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Abstract 

 During protein synthesis, elongation factor Tu (EF-Tu) delivers aminoacyl-tRNA 

(aa-tRNA) to the A-site of mRNA-programmed ribosomes in a GTP-dependent manner. 

To enable future studies on the functional and structural requirement of EF-Tu’s function, 

a Cysteine-free variant of EF-Tu was constructed suitable for subsequent labelling of the 

protein and use in kinetic studies. Here, the kinetic properties of three Cysteine-less EF-

Tu variants are reported, demonstrating that only the variant with the Alanine substitution 

in position 81 retains wild-type activity with respect to the interaction with guanine 

nucleotides, aa-tRNA and the ribosome. To explore a possible tRNA independent 

pathway for the GTPase activation signal, three residues in domain II of EF-Tu (Arginine 

279, Glycine 280, Arginine 283) were mutated;  the activity of EF-Tu variants were 

analyzed. Results suggest that these residues are indeed required for efficient ribosome-

dependent stimulation of the GTPase activity of EF-Tu. 
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1.1 Overview of translation 

 The central dogma of molecular biology as called by Francis Crick describes the 

relationship between deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and protein. 

DNA directs its replication and transcription to RNA, and RNA directs its translation to 

proteins. Although the chemistry behind peptide bond formation is relatively simple, the 

process to convert genetic information from the mRNA to a functional protein is quite 

complex. This process is carried out by a large macromolecular complex called the 

ribosome and involves the precise coordination and timing of a large number of 

molecules, in order to accurately select from the 20 different amino acids in the order that 

is specific to a particular mRNA.  

1.1.1 tRNA 

Crick first hypothesised that an adaptor molecule, now known as “transfer RNA” 

(tRNA), carries a specific amino acid and recognizes the corresponding codon, and that 

the adaptor would contain RNA which then could through complementary base pairing 

interact with the messenger RNA (mRNA) facilitating codon recognition (Crick 1966). 

Later on, the discovery of the existence of tRNA confirmed Crick’s adaptor hypothesis, 

and suggested base pairing between a trinucleotide anticodon and the mRNA codon 

(Hoagland et al. 1958; Shapiro et al. 1965). 

The tRNA consists of ~76 nucleotides and forms a cloverleaf-shaped secondary 

structure (Holley et al. 1965) (Figure 1.1). To date, sequences from more than 4,000 

tRNAs from over 200 organisms are known, which all share seven basic structural 

features: (1) a 5’-end phosphate group, (2) a 7 base pair (bp) stem formed by Watson-
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Crick base pairing, known as the acceptor stem, (3) a 3 to 4 bp stem with a loop 

containing the modified base dihydrouridine; and that is designated as the D loop, (4) 

anticodon arm, a 5 bp stem connecting a loop containing the bases of the triplet anticodon, 

which is complementary to the codon specific to the respective tRNA, (5) the variable 

arm, termed due to the variability of number and type of nucleotides appearing at these 

positions,  (6) a 5 bp stem with a loop containing the conserved TC sequence 

pseudouiridine), known as the T arm or the TC arm, and (7) a 3’-end formed by a 

CCA sequence with a 3’–OH group. 

 

Figure 1.1 Cloverleaf structure of tRNA. The 5’-terminus is shown in magenta, the 

acceptor stem is yellow, the D loop is cyan, the anticodon loop is green, the variable arm 

is orange, the TC arm is blue, and the 3’-end is shown in red. 

 

The crystal structure of yeast tRNA
Phe

 revealed that an L-shaped molecule is 

formed from two RNA double helical “legs”, one containing the acceptor stem and the T 

loop and the other contains the D and the anticodon loop (Sussman et al. 1978) (Figure 
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1.2).  Both legs of the tRNA molecule are around 60 Å long, while the anticodon and 

amino acid acceptor stem is well separated around 76 Å apart at the two opposite ends of 

the molecule. The structure of the tRNA is stabilized by a number of intramolecular 

interactions. Typically 71 of 76 bases in yeast tRNA
Phe

 are involved in stacking 

interaction. Therefore, most of the bases are protected from interaction with solvent 

molecules. However, due to their specific biological function, anticodon bases and the 

CCA 3’-end remain exposed to the solvent.  

 

Figure 1.2 X-ray structure of yeast tRNA
Phe

. The conserved L-shape of the tRNA 

molecule is shown as cartoon representation (generated with PyMol). The 3’-end is 

coloured red, the acceptor stem is yellow, the TC loop is blue, the variable loop is 

orange, the anticodon loop is green, the D loop is cyan, and the 5’-end is magenta. (PDB: 

6TNA) 

 

 The aminoacyl-tRNA synthetases (aaRSs) are a family of enzymes that ensure 

that the correct amino acid is covalently attached to its cognate tRNA, and are 

responsible for the production of the charged tRNAs that are required for translating 

mRNAs into functional proteins. In order to attach an amino acid to the 3’-end of its 

cognate tRNA forming the aminoacyl-tRNA (aa-tRNA), the amino acid first reacts with 
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ATP to form an activated aminoacyl-adenylate. Then the activated amino acid is 

transferred to the tRNA to form aminoacyl-tRNA and AMP (Delarue 1995). Although in 

cells different aaRSs are responsible for different amino acids, these aaRSs can be 

divided into two different classes (I and II), each containing 10 members. Previous 

studies have shown that in general Class I aaRSs recognize their cognate tRNA through 

anticodon recognition, while Class II aaRSs recognize the acceptor stem. Interestingly, 

Class I aaRSs aminoacylate the tRNA at 2’–OH group of the 3’-end, but Class II aaRSs 

aminoacylate at the 3’–OH group. Moreover, Class I aaRSs tend to activate larger and 

more hydrophobic amino acids than Class II aaRSs (Cavarelli and Moras 1993). The 

error rate of aaRSs is about 1 in 10,000. This is a remarkable number as many aaRSs face 

the challenge to discriminate between structurally very similar amino acids. To achieve 

this level of accuracy, the aaRSs have adopted a double-sieve mechanism, which requires 

an additional proofreading or editing step that occurs at a specific catalytic site in the 

enzyme, known as the editing domain. The editing step can occur before or after 

aminoacylation with the correct amino acid (Banerjee et al. 2010), and utilizes the 

conformational change of the 3’-end of the tRNA to switch between synthetic and editing 

modes. However, the exact mechanism is unclear (Ling et al. 2009). Once aa-tRNA is 

released from aaRS, it will be delivered to the translating ribosome by elongation factor 

(EF)-Tu. 

 1.1.2 The Ribosome 

 In translation, the mRNA-directed polypeptide synthesis takes place on the 

ribosome. The movement of tRNA and mRNA through the ribosome is a complicated 

process that requires both high speed and high accuracy. The ribosome has been first 
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visualized in the late 1930s by Albert Claude using dark-field microscopy, and was 

named after its main components: RNA and protein. In all organisms, the ribosome 

consists of two subunits (Figure 1.3). In Escherichia coli, the 50S large subunit contains 

2 RNAs (5S and 23S rRNA) and 31 different proteins, while the 30S small subunit 

contains the 16S rRNA and 21 different proteins. Interestingly, 66% of the ribosomal 

mass is contributed by rRNAs, and only 34% by proteins in bacteria. In vivo studies of 

the ribosomal assembly process suggest that the main event is rRNA processing 

(Nierhaus 1991). There are two processes involved in the production of mature rRNA: (1) 

trimming of the rRNAs to the mature molecules, and (2) chemical modification of the 

rRNAs. A number of enzymes participate in the events that cleave pre-rRNA into mature 

rRNA, such as RNase III, RNase P, M16 and M5 (Srivastava and Schlessinger 1990).  

Although, both 16S and 23S rRNA are methylated and pseudouiridylated during 

ribosomal assembly, the function of the modifications is unknown. Ribosome assembly 

not only requires the correct processing of rRNAs, but also the proteins and their 

sequential binding. In vitro studies have shown that the 50S ribosome can successfully 

reconstitution from its components. However, it is an extremely slow process ( in vivo: a 

few minutes at 37
o
C;  in vitro, 90 min at 50

o
C) (Nierhaus 1991).  
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Figure 1.3 Structure of the 70S ribosome from Thermus thermophilus in complex 

with EF-Tu. 50S ribosomal subunit is shown in green, 30S ribosomal subunit is in grey. 

EF-Tu is magenta, A-site tRNA is blue, P-site tRNA is yellow and E-site tRNA is salmon. 

(PDB: 3FIN and 3FIC) 

 

The first high resolution structure of a ribosomal subunit was published by Ban et 

al. with a resolution of  2.4 Å from the archaean Haloarcula marismortuii (Ban et al. 

2000). The structure only contained the 50S subunit, and the ribosomal proteins L1, 

L7/L12 stalks, and L11-RNA region which are functionally important for factor binding 

and translocation, as well as some stem loops of the RNA involved in contacts with  the 

30S subunit were disordered (Ramakrishnan 2002). Nonetheless, this is the first structure 

to show that water molecules and metal ions are also involved in the coordination of 

ribosomal structure. With the dramatic improvement of the cryo-electron microscopy 

(cryo-EM) technique, more and more medium resolution structures of the ribosome in 

complex with different factors have been solved, and allowed a detailed study of the 

structural and functional mechanism of translation. 
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 The E. coli 50S ribosomal subunit has a molecular weight of 1,590 kDa, 70% of 

its weight is contributed by the 2,904 nucleotide long 23S rRNA and the 120 nucleotide 

of the 5S rRNA. The remaining 30% arise from 31 proteins. It has been shown that the 

rRNAs cooperatively interact with proteins during subunit assembly (Figure 1.4). Protein 

L5 and L18 have been shown to be essential for the association of the 5S and 23S rRNAs 

into a complex that contains equimolar amounts of all four components. The integration 

of 5S rRNA into this complex induces a conformational change in the 23S rRNA (Spierer 

et al. 1979). Protein L2 has been shown to interact with the central segment of the 23S 

rRNA; and the associations of L5, L10/11, and L28 with the central and 3’-end of the 23S 

rRNA are depended on the association of the L16, L2 and L1/3/6. Furthermore, the 

sarcin-ricin loop (SRL), a highly conserved loop in the 23S rRNA, is important for the 

function of many GTP-dependent protein factors (Hausner et al. 1987), while L7/12 

stimulates EF-Tu’s GTPase activity (Donner et al. 1978; Diaconu et al. 2005). The 

ribosomal protein L1 interacts with deacylated tRNA and is involved in tRNA release 

(Trabuco et al. 2010) . In order to facilitate translation, the 23S rRNA forms three 

functionally distinct tRNA-binding sites: (1) A-site, interacts with newly incoming aa-

tRNA; (2) P-site, binding site for peptidyl tRNA, and (3) E-site, where the deacylated 

tRNA dissociates from the ribosome.  
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Figure 1.4 50S ribosomal subunit from Thermus thermophilus (interface view). 50S 

ribosomal proteins are shown in green, 23S and 5S rRNA are in orange. (PDB: 3FIN) 

 

 Similar to the 50S ribosomal subunit, the E. coli 930 kDa 30S subunit consists of 

a 1,542 nucleotide 16S rRNA with 60% molecular weight and 21 proteins with 40% of 

the weight (Figure 1.5). Like the 50S subunit, the 30S subunit contains part of the A-site, 

P-site and E-site for tRNA interaction. However, it is also involved in interacting with the 

mRNA. The 16S rRNA contains a pyrimidine-rich sequence at the 3’-end, that has been 

shown to base pair with a purine-rich sequence (Shine-Dalgarno (SD) sequence) of the 

mRNA, around 10 nucleotides upstream of the start codon (Shine and Dalgarno 1974). 

The available crystal structures suggest that the Shine-Dalgarno helix is bound to a large 

cleft between the head and the back of the platform of the 30S subunit (Yusupova et al. 

2001). S4 and S7 proteins have been shown to be important to initiate folding of 16S 

rRNA, typically S7 binds to 3’-end of the 16S rRNA and stimulates the binding of other 

ribosomal proteins to the subunit (Nowotny and Nierhaus 1988). Codon-anticodon 
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recognition takes place at the 30S subunit A-site, which is the binding site for newly 

incoming aa-tRNA. X-ray crystal structural studies suggest that the interaction of A1492, 

A1493, and G530 in the 16S rRNA with the minor groove of the first two codon-

anticodon base pairs may stabilize the structure (Selmer et al. 2006). On the other hand, 

the P-site functions by holding the tRNA in position in order to maintain the reading 

frame, where A1339 and G1338 of the 16S rRNA and nucleotide 790 at the tip of 30S 

platform interact with the anticodon stem loop of the P-site tRNA, and prevent moving of 

the tRNA into the E-site (Selmer et al. 2006).  

 

Figure 1.5 30S ribosomal subunit from Thermus thermophilus in complex with 

tRNAs and EF-Tu (solvent view). 30S ribosomal proteins are shown in grey, 16S rRNA 

in orange, EF-Tu in magenta. The A-site tRNA is coloured in cyan, the P-site tRNA in 

yellow and the E-site tRNA in salmon. (PDB: 3FIC) 

1.2 Initiation 

 In all living cells, translation can be divided into three processes: initiation, 

elongation, termination. Several components are required for efficient bacterial 
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translation initiation: ribosome, aminocylated and formylated initiator tRNA (fMet-

tRNA
fMet

), mRNA, and three initiation factors (IF1, IF2 and IF3) (Figure 1.6).  

 

Figure 1.6 Translation initiation pathway in bacteria. Initiation factors are signified 

by their respective numbers. The binding of IF3 and IF1 to the 70S ribosome induce the 

dissociation of the two subunits, following the association of mRNA and IF2∙GTP∙fMet-

tRNA
fMet

, IF1 and IF3 dissociate from the pre-initiation complex. After hydrolysis of 

GTP, IF2 dissociates, 50S ribosomal subunit re-associates with the 30S subunit and forms 

the initiation complex. 

