
APPROXIMATION ALGORITHMS FOR A GRAPH-CUT PROBLEM WITH
APPLICATIONS TO A CLUSTERING PROBLEM IN BIOINFORMATICS

SALIMUR RASHID CHOUDHURY
Bachelor of Science, Islamic University of Technology, 2004

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Salimur R. Choudhury, 2008

I dedicate this thesis to my parents and sister.

iii

Abstract

Clusters in protein interaction networks can potentially help identify functional relation-

ships among proteins. We study the clustering problem by modeling it as graph cut prob-

lems. Given an edge weighted graph, the goal is to partition the graph into a prescribed

number of subsets obeying some capacity constraints, so as to maximize the total weight

of the edges that are within a subset. Identification of a dense subset might shed some light

on the biological function of all the proteins in the subset.

We study integer programming formulations and exhibit large integrality gaps for various

formulations. This is indicative of the difficulty in obtaining constant factor approximation

algorithms using the primal-dual schema. We propose three approximation algorithms for

the problem. We evaluate the algorithms on the database of interacting proteins and on

randomly generated graphs. Our experiments show that the algorithms are fast and have

good performance ratio in practice.

iv

Acknowledgments

I express my deep acknowledgment and profound sense of gratitude to my supervisor Dr.

Daya Gaur for his inspiring guidance, helpful suggestions and persistent encouragement as

well as close and constant supervision throughout the period of my Masters degree.

I would also like to thank my M.Sc. supervisory committee members Dr. Hans-Joachim

Wieden, Dr. Stephen Wismath and Dr. Shahadat Hossain for their guidance and suggestion.

I would also like to thank my external examiner Dr. Abraham Punnen for his valuable

suggestions and comments.

I am grateful to Dr. Daya Gaur and to the School of Graduate Studies for the financial

assistantships.

I am very much thankful to my family and fellow graduate students Mohammad Tauhidul

Islam, Sardar Haque and Sadid Hasan for the continuous encouragement that helped me to

complete this thesis.

v

Contents

Approval/Signature Page ii

Dedication iii

Abstract iv

Acknowledgments v

Table of Contents vi

List of Tables ix

List of Figures x

Glossary xi

1 Introduction 1
1.1 Importance of Protein Protein Interaction 2
1.2 PPI network Representation .. 2
1.3 Clustering PPI network .3
1.4 Definitions . 4

1.4.1 ClassP . 4
1.4.2 ClassNP . 4
1.4.3 Polynomial time reductions . 4
1.4.4 NP-Completeness . 5
1.4.5 Approximation Algorithm . 5

1.5 Organization of the thesis .. . 6

2 Related Work 8
2.1 Definitions . 8
2.2 Previous work . 9

2.2.1 Maxk-cut . 9
2.2.2 Capacitated maxk-cut . 11
2.2.3 Mink-cut . 12
2.2.4 Capacitated mink-cut . 12

vi

2.2.5 Multiway cut . 13
2.2.6 Maxk-uncut . 13
2.2.7 Capacitated maxk-uncut problem 13
2.2.8 Multiway uncut . 13

2.3 Relationship between mink-cut and maxk-uncut 14

3 Linear and Integer Linear Programming (ILP) 16
3.1 Linear Programming . 16
3.2 Integer Linear Programming .. 17
3.3 Integer Linear Program for Capacitated Maxk-uncut Problem 18
3.4 Another ILP formulation .20
3.5 Linear Programming Relaxation .. . 21
3.6 Integrality Gap . 21

4 Approximation Algorithms 25
4.1 Local Search and Recursive Greedy methods 25

4.1.1 Local Search . 25
4.1.2 Recursive Greedy method . 27

4.2 Local Search Algorithm .27
4.2.1 Definition of Capacitated Maxk-uncut problem 27
4.2.2 The Swap Algorithm . 27
4.2.3 Approximation Algorithm . 28

4.3 Ejection Chain Algorithm .. 34
4.3.1 Ejection Algorithm . 35

4.4 Recursive greedy algorithm .. . 36
4.4.1 Greedy method for max 2-uncut problem36
4.4.2 Recursive greedy method . 37

5 Experiments and Results 41
5.1 Implementation . 41

5.1.1 Swap Algorithm . 42
5.1.2 Recursive Greedy method . 43
5.1.3 Ejection Algorithm . 43

5.2 Data Sets . 44
5.3 Experimental results .44

5.3.1 Protein Interaction Database .. 44
5.3.2 Randomly Generated Graphs . 54

5.4 Conclusions . 62

6 Conclusion and Future Work 66
6.1 Conclusion . 66
6.2 Future Research Work . 67

vii

Bibliography 68

viii

List of Tables

2.1 Some partitioning problems .. . 10

5.1 Experimental results on database 1 (uniform sizes) 46
5.2 Experimental results on database 2 (uniform sizes) 48
5.3 Experimental results on database 1 (two unbalanced subsets) 50
5.4 Experimental results on database 2 (two unbalanced subsets) 52
5.5 Experimental results on database 1 (three unbalanced subsets) 54
5.6 Experimental results on database 2 (three unbalanced partitions) 56
5.7 Experiments on random dense graphs 58
5.8 Experiments on random sparse graphs withp = 5

|V | 60

5.9 Experiments on random small sparse graphs with 20k orderings withp = 5
|V | 63

5.10 Experiments on random small sparse graphs with 100k orderings withp = 5
|V | 64

ix

List of Figures

1.1 Example of a PPI Network . 3

2.1 Example Graph . 11

5.1 Comparison of the performance ratio of the algorithms ondatabase 1 (uni-
form sizes) . 45

5.2 Comparison of the timing of the algorithms on database 1 (uniform sizes) . 47
5.3 Comparison of the performance ratio of the algorithms ondatabase 2 (uni-

form sizes) . 49
5.4 Comparison of the timing of the algorithms on database 2 (uniform sizes) . 49
5.5 Comparison of the performance ratio of the algorithms onunbalanced sub-

sets of database 1 . 51
5.6 Comparison of the timing of the algorithms on unbalancedsubsets of database

1 . 51
5.7 Comparison of the performance ratio of the algorithms ontwo unbalanced

subsets of database 2 . 53
5.8 Comparison of the timing of the algorithms on two unbalanced subsets of

database 2 . 53
5.9 Comparison of the performance ratio of the algorithms onthree unbalanced

subsets of database 1 . 55
5.10 Comparison of the timing of the algorithms on three unbalanced subsets of

database 1 . 55
5.11 Comparison of the performance ratio of the algorithms on three unbalanced

subsets of database 2 . 57
5.12 Comparison of the timing of the algorithms on three unbalanced subsets of

database 2 . 57
5.13 Comparison of the performance ratio of the algorithms on random dense

graphs . 59
5.14 Comparison of the timing of the algorithms on random dense graphs 59
5.15 Comparison of the performance ratio of the algorithms on random sparse

graphs withp = 5
|V | . 61

5.16 Comparison of the timing of the algorithms on random sparse graphs with
p = 5

|V | . 61

x

5.17 Comparison of the performance between the swap and the ejection chain
algorithms on small random sparse graphs withp = 5

|V | 65

xi

Glossary

• Graph: A non-negative edge weighted undirectedgraph G consists of a set of ver-

ticesV and a set of edgesE that connect pairs of vertices. Normally we denote the

graph asG =(V , E). G may have non-negative edge weights denoted byw(u,v),

where(u,v) ∈ E is an unordered pair of vertices.

• Hypergraph: A hypergraph H = (V , E) is a generalization of a graph whereV

denotes the set of vertices and each edge ofE is a non-empty subset ofV . In a

hypergraph, edges can connect any number of vertices (greater that 1).

• Weight of a graph: Theweight of a graph (W) denotes the sum of all the weights of

the edges(u,v) ∈ E, whereu ∈V andv ∈V ; i.e. ∑(u,v)∈E w(u,v)

• Partition : Let Vi ⊆V for all i = 1, . . . ,k be a collection of subsets ofV . This collec-

tion is called a partition if∪k
i=1Vi = V andVi ∩Vj = φ for all i, j. If V is the vertex

set of a graph, then we refer it to as the partition of the graph.

• Self edge: Given a partition ofV , we define an edge(u,v) ∈ E as aself edge if u ∈Vi

andv ∈ Vi, for somei that is both of the end points are in the same subset in the

partition.

• Cross edge: Given a partition ofV , we define an edge(u,v) ∈ E as across edge if

u ∈Vi andv ∈Vj wherei 6= j, that is the end points of the edge are in different subsets

in the partition.

xii

• A Matching between two subsets: A matching M between two equal sized setsV1

andV2 is defined as a set of pair of vertices(u,v) whereu ∈ V1 andv ∈ V2 such that

M = {(u1,v1),(u2,v2),(uq,vq)} whereu1 6= u2... 6= uq andv1 6= v2... 6= vq.

• Perfect matching between two subsets: A matching is perfect if|M| = |V1| = |V2|,

i.e. all vertices of the subsets are in some pair.

• Weight of a maching: The weightwM of a matchingM between two subset of

verticesV1 andV2 in a weighted graphG is defined as∑(u,v)∈M w(u,v) whereu ∈ V1

andv ∈V2 andw(u,v) is the weight of the edge(u,v).

• Capacity of a subset: The capacitysi of a subsetVi is the maximum number of

vertices it can contain.

xiii

Chapter 1

Introduction

Clustering plays a vital role in the analysis of data. It has been widely used for a long time

in different areas like business analysis, data mining, image analysis. Nowadays it is also

being used in bioinformatics to analyze gene structure, protein structure etc.

The goal of clustering is to group the elements into subsets based on similarity among the

elements,i.e. elements within the same subset should be similar and the elements in the

different subsets are dissimilar.

Often we can represent the data sets as weighted graphs, where vertices correspond to the

elements to be clustered and the weights of the edges represent similarity between those

entities [16]. We can then use graph based clustering algorithms to solve the problem.

Graph clustering algorithms typically try to optimize somecriteria like minimum sum,

minimum diameter,k-median etc. [6].

Graph based clustering has been widely used to solve different types of clustering prob-

lems in bioinformatics. Here we mention a few applications of clustering in bioinformat-

ics. Kawajiet al. [32] use graph based clustering to cluster protein sequences into families.

King et al. [35] use cost based clustering on the Protein Protein Interaction networks to

identify and predict protein complexes. A graph based clustering algorithm for analyzing

gene expression is described in Ronet al. [40]. Xu et al. [45] use another graph based

1

method to cluster gene expression data. Hajirasoulihaet al. [27] use graph based algo-

rithms for optimal pooling of genome re-sequencing.

This thesis is about algorithms for clustering using graph cuts. We develop approxima-

tion algorithms for clustering and analyze them theoretically and experimentally. We also

demonstrate the efficacy of the algorithms on graphs arisingfrom protein protein interac-

tion networks (PPI).

1.1 Importance of Protein Protein Interaction

The function of unknown proteins may be inferred on the basisof their interaction with a

known protein with a known function. Mapping protein protein interactions provides in-

sight into protein function and helps to model the functional pathways to clarify the molec-

ular mechanisms of cellular processes [37]. We can study theprotein protein interactions

to understand how proteins function within the cell.

1.2 PPI network Representation

We can represent the PPI network using a simple graph. We can represent proteins as

nodes and two proteins that interact are represented as adjacent nodes connected by an

edge. Figure 1.1 is an example of a PPI network where the nodes represent the proteins

and edges represent the interactions between the proteins.So if we can cluster the PPI

network then we can find out the characteristics of an unknownprotein from the functions

of the other proteins that are in the same cluster.

