. It is, however, unlikely that the motor cortex reorganization 
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is dependent on behavioural salience. An experiment by Kleim and colleagues 

found that animals trained to reach towards a pellet held out of reach also did 

not show cortical reorganization (1998). Likewise, Plautz and colleagues found 

that animals that retrieved food pellets in a simple, repetitive motor task did not 

show cortical reorganization. In both of these experiments, the animals are 

trained to attend to the food reward. The goal of the behaviour is the salient 

event in both of these experiments, whether the animal's goal is to continually 

reach towards an unattainable food pellet so that the experimenter will provide a 

reward, or if the animal's goal is to directly retrieve the food pellet. In both of 

these studies the goal is the salient event, yet the animals do not show movement 

reorganization in motor cortex. Thus, it is more likely that novelty is driving 

cortical reorganization. The existing motor map supports existing movement 

sequences. Prior to training, the animals are able to produce a wide variety of 

movements, and thus the animals are learning to produce novel movement 

sequences in a skillful manner, which in turn requires cortical reorganization. 

This experiment answers an important question regarding the relationship 

between motor learning and cortical reorganization. Time alone is not required 

for motor cortex reorganization. Rather, after the motor task is acquired it is the 

practice of the task that leads to these changes in topographical motor map 

changes. These findings lead to the speculation that sufficient practice of a novel 

motor skill sequence is necessary for its permanent neural encoding. 
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CHAPTER FOUR 

MOTOR MAP REORGANIZATION REPRESENTS CONSOLIDATION 

OF MOTOR SKILL 

Theresa M. Hogg 
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4.1 Abstract 

Motor learning is associated with reorganization of movement 

representations within motor cortex. However, the relationship between cortical 

reorganization and learning is still unclear. Recent work found that rats trained 

on a motor learning task showed significant learning prior to motor map 

reorganization (Kleim et al., 2000). Furthermore, rats trained for a longer time on 

the motor learning task showed cortical reorganization, and this reorganization 

persisted in the absence of training. If performance levels on the skilled reaching 

task are related to cortical reorganization, and if this cortical reorganization 

persists in the absence of training, it is plausible that motor cortex reorganization 

represents the permanent neural encoding of motor skill. To examine this 

possibility, we trained adult male rats on a skilled (SRC) condition for 5 days. 

Intracortical microstimulation (ICMS) was used to produce topographical maps 

of the caudal forelimb area (CFA) of the rat motor cortex prior to training, 

immediately following training and one month following the last day of training. 

Results revealed that only those animals that showed expansion of distal 

representations during training learned the task. Further, the expansion 

remained in the absence of continued training. Finally, the data suggest that the 

state of the motor cortex prior to training may influence motor performance. 

Surprisingly, rats that entered training with large distal movement 

representations had difficulty in learning the task. 

60 



4.2 Introduction 

The functional organization of the cerebral cortex is characterized by the 

presence of representational maps. These include maps of the visual and 

auditory environment, maps of the body somatosensory system and motor maps. 

All of these representational maps have been shown to undergo reorganization 

in response to various manipulations (Rasmusson, Turnbull & Leech, 1985; Nudo 

et a l , 1990; Chino et al., 1992; Maldonado & Gerstein, 1996). Specifically, the 

motor cortex has been shown to change in response to cortical damage (Glees & 

Cole, 1950), peripheral nerve damage (Donoghue & Sanes, 1988), repeated 

cortical stimulation (Nudo et al., 1990) and motor learning (Nudo et al., 1996; 

Kleim et al., 1998; Kleim et al., 2002a; Kleim et al., 2002b). 

The development of skilled movement has been shown to cause a 

redistribution of movement representations whereby trained movements expand 

into cortical areas previously dedicated to untrained representations (Nudo et al., 

1996). Kleim and colleagues (1998) provided further evidence that motor skill 

learning drives motor map reorganization. Rats trained on a skilled reaching 

task, involving skillful wrist and digit movements, showed cortical 

reorganization, biasing the motor cortex towards wrist and digit representations. 

Motor skill learning, however, is associated with an increase in motor activity. 