 

 Translation is initiated by the binding of mRNA to the 30S ribosomal subunit. IF3 

has been shown to bind tightly to the 30S subunit to promote the dissociation of the 70S 

ribosome, and to prevent the re-association of 50S with the 30S subunit (Godefroy-

Colburn et al. 1975). IF3 is also important for the selection of fMet-tRNA
fMet

 to the P-site 

by preventing the binding of elongator tRNA (Hartz et al. 1990). fMet is the first amino 

acid of a polypeptide chain and ensures the correct initiation of translation at the 

translation initiation region  of the mRNA. In bacteria, mitochondria and chloroplasts, 



Chapter 1 Introduction 

 

12 

 

methionyl-tRNA (Met-tRNA
fMet

) is specifically N-formylated by methionyl-tRNA 

formyltransferase to produce fMet-tRNA
fMet

. The formyl group functions as a tag to 

interact with IF2 and to exclude the fMet-tRNA
fMet

 from the aa-tRNAs for elongation 

(Sundari et al. 1976). Formylation of Met-tRNA
fMet

 has been shown to be important for E. 

coli protein synthesis; where mutations in the anticodon sequence or the stem loop of the 

initiator tRNA reduce the Met-tRNA
fMet

 formylation,  initiation activity is reduced in vivo 

(Varshney and RajBhandary 1992). There are three distinct features that can be found in 

fMet-tRNA
fMet

, but not in elongator tRNA: (1) the absence of a Watson-Crick base pair 

between nucleotides 1:72 at the end of the acceptor stem, (2) the presence of three 

consecutive G∙C base pairs at the bottom of the anticodon stem, and (3) the presence of a 

purine-11∙pyrimidine-24 base pair in the dihydrouridine stem in contrast to a pyrimidine-

11∙purine-24 base pair in elongator tRNAs (Varshney et al. 1993). It has also been shown 

that the binding of IF2 to fMet-tRNA
fMet

 protects against the spontaneous hydrolysis of 

the aminoacyl ester bond in the tRNA, however, there is no protection of unformylated  

Met-tRNA
fMet

 (Petersen et al. 1979). X-ray crystal structures indicate that IF1 binds to 

the base of 30S subunit A-site in a cleft between the 530 loop and helix 44 of 16S rRNA 

and S12, and IF1 is thought to prevent the binding of initiator tRNA (Moazed et al. 1995; 

Carter et al. 2001).  

 The mRNA binds to the neck of the 30S subunit, with its 5’-untranslated region 

(UTR) containing the Shine-Dalgarno (SD) sequence which base pairs with the anti-SD 

sequence at the 3’-end of the 16S rRNA placing the initiation codon in the P-site 

allowing the binding of the initiator tRNA (Yusupova et al. 2001). It has been shown that 

IF2  forms specific interaction with  fMet-tRNA
fMet

  to ensure the proper binding of fMet-
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tRNA
fMet

 with the start codon  (Guenneugues et al. 2000). Subsequently, the pre-

initiation complex consisting of the 30S ribosomal subunit, mRNA, initiator tRNA, IF1, 

IF2∙GTP and IF3 then allows the release of initiator factors (IF1 and IF3), followed by 

the association of 50S subunit, and the hydrolysis of GTP bound to IF2. However, 

different studies reported controversial models with respect to the timing of the GTP 

hydrolysis by IF2. Tomsic et al. suggested that the proper positioning of fMet-tRNA
fMet

 

in the P-site and the release of IF2 from the ribosome does not require GTP hydrolysis 

(Tomsic et al. 2000). While Antoun et al. suggested that IF2∙GTP promotes the 

association of the 50S subunit with the pre-initiation complex, and the GTP hydrolysis 

would trigger the release of IF2 from the ribosome (Antoun et al. 2003).  

1.3 Elongation 

After the initiation complex has formed, the P-site of the ribosome is occupied by 

fMet-tRNA
fMet

 leaving the A-site empty and leading to the beginning of the elongation 

cycle. In each round of the cycle, one amino acid is added to the growing peptide chain, a 

process catalyzed by elongation factors Tu (EF-Tu), EF-Ts and EF-G (Figure 1.7). In 

brief, EF-Tu, GTP and aminoacyl-tRNA form a ternary complex that subsequently binds 

to the ribosome, catalyzing the codon-dependent binding of aa-tRNA to the ribosomal A-

site. Upon codon-anticodon recognition, the conformation in the ribosomal decoding site 

changes, stabilizing aa-tRNA interaction and triggering GTP hydrolysis by EF-Tu. GTP 

hydrolysis causes structural changes in EF-Tu that subsequently result in the release of 

aa-tRNA into the ribosome. As EF-Tu dissociates from the ribosome, the CCA-end of the 

incoming tRNA enters the peptidyl transferase site on the 50S subunit, where the growing 

peptide waits for the newly incoming aa-tRNA. Following peptide bond formation 
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between the P- and A-site tRNAs, EF-G catalyzes the translocation of the P-site and A-

site tRNAs along with mRNA into the E- and P-site, respectively; thus enabling the next 

round of the elongation cycle (Ramakrishnan 2002). Meanwhile, EF-Ts facilitates the 

nucleotide exchange in EF-Tu from the inactive GDP-bound to the active GTP-bound 

state of the protein. Therefore the elongation cycle can be divided into three phases: 

decoding, peptidyl transfer and translocation, which will be discussed in more detail in 

the following section. 

Figure 1.7 Elongation cycle in bacteria. The elongation cycle begins with the EF-

Tu∙GTP·aa-tRNA ternary complex delivering aa-tRNA to the ribosomal A-site. This is 

followed by peptide formation between the growing polypeptide in the P-site and 

incoming A-site amino acid on the aa-tRNA. Subsequently EF-G hydrolyses GTP to 

GDP facilitating the translocation of the concomitant P- and A-site tRNAs and the 

mRNA in the ribosome, resulting in an empty A-site exposing a new codon for the next 

round of elongation. EF-Ts facilitates the recycling of EF-Tu∙GDP back to EF-Tu∙GTP. 
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1.3.1 Decoding 

The kinetics of EF-Tu-dependent aa-tRNA binding to the A-site has been studied 

by Pape et al. to a great detail (Pape et al. 1998). The error rate in translation is in the 

order of 10
-3

-10
-4

 (Kurland 1992), hence, the codon recognition step is an important step 

during protein synthesis to ensure this high level of fidelity. However, there are two 

hypotheses to explain the mechanism of tRNA selection during decoding. The first 

hypothesis suggests that the decoding site on the 30S subunit recognizes codon-anticodon 

pairing sterically and screens for the cognate tRNA (Potapov 1982). The second model is 

known as the kinetic proofreading model, where the accuracy is based upon the rate 

differences of binding and dissociation favouring the binding of cognate over the non- or 

near-cognate tRNAs. According to this model, tRNA selection is separated into two steps: 

initial selection and proofreading; these steps are separated by EF-Tu catalyzed GTP 

hydrolysis (Hopfield 1974). Current studies suggest that the ribosome follows the second 

model (Pape et al. 1998). 

During the decoding stage, aminoacyl-tRNA binds to EF-Tu∙GTP forming a 

ternary complex that then binds to the ribosome. After the initial binding to the ribosome, 

codon-anticodon recognition takes place at the 30S ribosomal A-site, where the anticodon 

reversibly associates with the codon; the aminoacyl acceptor stem remains bound to EF-

Tu. Pre-steady-state kinetic experiments suggest that the cognate tRNA not only has a 

lower dissociation rate than near-cognate tRNA, but also that it has faster rates of EF-Tu 

GTPase activation and aa-tRNA A-site accommodation (Pape et al. 1999). The X-ray 

crystal structure of ribosome in complex with tRNAs also revealed that correct codon 

recognition induces conformational changes of A1492 and A1493 in helix 44 as well as 
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the G530 of the 16S rRNA. The bases of the three nucleotides contact the minor groove 

of the codon-anticodon helix in the A-site, enabling the 16S rRNA to identify cognate 

tRNA by detecting correct Watson-Crick base pairing in the anticodon helix (Ogle et al. 

2002).  

The correct codon recognition induces the GTPase activation of EF-Tu was 

proposed in papers from Rodnina et al. and Piepenburg et al. (Rodnina et al. 1994; 

Piepenburg et al. 2000). However, the exact mechanism of the signal transmission from 

the decoding center at the 30S subunit to the G domain of EF-Tu at the 50S subunit is not 

clear. Studies using mutant variants of EF-Tu have shown that certain residues in EF-Tu 

may be involved in this signalling pathway (Jonak et al. 1982; Anborgh et al. 1992; 

Vorstenbosch et al. 1996). These variants will be discussed in more detail in Chapter 2. 

After the release of inorganic phosphate, EF-Tu changes from the GTP-bound to the 

GDP-bound conformation, which has a lower affinity to both the ribosome and the aa-

tRNA, leading to the dissociation of EF-Tu from the tRNA and the ribosome (Yokosawa 

et al. 1975). Subsequently, the aa-tRNA in the ribosomal A-site can either undergo 

accommodation, where the aminoacyl end of the tRNA moves into the A-site of the 50S 

subunit, followed by peptide bond formation, or the aa-tRNA dissociates from the 

ribosome (Figure 1.8). 
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Figure 1.8 EF-Tu-dependent aa-tRNA binding to the ribosomal A-site. During initial 

binding, the EF-Tu∙GTP∙aa-tRNA ternary complex binds to the ribosome. After codon 

recognition, EF-Tu’s GTPase activity is activated. Following the hydrolysis of GTP to 

GDP, inorganic phosphate is released, and EF-Tu changed its conformation to the EF-

Tu∙GDP bound form. Accommodation and peptidyl transfer occurred after correct codon 

recognition, and EF-Tu∙GDP dissociates from the ribosome; or the near-cognate aa-tRNA 

is rejected from ribosomal A-site may occur. 

 

In order to maintain fast in vivo protein synthesis, which is about 20 amino 

incorporated per second (Young and Bremer 1976), recycling of EF-Tu back into the 

GTP-bound form is required in order to not deplete the cellular pool of EF-Tu∙GTP. EF-

Tu has a 100-fold higher affinity for GDP than GTP, and GDP dissociation is very slow 

(Gromadski et al. 2002). Therefore, nucleotide exchange is limited by the rate of 

nucleotide dissociation and the cellular concentration difference between the two 

nucleotides. Hence, EF-Ts, the guanine nucleotide exchange factor for EF-Tu, is required 
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to facilitate the efficient exchange of GDP for GTP in EF-Tu. The interaction between 

EF-Tu and EF-Ts will be discussed in more details in Chapter 2. 

1.3.2 Peptidyl Transfer 

 After accommodation, the aminoacyl end of the tRNA enters the peptidyl 

transferase center (PTC) on the 50S subunit, which is followed by rapid peptide bond 

formation (Pape et al. 1998). During peptide bond formation, the -amino group from the 

incoming A-site tRNA performs a nucleophilic attack on the carbonyl carbon of the P-

site tRNA resulting in a peptide bond between the peptidyl residue and the aminoacyl 

group at the A-site (Satterthwait and Jencks 1974) (Figure 1.9)  

P AAP

tRNA

R1

R1

3' 3'
3'

tRNA
tRNA

tRNA

R2
R2

3'

 

Figure 1.9 Peptide-bond formation on the ribosome. Both aminoacyl groups of the P- 

(left) and A-site (right)  tRNA are attached to the ribose at the 3’ position via an ester 

bond; nucleophilic attack from the A-site tRNA on the P-site tRNA results in peptide 

bond formation (Pech and Nierhaus 2008). 

1.3.3 Translocation 

 After peptide bond formation, the P-site is occupied by a deacylated tRNA and 

the A-site containes the newly formed peptidyl-tRNA. In order to enable the next round 
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of the elongation cycle, the P- and A-site tRNA need to be moved into the E- and P-site, 

respectively. This translocation step is catalyzed by elongation factor G (EF-G). Previous 

studies have revealed that a slow rate of translocation can be observed even in the 

absence of EF-G, suggesting that translocation of tRNAs may be due to the movement of 

the ribosome, and thus EF-G acts as a factor to lower the kinetic energy barrier through 

binding to the ribosome (Gavrilova and Spirin 1971). Rapid kinetics studies confirmed 

that EF-G facilitates tRNA movement during translocation (Inoue-Yokosawa et al. 1974; 

Rodnina et al. 1997). After the binding of EF-G∙GTP to the ribosome, GTP hydrolysis 

takes place. The release of inorganic phosphate leads to a conformational change in EF-G 

and subsequent changes in the ribosome, causing the movement of the tRNA∙mRNA 

complex. After the dissociation of EF-G∙GDP and the deacylated-tRNA, the ribosome 

bound to mRNA and tRNAs form the respective post-translocation complex that is ready 

for a new incoming aa-tRNA (Katunin et al. 2002) 

1.4 Termination and ribosome recycling  

 The termination of protein synthesis takes place when a stop codon is read in the 

ribosomal A-site by one of the release factors (RF). In bacteria, the release factors can be 

subdivided into two classes. Although both class I proteins (RF1 and RF2) recognise the 

UAA codon, RF1 also responds to UAG, while RF2 responds to UGA (Kisselev and 

Buckingham 2000). Termination begins with the binding of RF1 or RF2 to the respective 

stop codon on the mRNA in the ribosomal A-site, this triggers the hydrolysis of the 

aminoacyl ester bond that links the nascent growing polypeptide to tRNA in the 

ribosomal P-site (Nakamura and Ito 2003). After the release of the polypeptide chain, the 

class II release factor (RF3) binds as a binary complex with GTP to the ribosome and 
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induces the release of RF1 or RF2 (Freistroffer et al. 1997). However, the exact 

mechanism for RF involvement in translation termination remains unclear. 

 After termination, the ribosome remains bound to the mRNA and deacyl-tRNA in 

the P-site. In order to facilitate the reinitiation of the ribosome, the complex has to be 

disassembled and the mRNA and the tRNA have to be released. Ribosome recycling 

factor (RRF) and EF-G are required for this process (Janosi et al. 1996). Interestingly, the 

details of how RRF interacts with EF-G and disassembles the post-termination ribosome 

complex is not known. It has been proposed that before the release of RRF from the 

ribosome, RRF moves from the A/P site to the P/E site clashing with the tRNA (Agrawal 

et al. 2004). In the presence of the EF-G specific inhibitor thiostrepton or translocation-

impaired mutant EF-Gs, disassembly of the complex fails, suggesting that EF-G 

facilitated release of RRF is required for post-termination complex  disassembly (Kiel et 

al. 2003). However, it has also been suggested that the RRF disassembles the ribosomal 

complex independently of the translocation activity of EF-G (Fujiwara et al. 2004), and 

IF3 promotes the dissociation of tRNA from the P-site (Karimi et al. 1999). This model is 

in agreement with the kinetic studies of ribosome recycling  (Peske et al. 2005). 