Modeling PPI networks as graphs has been used by many applications, for instance pre-

dicting protein complexes within PPI networks [5].

2

Figure 1.1: Example of a PPI Network

1.3 Clustering PPI network

Partitioning the graph into different subgraphs is the mostcommon method for clustering

a graph [37] that lead us to optimization problems like max-cut, min-cut, max-uncut etc.

To cluster the PPI network we transform the protein network into a simple graph and then

apply graph cut algorithms. The main goal of clustering a PPInetwork is to put the related

proteins into the same cluster; that is we want to minimize the edges across the clusters

or maximize the edges within the clusters. We can formulate this problem as a maxk-

uncut problem that maximizes the edges within the clusters,or as a mink-cut problem that

minimizes the edges across the clusters.

In this thesis we design approximation algorithms for maxk-uncut problem that can be used

to cluster PPI networks with one additional constraint. Theconstraint is that we can specify

the size of the clusters too. We call the maxk-uncut problem with this constraint, the

capacitated max k-uncut problem. We leave it to the experts to draw any biological relevant

conclusions from the clustering obtained using our methods(see similar applications in

[27]).

3

1.4 Definitions

Now we define some terms to be used in the following chapters. Please refer to the excellent

book by Garey and Johnson [18] for further details.

1.4.1 ClassP

P is a set of decision problems that can be solved on a deterministic Turing machine in

polynomial time. The shortest path problem and breadth firstsearch problem are in classP

[18].

1.4.2 ClassNP

NP is the set of decision problems that can be solved on a nondeterministic Turing machine

in polynomial time.

Example: In the vertex cover problem we are given a graphG = (V, E) and an integerk.

We have to find a subsetVs ⊆ V so that for every edge(u,v) ∈ E we have eitheru ∈ Vs

or v ∈ Vs and |Vs| = k. This problem is in the classNP because we can easily design a

polynomial time verifier for this problem. The verifier first checks whether|Vs| = k or not.

Then for every edge(u,v) ∈ E it checks whetheru ∈ Vs or v ∈ Vs and it can do this in

polynomial time.

1.4.3 Polynomial time reductions

If we can transform the instances of a problemΠ1 to the instances of another problemΠ2

such that satisfiable instances ofΠ1 are mapped to satisfiable instances ofΠ2 and vice versa

in polynomial time then we call this a polynomial time reduction. Suppose a problemΠ1

is polynomial time reducible to another problemΠ2 then we denote it asΠ1 ≤p Π2.

4

1.4.4 NP-Completeness

A problemΠ1 is NP-Complete if the following holds:

1. Π1 ∈ NP, and

2. Π2 ≤p A for everyΠ2 ∈ NP.

If a problem satisfies the second condition but not necessarily the first one then we call this

problem, anNP hard problem [9]. It is generally believed thatNP-complete problems do

not lend themselves to efficient algorithms. Approximationalgorithms are an elegant way

of coping with the intrinsic hardness. We describe them next.

1.4.5 Approximation Algorithm

We know that an optimization problem can be a minimization ora maximization problem.

Every optimization problem has three parts [18]:

a. A set of instances (D).

b. For each instanceI ∈ D, a finite set of candidate solutionC(I).

c. A function f that assigns a positive rational numberf (I,α) to each candidate solution

α ∈ C(I) for all I ∈ D. This positive rational number is called the solution valuefor

α.

If the problem is a maximization one then the value for an optimal solution for an instance

I ∈ D is denoted asOPT (I). It is the value off (I,α∗) of an optimal solution forI where

α∗ ∈ C(I). For allα ∈ C(I), f (I,α∗) >= f (I,α).

5

A polynomial time algorithmA is an approximation algorithm for a particular optimization

problem if given any instanceI ∈ D, it finds a “good” candidate solutionα ∈ C(I) of the

problem. The valuef (I,α) of the candidate solutionα found byA when applied toI is

denoted asA(I).

For theNP-hard problems there are no known polynomial time algorithms. So our goal is to

find an approximation algorithmA that runs in polynomial time and has the property that for

all instancesI, A(I) is close toOPT (I). The worst case performance of the approximation

algorithm is defined as the performance ratio of the algorithm. For a maximization problem,

a β approximation produces a solution with valueA(I) ≥ β OPT (I) for all instanceI in

polynomial time. Note thatβ ≤ 1 and the goal is to design approximation algorithms with

β as close to 1 as possible.

1.5 Organization of the thesis

In chapter 2 we describe different optimization problems related to clustering like max

k-cut, capacitated maxk-cut, min k-cut, capacitated mink-cut, maxk-uncut and finally

capacitated maxk-uncut. We also describe the related research work of these problems.

In chapter 3 we describe the integer linear programs for the capacitated maxk-uncut prob-

lem. We also study the linear programming relaxations for the integer programs. We

exhibit a large integrality gap for the linear programming relaxations for the capacitated

maxk-uncut.

In chapter 4 we introduce two local search algorithms and onerecursive greedy method for

solving the capacitated maxk-uncut problem. We present the worst case analysis of the

approximation ratio in this chapter.

6

We compare the algorithms (introduced in chapter 4) experimentally in chapter 5 on the

graphs arising from PPI networks and on random graphs.

Finally, we conclude the thesis with future research directions in chapter 6.

7

Chapter 2

Related Work

In this chapter we present some optimization problems that are related to graph partitioning.

We start with maxk-cut problem and then we present all the other problems in Table 2.1.

We notice that problems are different in terms of additionalinputs and objective functions

with additional constraints.

2.1 Definitions

Max k-cut:

Given an undirected graphG = (V , E) and a positive integerk, with each edge ofG having

non-negative weightw(u,v) on each edge inE. We need to partition the vertices intok ≥ 2

subsets so as to maximize the sum of the weights of the cross edges. We call this problem,

the max-cut problem if the partition size is two. The maxk-cut problem is NP-complete

[31] for k = 2.

Other graph cut problems are described in Table 2.1.

In this thesis we design approximation algorithms for the capacitated maxk-uncut problem.

In this version, capacities for each subset in the partitionare also specified as a part of the

input. If we consider edge weightw(u,v) = 1 for all the edges(u,v) ∈ E then we call this

8

theunit weighted version of the problem. Consider the following example for capacitated

maxk-uncut problem.

In Figure 2.1 we are given a graph with 8 vertices, a positive integerk = 2 and the capacities

of the two subsets ares1 = 4 ands2 = 4. Our goal is to partition the graph into 2 subsets

V1 andV2 in such a way so that we maximize the total weight of the self edges whilst

maintaining the capacity constraints. From the Figure we notice that one valid solution

for this problem can beV1 = {1,2,5,6} andV2 = {3,4,7,8}. The total weight of the

self edges for this solution is 4(M + ε). The best possible solution isV1 = {1,2,3,4} and

V2 = {5,6,7,8} and the total weight of the self edges is 6M (here we assumeε is very small

compared toM).

Formally we define capacitated maxk-uncut problem as follows:

Input : A weighted undirected graphG = (V,E), an integerk and capacitiess1, . . . ,sk,

where∑k
i=1 si = |V |.

Output : Partition the vertices intok subsetsV1,,Vk, where theith subsetVi contains at

mostsi vertices and the total weight of the self edges is maximized.

2.2 Previous work

We now present some of the previous works related to the problems defined in Table 2.1

and the problem defined in section 2.1.

2.2.1 Maxk-cut

Sahniet al. [41] give a 1/2 approximation algorithm for the max cut problem. Goemans

et al. [22] give a 0.87856 approximation algorithm for the max cut problem usingsemi

definite programming. Goemanset al. [23] give a 0.83601 approximation algorithm for

9

Table 2.1: Some partitioning problems

Problem Additional Additional Objective
Name inputs Constraint function

Capacitated Capacities ofk subsets, Capacity constraint Maximize the
max k-cut si, ...,sk for each subset and weight of the

∑k
i=1 si = |V | cross edges

Min Minimize the
k-cut cross edges

Capacitated Capacities ofk subsets, Capacity constraint Minimize the
min k-cut si, ...,sk for each subset and weight of the

∑k
i=1 si = |V | cross edges

Multiway A set of terminals, Each subset Minimize the
cut t1, .., tk ∈V contains exactly weight of the

one terminal cross edges
Max Maximize the

k-uncut weight of the
self edges

Capacitated Capacities ofk subsets, Capacity constraint Maximize the
max k-uncut si, ...,sk for each subset and weight of the

∑k
i=1 si = |V | self edges

Multiway A set of terminals, Each subset Maximize the
uncut t1, .., tk ∈V contains exactly weight of the

one terminal self edges

10

Figure 2.1: Example Graph

the max 3-cut problem (same bounds as in de Klerket al. [13]). Friezeet al. [17] obtain a

solution for the maxk-cut problem with expected value no smaller thanαk ∼ (2logk/k2).

Kannet al. [30] show that the best possible performance ratio that can be obtained by any

algorithm for the maxk-cut problem is 1−1/(34k) unlessP = NP. Hajirasoulihaet al. [27]

give a simple local search approximation algorithm that guarantees a 1−1/k performance

ratio. In this local search algorithm they pick any vertex from any subset and move it to

another subset in the partition if it can improve the weight of the cross edges after moving

the vertex and continue this step until there is no such vertex.

2.2.2 Capacitated maxk-cut

Feigeet al. [14] give an approximation algorithm for unequal capacities with a lower bound

of 1/2+ ε whenk = 2, whereε is a universal constant. Andersson [4] describes an algo-

rithm that obtains a 1−1/k +Ω(1/k3) performance guarantee for equal capacities. Ageev

11

et al. [2] consider a generalization of capacitated max k-cut and give a 1/2 approximation

algorithm for the maxk-cut problem for general hypergraphs with fixed, possibly different,

subset sizes. Ageevet al. [1] give a 1/2 approximation algorithm for the capacitated max-

2-cut problem. In both cases a randomized rounding technique known as pipage-rounding

is used. Gauret al. [20] give a local search algorithm for the uniform capacitated maxk-cut

problem and obtained a 1−1/k performance guarantee.

2.2.3 Min k-cut

We can solve the min cut problem using a standard network flow algorithm [18] in polyno-

mial time. The problem of finding a mink-cut is polynomial time solvable for any fixedk

though it is NP-hard ifk is a part of the input [43].

There is a 2−2/k approximation algorithm due to Saranet al. [42] based on Gomory-Hu

trees [25]. Boykovet al. [7] give a 2-approximation algorithm for the mink-cut problem

using a local search based approach.

2.2.4 Capacitated mink-cut

The capacitated mink-cut problem is NP-complete [19], even fork = 2. To the best of

our knowledge there is no known approximation algorithm forthe capacitated mink-cut

problem.

We use the technique from Gauret al. [20] to approximate the capacitated mink-cut

problem. In a single iteration we pick any two vertices from different subsets in the partition

and swap the vertices between the subsets if that decreases the weight of the cross edges,

and repeat until no such pair exists.

But unfortunately for this algorithm there exists an infinite family of graphs (Figure 2.1)

with a bad local optimum. For the example in Figure 2.1 if we start the initial random

12

partition (for capacitated min 2-cut) as in [Figure 2.1 (local solution)] then we can not

perform any swapping as there is no pair of vertices for whichwe can increase the weight

of the self edges by swapping the vertices. So this is a local optimum for this example and

the value of the local optimum is 2M. The optimal solution for this instance is 4ε [Figure

2.1 (optimal solution)] whereε is a small positive number. So the performance ratio of this

approximation algorithm for mink-cut is arbitrarily bad.

