APPROXIMATION ALGORITHMS FOR A GRAPH-CUT PROBLEM WITH
APPLICATIONS TO A CLUSTERING PROBLEM IN BIOINFORMATICS

SALIMUR RASHID CHOUDHURY
Bachelor of Science, Islamic University of Technology, 260D

A Thesis
Submitted to the School of Graduate Studies
of the University of Lethbridge
in Partial Fulfillment of the
Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge
LETHBRIDGE, ALBERTA, CANADA

© Salimur R. Choudhury, 2008

| dedicate thisthesisto my parents and sister.

Abstract

Clusters in protein interaction networks can potentialyphidentify functional relation-
ships among proteins. We study the clustering problem byetivaglit as graph cut prob-
lems. Given an edge weighted graph, the goal is to partittengraph into a prescribed
number of subsets obeying some capacity constraints, soraaximize the total weight
of the edges that are within a subset. Identification of aelenbset might shed some light

on the biological function of all the proteins in the subset.

We study integer programming formulations and exhibitéargegrality gaps for various
formulations. This is indicative of the difficulty in obtang constant factor approximation
algorithms using the primal-dual schema. We propose thppeoaimation algorithms for

the problem. We evaluate the algorithms on the databaseterftting proteins and on
randomly generated graphs. Our experiments show that goeithims are fast and have

good performance ratio in practice.

Acknowledgments

| express my deep acknowledgment and profound sense ofugiatio my supervisor Dr.
Daya Gaur for his inspiring guidance, helpful suggestions@ersistent encouragement as

well as close and constant supervision throughout the gp@fiony Masters degree.

| would also like to thank my M.Sc. supervisory committee nbens Dr. Hans-Joachim
Wieden, Dr. Stephen Wismath and Dr. Shahadat Hossain foiginielance and suggestion.
| would also like to thank my external examiner Dr. Abrahamifen for his valuable

suggestions and comments.

| am grateful to Dr. Daya Gaur and to the School of Graduatei8sufor the financial

assistantships.

| am very much thankful to my family and fellow graduate stodeMohammad Tauhidul
Islam, Sardar Haque and Sadid Hasan for the continuous eagement that helped me to

complete this thesis.

Contents

Approval/Signature Page ii
Dedication ii
Abstract \Y
Acknowledgments v
Table of Contents Vi
List of Tables iX
List of Figures X
Glossary Xi
1 Introduction 1
1.1 Importance of Protein Protein Interaction 2
1.2 PPl network Representation 2
1.3 ClusteringPPlnetwork, 3
1.4 Definitions. 4
141 Clas® e 4
142 ClasNP e 4
1.4.3 Polynomialtimereductions
1.4.4 NP-Completeness
1.4.5 Approximation Algorithm 5
1.5 Organizationofthethesis 6
2 Related Work 8
2.1 Definitions.
2.2 Previouswork
221 Maxk-Cut 9
2.2.2 Capacitated maxcut 11
223 Mink-cut 12
2.2.4 Capacitated mikecut 12

2.25 Multiwaycut 13

2.26 Maxk-uncut 13
2.2.7 Capacitated masuncut problem 13
2.2.8 Multiwayuncut 13

2.3 Relationship between mkacut and maxk-uncut 14

Linear and Integer Linear Programming (ILP) 16

3.1 LinearProgramming 16

3.2 Integer Linear Programming 17

3.3 Integer Linear Program for Capacitated Maxncut Problem 18

3.4 AnotherILP formulation 20

3.5 Linear Programming Relaxation 21

3.6 IntegralityGap e 21

Approximation Algorithms 25

4.1 Local Search and Recursive Greedy methods 25
411 LocalSearch 25
4.1.2 Recursive Greedymethod 27

4.2 Local Search Algorithm 27
4.2.1 Definition of Capacitated Mauncut problem 27
4.2.2 TheSwapAlgorithm oL 27
4.2.3 Approximation Algorithm L Lo, 28

4.3 Ejection Chain Algorithm 34
4.3.1 Ejection Algorithm L 35

4.4 Recursive greedy algorithm 36
4.4.1 Greedy method for max 2-uncut problem 36
4.4.2 Recursivegreedymethod. 37

Experiments and Results 41

5.1 Implementation 41
5.1.1 Swap Algorithm 42
5.1.2 Recursive Greedymethod 43
5.1.3 Ejection Algorithm 43

5.2 DataSets 44

5.3 Experimentalresults oL 44
5.3.1 Protein Interaction Database 44
5.3.2 Randomly Generated Graphs 54

54 ConcClusions 62

Conclusion and Future Work 66

6.1 Conclusion 66

6.2 Future ResearchWork, 67

Vii

Bibliography

viii

68

List of Tables

2.1

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

5.9

Some partitioning problems oo oL 10

Experimental results on database 1 (uniformsizes) 46
Experimental results on database 2 (uniformsizes) 48
Experimental results on database 1 (two unbalance@s)bs 50
Experimental results on database 2 (two unbalance@s)bs 52
Experimental results on database 1 (three unbalanbseétsy 54
Experimental results on database 2 (three unbalancetiqres) 56
Experiments onrandom densegraphs 58

Experiments on random sparse graphs with % 60
Experiments on random small sparse graphs wiko2@erings withp = % 63

5.10 Experiments on random small sparse graphs witk @fiferings withp = > 64

List of Figures

1.1 ExampleofaPPINetwork 3
2.1 ExampleGraph 11
5.1 Comparison of the performance ratio of the algorithmdatabase 1 (uni-
formsizes) 45
5.2 Comparison of the timing of the algorithms on databasenffdqrm sizes) . 47
5.3 Comparison of the performance ratio of the algorithmdatabase 2 (uni-
formsizes) 49
5.4 Comparison of the timing of the algorithms on databasen##idrm sizes) . 49
5.5 Comparison of the performance ratio of the algorithmsmralanced sub-
setsofdatabase 1l 51
5.6 Comparison of the timing of the algorithms on unbalarsedasets of database
Lo e 51
5.7 Comparison of the performance ratio of the algorithmsamunbalanced
subsetsofdatabase2 o 53
5.8 Comparison of the timing of the algorithms on two unbeéhsubsets of
database 2 53
5.9 Comparison of the performance ratio of the algorithmthoge unbalanced
subsetsofdatabase 1 55
5.10 Comparison of the timing of the algorithms on three lant@ed subsets of
database 1l 55
5.11 Comparison of the performance ratio of the algorithmtheee unbalanced
subsetsofdatabase2 57
5.12 Comparison of the timing of the algorithms on three lan@ed subsets of
database 2 57
5.13 Comparison of the performance ratio of the algorithmsamdom dense
graphs e 59
5.14 Comparison of the timing of the algorithms on randonmsdeagraphs 59
5.15 Comparison of the performance ratio of the algorithmsamdom sparse
graphs withp = % 61
5.16 ComEE)arison of the timing of the algorithms on randonrspgraphs with
P e 61

5.17 Comparison of the performance between the swap andetioa chain

algorithms on small random sparse graphs with ﬁ

Xi

Glossary

e Graph: A non-negative edge weighted undirectgdph G consists of a set of ver-
ticesV and a set of edgds that connect pairs of vertices. Normally we denote the
graph asG =(V, E). G may have non-negative edge weights denoteavfy,Vv),

where(u,V) € E is an unordered pair of vertices.

e Hypergraph: A hypergraph H = (V, E) is a generalization of a graph wheve
denotes the set of vertices and each edg& @ a non-empty subset &. In a

hypergraph, edges can connect any number of vertices ¢gitbat 1).

e Weight of a graph: Theweight of a graph (W) denotes the sum of all the weights of

the edgesu,v) € E, whereu € V andv € V; i.e. 3 v)ee W(U,V)

e Partition: LetV; CV foralli=1,...,k be a collection of subsets ¥f. This collec-
tion is called a partition itJ};l\/i =V andVvinV; = ¢foralli,j. If V is the vertex

set of a graph, then we refer it to as the partition of the graph

¢ Self edge Given a partition oV, we define an edge,v) € E as aself edge if u €V,
andv €V, for somei that is both of the end points are in the same subset in the

partition.

e Cross edge Given a partition o/, we define an edg@u,v) € E as across edge if
ueV; andv e Vj wherei # j, thatis the end points of the edge are in different subsets

in the patrtition.

Xii

A Matching between two subsets A matching M between two equal sized séts

andV; is defined as a set of pair of verticas v) whereu € V; andv € V, such that

M = {(ug,v1), (U2, V2),....(Ug, Vq) } Whereuy # Up... # ug andvy # Vo... # .

Perfect matching between two subsetsA matching is perfect ifM| = |V4| = |V

i.e. all vertices of the subsets are in some pair.

Weight of a maching The weightwy of a matchingM between two subset of
verticesvi andV, in a weighted grapks is defined as (uv)eMm w(u,V) whereu € V;

andv € V, andw(u, V) is the weight of the edgeu, V).

Capacity of a subset The capacitys of a subsed,; is the maximum number of

vertices it can contain.

Xiii

Chapter 1

Introduction

Clustering plays a vital role in the analysis of data. It hasrbwidely used for a long time
in different areas like business analysis, data mininggeranalysis. Nowadays it is also

being used in bioinformatics to analyze gene structurdgpratructure etc.

The goal of clustering is to group the elements into subsatedbon similarity among the
elementsj.e. elements within the same subset should be similar and tinecalis in the

different subsets are dissimilar.

Often we can represent the data sets as weighted graphs wdréices correspond to the
elements to be clustered and the weights of the edges repasslarity between those
entities [16]. We can then use graph based clustering #fgosi to solve the problem.
Graph clustering algorithms typically try to optimize sowrr@eria like minimum sum,

minimum diameterk-median etc. [6].

Graph based clustering has been widely used to solve difféypes of clustering prob-
lems in bioinformatics. Here we mention a few applicatiohslastering in bioinformat-
ics. Kawajiet al. [32] use graph based clustering to cluster protein seq@antefamilies.

King et al. [35] use cost based clustering on the Protein Protein Ictieranetworks to
identify and predict protein complexes. A graph based ehirsg algorithm for analyzing

gene expression is described in Rairal. [40]. Xu et al. [45] use another graph based

1

method to cluster gene expression data. Hajirasodilteh. [27] use graph based algo-

rithms for optimal pooling of genome re-sequencing.

This thesis is about algorithms for clustering using grapts.c We develop approxima-
tion algorithms for clustering and analyze them theorétiand experimentally. We also
demonstrate the efficacy of the algorithms on graphs arisorg protein protein interac-

tion networks (PPI).

1.1 Importance of Protein Protein Interaction

The function of unknown proteins may be inferred on the baktheir interaction with a
known protein with a known function. Mapping protein protémteractions provides in-
sight into protein function and helps to model the functiqraghways to clarify the molec-
ular mechanisms of cellular processes [37]. We can studpribiein protein interactions

to understand how proteins function within the cell.

1.2 PPI network Representation

We can represent the PPl network using a simple graph. Weemesent proteins as
nodes and two proteins that interact are represented aseatljpodes connected by an
edge. Figure 1 is an example of a PPl network where the nodes representabens
and edges represent the interactions between the prot8msf we can cluster the PPI
network then we can find out the characteristics of an unknanetein from the functions

of the other proteins that are in the same cluster.

Modeling PPI networks as graphs has been used by many apmtieafor instance pre-

dicting protein complexes within PPI networks [5].

i (2 —3) 4

A\

Figure 1.1: Example of a PPI Network
1.3 Clustering PPI network

Partitioning the graph into different subgraphs is the ncostmon method for clustering
a graph [37] that lead us to optimization problems like mak-min-cut, max-uncut etc.
To cluster the PPI network we transform the protein netwot& & simple graph and then
apply graph cut algorithms. The main goal of clustering afRvork is to put the related
proteins into the same cluster; that is we want to minimizedtiges across the clusters
or maximize the edges within the clusters. We can formulaite groblem as a mak-
uncut problem that maximizes the edges within the clusteras a mirk-cut problem that

minimizes the edges across the clusters.

