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Dedication 

This thesis is dedicated to Mick. 



Abstract 

The effect of concurrent music on gait was investigated amongst Parkinson's disease 

(PD) patients and age-matched control subjects. Ten people (mean age 66.6 ± 6.5 years) 

with idiopathic Parkinson's disease and ten healthy age-matched (mean age 65.4 ± 6.3 

years) control subjects completed steady state gait, dual task and obstacle negotiation 

trials in two differing test conditions; no music and whilst listening to music. Testing 

conditions were counterbalanced between subjects. The gait performance of PD patients 

was detrimentally affected by concurrently listening to music during steady state gait and 

obstacle negotiation, an effect that was further compounded in the dual task context. 

These findings imply that listening to music concurrent to gait may increase the 

attentional cost for PD patients. The findings of these studies have implications for 

patients, who may be at greater risk of falls in multi-task situations. 
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Chapter 1: General Introduction 

Walking (or gait) is one of the most commonly performed movements within 

activities of daily living, and as such is fundamental to independence and quality of life. 

Walking exists to safely transfer the body from one point to another (Prince, Corriveau, 

Hebert, & Winter, 1997), a challenging undertaking that can be further complicated by 

added tasks, such as maintaining a conversation whilst walking or safely negotiating an 

obstacle in the pathway. 

Normal aging is associated with a number of changes to the gait pattern. In 

particular, reductions in walking speed and stride length and a concomitant increase in 

the duration of time that both feet are in contact with the ground (double limb support; 

DLS) have been consistently reported to characterise the aged gait pattern (Prince et al., 

1997; Winter, Patla, Frank, & Walt, 1990). These gait changes could be considered to be 

a safety strategy to reduce the risk of falling through increasing the time spent in the most 

stable portion of the gait cycle. However, each year approximately one third of all older 

adults (65 years and over) will experience a fall (Blake et al., 1988; O'Loughlin, 

Robitaille, Boivin, & Suissa, 1993; Overstall, Exton-Smith, Imms, & Johnson, 1977). 

This fall rate is a serious concern for both individuals and healthcare providers alike, as in 

the older adult population falls are the foremost cause of injuries and injury-related death 

(Baker & Harvey, 1985). However, the prevalence of falls amongst neurological 

populations far exceeds that of the healthy community dwelling population. Parkinson's 

disease (PD) patients are at greatest risk of experiencing a fall, with approximately 50 

percent of patients falling per annum (Stolze et al., 2004). Similar to non-neurological 

populations, the majority of falls in the PD population are a consequence of impaired gait 
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(Schaafsma et al., 2003). Gait disorders are a cardinal symptom of PD and persist 

despite current optimal treatment (Jankovic, 2002; Jankovic & Kapadia, 2001; Savitt, 

Dawson, & Dawson, 2006). As a result, alternative therapies are often used to 

complement existing standards of care (i.e. medications) in an attempt to address the 

problems associated with the unresponsive symptoms of the disease. 

One form of intervention strategy that has proven to be effective in improving 

parkinsonian gait is the provision of periodic external spatial or temporal stimuli (cues). 

Cues assist patients in altering components of the gait pattern, for example increasing 

stride length (Morris, Iansek, Matyas, & Summers, 1994; Mcintosh, Brown, Rice, & 

Thaut, 1997), and consequently contribute to the construction of an improved gait 

pattern. Common examples of spatial or visual cues are pieces of tape placed at regular 

intervals on the floor or a light-emitting device that projects lines on a transparent screen, 

both of which aim to increase step length through acting as markers for foot placement. 

Temporal cues are typically provided in the form of auditory stimuli, for example a 

simple metronome tone (rhythmic auditory stimulation; RAS; Lim et al., 2005), or an 

accentuated beat within an original musical piece (Lim et al., 2005; Thaut et al., 1996). 

Auditory cues are intended to increase walking speed through increasing the individuals 

step rate (cadence). Despite the benefits to parkinsonian gait that have been 

demonstrated with contemporary cueing techniques, there are a number of limitations 

associated with each of these methods. For example, visual cues may not be practical in 

a community setting, or may require constant vigilance for the beneficial effects to be 

maintained (Morris, Iansek, Matyas, & Summers, 1996). Whilst auditory cues may be a 

very portable method of cueing, they can be found to be repetitive in nature. For this 
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reason, auditory cueing may lead to habituation (Cubo, Leurgans, & Goetz, 2004). The 

phenomenon that music stimulates movement in both healthy and pathological 

(Kneafsley, 1997) populations suggests the possibility that the use of music that is both 

familiar to the individual and enjoyable (salient) may be an attractive alternative to 

current temporal cueing strategies. 

The purpose of this thesis was to investigate the effect of salient music on gait 

amongst PD patients. The first chapter of this thesis is a general introduction, and is 

structured as a literature review to provide background information on PD and the 

biomechanics of gait. In addition, the first chapter also provides an overview of the 

current state of literature regarding the challenges associated with steady state gait, dual 

tasking and obstacle negotiation, as well as the benefits of auditory cueing in the context 

of gait rehabilitation. The literature review is followed by two experimental reports 

regarding the effect of salient music on steady state gait and dual tasking amongst healthy 

older adults and PD patients (Experiment 1), and the effect of salient music on obstacle 

negotiation amongst the same two populations (Experiment 2). The final chapter of this 

thesis is a general discussion, which synthesizes the research findings of the two 

experiments in the perspective of current literature. 

1.1 Parkinson's Disease Literature 

1.1.1 Epidemiology. Parkinson's disease (PD) is a chronic progressive 

neurodegenerative disorder that is characterized by bradykinesia (slowness of 

movement), rigidity (resistance to passive movement), resting tremor (involuntary 

shaking when relaxed), postural instability and gait disturbances. PD is the second most 

frequent neurodegenerative disease in today's population, affecting approximately 1.1 
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million individuals in North America (Chester, Turnbull, & Kozey, 2006) and up to 10 

million people worldwide (Quinn, Critchley, & Marsden, 1987). 

PD is associated with a dysfunction of the basal ganglia, a collection of five 

interconnected nuclei in the basal forebrain (Figure 1.1). The basal ganglia are involved 

in the control of complex voluntary movements (Middleton & Strick, 2000). In the 

absence of pathology, the basal ganglia provide the appropriate cues and motor responses 

to enable an appropriately timed motor pattern to run to completion. Pathology of the 

basal ganglia leads to an abnormality in the magnitude and velocity of movements, as 

well as an inability to initiate voluntary movements (Takakusaki, Habaguchi, Ohtinata-

Sugimoto, Saitoh, & Sakamoto, 2003). 

1.1.2 The basal ganglia. The main nuclei of the basal ganglia consist of the 

caudate, the putamen, the global pallidus, the subthalamic nucleus (STN), and the 

substantia nigra. However, a number of additional nuclei, such as the ventral anterior 

(VA) and ventral lateral (VL) thalamic nuclei also play an essential role in the 

functioning of the basal ganglia (Yelnik, 2002). 

The basal ganglia form part of numerous complex basal ganglia-thalamocortical 

circuits, which serve differing functions. The most relevant of these circuits to PD is the 

motor circuit (Kopell, Rezai, Chang, & Vitek, 2006). The motor circuit can be described 

by a central processing area; the striatum (caudate and putamen), which receives afferents 

from the cerebral cortex (in particular the primary motor cortex, the supplementary motor 

area; SMA and the premotor area; PMA; Figure 1.1). The information from the striatum 

is then delivered via intrinsic pathways to a sequence of intermediary relay neurons, the 
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internal globus pallidus (GPi), the external globus pallidus (GPe), the STN and the 

substantia nigra pars compacta (SNc). Once the intermediate relay neurons have 

processed the information from the striatum it is forwarded through projections from the 

output structures of the basal ganglia (GPi and SNr) to the VA and VL thalamic nuclei. 

The thalamic nuclei then provide the basal ganglia with a connection to the motor and 

premotor cortices as well as the SMA. This sequence of connectivity allows the basal 

ganglia the opportunity to influence the regulation of ongoing movements (Purves, 1997). 
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Figure 1.1 Illustration detailing the location of the basal ganglia, SMA and PMA within 

the human brain (adapted from http://cti.itc.virginia.edu). 
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Within the motor circuit itself, there are two main neuroanatomical pathways to 

the output nuclei, the direct and indirect pathways (McHaffie, Stanford, Stein, Coizet, & 

Redgrave, 2005). Both of these pathways function to modulate the thalamic output to the 

motor cortex and are governed by excitatory and inhibitory inputs. 

The direct pathwsiy is comprised of inhibitory projections from the striatum to the 

output structures of the basal ganglia, the GPi and SNr. Neurons in these structures send 

inhibitory projections directly to the VL thalamic nuclei. The thalamic nuclei in turn 

forward excitatory projections to the cortex (Figure 1.2). The overall effect of the direct 

pathway is excitatory to the thalamocortical projection. This excitability ultimately 

reduces the level of inhibition placed upon the motor cortex by the thalamus, therefore 

facilitating movement (Latash, 1998). 

In contrast, the indirect pathway is comprised of inhibitory projections from the 

striatum to the GPe and then the STN, followed by excitatory projections to the GPi and 

SNr. As in the direct pathway, the output nuclei of the basal ganglia form inhibitory 

projections to the thalamic nuclei. Again the thalamic nuclei send excitatory projections 

to the cortex (Latash, 1998; Figure 1.2). The indirect pathway however, produces a net 

inhibitory effect on cortical neurons, thereby acting as a 'brake' to the function of the 

direct pathway. 
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Figure 1.2 A schematic of the circuitry of the basal ganglia. Filled arrows indicate 

inhibitory connections, white arrows indicate excitatory connections. 
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A modulatory input to the neural circuit is provided to the striatal cells by the 

substantia nigra pars compacta (SNc) through the release of the neurotransmitter 

dopamine from its neuron endings (Bergman & Deuschl, 2002). The control provided by 

the SNc to the neural circuit is vital to the balance of activity between the direct and 

indirect pathways. Current perspective suggests that two different populations of 

dopaminergic receptors (Dl and D2) are found within the striatal neurons, and these 

receptors provide the basis for the direct and indirect pathways respectively (Gerfen et 

al., 1990). The action of dopamine on Dl receptors provides an excitatory influence to 

the direct pathway, while the D2 receptors produce an inhibitory effect on the indirect 

pathway. 

Under normal conditions, dopaminergic input to the striatum result in the net 

effect of facilitating activity through the direct pathway over the indirect pathway 

(Gerfen, Keefe, & Gauda, 1995). Therefore, movement is produced by the excitatory 

effect that activation of the direct pathway has on the thalamocortical projections (Yelnik, 

2002). PD occurs as a consequence of the degeneration of dopaminergic neurons in the 

SNc, leading to a decrease in the levels of dopamine in the striatum (Yelnik, 2002). This 

decreased level of dopamine in the striatum ultimately generates disinhibition of the 

output nuclei, and a consequential increased inhibition of the thalamocortical neurons 

(Figure 1.2). The resultant decrease in cortical activation leads to inhibition of 

movement, resulting in bradykinesia that is typical of PD (Yelnik, 2002). 
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1.1.3 Aetiology. Clinical symptoms of PD develop when approximately 80 per 

cent of the dopaminergic neurons in the SNc have been destroyed (Kish, Shannak, & 

Hornykiewicz, 1988), however, the causes of the degeneration seen in PD remain 

unknown. The prevailing theory is that the aetiology of the disease is multi-factorial, 

predominantly a combination of environmental and genetic risk factors (Gorell, Peterson, 

Rybicki, & Johnson, 2004). Environmental factors including extended exposure to 

certain metals, i.e. manganese, copper, lead, and copper and lead alloys (Gorell, Rybicki, 

Cole, Johnson, & Peterson, 1999), pesticides and well-water (Gorell, Johnson, Rybicki, 

Peterson, & Richardson, 1998) have been implicated with an increased risk of developing 

PD. In addition, evidence that an individual with a history of PD in a first- or second-

degree relative faces an increased risk of developing PD (Rybicki, Johnson, Peterson, 

Kortsha, & Gorell, 1999) implies a role for genetics. Inherited forms of PD are thought 

to account for only a small portion of all PD cases, and as family members typically share 

a similar environment as well as genetics a family history of PD is not necessarily proof 

of hereditability (Calne et al., 1987). The only unequivocal risk factor for developing PD 

is increasing age, with the peak onset for PD being 60 years of age (Mayeux, 2003). PD 

affects approximately one per cent of the North American population over the age of 65, 

increasing to around two per cent of the population over the age of 75 (Bennett et al., 

1996). 

At this time there is no permanent cure to relieve the symptoms of PD, or to 

replenish the depleted dopaminergic neurons. Although PD is not a direct cause of death, 

people suffering from PD have an increased risk (two- to five-fold) of mortality when 
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compared to age and gender matched general population (Fall, Saleh, Fredrickson, 

Olsson, & Granerus, 2003; Louis, Marder, Cote, Tang, & Mayeux, 1997). 

1.1.4 Treatment. Currently, the core symptomatic treatment of PD is the use of 

drugs to increase the depleted dopamine levels in the striatum. Dopamine itself is unable 

to cross the blood-brain barrier into the central nervous system (CNS), and therefore is 

unsuitable as a treatment for PD. However, dopamine's precursor 3,4-dihydroxy-L-

phenylalanine (levodopa) does cross the blood-brain barrier, and is presently used as the 

'gold standard' treatment in PD. Once the levodopa has been metabolised it enters the 

CNS and is then used by the depleted dopaminergic neurons to increase dopamine 

concentrations at the synapse, ultimately reducing tremor, rigidity and bradykinesia 

(Jankovic & Kapadia, 2001). 

Unfortunately, long-term use of antiparkinsonian medications can lead to a 

number of side effects, such as dyskinesias (involuntary movements), hallucinations, and 

motor fluctuations between 'on' and 'off states, with drug resistant periods becoming 

more frequent and longer as the disease progresses (Burch & Sheerin, 2005). Also, a 

number of the symptoms of PD remain unresponsive to the antiparkinsonian medications 

despite optimal medication levels; these symptoms include postural instability and 

impairment of gait (Jankovic, 2002; Jankovic & Kapadia, 2001; Savitt, Dawson, & 

Dawson, 2006; van Wegen et al., 2006). Impairment of gait is often considered one of 

the hallmark symptoms of PD and, over time, may become one of the most incapacitating 

symptoms of the disease (Zijlstra, Rutgers, & Van Weerden, 1998) due to the 

consequential loss of independence and an increased incidence of falls (Morris et al., 

1994). The resistance of gait impairments to pharmacological intervention justifies the 
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need to develop adjunct therapies to continue to assist PD patients in the management of 

this disabling symptom. Section 1.2 provides an overview of the biomechanics of gait in 

healthy adults, as well as the alterations that occur to the gait pattern with natural aging 

and the presence of PD. Sections 1.3 and 1.4 detail the interplay between cognition and 

the motor control of gait. Gait is rarely an autonomous task, it is often compounded by 

secondary tasks such as talking or carrying an object. In addition gait seldom occurs in 

an orderly environment, the ability to safely navigate everyday environments often 

requires crossing or avoiding obstacles. Both dual tasking and obstacle negotiation are 

functional gait activities that are reliant on the relationship between cognition and motor 

control. 

1.2. Steady State Gait 

Walking (gait) is a complex motor activity that is fundamental to independence, 

and critical to quality of life. It is a skill that is learned during the first year of life, 

reaches maturity around the ages of 7 until 60 years, and then is marked by performance 

deterioration in older adulthood (Prince et al., 1997). The purpose of walking is to safely 

and efficiently transport the body from one point to another. This is a significant 

challenge for the human CNS, as each step that is taken requires a voluntary fall forward 

to move the body's centre of gravity beyond the base of support. In this action, a fall is 

only averted by the safe placement of the swing foot with every step (Winter, 1995). 