2.2.5 Multiway cut

There is a 2−2/k approximation algorithm for the multiway cut problem due toDalhous

et al. [10]. They compute a minimum weight isolating cut calledci for eachi = 1, ...,k and

then discard the heaviest of these cuts to get thek cut.

2.2.6 Maxk-uncut

There is no known approximation algorithm for the maxk-uncut problem to the best of our

knowledge.

2.2.7 Capacitated maxk-uncut problem

There is no previously known approximation algorithm in theliterature for this problem.

2.2.8 Multiway uncut

Langberget al. [36] consider the multiway uncut problem and give a 0.8585 approximation

algorithm. They use linear programming relaxation and randomized rounding to design the

algorithm.

13

2.3 Relationship between mink-cut and maxk-uncut

Theoretically, the mink-cut and maxk-uncut problems are related. In the mink-cut prob-

lem, our task is to partitionV into k subsets so that we can minimize the total weight of

the cross edges. On the other hand, in maxk-uncut problem we have to maximize the total

weight of the self edges.

Given a partition, every edge ofG is either a self edge or a cross edge.

If we denote the total weight of the edges asW , the total weight of the cross edges asC and

the total weight of the self edges asS then the following holds:

S = W −C

So we can say that if we can minimize the total weight of the cross edges then we can

maximize the total weight of the self edges. From an optimal solution for the mink-cut

problem we can get the optimal solution for the maxk-uncut problem and this holds true for

the capacitated version too. However this relationship does not extend to the approximate

solutions,i.e a β approximate solution for the mink-cut does not imply aβ approximate

solution for max k-uncut. We know that both the mink-cut and the maxk-uncut problems

areNP-Complete so we can only expect approximation algorithms for these problems but

the approximation bound given by an approximation algorithm for the mink-cut problem

might not give the same approximation bound for the maxk-uncut problem. Suppose we

have a1
2-approximation algorithm for the mink-cut problem and for a given graph the

optimal solution is half of the total weight of the edges, that is the total weight of the cross

edges in the optimal solution is half of the total weight of the edges. So the algorithm for

this particular graph might return the total weight as the weight of the cross edges, as the

algorithm gives a1
2-approximation. The solution of the maxk-uncut problem will be 0 as

14

there will be no self edges, where as the optimal solution to the maxk-unut has weight half

the total weight.

In the next chapter we examine two integer programs for the max k-unut problem.

15

Chapter 3

Linear and Integer Linear Programming (ILP)

We describe linear programming and integer linear programming in sections 3.1 and 3.2 of

this chapter. In sections 3.3 and 3.4 we describe two integer linear programs for the capac-

itated maxk-uncut problem. In section 3.5 we describe the linear programming relaxations

and study the integrality gap in section 3.6.

3.1 Linear Programming

Linear programming has been widely used to develop approximation algorithms for differ-

ent optimization problems. We can formulate the optimization problem as an integer linear

program and then solve the linear programming relaxations.Finally round the LP solution

to obtain an integral solution.

A linear program is defined in terms of an objective function and a set of constraints. The

objective function is a linear function of decision variables that are unknown and the set

of constraints consists of linear equalities and inequalities. The standard form of a linear

program is as follows [39]:

16

minimizec̄x̄

subject toAx̄ = b̄

x̄ ≥ 0

This is aminimization problem. We can also model a problem as a maximization problem.

The linear function ¯cx̄ is called theobjective function where ¯c and x̄ are vectors.A is a

matrix of known coefficients and̄b is a vector. Thedecision variables are represented using

vector x̄ = (x1,x2, ..xn). An assignment of values to the elements of vector ¯x satisfying

the constraints is called afeasible solution. A feasible solution with minimum objective

function value is called anoptimal solution for a minimization problem, and a feasible

solution with maximum objective function value is the optimal solution for a maximization

problem.

The simplex algorithm [11] is the most used algorithm to solve a linear program though it is

not a polynomial time algorithm in the worst case. Two other polynomial time algorithms

for linear programming are due to Khachiyan [34] and Karmakar [12].

3.2 Integer Linear Programming

In the linear programming the variables can take any real values. If we restrict the variables

to be integers then we call it aninteger linear program. The following is the general form

of an integer linear program :

17

minimize c̄x̄

subject toAx̄ = b̄

x̄ ≥ 0

xi ∈N

Note that variables in ¯x are restricted to take integer values. Typically branch-and-bound

and cutting plane algorithms are used [39] to solve an integer linear program.

Branch-and-bound is an algorithmic technique to find the optimal solution by keeping the

best solution found so far and uses it to prune the search space. It typically enumerates

implicitly all the possible candidate solutions for a problem.

Cutting plane algorithms can also be used to solve ILP. Normally in cutting plane algo-

rithms we consider the linear programming relaxation of theproblem. Linear programming

relaxation (ILP without the integer constraints) might notreturn an integral solution. So if

it does not return the integral solution we add a linear constraint that does not exclude any

integer feasible points and we continue this step until we get an integral primal solution or

an unbounded dual solution. This linear constraint is called a cutting plane or cut. Gomory

[24] developed a method to generate such cuts. Several othermethods for generating cuts

are known. See the excellent text by Wolsey and Nemhauser [44] for a detailed discussion

of these techniques.

3.3 Integer Linear Program for Capacitated Max k-uncut Problem

We develop two integer linear programs for the capacitated maxk-uncut problem.

18

Let G =(V, E) be an edge weighted, undirected graph. We are interested inpartitioning

V into k subsetsV1, . . . ,Vk with associated capacitiess1, . . . ,sk and∑k
i=1 si = |V |, so as to

maximize the total weight of the self edges among the subsetsin the the partition.

We introduce a 0/1 variablexui for each vertexu ∈V and each subsetVi, which is set to 1

if u is in subsetVi. Let yuvi be another 0/1 variable for each edge(u,v) ∈ E, and for each

subsetVi in the partition, which is set to 1 if bothxui andxvi are set to 1, that is both the

end points of an edge are in subsetVi, otherwise it is set to 0.w(u,v) denotes the weight

of the edge(u,v) and the objective is to maximize∑k
i=1∑(u,v)∈E w(u,v)yuvi. The ILP is as

follows:

maximize
k

∑
i=1

∑
(u,v)∈E

w(u,v)yuvi (3.1)

subject to
k

∑
i=1

xui = 1; for every vertexu ∈V . (3.2)

yuvi ≤
1
2
(xui + xvi); for (u,v) ∈ E andi ∈ [1..k]. (3.3)

∑
u∈V

xui ≤ si; for i ∈ [1..k]. (3.4)

xui ∈ {0,1}; ∀u ∈V andi ∈ [1..k]. (3.5)

yuvi ∈ {0,1}; ∀(u,v) ∈ E andi ∈ [1..k]. (3.6)

The first constraint(3.2) ensures that every vertex of the graph is in exactly one subset in

the partition. The second constraint(3.3) enforcesyuvi to be 1 if verticesu andv are both

in subsetVi (i.e. if (u,v) is a self edge) and 0 otherwise. The third constraint(3.4) is the

capacity constraint.

19

3.4 Another ILP formulation

There is an IP formulation due to Calinescuet al. [8] for the multiway cut problem. We

examine a similar formulation for our problem.

Let xui be a 0/1 variable for each vertexu ∈V and for each subsetVi in the partition, which

is set to 1 if the vertexu ∈V is in partitionVi. Another 0/1 variableyuvi is set to 1 if(u,v)

is a cross edge with eitheru ∈Vi or v ∈Vi and set to 0 if it is a self edge. Therefore∑k
i=1yuvi

returns 2 for every cross edge and 0 for every self edge of the partitions.duv is set to 1, if

(u,v) is a self edge and set to 0, if it is a cross edge. The ILP is as follows :

maximize ∑
(u,v)∈E

w(u,v)duv (3.7)

subject to
k

∑
i

xui = 1; for every vertexu ∈V . (3.8)

yuvi ≥ xui − xvi; for (u,v) ∈ E and alli ∈ [1..k]. (3.9)

yuvi ≥ xvi − xui; for (u,v) ∈ E and alli ∈ [1..k]. (3.10)

duv = 1−
1
2

k

∑
i=1

yuvi; for (u,v) ∈ E. (3.11)

∑
u∈V

xui ≤ si; for i ∈ [1..k]. (3.12)

xui ∈ {0,1}; ∀u ∈V andi ∈ [1..k]. (3.13)

yuvi ∈ {0,1}; ∀(u,v) ∈ E andi ∈ [1..k]. (3.14)

duv ∈ {0,1}; ∀(u,v) ∈ E (3.15)

20

3.5 Linear Programming Relaxation

We call the integer linear program without the integrality constraints, the linear program-

ming relaxation. So the linear program relaxation of an ILP is

minimizec̄x̄

subject toAx̄ = b̄

xi ≥ 0

3.6 Integrality Gap

The integrality gap is the ratio between the optimal solution to the linear programming

relaxation and the optimal solution to the integer linear program (for a maximization prob-

lem).

Theorem 3.1 : For an arbitrary graph, the linear programming relaxation of the IP in

section 3.3 has the total number of edges|E| as the optimal solution for the unit weighted

case.

Proof: Consider a graphG = (V,E) and we want to partitionV into k subsets while

maintaining the capacity constraints so as to maximize the number of self edges. Since

w(u,v) = 1; ∀ (u,v) ∈ E, the linear programming relaxation of the IP in section 3.3 as

follows:

21

maximize
k

∑
i=1

∑
(u,v)∈E

yuvi (3.16)

subject to
k

∑
i=1

xui = 1; for every vertexu ∈V . (3.17)

yuvi ≤
1
2
(xui + xvi); for (u,v) ∈ E andi ∈ [1..k]. (3.18)

∑
u∈V

xui ≤ si; for i ∈ [1..k]. (3.19)

xui ≤ 1; ∀ u ∈V andi ∈ [1..k]. (3.20)

yuvi ≤ 1; ∀ (u,v) ∈ E andi ∈ [1..k]. (3.21)

Given a partition, consider a cross edge(u,v) whereu ∈Vi andv ∈Vj; j 6= i. For this cross

edge setyuvi = 1/2 andyuv j = 1/2 and for all otherl, yuvl = 0 wherei 6= j 6= l. So for every

cross edge∑k
i=1 yuvi = 1 and for every self edge(u,v) we getyuvi = 1 whereu ∈ i andv ∈ i

and all otherj 6= i, yuv j = 0.

Therefore, for any arbitrary graph the objective function∑k
i=1 ∑(u,v)∈E yuvi = |E|.

�

Theorem 3.2 : For an arbitrary graph, the linear programming relaxation of the IP in

section 3.4 always returns the total number of edges|E| as the optimal solution for the unit

weighted case.

