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Abstract 

Wind turbine and photovoltaic (PV) technologies will play a significant role in the 

world energy future. However, a lack of awareness of the potential of renewables is a 

significant challenge in sustainable energy development. The potential of solar and wind 

energy sources in producing electricity to meet the electrical demands of the University of 

Lethbridge was evaluated. Furthermore, expanding the research to a large area, a multi-

criteria approach based on geographic information systems (GIS) and light detection and 

ranging (LiDAR) was developed to estimate rooftop photovoltaic potential of buildings in 

an urban environment, the City of Lethbridge. The unreliability of renewable resources is 

an impediment to developing renewable projects. An optimal sizing strategy was developed 

using a particle swarm optimization (PSO) technique to determine the optimum 

configuration of photovoltaic panels, wind turbines and battery units minimizing the annual 

system cost while maximizing the reliability of the hybrid system. 
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Chapter 1: Introduction and Study Scope 

Extensive energy generation and consumption are the main anthropogenic sources of 

greenhouse gas emissions and air pollution (two-thirds of all human-induced GHG 

emissions) (International Energy Agency 2015). Unless sufficient countermeasures are 

taken in the energy sector, the progressive deterioration of the environment related to these 

emissions will continue (International Energy Agency 2015). The world energy sector is 

facing dramatic structural and technological changes. The transition is driven by concerns 

for the environment, for energy supply security and independence, and global and regional 

energy availability, cost and competitiveness. Fossil fuels production and use have 

immense environmental impacts. Establishing a new energy system that supplies sufficient, 

reliable energy while protecting global and regional environments is imperative. The global 

significance of anthropogenic climate warming is driving rapid adoption of renewable 

energy sources. While this transition is just beginning, it creates enormous opportunities 

and similar scale challenges due to the complexity of design and installation of 

sophisticated renewable energy technologies and resources (World Energy Council 2016).  

In general, renewable energy sources have lower adverse environmental impacts than 

fossil fuels particularly greenhouse gas emissions. Engineers, scientists, investors, decision 

makers, and society recognise we must transition to large scale renewable energy utilization 

(Shahzad 2012). The development of renewable energy sources as the main component of 

energy transition plays a vital role in reducing reliance on fossil fuels, combats climate 

change, preserves the environment, and reduces energy poverty by providing local clean 

energy (Jacobson et al. 2017). The renewable energy transition requires the allocation of 

all available resources from all sectors.  
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Investment in renewable energy sources has increased in many countries (L. Sawin 

et al. 2018). Globally, 178 GW of renewable energy capacity was added worldwide in 2017, 

representing 70% of the new energy generation capacity constructed. This is the highest 

ever global annual increase in renewable power production capacity to date – but this is not 

at all satisfactory progress (L. Sawin et al. 2018). Humanity needs a rapid transition off 

carbon-based fuels.  

1.1 Alberta’s Role in Reducing Electrical Sector GHG Emissions 

Canada has one of the highest GHG per capita emissions globally, and emitted 1.6% 

of total global GHG emissions in 2014 (Government of Canada 2018). As a first world 

nation, Canada must take responsibility for dramatic reductions in per capita emissions. 

Canada ranked fourth globally in renewable power generation in 2015, and from 2005 to 

2015, the share of power produced from all renewable energy sources in the country’s total 

generated power increased from 60% to 65% (Lis et al. 2016). Existing hydro is the biggest 

source of electricity in Canada - 59.6% of total electricity generation from 2005 to 2016. 

Other renewable energy sources increased from 1.5% to 7.2% of total electricity generation 

since 2005 (Canada National Energy Board 2018). The increase is mostly wind energy, 

which grew from 684 MW capacity in 2005 to 12 GW in 2016 (Canadian Wind Energy 

Association 2017).  

The electricity sector accounted for 11% of greenhouse gas emissions (GHGs) in 

Canada in 2015 (Lis et al. 2016). In Alberta 87.7% of electricity generation was from coal 

and natural gas in 2016 (Canada National Energy Board 2018). Because of this heavy 

reliance on fossil fuels for power generation, 57% of Canada’s electricity GHG emissions 

were produced by Alberta in 2014 (Lis et al. 2016). Emitting 790 g of GHGs per kWh 
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electricity generation, Alberta has the highest GHG generation intensity in Canada 

(Canada’s average is 140 g GHG/kWh) (Canada National Energy Board 2018). 

Renewables accounted for 12.3% of Alberta’s electricity generation in 2016, with wind as 

the primary renewable power source (Canada National Energy Board 2018). 

Alberta has a deregulated market and renewable facilities may not always be able to 

adjust and sell their produced power when electricity prices are higher, leading to lower 

average income compared with other power generators (Lis et al. 2016). Furthermore, the 

intermittent nature of wind and solar induces these resources to fail on demand power 

production for Alberta’s large industrial sector, and makes backup supply sources a vital 

factor for reliable renewable energy deployment (Lis et al. 2016).  

Alberta is endowed with outstanding wind and solar resource potential. Wind in 

Alberta is now the cheapest and most affordable source of new electricity. Wind now meets  

7% of the province’s electricity demand approximately, sufficient electricity for 380,000 

average sized homes (Canadian Wind Energy Association 2018). The annual solar energy 

resource in Alberta is estimated at about one million-billion kWh. Canada consumed 1,784 

petajoules (about 496 billion kWh) total electricity energy in 2015 (Natural Resources 

Canada 2018a). The solar energy resource in Alberta is approximately 2000 times the total 

annual electricity consumption in Canada!  Alberta is a sunny province. Edmonton, at the 

same latitude (53.5° N) as Manchester, UK, has a yearly solar energy resource 20% larger. 

Solar electricity is expected to satisfy 100,000 Albertan households annual power demand 

on average by the end of 2018. The role of solar energy in Alberta’s energy mix is expected 

to grow considerably due to continuous rapid reductions in cost of solar electricity 

(Canadian Solar Industries Association and Energy Efficiency Alberta 2018).  



4 
 

The Alberta climate leadership plan (CLP, November 2015) is designed to stimulate 

more renewable energy development and higher energy efficiency investments 

(Government of Alberta 2017). The CLP targets were new carbon pricing, phasing out 

emissions from coal electricity power plants, and increasing the share of renewables in 

Alberta’s total electricity generation by 30% by 2030 (Government of Alberta 2017). The 

government of Canada is also committed to phase out coal power plants by 2030 to reduce  

GHGs (Natural Resources Canada 2018b).  

To facilitate the deployment of solar photovoltaic (PV) and wind energy technologies 

and achieve higher solar PV and wind penetrations, exhaustive research on these systems’ 

regional and local performance, potential, and cost is required. Accurate and reliable 

renewable energy resource evaluation is the cornerstone of any renewable energy planning 

and transition (Hermann et al. 2014). In fact, spatial and temporal availability assessment 

of renewable energy resources is necessary to utilize these resources efficiently 

(Ramachandra 2006). GIS and Remote Sensing (RS) are two key tools that are used to 

evaluate renewable energy resources temporally and spatially (Ramachandra 2006). An 

accurate and complete assessment of renewable energy capacity can be created by 

incorporating GIS and RS in energy system modeling (Resch et al. 2014). This research 

developed a series of energy models for assessing the local potential of solar and wind 

energy; and for optimal engineering development and design of renewable generation 

capacity.   