Rats were trained on a simple bar pressing task that did not require novel skill 

learning to control for the increase in motor activity. Following training the 
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animals were mapped using ICMS, and it was found that they did not show 

reorganization. 

Functional plasticity within the motor cortex is also directly dependent on 

the type of motor experience that an animal has. Animals trained on a forelimb 

strengthening task showed an increase in forelimb strength, but did not undergo 

motor cortex reorganization (Remple et al., 2001). In addition, animals that had 

access to running wheels for a month did not undergo cortical reorganization 

(Kleim et al., 2002). Therefore, learning a novel skilled task drives topographical 

reorganization. Similar findings have been demonstrated in human studies 

(Kami et al., 1995; Classen et al., 1998). 

The time course of cortical reorganization in skilled reach trained rats has 

also been studied. In a recent experiment it was found that although rats 

typically reach the asymptote of behavioural performance after seven days of 

training, the motor maps show reorganization only after ten days of training. 

Further, it was found that once cortical reorganization has occurred, it persists in 

the absence of further motor skill training (Kleim et al., 2000). Thus, with 

sufficient training, the motor map reorganizes and this reorganization persists in 

the absence of skill practice for a long time period. There were two possible 

explanations for these results. The first possible interpretation is that following 

the initial motor skill acquisition the motor cortex requires time to reorganize. 

The second possibility is that the task must be repeated sufficiently in order to 

produce reorganization. It has been found that once the task is acquired it must 
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be sufficiently repeated in order to produce functional plasticity in the motor 

cortex (Kleim at e l v 2000). 

Once the reorganization occurs it persists for an extended period of time 

(at least 200 days) without performance. Thus, it has been hypothesized that 

motor cortex reorganization may represent motor memory consolidation. Once 

motor skill learning produces cortical reorganization, this reorganization 

persists, and the animal still retains the ability to perform the task in the absence 

of training. The present experiment attempts to determine if motor cortex 

reorganization represents motor memory consolidation by training animals until 

they have started to acquire the task and then comparing motor maps elicited 

prior to training, immediately after training, and after a period of inactivity. 

4.3 Materials and Methods 

4.3.2 Subjects: Seventeen adult male Long-Evans hooded rats (350-420 g) 

were group housed (2 animals/cage) in standard laboratory cages on a 12:12 

hour light/dark cycle for the duration of the experiment. All the animals were 

assigned to a Skilled Reaching Condition (SRC; n = 17) and were trained on the 

SRC for five days. 

4.3.2 Reach training: Over the course of several days, animals were placed 

on a restricted diet, until they reached approximately 90% of their original body 

weight. AH the animals were given several brief pre-training sessions on the 
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Whishaw Tray Reaching Task (see Dunnett et al., 1987). The animals were 

placed in test cages (10 cm x 18 cm x 10 cm) with floors constructed of 2 mm bars, 

9 mm apart edge to edge. A tray (4 cm wide x 5 cm deep) filled with food pellets 

(Bioserv, 45 mg) was mounted on the front of the cage. The rats were required to 

reach outside the cage and retrieve pellets from the tray. The purpose of this task 

was to familiarize the animals with the pellets, as well as to determine the paw 

preference of all of the animals. All rats remained in pretraining until they had 

successfully retrieved 10 food pellets (approximately 1 hour/day for 2 days). 

Following pre-training, the animals were given their first surgery. After 

recovering from surgery, the animals were trained for five days in a Plexi-Glas 

cage (11 cm x 40 cm x 40 cm) with a 1 cm slot located at the front of the cage. 

SRC animals were trained for 10 minutes each day to reach through the slot and 

retrieve a single food pellet from a platform attached to the front of the cage 

(Whishaw and Pellis, 1990). Each session was videotaped and was later used to 

assess reaching performance. A successful reach was scored when the animal 

grasped the food pellet, brought it into the cage and to its mouth without 

dropping the pellet. The percentage of successful reaches was then calculated [(# 

successful retrievals/total # of reaches) x 100]. Prior to the third and final 

surgery, the animals received a probe trial on the skilled reaching task, in which 

they retrieved ten pellets. 
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4.3.3 Electrophysiological mapping: The animals received three surgeries. 