Non-pathological gait involves symmetrical and alternating movement sequences 

in which the weight of the body is supported alternately by each leg. These movement 
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sequences define the gait cycle, which can be differentiated into periods of single (SLS) 

and double limb support (DLS; Figure 1.3). 

1.2.1 Age related changes in steady state gait. A number of changes to the gait 

pattern occur in the course of normal aging. Older adults alter their gait pattern by 

restricting range of motion in the hip, knee and ankle joints (Kerrigan, Todd, Delia Croce, 

Lipsitz, & Collins, 1998). This restricted joint motion results in a decrease in walking 

speed through a reduction in stride length an increase in stride time (Lockhart, Woldstad, 

& Smith, 2003). These modifications produce an increased time spent in the DLS phase 

of the gait cycle (Woo, Ho, Lau, Chan, & Yuen, 1995). Increasing the amount of time 

spent in DLS is generally considered to be a stabilizing strategy, as it reflects more time 

spent in a stable stance with both feet in contact with the ground. Yet, an alternative 

consequence of increased DLS duration is a reduction in the ability of the body to 

progress forward (Cromwell, Newton, & Forrest, 2002; Winter et al., 1990). Because of 

this reduced forward progression, suggestion is made that gait efficiency is compromised. 
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Figure 1.3 An illustration of the events and support phases of the gait cycle (as indicated 

by the white (right) foot). 
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1.2.2 Steady state gait in PD. Parkinsonian gait is characterized by a 'stooped 

posture', with the trunk, head and neck inclined forward (Figure 1.4). The patient 

generally holds his/her arms flexed, with the hands carried in front of the body. Arm 

swing is typically reduced, while reduced knee and ankle flexion (Knutsson, 1972) and 

less marked heel strike (Kimmeskamp & Hennig, 2001) are observed in the lower limbs. 

These characteristics tend to lead to PD patients who walk with small shuffling steps and 

a general slowness of movement (Hanakawa et al, 1999; Knutsson, 1972). When 

compared to the healthy older adult population, PD patients walk with a further reduced 

gait velocity. This reduction in gait velocity is allied with a reduced stride length, 

increased cadence and a resulting increased time spent in DLS (Blin et al., 1991; 

Knutsson, 1972; Morris et al , 1994). 

It is not yet fully understood how the dysfunctional basal ganglia contribute to the 

slower walking patterns of PD patients. In the absence of pathology it has been 

hypothesised that the basal ganglia in conjunction with the SMA in the cortex aid in 

initiating each sequential sub-movement in a well-learned motor sequence such as 

locomotion (Brotchie, Iansek, & Home, 1991). The basal ganglia initially provides an 

internal cue to interact with the pre-motor activity of the SMA (Suteerawattananon, 

Morris, Etnyre, Jankovic, & Protas, 2004) thereby allowing repetitive, rhythmic 

movements to be completed while leaving the cortex free to control other tasks that 

require attention (Bond & Morris, 2000). Phasic output from the basal ganglia during a 

movement sequence indirectly acts to inhibit the SMA; this controls the increase in 

cortical activation that is required for movement execution, as well as the decrease in 

cortical activity that ensures the timely termination of a movement (Brotchie et al., 1991). 
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The basal ganglia is also theorised to contribute to the cortical 'motor set', preparing and 

maintaining motor plans, thereby allowing movements to be completed with appropriate 

timing and amplitude (Robertson & Flowers, 1990). It is theorised that in PD patients 

there is a disruption in the internal cueing process (Morris et al., 1994) as well as a 

disturbance of the interaction between the basal ganglia and the SMA (Cunnington, 

Iansek, Bradshaw, & Phillips, 1995), resulting in movements of reduced amplitude and 

speed (Morris, 2000) and increased variability in the timing of the gait pattern (Frenkel-

Toledo et al., 2005). 

16 



•HMMtt*1 tf 

% 

mm 

SI 
v: 
At 

B. 

Figure 1.4 An example of posture during gait for a A) healthy older adult and B) 

Parkinson's patient. 
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Gait has traditionally been considered a relatively automatic task controlled by 

subcortical structures (Bloem, Grimbergen, van Dijk, & Munneke, 2006), therefore 

requiring the use of minimal attentional resources. However, extensive research in both 

healthy (Dubost et al., 2006; Hollman, Kovash, Kubik, & Linbo, 2007; Lajoie, Teasdale, 

Bard, & Fleury, 1993; Lindenberger, Marsiske, & Baltes, 2000; Lundin-Olsson, Nyberg, 

& Gustafson, 1997; van lersel, Ribbers, Munneke, Borm, & Rikkert, 2007; Verghese et 

al., 2007) and pathological (Bloem, Valkenburg, Slabbekoorn, & Willemsen, 2001; Bond 

& Morris, 2000; Camicioli, Oken, Sexton, Kaye, & Nutt, 1998; Canning, 2005; Morris et 

al., 1996; O'Shea, Morris, & Iansek, 2002; Rochester et al , 2004; Yogev et al., 2005) 

populations has confirmed that gait is dependent upon cognitive resources. Also of 

relevance is that the cognitive demands associated with this motor task vary with age and 

the health of the individual (Woollacott & Shumway-Cook, 2002) as well as anxiety 

levels (Brown, Doan, McKenzie, & Cooper, 2006; Gage, Sleik, Polych, McKenzie, & 

Brown, 2003; McKenzie & Brown, 2004) and task complexity (Bond & Morris, 2000). 

It has been suggested (Ble et al , 2005) that increasing the cognitive demands of a 

gait related task increases the likelihood of a fall occurring. Falls are prevalent amongst 

community dwelling older adults, with approximately one third of adults 65 years or 

older falling each year (Blake et al., 1988; O'Loughlin et al., 1993). However, within the 

neurological population of a similar age this fall rate is doubled (Bohannon, 1989), with 

PD patients most at risk of experiencing falling (Stolze et al., 2004). Seventy percent of 

PD patients are reported to fall annually, with fifty percent of patients experiencing 

multiple falls each year (Bloem, Hausdorff, Visser, & Giladi, 2004; Wood, Bilclough, 

Bowron, & Walker, 2002). Falls are a major cause of injury in the both the older adult 
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(Englander, Hodson, & Terregrossa, 1996) and PD populations (Wielinski, Erickson-

Davis, Wichnann, Walde-Douglas, & Parashos, 2005), and can result in a debilitating 

fear of falling (Adkin, Frank, & Jog, 2003; Bloem, Grimbergen, Cramer, Willemsen, & 

Zwinderman, 2001; Tinetti, Speechley, & Ginter, 1988) and loss of independence 

(Murphy & Isaacs, 1982; Wenning et al., 1999). 

Aside from the considerable physical and emotional cost of falling there is also a 

high health cost associated with the high fall rate. It has been estimated that the cost of 

fall-related injuries will exceed $32 billion per annum in 2020 in the United States alone, 

with the proportion of the population over the age of 65 expected to double by this time 

(Englander et al., 1996). As such, substantial research has been directed towards 

identifying the risk factors associated with falls in both the non-neurological older adult 

and PD populations. Within the multitude of intrinsic (host) and extrinsic 

(environmental) risk factors that have been identified multitasking and impaired obstacle 

negotiation are two complex situations that are attentionally demanding and have 

frequently been associated with fall incidents in both populations (Bloem et al, 2004; 

Stolze et al., 2004; Tinetti & Speechley, 1989). 

1.3. Cognitive Contributions to Gait 

1.3.1 Attention and executive function. The motor control and cognitive control 

of gait are of equal relevance to this thesis. The understanding that gait is in fact an 

attentionally demanding task has led to an increased understanding of the interaction 

between cognition and the motor control of gait. In particular, we now know (Ble et al., 

2005) that executive function is critical in successful gait, whether steady state gait or a 
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complex gait related task (i.e. dual tasking or obstacle negotiation). Executive function 

refers to a collection of cognitive processes that are thought to control the planning, 

initiating and guiding of goal-directed actions (Royall et al., 2002). Impairments of 

executive function are associated with damage or disruption to the frontal lobe or the 

associated basal ganglia-thalamocortical circuit (Royall et al., 2002). Disordered 

executive function has been related with a number of disorders and diseases including; 

schizophrenia (Heinrichs & Zakzanis, 1998), major depression (Degl'Innocenti, Agren, & 

Backman, 1998), Alzheimer's disease (Baddeley, Baddeley, Bucks, & Wilcock, 2001; 

Buckner, 2004, Perry & Hodges, 1999), Huntington's disease (Delval et al , 2008) and 

PD (Dalrymple-Alford, Kalders, Jones & Watson, 1994) amongst many others. In 

addition, it has been found that executive function deteriorates with normal aging 

(Buckner, 2004). 

Attention is one component of the cognitive processes encompassed by executive 

function (Lezak, 1995). More specifically, attention can be described as attending to a 

single aspect of the environment at the expense of all others (Johnston & Wilson, 1980), 

and further can be subdivided into a number of distinct subcategories i.e. focused, 

sustained, selective, alternating and divided attention (Sohlberg & Mateer, 1989). Of 

these subcategories, divided attention, which is often described as the ability to perform 

two or more tasks simultaneously, has been heavily studied using dual task paradigms. In 

the investigation of human movement, dual task paradigms are often used to infer the 

level of automaticity of the primary motor task (Abernethy, 1988) when a secondary 

motor or cognitive task is acting as a distracter. Attentional resources are considered to 

be limited in capacity for each individual (Kahnemen, 1973) and it is thought that all 
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tasks require a fraction of these resources. When the capacity of attentional resources is 

exceeded impairment in at least one of the tasks being performed will be observed, for 

example when walking and talking an individual may slow or even stop their walking in 

order to maintain the conversation. 

Three prominent neuropsychological models have been developed to explain the 

observed dual task interference; capacity-sharing, bottleneck and cross-talk (Pashler, 

1994). The capacity-sharing theory postulates that people share attentional resources 

amongst tasks, the available resources are finite, and therefore when tasks are executed 

concurrently there are fewer resources available for each task, and the performance of 

one or more of the tasks is compromised. An assumption of this model is that individuals 

have voluntary control over the allocation of attention to the tasks (Pashler, 1994). 

Alternatively, according to the bottleneck theory of attention, tasks are processed in series 

as opposed to in parallel (as in the capacity-sharing model). Therefore, when two or 

more tasks are carried out simultaneously and compete for use of a single pathway; one 

or both tasks will be either delayed or impaired due to the bottleneck created (Pashler, 

1994). A third possibility is that dual task interference may be dependent on task 

similarity, as proposed by the cross-talk model. It is thought that common resources will 

be used to process similar information/tasks, which will result in increased efficiency of 

processing (Pashler, 1994). Currently, there is no consensus on which theory of dual-task 

interference best explains the observed dual task decrement or whether a combination of 

the theories could explain the dual task effect. 
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1.3.2 Age related changes in dual tasking. It has long been considered that 

attentional resource capacity may diminish with increasing age (Craik & Byrd, 1982; 

McDowd & Shaw, 2000), and as such it could be expected that older adults would 

experience greater difficulty than younger adults with successfully performing dual tasks 

even when the secondary task is relatively simple. In older adults increased difficulty in 

performing dual-tasks has been associated with a greater risk of falls (Chen et al., 1996; 

Faulkner et al., 2007; Woollacott & Shumway-Cook, 2002), and accordingly the 

relationship between attention, gait control and aging has received considerable interest. 

An influential publication by Lundin-Olsson and colleagues (1997) described an 

incapability to simultaneously walk and talk among a group of frail elderly, a relationship 

that proved to be a strong predictor of falls in the subsequent six months. This study 

provides foundation for the theory that gait requires attentional resources, and 

additionally indicates that the attentional costs incurred by older adults are indeed greater 

than those experienced by healthy young adults. More recent research supports the 

finding that gait performance is compromised in older adults when performed 

concurrently to a secondary cognitive task (Dubost et al., 2006; Hollman et al., 2007; 

Lajoie et al., 1993; Lindenberger et al., 2000; Verghese et al., 2007). It has been argued 

(Bloem et al., 2003; Springer et al., 2006) that the observed reductions in gait speed and 

in some cases stride length may be a conscious adaptation to a 'safer' gait strategy, for 

example a mindful prioritisation of gait over the secondary task. However, this notion 

would appear to be contradicted by the finding that gait stability is also compromised in 

older adults during motor-cognitive coupled tasks (Dubost et al., 2006; Hollman et al , 

2007; van Iersel et al., 2007) suggestive of a higher risk of falls (Hausdorff, Rios, 
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Edelberg, 2001). It is important to note that it is not only motor-cognitive dual task 

paradigms that lead to a detriment to gait performance in older adults; paradigms that 

incorporate two motor tasks similarly produce dual task interference. Interestingly 

however, experimental designs utilising a motor-motor paradigm do not produce a 

significantly greater deterioration in gait performance for the older adults than younger 

adults (Shkuratova, Morris, & Huxham, 2004), suggestive that the motor-cognitive 

coupling provides greater challenge to the attentional resources of older adults than 

motor-motor coupling. 

1.3.3 Dual tasking in PD. Difficulty performing concurrent tasks is a common 

and sometimes disabling problem that has frequently been reported in PD literature 

(Bloem, Valkenburg et al., 2001; Bond & Morris, 2000; Camicioli et al., 1998; Canning, 

2005; Morris et al., 1996). The gait impairments exhibited by PD patients during steady 

state walking are typically exaggerated during dual task performance regardless of 

whether the secondary task is motor or cognitive in nature (Bloem, Valkenburg et al., 

2001; Bond & Morris, 2000; Camicioli et al , 1998; Canning, 2005; Morris et al., 1996; 

O'Shea, Morris & Iansak, 2002; Rochester et al, 2005). Indeed, PD patients who have 

mild to moderate disease severity experience significant decreases in gait speed (Bloem, 

Valkenburg et al., 2001; Bond & Morris, 2000; Camicioli et al., 1998; O'Shea et al., 

2002; Rochester et al., 2005), stride length (Bloem, Valkenburg et al., 2001; Bond & 

Morris, 2000; Camicioli et al , 1998; O'Shea et al., 2002; Rochester et al., 2005) and an 

increase in double limb support time (O'Shea et al., 2002) when challenged by a 

consecutive cognitive task whilst walking. Moreover, these decreases in gait 

performance are significantly greater than those demonstrated by healthy older adults. 
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This finding has been mirrored in studies using a motor task such as walking with a tray 

of glasses (Bond & Morris, 2000; Canning, 2005; Rochester et al., 2005) or transferring 

coins from pocket to pocket (O'Shea et al., 2002). 

It is theorised that the basal ganglia dysfunction found in PD reduces the 

automaticity of movement control for repetitive well-learned sequences (Brown & 

Marsden, 1988; Georgiou et al., 1993) and subsequently increases cortical involvement 

during motor execution (Samuel et al., 1997). The lack of movement automaticity 

requires PD patients to direct a considerable amount of limited attentional resources to 

the primary task of walking, thereby significantly diminishing the residual attentional 

resources available for concurrent tasks. Compounding the reduction in available 

resources for simultaneous tasks is the decrement in executive function that is present in 

varying degrees amongst PD patients (Dalrymple-Alford et al., 1994). Executive 

function has been identified as being critical to the ability to appropriately allocate 

attentional resources (Bloem, Valkenburg et al., 2001; Rochester et al., 2004). In dual or 

multitask situations where one of the task involves ambulation, the safest and therefore 

most sensible strategy would be to prioritise the primary gait related task over the 

secondary and tertiary tasks (Bloem, Grimbergen et al., 2001). However, PD patients 

endeavour to execute all tasks concurrently, seemingly unable to adopt a 'posture first' 

strategy (Bloem, Grimbergen et al., 2001). This 'posture second' strategy, in 

combination with the gait and cognitive deficits prevalent in the PD population results in 

the deterioration of all tasks (Bloem, Grimbergen et al., 2001). This multitasking 

impairment that is characteristic of the PD population is associated with an increased risk 

of falls (Willemsen, Grimbergen, Slabbekoorn, & Bloem, 2000). 
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1.4 Obstacle Negotiation 

Complex gait related tasks such as obstacle negotiation are often implicated in 

epidemiological studies related to falls. Indeed, within the multitude of intrinsic and 

extrinsic risk factors that have been identified for falls, tripping has been identified as a 

contributing factor in approximately 50 percent of cases in older adults (Blake et al., 

1988; Lord, Ward, Williams, & Anstey, 1993), with trips frequently being associated 

with unsuccessful obstacle crossing (Overstall et al., 1977; Tinetti et al., 1988). Tripping 

on an obstacle has also been implicated as a leading cause of falls in neurological patients 

(Stolze et al., 2004). 