Proof: The linear programming relaxation of the IP in section 3.4 is as follows:

22

maximize ∑
(u,v)∈E

duv (3.22)

subject to
k

∑
i=1

xui = 1; for every vertexu ∈V . (3.23)

yuvi ≥ xui − xvi; for (u,v) ∈ E andi ∈ [1..k]. (3.24)

yuvi ≥ xvi − xui; for (u,v) ∈ E andi ∈ [1..k]. (3.25)

duv = 1−
1
2

k

∑
i=1

yuvi; for (u,v) ∈ E. (3.26)

∑
u∈V

xui ≤ si; for i ∈ [1..k]. (3.27)

xui ≤ 1; ∀ u ∈V andi ∈ [1..k]. (3.28)

yuvi ≤ 1; ∀ (u,v) ∈ E andi ∈ [1..k]. (3.29)

duv ≤ 1; ∀ (u,v) ∈ E (3.30)

Consider a partition of the vertices. In this relaxation, insubsetVi in the partition each

vertexu is assigned equally and fractionally with valuesi
|V | . As vertices are assigned equally

in each subsets soyuvi is 0 for each edge(u,v) and for each subsetVi according to (3.24)

and (3.25) of the program. For this reasonduv is always 1 for any edge(u,v) according to

(3.26). So∑(u,v)∈E duv returns the total number of edges (|E|) as the value of the objective

function for any arbitrary graph.

�

Theorem 3.3: The integrality gap of the linear programming relaxations of the integer

programs of sections 3.3 and 3.4 is unbounded.

Proof: From Theorems 3.1 and 3.2 we know that both the linear programming relaxations

of the IP in sections 3.3 and 3.4 return the total number of edges as the optimal solution for

23

any arbitrary unit weighted graph. So for a complete graph the integrality gap is unbounded

as we now show.

Consider a complete graph andk subsets in the partition of equal capacity. The optimal

solution to the integer linear program has value
(
|V |
k
2

)

k where |V |/k vertices are in each

subset. In a complete graph the number of edges is
(|V |

2

)

which by the previous theorems is

the optimal solution to the LP relaxation.

The integrality gap is
(|V |

2

)

(
|V |
k
2

)

· k
(3.31)

That is

(|V |−1)k
|V |− k

(3.32)

So fork = |V |
2 the integrality gap is|V |−1.

�

The large integrality gap is indicative of the difficulty in obtaining a constant factor approx-

imation algorithm using LP based approaches including the primal dual schema. Please

refer to the excellent book by Vazirani [43] for the details of primal dual schema.

In the next chapter we discuss two local search algorithms and one recursive greedy algo-

rithm for the capacitated maxk-uncut problem.

24

Chapter 4

Approximation Algorithms

In the previous chapter we noted the difficulty in obtaining aconstant factor approxima-

tion algorithm using linear programming. In this chapter weintroduce some algorithms to

approximate the capacitated maxk-uncut problem. In section 4.1 we introduce the local

search and the recursive greedy methods. In section 4.2 we introduce and analyze one sim-

ple local search algorithm based on swapping. We describe another local search algorithm

based on an ejection chain in section 4.3. In section 4.4 we present one recursive greedy

method to solve the capacitated maxk-uncut problem and finally in section 4.5 we describe

and analyze a recursive greedy method to solve the problem.

4.1 Local Search and Recursive Greedy methods

4.1.1 Local Search

Normally in a combinatorial optimization problem we have a set of elementsS, called the

ground set and our task is to arrange, group, order or select a subset of elements fromS

such that it optimizes the given function [26]. Some of the classical optimization problems

include the traveling salesman problem, vertex cover problem and set cover problem.

Local search is a powerful technique to design approximation algorithms. It has been

widely used for different optimization problems. Local search explores the space of all

25

possible solutions in a sequential manner until a locally optimal solution is found [28].

These types of algorithms start working from a candidate solution and move to a neighbor-

ing solution for a suitably defined neighbor in the search space. Normally every solution

has more than one neighbor but the algorithm has to choose oneneighbor to move to and

this move is influenced by the information given about the solution in the neighborhood.

The main idea of local search is: given a solutionx from the set of candidate solutions for

a combinatorial problem, local search tries to improve the value of the solution by making

local changes tox. Local change might be adding elements from the ground set, deleting

elements fromx, changing the ordering of elements inx, or changing the way in which ele-

ments are grouped. If the solution improves after these changes then we get a new solution

x
′
. We continue this step until no further improvement is possible.

We can put a bound on the number of iterations for the local search algorithm. Typically

a local search algorithm terminates when it finds a locally optimal solution, that is when it

cannot improve the value of the solution any more, or if it exceeds the time bound specified

in the algorithm.

Local search algorithms have been successfully used for solving a large number of com-

binatorial problems like the traveling salesman, vertex cover, job scheduling etc. It has

also been successfully used for different graph partitioning problems. Next we describe a

application in graph cuts.

Kernighanet al. [33] describe a local search algorithm for uniform graph partitioning. In

the uniform graph partitioning problem we are given an edge weighted graphG = (V,E)

and our task is to partition the vertices equally between twosetsA and B such that the

total weight of the cross edges is minimized. It is an important open problem to analyze

the performance ratio of this algorithm theoretically. They showed empirically that the

performance ratio of the algorithm is good.

26

4.1.2 Recursive Greedy method

Thegreedy approach is also a popular method to design approximation algorithmsfor opti-

mization problems. The idea of the greedy approach is to build the solution incrementally.

It selects the best partial solution in each iteration basedon some simple criteria. If the par-

tial solutions are computed by recursive calls then we call it recursive greedy [26]. Often

a greedy approach does not give us the optimal solution but itcan be used to get a good

approximation bound.

Greedy methods have been used successfully in different problems like knapsack, job

scheduling, tree vertex splitting [43].

4.2 Local Search Algorithm

4.2.1 Definition of Capacitated Maxk-uncut problem

Given a non-negative edge weighted undirected graphG = (V,E), an integerk andk ca-

pacitiess1, . . . ,sk, where∑k
i=1si = |V |. Our goal is to partition the vertices intok subsets

V1,,Vk, where theith subsetVi contains at mostsi vertices and the total weight of the

self edges is maximized. Without loss of generality we assume thatG is complete, missing

edges inG can be considered as edges with weight 0.

4.2.2 The Swap Algorithm

Let w(u,v) denote the weight of the edge(u,v)∈E anddeg(u,Vi)= ∑(u,v)∈E,v∈Vi,v6=u w(u,v)

denote the sum of the weights of the edges from a vertexu to the vertices in setVi.

We start by partitioning the vertices intok sets,V1,. . . ,Vk, arbitrarily assigningsi vertices to

setVi, for all i = 1, . . . ,k.

27

In the algorithm we repeatedly determine a pair of verticesu ∈ Vi and v∈ Vj, i 6= j, for

which

deg(u,Vi)+deg(v,Vj) < deg(u,Vj)+deg(v,Vi)−2w(u,v) (4.1)

If such a pair of vertices exists we reassign vertexu to Vj, and vertexv to Vi. We need to

deduct 2w(u,v) from the right hand side of (4.1) because the edge betweenu andv before

the swapping still remains a cross edge after swapping and itis counted twice, once for

deg(u,Vj) and a second time fordeg(v,Vi).

Upon termination of the algorithm, the following equation holds for all pairsu ∈ Vi and

v ∈Vj and alli, j ∈ [1..k].

deg(u,Vi)+deg(v,Vj)≥ deg(u,Vj)+deg(v,Vi)−2w(u,v), for all u∈Vi and v∈Vj (4.2)

Please see section 5.1.1 for the runtime analysis of this algorithm.

4.2.3 Approximation Algorithm

In the following we analyze the worst case performance of theswap algorithm for allk ≥ 2.

Theorem 4.1: The solution obtained using the swap algorithm has a valueno smaller than

1
d(k−1)+1 of the optimal solution value wherek is the number of subsets in the partition and

d is the ratio between the size of the largest and smallest subsets in the partition, assuming

that the size of the smallest subset grows with the size of thegraph.

Proof: Let us first consider the case of (k = 2) two subsetsV1 andV2 in the partition, each

having the same sizes (capacities).

28

Upon termination of the algorithm the following condition holds:

deg(u,V1)+deg(v,V2) ≥ deg(u,V2)+deg(v,V1)−2w(u,v), for all u ∈V1 andv ∈V2

(4.3)

From the above equation, to get an upper bound on the total weight of all cross edges

(u,v)∈E,u∈V1 andv∈V2, we consider a perfect matching (M) between the two partitions.

Summing (4.3) over all the edges in the perfect matchingM we get

2S ≥ 2C−2WM (4.4)

WhereS is the sum of the weights of the self edges,C is the sum of the weights of the cross

edges andWM is the minimum weight of perfect matching betweenV1 andV2.

We note that every self edge and cross edge is counted once foreach of its end points (a

total of twice).

The minimum weight perfect matching over all the matchings should be less than or equal

to the average of all the perfect matchings. If the total number of vertices is 2n and each

subset in the partition containsn vertices then the weight of the minimum perfect matching

WM ≤C(n−1)!/n! ≤ C/n whereC is the weight of all the cross edges andn! is the total

number of perfect matchings over two subsets. We can now rewrite equation (4.4) as

S ≥C−
C
n

(4.5)

That is

29

C ≤
S

1− 1
n

(4.6)

The optimal solution may contain all the edges as the self edges. So the performance ratio

of the algorithm for two partitions each having the same number of vertices

p ≥
S

S +C
(4.7)

≥
S

S + S
1− 1

n

(4.8)

≥
1− 1

n

2− 1
n

(4.9)

If n is large enough then we can say that the performance ratio fortwo subsets in the

partition of equal size is≈ 1
2. Note that whenk = 2 and the subset sizes are of the same

size then the problem is NP-complete.

Now if the sizes of the subsets in the partition are not the same then we use the following

procedure:

Procedure4.1:

• Let |V2|> |V1|, without loss of generality assume that|V1| divides|V2| and let|V2|
|V1|

= d

and let|V1| = n.

• We mark all the vertices ofV2 as 0.

• We consider the first|V1| vertices ofV2 that are marked as 0 and sum up the inequality

(4.3) for the minimum weight perfect matching that correspondsto these vertices and

all the vertices ofV1 .

30

• We mark these vertices ofV1 that are considered in step 2 as 1.

• We continue step 2 until all the vertices ofV2 are marked 1.

After completing the above steps,i.e, summing up (4.4) over all the minimum perfect

matchings we get

2dS1+2S2 ≥ 2C−2C/n (4.10)

where we denoteS1 as the weight of the self edges ofV1 andS2 as the weight of the self

edges ofV2 andd is the ratio between the size ofV2 andV1. Note thatd ≥ 1 andn is the

total vertices of the smaller subset. Here we note that the self edges of the smaller subset

are counted 2d times and the self edges in the larger partition are counted twice.

Suppose the minimum weight perfect matchings areM1,M2, ...Md andC1,C2,Cd are the

corresponding weights then we can say2C
n = 2C1

n ++ 2Cd
n .

Therefore we can write the above equation as

2d(S1+S2) ≥ 2C−2C/n (4.11)

As 2d(S1+S2) ≥ (2dS1+2S2)

Let S1 + S2 = S whereS is the total weight of the self edges over both the subsets in the

partition. So we can write

2dS ≥ 2C(1−1/n) (4.12)

We can write the performance ratio as

31

p ≥
S

S +C
(4.13)

≥
S

S + Sd
1− 1

n

(4.14)

≥
1− 1

n

d +1− 1
n

(4.15)

If n is large then we can say that

p ≥
1

d +1
(4.16)

We now consider the problem for generalk whenk ≥ 2.

We consider equation (4.10) for all possible pairs of subsets in the partition. If we sum up

the equation (4.10) over all the subsets then the self edges are counted(k−1) times and

every cross edge is counted only twice. Therefore, if we assumed =
max{|Vi|}
min{|Vi|}

andn is the

number of vertices in the smallest subset in the partition.