The first surgery was performed after pre-training but prior to training when 

paw preference had been established. The second surgery was performed on the 

day following the fifth and final training session. The third surgery was 

performed approximately thirty days after the second surgery. The animals 

received no training between the second and third surgeries. The surgeries 

consisted of producing a topographical map of the motor cortex contralateral to 

the trained paw using standard intracortical microstimulation (ICMS) 

techniques. The animals were first anesthetized with ketamine hydrochloride (70 

m g / kg ip) and xylazine (5 mg/kg im). The animals received isoflurane gas 

(.15%-.25%) and supplementary injections of ketamine (20 mg/ kg ip) and 

xylazine (1 mg/ kg ip) as needed. 

The skull directly over the motor cortex, contralateral to the trained paw, 

was removed. The dura mater was retracted, and the skull was covered with 

warm silicon oil. A digital image of the brain was taken for use as a guide for 

microelectrode penetrations. A 375 um grid was superimposed over the digital 

image of the cortex. Using a hydraulic microdrive, a glass microelectrode was 

lowered to a depth of approximately 1500 um, which corresponds to cortical 

layer V. A 40-ms train of thirteen thousand, two hundred-us monophasic 

cathodal pulses delivered at 350 Hz from an electrically isolated, constant current 

stimulator was used to stimulate the cortex. The animal was held in a prone 

position, with its trained paw held in a constant position. At each penetration 
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site, the current was gradually increased until a movement was evoked 

(threshold current). The current was increased at most to 60 uA. If no 

movement was evoked at 60 uA, the site was labeled non-responsive. 

The caudal forelimb area (CFA) of the motor cortex was the area that was 

mapped, because it is the only area of the rat motor cortex that has been shown 

to undergo reorganization in response to the skilled reaching task (Kleim et al., 

1998). Forelimb movements were categorized as either distal representations 

(digit and wrist movements) or proximal representations (elbow and shoulder 

movements). The head, neck, vibrissae, and non-responsive sites were used to 

determine the border of the CFA. After the motor maps were derived, the area 

of each type of representation was determined. 

4.4 Results 

4.4.2 Group Assignment: Prior to analysis, animals were assigned to Treatment 

condition on the basis of the difference between Ma pi and Map2. If an animal 

exhibited a 10% or more shift in the percentage of the CFA occupied by distal 

representations, they were placed in the Reorganized condition (n=5). All other 

animals were considered Unreorganized (n=12). There was a discrepancy 

between the number of animals in the Reorganized and Unreorganized groups 

because only five of the seventeen animals in this experiment showed motor map 

reorganization based on the experimental criteria. If the training time had been 
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increased, it would be expected that more animals would have undergone 

cortical reorganization. 

4.4.2 Reaching Accuracy: A within subject Analysis of Variance (ANOVA) with 

DAY as a within subject factor and CONDITION as a between subject factor 

revealed a significant DAY x CONDITION interaction on reaching accuracy 

(F(5,75) = 2.38; p<0.05). Subsequent multiple comparisons showed that 

Reorganized animals had a significantly higher reaching accuracy than 

Unreorganized animals on all but the first day of training (*Fisher's PLSD; 

p<0.05) (Figure 10). The Unreorganized animals, however, also showed no 

significant increase in reaching accuracy from the first to the last day of training 

(Figure HA) while the Reorganized animals had a significantly higher reaching 

accuracy on the last day of training (Figure 11B). Furthermore, there was no 

significant difference in reaching accuracy between the last day of training and 

the probe trial in either the Reorganized or Unreorganized animals (Figure 11C 

and Figure 11D). 
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Figure 10: Reaching accuracy on the skilled reaching task. There was a one 

month period with no skilled reach training between Day 5 and the Probe Trial. 