In this thesis we design approximation algorithms for rkascut problem that can be used
to cluster PPI networks with one additional constraint. Gtwestraint is that we can specify
the size of the clusters too. We call the miaxincut problem with this constraint, the
capacitated max k-uncut problem. We leave it to the experts to draw any biologicavaht
conclusions from the clustering obtained using our meth{ede similar applications in

[27]).

1.4 Definitions

Now we define some terms to be used in the following chaptéesask refer to the excellent

book by Garey and Johnson [18] for further details.

1.4.1 Clas¥

P is a set of decision problems that can be solved on a detestigiffiuring machine in
polynomial time. The shortest path problem and breadthdeatch problem are in claBs

[18].

1.4.2 Clasd\NP

NP is the set of decision problems that can be solved on a namadeistic Turing machine

in polynomial time.

Example: In the vertex cover problem we are given a gi@ph (V, E) and an integek.
We have to find a subs®t C V so that for every edgéu,v) € E we have eitheu € Vs
orv e Vs and|Vs| = k. This problem is in the clasNP because we can easily design a
polynomial time verifier for this problem. The verifier firdtecks whethej\s| = k or not.
Then for every edgéu,v) € E it checks whetheu € Vs or v € Vs and it can do this in

polynomial time.

1.4.3 Polynomial time reductions

If we can transform the instances of a problBmto the instances of another probléma
such that satisfiable instanced of are mapped to satisfiable instanceflgfand vice versa
in polynomial time then we call this a polynomial time redant Suppose a problei;

is polynomial time reducible to another probléi then we denote it ald, <, M>.

1.4.4 NP-Completeness

A problemTl1; is NP-Complete if the following holds:

1. M1 € NP, and

2. My <y Afor everyll, € NP.

If a problem satisfies the second condition but not necdgshe first one then we call this
problem, anNP hard problem [9]. It is generally believed tHdP-complete problems do
not lend themselves to efficient algorithms. Approximatidgorithms are an elegant way

of coping with the intrinsic hardness. We describe them.next

1.4.5 Approximation Algorithm

We know that an optimization problem can be a minimizatioa araximization problem.

Every optimization problem has three parts [18]:

a. A set of instanced)).
b. For each instandec D, a finite set of candidate soluti@1).

c. Afunctionf that assigns a positive rational numigt ,a) to each candidate solution
a € C(l) forall I € D. This positive rational number is called the solution véiue

a.

If the problem is a maximization one then the value for anroptisolution for an instance
| € D is denoted a®PT (1). It is the value off (I,a*) of an optimal solution fof where

a* € C(l). For alla € C(I), f(I,a*) >= f(l,a).

A polynomial time algorithmA is an approximation algorithm for a particular optimizatio
problem if given any instancee D, it finds a “good” candidate solutiom € C(1) of the
problem. The valud (I,a) of the candidate solutioo found by A when applied td is

denoted a#\(l).

For theNP-hard problems there are no known polynomial time algorgh8o our goal is to
find an approximation algorith#éthat runs in polynomial time and has the property that for
all instances, A(l) is close toOPT (l). The worst case performance of the approximation
algorithm is defined as the performance ratio of the algoritRor a maximization problem,

a 3 approximation produces a solution with valaé) > 3 OPT (1) for all instancel in
polynomial time. Note thg < 1 and the goal is to design approximation algorithms with

3 as close to 1 as possible.

1.5 Organization of the thesis

In chapter 2 we describe different optimization problemates to clustering like max
k-cut, capacitated mak-cut, mink-cut, capacitated mik-cut, maxk-uncut and finally

capacitated mak-uncut. We also describe the related research work of thedsgms.

In chapter 3 we describe the integer linear programs for éipacitated mak-uncut prob-
lem. We also study the linear programming relaxations fer ititeger programs. We
exhibit a large integrality gap for the linear programmiegaxations for the capacitated

maxk-uncut.

In chapter 4 we introduce two local search algorithms andreoersive greedy method for
solving the capacitated maxuncut problem. We present the worst case analysis of the

approximation ratio in this chapter.

We compare the algorithms (introduced in chapter 4) expantally in chapter 5 on the

graphs arising from PPI networks and on random graphs.

Finally, we conclude the thesis with future research dioastin chapter 6.

Chapter 2

Related Work

In this chapter we present some optimization problems tieaiedated to graph partitioning.
We start with maxk-cut problem and then we present all the other problems iteTab.
We notice that problems are different in terms of additionplts and objective functions

with additional constraints.

2.1 Definitions
Max k-cut:

Given an undirected gragh = (V, E) and a positive integek, with each edge 0B having
non-negative weight/(u,v) on each edge i&. We need to partition the vertices irko> 2
subsets so as to maximize the sum of the weights of the crgeseWe call this problem,
the max-cut problem if the partition size is two. The ma&xcut problem is NP-complete

[31] for k = 2.
Other graph cut problems are described in Table 2

In this thesis we design approximation algorithms for theecitated mak-uncut problem.
In this version, capacities for each subset in the partii@also specified as a part of the

input. If we consider edge weight(u,v) = 1 for all the edgesu, v) € E then we call this

the unit weighted version of the problem. Consider the following example for capaeia

maxk-uncut problem.

In Figure 21 we are given a graph with 8 vertices, a positive intége2 and the capacities
of the two subsets ag = 4 ands, = 4. Our goal is to partition the graph into 2 subsets
V1 andV, in such a way so that we maximize the total weight of the seffesdwhilst
maintaining the capacity constraints. From the Figure wigcadhat one valid solution
for this problem can b&, = {1,2,5,6} andV, = {3,4,7,8}. The total weight of the
self edges for this solution is(¥ + €). The best possible solution¥§ = {1,2, 3,4} and

Vo, ={5,6,7,8} and the total weight of the self edges M ghere we assuneis very small

compared tav).

Formally we define capacitated misuncut problem as follows:
Input: A weighted undirected grap& = (V,E), an integerk and capacities;, . . ., S,

wheresK ;s =|V|.

Output: Partition the vertices intk subsetd/y,,Vk, where thd'" subseV; contains at

mosts vertices and the total weight of the self edges is maximized.

2.2 Previous work

We now present some of the previous works related to the nubdefined in Table.2

and the problem defined in sectiori2

2.2.1 Maxk-cut

Sahniet al. [41] give a 1/2 approximation algorithm for the max cut problem. Goemans
et al. [22] give a 087856 approximation algorithm for the max cut problem useqi

definite programming. Goemamsal. [23] give a 083601 approximation algorithm for

Table 2.1: Some patrtitioning problems

Problem Additional Additional Objective
Name inputs Constraint function
Capacitated | Capacities ok subsets| Capacity constraint Maximize the
max k-cut S,...,% for each subset and weight of the

K s=|V]| cross edges

Min Minimize the

k-cut cross edges

Capacitated | Capacities ok subsets| Capacity constraint Minimize the

min k-cut S,...,% for each subset and weight of the

K s=|V]| cross edges

Multiway A set of terminals, Each subset Minimize the

cut t1,..,tk eV contains exactly | weight of the

one terminal cross edges

Max Maximize the

k-uncut weight of the
self edges

Capacitated | Capacities ok subsets| Capacity constraint Maximize the

max k-uncut S,...,S for each subset and weight of the
K s=|V]| self edges

Multiway A set of terminals, Each subset Maximize the

uncut t1,..,tk eV contains exactly | weight of the
one terminal self edges

10

: (23—) 4
g g i € €
; 7 g

M EM\‘jM

Local Solution

MM

Optimal Solution

Figure 2.1: Example Graph

the max 3-cut problem (same bounds as in de Kétik. [13]). Friezeet al. [17] obtain a
solution for the maxk-cut problem with expected value no smaller thoar (2logk/k?).
Kannet al. [30] show that the best possible performance ratio that eambbained by any
algorithm for the maxk-cut problem is - 1/(34k) unless® = NP. Hajirasoulihat al. [27]
give a simple local search approximation algorithm thatrgogees a + 1/k performance
ratio. In this local search algorithm they pick any verteonfrany subset and move it to
another subset in the patrtition if it can improve the weidtthe cross edges after moving

the vertex and continue this step until there is no such xerte

2.2.2 Capacitated max-cut

Feigeet al. [14] give an approximation algorithm for unequal capasitiéth a lower bound
of 1/2+¢ whenk = 2, whereg is a universal constant. Andersson [4] describes an algo-

rithm that obtains a & 1/k+ Q(1/k®) performance guarantee for equal capacities. Ageev

11

et al. [2] consider a generalization of capacitated max k-cut anel @ 1/2 approximation
algorithm for the maxk-cut problem for general hypergraphs with fixed, possibffedent,
subset sizes. Ageex al. [1] give a 1/2 approximation algorithm for the capacitated max-
2-cut problem. In both cases a randomized rounding teclerikgown as pipage-rounding
is used. Gauet al. [20] give a local search algorithm for the uniform capaeithtnaxk-cut

problem and obtained a-11/k performance guarantee.

2.2.3 Mink-cut

We can solve the min cut problem using a standard network flgarithm [18] in polyno-
mial time. The problem of finding a mik-cut is polynomial time solvable for any fixdd

though it is NP-hard ik is a part of the input [43].

There is a 2- 2/k approximation algorithm due to Saranal. [42] based on Gomory-Hu
trees [25]. Boykowt al. [7] give a 2-approximation algorithm for the miacut problem

using a local search based approach.

2.2.4 Capacitated mink-cut

The capacitated mik-cut problem is NP-complete [19], even fk= 2. To the best of
our knowledge there is no known approximation algorithmtfer capacitated mik-cut

problem.

We use the technique from Gaatr al. [20] to approximate the capacitated nircut
problem. In a single iteration we pick any two vertices froiffedlent subsets in the partition
and swap the vertices between the subsets if that decrdesesight of the cross edges,

and repeat until no such pair exists.

But unfortunately for this algorithm there exists an inniamily of graphs (Figure .2)

with a bad local optimum. For the example in Figurd & we start the initial random

12

partition (for capacitated min 2-cut) as in [FigurelZlocal solution)] then we can not
perform any swapping as there is no pair of vertices for winetcan increase the weight
of the self edges by swapping the vertices. So this is a Iq@ahoam for this example and
the value of the local optimum i\ The optimal solution for this instance is fFigure

2.1 (optimal solution)] where is a small positive number. So the performance ratio of this

approximation algorithm for mik-cut is arbitrarily bad.

2.2.5 Multiway cut

There is a 2- 2/k approximation algorithm for the multiway cut problem duetalhous
et al. [10]. They compute a minimum weight isolating cut caligdor eachi = 1,...,kand
then discard the heaviest of these cuts to gekitt.

2.2.6 Maxk-uncut

There is no known approximation algorithm for the nkaxncut problem to the best of our
knowledge.

2.2.7 Capacitated maxk-uncut problem

There is no previously known approximation algorithm in likerature for this problem.

2.2.8 Multiway uncut

Langberget al. [36] consider the multiway uncut problem and give @385 approximation
algorithm. They use linear programming relaxation and eamded rounding to design the

algorithm.

13

2.3 Relationship between mirk-cut and maxk-uncut

Theoretically, the mirk-cut and maxk-uncut problems are related. In the nkitut prob-
lem, our task is to partitioW into k subsets so that we can minimize the total weight of
the cross edges. On the other hand, in ikaxcut problem we have to maximize the total

weight of the self edges.
Given a partition, every edge & is either a self edge or a cross edge.