1.2 Thesis structure 

This is a refereed paper format thesis. Chapter 1 presents the introduction, 

background, scope and objectives. Chapter 2, currently under review, is titled: A 



5 
 

comprehensive assessment of solar and wind energy potential at the University of 

Lethbridge campus. Chapter 3, titled: Evaluating solar energy technical and economic 

potential on rooftops in an urban setting: the city of Lethbridge, Canada is published in the 

International Journal of Energy and Environment Engineering (Kouhestani et al. 2018). 

Chapter 4, titled: Multi-criteria PSO-based optimal design of grid-connected hybrid 

renewable energy systems will be submitted shortly for publication. Chapter 5 provides an 

overall summary and conclusions for all chapters.  

Chapter 2 employs light detection and ranging (LiDAR) data, aerial photography, and 

historical weather data to conduct a feasibility assessment of solar photovoltaic (PV) and 

wind turbine electricity potential for the University of Lethbridge campus, southern 

Alberta.  

Three essential factors that govern solar PV energy generation include local solar 

resource, the size of PV systems, and the performance ratio of the systems (Sun et al. 2017). 

Two types of general solar PV electricity generation application models include large-scale 

PV facilities for non-built up suitable areas and rooftop PV systems for built-up areas (Sun 

et al. 2017). For wind energy, power curves can be employed to evaluate the wind turbine 

energy potential using measured wind speed data (Sohoni et al. 2016). Wind energy is 

gaining more attention among researchers and investors as the efficiency of wind turbines 

is increasing and their cost is reducing. Feasibility study concerning both energy production 

analysis and economic analysis is the most essential factor in higher wind deployment 

(Quan and Leephakpreeda 2015). This research investigates the ability of local renewables 

electricity generation to meet local demand based on measured local weather data and local 

geographic and land use characteristics. 
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Chapter 3 addresses rooftop PV energy production assessment in a large urban 

environment with intricate natural and built-up structures. A simulation and modelling 

framework and strategy for evaluating the potential of solar PV over a large area, City of 

Lethbridge’s rooftops, is presented. City level energy reorientation is an indispensable 

element for efforts and plans that target energy and climate change crises (Byrne et al. 

2015). Cities consume much electricity, but within cities, many areas provide opportunities 

for local infrastructures for solar energy production. Rooftops are often a neglected location 

for solar electricity generation in cities (Byrne et al. 2015).  

Urban environments can enhance their sustainability by employing renewable energy 

resources, and PV, among different micro-generation technologies, has the highest 

potential to contribute in future energy mix (International Renewable Energy Agency 2016, 

Gooding et al. 2013). Widespread utilization of rooftop distributed PV systems can 

technically supply a substantial amount of cities’ annual electricity consumption, for 

example 30% of the annual electricity consumption of the City of Seoul, South Korea 

(Byrne et al. 2015). In Canada, installing solar panels on the residential building rooftops 

could supply approximately 50% of residential electricity demand (Natural Resources 

Canada 2017a) . In addition, electricity distribution and transmission costs and losses can 

be reduced by onsite PV electricity production (Gagnon et al. 2016).  

Cities’ intricate and dense environments consist of diverse artificial and natural 

elements which make it challenging to model and evaluate rooftop PV electricity potential 

(Byrne et al. 2015, Kanters and Davidsson 2014). This intricacy increases the rooftops 

attractiveness as a valuable location for harnessing solar energy (Redweik et al. 2013). 

Urban rooftop PV potential evaluation is complicated and requires the consideration of 
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factors such as building heights and trees, urban morphology, and urban densities (Byrne 

et al. 2015, Huang et al. 2015).  

The scale of the study area and data availability are two important factors that usually 

determine the methodology employed for rooftop PV potential estimation (Byrne et al. 

2015, Gooding et al. 2013). Sample methodology, multivariate sampling-based 

methodology, and complete census methodology are three primary categories for different 

methods used to estimate PV potential in urban settings (Byrne et al. 2015). Sample 

methodology which is usually used for large areas evaluates the available roof surfaces, 

and allows meaningful extrapolation of results to a larger total area. A multivariate 

sampling-based methodology evaluates PV available rooftop surface area based on 

relationship(s) between population density, building densities, and rooftop areas (Byrne et 

al. 2015, Gooding et al. 2013). Complete census methodology uses statistical data sets (e.g. 

buildings footprint area), cartographic data sets (digitized model of the study area), and 

software packages (e.g. GIS) to estimate the whole rooftop surface in the study area (Byrne 

et al. 2015). 

LiDAR technology has the ability to provide a wealth of information about the 

complex environment of urban areas and can be used to model various features of cities 

(Huang et al. 2015). The effective and suitable roof area for solar PV cell installations can 

be assessed more effectively by utilizing LiDAR data.  

In Chapter 2 and 3, the solar radiation resources are evaluated using a new 

methodology that employs measured solar data and ArcGIS. Accurate estimation of the 

solar resource is always a crucial task in solar PV energy generation assessments and solar 
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PV systems design (Mohanty et al. 2016). The diffuse proportion of global radiation and 

the transmittivity as two essential inputs of ArcGIS’s Solar Analyst tool are computed for 

the study region employing this new methodology.  

In Chapter 4, the discussion recognizes renewable energy generation often cannot be 

estimated accurately due to intermittency (Bhandari et al. 2015). Therefore, renewables are 

known as unreliable energy sources which need large capital investments (Bhandari et al. 

2015, Wang and Singh 2008). A hybrid renewable energy system (HRES) that integrates 

various renewable energy sources is considered as a propitious solution to this unreliability 

(Nafeh 2011). Chapter 4 returns to solar and wind electricity generation potential 

assessment at the University of Lethbridge campus. To achieve a balance among costs, 

emissions, and load availability, the feasibility of integrating these renewable sources with 

battery storage is evaluated in chapter 4. Cost-effective grid-linked hybrid systems with 

reliable energy generation are designed.   

Battery storage mitigates renewable intermittency – a highly complementary design 

(Wang and Singh 2008). By restricting the amount of purchased electricity from fossil fuel-

based utility grid, the potential for reducing a consumer’s greenhouse gas emissions is also 

evaluated. Particle swarm optimization (PSO) is an evolutionary stochastic population-

based heuristic optimization method, a powerful intelligence technique capable of solving 

large-scale nonlinear optimization problems for multiple components of the hybrid systems 

(Maleki et al. 2017, Poli et al. 2007, Del Valle et al. 2008). Solving large-scale multi-

objective nonlinear optimization problems usually requires dealing with conflicting 

objectives where improving one worsens another (Ranjithan et al. 2001, Khalkhali et al. 

2010). Discovering a set of solutions known as non-dominant or non-inferior solutions is a 
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practical way to solve multi-objective problems (Sharafi and ElMekkawy 2014, Khalkhali 

et al. 2010).  

The performance of the proposed PSO method implemented in the Python 

programming language is investigated and nearly optimum solutions are extracted for 

different conditions. This research is an attempt to shed light on different aspects of 

renewable energy potential in Sothern Alberta, the University of Lethbridge, and the City 

of Lethbridge, and provides background information for stimulating the successful and 

effective implementation of sustainable sources of energy. 

1.3 Thesis objectives 

This research has four primary objectives to better realise the potential of wind and 

solar energy resources at the University of Lethbridge campus and the City of Lethbridge. 

1- Quantify the full potential of solar and wind energy sources in generating electricity to 

meet the electrical demands of the University of Lethbridge (a feasibility assessment for 

campus solar PV and wind turbine installations). 

2- Estimate rooftop photovoltaic electricity potential of buildings in an urban environment, 

the City of Lethbridge, employing a multi-criteria approach using geographic information 

systems (GIS) and LiDAR. 

3- Conduct an economic assessment utilizing present market prices to determine 

economically attractive rooftop PV systems in the City of Lethbridge. 