Reorganized animals had a significantly higher reaching accuracy than 

Unreorganized animals on all but the first day of training. Unreorganized 

animals showed no significant increase in reaching accuracy from the first to the 

last day of training while the Reorganized animals had a significantly higher 

reaching accuracy on the last day of training. There was no significant difference 

in reaching accuracy between the last day of training and the probe trial in either 

the Reorganized or Unreorganized animals 
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Figure 11: A comparison between days of reaching accuracy on the skilled 

reaching task. A) Animals with Unreorganized maps did not show a significant 

difference in reaching accuracy between the first and last days of training. B) 

Animals that showed Reorganization did show a significant difference between 

the first and last days of training. C) Unreorganized animals did not have a 

significant difference in reaching accuracy between the last day of training and 

the probe trial. D) Reorganized animals did not have a significant difference in 

reaching accuracy between the last day of training and the probe trial. 
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4.4.3 Topography of Movement Representations: A within subject Analysis of 

Variance (ANOVA) with DAY as a within subject factor and CONDITION as a 

between subject factor revealed a significant DAY x CONDITION interaction of 

the percentage of the CFA occupied by distal movement representations (F(5,75) 

= 5.53; p<0.05) (Figure 12). Subsequent multiple comparisons showed that the 

Unreorganized animals had a significantly greater percentage of the CFA 

occupied by distal movement representations prior to training than Reorganized 

animals (Tisher's PLSD; p<0.05) (Figure 13A). Furthermore, Reorganized 

animals showed a significant increase in the percentage of distal representations 

between the pretraining and posttraining maps (Figure 13B) while the 

Unreorganized animals showed no such difference. Finally, no significant 

difference between Map2 and Map3 was found for either the Unreorganized or 

Reorganized animals (Figure 13C and Figure 13D). See Figure 14 for examples 

of topographical maps from each condition. 
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Figure 12: Percentage of distal movements seen in caudal forelimb area in Map 1 

(pretraining), Map 2 (posttraining) and Map 3 (following probe trial). 

Reorganized animals showed a significant difference between the pretraining 

and the posttraining maps. 
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Figure 13: Motor map comparisons. A) Percentage of distal movements 

representations prior to training in Reorganized and Unreorganized animals. B) 

Percentage of distal movement representations in Reorganized animals from 

Map 1 and Map 2. There was a significant difference between the two maps. C) 

Percentage of distal movement representations in Unreorganized animals in Map 

2 and Map 3. D) Percentage of distal movement representations in Reorganized 

animals in Map 2 and Map 3. 
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Figure 14: Example of topographical caudal forelimb motor maps. Green 

represents distal movements and blue represents proximal movements. The first 

three maps are from an Unreorganized animal, and the last three maps are from 

a reorganized animal. A) Map 1. B) Map 2. C) Map 3. A) Map 1. B) Map 2. C) 

Map 3. 

A. Unreorganized animal, Map 1 

B. Unreorganized animal, Map 2 
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C. Unreorganized animal, Map 3 

D. Reorganized animal, Map 1 
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E. Reorganized animal. Map 2 

F. Reorganized animal, Map 3 

77 



4. 5 Discussion 

This experiment examined whether motor cortex reorganization 

represents the consolidation of motor learning. Consolidation of a skilled motor 

task could be represented as a permanent change in cortical reorganization. If 

cortical reorganization represents consolidation of motor learning, then once 

reorganization has occurred it would become resistant to decay, and the animal's 

behavioural performance on the task would persist in the absence of training. 

The present experiment found that some of the animals that were trained for five 

days on a skilled reaching task showed cortical reorganization. Once cortical 

reorganization had occurred, it persisted in the absence of training for one 

month. Further, animals that showed cortical reorganization learned the task, 

while the animals that did not show reorganization did not learn the task. These 

findings provide evidence that cortical reorganization represents the permanent 

neural encoding of a skilled motor behaviour. 

The results from the present experiment also suggest that the state of the 

motor cortex prior to motor learning is an important factor in how quickly an 

animal is able to learn a skilled motor task. Animals that had a large amount of 

distal representations in the caudal forelimb area of motor cortex prior to 

training did not learn the skilled reaching task as quickly or as well as animals 

that had more elbow representations. Kleim and colleagues (1998) showed that 

training animals on a skilled reaching task leads to an increase in wrist 

representations. This implies that if the motor cortex is unable to undergo 
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reorganization then the animals are unable to learn the task as quickly as animals 

that are. It was also found that animals exhibiting distal movement 

reorganization were able to learn the task faster than animals that had a small or 

no amount of distal movement reorganization. This implies that task learning 

may depend in part on the predisposition of the motor cortex to reorganize. 