(k−1)(2dSi +2S j) ≥ 2C−2C/n (4.17)

d(k−1)S ≥C(1−1/n) (4.18)

S ≥
C(1−1/n)

d(k−1)
(4.19)

S is the weight of the self edges returned by the algorithm and an optimal solution can

32

contain all the edges as the self edges.

So the performance ratio is

p ≥
S

S +C
(4.20)

≥
S

S + Sd(k−1)

1− 1
n

(4.21)

≥
1− 1

n

1− 1
n +d(k−1)

(4.22)

Now if n is large then the performance ratio is

≥
1

d(k−1)+1
(4.23)

�
1

Observation : The optimum solution of the capacitated maxk-uncut problem for unit

weighted version is the min{ |E|, ∑k
i=1

(si
2

)

} where|E| denotes the total edges of the graph

andsi is the capacity of subsetVi.

Each subsetVi in the partition cannot contain more than
(si

2

)

edges ifsi is the capacity of

the subsetVi. So the weight of the self edges in the graph is at most∑k
i=1

(si
2

)

edges. In the

theorem 4.1 we use total edges|E| as the optimal solution but for a dense graph∑k
i=1

(si
2

)

might be less than|E|. In such cases we can use∑k
i=1

(si
2

)

as the optimal solution and as

∑k
i=1

(Si
2

)

≤ |E| so we can get better performance ratio.

1I would like to thank Professor Ramesh Krishnamurti for extensive discussion on this proof.

33

4.3 Ejection Chain Algorithm

This algorithm has been inspired by theejection chain method that has been used suc-

cessfully for different optimization problems like traveling salesman, vehicle routing, crew

scheduling etc [21]. Ejection chains generate complex compound moves. It generates a

sequence of interrelated moves, that is, in every move it canchange the states of one or

more elements. We refer to the excellent chapter by Ahujaet in [3] for the details of the

ejection chain method.

We perform a cyclic move of the vertices among the subsets in the partition if we can

increase the total weight of the self edges of the vertices bythis cyclic move.

This algorithm is similar to the algorithm due to Kernighanet al. [33] for the uniform min

2-cut problem.

Kernighanet al. [33] use swapping of elements between the two setsA andB. In their

approach they initially randomly assign elements between two sets maintaining the unifor-

mity constraint. In the first iteration we choose a pair of elementsa ∈ A andb ∈ B such that

if we swap these two vertices then we get the maximum increasein the weight of the self

edges. Let the gain beg1. Then we find another pair of verticesa1 ∈ A\a1 andb1 ∈ A\b1

that gives us the maximum gain considering that pair(a,b) is already swapped. In this

way we consider all the pairs of vertices from the two partitions and calculate the gains. If

the total number of vertices of the graph is 2n then we get(a1,b1),,(an,bn) pairs and

a list of gainsg1,gn for the corresponding pairs. LetG(k) = ∑k
i=1 gi. We then consider

k ∈ [1..n] for which G(k) is maximum and if the maximum is less than or equal to 0 then

we stop the local search procedure, otherwise we swap the first k pairs of elements and start

the procedure again.

The details of our ejection chain algorithm are described inthe next section.

34

4.3.1 Ejection Algorithm

1. First we assume an order on the subsets in the partition. Suppose we have five subsets

ranging from 1 to 5. We fix a random order of these subsets. For instance 2,3,1,4,5.

2. We then find the maximum gain from some of the forward cyclesgiven this order.

We find the gain of a cycle by moving the vertices in the subsetscyclicly that are in

that cycle. For example a cycleCi = (a,b,c) consists of three vertices and the order

is a ∈ p3,b ∈ p1,c ∈ p2. So we move vertexa of subsetp3 to p1, vertexb from

p1 to p2 and vertexc from p2 to p3, if we can improve the weight of the self edges

overall. We pick the vertex from each subset which gives us the maximum gain in

the weight of the self edges. That is if we have subsetpi and the next subset of the

cycle isp j then we picku ∈ pi with maxu(deg(u, p j)−deg(u, pi)) to be in the cycle.

We consider cycles of length 2,3,4, ..k. A total of k cycles are considered for a given

order of subsets in the partition.

3. We consider the cycle that returns the maximum gain that is, the cycle that give us

the maximum increase in the weight of self edges and we shift the vertices among

the subsets according to the order, if the gain is> 0.

4. Repeat step 2 until the maximum gain is≤ 0.

Though we did not analyze the performance for this algorithmtheoretically, we empirically

study the algorithm for various sparse and dense graphs and the experimental results are

discussed in chapter 5.

Note that the theoretical analysis of the performance ratiofor a similar algorithm; due to

Kernighan and Lin [33] for min cut is still an important open question.

35

4.4 Recursive greedy algorithm

4.4.1 Greedy method for max2-uncut problem

First we consider the max 2-uncut problem and solve it using agreedy method. Let the

two subsets in the partition beV1 andV2. Let |V1| = m and|V2| = n−m. Now considerp

solutions wherep = n/m (without loss of generalitym dividesn).

Theorem 4.2: There exists ap−2
p approximation algorithm for the max 2-uncut problem

wherep =
|V2|
|V1|

and|V2| ≥ |V1|.

Proof: Consider a partition of|V | with p subsets. Obtain a locally optimal solution using

swap algorithm in section 4.2. We calculate the weight of the self edges consideringVi as a

single subset and the rest (V \Vi) as the other subset in the partition.Ei denotes the weight

of the self edges of the subsetVi andEab specifies the weight of the cross edges betweenVa

andVb wherea 6= b. So the maximum among thesep solutions is at least the average of all

the solutions. Consider Vi and the rest that return the total weight of self edges is

=
p

∑
i=1

Ei + ∑
a,b : a<b & a,b 6=i

Eab (4.24)

Next we use equation (4.24) to compute the average overp solutions. Every edge inEab

wherea, b 6= i is counted twice as a cross edge once forVa and once forVb so the total

number of self edges is at least

≥ p
p

∑
i=1

Ei +(p−2) ∑
a,b : a<b, b,a6=i

Eab (4.25)

36

So the performance ratio is

≥
∑p

i=1 Ei +
(p−2)

p ∑a,b : a<b, b,a6=i Eab

∑p
i=1Ei +∑a,b : a<b, b,a6=i Eab

(4.26)

Where∑i Ei +∑a,b : a<b & a,b 6=i Eab is the total edges of the graph. So we can rewrite the

equation as

≥
(p−2)

p
(4.27)

�

This algorithm is effective for the case when the two subsetsin the partition are highly

unbalanced in size.

4.4.2 Recursive greedy method

Now we consider the general version of the capacitated maxk-uncut problem wherek ≥ 2.

We recursively solve using the following procedure withk = 2 (section 4.4.1) as a base

case. We assume that|V1| ≤ |V2| . . . ≤ |Vk|.

Recursive Greedy Algorithm

• We randomly assign vertices top subsets in the partition and apply the swap algo-

rithm described in section 4.2.2 to solve a maxp-uncut problem where each subset

hasV1 capacity andp =
|V |
|V1|

.

• We take a subsetVi from p subsets in the partition and consider the rest of the subsets

as a single subset that maximizes the weight of the self edgesbetween these two

subsets. The subsets areVi andV \Vi, so if Ei is the weight of the self edges ofVi

37

andE
′
is the total weight of the self edges of the other subsetsVj 6=i then we pick that

partition that maximizesEi+α E
′

whereα is the performance ratio for solving the

rest of the partition (V \Vi).

• We recursively solve a max(k−1)-uncut problem over subsetsVj, j 6= i. Base case

for this problem isk = 2 so we solvek = 2 problem by using the greedy method

described section 4.4.1 or any of the algorithms described in sections 4.2 and 4.3. In

the subproblem we havek−1 subsets and the value ofp has changed (in step 1).

Analysis of the recursive greedy algorithm:

Theorem 4.3: In general the performance is∏k−1
i=1

(pi−2)
pi

wherepi = ⌊
|V\{V1∪V2∪...∪Vi−1}|

|Vi|
⌋

and|V1| ≤ |V2|... ≤ |Vk|.

Proof: Consider anyith solution given byVi andV \Vi. Note that we solve the sub problem

on the setV \Vi recursively. So the weight of the self edges in this solutionis

Ei +α(E −Ei − ∑
i, j : i< j, j,i 6=i

Ei j) (4.28)

WhereEi is the weight of the self edges ofVi andEi j is the weight of the cross edges from

Vi to edges inVj 6=i.

Note that in the sub problem we are guaranteed to getα times of the total weight of all

the edges in the subproblem as the weight of the self edges. Soafter summing the above

equation over alli we get

p

∑
i=1

Ei +α(p ·E −
p

∑
i=1

Ei − ∑
i, j : i< j, j,i 6=i

Ei j) (4.29)

wherep = |V |
min{|Vi|}

38

Let ∑p
i=1Ei = X and∑i, j 6=i Ei j = 2Y whereY is the weight of all the cross edges acrossVi

andV \Vi.

X +α[p(X +Y)−X −2Y] (4.30)

As the maximum weight of self edges over all the possiblep solutions is at least the average.

So the maximum number of self edges is

≥
X +α[p(X +Y)−X −2Y]

p
(4.31)

we can rewrite this as

≥
X(1+αp−α)

p
+

Y α(p−2)

p
(4.32)

The optimal solution can contain almost all the edges, that is the weight is atmostX +Y

and if we consider1+αp−α
p = a and α(p−2)

p = b then we can write the solution provided by

this algorithm asaX +bY

so the performance ratio is

aX +bY
X +Y

(4.33)

≥ min(a,b) (4.34)

That is

39

pr ≥ min[
1
p

+α(1−
1
p
),α(1−

2
p
)] ≥ α(1−

2
p
) (4.35)

In general the bound is∏k−1
i=1

(pi−2)
pi

.

�

In the next chapter we discuss the experimental results of the algorithms.

40

Chapter 5

Experiments and Results

In this chapter we present the experimental evaluations of the algorithms for the unit

weighted version of the capacitated maxk-uncut problem. In section 5.1 we discuss the

implementation details of the algorithms, in section 5.2 we briefly describe the data sets

and finally in section 5.3 we present the experimental results.

5.1 Implementation

We use Python 2.5 for implementing the three algorithms described in chapter 4. All exper-

iments presented in this chapter were conducted on a 2.7 GHz Pentium 4, 64 bit processor

with 1 GB RAM in the Windows XP environment.

The basic data structures that we use are lists and lists of lists to implement the algorithms.

• We maintain a list calledadjacent to store the adjacency list of a vertex.adjacent[i]

contains the list of vertices that are adjacent to the vertexi.

• We use a list of lists calledgraph to store the subsets in the partition.graph[k] stores

the list of vertices that are in subsetVk.

• We use another list of lists calledneighbour. neighbour[i][k] denotes the list of ver-

tices that are in subsetVk and adjacent to vertexi.

41

The basic functions that are used by the algorithms are:

• degree(u,Vi): It is used to compute the total weight of the edges from a vertexu on to

subsetVi. It takes a vertexu and a subsetVi as the arguments and returns the weight

of the edges fromu incident on the vertices inVi. It usesneighbour[u][Vi] to calculate

the weights.