4- Develop an optimal sizing and design strategy based on a heuristic particle swarm 

optimization (PSO) technique to determine the near optimum number and configuration of 
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photovoltaic (PV) panels, wind turbines and battery units minimizing the annual system 

cost while maximizing the reliability of the hybrid system in matching the electricity supply 

and demand. 
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Chapter 2: A comprehensive assessment of solar and wind energy potential at the 

University of Lethbridge campus 

 

2.1 Introduction 

Our current industrialized world relies heavily on conventional energy resources such 

as coal, oil, and natural gases (Pachauri et al. 2014). Humanity’s insatiable appetite for the 

consumption of fossil fuels and the consequent pollution threatens our environment and 

natural resources (Pachauri et al. 2014). At current global population and economic growth, 

the total world consumption of energy is expected to grow by 48% from 2012 to 2040, and 

fossil fuels will still supply 78% of energy use in 2040 (U.S. Energy Information 

Administration 2016). This dependence on carbon-based fuels produces large amounts of 

CO2 (Pachauri et al. 2014). CO2 emissions from fossil fuel combustion and industrial 

processes account for about 78% of the rise in the total greenhouse gas emissions from 

1970 to 2010 (Pachauri et al. 2014). The climate system has undoubtedly been influenced 

by anthropogenic activities, and human-induced increases in GHG concentrations are 

extremely likely to be the principal cause of the observed warming since the mid-20th 

century (Pachauri et al. 2014). The production and use of energy is by far the primary 

contributor to producing GHG emissions (two-thirds of all anthropogenic GHG emissions) 

and CO2 is the main released gas from fossil fuel combustion (van der Hoeven 2015) .  

Although the elimination of fossil fuels is not feasible at this time, new energy 

strategies should be implemented targeting the transition to alternative energy supplies, the 

improvement of the efficiency of facilities and wise use of energy, in part to reduce the 

negative impacts of climate change (Devabhaktuni et al. 2013, Izquierdo et al. 2008). 

Implementing renewable energy as an alternative to fossil fuels is not a new concept, but it 
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is receiving more attention because of this climate consideration (Devabhaktuni et al. 

2013). Renewables are now well recognized globally as key sources of energy because of 

the improved cost-competiveness of these technologies, improved financing conditions, 

energy security importance, and environmental concerns (Seyboth et al. 2016). In principle, 

renewable energy sources can generate much more energy than the total global energy 

demand (Devabhaktuni et al. 2013).  

Solar photovoltaic (PV) technologies collectively represent an important renewable 

energy source due to improving efficiencies, functionality in different locations, and 

applicability to both individual homes and utility-scale power plants (Devabhaktuni et al. 

2013). For example, solar provided 7.8% and 6.4% of electricity demand in Italy and 

Germany, respectively, during 2015 (Seyboth et al. 2016). One important advantage of 

solar technologies is onsite power generation (Izquierdo et al. 2008). Solar energy 

generation can be easily employed in urban settings where electricity generated is 

consumed by the local population (Aznar et al. 2015). PV systems can be mounted on 

rooftops and façades, and in other available locations such as abandoned or unutilized 

municipal lands not needed for urban development, agriculture, or conservation (Martín et 

al. 2015).  

Wind energy also plays a significant role in the world energy future due to 

technological maturity, and relative cost competitiveness (Herbert et al. 2007). By 2020, 

about 10% of the world’s electricity demand can be met by wind energy (Herbert et al. 

2007). Technology advances have led to a 5% annual rise in the power output of wind 

turbines since 1980 (Herbert et al. 2007). In 2015, wind power was the most cost-effective 

source of energy for new grid-based power in many countries including Canada (Seyboth 
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et al. 2016). Globally, the average cost of land–based wind and solar PV dropped by about 

35% and 80% respectively between 2008 and 2015 (Seyboth et al. 2016). In 2015, wind 

and solar PV installations set new records, composing about 77% of new installations in 

the global power sector (Seyboth et al. 2016). 

The scientific community is increasing efforts in the applied study of renewables as 

a clean and sustainable energy supply (Martín et al. 2015). The assessment of the renewable 

energy potential is the first step in understanding the value of clean sources of energy, and 

in supporting policies to encourage renewable energy development (Martín et al. 2015). 

However, the rapid growth of renewable electricity creates concurrent challenges for 

electric grid system management, new regulations, and market design (Seyboth et al. 2016). 

Balancing demand and supply requires understanding the characteristics of local renewable 

generation, and sufficiently precise monitoring and forecasting of clean electricity 

generation (Kausika et al. 2014).  

The objectives herein are to quantify the full potential of solar and wind energy 

sources in generating electricity to meet the electrical demands of the University of 

Lethbridge. The focus includes a feasibility assessment for campus solar PV and wind 

turbine installations. This research will: 

 merge LiDAR data and aerial photography with GIS software to evaluate the suitable 

available rooftop, parking lot, and open spaces for PV installation;  

 calculate electricity output possible with available solar radiation data; 

 calculate the wind energy potential for the study site using local wind data and turbine 

characteristics;  
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 and compare the resulting solar and wind generation over five years to typical university 

hourly electrical demand.  

Generating green energy will showcase University of Lethbridge’s environmental 

responsibility and sustainability; and will also allow development of a full-scale research 

facility to encourage and support the transition to renewable energy sources for other 

sectors of society. The present study will examine how local clean electricity generation 

may meet local demand, based on data characterizing local demand over time.  

2.2 Background 

 

2.2.1 Solar PV potential 

Many studies state that PV systems can meet much of our electrical needs. The 

adoption of PV technology in Canada is comparatively slow (Rosenbloom and 

Meadowcroft 2014). There is limited information about technical parameters such as solar 

insolation rates and variability, and land area that might be assigned to this technology in 

Canada in coming decades (Rosenbloom and Meadowcroft 2014). Advanced alternative 

energy simulations, modeling, and forecasting play an important role to help local 

communities to increase their knowledge and assessment ability with respect to renewable 

energy planning and utilization (Izquierdo et al. 2008). Previous studies have employed 

GIS techniques, LiDAR data, and aerial images to investigate solar energy potentials. 

Given the total available land and rooftop area, it is important to understand the amount 

and characteristics of suitable space that is available for installing PV systems (Melius et 

al. 2013). Some studies have used constant-value methods of rooftop-area estimation which 

calculates a multiplier that can be applied to the entire study area (Martín et al. 2015). For 

example, using geographic information systems capabilities and object-specific image 
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recognition, Wiginton et al. (2010) proposed a five-step method for estimating total rooftop 

PV potential by finding a relationship across the region between total roof area and 

population. Another technique to identify suitable locations is by manually selecting areas 

from sources such as aerial imagery; this protocol is time-intensive, especially for large 

regions (Melius et al. 2013). Nguyen and Pearce (2013) presented a methodology to provide 

urban solar PV resource assessments in which roof outlining is carried out on aerial images. 

The majority of potential analyses utilize GIS-based methods for evaluating available area 

for PV installation (Melius et al. 2013). Izquierdo et al. (2008) estimated the potential of 

roof-integrated PV systems applying a statistically representative stratified sample of 

vector GIS maps of urban areas. Chow et al. (2014) created a 3D model in ArcGIS at a fine 

spatiotemporal resolution to evaluate solar potential on the facades and rooftops of 

buildings at a community level.  

In this research, taking into account the size of the study region and the data 

availability, insolation incident on the PV modules sloped surface is modeled and area 

selection has been done by means of both GIS-based methods and manually selecting areas. 