If we denote the total weight of the edged/dsthe total weight of the cross edgesand

the total weight of the self edges &shen the following holds:

S=w-C

So we can say that if we can minimize the total weight of thesgredges then we can
maximize the total weight of the self edges. From an optiroaltgon for the mink-cut
problem we can get the optimal solution for the nkaxncut problem and this holds true for
the capacitated version too. However this relationshipsam extend to the approximate
solutions,i.e a 3 approximate solution for the mik-cut does not imply 8 approximate
solution for max k-uncut. We know that both the nkitut and the mak-uncut problems
areNP-Complete so we can only expect approximation algorithmshese problems but
the approximation bound given by an approximation algaritbr the mink-cut problem
might not give the same approximation bound for the rkamcut problem. Suppose we
have a%-approximation algorithm for the mik-cut problem and for a given graph the
optimal solution is half of the total weight of the edges tisahe total weight of the cross
edges in the optimal solution is half of the total weight of #dges. So the algorithm for
this particular graph might return the total weight as thégiveof the cross edges, as the

algorithm gives a}-approximation. The solution of the méoawncut problem will be 0 as

14

there will be no self edges, where as the optimal solutiohéataxk-unut has weight half

the total weight.

In the next chapter we examine two integer programs for thelknaut problem.

15

Chapter 3

Linear and Integer Linear Programming (ILP)

We describe linear programming and integer linear prograngiin sections 3 and 32 of
this chapter. In sections3and 34 we describe two integer linear programs for the capac-
itated maxk-uncut problem. In section.3 we describe the linear programming relaxations

and study the integrality gap in sectior63

3.1 Linear Programming

Linear programming has been widely used to develop appratm algorithms for differ-
ent optimization problems. We can formulate the optim@aproblem as an integer linear
program and then solve the linear programming relaxatibmally round the LP solution

to obtain an integral solution.

Alinear programis defined in terms of an objective function and a set of cairsls. The
objective function is a linear function of decision variables that are unknowd the set
of constraints consists of linear equalities and ineqgeaslitThe standard form of a linear

program is as follows [39]:

16

minimizecx
subject toAX = b

x>0

This is aminimization problem. We can also model a problem as a maximization problem.

The linear functiorcx is called theobjective function wherec andx are vectors.A is a
matrix of known coefficients anldis a vector. Thelecision variablesare represented using
vectorx = (X1,X2,..Xn). An assignment of values to the elements of veatsatisfying
the constraints is called faasible solution. A feasible solution with minimum objective
function value is called aoptimal solution for a minimization problem, and a feasible
solution with maximum objective function value is the opdireolution for a maximization

problem.

The simplex algorithm [11] is the most used algorithm to s@\inear program though it is
not a polynomial time algorithm in the worst case. Two othallypomial time algorithms

for linear programming are due to Khachiyan [34] and Karm#ka)].

3.2 Integer Linear Programming

In the linear programming the variables can take any realegllf we restrict the variables
to be integers then we call it anteger linear program. The following is the general form

of an integer linear program :

17

minimizecx
subject toAX = b

x>0

Note that variables i are restricted to take integer values. Typically branctiHaound

and cutting plane algorithms are used [39] to solve an imtigear program.

Branch-and-bound is an algorithmic technique to find théenagitsolution by keeping the
best solution found so far and uses it to prune the searcltespatypically enumerates

implicitly all the possible candidate solutions for a prexol.

Cutting plane algorithms can also be used to solve ILP. Nbynra cutting plane algo-
rithms we consider the linear programming relaxation offtablem. Linear programming
relaxation (ILP without the integer constraints) might rneturn an integral solution. So if
it does not return the integral solution we add a linear qanstthat does not exclude any
integer feasible points and we continue this step until weagentegral primal solution or
an unbounded dual solution. This linear constraint is daleutting plane or cut. Gomory
[24] developed a method to generate such cuts. Several migtdods for generating cuts
are known. See the excellent text by Wolsey and Nemhausgfdrd detailed discussion

of these techniques.

3.3 Integer Linear Program for Capacitated Max k-uncut Problem
We develop two integer linear programs for the capacitatadkyuncut problem.

18

Let G =(V, E) be an edge weighted, undirected graph. We are interestedriitioning
V into k subsetd/1, ..., Vk with associated capacities, . .., s and zik:ls- = |V|, so as to

maximize the total weight of the self edges among the sulos#tg the partition.

We introduce a @1 variablex,; for each vertexu € V and each subssf, which is set to 1
if uisin subseV;. Lety,, be another 01 variable for each edge,v) € E, and for each
subset; in the partition, which is set to 1 if botk,; andx,; are set to 1, that is both the
end points of an edge are in subSgtotherwise it is set to Ow(u,Vv) denotes the weight
of the edggu,v) and the objective is to maximizgk:lz(uvv)eE w(u,V)ywi. The ILP is as

follows:

k

maximizezi Z wW(U,V)Yuwi (3.1)
i=1(uv)eE
k
subject toy x,i = 1; for every vertexu e V. (3.2)
i=
Ywi < %(Xui +xi); for (u,v) € E andi € [1..K]. (3.3)
vaui <g;forie[1.K|. (3.4)
ue
Xi € {0,1}; Yue V andi € [1..K|. (3.5)
ywi € {0,1}; V(u,v) € E andi € [1..K]. (3.6)

The first constraint3.2) ensures that every vertex of the graph is in exactly one sirbse
the partition. The second constrai@3) enforcesy,, to be 1 if verticess andv are both
in subseV; (i.e. if (u,v) is a self edge) and 0 otherwise. The third constré3m) is the

capacity constraint.

19

3.4 Another ILP formulation

There is an IP formulation due to Calinesetal. [8] for the multiway cut problem. We

examine a similar formulation for our problem.

Letx, be a Q1 variable for each vertex< V and for each subsgt in the partition, which
is set to 1 if the vertex € V is in partitionV;. Another (1 variabley,,; is setto 1 if(u,v)
is a cross edge with eitherc V; orv € Vi and set to 0 if it is a self edge. Therefdg ; yui
returns 2 for every cross edge and O for every self edge ofdhéipns. dyy is set to 1, if

(u,v) is a self edge and set to 0, if it is a cross edge. The ILP is &sAfsl:

maximize Z w(u,V)dyy (3.7)
(uv)eE
k
subject toz xui = 1; for every vertexue V. (3.8)
|
Ywi > Xii — Xvi; for (u,v) € E and alli € [1..K]. (3.9
Ywi > Xvi — Xii; for (u,v) € E and alli € [1..K]. (3.10)
1 K
dy=1— éi;yu\,i; for (u,v) € E. (3.11)
Z/XUi <s;forie[1.K. (3.12)
uc
xu € {0,1}; YueV andi € [1..K]. (3.13)
ywi € {0,1}; V(u,v) € E andi € [1..K]. (3.14)
dw € {0,1}; V(u,v) € E (3.15)

20

3.5 Linear Programming Relaxation

We call the integer linear program without the integralionstraints, the linear program-

ming relaxation. So the linear program relaxation of an I&P i

minimizecx
subject toAX = b

X >0

3.6 Integrality Gap

The integrality gap is the ratio between the optimal solution to the linear paogming
relaxation and the optimal solution to the integer lineagoam (for a maximization prob-
lem).

Theorem 3.1 : For an arbitrary graph, the linear programming relaxatié the IP in
section 33 has the total number of edgis as the optimal solution for the unit weighted

case.

Proof: Consider a graplc = (V,E) and we want to partitiorV into k subsets while
maintaining the capacity constraints so as to maximize timber of self edges. Since
w(u,v) = 1; V (u,v) € E, the linear programming relaxation of the IP in sectio &8s

follows:

21

k
maximizeZ Z Vi (3.16)
i=1(uv)eE

i
k

subject tOZlX“i =1, for every vertexu € V. (3.17)

i=
1 .

Yui < 5 (i +%a); for (u,v) € E andi € [1..K]. (3.18)
Z/XUi <sg;forie[1.K|. (3.19)
ue
i <1;VueVandi e [1.K|. (3.20)
ywi <1;V (u,v) € E andi € [1..K]. (3.21)

Given a partition, consider a cross edgev) whereu € Vi andv € Vj; j # i. For this cross
edge seywi = 1/2 andyyj = 1/2 and for all othet, y,y = 0 wherei # j # 1. So for every
Cross edgg{‘zlyu\,i =1 and for every self edg@, v) we getywi = 1 whereuciandv e

and all otherj # i, ywj = 0.

Therefore, for any arbitrary graph the objective funct'@gl > (uv)eE Ywi = [E[.
O

Theorem 3.2 : For an arbitrary graph, the linear programming relaxatié the IP in
section 34 always returns the total number of ed¢fesas the optimal solution for the unit

weighted case.

Proof: The linear programming relaxation of the IP in sectiof 8 as follows:

22

maximize Z duv (3.22)

(uv)eE
k
subject toy x,i = 1; for every vertexu e V. (3.23)
i=
Ywi > Xui — Xvi; for (u,v) € E andi € [1..K]. (3.24)
Ywi > Xvi — Xui; for (u,v) € E andi € [1..K]. (3.25)
1 k
dy=1— éi;yu\,i; for (u,v) € E. (3.26)
;xui < s;forie[1.K|. (3.27)
ue
i <1;VueV andi € [1.K|. (3.28)
Ywi < 1;V (u,v) € E andi € [1..K]. (3.29)
dw <1;V(uv) €eE (3.30)

Consider a partition of the vertices. In this relaxationsubset; in the partition each
vertexuis assigned equally and fractionally with valgg As vertices are assigned equally
in each subsets 3g,; is O for each edgéu,v) and for each subs&t according to (24)
and (325) of the program. For this reasdp, is always 1 for any edg@u, v) according to
(3.26). SOy (uv)cE duw returns the total number of edgeky|) as the value of the objective
function for any arbitrary graph.

O

Theorem 3.3: The integrality gap of the linear programming relaxasiari the integer

programs of sections3and 34 is unbounded.

Proof: From Theorems .3 and 32 we know that both the linear programming relaxations

of the IP in sections.3 and 34 return the total number of edges as the optimal solution for

23

any arbitrary unit weighted graph. So for a complete graphritegrality gap is unbounded

as we now show.

Consider a complete graph akdsubsets in the partition of equal capacity. The optimal
I\

solution to the integer linear program has va(u?)k where [V|/k vertices are in each

subset. In a complete graph the number of edgé‘é’z‘i}which by the previous theorems is

the optimal solution to the LP relaxation.

The integrality gap is

—
<
~

V] (3.31)
(5)k
That is
V|—1)k
(RS o22)
So fork = % the integrality gap i$V| — 1.
0

The large integrality gap is indicative of the difficulty ib@ining a constant factor approx-
imation algorithm using LP based approaches including titregd dual schema. Please

refer to the excellent book by Vazirani [43] for the detailgpamal dual schema.

In the next chapter we discuss two local search algorithrdsoae recursive greedy algo-

rithm for the capacitated md&uncut problem.

24

Chapter 4

Approximation Algorithms

In the previous chapter we noted the difficulty in obtainingosstant factor approxima-
tion algorithm using linear programming. In this chapterinteoduce some algorithms to
approximate the capacitated mixincut problem. In section.2 we introduce the local
search and the recursive greedy methods. In sectibwd introduce and analyze one sim-
ple local search algorithm based on swapping. We descrithanlocal search algorithm
based on an ejection chain in sectia.4ln section 4 we present one recursive greedy
method to solve the capacitated maxncut problem and finally in section3iwe describe

and analyze a recursive greedy method to solve the problem.

4.1 Local Search and Recursive Greedy methods

4.1.1 Local Search

Normally in a combinatorial optimization problem we haveea af elementss, called the
ground set and our task is to arrange, group, order or select a subsétrokats fromS
such that it optimizes the given function [26]. Some of thassical optimization problems

include the traveling salesman problem, vertex cover gratdnd set cover problem.