• update neighbour (adjacent[u],Vi,Vj): If we swap the vertices then we update the

neighbour list of those vertices that are adjacent to the swapped vertices. If one of

the swap vertices isu and has been moved fromVi to Vj then this function is called

to update the neighbour list of those vertices that are adjacent to u. This greatly

improves the running time of the degree function.

5.1.1 Swap Algorithm

In theswap algorithm we first randomly assign vertices amongV1,V2, . . . ,Vk subsets.

For each pair of vertices(u,v) whereu ∈ Vi andv ∈ Vj and i 6= j we use the swap

step (described in page 27). In each local step we usedegree(u,Vi) to calculate the

degree and after each swap we callupdate neighbour (adjacent[u],Vi,Vj) function.

Analysis:

For the general case with positive integral weights the runtime analysis is as follows:

We denotewe as the weight of an edgee ∈ E and∑e∈E we = W . Theswap algorithm

can start with a total weight of the self edges as 0 and can iterate for every pair of ver-

tices of every pair of subsets in the partition, and in each iteration it will improve the

weight of the sum of the self edge by at least 1, so the running time of the algorithm

is O(k2 · n2 ·W) wherek is the number of subsets andn is the number of vertices in

the graph.

42

5.1.2 Recursive Greedy method

Analysis:

Recursive greedy method recursively callsswap algorithm for k−1 times wherek

is the total number of partitions. Recall from the anaysis ofrecursive greedy,|V1| ≤

|V2|... ≤ |Vk|. In the recursive greedy method we initially get p solutions forV1

wherep =
|V |
|V1|

. In this step the time taken isO(p2 · n2 ·W). Furthermore there arek

recursive calls so the total time taken is almostO(k · p2 ·n2 ·W) This analysis applies

to the general case with positive integral edge weight.

The program designed for theswap algorithm andrecursive greedy method contains

almost 1100 lines of code.

5.1.3 Ejection Algorithm

In theejection algorithm we assume a random order of the partitions and calculate the

degree of the vertices that are in a cycle in that order. We usedegree(u,Vi) to calculate

the degree. We then swap the vertices of that cycle that givesus the maximum gain

(if positive) and call theupdate neighbour (adjacent[u],Vi,Vj) function to update the

neighbour lists of the vertices that are adjacent to the swapped vertices.

Analysis:

All the k cycles for a fixed ordering of subsets can be discovered inO(n2) time

therefore the running time isO(n2W). If we choosec random ordering of the subsets

then the running time isO(cn2W).

43

Remarks: The algorithms run in pseudo polynomial time in the generalcase and for

the unit weighted case run in polynomial time. For the general case we can get an

(1− ε) approximate solution in time that is a polynomial in the input size and 1/ε

(see [38]).

The implementation of theejection algorithm contains 700 lines of code, with code

reuse from the above two algorithms.

5.2 Data Sets

We evaluated the algorithms on the following data sets.

• Protein interaction database: The protein protein interaction database contains the

data about the protein protein interaction.

Each row of the databases contains the information about thepair of proteins (with

protein id) that interacts. We consider every protein as a vertex and put an edge

between two proteins if they interact. We set the weight of the edge to 1. All the

non-edges are considered as edges with weight 0.

• Random Graph: We construct some random sparse and dense graphs for experi-

ments. The procedure to construct the random graphs is described in section 5.3.2.

5.3 Experimental results

5.3.1 Protein Interaction Database

We ran the algorithms described in chapter 4 on the two protein protein interaction databases

from [29]. First considerk = 2, ..,20 subsets of equal size. Initially we randomly partition

the graph intok subsets and run theswap, ejection andgreedy algorithms on these graphs

and do this for 30 random start points. The first database consists of 1476 vertices and

44

Figure 5.1: Comparison of the performance ratio of the algorithms on database 1 (uniform
sizes)

3026 edges and the second database contains 2633 vertices and 3967 edges. The number

of subsets in the partition (k), average performance over 30 runs and the average time the

algorithms take to obtain the solution is illustrated in tables 5.1 and 5.2. The optimal solu-

tion is the minimum of|E| and∑k
i=1

(si
2

)

whereE is the total number of edges of the graph

andsi is the size ofVi.

The performance ratio and the time taken by the algorithms onthe graphs arising from the

protein interaction database is described in tables 5.1 and 5.2.

Figure 5.1 and Figure 5.3 depict partition size vs. the performance ratio of the algorithms

graphically.

In figures 5.2 and 5.4 we compare the time taken by the algorithms to solve the problem.

The experimental results on both databases of protein protein interaction show that the

performance of the swap algorithm and the recursive greedy method is almost the same.

45

Table 5.1: Experimental results on database 1 (uniform sizes)

Swap Swap Ejection Ejection R.G R.G
algorithm algorithm algorithm algorithm algorithm algo

k (perfo (time (perfo (time (Perfor -rithm
-rmance in sec) -rmance in sec) -mance (time
ratio) ratio) ratio) in sec)

2 0.90 42.26 0.84 96.55 0.90 78.81
3 0.85 63.90 0.79 271.03 0.85 176.26
4 0.83 67.31 0.74 417.14 0.83 228.93
5 0.83 81.29 0.69 219.71 0.84 278.42
6 0.81 81.79 0.68 278.35 0.80 386.73
7 0.80 90.55 0.63 380.84 0.78 389.53
8 0.79 112.20 0.62 483.98 0.78 421.43
9 0.78 84.29 0.60 478.35 0.77 480.04
10 0.78 81.17 0.59 586.27 0.75 538.03
11 0.77 90.30 0.57 702.16 0.76 567.19
12 0.76 78.16 0.56 955.53 0.75 689.17
13 0.76 85.99 0.57 1003.95 0.73 709.19
14 0.76 86.20 0.57 1215.43 0.74 783.55
15 0.75 87.36 0.54 884.068 0.77 870.78
16 0.75 88.01 0.51 862.821 0.74 962.48
17 0.74 89.98 0.53 1073.03 0.72 1001.64
18 0.74 85.93 0.50 748.00 0.74 998.76
19 0.73 86.92 0.49 784.70 0.73 1032.91
20 0.73 89.30 0.47 787.47 0.71 1023.64

46

Figure 5.2: Comparison of the timing of the algorithms on database 1 (uniform sizes)

The recursive greedy method works the same as theswap algorithm but it uses theswap

algorithm k−1 times so it takes much more time than theswap algorithm. On the other

hand theejection algorithm takes much more time than theswap algorithm and therecur-

sive greedy method as it considers longer cycles than the other two algorithms in a single

step of iteration and it has worse performance ratio than theother two algorithms because it

works with a single fixed random ordering of the subsets in thepartition. If we can consider

all the possible orderings of the subsets then we can improvethe performance ratio for the

algorithm but it takes much more time. These results with more orderings are reported for

sparse graphs later (Figures 5.9 and 5.10).

Now we consider the unbalanced subsets in the partition. In the first database we consider

two subsets; the size of the first subset is 50 and the second subset contains the rest of the

vertices of the graph. We then run the algorithms on these subsets. We do this similarly

for the cases where the size of the first subsets are from 100,150,,700 and the second

47

Table 5.2: Experimental results on database 2 (uniform sizes)

Swap Swap Ejection Ejection R.G R.G
algorithm algorithm algorithm algorithm algorithm algo

k (perfo (time (perfo (time (Perfor -rithm
-rmance in sec) -rmance in sec) -mance (time
ratio) ratio) ratio) in sec)

2 0.85 109.70 0.84 602.55 0.85 228.97
3 0.79 177.73 0.72 939.42 0.77 467.31
4 0.75 202.50 0.63 1615.80 0.73 637.51
5 0.72 205.98 0.58 2100.87 0.71 786.28
6 0.71 360.52 0.56 2715.37 0.69 966.98
7 0.69 353.85 0.54 2902.63 0.68 1130.26
8 0.67 375.87 0.52 1267.31 0.68 1299.98
9 0.67 394.38 0.51 1420.39 0.66 1360.07
10 0.65 326.32 0.48 2283.90 0.65 1593.14
11 0.65 221.73 0.47 1638.57 0.63 1934.36
12 0.64 230.38 0.47 1818.85 0.62 2080.15
13 0.63 223.38 0.47 1975.25 0.62 2129.36
14 0.63 231.90 0.43 2255.33 0.62 2211.85
15 0.63 299.26 0.44 2046.45 0.62 2295.36
16 0.62 425.79 0.42 2329.97 0.60 2480.59
17 0.62 342.24 0.44 3072.12 0.59 2660.97
18 0.61 342.06 0.41 2737.05 0.60 2915.62
19 0.61 407.41 0.43 3099.41 0.60 3237.95
20 0.60 249.45 0.42 3022.26 0.60 3479.29

48

Figure 5.3: Comparison of the performance ratio of the algorithms on database 2 (uniform
sizes)

Figure 5.4: Comparison of the timing of the algorithms on database 2 (uniform sizes)

49

Table 5.3: Experimental results on database 1 (two unbalanced subsets)

Size Swap Swap Ejection Ejection R.G R.G
of algorithm algorithm algorithm algorithm algorithm algo
the (perfo (time (perfo (time (Perfor -rithm
first -rmance in sec) -rmance in sec) -mance (time

subset ratio) ratio) ratio) in sec)

50 0.99 3.71 0.99 20.37 0.96 73.86
100 0.99 7.12 0.98 23.35 0.95 88.66
150 0.98 10.44 0.98 35.34 0.92 68.57
200 0.98 3.55 0.97 45.2 0.91 64.92
250 0.97 16.32 0.96 56.27 0.91 66.75
300 0.97 23.76 0.95 73.89 0.91 65.14
350 0.97 32.54 0.95 86.51 0.90 62.25
400 0.96 29.97 0.91 70.36 0.89 58.90
450 0.95 33.25 0.92 111.58 0.89 58.32
500 0.93 35.90 0.92 122.73 0.90 55.04
550 0.92 37.47 0.87 124.39 0.89 51.78
600 0.91 46.89 0.90 137.08 0.89 48.70
650 0.90 53.44 0.91 145.7 0.89 45.84
700 0.90 52.31 0.89 163.65 0.90 39.54

subsets contains the remaining vertices of the graphs.

Table 5.3 shows the performance ratio and the time taken by the algorithms on these in-

stances.

From these experiments we can observe that the performance ratio of the algorithms are

more or less the same. Here theejection algorithm shows performance close to the other

two algorithms because there is only one order for the two partitions, so it considers all the

cycles of the two partitions.

Similarly we do some experiments on the second database and the result of the experiments

is described in Table 5.4

We now consider three unbalanced subsets, where we fix the size of the first subset and

change the size of the second subset. For both databases the size of the first subset is 100.