Therefore, it is still unclear what the function of EF-G during ribosomal recycling is.   
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Figure 1.10 Termination and ribosome recycling. The ribosome on the top left has a 

stop codon in the A-site. RF1 or RF2 bind to the ribosome and induce the release of the 

polypeptide chain. After the binding of RF3∙GTP to the complex, GTP is hydrolyzed, 

causing the dissociation of RF1, RF2 and RF3. This allows the binding of RRF and EF-G, 

subsequent GTP hydrolysis by EF-G catalyzes the dissociation of the two ribosomal 

subunits. After the dissociation of RRF and EF-G from the ribosomal subunit, IF3 

binding facilitates the release of mRNA and tRNA from the 30S subunit, allowing 

reprogramming and initiation complex formation. 
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2.1 EF-Tu 

 EF-Tu is probably the best studied protein involved in protein synthesis. It is also 

a functional and structural model for the study of translational GTPases. EF-Tu belongs 

to the regulatory GTPase superfamily, which function as molecular switches regulating a 

large number of cellular processes. The common features of this family can be 

summarised as (1) the cycling between an active and an inactive conformation depending 

on whether GTP (“on” state) or GDP (“off” state) is bound; (2) a very low intrinsic 

GTPase and GDP/GTP exchange activity. The low intrinsic GTPase activity is 

dramatically enhanced by the interaction of the G protein with its GTPase activating 

protein (GAP). The rate of nucleotide exchange for the G protein can be increased 

through the interaction with a guanine nucleotide exchange factor (GEF), as well as 

inhibited by the respective guanine nucleotide dissociation inhibitors (GDIs). For EF-Tu, 

the GAP and GEF are the ribosome and EF-Ts, respectively (Krab and Parmeggiani 

2002). However, no GDI has been identified for EF-Tu so far. During protein synthesis, 

EF-Tu in its active form is bound to GTP and facilitates aa-tRNA binding to the A-site of 

the translating ribosome. After the cognate anticodon of the tRNA interacts with the 

respective mRNA codon, EF-Tu hydrolyses GTP and changes its conformation to the 

inactive GDP bound form.  EF-Tu then releases the bound aa-tRNA onto the ribosome 

and dissociates from the ribosome while remaining bound to GDP. Subsequently, EF-Ts 

facilitates the change of EF-Tu from the GDP-bound form to the GTP-bound form 

enabling EF-Tu to bind to another aa-tRNA and to enter another round of the elongation 

cycle. 
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 Escherichia coli EF-Tu contains 394 amino acids, and is divided into three 

domains. Domain I of EF-Tu, also known as the G domain, contains the guanine 

nucleotide binding site. The binding of nucleotide to EF-Tu involves several conserved 

sequence motifs, the so-called G motifs, which are shared by all G proteins. The G1 motif 

Gx4GK(S/T) is involved in the binding of the guanine nucleoside triphosphates, the G2 

DxxG is involved in the conformational changes taking place during the transitions from 

the GDP to the GTP form of EF-Tu, and the G3 NKxD determines the specificity for 

guanine (Kjeldgaard et al. 1996). The GDP- and GTP-bound form of EF-Tu have 

different conformations, and two segments of the polypeptide chain, switch I and II, act 

as sensors for the presence or absence of the -phosphate. Structural studies have shown 

that the switch I region, residues 53-59, undergoes a conformational change from a -

sheet structure in the GDP form, to an -helical structure in the GTP form (Abel et al. 

1996). While, the switch II region, residues 83-99, unwinds one helical turn at its N-

terminus and forms another one at the C-terminal end, helix B, residues 84-92, is tilted by 

42
o 
(Song et al. 1999). The movement of switch II region from the GTP to the GDP form 

was suggested to be due to the removal of the extra negative charge of the -phosphate 

group. During the transition from the GDP-bound to the GTP-bound state, domain I 

rotates about 90
o
 relative to domain II and domain III, causing EF-Tu to form a closed 

conformation rather than the open form in the GDP bound state (Song et al. 1999). Hence, 

domain I is much closer to domain III in the GTP bound form. However, the interaction 

between domain II and domain III is very similar in the GDP and GTP-bound form 

(Figure 2.1). A magnesium ion is an essential factor for GTP binding and GTPase 

activation in G proteins (Gilman 1987). When EF-Tu binds to a guanine nucleotide, the 
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Mg
2+ 

is important for the proper positioning of the nucleotide in the binding pocket 

through hydrogen bonding interaction  (Song et al. 1999). The role of Mg
2+

 for 

nucleotide binding can be demonstrated by treatment with EDTA, chelating Mg
2+

 from 

EF-Tu, which results in a dramatic decrease in nucleotide affinity (Krab and Parmeggiani 

2002).  

 

Figure 2.1 Structure comparison of EF-Tu in two conformations. Cartoon diagram of 

Escherichia coli EF-Tu∙GDP (A) (PDB: 1EFC) and Thermus thermophilus EF-Tu∙GTP 

(B) (PDB: 1EXM). EF-Tu is shown in green, Mg
2+

 in magenta, GDP/GTP in orange, 

switch I (SWI) region and switch II (SWII) region of EF-Tu in blue and red, respectively. 

  

The EF-Tu∙GTP binary complex has been shown to have a high affinity for aa-

tRNA (Pingoud et al. 1977). Formation of the binary complex allows binding of aa-tRNA 

resulting in an EF-Tu∙GTP∙aa-tRNA ternary complex (Figure 2.2). Escherichia coli 

contains 41 different tRNA species with different anticodons (Laursen et al. 2005). 

Although EF-Tu cannot discriminate between correctly and incorrectly amino-acylated 

tRNAs, it efficiently discriminates between the aa-tRNA and deacylated tRNA (Pingoud 
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et al. 1977). Nissen et al. reported the crystal structure of the ternary complex in 1995, 

allowing for the first time the detailed visualization of the interaction between EF-Tu and 

an aa-tRNA (Phe-tRNA
Phe

) at atomic level (Nissen et al. 1995). The structure revealed 

that all three domains of EF-Tu are involved in aa-tRNA binding, and interactions take 

place at the 3’-CCA-end, the 5’-end and the T stem of the aa-tRNA (Nissen et al. 1995). 

The affinity for deacylated tRNA binding to the binary complex has been shown to be 4 

to 5 orders of magnitude lower than the one of aa-tRNA binding (Shulman et al. 1974). 

Nissen and co-workers further suggested that the recognition of aa-tRNA by EF-Tu 

involves the aminoacyl ester bond and the backbone conformation of the acceptor helix 

(Nissen et al. 1996). The 3’-CCA-Phe binds to a cleft between domain I and domain II, 

and interacts with domain II residues through hydrogen bonding (Nissen et al. 1996).  

 

Figure 2.2 X-ray structure of the ternary complex of yeast Phe-tRNA
Phe

, Thermus 

aquaticus EF-Tu and GDPNP (PDB: 1TTT). EF-Tu domain I, II and III are shown in 

green, Mg
2+

 in magenta, GDPNP in orange. The Phe-tRNA
Phe

 3’-end is coloured in red, 

acceptor stem in yellow, TC loop in blue, variable loop in orange, the anticodon loop in 

green, the D loop in cyan, 5’-end in magenta and the amino acid Phe is in cyan. 
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 Formation of the ternary complex facilitates the delivery of aa-tRNA to the 

programmed ribosome. Upon binding to the ribosome, aa-tRNA enters the A-site of the 

30S subunit and remains bound to EF-Tu. When the codon-anticodon interaction triggers 

EF-Tu’s GTPase activity, rapid GTP hydrolysis results in a conformational change in EF-

Tu. The subsequent release of aa-tRNA into the ribosome is followed by the dissociation 

of EF-Tu from the ribosome (Pape et al. 1998). Cryo-EM structures have shown that the 

ternary complex binds to both the 30S and the 50S subunit A-site (Stark et al. 2002). On 

the 30S subunit, the anticodon stem-loop (ASL) of the tRNA occupies the decoding 

center, the minor groove of the D stem contacts ribosomal protein S12, and the T loop of 

the aa-tRNA forms interaction with the 23S rRNA in the 50S subunit (Stark et al. 2002). 

EF-Tu domain I interacts with the sarcin-ricin stem-loop (SRL) of the 23S rRNA and the 

L12 ribosomal protein on the 50S subunit (Stark et al. 2002; Villa et al. 2009); and 

domain II of EF-Tu contacts the 16S rRNA (Schuette et al. 2009). Val 20 and Ile 60 in 

EF-Tu have been proposed to form a hydrophobic gate that only opens in the presence of 

the ribosome, and that allows the side chain of the catalytic residue His 84 to reach the 

GTP binding pocket and to activate GTP hydrolysis (Dahl et al. 2006; Villa et al. 2009). 

Molecular modeling has suggested that the ribosome-stimulated GTP hydrolysis by EF-

Tu is promoted by the conformational rearrangement of the His 84 side chain 

approaching to the active site (Grigorenko et al. 2008). Based on the cryo-EM structure, 

Villa et al. proposed that L12 induced the conformational rearrangements of EF-Tu and 

reorientation of the catalytic His 84 which then leads to GTP hydrolysis (Villa et al. 

2009).  It has also been proposed that local flexibility in the tRNA and mRNA might also 

allow signal transmission, and that the interactions of the ribosome with the ternary 
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complex will stabilize the conformation of EF-Tu in the state required for GTP 

hydrolysis (Schuette et al. 2009). However, the details of signal transmission from the 

decoding center to trigger GTPase activation on EF-Tu remain unclear. 

 After EF-Tu∙GDP has dissociated from the ribosome and in order for it to 

participate in the next round of the elongation cycle, EF-Tu must return to the active form 

by exchanging the bound GDP for GTP (Figure 2.3). However, the dissociation of GDP 

from EF-Tu is very slow (0.002 s
-1

) and requires the action of EF-Tu’s GEF EF-Ts. EF-

Ts binds to EF-Tu and causes a thousand-fold decrease in the affinity of EF-Tu for GDP 

(Gromadski et al. 2002). The structure of the E. coli EF-Tu∙EF-Ts complex revealed that 

domain I of EF-Tu interacts with the subdomain N, the N-terminal domain, and the C-

terminal domain of the EF-Ts, whereas EF-Tu domain III contacts the EF-Ts subdomain 

C (Figure 2.4) (Kawashima et al. 1996). More importantly, the binding of EF-Ts to EF-

Tu causes a conformational change in the P loop of EF-Tu’s G domain, which leads to 

changes in the nucleotide binding affinity. It also disrupts the Mg
2+

-coordination and may 

change the orientation of the ribose binding sites (Wieden et al. 2002). 

 

Figure 2.3 Kinetic scheme of nucleotide exchange in EF-Tu. 
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Figure 2.4 Interactions between E. coli EF-Tu and EF-Ts (PDB: 1EFU). EF-Tu is 

shown in green, containing three domains: DI, DII and DIII. EF-Ts is shown in blue and 

consists of four domains: N-terminal domain (NTD), subdomain N, subdomain C and C-

terminal domain (CTD). 

 

 Although Pape et al. reported a rate for the GTP-GDP conformational change of 

EF-Tu during ribosomal A-site binding (Pape et al. 1998), it is unclear how EF-Tu 

changes its conformation during this process. Elongation factor Tu adopts two different 

conformations dependent on the guanine nucleotide bound, a closed conformation when 

bound to GTP and an open conformation when bound to GDP. One of the methods to 

study the domain movement within EF-Tu, to enable further understanding of the 

protein’s dynamic communication networks, is through fluorescently labelling EF-Tu. In 

the open conformation, the distance between domain I and domain II of EF-Tu is much 

larger than in the closed conformation. Therefore, by labelling residues in domain I and II 

with fluorescent dyes will allow a detailed study of domain movement within EF-Tu 

during its interaction with either aa-tRNA or the ribosome. 
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EF-Tu forms a ternary complex with GTP and aa-tRNA and binds to the 

ribosomal A-site. The ternary complex bound to the ribosome has been studied by cryo-

EM and X-ray techniques (Stark et al. 2002; Schuette et al. 2009; Villa et al. 2009). 

These studies have identified specific interactions between the different factors that are 

involved in translation. Kinetic studies have revealed the rate constants for each 

individual step (Pape et al. 1998; Gromadski et al. 2002; Katunin et al. 2002). However, 

the signal transmissions and dynamic communication network behind them remain 

unclear. For example, crystal structures have shown the binding site of the nucleotide on 

the EF-Tu (Kjeldgaard et al. 1993; Song et al. 1999) and kinetic studies have 

demonstrated that the ribosome stimulates EF-Tu’s GTPase activity only after codon 

recognition (Pape et al. 1998). But only little is known about how codon-recognition 

triggers GTPase activation in EF-Tu, and how the aa-tRNA is released from EF-Tu, 

enabling it to swing into the PTC which requires a 70 Å movement (Rodnina et al. 2005). 

It has been shown that the ribosome-stimulated GTP hydrolysis of EF-Tu with the 

presence of aa-tRNA is much faster than the one without the aa-tRNA (Thompson et al. 

1986). Moreover, Piepenburg et al. showed that in the presence of interrupted tRNAs, 

EF-Tu cannot hydrolyze GTP as fast as the one with continued aa-tRNA; suggested that 

tRNA is required for GTPase activation signal transmission from the decoding site to EF-

Tu (Piepenburg et al. 2000). More interestingly, aa-tRNAs have different nucleotide 

sequences, but it is unclear how this universal GTPase activation signal can be 

transmitted through different tRNA to EF-Tu in such efficient way.  

It is therefore necessary to study the dynamic communication networks between 

each factor involved in protein synthesis and, more importantly, the functional role of the 
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conserved amino acid residues in EF-Tu, which may be also required for the development 

of new tools in order to understand the details of this process.  