Successful negotiation of an obstacle is attention demanding (Chen et al., 1996; 

Kim & Brunt, 2007; Schrodt, Mercer, Giuliani, & Hartman, 2004; Siu et al., 2008; 

Weerdesteyn, Schillings, van Galen, & Duysens, 2003), requiring 'on-line' adjustments 

of a motor pattern, a demand that may be increased by age (Chen, Ashton-Miller, 

Alexander, & Schultz, 1991; Lowrey, Watson, & Vallis, 2007; Patla, Prentice, Rietdyk, 

Allard, & Martin, 1999; Weerdesteyn, Nienhuis, & Duysens, 2005), neurological 

disorders (Den Otter, Geurts, de Haart, Mulder, & Duysens, 2005; Doan et al., in review; 

Petrarca, Di Rosa, Cappa, & Patane, 2006; Said, Goldie, Patla, & Sparrow, 2001; Said, 

Goldie, Patla, Sparrow, & Martin, 1999) and environmental context (Brown et al., 2006; 

Brown, McKenzie, & Doan, 2005; McKenzie & Brown, 2004). 

1.4.1 Age related changes in obstacle negotiation. Deterioration of cognitive 

and sensorimotor systems are known to occur with normal aging, predisposing older 

adults to compromised balance and an increased likelihood of falls (Alexander, 1991). 
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When the challenges to maintaining balance are further exacerbated in situations such as 

obstacle negotiation (Chou, Kaufman, Brey, & Draganich, 2001) it has been found that 

older adults adopt a more cautious gait strategy (Chen et al., 1991). In particular, older 

adults negotiate an obstacle contingency by decreasing the crossing step length (Figure 

1.5) and crossing velocity when compared to younger adults (Chen et al., 1991; Lowrey 

et al., 2007; Patla, Prentice, Robinson, & Neufeld, 1991). It is considered that these 

adjustments would reduce the likelihood of a fall if contact was made with the obstacle 

(Patla et al., 1991). In the case of a shorter crossing step, there is less time spent in the 

SLS phase of the gait cycle where there is a limited base of support. Therefore, in the 

event of obstacle contact the reduced forward momentum would allow for greater 

opportunity to regain balance (Patla et al., 1991). It has also been found, however, that 

older adults commence the adaptations to the gait pattern that are necessary for safe 

obstacle negotiation at least one step earlier in the approach phase than younger adults 

(Chen, Ashton-Miller, Alexander, & Schultz, 1994). This finding implies that older 

adults may experience difficulty in adapting their gait pattern in a time critical condition, 

increasing the risk of obstacle contact (Chen et al., 1994). 
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Direction of progression 

Figure 1.5 A diagram indicating the spatial measures of obstacle negotiation. Grey fill 

indicates lead limb foot; light fill indicates trail limb foot. Dark dashed line indicates 

approximate trajectory of lead limb foot; light dotted line indicates approximate 

trajectory of trail limb foot. Obstacle is denoted by OBS. Measures shown are (A) step 

length; (B) step height; (C) toe-obstacle distance; (D) heel-obstacle distance. 
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Another consistent finding is that older adults place the heel of the lead foot closer 

to the back edge of the obstacle (heel-obstacle distance; Figure 1.5) during the crossing 

step (Chen et al., 1991; Lowrey et al., 2007; McFadyen & Prince, 2002; Weerdesteyn et 

al., 2005). This finding has been interpreted as a 'risky' strategy (McFadyen & Prince, 

2002; Weerdesteyn et al., 2005) with a reduced heel-obstacle distance suggested to 

increase the risk of contacting the obstacle on foot placement. However, heel contact 

with an obstacle is perceived to impose a low risk of falling, instead being associated 

with a recoverable stumble (Chen et al., 1991). Many other kinematic parameters of 

obstacle crossing have produced contrary findings. The distance between the trail toe and 

the front edge of the obstacle (toe-obstacle distance; Figure 1.5) has been reported as 

being longer in the older adults when compared to younger adults (Patla, Prentice, & 

Gobbi, 1996) or not significantly different (Chen et al., 1991; Draganich & Kuo, 2004; 

Lowrey et al , 2007). In addition, the crossing step height (Figure 1.5) documented 

amongst older adult has been described as both lower (McFadyen & Prince, 2002) and 

higher (Patla et al., 1996; Watanabe, 1994) than younger adults. Current speculation 

indicates that the inconsistent findings for age-related gait changes in some kinematic 

crossing parameters may be due to a lack of challenge presented by the experimental 

design; the low number of obstacle contacts largely confirms this suggestion 

(Weerdesteyn et al., 2005). In an effort to address the inconsistencies in the literature 

more challenging experimental designs are being utilized, including obstacle crossing 

under time-critical conditions (Weerdesteyn et al., 2005), dual tasking during obstacle 

negotiation (Chen et al., 1996), as well as obstacle crossing in environmental contexts 

that impose threat to postural control (Brown et al., 2006; McKenzie & Brown, 2004). 
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1.4.2 Obstacle negotiation in PD. Despite the challenges associated with 

obstacle negotiation amongst the non-neurological population and the identification of 

tripping as a major cause of falls there is a lack of literature available on the motor 

patterning or success rates of obstacle crossing amongst PD patients. The presence of 

bradykinesia, balance impairments and attentional deficits (Dalrymple-Alford et al., 

1994) amongst the PD population is suggestive that PD patients would experience greater 

difficulty than healthy older adults in successfully negotiating both expected and 

unexpected obstacle contingencies. In particular, based on steady state unobstructed gait 

it may be hypothesised that the foot clearance height over the obstacle may be reduced, 

that the crossing step length would be shorter and that the crossing velocity would likely 

be slower than in healthy older adults. Any of these stepping characteristics could 

increase the risk of tripping on an obstacle and therefore increase the likelihood of a fall. 

A recent study by Doan and colleagues (in review) confirms that PD patients do indeed 

demonstrate decreased crossing step length as a result of shorter pre- and post-obstacle 

horizontal distance, and that further decrements in crossing parameters and crossing 

success were exhibited when anxiety levels were heightened in a situational context that 

threatened stability. 

Complex gait tasks such as obstacle negotiation and dual tasking are frequently 

encountered during activities of daily living, such as safely navigating cluttered 

environments or walking whilst talking. As such, it is necessary that the development of 

intervention strategies for the management of PD gait deficits extend beyond the relative 

simplicity of steady state gait to encompass functional gait activities such as obstacle 
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negotiation. Targeting functional gait in this way will allow patients the opportunity to 

maintain their independence. 

1.5. Current Therapies 

1.5.1 Auditory cueing in steady state gait. One form of rehabilitation therapy 

that has penetrated the field of gait rehabilitation is the effect of music on movement. In 

human culture one of the fundamental functions of music has been to stimulate 

movement (Merriam, 1964). Music has also historically been a part of healing rituals in 

many cultures (Merriam, 1964). Within the multitude of acoustic rehabilitation therapies 

that are currently available, rhythmic auditory stimulation (RAS) is increasingly being 

used in the treatment of patients suffering from movement disorders. RAS is a 

neurological technique in which rhythmic cues are provided 'free field' via a metronome 

or embedded as an accentuated beat within a complex musical piece to enhance the 

control of movements that are intrinsically rhythmical (Thaut, 2005). 

Within activities of daily living, walking is the most regularly performed 

inherently rhythmical movement (Roth & Wisser, 2004) and as a result effective and 

efficient gait is necessary for an individual to maintain their functional independence. An 

extensive body of research has demonstrated the effectiveness of RAS as a rehabilitation 

tool for patients suffering from impaired gait function. Significant improvements in gait 

parameters have been shown following the use of RAS in patients suffering from brain 

injury (Hurt, Rice, Mcintosh, & Thaut, 1998; Kenyon & Thaut, 2000), Huntington's 

disease (Thaut, Miltner, Lange, Hurt, & Hoemberg, 1999), stroke (Ford, Wagenaar, & 

Newell, 2007; Mauritz, 2002; Thaut et al., 2007; Thaut, Mcintosh, & Rice, 1997) as well 
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as PD (del Olmo & Cudeiro, 2005; Freedland et al., 2002; Hausdorff et al , 2007; Howe, 

Lovgreen, Cody, Ashton, & Oldham, 2003; Mcintosh et al., 1997; Miller, Thaut, 

Mcintosh, & Rice, 1996; Suteerawattananon et al., 2004; Thaut et al., 1996). 

RAS is thought to work through rhythmic entrainment in which the RAS acts as 

an external timekeeper, which in the case of PD patients may replace the faulty 

timekeeping of the dysfunctional basal ganglia. It is theorised that auditory rhythm acts 

as a physiological attractor and acts to entrain timing functions in motor control. This 

theory has been substantiated by the research of Thaut and Kenyon (2003), which 

demonstrated that even when rhythmic auditory patterns were provided at levels below 

conscious perception, a steady and stable coupling between motor responses and the 

rhythmic cue could be achieved almost immediately. The early work of Rossignol and 

Melville Jones (1976) also demonstrated the ability of auditory rhythm to entrain muscle 

activation patterns, which can be utilized during locomotion. A number of more recent 

studies have also provided evidence for audiospinal motor facilitation. These studies 

(Miller et al., 1996; Thaut et al., 1996) have demonstrated that rhythmical cueing 

produces invariable EMG for the medial gastrocnemius and tibialis anterior muscles, 

suggesting that auditory cueing facilitates the stable recruitment of motor units during 

gait thereby improving gait performance. 

In view of the gait disorders associated with PD, the use of music therapy and in 

particular RAS is especially attractive. Indeed, single session studies with rhythmic 

auditory cues have been associated with improvements in both the temporal and spatial 

characteristics of the continuous gait of PD patients, with increased gait speed (Howe et 

al., 2003; Mcintosh et al., 1997; Suteerawattananon et al., 2004), stride length (Mcintosh 
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et al., 1997), and cadence (Freedland et al., 2002; Howe et al., 2003; Mcintosh et al , 

1997; Suteerawattananon et al., 2004) when compared to walking without cueing. It has 

also been found that following a period of training (a minimum of three weeks) with 

RAS, PD patients can experience increases in gait speed, stride length, cadence (Thaut et 

al., 1996) and decreased step-to-step variability (del Olmo & Cudeiro, 2005; Miller et al , 

1996), which are generally maintained following the cessation of regular training (del 

Olmo & Cudeiro, 2005; Miller et al., 1996; Thaut et al., 1996). Ultimately, providing an 

external acoustic cue at an appropriate rhythm improves and stabilizes the temporal, 

spatial and force production elements (Thaut, 2005) of gait whether through immediate 

entrainment or from training through ongoing learning, by allowing the dysfunctional 

movement pathways in the basal ganglia of PD patients to be bypassed (Morris et al., 

1996). 

1.5.2 Auditory cueing in dual tasking. Recent investigations of cueing and dual 

tasking have demonstrated that cueing may also be an effective tool in reducing dual-task 

interference amongst PD patients (Baker, Rochester, & Nieuwboer, 2007, 2008; Canning, 

2005; Rochester et al., 2005; Rochester et al., 2007). Indeed, both attentional (Baker et 

al., 2007; Canning, 2005), rhythmical auditory (Rochester et al., 2005; Rochester et al., 

2007) and combination (Baker et al., 2007, 2008) cueing strategies have produced 

significant improvements in gait performance when gait was coupled with a secondary 

motor task. It has been suggested that this finding may simply be a by-product of 

increased arousal in the PD patients due to the nature of the task (i.e. more interesting 

than simply walking; (Rochester et al., 2007). An alternative explanation that has been 

forwarded is that cues may reduce the attentional requirements of dual tasking by 
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improving the distribution of attentional resources (Behrman, Teitelbaum, & Cauraugh, 

1998). It is thought that in the case of rhythmic or combination cues, the cueing strategy 

may reduce the need to pre-plan movement sequences through providing an external 

temporal stimulus at appropriate intervals (Rochester et al., 2007). 

Although significant work to date has demonstrated the effectiveness of RAS in 

the gait rehabilitation of PD patients, there are a number of potential limitations that have 

been associated with the strategy. Specifically, RAS whether provided as a simple 

metronome tone, or as an accentuated beat imbedded in a complex musical piece can tend 

towards repetitiveness, and therefore presents the potential for habituation (Cubo et al., 

2004). Whilst this issue has not been evidenced in the studies completed thus far, these 

studies have been relatively short in duration. It is conceivable that with the long-term 

use of a RAS strategy the lack of salience could be an issue that leads to compromised 

vigilance and a discontinuation of use. Therefore, it appears that there is a necessity for 

the development of a gait rehabilitation strategy that retains the effectiveness and 

portability of RAS, but that also incorporates a level of salience. An attractive alternative 

to a simple metronome tone that may address the concern of salience is the use of music 

that is both familiar and pleasant for the individual. Indeed, not only is music considered 

to have the ability to evoke a physical response (Janata & Grafton, 2003; Kneafsley, 

1997), anecdotal reports abound of music helping PD patients to move in situations 

where they encounter freezing of gait. 
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1.6 Summary 

The debilitating gait impairments experienced by PD patients remain resistant to 

conventional medications (Jankovic, 2002; Jankovic & Kapadia, 2001; Savitt et al., 

2006), and moreover become exacerbated in challenging situations such as dual tasking 

(Bloem, Valkenburg et a l , 2001; Bond & Morris, 2000; Camicioli et al., 1998; Canning, 

2005; Morris et al., 1996; O'Shea, Morris & Iansak, 2002; Rochester et al., 2005) or 

obstacle negotiation (Doan et al., in review), increasing the already high fall risk of this 

population. Consequently, impairments of gait can threaten the patients' functional 

independence and quality of life. As such, adjunct rehabilitation therapies have become a 

major and necessary focus of research in recent years. Auditory cueing is one strategy 

that has been established to be effective in improving parkinsonian gait in a variety of 

situations (Rochester et al , 2005; Rochester et al., 2007); however, there are a number of 

limitations associated with this rehabilitation strategy including the lack of salience to the 

individual. In light of this evidence, there is a definitive need to develop a sustainable 

gait training tool for PD patients that is both salient to the patient and practical for use in 

situations of daily living. Given the potential for music to facilitate movement in 

pathological populations (Mcintosh et al., 1996; Thaut et al , 1997, Thaut et al. 1999; 

Thaut et al., 2007), salient music could pose an attractive alternative to current cueing 

strategies. The experiments presented in this thesis represent the initial step towards a 

long-term goal of developing a suitable and sustainable gait training tool. 
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Chapter 2: Objective of Thesis 

2.1 Theory 

Music has a potent ability to evoke movement, which is considered to be due to a 

coupling between the motor and auditory systems (Thaut et al., 1997). 