Local search is a powerful technique to design approximation algorithnitshas been

widely used for different optimization problems. Local saexplores the space of all

25

possible solutions in a sequential manner until a locallyneg@ solution is found [28].
These types of algorithms start working from a candidatetsni and move to a neighbor-
ing solution for a suitably defined neighbor in the searclcepdNormally every solution
has more than one neighbor but the algorithm has to chooseeaigkbor to move to and
this move is influenced by the information given about theisoh in the neighborhood.
The main idea of local search is: given a solutidinom the set of candidate solutions for
a combinatorial problem, local search tries to improve thiee of the solution by making
local changes ta. Local change might be adding elements from the ground sédtidg
elements fronx, changing the ordering of elementsdror changing the way in which ele-
ments are grouped. If the solution improves after theseggmthen we get a new solution

X . We continue this step until no further improvement is plolesi

We can put a bound on the number of iterations for the locakbkealgorithm. Typically
a local search algorithm terminates when it finds a locallyno@l solution, that is when it
cannot improve the value of the solution any more, or if iteeeds the time bound specified

in the algorithm.

Local search algorithms have been successfully used feingpa large number of com-
binatorial problems like the traveling salesman, vertexecpjob scheduling etc. It has
also been successfully used for different graph partitigmroblems. Next we describe a

application in graph cuts.

Kernighanet al. [33] describe a local search algorithm for uniform graphtipaning. In
the uniform graph partitioning problem we are given an ede@tted graplG = (V,E)
and our task is to partition the vertices equally between $etsA and B such that the
total weight of the cross edges is minimized. It is an impadrtgpen problem to analyze
the performance ratio of this algorithm theoretically. ytshowed empirically that the

performance ratio of the algorithm is good.

26

4.1.2 Recursive Greedy method

Thegreedy approachis also a popular method to design approximation algoritfamgpti-
mization problems. The idea of the greedy approach is talboé solution incrementally.
It selects the best partial solution in each iteration basesbme simple criteria. If the par-
tial solutions are computed by recursive calls then we ta#ldursive greedy [26]. Often
a greedy approach does not give us the optimal solution lmanitbe used to get a good

approximation bound.

Greedy methods have been used successfully in differettigors like knapsack, job

scheduling, tree vertex splitting [43].

4.2 Local Search Algorithm

4.2.1 Definition of Capacitated Maxk-uncut problem

Given a non-negative edge weighted undirected gfaph (V,E), an integek andk ca-
pacitiessy, ..., %, Wherez};ls = |V|. Our goal is to partition the vertices inkosubsets
Vi,....,Vi, where the" subsed; contains at moss vertices and the total weight of the
self edges is maximized. Without loss of generality we asstiratG is complete, missing

edges inG can be considered as edges with weight 0.

4.2.2 The Swap Algorithm

Letw(u,v) denote the weight of the edge, v) € E anddeg(u, Vi) = ¥ (yv)cE vev; v-£uW(U, V)

denote the sum of the weights of the edges from a vertexthe vertices in séf;.

We start by partitioning the vertices inksetsVi,. . . Vi, arbitrarily assigning; vertices to

setV;, foralli=1,... k.

27

In the algorithm we repeatedly determine a pair of verticesV; and ve Vj, i # |, for

which

deg(u,Vi) +deg(v,Vj) < deg(u,V;) +deg(v, Vi) — 2w(u, V) (4.1)

If such a pair of vertices exists we reassign veddr Vj, and vertexs to V. We need to
deduct 2v(u, V) from the right hand side of () because the edge betwaeandv before
the swapping still remains a cross edge after swapping aisdcunted twice, once for

deg(u,V;) and a second time fateg(v,V;).

Upon termination of the algorithm, the following equatioolds for all pairsu € V; and

veVjandalli, j € [1..K].

deg(u,Vi) +deg(v,Vj) > deg(u,Vj) +deg(v,V;) —2w(u,v), for allu € V; and ve V; (4.2)
Please see sectionl5l for the runtime analysis of this algorithm.

4.2.3 Approximation Algorithm

In the following we analyze the worst case performance o$thap algorithm for alk > 2.

Theorem 4.1: The solution obtained using the swap algorithm has a vabusmaller than
Wll)ﬂ of the optimal solution value whefeis the number of subsets in the partition and
d is the ratio between the size of the largest and smallesesulbysthe partition, assuming

that the size of the smallest subset grows with the size ofithgh.

Proof: Let us first consider the case &£ 2) two subset¥; andV; in the partition, each

having the same sizes (capacities).

28

Upon termination of the algorithm the following conditionlts:

deg(u, V1) + deg(v,V2) > deg(u, Vo) +deg(v, V1) — 2w(u, V), for all u € V3 andv € V,
(4.3)

From the above equation, to get an upper bound on the totghivef all cross edges

(u,v) € E,u€Vq andv €V, we consider a perfect matching) between the two partitions.

Summing (43) over all the edges in the perfect matchMgve get

2S> 2C — Wy (4.4)

WhereSis the sum of the weights of the self edg€ss the sum of the weights of the cross
edges anll\y, is the minimum weight of perfect matching betwaérandVs.
We note that every self edge and cross edge is counted oneadhbrof its end points (a

total of twice).

The minimum weight perfect matching over all the matchinysusd be less than or equal
to the average of all the perfect matchings. If the total nends vertices is 8 and each
subset in the partition containssertices then the weight of the minimum perfect matching
Wu <C(n—1)!/n! <C/nwhereC is the weight of all the cross edges amids the total
number of perfect matchings over two subsets. We can nowtesgquation (4) as

C

>C—— :
s>C- = (4.5)

That is

29

S

C

IA
Sl

The optimal solution may contain all the edges as the seké®dgo the performance ratio

of the algorithm for two partitions each having the same nemab vertices

S

p=> SiC (4.7)

> S (4.8)
S+ 1
1-1

> L (4.9)
=5 1
25

If nis large enough then we can say that the performance ratioMorsubsets in the

partition of equal size is- % Note that wherk = 2 and the subset sizes are of the same

size then the problem is NP-complete.

Now if the sizes of the subsets in the partition are not theestiman we use the following
procedure:

Procedure4.1:

2l — g

e Let|Vz| > |V1], without loss of generality assume th| divides|V,| and Ietw =

and let|Vy| =n.
e We mark all the vertices of, as 0.

¢ We consider the firg¥/;| vertices ol, that are marked as 0 and sum up the inequality

(4.3) for the minimum weight perfect matching that correspandbkese vertices and

all the vertices oV .

30

¢ We mark these vertices df that are considered in step 2 as 1.

e We continue step 2 until all the vertices\af are marked 1.

After completing the above stepsg, summing up (4) over all the minimum perfect
matchings we get
2dS +2S >2C—-2C/n (4.10)

where we denot&; as the weight of the self edges\éf andS; as the weight of the self
edges ol, andd is the ratio between the size ¥ andV;. Note thatd > 1 andn is the
total vertices of the smaller subset. Here we note that tlie@dges of the smaller subset

are counted @ times and the self edges in the larger partition are coumtaxt

Suppose the minimum weight perfect matchingsMyeMo, ...Mq andC4,Cy,Cq4 are the

corresponding weights then we can $gy= 21 1.+ %4,

Therefore we can write the above equation as

2d(S1+S) > 2C—2C/n (4.11)

As24(S +) > (2dS; +2S)
Let S + S = SwhereSis the total weight of the self edges over both the subsetisan t

partition. So we can write
2dS>2C(1—-1/n) (4.12)
We can write the performance ratio as

31

S
p=> SicC (4.13)
S
> (4.14)
S+
_1
>_— n_ (4.15)
= 1
d+1-+
If nis large then we can say that
1
p> dr1 (4.16)

We now consider the problem for genekalvhenk > 2.

We consider equation (#0) for all possible pairs of subsets in the partition. If wensup

the equation (4.0) over all the subsets then the self edges are coykted) times and
max{ |Vi | }

every cross edge is counted only twice. Therefore, if werassl= min{V[} andn is the
number of vertices in the smallest subset in the partition.

(k—=1)(2d§+2Sj) >2C—-2C/n (4.17)

d(k—1)S>C(1-1/n) (4.18)

s> C(1-1/n)

> D (4.19)

Sis the weight of the self edges returned by the algorithm andmimal solution can

32

contain all the edges as the self edges.

So the performance ratio is

> :
P=s+c (4.20)
S
> — (4.21)
St Sdl(k %1)
1-1
> —— (4.22)
1--+d(k—1)
Now if nis large then the performance ratio is
> 1 (4.23)
—dk-1)+1 '
0 1

Observation : The optimum solution of the capacitated miaxincut problem for unit

weighted version is the mifi[E|, $¥ ; (3) } where|E| denotes the total edges of the graph

ands is the capacity of subs#t.

Each subse¥; in the partition cannot contain more thé&}) edges ifs is the capacity of
the subse¥;. So the weight of the self edges in the graph is at rydst (3) edges. In the
theorem 41 we use total edgdE| as the optimal solution but for a dense gragth, (3)
might be less thafE|. In such cases we can uS&_, (3) as the optimal solution and as

5K (3) < |E| so we can get better performance ratio.

1l would like to thank Professor Ramesh Krishnamurti for estee discussion on this proof.

33

4.3 Ejection Chain Algorithm

This algorithm has been inspired by thection chain method that has been used suc-
cessfully for different optimization problems like traivej salesman, vehicle routing, crew
scheduling etc [21]. Ejection chains generate complex @amg@ moves. It generates a
sequence of interrelated moves, that is, in every move itctamge the states of one or
more elements. We refer to the excellent chapter by Abkuija [3] for the details of the

ejection chain method.

We perform a cyclic move of the vertices among the subsethanpartition if we can

increase the total weight of the self edges of the verticehisycyclic move.

This algorithm is similar to the algorithm due to Kernighatral. [33] for the uniform min

2-cut problem.

Kernighanet al. [33] use swapping of elements between the two segmdB. In their
approach they initially randomly assign elements betwaensiets maintaining the unifor-
mity constraint. In the first iteration we choose a pair ofred@tsa € A andb € B such that

if we swap these two vertices then we get the maximum incrieetbee weight of the self
edges. Let the gain lip. Then we find another pair of verticag € A\ a; andb; € A\ by
that gives us the maximum gain considering that gaib) is already swapped. In this
way we consider all the pairs of vertices from the two pamis and calculate the gains. If
the total number of vertices of the graph isthen we gefas,b;),....., (an,bn) pairs and
a list of gainsgy,gn for the corresponding pairs. L&(k) = zikzl gi. We then consider
k € [1..n] for which G(k) is maximum and if the maximum is less than or equal to O then
we stop the local search procedure, otherwise we swap thk fiesrs of elements and start

the procedure again.

The details of our ejection chain algorithm are describetiémnext section.

34

4.3.1 Ejection Algorithm

1. First we assume an order on the subsets in the partitigppdse we have five subsets

ranging from 1 to 5. We fix a random order of these subsets.rstaunce 23,1,4,5.

2. We then find the maximum gain from some of the forward cygigen this order.
We find the gain of a cycle by moving the vertices in the subsgtkcly that are in
that cycle. For example a cyd® = (a, b, c) consists of three vertices and the order
isae€ p3,be pi,ce p2. So we move vertem of subsetps to pi, vertexb from
p1 to p2 and vertexc from p, to pz, if we can improve the weight of the self edges
overall. We pick the vertex from each subset which gives asmlaximum gain in
the weight of the self edges. That is if we have sulpseind the next subset of the
cycle ispj then we picku € p; with max,(deg(u, pj;) —deg(u, pi)) to be in the cycle.
We consider cycles of length 2 4, ..k. A total of k cycles are considered for a given

order of subsets in the partition.