In order to increase the accuracy, the present study combines these methods. In addition to 

the improvement in methodology by employing multiple techniques, this research will 

contribute to the literature by investigating the solar PV potential in the study region and 

exploring the ability of solar energy to match electricity demand over time.   

2.2.2 Wind energy potential 

Various studies have been carried out to predict wind energy potential worldwide. 

Because of the uncertain and stochastic nature of wind, having a precise knowledge of wind 

regime and evaluating the potential of wind energy in the region of study is an important 
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initial step for the efficient planning and cost optimization studies of any wind energy 

project (Mathew 2006). Once one has the wind speed at the turbine hub height, converting 

the wind kinetic energy to turbine energy output is a crucial step. One of the common 

methods to estimate the energy production is to use the characteristic power curve of a 

particular wind turbine as provided by the manufacturers in conjunction with wind 

distribution data (Sohoni et al. 2016). A detailed review of various wind turbine power 

curve modeling methods is presented by Sohoni (Sohoni et al. 2016). The power curve 

illustrates the energy output of a wind turbine at various wind speeds. Describing the actual 

shape of the power curve by appropriate equations is a challenging task (Sohoni et al. 2016). 

Power curve models are mostly deterministic models which demonstrate a fixed relation 

between wind velocity and the turbine power yield (Sohoni et al. 2016). The relationship 

between wind speed and wind turbine power output can be approximated by various 

polynomial functions (Sohoni et al. 2016). Yang et al. (2007) implemented the most 

simplified model to simulate the selected wind turbine power output based on a linear curve 

which represents the power curve by a straight line. In our study, hourly available wind 

data was used to estimate wind energy potential in the study region employing the power 

curve method.   

2.3 Study Area 

The University of Lethbridge campus is situated in the west side of the City of 

Lethbridge, southern Alberta, Canada (49° 40’ 38” N, 112° 51’ 51” W) (Figure 2-1). There 

are twelve buildings on campus with wide flat rooftops potentially suitable for installing 

PV panels. The campus has abundant, level parking lots and fields with unobstructed solar 

exposure. The campus coulees are complex high slope topography constituting a large part 
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of the east side of the campus, which have extensive southern exposure faces that could 

host PV panels.   

Southern Alberta receives an enormous amount of annual global solar radiation 

(Rosenbloom and Meadowcroft 2014). In fact, Alberta has some of the best solar resources 

in Canada (Canadian Solar Industries Association and Energy Efficiency Alberta 2018). 

Furthermore, Southern Alberta has many ideal sites suitable for wind energy production 

(Weis et al. 2010). Wind energy has been the most installed of new electricity generation 

capacity in Canada over the past decade (Canadian Wind Energy Association 2016). 

Currently, wind meets about 7% of Alberta’s electricity demand (Canadian Wind Energy 

Association 2018). Solar and wind electricity are poised to be a huge part of the province’s 

electricity supply; and Southern Alberta holds the majority of that generation capacity. 

Historically, coal has been the largest and cheapest electricity generation source in 

Alberta (Alberta Government 2017b). Electricity power plants produced 16% of Alberta’s 

total greenhouse gas emissions in 2014 (Alberta Government 2017b). To shift towards a 

low-carbon energy future, the Alberta government began a transformation of the electricity 

sector. The Alberta Climate Plan, released November 22, 2015, says Alberta will 

decommission all coal fired power plants by 2030, and build renewable generation to meet 

30% of the provincial electricity demand (Alberta Government 2017b). Regarding the 

provincial government’s new climate change plan, Alberta is expected to install at least 

4,500 MW of new wind energy capacity (Canadian Wind Energy Association 2018). 
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Figure 2-1: Study area, the University of Lethbridge campus. 

2.4 Data 

The availability of high quality LiDAR data and meteorological data from a nearby 

station was critical in determining the methodology employed for this research. The source 

for hourly values of the global solar radiation on a horizontal surface, air temperature, and 

wind speed was the Alberta Climate Information Service (ACIS) 

(http://agriculture.alberta.ca/acis, 2016). The data were obtained at a nearby station, 

Lethbridge CDA, located at 49° 42’ 0” N, 112° 46’ 60” W (Figure 2-1). The meteorological 

data for the period 2010-2014 was used in accordance with the available university 

electricity consumption provided by the university utility service. LiDAR point cloud data 

were obtained from the City of Lethbridge through the University of Lethbridge for this 

http://agriculture.alberta.ca/acis
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project area. In addition, aerial images provided by the City of Lethbridge were used to 

understand the texture of the study region. 

2.5 Methodology 

2.5.1 Solar electricity potential 

The estimation of solar electricity potential usually requires knowledge of available 

suitable area for installing PV panels (geographic potential), the available solar insolation 

(physical potential), the capability (efficiency) of a particular technology in converting 

solar energy to electricity considering the technical limitations (technical potential), and 

the costs related to employing solar systems and the energy generation (economic potential) 

(Martín et al. 2015). Additionally, social and environmental impacts should be assessed, 

but that is beyond the scope of this paper (Izquierdo et al. 2008).  

2.5.1.1 Geographic potential (site assessment) 

Optimum planning needs to evaluate the potential of solar radiation received at spots 

that will be covered by PV panels. Wise PV panel positioning and orientation decreases the 

probability of losses in solar gain due to obstructions from neighboring buildings and 

topographic features and makes the project more cost effective. Adjustment and changing 

the position of PV arrays relative to sun for maximum output is usually expensive and 

impractical, especially for utility scale installations (Piragnolo et al. 2015).  

Utilizing aerial imagery and hand digitizing in ArcGIS, key rooftop, parking lot, and 

flat abandoned open areas without neighboring obstructions were identified. In case of 

building rooftops, the situation and size of buildings, and the shape of their rooftops (flat 

or inclined) are important factors in calculating incoming radiation (Martín et al. 2015). To 
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understand the physical characteristics of the study area and evaluate the area of buildings’ 

rooftop and parking lots, and to assess how much of the roof top area is assigned to other 

applications such as air conditioning systems, aerial images of the campus were used. 

Aerial images are a useful tool for checking study area textures (Kausika et al. 2014).  

The extensive open coulee area located in the east side of the campus provides a 

substantial area for placing PV systems. Factors such as latitude, the time of day, season, 

topography, and weather influence the insolation that strikes the surface of earth (Hofierka 

and Suri 2002). On regional and local scales, available radiation is mostly modified by 

terrain (relief) due to variability in elevation, surface orientation (slope and aspect) and 

shadow cast by topographic features (Hofierka and Suri 2002). ESRI Solar Analyst was 

used to identify coulee areas that have good solar exposure throughout the year.  

Solar Analyst is an extension for ArcGIS that creates a solar irradiation map over an 

area for specific time periods (Chow et al. 2014). This tool takes into account the 

atmospheric attenuation, latitude and elevation of the area, slope and aspect, daily and 

seasonal changes of the sun position and angle, and effects of shadows cast by surrounding 

features and topography (Ruiz‐Arias et al. 2009). Solar Analyst uses the topographic 

information contained in a digital elevation model (DEM) to estimate direct and diffuse 

components of solar irradiation for point locations or for entire geographic areas (Esri 

2016c). The global solar radiation in Solar Analyst is the sum of direct and diffuse 

components (Esri 2016c). The results of this analysis are shown in Figure 2-2.  

In assessing solar potential in a built area, most researches use LiDAR data to create 

DEMs for their solar radiation calculations because LiDAR provides the highest resolution 
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(Martín et al. 2015). The DEM of the study area with 1x1 m spatial resolution was generated 

using ground (or bare earth) LiDAR point clouds in ArcGIS. LiDAR data is usually stored 

in LAS format and typically does not have a defined spatial reference (Esri 2013). 