2.2 Objective 

 In this thesis, two questions will be addresssed: 

 Can the highly conserved residue Cys 81 in EF-Tu be replaced by Ala, 

Met or Ser without altering the affinity of EF-Tu for guanine nucleotides, 

the aa-tRNA and the ribosome, to enable the Cysteine specific 

introduction of fluorescent on a non-fluorescen reporter group? 

 Are residues R279, G280 and R283 in EF-Tu involve in the GTPase 

activation pathway of EF-Tu? 
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3.1 Protein overexpression and purification 

3.1.1 Overexpression 

For the overexpression of 6x-Histidine-tagged EF-Tu, pEECAHIS plasmids 

coding for wild-type tufA gene and the respective mutant EF-Tus were transformed into 

Escherichia coli BL21-DE3 cells (Novagen), plated on Luria Broth (LB) ampicillin agar 

plates, and incubated over night at 37
o
C. A single colony was picked and used to 

inoculate an overnight culture of 50 mL LB medium with 100 g/mL ampicillin at 37
o
C.  

Overnight cultures were centrifugated at 5,000 xg for 10 min at 4
o
C (Legend

®
, 

Sorvall), and washed with 5 mL LB. The resuspended cell pellet was used to inoculate 

fresh LB medium supplemented with 100 g/mL ampicillin to an optical density (OD)600 

of about ~ 0.1. Cultures were grown at 37
o
C to an OD600 of 0.6, and protein 

overexpression was induced by addition of isopropyl -D-1 thiogalactopyranoside (IPTG) 

to a final concentration of 1 mM. After induction, cells were grown for 3 hrs and 

harvested by centrifugation at 5,000 xg for 10 min in a TA-10 rotor (Beckman), flash 

frozen and stored at -80
o
C for future use. To confirm the overexpression of EF-Tu, 1 

OD600 of cells was taken every hour, lysed in 8 M urea solution in water and then 

analyzed on a 12% SDS-PAGE at 200V for 1 hr (bio-Rad Mini-PROTEAN Tetra Cell) 

and stained by Coomassie blue.  

3.1.2 Purification of recombinant EF-Tu  

Cells containing either wild-type or EF-Tu variants (10 g) were resuspended in 7 

mL of Buffer A per gram of cells (50 mM Tris-Cl pH 8.0 at 4
o
C, 60 mM NH4Cl, 7 mM 

MgCl2, 7 mM mercaptoethanol, 1 mM phenylmethylsulfonylfluoride (PMSF), 50M 
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GDP, 300 mM KCl, 10 mM imidazole and 15% v/v glycerol), then opened by incubation 

on ice for 30 min with lysozyme at a final concentration of 1 mg/mL. After the addition 

of 12.5 mg/g of sodium deoxycholate, the viscosity of the solution increased. The 

solution was then sonicated until the viscosity decreased again. The cell debris was 

removed by centrifugation at 3,000 xg for 30 min at 4
o
C (Legend

®
, Sorvall). To harvest 

the S-30 extract, the resulting supernatant was centrifuged for 45 min at 30,000 xg at 4
o
C 

in a JA-16 rotor (Beckman). 

The S-30 extract was applied to a 5 mL Ni
2+

-Sepharose column (GE Healthcare) 

and incubated on ice for 45 min, the supernatant was then removed by centrifugation at 

500 xg for 5 min at 4
o
C (Legend

®
, Sorvall). To remove unspecifically bound proteins, the 

resin was washed 3 times with 40 mL of Buffer A, and 4 times with Buffer B (50 mM 

Tris-Cl pH 8.0 at 4
o
C, 60 mM NH4Cl, 7 mM MgCl2, 7 mM -mercaptoethanol, 1 mM 

PMSF, 50 M GDP, 300 mM KCl, 20 mM imidazole and 15% v/v glycerol). His-tagged 

EF-Tu was eluted by incubating the resin 10 times with 9 mL of Buffer C (50 mM Tris-

Cl pH 8.0 at 4
o
C, 60 mM NH4Cl, 7 mM MgCl2, 7 mM -mercaptoethanol, 1 mM PMSF, 

50M GDP, 300 mM KCl, 250 mM imidazole and 15% v/v glycerol). 100l samples 

were collected during each wash step, and analyzed by 12% SDS-PAGE at 200 V for 1 hr 

and subsequently stained with Coomassie blue. Elution fractions containing EF-Tu were 

pooled and concentrated with Vivaspin 20 (30,000 MWCO, Sartorius stedim) to a final 

concentration of ~ 100 M. 

The proteins were further purified and re-buffered by size exclusion 

chromatography (SEC) using a Superdex 75 column (XK26/100, GE Healthcare) in 
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TAKM7 (50 mM Tris-Cl pH 7.5 at 4 
o
C, 70 mM NH4Cl, 30 mM KCl and 7 mM MgCl2). 

Fractions were analyzed on a 12% SDS-PAGE at 200 V for 1 hr and stained by 

Coomassie blue. Fractions containing EF-Tu were pooled, concentrated to ~ 100 M, 

shock frozen in liquid nitrogen, and stored at -80 
o
C. 

The purity of the protein was analyzed by loading 100 pmol of each protein on a 

12% SDS-PAGE at 200V for 1hr, and stained by Coomassie blue. All purified EF-Tu 

proteins were at least 90% pure. 

3.2 Rapid kinetic measurements 

Fluorescence stopped-flow measurements were performed with a KinTek SF-

2004 stopped-flow apparatus as described previously (Wieden et al. 2010). In brief, 

fluorescence resonance energy transfer (FRET) from the single residue Trp184 in EF-Tu 

to the 2’-(or -3’)-O-(N-methylanthraniloul) (mant)- group of the fluorescently-labelled 

nucleotide analog (mant-GDP or mant-GTP) (Invitrogen) was measured. This was carried 

out by exciting Trp184 at 280 nm and detecting the resulting mant-fluorescence after 

passing LG-400-F cut-off filter (NewPort). 

Guanine nucleotide dissociation rate constants (k-1, k-2) were measured by rapidly 

mixing equal volumes (25 l) of 0.6 M EF-Tu∙mant-GDP/mant-GTP with 30 M 

GDP/GTP in TAKM7 at 20 
o
C, and monitoring the time courses of mant fluorescence. 

Under these conditions, the large excess of unlabelled nucleotide limits the rebinding of 

mant-GDP/mant-GTP to EF-Tu, and the fluorescence change only reflects the 

dissociation of the mant-nucleotide. The data were evaluated by fitting the time courses 
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to a single-exponential function: F= A+B*exp(-kt), where F is the fluorescence at time t, 

A is the final fluorescence, B is the amplitude and the k is the dissociation rate constant.  

EF-Ts stimulated mant-GDP/mant-GTP dissociation rates (kappTs) were measured 

by rapidly mixing equal volumes (25 l) of 0.6 M EF-Tu∙mant-GDP/mant-GTP and 30 

M GDP/GTP, 2 M EF-Ts in TAKM7 at 20 
o
C, and monitoring the time course of 

fluorescence change of the mant emission. 

The apparent rate constant of nucleotide association to EF-Tu was measured by 

rapidly mixing equal volumes (25 l) of 0.6 M nucleotide free EF-Tu with different 

concentrations of mant-GDP/mant-GTP (0.6 to 10 M) in TAKM7 at 20 
o
C, and 

monitoring the time courses of mant-fluorescence change. Data were evaluated by fitting 

the time courses with an one exponential association function: F=A+B*exp(-kappt), where 

kapp is the apparent rate constant of association, F is the fluorescence at time t, A is the 

final fluorescence and B is the amplitude. The obtained apparent rate constants were 

plotted against increasing concentrations of nucleotide, and subsequently fitted with a 

linear equation. The slope of the linear equation thus gives the respective association rate 

constant (k1, k2). 

Data fitting was performed using the TableCurve software (Jandel Scientific), and 

normalized using the GraphPad Prism software by setting the highest point in the curve 

as 100% and the lowest point as 0% (GraphPad Software, Inc.). 
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3.2.1 Purification of nucleotide-free EF-Tu  

To purify EF-Tu from bound GDP, 10,000 pmol EF-Tu∙GDP were incubated in 

TAE buffer (50 mM Tris-Cl pH 7.5 at 4
o
C, 70 mM NH4Cl, 10 mM EDTA) in a final 

volume of 250 l for 30 min at 37 
o
C to remove the Mg

2+
 from the complex releasing the 

bound nucleotide. GDP and EF-Tu were separated by SEC on an Acorn Superdex 75 

10/300 GL column (GE healthcare) with TA buffer (50 mM Tris-Cl pH 7.5 at 4
o
C, 70 

mM NH4Cl). The protein containing fractions were detected by OD280 readings on a UV 

spectrometer, and those containing at least 0.6 M EF-Tu were pooled and stored on ice. 

Nucleotide free EF-Tu was stable within the time of the experiment and retained the 

characteristics of untreated EF-Tu with respect to the binding of GDP/GTP (Wieden et al. 

2010). 

3.2.2 Preparation of EF-Tu∙mant-GDP and EF-Tu∙mant-GTP 

To form EF-Tu·mant-nucleotide binary complex, 0.6 M EF-Tu was incubated 

with 6 M mant-GDP or mant-GTP (Invitrogen) for 30 min at 37 
o
C in TAKM7. When 

EF-Tu was incubated with mant-GTP, 3 mM phosphoenolpyruvate (PEP) and 0.1 mg/mL 

pyruvate kinase (PK) (Roche) were also added to the reaction to convert GDP or mant-

GDP to GTP or mant-GTP, respectively. 

All purified EF-Tu variants were at least 80% active compared to wild-type 

protein.  
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3.3 Purification of ribosomes 
 

Frozen E. coli MRE 600 cells (50 g) were crushed and ground with 100 g of cold 

Al2O3 in a cold mortar for 30 min at 4
o
C. DNase I was added to the mixture and mixed 

for 10 min, followed by the addition of opening buffer (20 mM Tris-HCl pH 7.6, 100 

mM NH4Cl, 10.5 mM MgCl2, 0.5 mM EDTA, 3 mM -mercaptoethanol) to 120 mL. The 

mixture was then centrifuged at 1,000 xg for 10 min, then 10,000 xg for 30 min with a 

Beckman JA-14 rotor. The supernatant was further centrifuged at 30,000 xg for 30 min in 

a Beckman Ti-45 rotor. 40 mL of the resulting supernatant was overlaid onto a 20 mL 

sucrose cushion (20 mM Tris-HCl pH 7.6, 500 mM NH4Cl, 10.5 mM MgCl2, 0.5 mM 

EDTA, 1.1 M Sucrose, 3 mM -mercaptoethanol) and centrifuged at 200,000 xg for 16 

hrs in a Beckman Ti-45 rotor. Pellets were dissolved in washing buffer (20 mM Tris-HCl 

pH 7.6, 500 mM NH4Cl, 10.5 mM MgCl2, 0.5 mM EDTA, 7 mM -mercaptoethanol) 

and pooled; the volume was then adjusted to 100 mL with washing buffer. 50 mL of the 

solution was subsequently overlaid onto a 4 mL sucrose cushion and centrifuged at 

200,000 xg for 14.5 hrs in a Beckman Ti-45. The resulting pellets were dissolved in 20 

mL washing buffer, and the volume was adjusted to 60 mL. 10mL of the solution were 

overlaid onto a 1.5 mL sucrose cushion and centrifuged at 141,000 xg for 13 hrs in a 

Beckman SW28. Pellets were then dissolved in 40 mL overlay buffer (20 mM Tris-HCl 

pH 7.6, 60 mM NH4Cl, 5.25 mM Mg(OAc)2, 0.25 mM EDTA, 2 mM mercaptoethanol) 

with 5mL 50% sucrose buffer (20 mM Tris-HCl pH 7.6, 60 mM NH4Cl, 5.25 mM 

Mg(OAc)2, 0.25 mM EDTA, 50% sucrose, 3 mMmercaptoethanol). The concentration 

of this pre-zonal solution was determined by A260 measurement using an extinction 

coefficient of 23 pmol/OD260.  
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70S ribosomes and ribosomal subunits were separated by zonal centrifugation. 

400 mL of overlay buffer was loaded into a Beckman Ti-15 zonal rotor at 200 xg at 4
o
C, 

then 22.5 mL (10,000 – 15,000 OD260 units) of pre-zonal ribosome solution was loaded 

into the rotor, followed by the addition of a 1370 mL 10% - 40% sucrose gradient (20 

mM Tris-HCl pH7.6, 60 mM NH4Cl, 5.25 mM Mg(OAc)2, 0.25 mM EDTA, 3 mM -

mercaptoethanol, and 10% to 40% sucrose) until 150 mL of overlay buffer came out of 

the outlet tube. Lastly, 150 mL of 50% sucrose buffer was loaded into the rotor and 

centrifuged at 42,000 xg for 19 hrs at 4
o
C. Fractions were measured at OD260 and those 

containing 70S, 50S and 30S were pooled and centrifuged at 200,000 xg for 46 hrs in a 

Beckman Ti-45 at 4
o
C. The resulting pellets were then dissolved in the final storage 

buffer ( 20 mM Tris-HCl pH7.6, 50 mM NH4Cl, 5 mM MgCl2) and the concentration 

adjusted to around 10 M. Ribosomes were aliquoted and flash frozen in liquid nitrogen 

and stored at -80
o
C. 

3.4 Purification of [
14

C] Phe-tRNA
Phe

 

 To aminoacylate tRNA
Phe

, 10 M E. coli tRNA
Phe

 (Sigma), 40 M [
14

C] Phe 

(MP-Biomedical), 5% crude synthetase, 3 mM ATP (Sigma) were incubated in 

aminoacylation buffer ( 25 mM Tris-OAc pH 7.5, 8 mM Mg(OAc)2, 100 mM NH4OAc, 

30 mM KOAc, 1mM DTT) to a final volume of 500 L. [
14

C] Phe-tRNA
Phe

 was 

separated from tRNA
Phe

 using a linear ethanol gradient from Buffer D (20 mM  NH4OAc 

pH 5, 10 mM Mg(OAc)2, 400 mM NaCl) to Buffer E (20 mM  NH4OAc pH 5, 10 mM 

Mg(OAc)2, 400 mM NaCl, 30% ethanol) on a Jupiter 5 C18 300A reverse phase 
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chromatography column (Phenomenex) on an HPLC (BioCad Sprint Perfusion 

Chromatography system). 