2.2 Objective 

Based on this theory the objective of this thesis was to investigate the effect of 

concurrent music on gait performance in PD patients under a number of different task 

contexts. Two experiments were conducted to accomplish this objective: Experiment 1 

investigated the effect of music on spatiotemporal measures of gait in single (steady state 

gait) and dual task contexts whilst Experiment 2 examined the effect of music on gait 

kinematics during obstacle negotiation. 

2.3 Hypotheses 

2.3.1 Experiment 1: The effects of concurrent music on gait in single and 

dual task contexts. Based on the commonly reported phenomenon that music 

stimulates movement in both healthy (Bernatzky, Bernatzky, Hesse, Staffen, & Ladurner, 

2004; Copeland & Franks, 1991) and pathological (Mcintosh et al , 1997; Thaut et al., 

1996) populations I hypothesised that the music would effectively 'activate' the PD 

patients, resulting in an improvement in overall gait performance. More specifically, I 

expected to see an increase in gait velocity and stride length, and a decrease in DLS 

duration in Experiment 1. 

35 



2.3.2 Experiment 2: The effects of concurrent music on obstacle negotiation. 

In accordance with the known gait deficits suffered by PD patients (Kimmeskamp & 

Hennig, 2001; Knutsson, 1972), I expected that the PD group would exhibit impaired 

obstacle crossing strategies in the baseline (no music) condition of Experiment 2 when 

compared to the CTRL subjects. However, I expected to see an increase in obstacle 

crossing velocities, obstacle clearance height and obstacle crossing step length (as a result 

of increased pre- and post- obstacle distances) during concurrent music trials for both 

groups. 
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Chapter 3: Experiment 1 - Novel Challenges to Gait in Parkinson's Disease: The 

Effect of Concurrent Music in Single and Dual Task Contexts 

3.1 Abstract 

Anecdotal reports abound of the ability of music to facilitate movement in both 

healthy and pathological populations. This study examined the effects of concurrent 

music on parkinsonian gait in single and dual task contexts. Ten patients with idiopathic 

Parkinson's disease and 10 healthy age matched control subjects walked at a self selected 

pace along an unobstructed walkway in four differing test conditions. Test conditions 

were differentiated by the presence of music accompaniment (no music/music) and the 

presence of a secondary cognitive task (single/dual). Music was self-selected by subjects 

based on music preferences. Repeated-Measure Analyses of Variance were used to 

determine the effect of task, music and group on the spatiotemporal measures of gait 

(velocity, stride length and the percentage of the gait cycle spent in double limb support). 

Gait amongst the Parkinson's disease patients was adversely affected by concurrent 

music, in contrast gait performance in the control subjects showed no significant 

difference between no music and music conditions. The added requirement of the 

cognitive task differentially influenced gait performance in Parkinson's disease patients 

and control subjects, with Parkinson's disease patients displaying a further decrease in 

spatiotemporal parameters of gait and control subjects a marginal improvement. The 

findings of this study suggest that gait impairments associated with Parkinson's disease 

are exacerbated by the presence of concurrent music; an effect that is further exaggerated 

by the addition of a cognitive task. These results have implications for patient safety in 

multitasking situations. 
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3.2 Introduction 

Parkinsonian gait is typically characterised by reduced gait velocity, decreased 

stride length and an increased cadence (Knutsson, 1972). Despite the overall 

effectiveness of dopaminergic drugs in the symptomatic treatment of Parkinson's disease, 

a number of gait deficits often remain resistant (Blin et al., 1991), over time becoming 

one of the most incapacitating symptoms of this disease. The persistence of gait 

impairments has necessitated the exploration of rehabilitation therapies that could 

potentially complement pharmacologic therapies and assist in the management of gait 

difficulties. One therapy, established to be effective in facilitating parkinsonian gait, is 

the provision of external spatial or temporal stimuli that serve to cue the gait cycle. 

Immediate beneficial effects, with improvements in spatiotemporal parameters of gait 

have been demonstrated using a variety of cue modalities such as visual (Martin, 1967; 

Morris et al., 1994; Morris et al., 1996), auditory (Freedland et al., 2002; Lim et al, 2005; 

Mcintosh et al., 1997; Thaut et al., 1996), and attentional cues (Behrman et al, 1998; 

Canning, 2005; Morris et al., 1996). Indeed, the effects of visual cues were reported as 

early as 1967 in a classic study by Martin who demonstrated that PD patients used longer 

strides and an increased gait velocity when walking over transverse lines on the walking 

surface, a finding that has been successfully replicated in a number of subsequent studies 

(Morris et al., 1994; Morris et al., 1996), and provided foundation for application of other 

cue modalities. Contemporary cueing strategies include auditory cues such as a rhythmic 

metronome tone or an accentuated beat within a musical piece, as well as attentional 

strategies such as using instructional sets (i.e. "big steps"). The use of auditory cues has 

been shown to produce significant improvements in gait velocity, cadence and stride 

length (Freedland et al , 2002; Lim et al , 2005; Mcintosh et al., 1997; Thaut et al, 1996), 
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whilst attentional cues have also been shown to improve velocity and cadence (Behrman 

et al., 1998; Canning, 2005; Morris et al., 1996). 

The prevailing theory of external stimulation of movement in PD is that a cue can 

serve to facilitate gait by preferential activation of motor pathways that circumvent the 

dysfunctional basal ganglia (Morris et al., 1996). Whilst this strategy results in improved 

gait performance, the resulting motor output requires increased conscious control and 

consequentially restricts the availability of attentional resources for concurrent tasks. 

Intuitively, the restricted accessibility of attentional resources may limit the efficacy and 

subsequent practicality of cueing in task contexts that necessitate dedicated attention, 

such as dual tasking (Bloem et al., 2006; Bond & Morris, 2000). Interestingly though, 

recent studies (Baker et al., 2007; Baker et al., 2008; Canning, 2005; Rochester et al., 

2004) have demonstrated that the magnitude of dual task interference is alleviated by the 

presence of cues, a finding that has provided the basis for speculation that external cues 

may act to facilitate the process of appropriately distributing attentional resources 

(Rochester et al., 2005). 

Although there is considerable work to date demonstrating the success of a 

number of cue modalities in facilitating parkinsonian gait both in single and dual task 

conditions, there are a number of limitations presented by contemporary cueing 

strategies. For example, visual cueing tools can lack portability (van Wegen et al, 2006), 

whilst auditory cues can tend towards repetitiveness and a potential for habituation (Cubo 

et al., 2004); disadvantages that are likely to compromise vigilance and may lead to 

discontinuation of use. One practical solution to overcome these limitations is to 

implement cueing techniques that provide essential spatial or temporal stimuli while 
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incorporating some level of salience to the individual. An alternative to a simple auditory 

tone that may address the issue of salience is the use of music that is both familiar and 

enjoyable to the individual. It is commonly considered that music has the ability to 

induce a physical response. Indeed, music has been extensively shown to encourage 

movement in the healthy population, whether it be increased endurance during exercise 

(Copeland & Franks, 1991) or simply getting out of bed in the morning (Bernatzky et al., 

2004). Moreover, anecdotal reports indicate that music can help stimulate movement in 

PD patients in situations where they experience freezing. In addition, previous studies 

(Mcintosh et al., 1997; Thaut et al., 1996) have utilised original musical pieces with an 

accentuated beat to significantly improve gait velocity, stride length and cadence amongst 

PD patients. In accordance with these observations, our research program is currently 

investigating the possibility of incorporating salient music as a viable cueing strategy for 

parkinsonian gait. As a starting point in exploring this possibility, we compared the 

consequences of music accompaniment on spatiotemporal parameters of gait on PD and 

age-matched control subjects in single and dual task conditions. Based on the 

phenonomenon that music can stimulate movement in both healthy and pathological 

populations, I hypothesised that the music would be 'activating' to movement and that I 

would therefore observe improved gait performance in the concurrent music trials. 

3.3 Methods 

3.3.1 Subjects. Ten patients with idiopathic PD (PD: Mage = 66.6 ± 6.5 yrs; 

range= 58-76 yrs; 5 females; clinical characteristics in Table 3.1) and ten healthy age-

matched control subjects (CTRL: Mage = 65.4 ± 6.3 yrs; range = 57-75 yrs; 8 females) 

participated in this study. The Human Research Ethics committee of the University of 
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Lethbridge granted ethical approval of the study. All subjects were informed of the 

nature of the study and gave their informed written consent prior to the commencement 

of testing. PD patients were recruited through local neurologists and PD support groups. 

Inclusion criteria were diagnosis of idiopathic PD (by a consultant neurologist), mild to 

moderate disease severity (stage II to III on the Hoehn and Yahr scale; Hoehn & Yahr, 

1967), stable antiparkinsonian medication regimen (for at least one month prior to 

testing), independently mobile without use of a walking aid, and adequate hearing. 

Patients were excluded if their disease duration was less than one year, they scored less 

than 26 on the Mini-Mental Status Examination (MMSE; Folstein, Folstein, & McHugh, 

1975), they suffered from any neurological condition or comorbidity likely to affect gait 

and/or if they were already walking to music. Medical history and medication usage 

(Table 3.1) were ascertained prior to testing through a comprehensive interview. The 

impairment status of PD patients was assessed using the motor subsection of the United 

Parkinson's Disease Rating Scale (UPDRS; Fahn & Elton, 1987). All subjects in the 

CTRL group were recruited from the local community, were self-declared to be free from 

any neurological disorders or any other medical conditions that may affect gait function, 

and had adequate hearing. 

3.3.2 Protocol. The testing protocol for this study represented test conditions to 

assess the effect of concurrent music on gait in single and dual task conditions, as well as 

the effect of music on gait performance in a complex walking task (obstacle negotiation). 

Obstacle negotiation trials will be addressed in a separate paper due to the differences in 

motor patterns used between steady state and obstructed walking. 
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Table 3.1 Clinical Characteristics of Parkinson's Disease Patients 

Subject Age (yr) Disease Hoehn & UPDRS Medications 

Duration Yahr (III) 

(yr) 

PD1 

PD2 

PD3 

PD4 

PD5 

PD6 

PD7 

PD8 

PD9 

PD10 

71 

76 

73 

62 

74 

65 

58 

61 

66 

60 

3 

4 

9 

1 

8 

2 

12 

13 

10 

2 

2.0 

3.0 

2.0 

2.0 

2.5 

2.0 

2.5 

2.0 

2.5 

2.5 

24 

26 

30 

30 

26 

30 

26 

30 

30 

30 

Levodopa 

Levodopa 

Levodopa 

Pramipexole 

Levodopa 

Levodopa 

Levodopa 

Levodopa, Amantadine 

Levodopa, Amantadine 

Levodopa 

Note. Hoehn and Yahr and UPDRS (III) scores were measured in the ON condition. 
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Subjects were asked to walk the length of a 10m walkway at a self-selected pace. 

Test conditions were differentiated by the presence of music accompaniment (no 

music/music), and the requirement to perform a concurrent secondary cognitive task (no 

task/cognitive task). 

Condition 1 (no music, no task, no obstacle, NMSINGLE) 

Walking the length of the unobstructed walkway in the absence of music. 

Condition 2 (music, no task, no obstacle, MSINGLE) 

Walking the length of the unobstructed walkway whilst listening to music. 

Condition 3 (no music, cognitive task, no obstacle, NMDUAI) 

Walking the length of the unobstructed walkway whilst carrying out a 

cognitive task in the absence of music. 

Condition 4 (music, cognitive task, no obstacle, MDUAI) 

Walking the length of the unobstructed walkway whilst listening to music 

and carrying out the cognitive task. 

Music (hereafter referred to as salient music) had previously been selected based 

upon the subjects indicated genre or artist preferences during a prior telephone interview. 

The cognitive task consisted of serially subtracting three's (aloud) from a random three-

digit number. A new starting number was provided for each trial in the dual task 

conditions immediately prior to the commencement of the trial. Subjects were not 

provided with specific instructions regarding task prioritisation. 

Subjects performed a total of six trials in each of the conditions (for a total of 24 

trials). Order and practice effects were controlled for by randomising the order of task 
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(no task, cognitive task) presentation. Trials were blocked by the presence of music 

(NM/M), the blocks were counterbalanced between subjects. One practice trial was 

performed at the start of the testing session. All subjects with PD were tested ON 

medication (minimum of one hour post medication). Patients were shadowed by a 

trained researcher to ensure safety. 

3.3.3 Apparatus. Three-dimensional (3D) kinematic data were collected at 

120Hz using a six camera motion analysis system (Peak Performance Technologies and 

Vicon Motus 9.0 software, Englewood, CO, USA). Retro-reflective markers were placed 

on the sternal notch and bilaterally on the acromion process, lateral humeral epicondyle, 

ulnar styloid process, greater trochanter, lateral femoral condyle, lateral malleolus, the 

dorsal aspect of the foot between the first and second metatarsal, and on the calcaneous. 

A microphone headset and computer with an integrated audio card were used to capture 

the participant's verbalisations during the dual task trials (8000 Hz; Microsoft® Sound 

Recorder, Version 5.1). An iPod© Nano (Apple Inc, Cupertino, CA, USA) with 

headphones was attached to the subjects waistband to provide the subjects with music at a 

self-selected volume during trials in the music condition. Additionally, digital video 

cameras were used to capture frontal and sagittal digital video. 

3.3.4 Data processing. Custom written algorithms were created in MATLAB® 

(Version R2007a; The Mathworks, Natick, MA, USA) to process raw marker data and 

calculate spatiotemporal parameters of gait. Raw marker data was filtered at 10Hz (low 

pass fourth-order Butterworth filter). Whole body centre of mass (COM) in the anterior-

posterior (AP) dimension was calculated with a seven segment model using pre-
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determined anthropometric values (Winter, 1990). The finite differences method was 

used to calculate AP COM velocity. 

The event of right heel contact was used to crop kinematic data into gait cycles. 

Spatiotemporal parameters of gait consisted of: (1) AP COM velocity (gait velocity), (2) 

stride length, and (3) percentage of the gait cycle duration spent in double limb support 

(% DLS) as per previous studies in this area (Morris et al., 1996; O'Shea et al., 2002). 

Mean values were calculated across gait cycles and within each condition for all 

measures. 

Cognitive task data were scored manually to determine the total number of 

verbalisations per trial, as well as the number of incorrect responses and the relative 

performance score (% errors) for each trial. Mean values were calculated across each 

DUAL condition for each measure. 

3.3.5 Statistical analysis. Demographic data were summarised descriptively and 

compared between groups using independent t-tests. The properties (tempo and lyrical 

content) of music selections were quantified, between group differences were compared 

using independent t-tests. Cognitive data were entered into separate, mixed 2-factor 

[Group (CTRL/PD) x Music (NM/M)] Repeated-Measure Analyses of Variance (RM 

ANOVA). Gait measures were entered into separate mixed 3-factor [Group (CTRL/PD) 

x Music (NM/M) x Task (SINGLE/DUAL)] RM ANOVA to determine the effect of task, 

music and group on the spatiotemporal measures of gait specified in this study. Paired or 

independent t-tests were used to compare within and between group differences when the 
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RM ANOVA test established statistical significance. Statistical significance was set at 

0.05. 

3.4 Results 

Descriptive statistics and summary statistical findings are provided in Tables 3.2 

and 3.3 respectively. The mean tempo of the playlists selected for the music condition 

did not differ significantly (p > 0.05) between the CTRL and PD groups (Figure 3.1). 

The CTRL group tended to opt for music selections which had higher lyrical content than 

those of the PD group, however, this difference did not reach significance (p > 0.05; 

Figure 3.2). 

During the cognitive task PD patients showed a tendency to articulate more 

numbers than the CTRL group across both no-music and music conditions, however, this 

difference did not reach significance (p > 0.05; Figure 3.3A). In addition, the PD group 

tended to demonstrate a higher percentage of errors in verbalisations during the cognitive 

secondary task than the CTRL group across both the no-music and music conditions. 