It has been shown, however, that cortical reorganization and motor skill 

learning do not occur at the same time. Kleim and colleagues found that animals 

that were trained on a skilled reaching task successfully acquired the task prior 

to cortical reorganization. Thus, there must be some cellular mechanisms that 

support the initial acquisition of a skilled motor behaviour. Rioult-Pedotti and 

colleagues found that the intracortical horizontal connections of layer II/III of the 

motor cortex were strengthened following training on a skilled reaching task. It 

was also found that long-term potentiation (LTP) could not be induced as readily 

in the trained hemisphere of the motor cortex compared to the contralateral 

hemisphere. This suggests that LTP is involved in motor learning (Rioult-Pedotti 

et al., 1998). Further, it has been found that there is an increase in the number of 

synapses per neuron in the caudal forelimb area of motor cortex, the same area 

where functional reorganization is observed (Kleim et al., 2002). Thus, these 

cellular mechanisms may be involved in the motor learning process prior to 

motor cortex reorganization. 

Several experiments have shown that there are changes in motor cortex 

activation following a brief motor skill training session (Shadmehr & Brashers-
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Krug, 1997; Classen et al., 1998; Kami et al., 1998; Gandolfo et al., 2000). These 

changes in motor activity patterns are transient, only persisting for several 

minutes following the training session (Classen et al., 1998; Liepert et al. 1999; 

Rosenkranz et al., 2000). This suggests that brief training sessions can lead to 

immediate changes in motor cortex function, but that more training is required 

before these changes become resistant to decay. Further, Kleim and colleagues 

found that with extensive training on the skilled reaching task, the skill persists 

in the absence of training (Kleim et al., 2000). 

The current experiment and as well results from experiments mentioned 

in this discussion have contributed to a theory of motor memory consolidation. 

Once an animal has learned a novel motor task and repeated it sufficiently, the 

motor cortex recognizes that the ability to perform the task is important, and so 

the cortex reorganizes to support this new behaviour. Once the motor cortex has 

'consolidated' this new information through cortical reorganization, the new 

representational map becomes resistant to change or decay. 
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CHAPTER FIVE 

GENERAL DISCUSSION 

Motor learning is an essential aspect of mammalian behaviour. Despite 

the prevalence of skilled motor behaviour, the neurobiological mechanisms 

underlying motor learning are unclear. This thesis examined how one form of 

plasticity (motor map reorganization) within one motor area (motor cortex) was 

related to motor learning. The first experiment examined how forelimb 

movements change during learning and how these changes relate to the 

functional reorganization in forelimb motor cortex associated with skilled reach 

training. It was found that the distal components of the stereotyped reach 

develop as the animal learns the task. This is consistent with the increase in 

distal representations in forelimb motor cortex observed after such training. The 

second experiment discovered that repetition of the skill movements is required 

to produce cortical reorganization. The third experiment found that once the 

motor cortex reorganizes, it does not revert to the original organization in the 

absence of task performance. Thus, it is likely that cortical reorganization 

represents the consolidation of motor skill. It was also found that the state of 

movement representations within motor cortex prior to motor learning dictates 

how fast an animal is able to learn a motor task and helps provide evidence of 

how the motor cortex adapts to support the novel skill. 
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5.2 Specificity of Motor Experience (Activity versus Learning) 

Previous experiments have found that strength training and aerobic 

activity do not produce motor cortex reorganization, while skilled reach training 

does (Kleim et al., 1998; Remple et al., 2001; Kleim et a l , 2002). Thus, it has been 

shown that it is the motor skill component of skilled reach training that produces 

cortical reorganization rather than the increase in motor activity associated with 

the task. Although there is evidence that the type of motor learning drives 

specific functional changes in motor cortex, a recent experiment found that 

functional reorganization of motor cortex and increased reaching accuracy do not 

occur at the same time. It was found that there is a significant increase in 

reaching accuracy by seven days of training, yet significant functional 

reorganization was not observed until ten days of training (Kleim et al., 2001). 