Therefore, using the 3D Samples extension of ArcGIS, LAS files were rewritten to contain 

the proper spatial reference information, which is NAD1983 3TM. Determining the special 

reference of each LAS file is critical for the following analysis in ArcGIS (Esri 2013). 

According to the LiDAR metadata, the vertical datum was defined as Canadian geodetic 

vertical datum of 1928 (CGVD28).  

 

Figure 2-2: Global annual solar radiation for the coulees area. 
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The “Area Solar Radiation” tool was used to calculate the amount of radiant energy 

for the coulee area (Figure 2-2). Solar Analyst needs the proportion of exoatmospheric 

radiation transmitted as direct radiation along the shortest atmospheric path at sea level 

(𝜏𝑠𝑙) and diffuse proportion (𝐾𝐷) which is the ratio of measured defuse solar radiation on 

a horizontal surface against the global solar radiation (Fu and Rich 2000, Esri 2016a). 

However, to achieve better results we considered 𝐾𝑇𝑠𝑙 (the ratio of measured global solar 

radiation on a horizontal surface against the extraterrestrial radiation at sea level) instead 

of 𝜏𝑠𝑙 in global annual solar radiation calculation (Mirmasoudi et al. 2018). The hourly 

𝐾𝑇  was assessed for the selected nearby station between 11:30 and 12:30 hours for each 

day of the years 2010 to 2014. This 𝐾𝑇 pertains to the shortest atmospheric path (in the 

direction of the zenith) (Ruiz‐Arias et al. 2009). The average of these 𝐾𝑇 values represents 

the annual mean 𝐾𝑇 and was used for estimating the annual solar radiation. Using the Erbs 

et al. (1982) correlation represented by Equation 2.1, the fraction of the hourly radiation on 

a horizontal plane that is diffuse was evaluated (Duffie and Beckman 2013). 

𝐾𝐷 = {

1.0 − 0.09𝐾𝑇                                                                                      ;  𝐾𝑇 ≤ 0.22

0.9511 − 0.1604𝐾𝑇 + 4.388𝐾𝑇
2 − 16.638𝐾𝑇

3 + 12.336𝐾𝑇
4   ; 0.22 ≤  𝐾𝑇 ≤ 0.8  

0.165                                                                                                     ;   𝐾𝑇 > 0.80

  (2-1) 

The Solar Analyst algorithm corrects for elevation effects, so transmissivity should always 

be given for sea level (Fu and Rich 2000). Therefore, 𝐾𝑇𝑍 was corrected by means of the 

Equation (2-2) for sea level, with 𝑧 as the elevation (Ruiz‐Arias et al. 2009). 

𝐾𝑇𝑍 = 𝐾𝑇𝑠𝑙
𝑒𝑥𝑝 (−0.000118𝑧−1.638×10−9𝑧2)                                                                        (2-2) 

To represent all participating locations and discard unsuitable places in the coulee 

area, some constraints were applied. A suitable location has an appropriate aspect, slope 
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(less than 60 degrees), and a minimum annual insolation. Investigating the generated solar 

radiation map, 1200 kWh/m2/year was defined as the minimum threshold of solar radiation. 

To assure that there is no shading on selected areas from neighboring trees and buildings, 

the study site was visually inspected.  

Some reduction factors are assumed in order to reduce the total suitable area available 

for solar photovoltaic applications to a realistic level. In case of rooftop area, this reduction 

has to be implemented considering the effects of shading from other parts of the roof or 

from surrounding buildings or trees (Wiginton et al. 2010). Significant areas of every roof 

are occupied by ventilation, air conditioning systems, chimneys and other apparatus 

(Wiginton et al. 2010). PV array installation requires extra area for maintenance (service 

area) and to avoid shading from neighboring panels (Amado and Poggi 2012). In the case 

of flat rooftops, this service area is usually a perimeter space with a width of 1 meter 

(Ordóñez et al. 2010). To estimate the fraction of rooftops that can be devoted to PV 

modules, aerial images were investigated. Furthermore, related literature was reviewed to 

obtain appropriate reduction values (Table 2-1).  

Table 2-1: Fractions of total roof area assigned to PV modules estimated in different 

studies. 

Study Method utilized Fraction of total roof area Region 

Ordonez et 

al.(2010) 
simulation 

0.74 (Detached houses) - 0.796 

(Town Houses) - 0.654 (High rise 

buildings) 

Andalusia 

(Spain) 

Izquierdo et al. 

(2008) 

inspection of satellite 

imagery 
0.32 (All urban buildings) Spain 

Montavon et al. 

(2004) 
computer simulation 0.49-0.95-0.73 (different urban sites) Switzerland 

Wiginton et 

al.(2010) 
literature based 0.30 Canada 
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Ong et al. (2013) evaluated 72% of installed and under-construction utility-scale PV 

(ground-mounted photovoltaic) and CSP (concentrating solar power) capacity in the United 

States, and assessed the solar land use requirement and array spacing. They found that 

fixed-tilt systems have an average packing factor (the ratio of area actually covered by PV 

panels to the total land area occupied by the array system) of 47% (Ong et al. 2013, Horner 

and Clark 2013). They stated that there is large variability in packing factor and it ranges 

from 20% to 67% based on the research literature (Ong et al. 2013). For this research, taking 

into account the specific characteristics of our study area, the ratio of PV module area to 

the total available suitable area was assumed to be 0.30.  

2.5.1.2 Physical potential 

The physical potential is the assessment of the solar energy resource availability in 

the study site (Izquierdo et al. 2008). The availability of solar radiation data on oblique 

surfaces with different angles is a fundamental requirement in utilizing solar energy 

technologies. The knowledge of solar resource is very important in long term or short term 

assessment of PV power output, performance evaluation, and to make the best decisions in 

designing profitable solar systems (Mohanty et al. 2016). A weakness of the Solar Analyst 

tool is the assumption that sky transmissivity and diffuse coefficients are constant values 

over the year; this is not valid and can impact the amount of annual calculated radiation 

significantly (Jakubiec and Reinhart 2013). Generally, Solar Analyst underestimates the 

total insolation (Ruiz‐Arias et al. 2009). It does not take into account radiation reflected 

from surrounding surfaces such as buildings, trees, or terrain features (Jakubiec and 

Reinhart 2013). Such radiation cannot always be ignored, especially when the site is 

surrounded by highly reflective objects such as snow (Rich et al. 1994). Accordingly, 
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measured hourly radiation data was used to calculate insolation incident on PV surfaces. 

Solar radiation data provided by weather stations are usually measured as global radiation 

on a horizontal plane while PV panels are inclined to maximize their received insolation 

(Tina et al. 2012). The inclination angle of a sloped surface (measured relative to the 

horizontal) and its orientation or azimuth angle (measured relative to south, with zero due 

south) are two important defining characteristics of the surface (Tina et al. 2012). The 

incident solar radiation received by the sloped surface is built of three components 

including beam radiation (𝐼𝑇,𝑏), diffuse radiation (𝐼𝑇,𝑑), and reflected radiation (𝐼𝑇,𝑟𝑒𝑓) from 

the different neighbouring objects (Duffie and Beckman 2013). The total radiation on this 

surface is: 

𝐼𝑇 = 𝐼𝑇,𝑏 + 𝐼𝑇,𝑑 + 𝐼𝑇,𝑟𝑒𝑓                                                                   (2-3) 

Many methods with various complexity have been presented for estimating 𝐼𝑇 (Duffie 

and Beckman 2013, Tina et al. 2012). These methods utilize different approaches to treat 

the fraction of hourly radiation which is diffuse (Fu and Rich 2000). Based on various 

assumptions about the directional distribution of the diffuse component on the sloped 

surface, these models are classified as isotropic and anisotropic sky models (Shukla et al. 