The PD group had a tendency to produce more errors during the concurrent music trials, 

whilst the CTRL group tended towards fewer errors in the music condition, however this 

differential effect was not significant (p > 0.05; Figure 3.3B). 
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Table 3.2 Summary of descriptive statistics for gait parameters in the PD and CTRL 

groups [mean (SD)J. 

CTRL PD 

Parameter 

Single Task Dual Task Single Task Dual Task 

NM M NM M NM M NM M 

COM velocity (m/s) 1.41(0.11) 1.41(0.10) 1.28(0.13) 1.31(0.13) 1.29(0.15) 1.27(0.16) 1.03(0.39) 0.99(0.41) 

Stride length (m) 1.41(0.05) 1.43(0.06) 1.34(0.07) 1.36(0.08) 1.35(0.09) 1.34(0.12) 1.27(0.16) 1.23(0.19) 

DLS(%) 23.7(1.26) 23.8(0.83) 25.9(0.78) 24.5(0.98) 26.1(5.35) 29.1(5.73) 29.2(3.22) 31.5(2.69) 
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Table 3.3 Summary of statistical findings. Univariate RM ANOVA result (G group, M 

music, Ttask). 

Parameter G M T MxG TxG MxT TxMxG 

COM velocity (m/s) * ** 0.078 * 

Stride length (m) 0.073 *** 0.084 0.074 

DLS(%) . 0.069 * ** 

*p < 0.05; **/?< 0.01; ***p < 0.001 
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Figure 3.1 The mean tempo of individualised play lists provided to subjects during the 

music condition. Group means are indicated by horizontal lines. 
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Figure 3.2 The distribution of playlist selections, between instrumental and lyrical music. 
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Figure 3.3 The effect of concurrent music on (A) the number of verbalizations and (B) 

the percentage of errors made during a secondary cognitive task (serial 3's). Dark bars 

represent no music trials, whilst light bars represent music trials. Data presented are 

means and standard errors of means. 
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PD patients consistently walked significantly slower [F(l,18) = 5.359,p = 0.033] 

with a tendency towards shorter strides [F(l,18) = 3.623,/? = 0.073] and a longer double 

limb support phase [F(l,18) = 3.784,/? = 0.068] across all conditions when compared to 

the CTRL group. Follow-up comparisons of means for baseline gait (no task, no-music) 

confirmed that gait velocity was significantly reduced amongst the PD subjects when 

compared to the CTRL subjects (t(18) = 2.18, p = 0.043; PD = 1.29m/s; CTRL = 

1.41m/s). In addition, the PD group walked with considerably shorter strides (t(18) = 

2.08, p = 0.052; PD = 1.35m; CTRL = 1.41m) than the CTRL group, however no 

significant difference was observed for the double limb support phase (PD = 26.1%; 

CTRL = 23.7%) in the baseline condition. 

Listening to music whilst walking had a differential effect on gait performance 

amongst PD patients when compared to CTRL subjects, as confirmed by a significant 

interaction between music and group for % DLS [F(l,18) = 10.528,/? = 0.004] and strong 

interactions for gait velocity [F(l,18) = 3.503,/? = 0.078] and stride length [F(l,18) = 

3.342, /? = 0.084]. In particular, PD patients walked 2.2% slower, with a shorter stride 

length (1.9%) and a longer duration in the double limb support phase of the gait cycle 

(9.7%o) in the concurrent music trials. In contrast, the CTRL group showed marginal 

improvements to gait patterns in music trials, increasing walking velocity (1%), and 

stride length (1%) and decreasing the duration of the double limb support phase by 

approximately 2.8% when compared to no-music conditions. 

When challenged by a concurrent cognitive task, both the PD subjects and CTRL 

subjects adjusted their gait patterns to walk slower [F(l,18) = 16.443, /? = 0.001; PD = 

21% change; CTRL = 8% change], with shorter strides [F(l,18) = 29.811,/? < 0.001; PD 
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= 7% change; CTRL = 5% change], and a longer double limb support duration [F(l,18) = 

4.251, p = 0.054; PD = 10% change and CTRL = 6% change]. However, the task by 

group interactions failed to reach significance. 

As confirmed by a significant three-way (task x music x group) interaction, the 

added requirement of concurrent music in the dual task context differentially influenced 

walking velocity [F(l,18) = 4.653, p = 0.045] between PD patients and CTRL subjects. 

Specifically, PD patients showed a further 4% decrease in walking velocity, beyond the 

20% decrease imposed by the dual task, when required to perform the dual task in the 

concurrent music condition. Conversely, the noted detrimental dual task effect was less 

pronounced amongst the CTRL group in the concurrent music condition with healthy 

control subjects demonstrating a 3% increase in velocity when compared to the baseline 

dual task condition (no music; Figure 3.4A). The same pattern of differential effect was 

noted for both stride length (Figure 3.4B) and double limb support duration (Fig. 9C); 

however, these interactions did not reach significance (p > 0.05). Indeed, of noteworthy 

mention is the striking effect of concurrent music in the dual task context amongst PD 

patients when compared to CTRL subjects for the measure of double limb support. As 

illustrated in Figure 3.4C, the gait pattern of the PD patients included a further prolonged 

DLS phase (8%) for the dual task trials that were performed with concurrent music 

compared to the no music dual task trials. Again, the opposite was observed in the CTRL 

group who decreased the duration of the DLS phase by 3% when performing the dual 

task with concurrent music. 
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Figure 3.4 The effect of concurrent music and dual task on (A) gait velocity, (B) stride 

length, and (C) % of gait cycle spent in DLS in CTRL and PD subjects. Data presented 

are means and standard errors of means. * Significant effect of task, t significant effect 

of group, $ significant music x group interaction, # significant task x music x group 

interaction. 
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3.5 Discussion 

Music is a powerful stimulus, with a well-documented ability to evoke 

movements (Janata & Grafton, 2003; Kneafsley, 1997) and strong emotions (Blood, 

Zatorre, Bermudez, & Evans, 1999; Panksepp & Bernatzky, 2002). Previous research 

has demonstrated a facilitatory effect of original instrumental music on the gait patterns 

of PD patients (Mcintosh et al., 1997; Thaut et al., 1996). My purpose in this study was 

to investigate whether parkinsonian gait is altered by the presence of concurrent salient 

music in single and dual task contexts. Two questions were addressed: (1) does 

concurrent music influence gait kinematics in non-neurological and parkinsonian 

populations and (2) is the dual task effect, known to be present in both populations 

(Bloem, Valkenburg et al., 2001; Bond & Morris, 2000; Camicioli et al., 1998; 

Ebersbach, Dimitrijevic, & Poewe, 1995; Lundin-Olsson et al., 1997; Morris et al., 1996; 

O'Shea et al., 2002; Woollacott & Shumway-Cook, 2002), influenced by concurrent 

music? These questions were motivated by my interest in identifying alternate therapies 

that can translate into functionally appropriate and ecologically relevant choices for 

patients with PD. My findings show that gait patterns in the PD patients were altered in 

the concurrent music trials, interestingly in a manner similar to the dual task effect 

imposed by performing a secondary cognitive task. Consequently, I was not surprised by 

the observation that the dual task effect was exacerbated for PD patients but not for the 

control subjects in the concurrent music trials. The similarity observed between the gait 

interference exacted by concurrent music to the phenomenon of dual task decrement 

implies possibility that concurrent music imposes added cognitive demands that may 

interfere with attentional control of gait in the PD population. Previous research 
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investigating the influence of music on cognitive performance in non-neurological 

populations similarly suggests that music adds to the cognitive load, acting as a 

distraction from the primary task (Furnham & Strbac, 2002; Parente, 1976). Although 

this theory points caution for patients who may enjoy listening to music whilst walking, it 

also opens the possibility to use concurrent music as a viable method to impose added 

cognitive demand in gait training programs that target improvement in dual task 

performance as a measure of functional outcome. 

3.5.1 Group differences in gait in single and dual task contexts. Consistent 

with prior reports on parkinsonian gait (Knutsson, 1972; Morris et al., 1994), the PD 

patients in this study walked with reduced gait velocity and stride length and an increased 

duration of the gait cycle in double limb support when compared to the healthy control 

subjects in the baseline condition (no-task, no-music). These group differences persisted 

across all four experimental conditions. As would be expected, simultaneously 

performing the arithmetic task of counting backwards and walking resulted in decreased 

walking speed and stride length and an increased duration of double limb support, when 

compared to simply walking alone. This finding is suggestive that the cognitive task 

interfered with the primary task of walking to impose a dual task effect (Bloem, 

Valkenburg et al., 2001; Bond & Morris, 2000; Morris et al., 1996; O'Shea et al., 2002; 

Rochester et al., 2004). Yet, contrary to my expectation, the dual task effect was 

comparable between groups. It has previously been determined that the complexity 

(Bond & Morris, 2000) and type (Galletly & Brauer, 2005) of secondary task performed 

affects the allocation of attention between simultaneous tasks for PD patients. One 

possibility is that the motor-cognitive task pairing used in this study did not provide a 
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sufficient challenge to tax the attentional capacity or the ability to distribute attentional 

resources of the PD patients to a greater extent than the control group. Indeed, the dual 

task impairment that is typically demonstrated by PD patients has been attributed to the 

impairment in executive function that has been associated with the disease (Dalrymple-

Alford et al., 1994). The level of executive function of the patients used in this study was 

not determined, but it is plausible that the patient population that we worked with in this 

study, who had mild to moderate disease severity, had levels of executive function that 

were within normal limits. Given the known exacerbation of dual task interference when 

cognitive task complexity increases (Bond & Morris, 2000) it is conceivable that a 

concurrent task of greater complexity than "serial three's" may therefore be required for 

the exacerbated dual task effect of the PD group to occur. 

3.5.2 Effect of concurrent music on gait in single and dual task contexts. My 

results revealed that the gait of PD patients' was detrimentally affected by concurrent 

music, while the gait of CTRL subjects remained largely unchanged. More specifically, 

control subjects did not demonstrate an effect of music in the walking only condition, but 

marginal increases in gait velocity, stride length and a decrease in the duration spent in 

double limb support were observed in control subjects for the dual task trials with 

concurrent music. Moreover, the improvements observed in the spatiotemporal measures 

of gait did not occur at the expense of cognitive performance. Conversely, PD patients 

demonstrated a significantly longer proportion of the gait cycle spent in double limb 

support whilst listening to music in the walking only condition, while gait speed and 

stride length remained unaffected. When the patients were required to also perform the 

arithmetic task, the increase in double limb support duration was further exacerbated and 

57 



patients demonstrated slower gait speed and shorter strides. Additionally, the PD group 

made considerably more errors during the cognitive task when simultaneously listening 

to music. In combination these results imply that concurrently listening to music is 

imposing added cognitive demand for the patients, as displayed by a poorer performance 

on both the primary task of walking and the secondary cognitive task. It is possible that 

the demonstrated alterations in gait patterning are an accommodation to the additional 

attentional load imposed by the concurrent music. The adjustments may serve to increase 

stability by decreasing the duration of the dynamic single limb support phase of the gait 

cycle, potentially reducing the risk of a fall. I suggest, therefore, that concurrent music 

effectively imposes a tertiary cognitive load, thereby creating a multi-task scenario that is 

especially difficult for PD patients to manage (Bloem, Valkenburg et al, 2001). This 

proposal is supported by the findings of previous studies that indicate that the general 

resource capacity of PD patients is diminished and that PD patients experience greater 

difficulty appropriately allocating their attentional resources when task complexity 

increases (Bond & Morris, 2000). 

The results for my study contrast those of previous studies, which have reported 

the facilitatory effect of music on parkinsonian gait performance (Mcintosh et al., 1997; 

Thaut et al , 1996). However, one possibility for explanation is that the music used in 

these previous studies was typically original instrumental tracks with an accentuated beat 

(Mcintosh et al., 1997; Thaut et al., 1996) at a tempo that exceeded the natural cadence of 

the subject. The close synchronization between the subjects' steps and the rhythm of the 

music resulted in improved walking velocity (Mcintosh et al., 1997; Thaut et al., 1996) as 

an outcome of increased cadence, in addition to a reduction in gait variability (Thaut et 
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al., 1996). In my study, the music selections were suggested by the subjects. Therefore 

the tempo of the music was not controlled, nor was it matched to cadence. My intention 

in this study was to explore the consequences of concurrent music on gait using music 

selections that bear meaning to the listener rather than replicate the known effect of 

tempo-cadence synchronization. It is a distinct possibility that the wide tempo range 

within each group music playlist (Figure 3.1) may partially explain the exacerbation of 

gait deficits that were demonstrated by the PD group in the presence of music. Current 

research being carried out in the Balance Research Laboratory aims to more clearly 

elucidate the effect of the salience of the music on observed gait changes by examining 

the potential effect of training with salient music that has a restricted tempo range. 

An alternative explanation may be that the group-dependent differences in gait 

performance reflect differing effects of affective arousal produced by the music 

selections. Music playlists were self-selected by the subjects, making it probable that 

music choices were selected for emotional and/or motivational reasons. The music 

selections for both groups were highly complex, including lyrics in 90 percent of cases 

for the control group and 70 percent of cases for the PD group, likely increasing affective 

arousal (Panksepp & Bernatzky, 2002). Whilst it is expected that both groups actively 

attended to the music, it would appear that the attentional demands did not exceed the 

resource capacity of the control subjects. In contrast, attending to gait whilst 

simultaneously listening to music appeared to exceed the PD patients' available resource 

capacity, resulting in deterioration in gait performance, a deterioration that was 

compounded with the further addition of the cognitive task. 
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3.5.3 Future directions. The known decrement in parkinsonian walking 

performance that occurs in the presence of a concurrent cognitive task has provided 

foundation for an emergence of studies aimed at improving dual and multi-task 

performance (Bedeschi et al., 2008; Canning et al., 2008; Piemonte, Okamoto, Richi, & 

Valle, 2008). The promise of these training protocols is to enhance functionality through 

improved ability to perform tasks concurrent to walking. Increased automaticity of motor 

control processes and improved attentional control strategies can be achieved in PD 

patients through regular gait training whilst performing a simultaneous cognitive task 

(Bedeschi et al., 2008). My findings indicate that walking whilst listening to concurrent 

salient music was attentionally demanding; however, it was less so than the cognitive task 

in isolation. I therefore suggest that listening to concurrent salient music would be an 

attractive secondary task in the early stages of dual and multi-task training. Conceivably, 

dual task impairment will be greatest early in the training regimen; therefore 

incrementally increasing the difficulty of the secondary task as improvements in dual 

tasking are observed will reduce the risks to patient safety associated with dual task 

interference. 

3.6 Conclusion 

The work presented indicates that listening to music is an attention-demanding 

activity for PD patients. The gait performance of PD patients was detrimentally affected 

by concurrently listening to salient music whilst walking in the single task situation, an 

effect that was further compounded in the dual task context. 

The findings of my study substantiate the available information on the multi- task 

limitations exhibited by PD patients. It is apparent that gait patterning is adversely 
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affected by attending to simultaneous tasks, a result of decreased available resource 

capacity and/or increased difficulty in appropriately allocating attentional resources. 

These results have serious implications for patients, who may be at greater risk of falls in 

multi-task situations such as walking whilst talking in a complex environment. 