3.5 Dipeptide formation  

10 l of solution I containing 0.5 M 70S ribosomes and 1mg/mL poly(U), and 

10 l of solution II containing 1 M EF-Tu, 1 mM GTP, 3 mM PEP and 0.2 mg/mL PK 

were individually incubated in Buffer F (50 mM Tris-HCl pH 7.5, 70 mM NH4Cl, 30 mM 

KCl, 10 mM MgCl2 and 1 mM DTT) at 37
o
C for 15 min.  Both solution I and II were 

mixed with 5 l of 1 M [
14

C] Phe-tRNA
Phe 

and incubated at 37
o
C for 30 s. The two 

solutions were then mixed and incubated for additional 30 s. The reaction was quenched 

with 30 l of 2 M KOH and further incubated at 37
o
C for 15 min. Finally 60 l of glacial 

acetic acid was added and the solution was centrifuged at 11,500 xg for 10 min using a 

Hermel Z180M (Labnet International, Inc) centrifuge. 60 l of the supernatant were 

removed and added to 125 l of Buffer G (0.1% TFA in H2O). Dipeptides formed were 

separated from the supernatant using a 0-100% linear gradient from Buffer G to Buffer H 

(0.1% TFA, 65% Acetonitrile) on a EC 250/4 NUCLEOSIL 100-5 C18 column 

(Macherey-Nagel) on a Breeze HPLC (Waters). Fractions were analyzed in a Perkin-

Elmer Tri-Carb 2800TR liquid scintillation counter with 2 mL scintillation fluid (EcoLite, 

MP Biomedical). 

3.6 Ribosome-stimulated GTPase activity of EF-Tu 

Nuclotide charging solution containing 4 M [-
32

P]GTP at 2,000 dpm/pmol, 3 

mM PEP, 0.25 mg/mL PK in TAKM7 were pre-incubated at 37
o
C for 15 min. 0.2 M 
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EF-Tu and 0.02 M EF-Ts were added to the solution and incubated for another 15 min 

to form the binary complex EF-Tu·[-
32

P]GTP. Ribosomes were programmed by 

incubating 0.6 M 70S ribosomes with 1 mg/mL poly(U) mRNA at 37
o
C for 30 min. The 

GTP hydrolysis reaction was started upon addition of ribosomes (with or without poly(U)) 

to the EF-Tu∙[-
32

P]GTP binary complex solution. 5 l samples were taken at various 

time points, and quenched with 50 l 1 M HClO4 / 3 mM K2HPO4. The released 

inorganic phosphate (Pi) was extracted by mixing the quenched reaction with 300 l of 

20 mM Na2MoO4 and 400 l of isopropyl acetate for 30 s, and then centrifuged at 11,500 

xg for 5 min. 200 l of the top organic phase from the supernatant was added to 2 mL 

scintillation fluid (EcoLite, MP Biomedical) and samples were counted in a Perkin-Elmer 

Tri-Carb 2800TR liquid scintillation counter.  

The Mg
2+

 dependence of the ribosome-stimulated GTPase activity of EF-Tu was 

examined under the same assay conditions described above. However, TAKM buffers 

with different Mg
2+

 concentrations (3.5 to 10 mM) were used instead of TAKM7. 

Kirromycin-stimulated GTPase activity of EF-Tu was examined under the same 

assay conditions described above. Instead of adding 0.6 M ribosome to the binary 

complex solution, 2 M kirromycin (Sigma) was added. The reaction was quenched with 

1 L 6 M formic acid, and centrifuged at 11,500 xg for 5 min. 1 L of the supernatant 

was then spotted on a thin layer chromatography (TLC) PEI Cellulose F (EMD) plastic 

sheet plate, and developed in 1.5 M K2HPO4. The [
32

Pi] and [-
32

P]GTP were detected by 

phosphor autoradiography imaging using a Typhoon imager (GE Healthcare).
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1
 Part of the chapter was published in De Laurentiis, E.I., Mo, F., and Wieden, H.J. 2011. 

Construction of a fully active Cys-less elongation factor Tu: functional role of conserved 

Cysteine 81. BBA-Proteins and Proteomics 1814(2011): 684-692 
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4.1 Functional role of EF-Tu Cys 81 

One of the powerful tools to study protein-nucleic acid and protein-protein 

interactions is fluorescence resonance energy transfer (FRET) between two fluorescent 

dyes. Specific fluorescent labelling of proteins can be achieved by substituting a residue 

of choice with Cys, and subsequently modifying the thiol group of the Cysteine side 

chain with a thiol reactive fluorescent dye.  

However, E. coli EF-Tu contains three naturally occurring Cysteines, residue 81, 

136 and 254.  In order to allow for the site specific introduction of the fluorescent dye, all 

naturally occurring Cys residues need to be removed. Crystal structures of the EF-

Tu∙GDP complex reveal that one of these three residues (Cys 81) is located near the 

conserved G2 motif, and that the carbonyl oxygen of Cys 81 is involved in hydrogen-

bond interactions with a water molecule that coordinates the Mg
2+

 ion in the nucleotide 

binding pocket (Song et al. 1999) (Figure 4.1). Furthermore, Cys 81 has been found to be 

highly conserved among bacterial species (89%) and substituted with only two other 

amino acids, Ala and Met, in some bacteria in nature (De Laurentiis et al. 2011). 

Previous studies have also shown that covalent modification of Cys 81 with N-tosyl-L-

phenylalanine chloromethane (TPCK) impairs aa-tRNA binding and poly(Phe) synthesis 

(Jonak et al. 1982). In addition, replacing Cys 81 with Gly not only impairs aa-tRNA 

binding and poly(Phe) synthesis, it also destabilises EF-Tu and causes a decreased 

affinity for GDP (Anborgh et al. 1992). To further study the functional role of Cys 81 and 

to assess if the Cysteine side chain can be replaced enabling the site-specific introduction 

of fluorescent and non-fluorescent labels, three versions of a Cysteine-free EF-Tu each 

containing different amino acid substitution (Ala, Met, Ser) in position 81 as well as Val 
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in the two non-conserved positions, EF-TuAVV, EF-TuMVV and EF-TuSVV, have been 

analysed with respect to their guanine nucleotide and ribosome interactions. 

 

Figure 4.1 Location of Cysteine 81 in the G domain of EF-Tu (PDB: 1EFC). Cys 81 

is shown in red stick, the water molecule (cyan) forms a hydrogen bond with both Cys 81 

and Mg
2+

 (magenta sphere). GDP is shown in orange. 

  

4.1.1 Guanine nucleotide dissociation 

As a G protein, EF-Tu binds to guanine nucleotides; and Cys 81 is located closed 

to the nucleotide binding pocket. In order to study if substituting Cys 81 affects the 

nucleotide binding properties, the nucleotide (GDP/GTP) dissociation rate constants for 

EF-Tu (k-1, k-2) were measured using the stopped-flow technique exploiting FRET from 

Trp184 in EF-Tu to the mant-group of the respective nucleotide (Figure 4.2). Upon rapid 

mixing of EF-Tu∙mant-nucleotide with excess of unlabelled nucleotide in the stopped-

flow apparatus, the release of the mant-nucleotide from EF-Tu resulted in a decrease of 

mant fluorescence.  The respective dissociation rate constant (k-1, k-2) were obtained by 
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fitting the resulting time course with a one exponential function. As summarised in Table 

1, the k-1 and k-2 values for all mutants were similar to the wild-type values (k-1 = 0.002 ± 

0.001 s
-1

 and k-2 = 0.04 ± 0.01 s
-1

), suggesting that these three mutations do not alter the 

guanine nucleotide dissociation properties of EF-Tu. 

 

Figure 4.2 Dissociation of GDP/GTP from EF-Tu variants (EF-Tuwt, EF-TuAVV, EF-

TuMVV and EF-TuSVV). (A) Time courses of 0.3 M mant-GDP dissociating from (1) 

EF-Tuwt (2) EF-TuAVV (3) EF-TuMVV (4) EF-TuSVV (0.3 M each) was monitored by the 

emission of mant- fluorescence due to FRET; (5) negative control with only 0.3 M 

mant-GDP.  (B) The time courses of 0.3 M mant-GTP dissociating from (1) EF-Tuwt (2) 

EF-TuAVV (3) EF-TuMVV (4) EF-TuSVV (0.3 M each) was monitored by the emission of 

mant-fluorescence exited through FRET; (5) negative control with only 0.3 M mant-

GTP. 

 

Table 1: Dissociation rate constants for GDP and GTP from EF-Tu C81 variants 

EF-Tu GDP dissociation k-1 (s
-1

) GTP dissociation k-2 (s
-1

) 

EF-Tuwt 0.002 ± 0.001 0.04 ± 0.01 

EF-TuAVV 0.004 ± 0.001 0.06 ± 0.01 

EF-TuMVV 0.002 ± 0.001 0.04 ± 0.01 

EF-TuSVV 0.003 ± 0.001 0.06 ± 0.01 
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4.1.2 Guanine nucleotide association 

The association rate constants for GDP and GTP binding to EF-Tu (k1 and k2, 

respectively) were determined using a constant concentration of nucleotide free EF-Tu 

and varying concentrations of mant-GDP or mant-GTP. Upon binding of the mant-

labelled nucleotide to EF-Tu, an increase of mant-fluorescence was observed (Figure 4.3 

A and B). Apparent rate constant (kapp) values for each titration point were determined by 

fitting the time course with a single-exponential equation. The concentration dependence 

of kapp can then be plotted as a function of the mant-nucleotide concentration yieded k1 

and k2 from the slope of the linear fit (Figure 4.3 C and D). The value for k-1 and k-2 can 

be determined from the respective y-axis intercept, which was closed to zero (Table 2).  

Compared to the wild-type GDP association rate constant of k1 = (1.6 ± 0.2) x 10
6
 

M
-1

s
-1

, the EF-TuMVV variant showed a three-fold increase in the k1 value, whereas the 

other two variants behaved similar to the wild-type. On the other hand, EF-TuAVV showed 

a two-fold decrease in the k2 value, when compared to the other two variants and the 

wild-type with an association rate constant of k2 = (3.7 ± 0.2) x 10
5
 M

-1
s

-1
for GTP. 

Equilibrium binding constant (KD) values for each EF-Tu variant were calculated 

from nucleotide dissociation and association rate constants (KD= k-1/k1, values are 

summarized in Table 3). Compared to the wild-type KD values, a three-fold increase of 

the equilibrium binding constant for the respective mutants was observed. 
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Figure 4.3 Association of GDP and GTP with EF-Tu C81 variants. (A) Time courses 

of 3 M mant-GDP associating with (1) EF-Tuwt (2) EF-TuAVV (3) EF-TuMVV (4) EF-

TuSVV (0.3 M each) was monitored by the emission of mant- fluorescence from FRET; 

(5) negative control with only 3M mant-GDP.  (B) Time courses of 3 M mant-GTP 

associating with (1) EF-Tuwt (2) EF-TuAVV (3) EF-TuMVV (4) EF-TuSVV (0.3 M each) 

was monitored by the emission of mant- fluorescence from FRET; (5) negative control 

with only 3 M mant-GTP. (C) and (D) concentration dependent of kapp calculated by 

fitting time course in (A) and (B) with one exponential function. (●) EF-Tuwt; (○) EF-

TuAVV; (■) EF-TuMVV; (□) EF-TuSVV. 
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Table 2: Association rate constants of GDP and GTP with EF-Tu C81 variants 

EF-Tu GDP association k1 (M
-1

s
-1

) GTP association k2 (M
-1

s
-1

) 

EF-Tuwt (1.6 ± 0.2) x 10
6
 (3.7 ± 0.2) x 10

5
 

EF-TuAVV (1.6 ± 0.2) x 10
6
 (1.7 ± 0.1) x 10

5
 

EF-TuMVV (4.3 ± 0.2) x 10
6
 (3.9 ± 0.1) x 10

5
 

EF-TuSVV (1.2 ± 0.2) x 10
6
 (2.2 ± 0.1) x 10

5
 

 

Table 3: Summary of the equilibrium binding constants of GDP and GTP with EF-

Tu C81 variants 

EF-Tu KD GDP (nM) KD GTP (nM) 

EF-Tuwt 1.3 ± 0.8 110 ± 30 

EF-TuAVV 3.0 ± 1.0 350 ± 80 

EF-TuMVV 0.5 ± 0.1 100 ± 30 

EF-TuSVV 3.0 ± 1.0 270 ± 60 

4.1.3 Interaction of mutant EF-Tu with EF-Ts 

In order to study the effect that substituting Cys 81 with Ala, Met and Ser has on 

the interaction between EF-Tu and the nucleotide exchange factor EF-Ts, EF-Ts-induced 

nucleotide dissociation was measured by monitoring the fluorescence of mant-GDP and 

mant-GTP dissociation from EF-Tu in the presence of EF-Ts. In this case, after rapidly 

mixing EF-Tu∙mant-GDP or EF-Tu∙mant-GTP with excess unlabelled nucleotide in the 

presence of EF-Ts, a rapid decrease in mant-fluorescence was observed due to the release 

of bound mant-nucleotide (Figure 4.4). The rates of nucleotide dissociations were 

determined from the time course by fitting with a single-exponential equation. As 
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summarized in Table 4, all EF-Tu variants showed similar rates for EF-Ts-induced GDP 

and GTP dissociation (kappTs.GDP and kappTs.GTP, respectively) when compared to the wild-

type values which are kappTs.GDP = 2.6 ± 0.1 s
-1

 and kappTs.GTP = 6.9 ± 0.1 s
-1

. These results 

demonstrate that the three introduced Cys81 substitutions do not affect the binding of EF-

Ts for EF-Tu nor do they alter the exchange mechanism, since similar dissociation rates 

were observed for mutants and wilde-type EF-Tu in the presence of the same 

concentration of EF-Ts. 