Therefore, learning a novel motor skill is insufficient to induce motor cortex 

reorganization. The second experiment of this thesis found that once the skill is 

acquired it must be repeated sufficiently before cortical reorganization will occur. 

Kami and colleagues found that a brief training session is enough to transiently 

change cortical patterns of motor activity (1995). Classen and colleagues found 

that extensive training sessions produced long-term changes in cortical patterns 

of activation (1998). Taken together, the findings from the first two experiments 

suggest that the learned movement patterns dictate the movement representation 

reorganization that occurs, and that once this novel skill is acquired it must be 

sufficiently practiced before the motor cortex will reorganize. 
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5.3 What Is It About Skill Learning That Drives Reorganization? 

The results from this thesis show that although activity alone is 

insufficient to drive cortical reorganization, sufficient skilled activity is required. 

It is unclear, however, what is different between skilled and unskilled motor 

behaviours. Some insight may be gained from studies of cortical reorganization 

and perceptual skill learning. Behavioural relevance appears to plays a critical 

role in somatosensory cortex reorganization. The simple presentation of sensory 

stimuli alone is insufficient to drive changes in sensory representations. 

However, when an animal must learn to use that sensory information the 

representation of that stimulus in sensory cortex expands. Recanzone et al. 

(1992b) found that owl monkeys trained on a tactile frequency discrimination 

task on one hand showed sensory cortex reorganization compared to the sensory 

cortex representing an 'untrained' hand or a passively stimulated hand. The 

salience of a sensory stimulus appears to be selected via activation of the nucleus 

basalis (Mesulam et al., 1983; Rye et a l , 1984). Richardson and DeLong (1991) 

found that neurons in the nucleus basalis are activated when an animal is 

attending to an important behavioural stimulus. Kilgard and Merzenich (1998) 

have shown that auditory cortex reorganizes in the presence of extraneous 

nucleus basalis activation paired with a tone. The auditory cortex responded to 

the tone as if it was a significant stimulus. 

Can an analagous system be used to explain learning-dependent 

reorganization within motor cortex? This is unlikely. Plautz and colleagues 
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have shown that animals trained on an unskilled task, in which they are 

attending to and retrieving a food reward, do not show cortical reorganization 

(2000). Further, animals trained on an unskilled reaching task, in which they 

reach outside of the cage towards a food pellet, but never learn to grasp and 

retrieve the pellet, also do not undergo reorganization (Kleim et al., 1998). Yet, in 

both experiments, the animals are still attending to the food pellet. Thus, it is 

more likely that learning novel movement patterns, and not behavioural 

saliency, drives cortical reorganization. The individual muscle contractions 

produced during skilled reach training are not novel. We suggest that it is the 

generation and repetition of novel patterns of muscle contractions, that are 

selected from the animal's existing movement repertoire, that drive 

reorganization. Thus, it is the novelty of movement sequences combined with 

repetition that produces motor cortex reorganization. 

5.4 A Theory of Motor Learning in the Motor Cortex 

The results from these experiments and others have led to the following 

theory of motor learning. This theory is based on results from Kami and 

colleagues (1998), in which they demonstrate two phases of motor learning. The 

fast phase occurs first, during which the animal makes rapid improvements in 

performance. The slow phase of motor learning occurs after and is characterized 

by repetition and fine-tuning of the movements acquired during the fast phase 

with more subtle improvements in performance. With respect to the present 
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results, the initial fast phase of motor learning, in which the animal makes rapid 

progress on the skilled reaching task, occurs before the motor cortex reorganizes 

(Kleim et al., 2000). Motor map reorganization occurs after the task has been 

successfully acquired. Therefore, there must be a different neural substrate, 

other than cortical reorganization, that supports fast phase learning. Kleim et al. 