Therapists are addressing this issue by moving towards multi-task training, an area of 

rehabilitation where the use of concurrent salient music may be beneficial, both in terms 

of attentional loading and compliance. 
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Chapter 4: Experiment 2 - Concurrent Music Compromises Obstacle Negotiation in 

Parkinson's Disease 

4.1 Abstract 

Multitasking situations exacerbate gait impairments and increase the risk of 

falling amongst the Parkinson's disease population. This study examined kinematic 

parameters of obstacle negotiation amongst 10 Parkinson's disease patients and 10 age-

matched control subjects in two test conditions, differentiated by the presence of music 

(no music/music). Music had previously been self-selected by the subjects. Subjects 

completed six trials in each testing condition, walking the length of a 10m walkway at a 

self-selected pace and crossing a 0.15m obstacle placed at the midpoint of the walkway. 

Whilst obstacle crossing was successful for all subjects the results indicate that 

concurrent music differentially altered obstacle crossing strategies for the Parkinson's 

disease and control groups. Parkinson's disease patients' decreased crossing speeds and 

crossing step length in concurrent music trials, in contrast control subjects maintained 

crossing speeds and increased crossing step length. The findings of this study suggest 

that the presence of auditory distracters during obstacle crossing may increase the 

attentional cost of obstacle negotiation for PD patients. The alterations to crossing 

strategies observed amongst Parkinson's disease patients suggest the possibility of an 

increased risk of falls in complex environments for this population. 

4.2 Introduction 

The prevalence of falls amongst neurological patients has been found to be twice 

as high as among those of a similar age who do not suffer neurological impairment 

(Bohannon, 1989). Within the neurological population Parkinson's disease (PD) patients 
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are most at risk of falling (Stolze et al., 2004), with seventy percent of PD patients 

reported to fall annually and fifty percent of patients experiencing multiple falls each year 

(Bloem et al., 2004; Wood et al, 2002). Falls are a major cause of injury in the PD 

population (Wielinski et al., 2005), and can result in a debilitating fear of falling (Adkin 

et al., 2003; Bloem, Grimbergen et al., 2001). In addition, falls can significantly increase 

the possibility of nursing home (Hely et al , 1999) or hospital (Temlett & Thompson, 

2006) admission amongst PD patients. 

Falls have a multifactorial aetiology; a significant body of work has been 

dedicated to identifying intrinsic (patient-oriented) and extrinsic (environmental) risk 

factors associated with falls amongst PD patients (Robinson et al., 2005). Recent 

research (Ashburn, Stack, Pickering & Ward, 2001; Robinson et al., 2005) has 

recognized balance impairments and cognitive deficits to be leading independent intrinsic 

risk factors for falls in the PD population. However, current contributions documenting 

the interdependence of cognition and motor performance substantiate the increased fall 

risk amongst PD patients in dual task contexts, such as talking or carrying an item whilst 

walking (Willemsen et al., 2000). In fact, multitasking has been implicated in almost 

fifty per cent of falls amongst PD patients (Bloem et al., 2006). In the traditional context, 

the dual task paradigm is defined by simultaneous performance of a cognitive task 

(Camicioli et al., 1998; tlausdorff, Balash, & Giladi, 2003; Yogev et al., 2005; Yogev et 

al., 2007) whilst walking. Recognition of the contextual validity of gait as a task that is 

often compounded by secondary motor tasks, however, has led to the emergence of 

research studies that investigate how ecologically relevant secondary tasks such as 

transferring coins from one pocket to another (O'Shea et al., 2002) or carrying a tray of 
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glasses (Bloem, Valkenburg et al., 2001; Bond & Morris, 2000; Canning, 2005; 

Rochester et al., 2005) influence walking. The decrement observed when PD patients 

execute multiple tasks simultaneously and the implied risk to safety has recently resulted 

in the development of multitask training protocols (Bedeschi et al., 2008; Canning et al , 

2008; Piemonte et al., 2008). Multitask training protocols aim to increase functionality 

through improving the capacity to perform additional tasks concurrent to walking. 

Currently, I am exploring the effects of concurrent music on parkinsonian gait. 

My motivation for this work is an interest in developing an alternative therapy for PD 

patients that while meaningful to the patient, is also ecologically valid and functionally 

relevant. My previous study presented in this thesis indicated that PD patients walk 

differently when listening to music. Specifically, my primary finding was that steady 

state gait performance was compromised in concurrent music trials, a finding that I 

attributed to the attentional load imposed by the novelty of the task. Nevertheless, I do 

recognise that the motor and attentional demands of locomotion in complex everyday 

environments exceed those of steady state gait (Siu et al., 2008). Indeed, the ability to 

safely navigate a cluttered environment may require obstacle negotiation that has been 

identified as an attentionally demanding task (Chen et al., 1996; Schrodt et al., 2004; 

Weerdesteyn, et al., 2003). In this study, I extended my investigation to explore whether 

concurrent music influences the kinematics of obstacle negotiation in PD patients. In the 

non-pathological population, dual task paradigms (obstacle negotiation and secondary 

cognitive task) have been used to determine the attentional demands of successful 

obstacle negotiation. Impaired obstacle crossing in the presence of the secondary task 

(Chen et al., 1996; Kim & Brunt, 2007; Schrodt, Mercer, Giuliani, & Hartman, 2004; Siu 
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et al., 2008; Weerdesteyn et al., 2003) implies dual task interference, a characteristic 

finding when the finite attentional resource capacity of the individual has been exceeded 

by multiple task demands (Kahnemen, 1973). Based on known gait, balance (Koller, 

1989) and attentional deficits (Dalrymple-Alford et al., 1994) experienced by the PD 

population, I hypothesised that PD patients would experience greater difficulty than age-

matched control subjects in successfully negotiating an obstacle and that decrement in 

obstacle negotiation kinematics would be exacerbated when patients concurrently 

listened to music. 

Thus, the purpose of the current study was to define obstacle negotiation 

kinematics of PD patients whilst crossing a three-dimensional obstacle. To achieve this 

goal standard kinematic parameters of obstacle negotiation patterns were investigated. A 

second goal of the study was to explore whether the obstacle negotiation patterns 

characteristic to non-pathological and PD populations were differentially altered by the 

addition of concurrent music. 

4.3 Methods 

4.3.1 Subjects. A total of twenty subjects were included in this study; ten 

patients with idiopathic PD (A/age = 66.6 ± 6.5 yrs; range = 58-76 yrs; Mhdght = 1.68 ± 

0.08m; 5 females; clinical characteristics in Table 4.1) and ten age-matched healthy 

adults (CTRL: Mage = 65.4 ± 6.3 yrs; range = 57-75 yrs; Mheight = 1.66 ± 0.07m; 8 

females). The Human Research Ethics Committee of the University of Lethbridge 

provided ethical approval of the study. All subjects were recruited from the local 

community, with PD patients being recruited through local support groups and 
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neurologists. Subjects provided their informed consent prior to testing. Patients were 

included if they had been diagnosed with idiopathic PD by a consultant neurologist, had 

mild to moderate disease severity as determined by the Hoehn and Yahr scale (Stage II to 

III; Hoehn & Yahr, 1967), had a stable medication regimen (a minimum of 1 month prior 

to commencement of testing) and the ability to ambulate independently without using a 

walking aid. Exclusion criteria for the PD group were disease duration of less than 1 

year, the presence of a neurological disorder or comorbidity likely to affect gait, a score 

of 26 or lower on the Mini-Mental Status Examination (MMSE; Folstein et al., 1975), the 

presence of a hearing deficit or already walking to music. CTRL subjects were included 

if they did not have a hearing deficit, could ambulate independently without the use of a 

walking aid and did not have a neurological disorder or comorbidity that would affect 

gait. 

4.3.2 Protocol. Subjects walked the length of a 10m walkway at a self-selected 

pace, crossing over a dense foam obstacle that was placed at the midpoint of the 

walkway. Six obstacle negotiation trials were performed in two different testing 

conditions, differentiated by the presence of musical accompaniment (no music/music). 

Music (henceforward referred to as salient music) was selected based upon the genre and 

artist preferences of the subject, which were previously determined through a telephone 

interview. The test conditions were counterbalanced between subjects. A practice trial 

was performed prior to the start of data collection. PD subjects were tested a minimum 

of one hour post medication. A trained researcher walking behind each subject ensured 

safety. 
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Table 4.1 Clinical characteristics of Parkinson's disease patients 

Subject Age (yr) Disease Hoehn & UPDRS Medications 
Duration Yahr (III) 
(yr) 

PCI 

PD2 

PD3 

PD4 

PD5 

PD6 

PD7 

PD8 

PD9 

PD10 

71 

76 

73 

62 

74 

65 

58 

61 

66 

60 

3 

4 

9 

1 

8 

2 

12 

13 

10 

2 

2.0 

3.0 

2.0 

2.0 

2.5 

2.0 

2.5 

2.0 

2.5 

2.5 

24 

26 

30 

30 

26 

30 

26 

30 

30 

30 

Levodopa 

Levodopa 

Levodopa 

Pramipexole 

Levodopa 

Levodopa 

Levodopa 

Levodopa, Amantadine 

Levodopa, Amantadine 

Levodopa 

Note. Hoehn and Yahr and UPDRS (III) scores were measured in the ON condition. 
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4.3.3 Apparatus. Reflective markers were placed on the sternal notch and 

bilaterally on the acromion process, lateral humeral epicondyle, ulnar styloid process, 

greater trochanter, lateral femoral condyle, lateral malleolus, the dorsal aspect of the foot 

between the first and second metatarsal, and the calcaneous. Three-dimensional (3D) 

kinematic data were collected using a six camera motion analysis system (Peak 

Performance Technologies and Vicon Motus 9.0 software, Englewood, CO, USA) which 

collected marker positions at a sampling frequency of 120Hz. The obstacle was a dense 

foam block (0.225m high x 0.155m deep x 0.60m wide) placed in the centre of the 

walkway and was visible from trial onset. In the music testing condition salient music 

was played at a self-selected volume via an iPod Nano® (Apple Inc, Cupertino, CA, 

USA) with headphones, which was attached to the participant's waistband. Frontal and 

sagittal video was captured using digital video cameras. 

4.3.4 Data processing. The frequency of obstacle contact was determined from 

video records. Raw marker data were filtered at 10Hz using a low pass fourth-order 

Butterworth filter. Filtered marker data were processed and spatiotemporal parameters of 

gait were calculated using custom written algorithms (Matlab® Version R2007a; The 

Mathworks, Natick, MA, USA). Relevant measures used to assess kinematics of 

obstacle crossing are defined fully in Table 4.2 and illustrated in Figure 1.5. For the 

purposes of this study the lead limb was designated as the first leg to cross the obstacle, 

whilst the second leg to cross the obstacle was identified as the trail limb. For each 

subject, mean values across trials were calculated for all measures and used for analysis. 
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4.3.5 Statistical analysis. Demographic data were summarised descriptively and 

were compared between groups using independent t-tests. All spatiotemporal parameters 

of gait were normalised to leg length to control for anthropometrical differences between 

subjects (Chen et al., 1991; Chen et al , 1994). The effect of music and group on 

normalized spatiotemporal parameters of obstacle negotiation kinematics and obstacle 

contact data were analyzed using separate mixed 2-factor [Group (CTRL/PD) x Music 

(NM/M)] Repeated-Measures Analyses of Variance (RM ANOVA). Post-hoc t-tests 

were used to compare within and between group differences when the RM-ANOVA test 

established statistical significance. Statistical significance was set at 0.05. 

4.4 Results 

Descriptive statistics and summary statistical findings are provided in Table 4.3. 

The incidence of obstacle contacts did not differ between groups or conditions, with zero 

obstacle contacts recorded for each group. 
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Table 4.2 Summary of measures of obstacle negotiation kinematic definitions. 

Parameter Abbreviation 

Step length (m) SL 

Step height (m) SH 

Toe-obstacle distance (m) TO 

Heel-obstacle distance (m) HO 

Velocity of lead limb (m/s) CVLeaci 

Velocity of trail limb (m/s) CVTrau 

Definition 

Length of step taken to cross obstacle defined as horizontal 
distance from trail foot toe-off position to lead foot heel-
contact position. 

Vertical distance between lead foot toe and centre of top 
surface of obstacle during obstacle crossing step. 

Horizontal distance between trail foot toe-off position and 
front edge of obstacle prior to obstacle crossing. 

Horizontal distance between rear edge of obstacle and lead 
foot heel-contact position following obstacle crossing. 

Mean horizontal linear velocity of lead limb during 
obstacle crossing step. 

Mean horizontal linear velocity of trail limb during 
obstacle crossing step. 
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Table 4.3 Summary of descriptive statistics and statistical findings for normalized gait 

parameters in the PD and CTRL groups [mean (SD)J. RMANOVA result (G group, M 

music). 

Parameter 
CTRL PD 

NM M NM M 

G M MxG 

Step length 

Step height 

Toe-obstacle distance 

0.737(0.04) 0.791(0.05) 0.786(0.04) 0.724(0.04) 

0.230(0.04) 0.227(0.06) 0.232(0.02) 0.233(0.03) 

0.320(0.12) 0.376(0.13) 0.407(0.07) 0.347(0.12) 

Heel obstacle distance 0.224(0.01) 0.225(0.02) 0.183(0.02) 0.187(0.02) 

Lead limb crossing velocity (s1) 2.793(0.31) 2.803(0.28) 2.573(0.46) 2.322(0.47) 

Trail limb crossing velocity (s4) 2.581(0.46) 2.609(0.42) 2.593(0.61) 2.207(0.39) 

0.082 

0.083 0.064 

*p < 0.05; **/? < 0.001 

71 



The movement patterns used to cross the obstacle differed between groups. PD 

patients adopted a crossing strategy that was defined by a significantly slower lead limb 

velocity compared to the CTRL group [CVLeacU F(l,18) = 4.723,/? = 0.043]. This group 

difference persisted for both testing conditions (no music/music). The PD group also had 

a tendency to place the heel of their lead foot closer to the obstacle (HO) during the 

crossing step than the CTRL group across both conditions, however, this group effect 

was not significant (p >0.05). Trail limb velocity (CVTraii), toe-obstacle distance (TO), 

step height (SH) and step length (SL) did not differ significantly between the two groups 

(p > 0.05) across the no music and music conditions. Follow-up comparisons of means 

for significant measures in the baseline condition (no music) did not establish any 

statistically significant differences between groups. 

Listening to music whilst walking had a differential effect on obstacle crossing 

kinematics amongst PD patients when compared to CTRL subjects, as confirmed by a 

significant interaction between music and group for trail limb velocity [F(l,18) = 10.919, 

p = 0.004; Figure 4.IB] and strong interactions for lead limb velocity [F(l,18) = 3.900, p 

= 0.064; Figure 4.1A] and toe-obstacle distance [F(l,18) = 3.395, p = 0.082; Figure 

4.2C]. More specifically, in the music trials PD patients used obstacle crossing 

movement patterns defined by slower crossing velocities of the lead (9.8%) and trail 

(14.7%) limbs. In addition, PD patients placed their trail foot considerably closer to the 

front of the obstacle (14.7%) than in the no music condition. In contrast, CTRL subjects 

crossed the obstacle with minimal change to trail and lead limb velocities (1.1% and 

0.4% increase respectively) and a greater distance between the trail foot and the front of 

the obstacle (17.5%) in the concurrent music trails. A similar pattern of differential effect 
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was observed for step length with PD patients decreasing step length (6.2%) whilst CTRL 

subjects increased step length by 9.4% in the music condition, however this interaction 

did not reach significance (p > 0.05; Figure 4.2A). Step height (Figure 4.2B) and heel-

obstacle distance (Figure 4.2D) remained largely unchanged between no music and 

concurrent music trials for both CTRL and PD subjects. 
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Figure 4.1 The effect of concurrent music on normalized crossing velocity of (A) lead 

limb and (B) trail limb in CTRL and PD subjects. Dark bars represent NM trials, whilst 

light bars represent M trials. Data presented are means and standard errors of means. * 

Significant effect of music, t significant effect of group, $ significant music x group 

interaction. 
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Figure 4.2 The effect of concurrent music on normalized (A) step length, (B) step height, 

(C) toe-obstacle distance, and (D) heel-obstacle distance in CTRL and PD subjects. Dark 

bars represent NM trials, whilst light bars represent M trials. Data presented are means 

and standard errors of means. 
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4.5 Discussion 

PD patients are at a considerably greater risk of experiencing a fall than the non-

neurological older adult population (Stolze et al., 2004), with impaired obstacle 

negotiation having been identified as one of the principal causes of falls in the population 

(Stolze et al., 2004). In the present study our purpose was twofold: to define the obstacle 

crossing kinematics of PD patients and to explore whether listening to concurrent salient 

music whilst walking influenced the crossing kinematics of non-neurological and PD 

subjects. Our findings indicated that PD patients and healthy age-matched control 

subjects cross a three-dimensional obstacle differently. Based on existing evidence we 

have interpreted these differences to imply that PD patients adopted a more conservative 

crossing strategy when compared to CTRL subjects. In the concurrent music trials, 

however, PD patients altered their crossing strategy in a fashion that could be considered 

to be more hazardous. Whilst a lack of obstacle contacts indicates that subject safety was 

not compromised, the adaptations to obstacle crossing kinematics observed are 

suggestive that the presence of concurrent music could add to the cognitive load of an 

already attentionally demanding task. 