 

Figure 4.4 EF-Ts-stimulated dissociation of GDP and GTP from EF-Tu C81 

variants. (A) Time courses of 0.3M mant-GDP dissociating from (1) EF-Tuwt (2) EF-

TuAVV (3) EF-TuMVV (4) EF-TuSVV (0.3M each) in the presence of 1M EF-Ts was 

monitored by the emission of mant- fluorescence due to FRET.  (B) Time courses of 0.3 

M mant-GTP dissociating from (1) EF-Tuwt (2) EF-TuAVV (3) EF-TuMVV (4) EF-TuSVV 

(0.3 M each) in the presence of 1M EF-Ts was monitored by the emission of mant- 

fluorescence due to FRET. 
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Table 4: EF-Ts stimulated nucleotide dissociation from EF-Tu C81 variants 

EF-Tu GDP dissociation kappTs.GDP (s
-1

) GTP dissociation kappTs.GTP (s
-1

) 

EF-Tuwt 2.6 ± 0.1  6.9 ± 0.1  

EF-TuAVV 4.4 ± 0.1  6.3 ± 0.1  

EF-TuMVV 2.5 ± 0.1  7.1 ± 0.1  

EF-TuSVV 1.7 ± 0.1  4.9 ± 0.1  

 

4.1.4 Dipeptide formation 

During the elongation cycle of protein synthesis, EF-Tu∙GTP delivers aa-tRNA to 

the mRNA programmed ribosome. De Laurentiis and co-workers have shown that the 

mutants EF-TuMVV and EF-TuSVV have a significant reduced ability to protect the 

aminoacyl-ester bond of the aa-tRNA against spontaneously hydrolysis, while EF-TuAVV 

has similar activity as the wild-type (De Laurentiis et al. 2011) (Table 5). 

In order to examine the ability of EF-Tu variants to deliver aa-tRNA to the 

ribosome and to assess if all ribosome-dependent steps can occur, a dipeptide formation 

assay was performed. Wild-type as well as mutant EF-Tu was first charged with GTP, 

then [
14

C] Phe-tRNA
Phe

 was added to form the ternary complex. 70S ribosome was 

programmed with the synthetic poly(U) mRNA, which codes for amino acid Phe, and 

then incubated with [
14

C] Phe-tRNA
Phe 

. For dipeptide formation, the ternary complex 

was incubated with poly(U)-programmed ribosomes for 30 s, and dipeptides were 

separated using HPLC. The percent yield of dipeptides formed was calculated from the 

respective amount of [
14

C] found in the Phe-Phe dipeptide peak. As shown in Figure 4.5, 
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all mutants behaved like the wild-type with dipeptide formation values closed to 100% 

under these conditions. 

Table 5: EF-Tu protection against spontaneous hydrolysis of Phe-tRNA
Phe

 (De 

Laurentiis et al. 2011) 

EF-Tu t1/2 Phe-tRNA
Phe

 (min) 

EF-Tuwt 90 ± 5 

EF-TuAVV 79 ± 19 

EF-TuMVV 37 ± 4 

EF-TuSVV 34 ± 8 

no EF-Tu 10 ± 7 

 

                             

Figure 4.5 Percentage of dipeptide formed relative to the EF-Tuwt activity. [
14

C]Phe-

[
14

C]Phe peptide bond formation within 30 s was measured in the presence of EF-Tu 

variants at 10 mM Mg
2+

. Dipeptides formed were separated using HPLC and quantified 

by scintillation counting. 

 



Chapter 4 Results 

 

52 

 

4.1.5 Ribosome-stimulated EF-Tu GTPase activity 

During protein synthesis, EF-Tu∙GTP delivers aa-tRNA to the ribosome. Upon 

codon-anticodon recognition, EF-Tu hydrolyzes GTP to GDP and changes its 

conformation to the GDP-bound form. It has been shown that the ribosome can stimulate 

the GTPase activity of EF-Tu even in the absence of aa-tRNA, but to a very much lower 

extent (Donner et al. 1978). The ability of the mutant EF-Tus to hydrolyze GTP in the 

presence of ribosome, but in the absence of aa-tRNA was examined and compared to the 

wild-type. EF-Tu and EF-Ts were incubated with [-
32

P]GTP, and the reaction was 

started upon the addition of ribosomes. Aliquots of the reaction were taken at different 

time points. The released [
32

Pi] was extracted and measured by liquid scintillation 

counting. The intrinsic GTPase activity of EF-Tu is extremely low and could not be 

determined under these conditions. As shown in Figure 4.6, the GTPase activity of EF-

Tuwt was strongly stimulated by the presence of 70S ribosome (0.06 pmol GTP 

hydrolyzed per min); however, EF-TuMVV showed 4 times less of the activity and, 

interestingly, both the EF-TuAVV and EF-TuSVV showed an even more reduced activity. 
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Figure 4.6 70S Ribosome-stimulated EF-Tu GTPase activity. (A) pmol GTP 

hydrolyzed over time of EF-Tu was measured by reacting 0.2 M EF-Tu, 0.02 M EF-Ts 

and 4 M [- 
32

P]GTP with 0.6 M 70S ribosomes. The reaction was quenched after 

various time points and the released inorganic phosphate was extracted and quantified by 

scintillation counting. (●) EF-Tuwt; (○) EF-TuAVV; (■) EF-TuMVV; (□) EF-TuSVV. (B) Rate 

of ribosome-stimulated GTP hydrolysis of EF-Tu variants. The rate of GTP hydrolysis by 

EF-Tu variants was obtained by fitting time courses in (A) with a linear equation. 

4.2 EF-Tu Domain II variants 

During protein synthesis EF-Tu not only interacts with aa-tRNA but also with the 

ribosome. During the elongation cycle, EF-Tu∙GTP∙aa-tRNA binds to the ribosomal A-

site, and following codon recognition the GTPase activity of EF-Tu is stimulated. The 

details of how the signal is transmitted from the ribosomal decoding site to EF-Tu are 

still unknown, but it has been suggested that the interactions between the ternary complex 

and the ribosome indirectly induce or stabilize conformational transitions in EF-Tu 

during GTP hydrolysis (Rodnina et al. 2005). Several groups reported cryo-EM 

structures and revealed that domain II of EF-Tu forms a contact with helix 5 of the 23S 

rRNA during A-site binding (Stark et al. 2002; Valle et al. 2002). More recent X-ray 

structures suggest that residues 221 and 222 in EF-Tu domain II interact with 16S rRNA 

bases 55, 56 and 368, as well as that EF-Tu residues 278 to 281 interact with 16S rRNA 
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bases 367 and 368 through hydrophobic interaction and hydrogen bonding (Schmeing et 

al. 2009; Schuette et al. 2009). More importantly, four of the seven residues in EF-Tu 

between positions 219 and 226 are more than 99% conserved in all species; and the 

hydrogen bonding interaction between Arg 279 and U368 is 99.7% conserved across all 

species (Schmeing et al. 2009) (Figure 4.7). Previous biochemical studies demonstrated 

that the substitution of Gly 222 with Asp inhibits the ribosome-stimulated GTP 

hydrolysis by EF-Tu, preventing protein synthesis. Interestingly, this effect can be 

overcome by higher Mg
2+

 concentration (10 mM). However, it is not clear if an 

alternative signalling pathway is used (Vorstenbosch et al. 1996). Furthermore, replacing 

Gly 280 with Val resulted in a ternary complex impaired in binding to the ribosome and 

reduced protein synthesis rates, consequently, expression of the mutant tuf gene alone 

cannot support cell growth (Tubulekas and Hughes 1993). More interestingly, the 

antibiotic kirromycin has been found to inhibit protein synthesis by blocking the release 

of the EF-Tu∙GDP complex from the ribosome after aa-tRNA binding and GTP 

hydrolysis (Wolf et al. 1974), but kirromycin cannot block the ternary complex 

containing EF-Tu G280V on the ribosome (Tubulekas and Hughes 1993). In order to 

investigate the functional role of amino acids around G280 for the regulation of the 

GTPase activity of EF-Tu, three mutant EF-Tus containing R279A, G280V or R283A 

were constructed (Figure 4.8), and their activity with respect to their interaction with 

guanine nucleotide and the ribosome was analyzed.  
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Figure 4.7 Interaction of R279 in EF-Tu with 16S rRNA U368 in 30S ribosomal 

subunit (PDB: 3FIN). R279 is shown in magenta and 23S rRNA U368 in cyan. 

 

 

 

Figure 4.8 Structure comparison of residues R279, G280 and R283 in EF-Tu in two 

conformations. Cartoon diagram of Escherichia coli EF-Tu∙GDP (A) (PDB: 1EFC) and 

Thermus thermophilus EF-Tu∙GTP (B) (PDB: 1EXM). R279 is shown in magenta, G280 

in red, and R283 in orange. 

  



Chapter 4 Results 

 

56 

 

4.2.1 Guanine nucleotide dissociation 

The nucleotide GDP and GTP dissociation rate constants (k-1, k-2) were 

determined as described in the material and methods section and are summarized in Table 

6. When compared to the respective wild-type values of k-1 = 0.002 ± 0.001 s
-1

 and k-2 = 

0.04±0.01 s
-1

, all EF-Tu variants showed similar behaviour, except for EF-TuR279A which 

showed a four-fold decrease in the GTP dissociation rate constant. 

Table 6: Dissociation rates constants for GDP and GTP from EF-Tu domain II 

variants 

EF-Tu GDP dissociation k-1 (s
-1

) GTP dissociation k-2 (s
-1

) 

EF-Tuwt 0.002 ± 0.001 0.04 ± 0.01 

EF-TuR279A 0.002 ± 0.001 0.01 ± 0.01 

EF-TuG280V 0.003 ± 0.001 0.03 ± 0.01 

EF-TuR283A 0.002 ± 0.001 0.05 ± 0.01 

 

4.2.2 Guanine nucleotide association 

GDP and GTP binding to EF-Tu were studied using the same method as for the 

EF-Tu Cys81 mutants. Time courses were fit to a single-exponential function (Figure 4.9), 

and the nucleotide association constants are summarized in Table 7. When compared to 

the wild-type values of k1 = (1.6 ± 0.2) x 10
6
 M

-1
s

-1
 and k2 = (3.7 ± 0.2) x 10

5
 M

-1
s

-1
, all 

mutant proteins showed similar behaviour, except EF-TuG280V which showed a three-fold 

increase in the GDP association rate constant (k1). Equilibrium binding constant (KD) 

values for each EF-Tu variant were calculated from the respective nucleotide dissociation 



Chapter 4 Results 

 

57 

 

(k-1/k-2) and association rate constants (k1/k2), and are summarized in Table 8. Compared 

to EF-Tu wild-type (KD GDP = 1.3 ± 0.8 nM and KD GTP = 110 ± 30 nM), all EF-Tu 

variants showed similar values within the standard deviation.  

 

Figure 4.9 Association of GTP with EF-Tu domain II variants. (A) Time courses of 3 

M mant-GTP binding to (1) EF-Tuwt (2) EF-TuR279A (3) EF-TuG280V (4) EF-TuR283A (0.3 

M each) was monitored by the emission of mant- fluorescence caused by FRET; (5) 

negative control with only 3 M mant-GTP. (B) Concentration dependence of the kapps 

calculated by fitting time courses in (A) with a single-exponential function. (●) EF-Tuwt; 

(○) EF-TuR279A; (■) EF-TuG280V; (□) EF-TuR283A. 

 

Table 7: Association rate constants of GDP and GTP with EF-Tu domain II variants 

EF-Tu GDP association k1 (M
-1

s
-1

) GTP association k2 (M
-1

s
-1

) 

EF-Tuwt (1.6 ± 0.2) x 10
6
 (3.7 ± 0.2) x 10

5
 

EF-TuR279A (1.4 ± 0.1) x 10
6
 (2.8 ± 0.1) x 10

5
 

EF-TuG280V (4.3 ± 0.5) x 10
6
 (3.5 ± 0.1) x 10

5
 

EF-TuR283A (2.4 ± 0.2) x 10
6
 (2.7 ± 0.1) x 10

5
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Table 8: Summary of the equilibrium binding constants of GDP and GTP with EF-

Tu domain II variants 

EF-Tu KD GDP (nM) KD GTP (nM) 

EF-Tuwt 1.3 ± 0.8 110 ± 30 

EF-TuR279A 1.4 ± 0.7 40 ± 30 

EF-TuG280V 0.5 ± 0.2 85 ± 30 

EF-TuR283A 0.8 ± 0.4 185 ± 40 

 

4.2.3 Interaction of EF-Tu domain II variants with EF-Ts 

In the crystal structure of EF-Tu, residues R279, G280 and R283 are located on 

the surface of domain II, and do not interact with either the nucleotide binding pocket of 

domain I or the EF-Ts binding site, suggesting that mutations in these positions should 

not affect the nucleotide-binding or exchanging properties of the protein (PDB:1TTT and 

1EFU) (Nissen et al. 1995; Kawashima et al. 1996). To confirm this, the effect of the 

domain II mutations on the interaction between EF-Tu and its nucleotide exchange factor 

EF-Ts were determined. EF-Ts-induced nucleotide dissociation was measured by 

monitoring the fluorescence change upon mant-GDP and mant-GTP dissociation from 

EF-Tu in the presence of a fixed amount of EF-Ts. When EF-Tu∙mant-GDP or mant-GTP 

was rapidly mixed with excess unlabelled nucleotide in the presence of EF-Ts, a decrease 

in mant fluorescence due to the release of mant-GDP or mant-GTP was observed. The 

rates of nucleotide dissociation were determined from the observed time courses by 

fitting with a single-exponential equation. Table 9 summarizes the apparent rate constants 

(kappTs.GDP and kappTs.GTP) for GDP and GTP dissociation. Compared to wild-type EF-Tu 
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GDP-dissociation rate kappTs.GTP = 2.6 ± 0.1 s
-1

, and GTP-dissociation rate kappTs.GTP = 6.9 

± 0.1 s
-1

, all EF-Tu variants showed two or three-fold increases in the respective values. 

Table 9: EF-Ts stimulated nucleotide dissociation from the EF-Tu domain II 

variants. 