2015). The isotropic models are conservative and simple, where the intensity of the diffuse 

radiation stream is assumed to be uniform over the sky dome. The anisotropic models take 

into account the anisotropy of the diffuse radiation in the circumsolar region (Shukla et al. 

2015). Several anisotropic models are proposed by different researchers (Perez et al. 1987, 

Perez et al. 1990, Skartveit and Olseth 1986, Steven and Unsworth 1980, Reindl et al. 

1990). In this work, the Perez et al. (1990) model, which is based on more detailed analysis 

of diffuse radiation, is implemented (Duffie and Beckman 2013). Usually the results of this 
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model are very close to measurements for many locations worldwide and it is more 

comprehensive compared with many other models (Duffie and Beckman 2013, Tina et al. 

2012). Based on this model, the total radiation on the oblique surface is given by (Duffie 

and Beckman 2013): 

𝐼𝑇 = 𝐼𝑏𝑅𝑏 + 𝐼𝑑(1 − 𝐹1) (
1+𝑐𝑜𝑠𝛽

2
) + 𝐼𝑑𝐹1

𝑎

𝑏
+ 𝐼𝑑𝐹2𝑠𝑖𝑛𝛽 + 𝐼𝜌 (

1−𝑐𝑜𝑠𝛽

2
)                        (2-4) 

where 𝑎 and 𝑏 are defined as 𝑎 = max(0, 𝑐𝑜𝑠𝜃) , 𝑏 = max (𝑐𝑜𝑠85, 𝑐𝑜𝑠𝜃𝑧). The parameters 

𝐹1 and 𝐹2 are circumsolar and horizon brightness coefficients and are functions of sky 

conditions (a set of these coefficients is given in (Duffie and Beckman 2013)). The 

parameter 𝛽 is the tilt angle of the surface, 𝐼𝑏𝑅𝑏 is the beam contribution on radiation on 

the sloped surface, and 𝑅𝑏 =
𝑐𝑜𝑠𝜃

𝑐𝑜𝑠𝜃𝑧
  is the ratio of beam insolation on the sloped surface to 

that on a horizontal surface. The parameters 𝜃 and 𝜃𝑧 are the angle of incident and zenith 

angle, respectively. 𝐼𝜌 (
1−𝑐𝑜𝑠𝛽

2
) is the reflected radiation from the neighbouring objects 

where 𝜌 is the diffuse reflectance of the surroundings (Table 2-2) (Duffie and Beckman 

2013). As it is not practical to estimate the reflected radiation from all surroundings, the 

common approach assumes that there is one extensive, horizontal ground in front of the 

collector which reflects this component in all directions equally (Duffie and Beckman 2013, 

Tina et al. 2012). The albedo coefficient 𝜌 has a typical value of 0.2 for ordinary ground or 

grass (Tina et al. 2012). 
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Table 2-2: Reflection coefficient values for some materials (Piragnolo et al. 2015). 

Material ρ Material ρ 

asphalt road 0.10 loam (with clay) 0.14 

broad-leaf trees 0.26 roof 0.13 

concrete 0.22 snow 0.75 

conifers 0.07 stones, gravel 0.2 

dark-colored building 0.27 water 0.07 

dirt road 0.04 white-colored building 0.6 

grass (dry + green) 0.23   

The parameters 𝐼𝑏 , 𝐼𝑑 are the beam and diffuse fractions of total horizontal radiation 

respectively. In order to determine the total radiation on surfaces of other orientations given 

global horizontal radiation, horizontal beam and diffuse radiation must be treated separately 

(Duffie and Beckman 2013). Several methods are developed to split total horizontal 

radiation into its constituents (Orgill and Hollands 1977, Boland et al. 2001, De Miguel et 

al. 2001, Erbs et al. 1982). Usually scientists try to establish an hourly correlation 

between
𝐼𝑑
𝐼⁄  , where 𝐼 is the total radiation on the horizontal surface, and 𝐾𝑇 =  

𝐼
𝐼0
⁄ , the 

hourly clearness index. 𝐼0 is the hourly extraterrestrial radiation on a horizontal plane 

(Duffie and Beckman 2013). In this research, the Erbs et al. (1982) model, as presented in 

Equation (2-1) was deployed.  

To estimate hourly total solar radiation on inclined PV panels, these selected models 

were applied to global solar radiation data obtained from a nearby weather station from 

2010 to 2014. Because any measurement brings some errors, radiation data were screened 

for quality following Ref. (Journée and Bertrand 2011) to eliminate questionable values. 

Global horizontal radiation data at the Earth’s surface that was larger than the 

corresponding extraterrestrial value incident were filtered out. In addition, the direct and 

diffuse irradiance components must be smaller than the global horizontal radiation (Journée 

and Bertrand 2011). 
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2.5.1.2.1 Optimal PV orientations and tilt angles 

The amount of generated electricity is a function of the orientation and tilt angle of 

the PV array (McKenney et al. 2008). The efficiency of a solar collector is optimum when 

oriented towards the sun (Handoyo and Ichsani 2013). As in the northern hemisphere the 

sun is due south at solar noon, south facing PV panels receive the maximum amount of 

irradiation. The yearly output of PV panels with tilt angle (angle of inclination away from 

horizontal toward the South) equal to latitude is greater than panels with other tilt angles 

(McKenney et al. 2008). PV Surfaces with higher tilt angles usually produce more constant 

energy, however, they receive less insolation on a yearly basis (McKenney et al. 2008). 

Lower tilt angles result in more electricity production in the summer months, while higher 

tilt angles are more appropriate for winter (McKenney et al. 2008, Rehman and Siddiqui 

2012). The seasonal optimal tilt angles are location specific because they are influenced by 

climatic variations (Rowlands et al. 2011). The amount of solar radiation that a PV panel 

is exposed to is a function of the location latitude, the day of the year and the time of day, 

surface tilt angle, surface azimuth angle, and the angle of incident radiation (Vignola et al. 

2008). Among these various factors, surface tilt and azimuth angles can be adjusted to 

maximise the radiation at the surface (Handoyo and Ichsani 2013). In principle, optimum 

values of tilt angles change every day and thus should be adjusted accordingly to their 

optimum values (Rehman and Siddiqui 2012). Researchers have carried out many studies 

for evaluating the local optimal tilt angle for a specific location (Rehman and Siddiqui 

2012, El-Sebaii et al. 2010, Rowlands et al. 2011). El-Sebaii et al. (2010) calculated the 

total solar radiation on a sloped surface facing south with different tilt angles for Jeddah 

(Saudi Arabia), and inferred that in this location, the best yearly performance of a solar 

collector is obtained when it is oriented due south with a tilt angle equal to the latitude. 
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Rowlands et al. (2011) investigated, and modelled solar radiation data and subsequent PV 

panel performance to determine the optimum tilt angle and azimuth for a PV system in 

Ontario. They found that for all case studies, the ideal tilt angle is slightly less than the local 

latitude (7°  and 9° less than the local latitudes in Ottawa and Toronto respectively) and the 

maximum power output is achieved when the PV panel is facing slightly east of due south 

(6° east of due south for Ottawa, and 2° east of due south for Toronto). In our study, PV 

panels were assumed to be oriented due south and a slope angle equal to the local latitude 

was utilized. 