4.5.1 Obstacle crossing kinematics: PD vs. CTRL. Whilst PD patients and 

CTRL subjects were equally able in avoiding obstacle contact during crossing, PD 

patients adopted a differing strategy to the CTRL subjects in order to safely negotiate the 

obstruction. More specifically, PD patients crossed the obstacle with slower lead limb 

velocity and similar trail limb velocity when compared to the CTRL group. Decreased 

obstacle crossing speed has previously been reported to be a safety strategy, reducing the 

risk of falling in the event of obstacle contact due to reduced forward momentum, 
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allowing greater time for recovery (Patla et al., 1991). Contrary to our expectations PD 

patients did not step as close to the front edge of the obstacle as CTRL subjects during 

the crossing step. However, PD patients did land closer to the obstacle than the CTRL 

group following crossing. The result of the combined foot placement was a longer 

crossing step length amongst the PD patients when compared to CTRL subjects. This 

obstacle crossing behaviour has been described as a safety strategy (Chen et al., 1991; 

Chou & Draganich, 1998). Larger toe-obstacle distances combined with longer step 

length has been associated with a lower risk of tripping on an obstacle. The increased 

time available to reach a suitable crossing height reduces the likelihood of contacting the 

obstacle with the toe of the trail limb during crossing (Chen et al., 1991; Chou & 

Draganich, 1998). However, landing closer to the obstacle following crossing is 

suggestive of an increased risk of heel contact with the obstacle (Chen et al , 1991). 

Whilst this foot placement strategy increases the possibility of a stumble, it may be 

preferable to land closer to the back of the obstacle than step closer to the front of the 

obstacle (Chen et al., 1991). Heel contact with an obstacle may be easier to recover from 

than a trip caused by toe contact (Chou & Draganich, 1997). Alternatively, the short post 

obstacle distance may also be a conscious strategy by the PD patients to increase safety. 

The combination of decreased crossing velocity and increased step length observed 

amongst the PD group results in increased time spent in the unstable single limb support 

phase of the gait cycle. This contrasts the behaviour of PD patients during unobstructed 

walking, which is defined by a longer duration of double limb support. It is feasible that 

PD patients shorten the post-obstacle distance in order to reduce the duration of time 

spent in single-limb support and consequently revert to the more stable double limb 
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support phase of the gait cycle following obstacle crossing (McKenzie & Brown, 2004). 

Double-limb support offers a larger base of support, increasing stability and decreasing 

the likelihood of loss of balance. 

Consideration is warranted regarding the factors influencing the differences 

observed in obstacle crossing strategy between PD patients and CTRL subjects. A 

possibility is that the PD patients perceived increased risks that are presented by obstacle 

negotiation, and accordingly adjusted their gait to offset the apparent risks. Said and 

colleagues (2001) offered a similar suggestion upon observing comparable modifications 

to obstacle crossing strategies in hemiplegic stroke patients. 

4.5.2 Effects of concurrent music on obstacle crossing kinematics. Whilst the 

absolute success rate of obstacle avoidance was maintained, the addition of salient music 

to the task of obstacle negotiation resulted in differing alterations to spatiotemporal gait 

parameters for PD and CTRL subjects. More specifically, CTRL subjects' maintained 

crossing velocity for both the lead and trail limb, whilst slightly increasing the crossing 

step length by stepping further from the front edge of the obstacle prior to obstacle 

crossing. In contrast, PD patients further reduced the crossing velocity of both the lead 

and trail crossing legs. PD patients also demonstrated a considerably shorter crossing 

step length, which resulted from stepping considerably closer to the front edge of the 

obstacle prior to crossing. Both the PD and CTRL group largely maintained the step 

height and landing distance during the concurrent music trials. I note that the alterations 

in crossing strategies demonstrated by the PD patients whilst listening to music are 

similar in nature to those observed amongst healthy control subjects in obstacle 

negotiation studies incorporating a secondary cognitive task (Schrodt et al., 2004; 
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Weerdesteyn et al., 2003). The resemblance of the alterations to the crossing strategy 

with the addition of music amongst PD patients to that displayed during dual task 

obstacle crossing provides support for my previous finding that concurrent music may be 

adding to the cognitive load of the patients. The suggestion that music can be 

attentionally demanding is supported by previous research (Furnham & Strbac, 2002; 

Parente, 1976) examining the effect of concurrent music on cognitive performance in 

non-neurological adults. Studies have found that the concurrent music acted as a 

distracter from the principle task, effectively acting as an additional task and reducing 

residual attentional resources. It would appear that in this study, the attentional resources 

of the CTRL subjects were not exceeded by the demands of simultaneously crossing an 

obstacle and listening to music, as illustrated by the maintenance or improvement in 

obstacle crossing parameters. In contrast, concurrently attending to the demands of 

obstacle negotiation and listening to music appeared to provide challenge for the PD 

patients. Whilst the lack of obstacle contact implied that the resulting alterations to 

obstacle crossing parameter were not particularly hazardous, the alterations do imply the 

possibility of further decrements with increased cognitive demand. 

4.6 Conclusion 

The work presented indicates that PD patients adopt a differing obstacle crossing 

strategy compared to healthy control subjects when negotiating a three-dimensional 

obstacle. Based on current evidence, I have interpreted these alterations to crossing 

kinematics to represent an adaptation to a safer crossing strategy. The addition of 

concurrent music to the obstacle negotiation task produced differing adaptations to 

crossing strategies for the CTRL and PD groups. Specifically, PD patients reduced 
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obstacle-crossing velocities, stepped closer to the front of the obstacle and consequently 

adopted a shorter crossing step whilst the control group increased crossing step length 

and maintained crossing velocities. The findings of this study imply that listening to 

music may impose an additional attentional load for PD patients. In addition, the results 

also support the possibility that the adaptations to obstacle crossing patterns observed in 

concurrent music trials are an accommodation to this attentional load. These finding 

imply that PD patients may be at greater risk of falling in complex environments that 

involve obstacle negotiation and auditory distracters. 
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Chapter 5: General Discussion 

Disordered gait is one of the most disabling features of Parkinson's disease (PD), 

frequently associated with falls (Stolze et al., 2004), loss of functional independence 

(Murphy & Isaacs, 1982; Wenning et al., 1999) and reduction in quality of life (Lyons, 

Pahwa, Troster, & Koller, 1997). It is well documented that cueing can be effective in 

allowing patients to achieve functional gait patterns in both single (del Olmo & Cudeiro, 

2005; Freedland et al., 2002; Hausdorff et al., 2007; Howe et al., 2003; Mcintosh et al, 

1997; Suteerawattananon et al., 2004; Thaut et al., 1996) and dual task (Baker et al., 

2007, 2008; Canning, 2005; Morris et al., 1996; Rochester et al., 2004; Rochester et al., 

2007) contexts. More specifically, auditory cues can bring about immediate 

improvements in gait velocity (Howe et al., 2003; Mcintosh et al., 1997; 

Suteerawattananon et al., 2004), stride length (Mcintosh et al., 1997), and cadence 

(Freedland et al , 2002; Howe et al., 2003; Mcintosh et al., 1997; Suteerawattananon et 

al, 2004) in single task situations, and in combination with attentional strategies, can 

significantly improve dual task gait performance (Baker et al., 2007, 2008). However, 

auditory cueing could be considered to lack salience and be monotonous, the latter being 

a trait which may lead to habituation (Cubo et al., 2004) and ultimately a loss of 

effectiveness or discontinuation of use. In an attempt to address the issues of salience 

and monotony associated with contemporary auditory cueing strategies, there is a need to 

identify an alternative therapy that not only provides the necessary temporal stimuli, but 

is also meaningful to the individual. Given the ability of music to facilitate movement in 

both healthy (Bernatzky et al., 2004; Copeland & Franks, 1991) and pathological 

(Mcintosh et al., 1996; Thaut et al., 1997, Thaut et al. 1999; Thaut et al., 2007) 
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populations the experiments presented in this thesis sought to determine the effect of 

salient music on gait performance amongst patients with PD. This thesis represents the 

first step towards a long-term goal of developing an alternative therapy that whilst 

functionally and ecologically relevant is also significant to the individual. 

5.1 Effects of Salient Music on Steady State Gait and Dual Tasking 

The first experiment presented in this thesis investigated the effect of salient 

music on single (steady state) and dual task gait performance in both non-neurological 

and PD patients. My hypothesis for this experiment based on the phenomenon that music 

can stimulate movement was that concurrent music trials would improve bradykinesia in 

the PD patients across both single and dual task contexts, as demonstrated by an increase 

in overall gait speed and stride length and a decrease in the time spent in double limb 

support (DLS). 

In accordance with previous studies (Knutsson, 1972) the gait of PD subjects 

was found to be bradykinetic when compared to CTRL subjects in the baseline 

condition (no task, no music). Specifically, the PD group demonstrated a slower gait 

velocity, decreased stride length and an increased proportion of time spent in DLS. 

These group differences were maintained across all four testing conditions. Also 

consistent with earlier research (Bloem, Valkenburg et al., 2001; Bond & Morris, 2000; 

Camicioli et al., 1998; Canning, 2005; Dubost et al, 2006; Hollman et al., 2007; Lajoie 

et al., 1993; Lindenberger et al , 2000; Lundin-Olsson et al., 1997; Morris et al., 1996; 

O'Shea et al., 2002; Rochester et al., 2005; Verghese et al., 2007), a decrease in gait 

performance accompanied dual task trials for both the CTRL and PD subjects when 

compared to single task situations. I found that the PD group tended towards 
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articulating more verbalisations and producing a greater percentage of errors than the 

CTRL group during the dual task. However, interestingly and contrary to my 

expectations, the dual task decrement in gait was not significantly greater for PD 

patients than for CTRL subjects. The lack of exacerbated dual task gait performance in 

the PD group could be indicative that the motor-cognitive task combination was not of 

sufficient difficulty to impose demands on the attentional capacity or the ability to 

adequately allocate attentional resources that exceeded those of the CTRL subjects. 

This would be in agreement with the work of Galletly and Brauer (2005) who found that 

the dual task decrement demonstrated between PD and CTRL subjects was equivalent 

when the secondary task was relatively simple. An alternative explanation for the 

comparable dual task decrement was that PD patients were correctly prioritizing their 

gait over the accurate completion of the secondary cognitive task; this would contrast 

the results of previous studies that have indicated that PD patients typically incorrectly 

prioritize the secondary task (Bloem et al., 2006). This would allow PD patients to 

maintain a stable, safe gait pattern at the expense of accurately completing the cognitive 

task. However, it is also plausible that the PD group experienced greater difficulty in 

completing the cognitive task than the control group due to the impairments in executive 

function that are associated with PD (Dalrymple-Alford et al., 1994; Rochester et al., 

2005; Yogevetal., 2005). 

The findings indicated that concurrent salient music produced differential results 

between the PD and CTRL group. Whilst these results were supportive of the theory 

that there is direct coupling between the auditory and motor systems, the findings were 

contrary to my hypothesis. Specifically, in the single task context PD patients 
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demonstrated a marginal decrease in gait performance when listening to concurrent 

music, gait alterations that were very similar in nature to those produced by the dual task 

effect when performing a secondary cognitive task. The detrimental effect of music that 

was seen in the PD patients was further exacerbated in the dual task context. In 

contrast, the gait performance of the CTRL subjects remained largely unchanged with 

concurrent music in the single task condition, with a marginal increase in gait 

performance observed during the dual task trials with concurrent music. The number of 

verbalisation articulated by the PD and CTRL groups was unchanged by the presence of 

concurrent music, however, the number of errors in verbalisations tended to increase for 

the PD group and decrease for the CTRL group with concurrent music. The fact that my 

study found an increased detriment in the ongoing performance of both the motor and 

cognitive tasks for PD patients in the dual task trials with concurrent music was 

indicative that concurrent salient music could be increasing cognitive demands for the 

PD patients, which in turn may affect the attentional control of gait. It was interesting 

that the detrimental effects of concurrent music to gait in the PD group were mainly 

confined to the measure of double limb support. It is possible that the PD patients were 

actively accommodating the additional cognitive demand of the concurrent music, 

increasing stability by reducing the amount of time spent in the unstable single limb 

support phase of the gait cycle. 

The findings presented in this thesis are in contrast to previous studies (Mcintosh 

et al., 1997; Thaut et al., 1996) that found music to be facilitatory to parkinsonian gait. 

However, previous researchers used original instrumental pieces that had an accentuated 

beat and had been specifically written to enable the subject to synchronize their stepping 
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pattern to the tempo of the music (Mcintosh et al., 1997; Thaut et al., 1996). The 

synchronization between cadence and the music tempo resulted in significantly reduced 

gait variability (Thaut et al., 1996) and increased gait velocity (Mcintosh et al., 1997; 

Thaut et al., 1996). In the experiments presented in this thesis the tempo of the music 

was not determined prior to testing, the important quality of the music being considered 

to be the salience to the individual. So, whilst the opportunity existed for subjects to 

match their cadence to the tempo of the music and this could potentially be the cause of 

decreases in gait velocity, this was not our intention. Subjects were not instructed to 

synchronize their walking to the music; they were simply instructed to listen to the 

music whilst carrying out the single and dual tasks. Music tempos were determined 

post-testing and the tempo ranges were found to be wide-ranging, however these 

differences were not significantly different between the two groups. Overall, the results 

from this experiment provide further evidence for multitasking limitations faced by PD 

patients (Bloem, Valkenburg et al , 2001; Bond & Morris, 2000; Morris et al., 1996; 

O'Shea et al., 2002; Rochester et al., 2004). 

5.2 Effects of Salient Music on Obstacle Negotiation 

The second experiment presented in this thesis explored both the crossing strategy 

of the PD group and the effect of concurrent music on obstacle negotiation in both non-

neurological and PD subjects. I hypothesised that PD patients would demonstrate 

characteristics consistent with bradykinetic gait when obstacle crossing. More 

specifically, I expected that obstacle crossing velocities, obstacle clearance heights and 

crossing step lengths would be reduced amongst PD patients when compared to CTRL 

subjects. Based on the findings of Experiment 1,1 hypothesised that concurrent music 
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trials would produce a decrement in spatiotemporal parameters of obstacle negotiation 

for PD subjects. A decrement would specifically be considered to be a considerable 

decrease in obstacle crossing velocities, obstacle clearance height, and crossing step 

length. Any or all of these alterations to obstacle crossing kinematics could be 

associated with an increased risk of obstacle contact and therefore a more hazardous 

obstacle crossing strategy (Chen et al., 1991). 