EF-Tu GDP dissociation kTs.GDP (s
-1

) GTP dissociation kTs.GTP (s
-1

) 

EF-Tuwt 2.6 ± 0.1  6.9 ± 0.1  

EF-TuR279A 1.4 ± 0.1  18 ± 0.1  

EF-TuG280V 0.7 ± 0.1  11 ± 0.1  

EF-TuR283A 0.8 ± 0.1  13 ± 0.1  

 

4.2.4 70S ribosome- and kirromycin-stimulated EF-Tu GTP hydrolysis  

Residue R279 in EF-Tu has been shown to interact with the backbone of helix 15 

of the16S rRNA of the 30S ribosomal subunit (Schuette et al. 2009) and, therefore, could 

play a role in the signalling pathway of GTPase activation in EF-Tu. Furthermore, the 

substitution of G280V has been shown to impair GTPase activation of EF-Tu on the 

ribosome (Tubulekas and Hughes 1993). To verify the results concerning the substitution 

of G280V and to analyze the effect of the substitution of R279A, R283A on EF-Tu, the 

ability of EF-Tu variants to hydrolyze GTP in the presence of unprogrammed 70S 

ribosomes and poly(U)-programmed 70S ribosomes were examined. As shown in Figure 

4.10, the GTPase activity of EF-Tu variants in the presence of 70S ribosome and poly(U) 

programmed 70S ribosome were identical. However, wild-type EF-Tu was strongly 
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stimulated by the presence of 70S ribosome and hydrolyzed 0.1 pmol GTP per min, but 

all EF-Tu variants showed reduced activity.  

 

Figure 4.10 70S Ribosome-stimulated EF-Tu variants GTPase activity. (A) GTP 

hydrolysis by EF-Tu was measured by reacting 0.2 M EF-Tu, 0.02 M EF-Ts and 4 M 

[- 
32

P]GTP with 0.6 M unprogrammed 70S ribosome (solid line) or poly(U)-

programmed ribosome (dash line). The reaction was quenched after various time points 

and the released inorganic phosphate was extracted and quantified by scintillation 

counting. (●) EF-Tuwt; (○) EF-TuR279A; (■) EF-TuG280V; (□) EF-TuR283A. (B) Summary of 

GTPase activity of EF-Tu variants, poly(U)-programmed ribosome (black), empty 70S 

ribosome (grey) and without ribosome (white). The rate of GTP hydrolysis by EF-Tu 

variants was obtained by fitting time course in (A) with a linear equation, and the slope of 

the linear fit represents the rate of GTP hydrolysis. 

 

The antibiotic kirromycin has been reported to efficiently inhibit polypeptide 

synthesis by blocking the release of EF-Tu from the translating ribosome (Wolf et al. 

1974; Wolf et al. 1977). However, kirromycin can induce EF-Tu’s GTPase activity in the 

absence of aa-tRNA and ribosome (Chinali et al. 1977). Interestingly, while substitution 

of EF-Tu G280 to Val resulted in reduced translation efficiency, kirromycin could not 

inhibit protein synthesis by binding to this mutant EF-Tu, suggesting that G280 in EF-Tu 

plays an important role in the interaction of the ternary complex with the ribosome, such 
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as altering EF-Tu conformation during ribosomal A-site binding (Tubulekas and Hughes 

1993). Thus, both the unprogrammed ribosome- and kirromycin-stimulated EF-Tu 

GTPase activity were measured and compared. As shown in Figure 4.11, the three EF-Tu 

variants showed at least a three-fold decrease in the ribosome-stimulated activity, but 

kirromycin can stimulate the activity to almost the same extend. These results suggested 

that substitution of these three residues do not disrupt EF-Tu’s GTPase machanism, and 

these residues are important for the interaction of EF-Tu and the ribosome during protein 

synthesis. 

 

Figure 4.11 Ribosome- and kirromycin-stimulated EF-Tu GTPase activity. Summary 

of GTPase activity of EF-Tu variants. The reaction was quenched after various time 

points and the released inorganic phosphate were quantified by TLC. The rate of GTP 

hydrolysis by EF-Tu variants was obtained by fitting time course of GTP hydrolyzed 

over time with a linear equation, and the slope of the linear fit represents the rate of GTP 

hydrolysis.  EF-Tu·GTP with 70S ribosome (black), with kirromycin (grey), without 

ribosome and kirromycin (white). 

 

The structural flexibility of RNA and proteins in the 70S ribosome depend on the 

Mg
2+

 concentration (Yamamoto et al. 2010). Therefore, in order to test if higher Mg
2+
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concentration can rescue EF-Tu variants’ GTPase activity, Mg
2+

 dependence of the 

GTPase activities of EF-Tu variants was measured at different Mg
2+ 

concentrations. As 

shown in Figure 4.12, EF-Tuwt always shows a higher GTPase activity than EF-Tu 

variants regardless of the Mg
2+

 concentration. All EF-Tu variants and the wild-type 

showed the lowest activity at 3.5 mM Mg
2+

, and similar activities in the range of 5-10 

mM Mg
2+

. 

 

Figure 4.12 Mg
2+

 dependence of 70S ribosome-stimulated EF-Tu GTPase activity. 

Rate of GTP hydrolysis by EF-Tu was measured by reacting 0.2 M EF-Tu, 0.02M EF-

Ts and 4 M [- 
32

P]GTP with 0.6 M 70S ribosome at different Mg
2+ 

concentration. The 

reaction was quenched after various time points and the released inorganic phosphate was 

extracted and quantified by scintillation counting. The rate of GTP hydrolysis by EF-Tu 

variants was obtained by fitting time course of GTP hydrolyzed over time with a linear 

equation, and the slope of the linear fit represents the rate of GTP hydrolysis. EF-Tuwt 

(white); EF-TuR279A (grey); EF-TuG280V (black); EF-TuR283A (striped). 

 

4. 3 Summary 

 In summary, substitution of Cys 81 with Ala, Met and Ser does not affect the 

nucleotide binding properties and the EF-Ts catalyzed nucleotide exchange mechanism of 

EF-Tu, but EF-Tu variants with Met and Ser showed reduced ability to protect 
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spontaneously hydrolysis of the aminoacyl ester bond of the aa-tRNA. Although these 

mutant proteins can deliver aa-tRNA to the ribosome and form dipeptides like the wild-

type protein under the assay condition, all proteins showed a significantly reduced ability 

to hydrolyze GTP in the presence of the ribosome. When compared to wild-type EF-Tu, 

the mutant proteins containing R279A, G280V or R283A have the same affinity for the 

guanine nucleotide, but showed reduced ability to hydrolyze GTP in the presence of the 

ribosome under the multiple turnover condition and different Mg
2+

 concentrations. 

However, the antibiotic kirromycin can stimulate their GTPase activity to the same extent 

as for the wild-type protein. 
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5.1 Functional role of EF-Tu Cys 81 

The elongation factor Tu is one of the most abundant proteins in all living cells, 

and it is well conserved among the three domains of lives (Chiron et al. 2005). The 

interaction between EF-Tu, GTP, aa-tRNA and the ribosome has been studied in bacteria 

through crystal structures and biochemical assays for decades (Ramakrishnan 2002). 

Although kinetic studies have revealed several individual steps during protein synthesis, 

little is known about the dynamics of the whole process including how or when proteins 

change their conformation or how or when the signal travels between or within each 

participating macromolecule.  

One of the methods to study the interaction between biomolecules is through 

fluorescently labelled compounds. Due to the rarity of Cystetine in proteins and its 

special properties, normally a Cysteine is introduced at an interesting position on the 

surface of the protein, enabling the chemical modification with a fluorescent reporter 

group (Kim et al. 2008). In order to label E. coli EF-Tu at a specific position on the 

molecular surface using Cysteine as a linker, it is necessary to remove all Cysteines 

present in wild-type EF-Tu to create a Cys-free elongation factor. E. coli EF-Tu contains 

three Cysteines, Cys 81, Cys 136 and Cys 254. Two of these residues (Cys 136 and Cys 

254) were replaced by Valine, which is the most commonly found amino acid 

substitution at these positions, with degree of substitution of 37% and 31%, respectively. 

Only Cys 81 is highly conserved among 125 bacterial species and was found to be 

substituted with Alanine (10%) and Methionine (1%) in nature (De Laurentiis et al. 2011). 

Previous studies have shown that Cys 81 can be modified with N-tosyl-L-phenylalanyl 

chloromethane (TPCK) and that this modification impaired aa-tRNA binding and 
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poly(Phe) synthesis (Jonak et al. 1982). This raised the question what the functional role 

of Cys 81 in EF-Tu is during protein synthesis, and if it is possible to substitute Cys 81 in 

EF-Tu. 

To study the functional role of Cys 81, Anborgh and co-workers constructed a 

Glycine substitution variant (Anborgh et al. 1992). This study revealed that introducing 

Glycine in position 81 of EF-Tu leads to destabilization of the protein, a 13-fold increase 

of the KD for GDP, an impaired aa-tRNA binding and a reduced activity during poly(Phe) 

synthesis (Anborgh et al. 1992). This severe impact on the function of EF-Tu is 

consistent with the sequence alignment reported by De Laurentiis et al. 2011, where no 

Glycine could be found as substituent at position 81. This study also showed that Alanine 

and Methionine are common substitutions at this position in bacteria, suggesting that 

these substitutions may not affect the function of EF-Tu. Interestingly, although Serine is 

structurally similar to Cystein and, therefore, a potential conservative substitution for Cys 

81,  it is not found in the sequence of 125 bacterial EF-Tu (De Laurentiis et al. 2011).  

Here, the three Cys-less EF-Tu variants: EF-TuAVV, EF-TuMVV and EF-TuSVV 

were analyzed and revealed that the introduced substitutions do not affect the nucleotide 

binding property of EF-Tu, nor the interaction between EF-Tu and EF-Ts. However, 

while EF-TuAVV could protect the spontaneous hydrolysis of the aminoacyl ester bond of 

the aa-tRNA similar to the wild-type, EF-TuMVV and EF-TuSVV showed 3 times reduced 

protection. Moreover, none of the variants had a strong affect on the EF-Tu mediated aa-

tRNA binding and subsequent peptide bond formation under the assay conditions, which 

suggests that EF-Tu variants can bind aa-tRNA and deliver it to the ribosome. However, 

all EF-Tu variants showed a significant reduced aa-tRNA independent ribosome-
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stimulated GTPase activity, which suggests that Cys 81 may play an important role in 

EF-Tu’s GTPase activation.  

5.1.1 Guanine nucleotide binding properties 

Mg
2+

 is an essential cofactor in the GTPase reaction of all guanine nucleotide-

binding proteins (Gilman 1987). EF-Tu Cys 81 is located close to the nucleotide binding 

pocket and its backbone carbonyl oxygen forms a hydrogen bond with a water molecule 

which positions the Mg
2+

 ion at the nucleotide in the nucleotide binding pocket (Song et 

al. 1999). Anborgh et al. showed that substitution of Cys 81 to Gly increases the GDP 

dissociation rate and induces destabilization of the protein, suggesting that Cys 81 is 

involved in the ability of EF-Tu to discriminate between GDP and GTP, and that Cys 81 

is an important stabilizing element in the architecture of the guanine-nucleotide-binding 

region (Anborgh et al. 1992). Moreover, Glycine has a side chain with one single 

hydrogen atom, while Alanine, Methionine and Serine have either similar or longer side 

chain than Cysteine. By substituting Cys with Gly, an increase of flexibility of the 

backbone atoms may break the interaction between the water molecule and the carbonyl 

oxygen of Cys 81. Hence, the contribution of Cys 81 to the ability of EF-Tu to 

discriminate between GDP and GTP may not be determined by a specific amino acid at 

this position, but may be a result of the flexibility of backbone atoms and their interaction 

with water molecules. The determination of the kinetic parameters governing the 

interaction between the two guanine nucleotides and EF-Tu reported here demonstrate 

that replacing Cysteine with side chains of different sizes does not significantly affect 

nucleotide binding. This supports the notion that increased flexibility in position 81 might 

be the cause for the observed lowered affinity for GDP in the reported C81G variant. 
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However, it does not explain the evolutionary pressure on position 81 selecting for 

Cysteine in this position as the Serine mutant exhibit wild-type like behaviour suggesting 

a critical role of Cys 81 in a different functional property of EF-Tu. 

5.1.2 aa-tRNA binding property and peptide formation 

Aminoacyl-tRNA plays a central role in protein synthesis by delivering the amino 

acid that corresponds to the mRNA codon displayed in the A-site of the ribosome. 

Elongation factor-Tu forms a ternary complex with GTP and aa-tRNA, and this complex 

subsequently binds to the A-site of the ribosome and facilitates the growth of the 

polypeptide chain (Ott et al. 1990). Studies from different research groups suggest that 

EF-Tu forms protein-nucleic acid interactions with the aminoacyl end of aa-tRNAs, 

consisting of the T loop, T stem, aminoacyl stem and the CCA-end of tRNA (Wikman et 

al. 1982; Joshi et al. 1984; Metz-Boutigue et al. 1989). Crystal structures of the ternary 

complex from Thermus aquaticus showed that Phe-tRNA
Phe

 interacts with all three 

domains of EF-Tu (Nissen et al. 1995). The 3’-CCA-Phe binds to domain II of EF-Tu in 

the interface between domain I and II of EF-Tu. The 5’-end and part of the acceptor stem 

of the aa-tRNA binds to the interfaces between the three domains and to the GTPase 

switch regions of the EF-Tu, where as the T stem of the tRNA binds to the surface of 

domain III of EF-Tu (Nissen et al. 1995; Nissen et al. 1996).  Nissen and his co-workers 

identified residues in the switch II region (Gly 83 to Gly 94 in helix B) involved in the 

recognition of the major groove of the tRNA between the acceptor stem and the T stem. 

Residue Tyr 88, Lys 90 and Asn 91 interact with the 5’-end of the tRNA (Nissen et al. 

1996). Based on the crystal structure of Thermus aquaticus EF-Tu ternary complex 

((Nissen et al. 1995) PDB: 1TTT), Cys 81 does not directly interact with any of the 
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residues in the protein-nucleic acid interaction site between EF-Tu and aa-tRNA. 