3. We consider the cycle that returns the maximum gain thahéscycle that give us
the maximum increase in the weight of self edges and we stefivertices among

the subsets according to the order, if the gain 8.

4. Repeat step 2 until the maximum gaind®.

Though we did not analyze the performance for this algortiteoretically, we empirically
study the algorithm for various sparse and dense graphshanelxperimental results are

discussed in chapter 5.

Note that the theoretical analysis of the performance fati@ similar algorithm; due to

Kernighan and Lin [33] for min cut is still an important openestion.

35

4.4 Recursive greedy algorithm

4.4.1 Greedy method for max2-uncut problem

First we consider the max 2-uncut problem and solve it usiggeady method. Let the
two subsets in the partition b4 andVs. Let V1| = mand|V2| = n—m. Now considemp

solutions wherg = n/m (without loss of generalityn dividesn).

Theorem 4.2: There exists a’%z approximation algorithm for the max 2-uncut problem

wherep = % and|Vz| > V4.

Proof: Consider a partition ofV | with p subsets. Obtain a locally optimal solution using
swap algorithm in section.2. We calculate the weight of the self edges consideviras a
single subset and the re$t (V) as the other subset in the partitidf.denotes the weight
of the self edges of the sub3gtandEg, specifies the weight of the cross edges betwaen
andVy, wherea # b. So the maximum among thepesolutions is at least the average of all

the solutions. Consider;\and the rest that return the total weight of self edges is

p
= Z\Ei + g Eap (4.24)
i= ab:a<b & ab #i

Next we use equation (24) to compute the average ovesolutions. Every edge iBg
wherea, b # i is counted twice as a cross edge onceMipand once fol, so the total

number of self edges is at least

p

>p) Ei+(p—2) % Eap (4.25)
i=1 ab: a<b, ba#i

36

So the performance ratio is

2
- SPEit % Sab: a<h, baiEab
Zipzl Ei+Yab: a<b, basiEab

(4.26)

Wherey;Ei + Yap: a<b & ab i Eab IS the total edges of the graph. So we can rewrite the

eguation as

(4.27)
0

This algorithm is effective for the case when the two subsetke partition are highly

unbalanced in size.

4.4.2 Recursive greedy method

Now we consider the general version of the capacitatedknamcut problem wherk > 2.
We recursively solve using the following procedure with= 2 (section 44.1) as a base

case. We assume th&t| < |Vo]... < |W/.
Recursive Greedy Algorithm

e We randomly assign vertices fsubsets in the partition and apply the swap algo-
rithm described in section.2.2 to solve a mayp-uncut problem where each subset

hasV, capacity anc = %

o We take a subs&t from p subsets in the partition and consider the rest of the subsets
as a single subset that maximizes the weight of the self edgegeen these two

subsets. The subsets afeandV \V,, so if E; is the weight of the self edges Wf

37

andE’ is the total weight of the self edges of the other subggtsthen we pick that
partition that maximize&;+a E wherea is the performance ratio for solving the

rest of the partition\{ \ ;).

e We recursively solve a majk — 1)-uncut problem over subseds, j # i. Base case
for this problem isk = 2 so we solvek = 2 problem by using the greedy method
described section.4.1 or any of the algorithms described in sectiorzdnd 43. In

the subproblem we have- 1 subsets and the value phas changed (in step 1).

Analysis of the recursive greedy algorithm

|V\{V1UV2U-~~UVi—1}‘J

Theorem 4.3: In general the performancefi :—11mp_72) wherep; = | Vi

and\Vl\ < |V2|... < |Vk‘.

Proof: Consider any'" solution given by, andV \ Vi. Note that we solve the sub problem

on the seV \ V, recursively. So the weight of the self edges in this soluison

Ei+a(E—E — Z Eij) (4.28)
i,j i<y, j,i#i

WhereE; is the weight of the self edges dfandE;; is the weight of the cross edges from

Vi to edges iVj;.

Note that in the sub problem we are guaranteed taoggnes of the total weight of all
the edges in the subproblem as the weight of the self edgeaft&osumming the above

equation over ali we get

p p
Ei+a(p-E-Y E- Eij) (4.29)
i; i; i,j:i<zj, g

\4

38

Let Zip:1 Ei = X andy; j. Eij = 2Y whereY is the weight of all the cross edges acr¥ss
andV \ V..

X +a[p(X +Y) =X —2Y] (4.30)

As the maximum weight of self edges over all the possitdelutions is at least the average.

So the maximum number of self edges is

S X+a[p(X+Y)—-X-2Y|
B Y

(4.31)

we can rewrite this as

> X(1+Zp—a) +YCX([ZF))—2)

(4.32)

The optimal solution can contain almost all the edges, th#te weight is atmost +Y

and if we consider’m‘% =a and&p’z) = b then we can write the solution provided by

this algorithm agX + bY

so the performance ratio is

axX+ by

Y (4.33)

> min(a,b) (4.34)

That is

39

perin[%+u(1—%),u(1—%)] 20((1—%) (4.35)

In general the bound ig (-2

In the next chapter we discuss the experimental resultseddldgorithms.

40

Chapter 5

Experiments and Results

In this chapter we present the experimental evaluationhefalgorithms for the unit
weighted version of the capacitated miaxncut problem. In section.b we discuss the
implementation details of the algorithms, in sectiof #we briefly describe the data sets

and finally in section 3 we present the experimental results.

5.1 Implementation

We use Python .3 for implementing the three algorithms described in chaptdll exper-
iments presented in this chapter were conducted o &Riz Pentium 4, 64 bit processor

with 1 GB RAM in the Windows XP environment.
The basic data structures that we use are lists and liststettd implement the algorithms.

e We maintain a list calleddjacent to store the adjacency list of a verteadjacent[i]

contains the list of vertices that are adjacent to the vertex

e We use a list of lists calledraph to store the subsets in the partitignaph[k| stores

the list of vertices that are in sub3t

e We use another list of lists callegighbour. neighbour [i][k] denotes the list of ver-

tices that are in subs¥f and adjacent to vertex

41

The basic functions that are used by the algorithms are:

o degree(u,V;): Itis used to compute the total weight of the edges from aexerbn to
subsel. It takes a vertexi and a subset; as the arguments and returns the weight
of the edges fronn incident on the vertices M. It usesneighbour[u][Vi] to calculate

the weights.

e update neighbour (adjacent[u],V;,Vj): If we swap the vertices then we update the
neighbour list of those vertices that are adjacent to theppes vertices. If one of
the swap vertices ig and has been moved frovh to V;j then this function is called
to update the neighbour list of those vertices that are adjato u. This greatly

improves the running time of the degree function.

5.1.1 Swap Algorithm

In theswap algorithmwe first randomly assign vertices amowig\Vo, . . ., Vi subsets.
For each pair of verticefu,v) whereu € V; andv € Vj andi # j we use the swap
step (described in page 27). In each local step wedageee(u,V,) to calculate the

degree and after each swap we cgdtlate neighbour (adjacent[u] ,V;,Vj) function.
Analysis:

For the general case with positive integral weights theimmtainalysis is as follows:
We denotene as the weight of an edgec E andy o We =W. Theswap algorithm
can start with a total weight of the self edges as 0 and caaiédor every pair of ver-
tices of every pair of subsets in the partition, and in eafatton it will improve the
weight of the sum of the self edge by at least 1, so the runimmg of the algorithm
is O(k? - n?-W) wherek is the number of subsets ands the number of vertices in

the graph.

42

5.1.2 Recursive Greedy method

Analysis:

Recursive greedy method recursively callsswap algorithm for k— 1 times wherek
is the total number of partitions. Recall from the anaysiseglirsive greedyV;| <

IV2|... < |Vk|. In the recursive greedy method we initially get p solutions forV

— Vi

= g+ In this step the time taken &(p2-n2.W). Furthermore there afle

wherep
recursive calls so the total time taken is alm@gk- p?- n?-W) This analysis applies

to the general case with positive integral edge weight.

The program designed for tisa/ap algorithm andrecursive greedy method contains

almost 1100 lines of code.

5.1.3 Ejection Algorithm

In thegjection algorithmwe assume a random order of the partitions and calculate the
degree of the vertices that are in a cycle in that order. Weleggree(u, V) to calculate

the degree. We then swap the vertices of that cycle that giséise maximum gain

(if positive) and call theuspdate neighbour (adjacent[u] ,V;,Vj) function to update the

neighbour lists of the vertices that are adjacent to the pa@pertices.
Analysis:

All the k cycles for a fixed ordering of subsets can be discovere@(im’) time
therefore the running time B(n®W). If we choosee random ordering of the subsets

then the running time i©(cn?W).

43

Remarks: The algorithms run in pseudo polynomial time in the geneaak and for
the unit weighted case run in polynomial time. For the gensase we can get an
(1—¢) approximate solution in time that is a polynomial in the inpize and 1e
(see [38])).

The implementation of thgection algorithm contains 700 lines of code, with code

reuse from the above two algorithms.

5.2 Data Sets

We evaluated the algorithms on the following data sets.

e Protein interaction database: The protein protein interaction database contains the

data about the protein protein interaction.

Each row of the databases contains the information aboysdheof proteins (with
protein id) that interacts. We consider every protein as a vertex amndapwedge
between two proteins if they interact. We set the weight efeédge to 1. All the

non-edges are considered as edges with weight O.

e Random Graph: We construct some random sparse and dense graphs for-experi

ments. The procedure to construct the random graphs isibleddn section 53.2.

5.3 Experimental results

5.3.1 Protein Interaction Database

We ran the algorithms described in chapter 4 on the two prgt@itein interaction databases
from [29]. First considek = 2, ..,20 subsets of equal size. Initially we randomly partition
the graph intk subsets and run thevap, gjection andgreedy algorithms on these graphs

and do this for 30 random start points. The first databaseistsnsf 1476 vertices and

44

Swap =
— — Ejection Chain
— - = Recursive Greedy

Figure 5.1: Comparison of the performance ratio of the ailgmrs on database 1 (uniform
sizes)

3026 edges and the second database contains 2633 vertic89&hedges. The number

of subsets in the partitiork), average performance over 30 runs and the average time the
algorithms take to obtain the solution is illustrated inlésth 1 and 52. The optimal solu-

tion is the minimum of E| and s , (3) whereE is the total number of edges of the graph

ands is the size oV,.

The performance ratio and the time taken by the algorithnthemraphs arising from the

protein interaction database is described in tablésbd 52.

Figure 51 and Figure B depict partition size vs. the performance ratio of the algms

graphically.

In figures 52 and 54 we compare the time taken by the algorithms to solve thel@nob
The experimental results on both databases of proteiniproteeraction show that the

performance of the swap algorithm and the recursive greeethad is almost the same.