50

Figure 5.5: Comparison of the performance ratio of the algorithms on unbalanced subsets
of database 1

Figure 5.6: Comparison of the timing of the algorithms on unbalanced subsets of database
1

51

Table 5.4: Experimental results on database 2 (two unbalanced subsets)

Size Swap Swap Ejection Ejection R.G R.G
of algorithm algorithm algorithm algorithm algorithm algo
the (perfo (time (perfo (time (Perfor -rithm
first -rmance in sec) -rmance in sec) -mance (time

subset ratio) ratio) ratio) in sec)

50 0.99 7.23 0.99 56.33 0.94 200.86
100 0.98 12.46 0.99 78.12 0.95 197.66
150 0.97 17.98 0.98 115.36 0.92 194.26
200 0.96 24.49 0.97 144.18 0.91 185.66
250 0.96 31.74 0.96 186.57 0.91 176.32
300 0.95 37.11 0.95 228.1 0.90 183.49
350 0.94 40.57 0.94 285.21 0.89 191.64
400 0.93 58.69 0.94 348.19 0.87 201.38
450 0.92 56.13 0.92 341.28 0.85 176.33
500 0.92 74.87 0.92 350.77 0.85 169.41
550 0.91 103.29 0.90 362.88 0.84 173.57
600 0.91 109.35 0.89 285.45 0.83 185.37
650 0.90 108.42 0.90 533.03 0.81 180.55
700 0.90 100.21 0.89 563.62 0.83 187.67
750 0.89 96.411 0.87 468.2 0.81 176.75
800 0.89 116.04 0.87 535.93 0.81 175.56
850 0.88 115.41 0.86 616.24 0.82 168.14
900 0.88 117.10 0.87 657.46 0.82 161.85
950 0.87 124.90 0.85 710.47 0.81 167.84
1000 0.87 136.39 0.86 903.54 0.81 210.31
1050 0.86 128.94 0.85 777.28 0.81 300.28
1100 0.86 148.18 0.86 981.68 0.82 212.78
1150 0.86 145.64 0.85 885.35 0.83 136.09
1200 0.85 161.39 0.84 1094.96 0.83 139.22
1250 0.86 163.58 0.84 400.83 0.84 113.94
1300 0.85 136.56 0.84 945.95 0.83 100.41

52

Figure 5.7: Comparison of the performance ratio of the algorithms on two unbalanced
subsets of database 2

Figure 5.8: Comparison of the timing of the algorithms on twounbalanced subsets of
database 2

53

Table 5.5: Experimental results on database 1 (three unbalanced subsets)

Size Swap Swap Ejection Ejection R.G R.G
of algorithm algorithm algorithm algorithm algorithm algo
the (perfo (time (perfo (time (Perfor -rithm

second -rmance in sec) -rmance in sec) -mance (time
subset ratio) ratio) ratio) in sec)

100 0.98 18.44 0.95 57.54 0.90 151.5
200 0.97 35.73 0.93 79.41 0.88 125.4
300 0.96 49.69 0.90 114.51 0.87 125.5
400 0.94 58.16 0.86 135.16 0.86 122.7
500 0.93 64.68 0.75 152.59 0.86 121.3
600 0.90 54.80 0.88 184.32 0.86 107.7
700 0.88 54.24 0.88 193.79 0.87 98.75
800 0.90 51.25 0.88 195.76 0.89 99.34
900 0.92 46.45 0.77 157.84 0.91 94.19
1000 0.94 40.97 0.89 114.15 0.92 105.26
1100 0.95 29.24 0.93 90.24 0.93 101.93
1200 0.96 22.89 0.95 74.81 0.94 101.73
1300 0.98 13.34 0.95 42.92 0.95 100.71

The results of the experiments are described in tables 5.5 and 5.6.

From the tables 5.5 and 5.6 we find that the performance ratio of the algorithms are al-

most same for the different three subsets in the partition but theejection algorithm and the

recursive greedy method take much more time than theswap algorithm.

5.3.2 Randomly Generated Graphs

We also generate some random graphs and run experiments on those graphs. We generate

a random graph using the following steps:

1. We specified the total number of vertices (|V |) of the graph.

2. We make|V |/5 subsets in the partition each subset contains 5 vertices.

3. pr is the probability of an edge being present.

54

Figure 5.9: Comparison of the performance ratio of the algorithms on three unbalanced
subsets of database 1

Figure 5.10: Comparison of the timing of the algorithms on three unbalanced subsets of
database 1

55

Table 5.6: Experimental results on database 2 (three unbalanced partitions)

Size Swap Swap Ejection Ejection R.G R.G
of algorithm algorithm algorithm algorithm algorithm algo
the (perfo (time (perfo (time (Perfor -rithm

second -rmance in sec) -rmance in sec) -mance (time
subset ratio) ratio) ratio) in sec)

100 0.96 43.14 0.97 177.57 0.92 922.38
200 0.94 73.84 0.96 204.47 0.89 1041.43
300 0.92 90.49 0.94 315.04 0.84 1076.45
400 0.90 106.35 0.92 407.06 0.79 895.85
500 0.89 118.92 0.89 369.02 0.80 773.42
600 0.87 133.68 0.89 467.71 0.82 1032.39
700 0.88 146.02 0.85 667.41 0.78 917.57
800 0.87 155.72 0.84 723.0 0.80 727.77
900 0.85 162.89 0.85 678.41 0.77 842.39
1000 0.84 173.24 0.85 791.11 0.74 831.91
1100 0.84 177.23 0.76 749.86 0.78 608.84
1200 0.83 184.02 0.86 766.89 0.77 597.7
1300 0.82 181.08 0.76 743.94 0.81 662.59
1400 0.80 177.54 0.84 980.23 0.78 577.65
1500 0.81 169.95 0.82 812.81 0.81 719.07
1600 0.82 164.68 0.83 629.38 0.83 580.59
1700 0.83 157.89 0.85 531.86 0.82 717.83
1800 0.85 147.32 0.85 521.76 0.85 715.41
1900 0.87 134.7 0.89 428.32 0.87 535.82
2000 0.88 86.78 0.90 358.43 0.88 691.2
2100 0.90 109.3 0.92 440.43 0.90 268.23
2200 0.93 68.55 0.92 319.24 0.91 324.53
2300 0.94 57.29 0.94 267.09 0.89 258.5
2400 0.95 62.92 0.96 166.80 0.89 239.17
2500 0.97 34.91 0.98 126.31 0.96 293.12

56

Figure 5.11: Comparison of the performance ratio of the algorithms on three unbalanced
subsets of database 2

Figure 5.12: Comparison of the timing of the algorithms on three unbalanced subsets of
database 2

57

Table 5.7: Experiments on random dense graphs

Swap Swap Ejection Ejection R.G R.G
Total Total algorithm algorithm algorithm algorithm algorithm algo
Edges Vertices (perfo (time (perfo (time (Perfor -rithm

-rmance in sec) -rmance in sec) -mance (time
ratio) ratio) ratio) in sec)

596 50 0.92 0.11 0.81 0.12 0.91 0.46
2447 100 0.97 0.46 0.85 1.43 0.95 3.31
5628 150 0.99 1.29 0.85 5.05 0.97 12.08
9984 200 0.99 2.34 0.86 16.77 0.97 28.87
15589 250 0.99 3.31 0.85 37.62 0.98 55.02
22516 300 0.99 4.49 0.86 76.99 0.98 98.24
30553 350 0.99 6.06 0.86 147.80 0.99 167.17
40060 400 0.99 10.28 0.85 216.23 0.98 255.14
50649 450 0.99 10.40 0.86 419.12 0.99 367.06
62726 500 0.99 12.70 0.86 546.46 0.99 531.08

4. For every pair of vertices we generate a random numberr, between 0 to 1. Ifr is less

than or equal topr then we put an unit weighted edge between these two vertices.

The average performance ratio of the three algorithms for these random graphs with the

average time taken to get the optimal solution is described in Table 5.7. Here we consider

pr = 0.5 for which the graph is dense.

Figures 5.5 and 5.6 illustrate the comparison of the performance and the time of the algo-

rithms.

It is no surprise that performance ratios of the algorithms are quite good in this experiment

because as the graph is dense so∑k
i=1

(si
2

)

is much less than the total number of edges.

Therefore we decide to conduct some experiments on sparse graphs with the probability of

being an edge is5
|V | .

The results of the experiments on the sparse graphs are described in Table 5.8.

58

Figure 5.13: Comparison of the performance ratio of the algorithms on random dense
graphs

Figure 5.14: Comparison of the timing of the algorithms on random dense graphs

59

Table 5.8: Experiments on random sparse graphs withp = 5
|V |

Swap Swap Ejection Ejection R.G R.G
Total Total algorithm algorithm algorithm algorithm algorithm algo
Edges Vertices (perfo (time (perfo (time (Perfor -rithm

-rmance in sec) -rmance in sec) -mance (time
ratio) ratio) ratio) in sec)

311 50 0.72 0.24 0.56 0.24 0.69 0.6
608 100 0.59 0.86 0.39 2.05 0.56 5.0
932 150 0.56 1.87 0.33 9.58 0.53 17.54
1214 200 0.51 3.19 0.28 17.89 0.50 41.0
1453 250 0.51 4.95 0.26 49.51 0.48 78.28
1769 300 0.46 6.94 0.23 86.51 0.47 138.5
1938 350 0.45 9.17 0.23 184.41 0.46 205.37
2465 400 0.48 12.24 0.23 279.74 0.46 306.07
2741 450 0.45 15.22 0.19 449.41 0.45 444.79
3058 500 0.44 18.81 0.20 680.34 0.44 624.01
3339 550 0.44 22.66 0.20 1233.33 0.45 821.11
3619 600 0.44 27.28 0.18 1426.58 0.43 1052.28
3836 650 0.44 31.45 0.18 1555.5 0.43 1388.79
4143 700 0.42 36.64 0.18 1698.73 0.42 1713.38
4589 750 0.44 42.23 0.18 1741.9 0.44 2143.71
4789 800 0.43 47.72 0.17 1777.85 0.43 2520.79
5010 850 0.40 52.33 0.16 1920.20 0.42 3218.28
5400 900 0.42 60.04 0.16 2112.37 0.42 3744.60
5717 950 0.41 66.82 0.14 2132.68 0.42 4111.27
5934 1000 0.40 72.56 0.14 2217.00 0.41 4629.61

60

Figure 5.15: Comparison of the performance ratio of the algorithms on random sparse
graphs withp = 5

|V |

Figure 5.16: Comparison of the timing of the algorithms on random sparse graphs with
p = 5

|V |

61

The experiments on the sparse graphs show that theswap algorithm andrecursive greedy

algorithms have comparable performance ratio but therecursive greedy method takes much

more time than theswap algorithm as it has to call theswap algorithm once for each

partition. The performance of theejection algorithm is worse than the other two but we can

increase the performance ratio of theejection algorithm by considering more orderings.

We then consider more orderings of the subset in the partition for theejection algorithm to

solve the problem on some small sparse graphs. In these experiments we consider 20k and

100k orderings of the partitions wherek is the total number of partitions and we get a better

performance ratio for the algorithm which is close to theswap algorithm but it takes much

more time than the previous as it considers more orderings.

The results of the experiments in comparison to theswap algorithm are illustrated in Table

5.9

5.4 Conclusions

In this chapter we experimentally study the performance ratio of the three algorithms de-

scribed in chapter 4 on two protein protein interaction databases and on some random dense

and sparse graphs.

From the results we find that all the algorithms show almost the similar performance ratio

for the balanced and the unbalanced subsets for the protein protein interaction databases

but therecursive greedy method and theejection algorithm take more time than theswap

algorithm. Theejection algorithm shows worse performance than the other two algorithms

in the sparse graph if we consider only one ordering of the subsets in the partition but

we can improve considaribly the performance ratio of the algorithm by considering more

orderings.