Contrary to my hypothesis, but in agreement with previous research investigating 

obstacle-crossing strategies in neurological populations (Said et al., 2001) the PD group 

demonstrated an increased crossing step length (as a result of a stepping considerably 

further from the front of the obstacle) when compared to the CTRL subjects in the no 

music condition. However, consistent with my hypothesis the PD group crossed the 

obstacle considerably slower with the lead limb when compared to the CTRL group in 

the no music condition. It has previously been suggested (Chen et al., 1991; Chou & 

Draganich, 1998) that increased crossing step height and length is an indication of a 

'safer' crossing strategy, as it reduces the risk of contacting the obstacle during 

crossing. In addition a reduced crossing velocity could also be considered a safety 

strategy, with the associated reduction in forward momentum reducing the risk of 

falling in the event of obstacle contact (Chou et al., 2001; Pai & Patton, 1997). 

Conversely, slower obstacle crossing velocities could be deemed to be 'risky' due to the 

increased length of time that would be spent in the unstable single limb support phase of 

the gait cycle. It is possible that the PD patients made a conscious decision to adopt a 

safer obstacle crossing strategy due to an awareness of the increased difficulty that they 

may encounter due to gait and attentional limitations (Dalrymple-Alford et al., 1994; 
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Roller, 1989). A similar explanation was posited by Said and colleagues (2001) who 

suggested that the increase in clearance height and crossing step length witnessed in 

hemiplegic stroke patients was a conscious adaptation of a safer strategy in order to 

compensate for known gait deficits. 

The addition of concurrent music to obstacle negotiation trials resulted in 

differential alterations to obstacle crossing kinematics between the CTRL and PD 

group. The obstacle crossing kinematics of the CTRL subjects displayed a slight 

increase in crossing velocities (lead and trail limbs) and placed their trail limb further 

from the front of the obstacle (resulting in a longer step length) during the concurrent 

music trials. In contrast, the PD patients further reduced the crossing velocities of the 

lead and trail limbs, and decreased the crossing step length through stepping closer to 

the front edge of the obstacle. Crossing step height and the distances between the lead 

heel and the rear of the obstacle were largely unaffected by the presence of concurrent 

music in both groups. These alterations to obstacle crossing kinematics amongst PD 

patients are comparable to those reported in the dual task literature (Chen et al., 1996; 

Schrodt et al., 2004; Weerdesteyn et al., 2003), where a secondary cognitive task was 

coupled with obstacle negotiation. This supports the findings reported for the first 

experiment, and substantiates the possibility that concurrent music imposes an 

additional cognitive load. 

5.3 Implications of Results 

The alterations to steady state gait and obstacle negotiation kinematics observed 

with the addition of concurrent music in the studies presented in this thesis are 
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comparable to those reported in the dual task literature (Bloem, Valkenburg et al., 2001; 

Bond & Morris, 2000; Camicioli et al., 1998; Chen et al., 1996; Schrodt et al., 2004; 

Weerdesteyn et al., 2003), in which behaviour changes imparted by a concurrent 

congnitive task confirm an interplay between cognitive and motor systems. The 

differential effect of music on motor performance between CTRL and PD subjects 

substantiates the theory posited by Thaut and colleagues (1997) that music has the 

ability to.evoke movement through the coupling of the motor and auditory systems. 

Nonetheless, the differential effect of music on motor performance warrants further 

investigation. One possibility for the explanation of the gait deficits observed for the 

PD patients in the concurrent music trials is based on our previous suggestion that 

listening to salient music added to the cognitive load of the patients, effectively acting 

as an additional task. It is well documented (Bloem, Valkenburg et al., 2001; Bond & 

Morris, 2000; Camicioli et al., 1998; Canning, 2005; Morris et al., 1996; O'Shea et al., 

2002; Rochester et al., 2004; Yogev et al., 2005) that individuals suffering from PD are 

required to assign greater attentional resources to the control of gait when compared to 

the non-neurological population; in part due to disruption in the automaticity of 

movement control (Brown & Marsden, 1988; Georgiou et al., 1993). It is considered 

that the conscious motor control utilised by the PD patients enables the movement to be 

redirected away from movement pathways through the dysfunctional basal ganglia 

(Cunnington, Iansek & Bradshaw, 1999), resulting in successful movement execution 

but diminished residual attentional resources. Therefore, if concurrent music is also 

imposing a cognitive load, residual attentional resources will be further reduced. This 
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scenario increases the opportunity for finite attentional capacity to be exceeded, leading 

to a detriment in one or more of the tasks. 

An alternative explanation for the diminished gait performance that was observed 

in the PD group during the concurrent music trials is the idea that the PD patients were 

aware of the added cognitive demand that the presence of music presented. Therefore 

in order to accommodate the added attentional load, PD patients allocate attentional 

resources towards adopting a more conservative gait pattern (i.e. slower speed, shorter 

strides, longer duration of DLS). It is often suggested that a more conservative gait 

pattern could reduce the risk of falling, however, in the parkinsonian population where 

efficient forward progression is already compromised further decreases in stride 

amplitude and speed could result in difficulty in successfully negotiating a complex 

environment (i.e. safely navigate an obstacle), and in the most extreme situation a 

complete cessation of movement could occur. 

A third consideration is that the music selections used in this study were self-

selected by the subjects, making it highly probable that selections were made due to an 

emotional or motivational connection to the song. The outcome of this 'connection' 

could be an increase in arousal level, which we would expect to be reflected in 

increased gait speed and stride length as well as a decrease in DLS in the single and 

dual task situations, or an increase in crossing velocities, obstacle clearance and step 

length during obstacle negotiation which is contrary to our findings for the PD group. 

Alternatively, the subject may actively attend to the music, which would cause 

diminished gait performance in the event of attentional demands exceeding the 

individuals' resource capacity. Whilst my findings propose support for the second 
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suggestion this could not be confirmed by the present study. Previous studies controlled 

for motivational and emotional influences from the music used as a cueing strategy by 

using the same original instrumental pieces for all subjects (Mcintosh et al., 1997; 

Thaut et al., 1996). It was proposed that the repetitiveness and low complexity of the 

music reduced the affective arousal imposed by the music (Berlyne, 1971) through 

redundancy of the perceptual process. 

5.4 Therapeutic Implications 

Whilst the use of salient music may theoretically be an attractive alternative to 

traditional auditory cueing techniques due to the simplicity, portability, and salience of 

the strategy and technology, the findings introduced in this thesis suggest that gait 

performance is compromised in PD patients when simultaneously listening to salient 

music. I suggest that listening to music acted as a cognitive distracter for the PD 

patients with a dual- or triple-task situation being created by the addition of concurrent 

music. This notion is supported by research investigating music as a distracter during 

cognitive tasks in the young non-neurological population (Furnham & Strbac, 2002; 

Parente, 1976). These studies found that cognitive performance was diminished in the 

presence of concurrent music. My findings have primary implications for PD patients 

who may enjoy listening to music whilst walking or exercising. They imply that PD 

patients may be increasingly vulnerable to gait impairments in situations that present 

complex environments or challenging multitask situations, which require considerable 

attentional resources to safely navigate or successfully complete, potentially increasing 

the risk of falls. Therefore, I would suggest that PD patients should use caution when 

walking in complex environments where auditory distracters may be present. 
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The results presented suggest the possibility of using in salient music as a 

secondary task during multi-task training. Multitasking has long been identified as 

being problematic for PD patients (Bloem, Valkenburg et al., 2001; Bond & Morris, 

2000; Camicioli et al., 1998; Canning, 2000; Morris et al., 1996; O'Shea et al., 2002; 

Rochester et al., 2004; Yogev et al., 2005), and has often been associated with an 

increased risk of falling (Bloem et al., 2006). Traditionally, clinicians and researchers 

have suggested that patients should avoid situations that impose a dual or multitask 

(Bond & Morris, 2000; Morris et al., 1996; Morris, 2000). However, recognition that 

avoidance strategies can be not only impractical, but potentially also compromise the 

independence of PD patients has led to the emergence of studies involving multitask 

training protocols (Bedeschi et al , 2008; Canning et al., 2008; Piemonte et al., 2008). 

The intention of these training protocols is to improve the ability of PD patients to 

perform tasks simultaneous to walking, thereby increasing the patients functionality. 

With the risk of falling that accompanies multitasking in the PD population (Bloem et 

al , 2006), I suggest that concurrent music would be an ecologically relevant and gentle 

entry-level secondary task during training. 

5.5 Future Research 

My finding that listening to concurrent music was detrimental to parkinsonian gait 

does not negate the need for further research into the possibility of using salient music as 

a training tool in gait rehabilitation. It is probable that the detrimental effects of music on 

gait performance demonstrated in the studies presented could result at least in part from 

the novelty of the music presentation. The study populations had not previously been 

exposed to the use of a portable music player, nor walking to music. In the case of the 
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PD patients who must actively attend to their walking even in the simplest of contexts 

(Woollacott & Shumway-Cook, 2002) the additional attentional load imposed by the 

novel strategy causes attentional resources to be exceeded, causing a decrease in gait 

performance. In agreement with the premise of multitask training we would consider that 

repeated exposure to using a portable music player and music during walking might 

offset any negative effects that were present in the baseline testing. 

The wide tempo range of the music play lists selected by the subjects of the study 

may have influenced the findings of these studies. The tempos of the music selections 

were not controlled in the experiments included in this thesis, nor were they matched to 

the subjects' cadence. My intention in these experiments was not to duplicate the known 

effect of cadence-tempo synchronization amongst PD patients, but instead to explore the 

effect of concurrent music on spatiotemporal parameters of gait using music selections 

that are meaningful to the listener. However, it is more than possible that the tempo 

range of the music contributed to the gait deficits exhibited by the PD patients. I suggest 

that gait training with cadence-matched salient music will address the issues of potential 

sensorimotor coupling whilst retaining the benefits associated with salient music. 

5.6 Limitations 

Whilst considering the findings of this thesis note should be taken of certain 

limitations. The first limitation of the studies presented is the small sample size, with a 

total of 10 subjects in each of the PD and CTRL groups. Whilst the small sample size 

was considered acceptable due to the investigatory nature of the study, further 

investigations with a sample size that provides apposite power would be necessary to 
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substantiate these findings. Additionally, the subjects in the patient group were very 

homogeneous, they were all non-demented and independently mobile with mild to 

moderate disease severity, therefore the findings presented in this thesis could not be 

extrapolated to the wider PD population. Studies incorporating patients of varying 

severity would allow for the wider application of results. 

A second limitation of this thesis is the lack of synchronisation between the data 

collection and music presentation. This is regrettable, as synchronisation of the data 

collection and music would have allowed us to address the issue of sensorimotor 

synchronisation. Previous studies of auditory cueing for gait rehabilitation (Miller et al., 

1996; Thaut et al., 1996) have utilised the phenomenon of auditory-motor coupling to 

improve gait performance through actively increasing cadence and therefore indirectly, 

gait velocity. It was not my intention to replicate these previous studies; however, it is 

natural to attempt to synchronise rhythmic body movements to external temporal 

information (Large, 2000), synchronisation of data collection and music presentation 

would have allowed the exploration of this possibility. 

Music selections were played through portable music players in which audio 

output was directed through small headset speakers (earbuds). This method of delivery 

presented specific limitations that cannot be overlooked in this study. Firstly, I did not 

control for music amplitude, the relationship between music amplitude and 

motor/cognitive performance has been identified as being highly complex (Turner, 

Fernandez, & Nelson, 1996). Therefore the lack of standardised music amplitude may 

have been a confounding variable. It is considered that arousal levels and as a result 

performance (motor or cognitive) are directly affected by music amplitude, with optimal 
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motor or cognitive performance occurring at an optimal amplitude (Turner et al., 1996). 

In addition, in this study the music was presented via a personal music player using 

earphones, which would focalise the music for the participant, potentially drawing their 

attention towards the music and reducing the potential distraction of alternative auditory 

cues in the environment. Therefore, it would not be possible to generalise the findings 

from this study to situations where the same music was presented 'free-form'. 

Alternative methods of music presentation with music amplitude controlled as a 

percentage of the participants comfort level would potentially broaden the application of 

the results. 

A third potential limitation of this study is the lack of a measure of gait variability. 

The measures selected for each section of the study were based on both previous studies 

(McKenzie & Brown, 2004; Morris et al, 1996; O'Shea et a l , 2002) and the capabilities 

of the motion analysis system. Gait variability has been identified as a predictor of falls 

during steady state and dual task gait in both the healthy older adult (van Iersel et al., 

2007; Yogev et al., 2007) and PD population (Yogev et al., 2005; Yogev et al., 2007), as 

such it could be considered to be an important measure to include when attempting to 

develop a training strategy to improve gait performance. Previous studies that have 

utilized rhythmic auditory cueing in the form of a simple metronome tone (del Olmo & 

Cudeiro, 2005; Hausdorff et al., 2007) and instrumental music (Thaut et al., 1996) have 

demonstrated improvements in gait variability, suggestive that they also reduce the risk 

of the falls that are so prevalent in the PD population. Though gait performance was 

reduced in the concurrent music trials for the PD group, it remains possible that gait 

variability may have been improved. 
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Finally, the obstacle negotiation study may have benefited from addition data 

collection on the steps preceding that of obstacle crossing, as it has been found that 

adaptations to the gait pattern in order to successfully cross the obstacle take place a 

minimum of one step prior to crossing in the healthy older adult population (Chen et al., 

1994). It would be of interest to determine if this strategy differed between non-

neurological subjects and PD patients as this could conceivably affect the ability of the 

individual to safely navigate an unexpected obstacle, which in turn has implications with 

regards to fall risk. 

5.7 Conclusions 

The purpose of this thesis was to investigate the effects of concurrent salient 

music on gait in Parkinson's disease patients. My findings suggest that the novel 

presentation of concurrent music is detrimental to parkinsonian gait, exacerbating gait 

impairments inherent to the disease. More specifically, spatiotemporal parameters of gait 

(gait velocity, stride length, percentage of the gait cycle in double limb support) became 

increasingly bradykinetic in a single task context with concurrent music. Interestingly, 

this decrease in gait performance reflected that which is observed in Parkinson's disease 

patients when asked to perform a cognitive task simultaneous to walking. When music 

was added to a true dual task context the gait deficits displayed in the single task were 

further exaggerated. I interpreted these findings to indicate that novel exposure to 

concurrent music imposes an attentional load for the Parkinson's disease patients. This 

notion was supported by the results of the second experiment presented in this thesis. 

During obstacle crossing the presence of concurrent music was accompanied by a 

decrease in obstacle negotiation kinematics (crossing speed and crossing step length), an 
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alteration to crossing strategy that resembled that observed in the healthy population 

during dual task obstacle crossing. 

The findings of my thesis support the theory that there is indeed coupling between 

the auditory and motor systems. In addition they substantiate the literature on 

multitasking limitations amongst the Parkinson's disease population. Taken in 

combination my findings imply that listening to music during gait is attentionally 

demanding for Parkinson's disease patients, and can effectively act as an additional task. 

With the risk of falling that is associated with multitasking in the Parkinson's disease 

population this proposal has an implication for safety, suggesting an increased risk of 

experiencing a fall in complex environments in an already vulnerable population. 

However, whilst novel exposure to concurrent salient music has not proven to be 

facilitatory to parkinsonian gait, we suggest that training with concurrent salient music 

that has a narrow range of tempos warrants further investigation. Salient music offers an 

attractive alternative to contemporary auditory cueing strategies in the context of gait 

rehabilitation, addressing both the need of rhythmic temporal stimuli and salience to the 

individual. The results presented also suggest a complementary role for concurrent music 

in multitask training protocols aimed at improving patient functionality. 
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