45

Table 5.1: Experimental results on database 1 (unifornskize

Swap Swap Ejection | Ejection R.G R.G
algorithm | algorithm | algorithm | algorithm | algorithm| algo

Kk (perfo (time (perfo (time (Perfor | -rithm
-rmance | insec) | -rmance| insec) -mance | (time
ratio) ratio) ratio) in sec)

2 0.90 42.26 0.84 96.55 0.90 78.81
3 0.85 63.90 0.79 271.03 0.85 176.26
4 0.83 67.31 0.74 417.14 0.83 228.93
5 0.83 81.29 0.69 219.71 0.84 278.42
6 0.81 81.79 0.68 278.35 0.80 386.73
7 0.80 90.55 0.63 380.84 0.78 389.53
8 0.79 112.20 0.62 483.98 0.78 421.43
9 0.78 84.29 0.60 478.35 0.77 480.04
10 0.78 81.17 0.59 586.27 0.75 538.03
11 0.77 90.30 0.57 702.16 0.76 567.19
12 0.76 78.16 0.56 955.53 0.75 689.17
13 0.76 85.99 0.57 1003.95 0.73 709.19
14 0.76 86.20 0.57 1215.43 0.74 783.55
15 0.75 87.36 0.54 884.068 0.77 870.78
16 0.75 88.01 0.51 862.821 0.74 962.48
17 0.74 89.98 0.53 1073.03 0.72 1001.64
18 0.74 85.93 0.50 748.00 0.74 998.76
19 0.73 86.92 0.49 784.70 0.73 1032.91
20 0.73 89.30 0.47 787.47 0.71 1023.64

46

1400 T T T

1200} A 7

1000 — Y

800 Ea \ -

B Swap
s00f A — — Ejsction Chain -
- — - — - Recursive Greedy

Time (in sec)
.
\
4

400 N P -

mw o
,/>

2 4 B g 10 12 14 18 18 20

Figure 5.2: Comparison of the timing of the algorithms oratlase 1 (uniform sizes)

Therecursive greedy method works the same as thevap algorithm but it uses theswap
algorithm k — 1 times so it takes much more time than gwap algorithm. On the other
hand thegjection algorithmtakes much more time than te&ap algorithmand therecur-
sive greedy method as it considers longer cycles than the other two algorithmessingle
step of iteration and it has worse performance ratio thaotiner two algorithms because it
works with a single fixed random ordering of the subsets irptrétion. If we can consider
all the possible orderings of the subsets then we can imgh&v/performance ratio for the
algorithm but it takes much more time. These results withexawderings are reported for

sparse graphs later (Figure®and 510).

Now we consider the unbalanced subsets in the partitiorhdtitst database we consider
two subsets; the size of the first subset is 50 and the sectisétstontains the rest of the
vertices of the graph. We then run the algorithms on thessetab We do this similarly

for the cases where the size of the first subsets are fromil$500..., 700 and the second

47

Table 5.2: Experimental results on database 2 (unifornskize

Swap Swap Ejection | Ejection R.G R.G
algorithm | algorithm | algorithm | algorithm | algorithm| algo

Kk (perfo (time (perfo (time (Perfor | -rithm
-rmance | insec) | -rmance| insec) -mance | (time
ratio) ratio) ratio) in sec)

2 0.85 109.70 0.84 602.55 0.85 228.97
3 0.79 177.73 0.72 939.42 0.77 467.31
4 0.75 202.50 0.63 1615.80 0.73 637.51
5 0.72 205.98 0.58 2100.87 0.71 786.28
6 0.71 360.52 0.56 2715.37 0.69 966.98
7 0.69 353.85 0.54 2902.63 0.68 1130.26
8 0.67 375.87 0.52 1267.31 0.68 1299.98
9 0.67 394.38 0.51 1420.39 0.66 1360.07
10 0.65 326.32 0.48 2283.90 0.65 1593.14
11 0.65 221.73 0.47 1638.57 0.63 1934.36
12 0.64 230.38 0.47 1818.85 0.62 2080.15
13 0.63 223.38 0.47 1975.25 0.62 2129.36
14 0.63 231.90 0.43 2255.33 0.62 2211.85
15 0.63 299.26 0.44 2046.45 0.62 2295.36
16 0.62 425.79 0.42 2329.97 0.60 2480.59
17 0.62 342.24 0.44 3072.12 0.59 2660.97
18 0.61 342.06 0.41 2737.05 0.60 2915.62
19 0.61 407.41 0.43 3099.41 0.60 3237.95
20 0.60 249.45 0.42 3022.26 0.60 3479.29

48

ns T T T T T T T T

0.85 -
b
s J'* ‘\ Swap]
075l \ A — — Ejection Chain i
' ‘\ - — - — Recursive Greedy
o
T 07}
o
o
S 065¢
=
=
t 0Gf
o
054
05
0451 . 4
o T T
04 1 1 1 1 1 1 1 1
4 =3 8 10 12 14 1B 18 20

Subset Size

Figure 5.3: Comparison of the performance ratio of the dilgmrs on database 2 (uniform
sizes)

SEDD T T T T T T T T]
7
0m0 | T
-~ \’V/
I L

2500 ;o o .
T 2000f / | Ao]
R
i ,/ \\ ;{ /’ b Swap
£ 1600} A — — Ejection Chain .
. f L 7 — - — - Recursive Greedy

/ -
1000 - e
S
; -~
D 1 1 1 1 1 1 1 1
2 4 & g 1a 12 14 18 18 20

Subset Size

Figure 5.4: Comparison of the timing of the algorithms oratlase 2 (uniform sizes)

49

Table 5.3: Experimental results on database 1 (two unbetbsigbsets)

Size Swap Swap Ejection | Ejection R.G R.G
of algorithm| algorithm | algorithm | algorithm | algorithm| algo
the (perfo (time (perfo (time (Perfor | -rithm
first | -rmance | insec) | -rmance | insec) -mance | (time
subset ratio) ratio) ratio) in sec)
50 0.99 3.71 0.99 20.37 0.96 73.86
100 0.99 7.12 0.98 23.35 0.95 88.66
150 0.98 10.44 0.98 35.34 0.92 68.57
200 0.98 3.55 0.97 45.2 0.91 64.92
250 0.97 16.32 0.96 56.27 0.91 66.75
300 0.97 23.76 0.95 73.89 0.91 65.14
350 0.97 32.54 0.95 86.51 0.90 62.25
400 0.96 29.97 0.91 70.36 0.89 58.90
450 0.95 33.25 0.92 111.58 0.89 58.32
500 0.93 35.90 0.92 122.73 0.90 55.04
550 0.92 37.47 0.87 124.39 0.89 51.78
600 0.91 46.89 0.90 137.08 0.89 48.70
650 0.90 53.44 0.91 145.7 0.89 45.84
700 0.90 52.31 0.89 163.65 0.90 39.54

subsets contains the remaining vertices of the graphs.

Table 53 shows the performance ratio and the time taken by the #hgosion these in-
stances.

From these experiments we can observe that the performatioeof the algorithms are
more or less the same. Here #jection algorithm shows performance close to the other
two algorithms because there is only one order for the twttjmars, so it considers all the

cycles of the two patrtitions.

Similarly we do some experiments on the second databaséamedult of the experiments

is described in Table.8

We now consider three unbalanced subsets, where we fix thebihe first subset and

change the size of the second subset. For both databasezetioé the first subset is 100.

50

Sweap
095+ .
— — Ejection Chain
. — - — -Recursive Greedy

09 - .
= S N
E .
O 0o &
o 0
= i
s .
c
S 0ozt b
= .
il -
ol — - -

i
o8t
. P ~ \‘?);// >(\
n.ea | Yy .
e
DBE 1 1 1 1 1 1
o 100 200 300 400 a00 500 700

Size of the first subset

Figure 5.5: Comparison of the performance ratio of the dtigors on unbalanced subsets
of database 1

180 T T T T T T

Sweap
160+ 4

— — Ejection Chain /
140+ — - — Recursive Greedy e ~

120f - |

100 / .

Time {in sec)

B0

ant

0

D 1 1 1 1 1 1
0 100 200 300 400 500 GO0 700
Size of the first subset

Figure 5.6: Comparison of the timing of the algorithms onalahced subsets of database
1

51

Table 5.4: Experimental results on database 2 (two unbetbsigbsets)

Size Swap Swap Ejection | Ejection R.G R.G
of algorithm| algorithm | algorithm | algorithm | algorithm| algo
the (perfo (time (perfo (time (Perfor | -rithm
first | -rmance| insec) | -rmance| insec) -mance | (time
subset ratio) ratio) ratio) in sec)
50 0.99 7.23 0.99 56.33 0.94 200.86
100 0.98 12.46 0.99 78.12 0.95 197.66
150 0.97 17.98 0.98 115.36 0.92 194.26
200 0.96 24.49 0.97 144.18 0.91 185.66
250 0.96 31.74 0.96 186.57 0.91 176.32
300 0.95 37.11 0.95 228.1 0.90 183.49
350 0.94 40.57 0.94 285.21 0.89 191.64
400 0.93 58.69 0.94 348.19 0.87 201.38
450 0.92 56.13 0.92 341.28 0.85 176.33
500 0.92 74.87 0.92 350.77 0.85 169.41
550 0.91 103.29 0.90 362.88 0.84 173.57
600 0.91 109.35 0.89 285.45 0.83 185.37
650 0.90 108.42 0.90 533.03 0.81 180.55
700 0.90 100.21 0.89 563.62 0.83 187.67
750 0.89 96.411 0.87 468.2 0.81 176.75
800 0.89 116.04 0.87 535.93 0.81 175.56
850 0.88 115.41 0.86 616.24 0.82 168.14
900 0.88 117.10 0.87 657.46 0.82 161.85
950 0.87 124.90 0.85 710.47 0.81 167.84
1000 0.87 136.39 0.86 903.54 0.81 210.31
1050 0.86 128.94 0.85 777.28 0.81 300.28
1100 0.86 148.18 0.86 981.68 0.82 212.78
1150 0.86 145.64 0.85 885.35 0.83 136.09
1200 0.85 161.39 0.84 1094.96 0.83 139.22
1250 0.86 163.58 0.84 400.83 0.84 113.94
1300 0.85 136.56 0.84 945.95 0.83 100.41

52

1NN .

Swrap
0.96 \

3 — — Ejection Chain B
— - — - Recursive Greedy

no4p <
ooz |
0sf

0.88

Perfarmance Ratio

0.86

0.84

082

DB 1 1 1 1 1 1
a 200 400 600 500 1000 1200 1400

Size of the first subset

Figure 5.7: Comparison of the performance ratio of the atlgors on two unbalanced
subsets of database 2

1200 T . ' : ' '
Swap f'l
1000 F — — Ejection Chain I f l i
— - — -Recursive Greedy / ,,‘ \ l J
go0 b / \f L1
B y N
-j_En, BO0 - 4 | i
: PN J |/
£ j v I
400 i T i
S A" i
QDD-—-—-}__/_.{{-""M_.L,—'—-_"—'% 2/') i
—~
o
I:IEI 2&0 4EIIIZI EIiD EHEIID 1 DIEIIZI 1 2:30 1400

Size of the first subset

Figure 5.8: Comparison of the timing of the algorithms on twwalanced subsets of
database 2

53

Table 5.5: Experimental results on database 1 (three umiedissubsets)

Size Swap Swap Ejection | Ejection R.G R.G
of algorithm| algorithm | algorithm| algorithm | algorithm| algo
the (perfo (time (perfo (time (Perfor | -rithm
second| -rmance | insec) | -rmance | insec) -mance | (time
subset| ratio) ratio) ratio) in sec)
100 0.98 18.44 0.95 57.54 0.90 151.5
200 0.97 35.73 0.93 79.41 0.88 125.4
300 0.96 49.69 0.90 114.51 0.87 125.5
400 0.94 58.16 0.86 135.16 0.86 122.7
500 0.93 64.68 0.75 152.59 0.86 121.3
600 0.90 54.80 0.88 184.32 0.86 107.7
700 0.88 54.24 0.88 193.79 0.87 98.75
800 0.90 51.25 0.88 195.76 0.89 99.34
900 0.92 46.45 0.77 157.84 0.91 94.19
1000 0.94 40.97 0.89 114.15 0.92 105.26
1100 0.95 29.24 0.93 90.24 0.93 101.93
1200 0.96 22.89 0.95 74.81 0.94 101.73
1300 0.98 13.34 0.95 42.92 0.95 100.71

5.3.2 Randomly Generated Graphs

a random graph using the following steps:

The results of the experiments are described in tabesaad 56.

recursive greedy method take much more time than ttse/ap algorithm.