62

Table 5.9: Experiments on random small sparse graphs with 20k orderings withp = 5
|V |

Swap Swap Ejection Ejection
Total Total algorithm algorithm algorithm algorithm
Edges Vertices (performance (time (performance (time

ratio) in sec) ratio) in sec)

106 20 0.9 0.04 0.88 0.1
169 30 0.8 0.06 0.87 0.36
232 40 0.83 0.16 0.80 0.91
278 50 0.69 0.15 0.72 1.87
352 60 0.66 0.21 0.68 3.62
405 70 0.64 0.42 0.64 6.13
511 80 0.64 0.55 0.67 10.86
515 90 0.57 0.46 0.62 14.81
604 100 0.65 0.84 0.63 24.11
672 110 0.56 1.01 0.60 42.56
716 120 0.56 1.17 0.62 52.39
795 130 0.57 1.54 0.59 67.45
843 140 0.56 2.07 0.56 82.49
937 150 0.55 1.83 0.59 111.7
897 160 0.52 2.0 0.55 134.4
995 170 0.51 2.44 0.54 173.16
1082 180 0.53 2.53 0.54 214.07
1091 190 0.54 2.86 0.52 259.77
1164 200 0.50 3.14 0.54 319.09
1225 210 0.49 3.39 0.51 376.31
1303 220 0.51 4.87 0.52 437.75
1414 230 0.52 4.12 0.52 539.19
1394 240 0.51 5.84 0.50 645.59
1489 250 0.50 4.71 0.51 740.58
1576 260 0.50 6.04 0.50 973.99
1706 270 0.49 5.41 0.53 1021.54
1644 280 0.50 5.92 0.51 1151.16
1710 290 0.49 6.36 0.52 1349.82
1875 300 0.50 6.75 0.50 1487.68

63

Table 5.10: Experiments on random small sparse graphs with 100k orderings withp = 5
|V |

Swap Swap Ejection Ejection
Total Total algorithm algorithm algorithm algorithm
Edges Vertices (performance (time (performance (time

ratio) in sec) ratio) in sec)

78 4 0.73 0.03 0.78 0.49
129 6 0.68 0.04 0.73 1.91
186 8 0.69 0.07 0.71 4.65
247 10 0.64 0.10 0.71 10.00
286 12 0.58 0.10 0.63 19.57
321 14 0.60 0.20 0.64 35.29
408 16 0.55 0.25 0.62 56.35
442 18 0.56 0.22 0.59 86.50
501 20 0.53 0.38 0.62 129.75
537 22 0.55 0.45 0.60 182.82
563 24 0.51 0.36 0.55 264.36
645 26 0.53 0.61 0.58 344.24
682 28 0.49 0.69 0.55 442.29
741 30 0.54 0.81 0.58 590.42
792 32 0.48 0.61 0.55 746.34
850 34 0.51 1.02 0.54 935.22
840 36 0.50 1.13 0.55 1070.72
962 38 0.50 1.14 0.54 1293.38
978 40 0.47 1.56 0.53 1555.94

64

Figure 5.17: Comparison of the performance between the swapand the ejection chain
algorithms on small random sparse graphs withp = 5

|V |

In the next chapter we conclude with future research directions.

65

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis we give the first set of approximation algorithms for the capacitated maxk-

uncut problem. We apply the algorithms to a clustering problem in bioinformatics. We

experiment on graphs arising from protein protein interaction networks, however we do not

draw any biological relevant conlusions from our experiments.

We consider two integer linear programs for the capacitatedmax k-uncut problem. We

show that the integrality gap of the relaxations of these integer programs is not bounded.

We develop one local search based, one ejection chain based algorithm and one recursive

greedy method to solve the problem. We analyze the local search based algorithm and

recursive greedy method.

We empirically show that the local search based algorithm and recursive greedy method

give us almost the same performance ratio but the ejection chain algorithm does not give us

a good performance ratio for a fixed ordering. We also show that if we increase the number

of orderings then the ejection method gives us a considaribly good performance but it takes

more time than the other two algorithms.

66

6.2 Future Research Work

In the future we plan to consider the lagrangian relaxationsof the linear programs described

in chapter 3 in the hope of obtaining better upper bound on theoptimal integral solutions.

Lagrangian relaxation has been used successfully in different combinatorial problems like

traveling salesman, scheduling, set covering [15].

We can also solve integer linear programs using cutting plane algorithms, for instance by

usinggomory cuts. We applied the gomory cut technique to the LP of section 3.3. We took

an odd cycle of length five and added all the gomory cuts to obtain an integral solution.

We notice that 300 cuts were added to the LP. It is interestingto figure out a subset of

the cuts to be added using which we can reduce the integralitygap and compute a better

approximation.

The recursive greedy algorithm that is discussed in chapter4 takes much time to solve the

problem. We can also try to minimize the running time of this algorithm. It would be

interesting to examine how to speed up the computation of ejection chain as well.

67

Bibliography

[1] A. Ageev, R. Hassin, and M. Sviridenko. A 0.5-approximation algorithm for max
dicut with given sizes of parts.SIAM Journal on Discrete Mathematics, 14(2):246–
255, 2001.

[2] A. Ageev and M. I. Sviridenko. An approximation algorithm for hypergraph max
k-cut with given sizes of parts. InLecture Notes in Computer Science (Proceedings
of ESA ’00), volume 1879, pages 32–41, 2000.

[3] Ravindra K. Ahuja, Ozlem Ergun, James B. Orlin, and Abraham P. Punnen.In Hand-
book of Approximation Algorithms and Metaheuristics edited by F. T. Gonzalez. Chap-
man and Hall/CRC, 2007.

[4] G. Andersson. An approximation algorithm for max p-section. In Lecture Notes in
Computer Science (Proceedings of STACS’99), volume 1563, pages 237–247, 1999.

[5] G. Bader and C. Hogue. An automated method for finding molecular complexes in
large protein interaction networks.BMC Bioinformatics, 4,2, 2003.

[6] M. Bern and D. Eppstein. Approximation algorithms for geometric problems. InAp-
proximation Algorithms for NP-hard Problems edited by D. Hochbaum, pages 296–
345, 1996.

[7] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph
cuts. IEEE Trans. Pattern Anal. Mach. Intell., 23(11):1222–1239, 2001.

[8] G Calinescu, H. Karloff, and Y. Rabani. An improved approximation algorithm for
multiway cut. In30th annual ACM symposium on theory of computing, volume 48-52,
pages 551–570, 1998.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. Prentice
Hall, 1998.

[10] E. Dalhous, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis.
The complexity of multiterminal cuts.SIAM Journal on Computing, pages 864–894,
1994.

[11] G. Dantzig.Linear programming and extensions. Princeton University Press, 1963.

68

[12] G. Bernard Dantzig and M. Narain Thapa.Linear Programming. Springer, 1997.

[13] E. de Klerk, D. V. Pasechnik, and J. P. Warners. On approximate graph colouring and
max k-cut algorithms based on theθ function. InJ. Comb. Optim., volume 8(3), pages
267–294, 2004.

[14] U. Feige and M. Langberg. Approximation algorithms formaximization problems
arising in graph partitioning.J. Algorithms, 41:174–211, 2001.

[15] M. L. Fisher. The lagrangian relaxation method for solving integer programming
problems.Management Science J, 27,1:1–18, 1981.

[16] G. W. Flake, R. E. Tarjan, and K. Tsioutsioulikis. Graphclustering and minimum cut
trees.Internet Mathematics, 1(4):385–408, 2004.

[17] A. Frieze and M. Jerrum. Improved approximation algorithms for maxk-cut and max
bisection.Algorithmica, 18(1):67–81, 1997.

[18] M. R. Garey and D. S. Johnson.Computers and Intractability; A Guide to the theory
of NP-Completeness. Pearson Addison Wesley, 1979.

[19] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph
problems.Theor. Comput. Sci, 1:237–267, 1976.

[20] D. R. Gaur, R. Krishnamurti, and R. Kohli. The capacitated max k -cut problem.
Mathematical Programming, 115:65–72, 2008.

[21] F. Glover and C. Rego. Ejection chain and filter-and-fanmethods in combinatorial
optimization.Springer, 4:263–296(34), 2006.

[22] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. InJ. Assoc.
Comput. Mach, volume 42, pages 1115–1145, 1995.

[23] M. X. Goemans and D. P. Williamson. Approximation algorithms for max 3-cut
and other problems via complex semidefinite programming. InJ. Comput. Sys. Sci.,
volume 68(2), pages 442–470, 2004.

[24] R. E. Gomory. Outline of an algorithm for integer solution to linear programs. In
Bulletin Amer. Math. Soc., volume 64 no. 5, pages 275–278, 1958.

[25] R. E. Gomory and T. C. Hu. Multiterminal network flows.Journal of the SIAM,
9:551–570, 1961.

[26] F. T. Gonzalez.Handbook of Approximation Algorithms and Metaheuristics. Chap-
man and Hall/CRC, 2007.

69

[27] I. Hajirasouliha, F. Hormozdiari, S. C. Sahinalp, and I. Birol. Optimal pooling for
genome re-sequencing with ultra-high-throughput short-read technologies.Bioinfor-
matics, 24(13):i32–i40, 2008.

[28] Ellis Horowitz, Sartaj Sahani, and Sanguthevar Rajasekaran.Fundamentals of Com-
puter Algorithms. W. H. Freeman and Company, 1998.

[29] http://dip.doe mbi.ucla.edu.

[30] V. Kann, S. Khanna, J. Lagergren, and A. Panconesi. On the hardness of approximat-
ing max k-cut and its dual.Chicago J. Theor.Comput. Sci., 2:1–18, 1997.

[31] R. M. Karp. On the complexity of combinatorial algorithms. Networks, 5:45–68,
1975.

[32] H. Kawaji, Y. Yamaguchi, H. Matsuda, and A. Hashimoto. Agraph-based clustering
method for a large set of sequences using a graph partitioning algorithm. InGenome
Informatics, volume 12, pages 93–102, 2001.

[33] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.
In BSTJ, volume 49 (2), pages 291–307, 1970.

[34] L. G. Khachiyan. A polynomial algorithm in linear programming. InSoviet Mathe-
matics Doklady, volume 20, pages 191–194, 1979.

[35] A. D. King, N. Przulj, and I. Jurisica. Protein complex prediction via cost-based
clustering.Bioinformatics, 20(17):3013–3020, 2004.

[36] M. Langberg, Y Rabani, and C. Swamy. Approximation algorithms for graph ho-
momorphism problems. InApproximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques, pages 176–187, 2006.

[37] C Lin, Y. Cho, W. Hwang, P. Pei, and A. Zhang.Knowledge Discovery in Bioinfor-
matics. John Wiley and Sons, Inc., 2007.

[38] James B. Orlin, Abraham P. Punnen, and Andreas S. Schulz. Approximate local
search in combinatorial optimization.SIAM J. Comput., 33(5):1201–1214, 2004.

[39] C. H. Papadimitriou and K. Steiglitz.Combinatorial Optimization; Algorithms and
Complexity. Prentice Hall, 1982.

[40] S. Ron and R. Sharan. A clustering algorithm for gene expression analysis. InEighth
International Conference on Intelligent System for Molecular Biology, 2000.

[41] S. Sahni and T. Gonzalez. P-complete approximation problems.J. ACM, pages 555–
565, 1976.

70

[42] H. Saran and V. V. Vazirani. Finding k-cuts within twicethe optimal.SIAM Journal
on Computing, pages 24:101–108, 1995.

[43] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

[44] Laurence A. Wolsey and George L. Nemhauser.Integer and Combinatorial Optimiza-
tion. John Wiley and Sons, Inc., 1999.

[45] Y. Xu, V. Olman, and D. Xu. Clustering gene expression data using a graph-theoretic
approach: an application of minimum spanning trees.Bioinformatics, 18(4):536–545,
2002.

71