2.5.1.3 Technical potential 

 

2.5.1.3.1 Solar panel selection 

 

Wafer-based Solar cells made from crystalline silicon and thin-film products are two 

basic commercial PV module technologies available on the market today. For terrestrial 

applications, silicon based solar cells are the most common modules available as single-

crystal, polycrystalline or amorphous solids (Mohanty et al. 2016). Single-crystal silicon 

has the best performance and amorphous silicon (a-Si) has the lowest efficiency among the 

three types (Mohanty et al. 2016).  In 2016, about 94% of the total PV module production 

belonged to silicon-wafer based PV cells and multi crystalline modules represented about 

70% of total production (Philipps and Warmuth 2017). The efficiency of commercial 

wafer-based silicon panels has increased in the past decade, from about 12% to 17% 

(Philipps and Warmuth 2017). With recent advancements, mono-crystalline silicon panels 

deliver 24.2% efficiency under standard test conditions (Philipps and Warmuth 2017). In 

this research, it was assumed that the PV cell efficiency is 15% (Nguyen and Pearce 2013). 
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2.5.1.3.2 Estimating PV electricity production potential 

Photovoltaic system performance is influenced by the quality of the system and the 

weather (Dierauf et al. 2013). PV module performance ratings are usually supplied by 

manufacturers based on their performance at standard testing conditions (STC): 1000 W/m2 

solar irradiation, 25℃ module temperature, and air mass 1.5 (McKenney et al. 2008). The 

potential power output of a module under these conditions is called module nominal power. 

In reality, photovoltaic panels produce less energy due unavoidable losses in various parts 

of the system. These losses are determined by the overall system design, the type of 

modules used, and operating conditions (solar radiation intensity, angle of incidence, 

temperature, etc.) (McKenney et al. 2008). Performance Ratio (PR) is an indicator of the 

effect of losses compared to the PV system’s rated output and is defined as the ratio of 

actual system AC output per year to the expected DC yield, which can be used to quantify 

the overall system losses. The performance ratio is used to compare the system performance 

to that of an ideal system at the same place (Schmalensee 2015). With technology 

advancements, over the past decades, increased efficiencies of PV modules and other 

components of PV systems have led to dramatic improvement in performance. New 

systems have PR values ranging from 0.6 to 0.9 (Reich et al. 2012). Reich et al. (2012) 

have investigated the PR of about 100 German PV systems and stated that with help of cool 

climates in Germany, some systems’ PR exceed 0.9.  

Having cold weather conditions in our study region, we expect that the system 

proposed herein would operate at a high PR value. Canadian systems located on latitudes 

of 44° up to 64° have yearly average performance ratios ranging from 0.7 to 0.75 

(McKenney et al. 2008). Del Cueto (2002) compared 14 photovoltaic modules installed at 
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fixed latitude tilt and stated that performance ratios fluctuate seasonally, mostly because of 

air or module temperature variations. This study showed that the 𝜂𝐸𝐹𝐹 (effective efficiency) 

is significantly temperature-dependant (Del Cueto 2002). The operating temperature of the 

PV cell, which is the temperature of the PV array surface, is an important variable for the 

photovoltaic conversion process and the PV array output depends strongly on this factor 

(Brihmat and Mekhtoub 2014). PV systems are more efficient at lower cell temperatures 

(Brihmat and Mekhtoub 2014). Performance temperature changes during sunshine hours, 

exceeding ambient temperature by as much as 30 ℃ or more; however, at night it is at 

ambient temperature (Brihmat and Mekhtoub 2014). Having the estimated total global 

radiation on the surface of the tilted PV panel, using the ambient air temperature and wind 

data, the DC generated energy was calculated. The Skoplaika model was used to assess the 

operating temperature of photovoltaic cells (Skoplaki et al. 2008). The effect of temperature 

on the efficiency of the photovoltaic cell (where 𝜂𝑐 = 𝑃𝑚 𝐴𝐺 ⁄ ,𝑃𝑚 is the maximum power, 

𝐴 is the cell’s area, and 𝐺 is the irradiation) is given by: 

𝜂𝑐 = 𝜂𝑇𝑟𝑒𝑓[1 − 𝛽𝑟𝑒𝑓(𝑇𝑐 − 𝑇𝑟𝑒𝑓)]                                                            (2-5) 

where 𝜂𝑇𝑟𝑒𝑓 and 𝛽𝑟𝑒𝑓 are the module’s electrical efficiency and the efficiency correction 

coefficient at temperature 𝑇𝑟𝑒𝑓 and at solar radiation of 1000 W/m2 respectively that are 

usually provided by manufacturers. The average value for temperature coefficient at 𝑇𝑟𝑒𝑓 =

25℃ is usually taken as 𝛽𝑟𝑒𝑓 ≈ 0.004𝐶
−1(Skoplaki et al. 2008). The PV cell operating 

temperature (𝑇𝑐) is given as: 

𝑇𝑐 = 𝑇𝑎 + (
0.32

8.91+2.0𝑉𝑓
)𝐺𝑇       ;                𝑉𝑓 > 0                                                                    (2-6)   
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where 𝑉𝑓 (m/s) is the wind speed in the windward side of the Photovoltaic array. The 

equation 𝑉𝑓  = 𝑉𝑤 0.67⁄  relates near the PV array wind speed (𝑉𝑤) to the free stream wind 

speed (𝑉𝑓 ). The ambient air temperature is shown by 𝑇𝑎 in ℃  and 𝐺𝑇 is the solar irradiance 

on the surface of the array (W/m2) (Skoplaki et al. 2008). The efficiencies at different 

irradiances and air temperatures were estimated and the maximum DC output power was 

calculated for the 𝑖th hour of the day using Equation (2-7) (Duffie and Beckman 2013). 

𝑃𝑖 = 𝐴𝑐𝐺𝑇,𝑖𝜂𝑐,𝑖                                                                                                              (2-7) 

Many factors may decrease the ideal DC power output, such as losses due to surface 

soiling and snow, module parameter mismatch, resistance in the DC circuit, and DC current 

ripple and algorithm error caused by the switching converter which performs the maximum 

power point tracking function (Ropp et al. 1997). The voltage and current at which a PV 

cell operates is a function of the load characteristics (a battery or a power grid) (Duffie and 

Beckman 2013). When generator and load characteristics are seriously inconsistent, power 

conditioning equipment (maximum power point trackers) can be used. For tracking 

maximum power points, these devices control voltage while sacrificing some power 

(Duffie and Beckman 2013). Mismatch power losses occur when PV cells do not have 

similar characteristics (are not identical perfectly) or do not operate under uniform 

conditions (Vijayalekshmy et al. 2014). Therefore, the following equation displays the 

system’s efficiency taking into account the mentioned losses (Ropp et al. 1997): 

𝜂 =  𝜂𝑐 . 𝜂𝐷𝑢𝑠𝑡 . 𝜂𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ . 𝜂𝐷𝐶𝑙𝑎𝑠𝑠 . 𝜂𝑀𝑃𝑃𝑇                                                                      (2-8) 

 

The values represented in Table 3 were used to predict the power output. 
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 Table 2-3: Values representing various losses used in system efficiency calculation 

(Equation (2-8)) (Ropp et al. 1997). 

Parameter Value 

𝜼𝑫𝒖𝒔𝒕 96% 

𝜼𝒎𝒊𝒔𝒎𝒂𝒕𝒄𝒉 95% 

𝜼𝑫𝑪𝒍𝒂𝒔𝒔 98% 

𝜼𝑴𝑷𝑷𝑻 95% 

The generated DC power is converted to alternating power (AC) used in the electrical grid 

by an inverter. Inverters efficiency, usually provided by manufacturers, range from 92% to 

95% (Vignola et al. 2008). 