1. We specified the total number of vertic@g|j of the graph.

From the tables 5 and 56 we find that the performance ratio of the algorithms are al-

most same for the different three subsets in the partitiarii@ejection algorithmand the

We also generate some random graphs and run experimentesenghaphs. We generate

2. We makgV|/5 subsets in the partition each subset contains 5 vertices.

3. pr is the probability of an edge being present.

54

Swrap
— — Ejection Chain
095+ . — - — - Recursive Greedy J
AN
2 N
g 0or . 4
2 . E /
: SN T
£ 086} \ / v |
) y \
- \
08 \,L Ji \\ i‘ 4
\/ y
!
1 1 1lr 1 1 1 1
0.7a
a 200 400 GO0 500 1000 1200 1400

Size of the second subset

Figure 5.9: Comparison of the performance ratio of the algars on three unbalanced
subsets of database 1

200 T T T T T T

Swap

/ — — Ejection Chain

— - — -Recursive Greedy

160 | S/ T
A
4op 4 \

120 -/ T \ 1
100} / R e

80 / N 4
gl Ay _

180

Time {in sec)

201 B

D 1 1 1 1 1 1
0 200 400 GO0 800 1000 1200 1400
Size of the second subset

Figure 5.10: Comparison of the timing of the algorithms ore¢hunbalanced subsets of
database 1

55

Table 5.6: Experimental results on database 2 (three umtxadigpartitions)

Size Swap Swap Ejection | Ejection R.G R.G

of algorithm | algorithm | algorithm | algorithm | algorithm| algo

the (perfo (time (perfo (time (Perfor -rithm
second -rmance| insec) | -rmance | insec) -mance | (time

subset| ratio) ratio) ratio) in sec)
100 0.96 43.14 0.97 177.57 0.92 922.38
200 0.94 73.84 0.96 204.47 0.89 1041.43
300 0.92 90.49 0.94 315.04 0.84 1076.45
400 0.90 106.35 0.92 407.06 0.79 895.85
500 0.89 118.92 0.89 369.02 0.80 773.42
600 0.87 133.68 0.89 467.71 0.82 1032.39
700 0.88 146.02 0.85 667.41 0.78 917.57
800 0.87 155.72 0.84 723.0 0.80 727.77
900 0.85 162.89 0.85 678.41 0.77 842.39
1000 0.84 173.24 0.85 791.11 0.74 831.91
1100 0.84 177.23 0.76 749.86 0.78 608.84
1200 0.83 184.02 0.86 766.89 0.77 597.7
1300 0.82 181.08 0.76 743.94 0.81 662.59
1400 0.80 177.54 0.84 980.23 0.78 577.65
1500 0.81 169.95 0.82 812.81 0.81 719.07
1600 0.82 164.68 0.83 629.38 0.83 580.59
1700 0.83 157.89 0.85 531.86 0.82 717.83
1800 0.85 147.32 0.85 521.76 0.85 715.41
1900 0.87 134.7 0.89 428.32 0.87 535.82
2000 0.88 86.78 0.90 358.43 0.88 691.2
2100 0.90 109.3 0.92 440.43 0.90 268.23
2200 0.93 68.55 0.92 319.24 0.91 324.53
2300 0.94 57.29 0.94 267.09 0.89 258.5
2400 0.95 62.92 0.96 166.80 0.89 239.17
2500 0.97 34.91 0.98 126.31 0.96 293.12

56

~ Swap 7

0951 \ — — Ejection Chain A

— - — Recursive Greedy f

N\ \ / !

= 09t]
[l
o
o
(&)

S paest §
£
o
=
o

“ onat .

075k -

D? 1 1 1 1
0 500 1000 1500 2000 2500

Size of the second subset

Figure 5.11: Comparison of the performance ratio of therilgms on three unbalanced
subsets of database 2

1200
Sweap
; ” N — — Ejection Chain
fmooF 'y 4 | =~ — Recursive Greedy | |
£ Y f
Y | X \
800 NSO /
I ' W - i |
3 p N ANV
w . - oy, Y)
E s} WA S]
2 / SN
: / N
aoo} ~ AN SN y
/ AN
J/ N
00 - \
m
D 1 1 1 1
0 500 1000 1500 2000 2500

Size of the second subset

Figure 5.12: Comparison of the timing of the algorithms ore¢hunbalanced subsets of
database 2

57

Table 5.7: Experiments on random dense graphs

Swap Swap Ejection | Ejection R.G R.G
Total | Total | algorithm| algorithm| algorithm | algorithm | algorithm| algo
Edges| Vertices| (perfo (time (perfo (time (Perfor | -rithm

-rmance | insec) | -rmance | insec) -mance | (time

ratio) ratio) ratio) in sec)
596 50 0.92 0.11 0.81 0.12 0.91 0.46
2447 100 0.97 0.46 0.85 1.43 0.95 3.31
5628 150 0.99 1.29 0.85 5.05 0.97 12.08
9984 200 0.99 2.34 0.86 16.77 0.97 28.87
15589 250 0.99 3.31 0.85 37.62 0.98 55.02
22516 300 0.99 4.49 0.86 76.99 0.98 98.24
30553 350 0.99 6.06 0.86 147.80 0.99 167.17
40060 400 0.99 10.28 0.85 216.23 0.98 255.14
50649 450 0.99 10.40 0.86 419.12 0.99 367.06
62726 500 0.99 12.70 0.86 546.46 0.99 531.08

4. For every pair of vertices we generate a random numbestween O to 1. If is less

than or equal tgr then we put an unit weighted edge between these two vertices.

The average performance ratio of the three algorithms fesé¢lrandom graphs with the
average time taken to get the optimal solution is describé@ble 57. Here we consider

pr = 0.5 for which the graph is dense.

Figures 55 and 56 illustrate the comparison of the performance and the tiftbeoalgo-

rithms.

It is no surprise that performance ratios of the algorithrescmiite good in this experiment
because as the graph is densey$o, (3) is much less than the total number of edges.
Therefore we decide to conduct some experiments on spaaphgwith the probability of

being an edge ig%.
The results of the experiments on the sparse graphs arelsabor Table 58.

58

0.95

0.96

0.94 Swap 4
— — Ejection Chain

— - — - Recursive Greedy 7

(R=

R=R 3 .

0.88 .

Perfarmance Ratio

086 P — . —

oml |

082 -

D . B 1 1 1 1 1 1 1 1
a0 100 1a0 200 2450 300 350 400 450 200

Tatal Wertices

Figure 5.13: Comparison of the performance ratio of the rilgms on random dense
graphs

EDD T T T T T T T T
/
500 ¢ Swan 2
— — Ejection Chain / ,f
— - — -Recursive Gready £
400 - /, .
g 2
£ a0} / .
£ A
'_ -
o
200 L 1
-
L
100 7
- /
-
s
e
0 —_—t .

| 2y = L 1 I I
a0 100 160 200 260 300 350 400 460 500
Tatal Wertices

Figure 5.14: Comparison of the timing of the algorithms amd@m dense graphs

59

Table 5.8: Experiments on random sparse graphs pmth%

Swap Swap Ejection | Ejection R.G R.G
Total Total | algorithm | algorithm| algorithm | algorithm| algorithm| algo
Edges| Vertices| (perfo (time (perfo (time (Perfor | -rithm

-rmance | insec) | -rmance| insec) -mance | (time

ratio) ratio) ratio) in sec)
311 50 0.72 0.24 0.56 0.24 0.69 0.6
608 100 0.59 0.86 0.39 2.05 0.56 5.0
932 150 0.56 1.87 0.33 9.58 0.53 17.54
1214 200 0.51 3.19 0.28 17.89 0.50 41.0
1453 250 0.51 4.95 0.26 49.51 0.48 78.28
1769 300 0.46 6.94 0.23 86.51 0.47 138.5
1938 350 0.45 9.17 0.23 184.41 0.46 205.37
2465 400 0.48 12.24 0.23 279.74 0.46 306.07
2741 450 0.45 15.22 0.19 449.41 0.45 444.79
3058 500 0.44 18.81 0.20 680.34 0.44 624.01
3339 550 0.44 22.66 0.20 1233.33 0.45 821.11
3619 600 0.44 27.28 0.18 1426.58 0.43 1052.28
3836 650 0.44 31.45 0.18 1555.5 0.43 1388.79
4143 700 0.42 36.64 0.18 1698.73 0.42 1713.38
4589 750 0.44 42.23 0.18 1741.9 0.44 2143.71
4789 800 0.43 47.72 0.17 1777.85 0.43 2520.79
5010 850 0.40 52.33 0.16 1920.20 0.42 3218.28
5400 900 0.42 60.04 0.16 2112.37 0.42 3744.60
5717 950 0.41 66.82 0.14 2132.68 0.42 4111.27
5934 | 1000 0.40 72.56 0.14 2217.00 0.41 4629.61

60

Figure 5.15: Comparison of the performance ratio of the ritlpms
graphs withp

Performance Ratio

Time {in sec)

0.

o7

0.6

0.5

0.4

0.3

0z

0.1
a

5

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

1]
a

Swap

— — Ejection Chain
— - — - Recursive Greedy

M

1
100

1
200

1
300

1 1 1 1
400 500 EBOO 700
Total Wertices

1
a00

1
900

1000

on random sparse

- =

=

Swap
— — Ejection Chain
— - — -Recursive Greedy

.
-

100

200

300

400 500 BOO FOO
Tatal Wertices

300

900

1000

Figure 5.16: Comparison of the timing of the algorithms ond@m sparse graphs with
5

p:

61

The experiments on the sparse graphs show thatwhp algorithm andrecursive greedy
algorithmshave comparable performance ratio butrideeirsive greedy method takes much
more time than thewap algorithm as it has to call thewap algorithm once for each
partition. The performance of thggection algorithmis worse than the other two but we can

increase the performance ratio of #ection algorithm by considering more orderings.

We then consider more orderings of the subset in the partitiotheejection algorithmto
solve the problem on some small sparse graphs. In theseirgmes we consider 20and
100k orderings of the partitions whekas the total number of partitions and we get a better
performance ratio for the algorithm which is close to shap algorithm but it takes much

more time than the previous as it considers more orderings.

The results of the experiments in comparison todhap algorithmare illustrated in Table

5.9

5.4 Conclusions

In this chapter we experimentally study the performance i@tthe three algorithms de-
scribed in chapter 4 on two protein protein interaction dasgs and on some random dense

and sparse graphs.

From the results we find that all the algorithms show almostsimilar performance ratio
for the balanced and the unbalanced subsets for the prateteimp interaction databases
but therecursive greedy method and thegjection algorithm take more time than thevap
algorithm. Thegection algorithm shows worse performance than the other two algorithms
in the sparse graph if we consider only one ordering of thesestshin the partition but
we can improve considaribly the performance ratio of th@mtigm by considering more

orderings.