However, Cys 81 is located in the loop connecting helix B and is about 15 Å away from 

both the aminoacyl ester bond at the 3’-end and the 5’-end of the aa-tRNA, suggesting 

that Cys 81 may have an indirect influence on aa-tRNA binding. Indeed, substitution of 

Cys 81 with Gly (Anborgh et al. 1992), Met and Ser showed reduced ability to protect aa-

tRNA from spontaneously hydrolysis. Interestingly, substitution of Cys 81 to Ala resulted 

in similar behaviour as the wild-type (De Laurentiis et al. 2011). The side chain of 

position 81 is surrounded by residues from helix B, whose flexibility has a direct 

influence on the affinity for aa-tRNA (Kjaersgard et al. 1995), and therefore, the longer 

side chain of a Met at position 81 may reduce the space required for the flexibility of 

helix B, and may therefore limit conformational changes of the protein. This may be the 

reason for the reduced affinity of EF-Tu C81M for aa-tRNA. Furthermore, Streptomyces 

coelicolor and Streptomyces ramocissimus are the only bacteria species that have been 

found to have a tuf3 gene, a low-expression tuf gene variant form that contains a Met at 

position 81(Vijgenboom et al. 1994; Olsthoorn-Tieleman et al. 2001). Interestingly, both 

species have a longer duplication time than E. coli (Cox 2004) and multiple copies of tuf 

genes of which at least one copy contains a Cysteine in position 81 (Vijgenboom et al. 

1994). Thus, although E. coli EF-TuMVV showed reduced affinity to aa-tRNA, this may 

not be lethal for Streptomyces species due to the presence of tuf genes with Cys at 

position 81. On the other hand, substitution of Cys by Gly may increase the space 

between residue 81 and its surrounding atoms, which could potentially increase the 

flexibility of helix B, leading to a reduced affinity of EF-Tu for aa-tRNA. Ala has a 

shorter side chain than Cys, but protein variants are still able to protect aa-tRNA from 
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hydrolysis to an extent similar to the wild-type. Surprisingly, although Ser has a similar 

structure than Cys, substitution of Cys 81 with Ser significantly decreased the affinity of 

the protein for aa-tRNA, suggesting that more than just the size and shape of the amino 

acid in position 81 is important for the function of EF-Tu.  Serine may affect aa-tRNA 

binding to EF-Tu by altering the protonation of the –OH side chain, therefore, changing 

the hydrogen bonding properties and the conformation of helix B. 

In all living cells, the key function of EF-Tu is to transport the aa-tRNA to the A-

site of the actively translating ribosome. The cognate codon-anticodon interaction 

triggers the hydrolysis of GTP bound to EF-Tu, and subsequent dissociation of EF-

Tu∙GDP from the ribosome and peptide bond formation. In this study, EF-Tu variants 

showed similar relative activity in the dipeptide formation as the wild-type, suggesting all 

three EF-Tu variants can efficiently form ternary complexes with GTP and aa-tRNA, and 

subsequently deliver aa-tRNA to ribosomal A-site under the assay condition (see section 

3.4). Further experiments need to be carried out test if these three substitutions at position 

81 affect in vitro poly(Phe) synthesis under multiple turnover condition. 

5.1.3 Ribosome-stimulated GTPase activity 

 Cryo-EM and X-ray structures of EF-Tu bound to the ribosome revealed that 

domain I of EF-Tu is involved in the interaction with the sarcin-ricin loop (SRL) of the 

23S RNA of the 50S ribosomal subunit (Stark et al. 2002; Voorhees et al. 2010). The 

SRL has been shown to be crucial for GTPase activation. Schuette and colleagues 

hypothesized that the catalytic residue His 84 of EF-Tu in the GTP-bound conformation 

sterically clashes with the SRL causing a rearrangement of switch II of EF-Tu which then 
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induces GTP hydrolysis (Schuette et al. 2009). Mutations C81G, G83A, H84A all 

showed a reduced ribosome-stimulated GTPase activity (Anborgh et al. 1992; Kjaersgard 

et al. 1995; Daviter et al. 2003), suggesting a conformational change in the switch II 

region of the mutants interfering with GTPase activation. In this study, all three EF-Tu 

variants AVV, MVV and SVV showed reduced (>three-fold) aa-tRNA independent 

ribosome-stimulated GTPase activity under multiple turnover conditions. This suggests 

that although Ala and Met are found in nature as substitutions for Cys 81, mutations may 

affect the conformation of the switch II region and, therefore, limit the GTPase activation 

in E. coli EF-Tu in the absence of aa-tRNA. The fact that dipeptide formation, which 

follows GTP-hydrolysis in the presence of aa-tRNA, seems not to be affected by the 

introduced substitutions indicates that under the assay condition the codon-anticodon 

interaction can trigger additional signals through, for example the tRNA that can 

compensate the effect of the Cysteine 81 mutants reported here. Therefore, further 

experiments can be performed to test if the presence of aa-tRNA can rescue ribosome-

stimulated EF-Tu GTPase activity for all three variants. 

5.2 Effect of domain II mutants on ribosome-stimulated EF-Tu’s GTPase activity 

 Upon correct codon-anticodon recognition, local changes at the decoding center 

trigger a conformational change in the 30S ribosomal subunit from an open to a close 

conformation, where the shoulder domain of the 30S subunit moves towards the ternary 

complex (Ogle et al. 2002), which ultimately contributes to stimulating EF-Tu’s GTPase 

activity. Although the kinetic mechanism of EF-Tu dependent aa-tRNA binding to the 

ribosome has been studied to great detail (Rodnina et al. 1995; Pape et al. 1998; Kothe 

and Rodnina 2006), the exact signalling pathway for EF-Tu’s GTPase activation is 
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unclear. Therefore, residues in domain II of EF-Tu involved in ribosomal interactions 

were examined in this study.  

Piepenburg and colleagues proposed two signalling pathways for ribosome-

stimulated GTPase activation of EF-Tu. One is through direct contact between EF-Tu and 

the ribosome and another involves a conformational change in aa-tRNA, which induces a 

conformational change in EF-Tu. Different investigations have suggested that 

conformational changes in the D loop (Rodnina et al. 1994) and T loop of aa-tRNA 

(Piepenburg et al. 2000; Valle et al. 2002) may translate an interaction in the decoding 

center into a signal for GTPase activation in EF-Tu via S12 in the 30S subunit (Gregory 

et al. 2009). However, recent cryo-EM and X-ray crystal structure suggest that the 30S 

subunit not only interacts with aa-tRNA, but also with domain II of EF-Tu at residues 

232-235 at helix 5 and Arg 291 in T. thermophilus (Arg 279 in E. coli) at helix 15 of 16S 

rRNA (Schuette et al. 2009; Voorhees et al. 2010). Interestingly, substitution of G280V 

on EF-Tu in Salmonella typhimurium (G280 in E. coli) (Tubulekas and Hughes 1993) 

and G222D in E. coli (Vorstenbosch et al. 1996) showed impaired GTPase activity, 

indicating the signal may also travel directly through the 16S rRNA in 30S subunit and 

domain II in EF-Tu.  

 5.2.1 Guanine nucleotide binding properties 

 Residues R279, G280, and R283 are located in domain II of E. coli EF-Tu, far 

away from both the nucleotide binding pocket and EF-Ts interaction site. Their locations 

are consistent with the results reported here that mutating them to Alanine and Glycine 

does not alter the nucleotide binding properties and the interaction of EF-Tu with EF-Ts. 
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5.2.2 Ribosome-stimulated GTPase activity and the effect of Mg
2+

 

concentration 

Tubulekas and colleagues demonstrated that the substituion of G280V in 

Salmonella typhimurium reduced the ability of EF-Tu to interact with ribosomes, and that 

the ribosome-dependent GTPase stimulation was less efficient. But no effect on 

nucleotide binding affinity, interaction with EF-Ts and the formation of the ternary 

complex were observed (Tubulekas and Hughes 1993). Interestingly, the structure of the 

kirromycin stalled T. thermophilus EF-Tu ternary complex bound to T. thermophilus 

ribosome revealed that Arg 291 (Arg 279 in E. coli) forms a hydrogen bond with the 

backbone of 16S rRNA helix 15 U367 (Schuette et al. 2009) and that residues 278 to 280 

(in E. coli) interact with 16S rRNA nucleotides 367 and 368 via hydrophobic interactions 

(Schmeing et al. 2009). Although Gly 280, and Arg 283 (E. coli) do not directly contact 

the 16S rRNA, the G280V and R283A, as well as R279A variants showed reduced 

ribosome-stimulated GTPase activity in the EF-Tu∙GTP binary complex. It also has been 

suggested that the 16S rRNA may undergo a conformational change upon binding to 

mRNA (Brock et al. 2008). Therefore, EF-Tu’s GTPase activity was also tested in the 

presence of poly(U) programmed ribosomes. The GTPase activity of EF-Tu variants was 

not enhanced by the presence of mRNA in the ribosome, consistent with wild-type EF-Tu 

that did not show increased GTPase activation, suggesting that the conformational change 

in 16S rRNA does not alter the interaction site between EF-Tu and the rRNA. Mutations 

G280V and R283A may alter the conformation of the loop containing Arg 279, hence, 

disrupting the interaction between Arg 279 and U367 which may disrupt the signal 

transmission for GTPase activation.  
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Interestingly, it has been noticed that U368, a downstream nucleotide to U367 on 

16S rRNA, together with A55 also contact residues 232-235 in domain II of EF-Tu 

(Schuette et al. 2009). Mutations on corresponding residue on E.coli EF-Tu G222D 

showed that the substitution has no effect on the initial binding of the ternary complex to 

the ribosome and the codon recognition. But at low Mg
2+

 concentration (5 mM), the 

G222D substitution inhibited the tRNA conformation change after codon recognition, 

subsequent GTPase activation and A-site binding. However, at higher Mg
2+

 concentration 

(10 mM) all activities were restored (Vorstenbosch et al. 1996). Previous kinetic studies 

suggested that Mg
2+ 

is also important for GTP hydrolysis as increased GTPase activation 

of wild-type EF-Tu was observed with increasing Mg
2+

 concentrations (Thompson et al. 

1981); and lowering the Mg
2+

 concentration from 10 mM to 5 mM may result in a 

decrease in the rate of GTP hydrolysis, which significantly improves the selectivity of aa-

tRNA binding and overall translation (Pape et al. 1999). This is consistent with the 

observation that Mg
2+

 is essential for maintaining the ribosome structure and flexibility 

(Liiv and O'Connor 2006; Selmer et al. 2006; Yamamoto et al. 2010). Available crystal 

structures suggest that Mg
2+

 is important for forming intersubunit bridges between the 

two ribosomal subunits during translation (Selmer et al. 2006). To assess the role of 

magnesium ions on the ribosome-dependent GTPase activation of the mutant EF-Tu·GTP 

binary complex, different Mg
2+ 

concentrations were used in ribosome-stimulated EF-Tu 

GTPase activity assay. Interestingly, although all EF-Tus showed lower level GTPase 

activation at 3 mM Mg
2+

 concentration and maximum activity at 10 mM Mg
2+

 

concentration,  the activities for all EF-Tu variants were lower than the wild-type control 

in all tested Mg
2+

 concentrations. These data suggested that increasing Mg
2+
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concentration cannot rescue the GTPase activity of EF-Tu variants, and Mg
2+

 cannot 

restore the communication network between 16S rRNA and the EF-Tu by forming 

bridges between the two molecules.  

 More interestingly, kirromycin is a antibiotic that inhibit the release of EF-Tu 

from the ribosome by stabilize EF-Tu at a GTP-bound like state; however, it has been 

shown to stimulate GTP hydrolysis of EF-Tu (Wolf et al. 1974). In the presence of 

kirromycin, all three protein variants can hydrolyze GTP with the similar rate as the wild-

type. These data suggest that the reduced ribosome-stimulated GTPase activity of the EF-

Tu variants is not due to losing the GTPase activity in the EF-Tu, but to the lose of 

communication between EF-Tu and the ribosome. These data further suggest that EF-Tu 

R279, G280 and R283 are involved in the signaling pathway for GTPase activation. 

Aminoacyl-tRNA has been shown to be important for the GTPase activation signal 

transmission from the decoding site on the ribosome to EF-Tu (Piepenburg et al. 2000), 

therefore, it will be interesting to examine if aa-tRNA can restore the GTPase activity of 

EF-Tu variants in presence of the ribosome. If the activity is restored, further experiment 

can be carried out to test if EF-Tu undergoes conformation changes upon aa-tRNA 

binding or ribosomal A-site binding that facilitate the signal transmission. If the activity 

cannot be restored, this will further support that residues R279, G280 and R283 in 

domain II of EF-Tu are an important part of the communication network between the 

ribosome and the EF-Tu required for GTPase activation.  

Based on the findings reported here, I hypothesize that after codon –anticodon 

recognition, the GTPase activation signal travels from the decoding center not only via 

the tRNA but also via 16S rRNA to EF-Tu’s domain II and causes a local rearrangement 
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within the EF-Tu, where switch II region in domain I containing C81 may undergo a 

conformation change, which is important for the activation of EF-Tu’s GTPase activity. 
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 The findings reported here provide experimental support that a Cysteine-free 

(Cys-less) EF-Tu can be constructed by replacing Cys 81, 136 and 254 by Ala, Val and 

Val respectively, and that the protein variant has the same affinity to nucleotide and aa-

tRNA as the wild-type. Therefore, interaction between aa-tRNA and EF-Tu can be 

studied by introducing a Cysteine residue into the Cys-less EF-TuAVV background and 

subsequent fluorescent labelling. However, replacing Cysteine 81 affected the ribosome-

stimulated EF-Tu GTPase activation in the absence of aa-tRNA, indicating EF-Tu Cys 81 

may play a functional role in the GTPase activation process. 

Mutations on EF-Tu R279, G280 and R283 show lower ribosome-stimulated EF-

Tu GTPase activation in the absence of aa-tRNA, but are not affected in nucleotide 

binding affinity and kirromycin-stimulated GTPase activity. This may indicate that these 

residues may indirectly be involved in the signaling pathway for GTPase activation. 

Therefore, base on the results from the C81, R279, G280 and R283 substitutions, I 

hypothesize that after codon –anticodon recognition, GTPase activation signal may 

require the interaction between 16S rRNA with EF-Tu domain II causing a local 

rearrangement in EF-Tu, likely the switch II region containing C81 in domain I, and that 

a subsequent rearrangement is important for the activation of the GTPase activity of EF-

Tu. Therefore, further detailed analysis is needed to examine the interaction between 

ribosome and these protein variants. 
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