(2002) found that there is an increase in synapse numbers in layer V of the rat 

motor cortex after five days of training. Likewise, Rioult-Pedotti and colleagues 

found that following training on a skilled reaching task the horizontal cortical 

connections of layer 11/111 of the rat motor cortex were strengthened. This is 

interesting given that intracortical microstimulation, the technique used in this 

experiment to examine cortical reorganization, produces movements via 

activation of horizontal afferents. Thus, it has been proposed that a possible 

mechanism behind fast phase learning may involve synaptic plasticity that is not 

manifested as changes in motor maps. 

Following the fast phase of learning is a slow phase, in which the animal 

makes minute adjustments to its reaching behaviour, until the movements 

become stereotyped. The animal is repeating the learned behaviour, but is not 

making significant improvements in task performance. It has been found that 

cortical reorganization occurs at this time (Kleim et al., 2000). The second 

experiment in this thesis suggests that once the novel motor behaviour is 

acquired it must be repeated sufficiently before it becomes permanently encoded 

in the cortex by a redistribution of movement representations. 
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The third experiment of this thesis examines whether motor cortex 

reorganization represents the consolidation of motor learning. If cortical 

reorganization represents consolidation of motor learning, then once 

reorganization has occurred it would become resistant to decay, and the animal's 

behavioural performance on the task would persist in the absence of training (i.e. 

it would become 'permanent'). The third experiment found that this was the 

case. Some animals that were trained for five days learned the skilled reaching 

task. These animals also showed cortical reorganization, which persisted in the 

absence of motor skill training for one month. Conversely, animals that did not 

learn the task in this short time period did not undergo cortical reorganization. 

This experiment answers an important question about the relationship between 

motor learning and cortical reorganization. These findings provide evidence that 

cortical reorganization represents the permanent neural encoding of a skilled 

motor behaviour. 

This experiment also found that animals with naive motor maps that 

consisted of predominantly distal movement representations did not learn the 

task as well as other animals. When these animals were mapped following five 

days of training, it was found that their maps did not show a significant increase 

in distal movement representations. These findings persisted in the absence of 

skill training. Thus, it can be hypothesized that the state of the brain prior to 

motor learning is also an important factor on how well an animal learns the task. 

If an animal is trained on the skilled reaching task but does not have the capacity 
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to reorganize for distal movement representations, then the animal will not be 

able to successfully learn the task. 

The results from the third experiment as well as results from previous 

experiments support the consolidation theory of motor learning, in which a 

novel motor skill is encoded in the motor cortex through movement 

representation reorganization. There are several experiments that have shown 

that there are changes in motor cortex activation following a brief motor skill 

training session (Shadmehr & Brashers-Krug, 1997; Classen et al., 1998; Kami et 

al., 1998; Gandolfo et al., 2000). However, these changes in motor activity 

patterns are transient, only persisting for several minutes following the training 

session (Classen et al., 1998; Liepert et al. 1999; Rosenkranz et al., 2000). This 

suggests that brief training sessions can lead to immediate changes in motor 

cortex function, but that more training is required before these changes become 

resistant to decay. Further, Kleim and colleagues found that with extensive 

training on the skilled reaching task, the skill persists in the absence of training 

(Kleim et al., 2000). 

5.5 Conclusions 

Many aspects of human behaviour involve motor learning. The present 

thesis has attempted to examine the relationship between motor learning and 

motor cortex reorganization. Using a different experimental design, behavioural 

training paradigms and a single neurophysiological technique, this thesis has 
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examined how motor map reorganization is related to learning a novel motor 

behaviour. The first experiment investigated the developing components of the 

rat's stereotyped reach, and how these components relate to cortical 

reorganization. The second experiment discovered that once a novel motor skill 

has been acquired, it must be repeated before the cortex reorganizes to support it. 

We have also examined whether cortical reorganization represents consolidation 

of motor skill, discovering that once a motor skill is encoded in the motor cortex 

through cortical reorganization, it is permanently represented in the cortex. 

Thus, this thesis has helped provide evidence for a direct relationship between 

motor learning and functional plasticity within motor cortex. 
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