62

Table 5.9: Experiments on random small sparse graphs wiktlo@irings withp = %

Swap Swap Ejection Ejection
Total Total algorithm | algorithm| algorithm | algorithm
Edges| Vertices| (performance (time (performanceg (time

ratio) in sec) ratio) in sec)
106 20 0.9 0.04 0.88 0.1
169 30 0.8 0.06 0.87 0.36
232 40 0.83 0.16 0.80 0.91
278 50 0.69 0.15 0.72 1.87
352 60 0.66 0.21 0.68 3.62
405 70 0.64 0.42 0.64 6.13
511 80 0.64 0.55 0.67 10.86
515 90 0.57 0.46 0.62 14.81
604 100 0.65 0.84 0.63 24.11
672 110 0.56 1.01 0.60 42.56
716 120 0.56 1.17 0.62 52.39
795 130 0.57 1.54 0.59 67.45
843 140 0.56 2.07 0.56 82.49
937 150 0.55 1.83 0.59 111.7
897 160 0.52 2.0 0.55 134.4
995 170 0.51 2.44 0.54 173.16
1082 180 0.53 2.53 0.54 214.07
1091 190 0.54 2.86 0.52 259.77
1164 200 0.50 3.14 0.54 319.09
1225 210 0.49 3.39 0.51 376.31
1303 220 0.51 4.87 0.52 437.75
1414 230 0.52 4.12 0.52 539.19
1394 240 0.51 5.84 0.50 645.59
1489 250 0.50 4.71 0.51 740.58
1576 260 0.50 6.04 0.50 973.99
1706 270 0.49 541 0.53 1021.54
1644 280 0.50 5.92 0.51 1151.16
1710 290 0.49 6.36 0.52 1349.82
1875 300 0.50 6.75 0.50 1487.68

63

Table 5.10: Experiments on random small sparse graphs @ikdrderings withp =

Swap Swap Ejection Ejection
Total Total algorithm | algorithm| algorithm | algorithm
Edges| Vertices| (performance (time (performanceg (time
ratio) in sec) ratio) in sec)
78 4 0.73 0.03 0.78 0.49
129 6 0.68 0.04 0.73 1.91
186 8 0.69 0.07 0.71 4.65
247 10 0.64 0.10 0.71 10.00
286 12 0.58 0.10 0.63 19.57
321 14 0.60 0.20 0.64 35.29
408 16 0.55 0.25 0.62 56.35
442 18 0.56 0.22 0.59 86.50
501 20 0.53 0.38 0.62 129.75
537 22 0.55 0.45 0.60 182.82
563 24 0.51 0.36 0.55 264.36
645 26 0.53 0.61 0.58 344.24
682 28 0.49 0.69 0.55 442.29
741 30 0.54 0.81 0.58 590.42
792 32 0.48 0.61 0.55 746.34
850 34 0.51 1.02 0.54 935.22
840 36 0.50 1.13 0.55 1070.72
962 38 0.50 1.14 0.54 1293.38
978 40 0.47 1.56 0.53 1555.94

64

5

\Y

ns T T T T T

(IR0 .

0.

Swap

075t .
— — Ejection Chain

07r

065

Performance Ratio

06

055

0.4s

045 1 1 1 1 1
a a0 100 150 200 240 300

Total Wertices

Figure 5.17: Comparison of the performance between the sawdpthe ejection chain

algorithms on small random sparse graphs with %

In the next chapter we conclude with future research diwasti

65

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis we give the first set of approximation alganghfor the capacitated max
uncut problem. We apply the algorithms to a clustering probin bioinformatics. We
experiment on graphs arising from protein protein intecachetworks, however we do not

draw any biological relevant conlusions from our experitsen

We consider two integer linear programs for the capacitated k-uncut problem. We

show that the integrality gap of the relaxations of thesegat programs is not bounded.

We develop one local search based, one ejection chain blgedtan and one recursive
greedy method to solve the problem. We analyze the locatkdzased algorithm and

recursive greedy method.

We empirically show that the local search based algorithchracursive greedy method
give us almost the same performance ratio but the ejectiamehgorithm does not give us
a good performance ratio for a fixed ordering. We also showitkae increase the number
of orderings then the ejection method gives us a considegitbd performance but it takes

more time than the other two algorithms.

66

6.2 Future Research Work

In the future we plan to consider the lagrangian relaxatadnise linear programs described

in chapter 3 in the hope of obtaining better upper bound ompiienal integral solutions.

Lagrangian relaxation has been used successfully in diffexombinatorial problems like

traveling salesman, scheduling, set covering [15].

We can also solve integer linear programs using cuttingepédgorithms, for instance by
usinggomory cuts. We applied the gomory cut technique to the LP of secti@n B/e took
an odd cycle of length five and added all the gomory cuts toillata integral solution.
We notice that 300 cuts were added to the LP. It is interesbnigure out a subset of
the cuts to be added using which we can reduce the integgajyand compute a better

approximation.

The recursive greedy algorithm that is discussed in chaptakes much time to solve the
problem. We can also try to minimize the running time of tHigoathm. It would be

interesting to examine how to speed up the computation cfiejechain as well.

67

Bibliography

[1] A. Ageev, R. Hassin, and M. Sviridenko. A 0.5-approxiioatalgorithm for max
dicut with given sizes of partsSSAM Journal on Discrete Mathematics, 14(2):246—
255, 2001.

[2] A. Ageev and M. I. Sviridenko. An approximation algonthfor hypergraph max
k-cut with given sizes of parts. Ibecture Notes in Computer Science (Proceedings
of ESA’00), volume 1879, pages 32—-41, 2000.

[3] Ravindra K. Ahuja, Ozlem Ergun, James B. Orlin, and AlarahP. Punnenn Hand-
book of Approximation Algorithmsand Metaheuristicsedited by F. T. Gonzalez. Chap-
man and Hall/CRC, 2007.

[4] G. Andersson. An approximation algorithm for max p-g@at In Lecture Notes in
Computer Science (Proceedings of STACS 99), volume 1563, pages 237-247, 1999.

[5] G. Bader and C. Hogue. An automated method for finding mdé complexes in
large protein interaction networkBMC Bioinformatics, 4,2, 2003.

[6] M. Bern and D. Eppstein. Approximation algorithms fologeetric problems. I#\p-
proximation Algorithms for NP-hard Problems edited by D. Hochbaum, pages 296—
345, 1996.

[7] Y.Boykov, O. Veksler, and R. Zabih. Fast approximaterggeninimization via graph
cuts. |EEE Trans. Pattern Anal. Mach. Intell., 23(11):1222-1239, 2001.

[8] G Calinescu, H. Karloff, and Y. Rabani. An improved apgmation algorithm for
multiway cut. In30th annual ACM symposium on theory of computing, volume 48-52,
pages 551-570, 1998.

[9] T.H. Cormen, C. E. Leiserson, and R. L. Rivesttroduction to Algorithms. Prentice
Hall, 1998.

[10] E. Dalhous, D. S. Johnson, C. H. Papadimitriou, P. D nSmyr, and M. Yannakakis.
The complexity of multiterminal cutsSIAM Journal on Computing, pages 864—894,
1994.

[11] G. Dantzig.Linear programming and extensions. Princeton University Press, 1963.

68

[12] G. Bernard Dantzig and M. Narain Thagdanear Programming. Springer, 1997.

[13] E. de Klerk, D. V. Pasechnik, and J. P. Warners. On apprate graph colouring and
max k-cut algorithms based on tBéunction. InJ. Comb. Optim., volume 8(3), pages
267-294, 2004.

[14] U. Feige and M. Langberg. Approximation algorithms foaximization problems
arising in graph partitioningd. Algorithms, 41:174-211, 2001.

[15] M. L. Fisher. The lagrangian relaxation method for smjvinteger programming
problems.Management Science J, 27,1:1-18, 1981.

[16] G. W. Flake, R. E. Tarjan, and K. Tsioutsioulikis. Gragtstering and minimum cut
trees.Internet Mathematics, 1(4):385—-408, 2004.

[17] A. Frieze and M. Jerrum. Improved approximation algoris for maxk-cut and max
bisection.Algorithmica, 18(1):67-81, 1997.

[18] M. R. Garey and D. S. Johnso@omputers and Intractability; A Guide to the theory
of NP-Compl eteness. Pearson Addison Wesley, 1979.

[19] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some #ieghNP-complete graph
problems.Theor. Comput. Sci, 1:237-267, 1976.

[20] D. R. Gaur, R. Krishnamurti, and R. Kohli. The capa@&thimax k -cut problem.
Mathematical Programming, 115:65—72, 2008.

[21] F. Glover and C. Rego. Ejection chain and filter-and4fa&thods in combinatorial
optimization.Springer, 4:263-296(34), 2006.

[22] M. X. Goemans and D. P. Williamson. Improved approxiimaalgorithms for max-
imum cut and satisfiability problems using semidefinite paogming. InJ. Assoc.
Comput. Mach, volume 42, pages 1115-1145, 1995.

[23] M. X. Goemans and D. P. Williamson. Approximation algioms for max 3-cut
and other problems via complex semidefinite programmingl. Comput. Sys. <ci.,
volume 68(2), pages 442—-470, 2004.

[24] R. E. Gomory. Outline of an algorithm for integer soartito linear programs. In
Bulletin Amer. Math. Soc., volume 64 no. 5, pages 275-278, 1958.

[25] R. E. Gomory and T. C. Hu. Multiterminal network flowslournal of the SAM,
9:551-570, 1961.

[26] F. T. Gonzalez.Handbook of Approximation Algorithms and Metaheuristics. Chap-
man and Hall/CRC, 2007.

69

[27] I. Hajirasouliha, F. Hormozdiari, S. C. Sahinalp, andBirol. Optimal pooling for
genome re-sequencing with ultra-high-throughput sheastdrtechnologiesBioinfor-
matics, 24(13):i32—i40, 2008.

[28] Ellis Horowitz, Sartaj Sahani, and Sanguthevar Rdjassn. Fundamentals of Com-
puter Algorithms. W. H. Freeman and Company, 1998.

[29] http://dip.doe mbi.ucla.edu.

[30] V. Kann, S. Khanna, J. Lagergren, and A. Panconesi. ©h#ndness of approximat-
ing max k-cut and its dualChicago J. Theor.Comput. <ci., 2:1-18, 1997.

[31] R. M. Karp. On the complexity of combinatorial algonitls. Networks, 5:45-68,
1975.

[32] H. Kawaji, Y. Yamaguchi, H. Matsuda, and A. Hashimotograph-based clustering
method for a large set of sequences using a graph partig@gorithm. InGenome
Informatics, volume 12, pages 93—-102, 2001.

[33] B. W. Kernighan and S. Lin. An efficient heuristic proced for partitioning graphs.
In BSTJ, volume 49 (2), pages 291-307, 1970.

[34] L. G. Khachiyan. A polynomial algorithm in linear pragnming. InSoviet Mathe-
matics Doklady, volume 20, pages 191-194, 1979.

[35] A. D. King, N. Przulj, and I. Jurisica. Protein complexegiction via cost-based
clustering.Bioinformatics, 20(17):3013-3020, 2004.

[36] M. Langberg, Y Rabani, and C. Swamy. Approximation aigpons for graph ho-
momorphism problems. 1Approxi mation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques, pages 176—-187, 2006.

[37] C Lin, Y. Cho, W. Hwang, P. Pei, and A. Zhangnowledge Discovery in Bioinfor-
matics. John Wiley and Sons, Inc., 2007.

[38] James B. Orlin, Abraham P. Punnen, and Andreas S. SchAifgproximate local
search in combinatorial optimizatio®lAM J. Comput., 33(5):1201-1214, 2004.

[39] C. H. Papadimitriou and K. SteiglitzCombinatorial Optimization; Algorithms and
Complexity. Prentice Hall, 1982.

[40] S. Ron and R. Sharan. A clustering algorithm for geneesgion analysis. IRighth
International Conference on Intelligent System for Molecular Biology, 2000.

[41] S. Sahniand T. Gonzalez. P-complete approximatioblpros.J. ACM, pages 555—
565, 1976.

70

[42] H. Saran and V. V. Vazirani. Finding k-cuts within twitiee optimal. S AM Journal
on Computing, pages 24:101-108, 1995.

[43] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

[44] Laurence A. Wolsey and George L. Nemhaukaeger and Combinatorial Optimiza-
tion. John Wiley and Sons, Inc., 1999.

[45] Y. Xu, V. Olman, and D. Xu. Clustering gene expressiotadssing a graph-theoretic
approach: an application of minimum spanning tré&sinformatics, 18(4):536-545,
2002.

71