2.5.2 Wind energy potential  

 

Areas with annual average wind speed of greater than 6-7 m/s at a height of 80 meters 

are economically suitable places for commercial wind turbine installations (Weis et al. 

2010). The annual average wind speed at a height of 80 m above the ground surface was 

calculated for our study area using the wind speed data at a height of 10 m obtained from a 

nearby station over five successive years (Table 2-4). Results show that this study region 

is a favorable wind site. 

Table 2-4: Annual average wind speed at a height of 80 m above the ground surface in the 

study site. 

Year 2010 2011 2012 2013 2014 

Average annual wind speed (m/s) 5.8  6.74 6.31 6.00 5.8 

Wind power output is strongly dependent on the wind speed distribution across the 

region where wind turbines are placed and the type of wind turbines employed (Weis et al. 

2010). Southern Alberta represented about 76% of total wind generation installed capacity 

in the province at the end of 2016. These wind facilities performed with an average capacity 

factor (the ratio of the annual average output to the nameplate output) of 35% in 2016 
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(Alberta Electric System Operator 2017). The annual energy that a wind turbine will 

generate can be estimated by multiplying the nameplate capacity by the capacity factor and 

by 8760 hours in a year (8784 hours in a leap year) (Weis et al. 2010). With increase in 

wind speed in conjunction of increase in height, and with better matching between wind 

spectra and the turbine, the capacity factor can be increased significantly (Mathew 2006).  

In order to assess wind power generated from a wind turbine in a particular region, 

long term measurements of the local wind data are required. Due to continual change of 

wind distribution about the mean, average wind speeds do not reflect an accurate estimate 

of wind potential and are not sufficient to assess long term performance of wind turbines 

(Duffie and Beckman 2013). Accordingly, hourly wind data from 2010 to 2014 from a 

nearby station was used to predict wind energy potential using turbine power curve 

modeling method. Wind speed data are usually measured at 10 meters above the ground 

surface. In order to extrapolate wind speeds from the height of measurement to hub height 

of wind turbines, a power law equation of the following form was used: 

𝑉(𝑍1)

𝑉(𝑍2)
= (

𝑍1

𝑍2
)𝛼                                                                                                                  (2-9) 

where 𝑉(𝑍) is the wind speed at the height of Z and 𝛼 is the  wind shear coefficient and 

depends on many factors such as the velocity of wind, air temperature, surface roughness, 

season, and time of day (Staffell and Green 2014, Duffie and Beckman 2013). The 

parameter 𝛼 can be calculated from measurements at two different heights  and its typical 

value is 0.143 (Duffie and Beckman 2013). Wind profiles for sites without measured wind 

data are determined using the wind speed values from a nearby station (Sohoni et al. 2016). 

Extrapolating wind speeds to greater heights is probably one of the most important 
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uncertainty factors in evaluating the wind potential at a particular region (Schallenberg-

Rodriguez 2013).  

Models based on rudimentary equations of the wind power and models based on 

equations representing the power curve of wind turbines are two different approaches that 

are used to approximate the behaviour of wind turbines (Thapar et al. 2011). For example, 

Nelson et al. (2006) evaluated the wind turbine power response using average hourly wind 

velocity data and equation (2-10) derived from fundamental equations of the wind power. 

𝑃𝑒(𝑡) =
1

2
𝜌𝐴𝑣3(𝑡)𝐶𝑝𝐸𝑓𝑓𝑎𝑑                                                                                      (2-10) 

where, 𝐸𝑓𝑓𝑎𝑑 is the efficiency of AC/DC converter, 𝜌 is the air density (kg/m3), 𝐴 is the 

area swept by the turbine rotor blades (m2), 𝑣 is the wind speed (m/s), and 𝐶𝑝 is the power 

coefficient of the turbine (Nelson et al. 2006). Power curves of wind turbines supplied by 

manufacturers are also used to calculate the electrical power generated by turbines at a 

specific wind speed (Thapar et al. 2011). The aerodynamic, transmission and generation 

efficiencies of a wind turbine are reflected in its power curve (Mathew 2006). In this 

research a model based on the power curve concept is used to assess the turbine power 

output (Mathew 2006, Nelson et al. 2006). The power curve is modeled by an appropriate 

polynomial function (equation (2-11)) in each of the turbine’s performance phases (turbines 

have four distinct performance phases as shown in equation (2-11)). Equation (2-11) 

demonstrates the turbine electrical power output versus wind velocity (Mathew 2006, 

Nelson et al. 2006): 



36 
 

𝑃𝑊 =   

{
 
 

 
 

0                                               ;  𝑣 < 𝑣𝑖         

𝑎𝑣𝑛 + 𝑏 = 𝑃𝑅 (
𝑣𝑛−𝑣𝑖

𝑛

𝑣𝑟
𝑛−𝑣𝑖

𝑛 )    ;  𝑣𝑖 ≤ 𝑣 ≤ 𝑣𝑟   

  𝑃𝑅                                              ;  𝑣𝑟 < 𝑣 ≤ 𝑣𝑜
      0                                              ; 𝑣 > 𝑣𝑜              

                                             (2-11) 

where 𝑣𝑖(cut-in velocity),𝑣𝑟(rated velocity), and 𝑣𝑜(cut-out velocity) are the essential 

characteristic velocities of the wind turbine (Mathew 2006).The parameters 𝑃𝑅 and 𝑛 are 

the turbine’s rated power (W) and the velocity-power proportionality respectively (Mathew 

2006). At too low wind speeds turbines cannot operate, and also at too high wind velocities, 

due to extreme mechanical loads, turbines can be damaged (Duffie and Beckman 2013). 

To find the energy (kWh) produced in each hour, the assessed power for any specific hour 

is multiplied by one hour (Nelson et al. 2006). The reference wind turbine selected in this 

study rated at 3.05 MW, with rotor diameter of 101 meters and a hub height of 150 meters. 

Considering the extensive area available on the campus, it was assumed that three turbines 

could be installed on this site.  

There are some losses that occur in wind power generation facilities including 

availability losses (2 - 5%), electrical losses (2 - 3%), turbine performance losses (1 - 3%), 

environmental losses such as icing (1 - 5%), soiling and damage (1 – 2%), and curtailment 

(4%). Making a precise estimation of the aforementioned losses is hard because they are 

highly site specific (Clifton et al. 2016). Studying the effects of aging in the wind turbine 

performance, Staffel and Green (2014) investigated the data from the UK's 282 wind farms 

and found that wind turbines lose 1.6 ± 0.2% of their energy output annually, leading to a 

reduction of 12% of energy production over a 20 year lifetime.  
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2.5.3 Uncertainties in solar PV energy production estimation 

The uncertainty in solar radiation data and solar resource estimation is one of the 

most important factors affecting PV output prediction (Schnitzer et al. 2012, Myers et al. 

2004). Usually, modeled data that has been historically used to evaluate the on-site solar 

radiation resource are not accurate enough (Schnitzer et al. 2012). Likewise, the spatial 

difference among reference networks and project sites and deficient station maintenance 

decrease the accuracy of the measured data at many projects (Schnitzer et al. 2012). 

Describing the sources of uncertainty associated with measurements, Myers et al. (2004) 

stated that the uncertainty in measured global horizontal radiation data could reach to 3-

5%. In addition, horizontal radiation transposition to the plane of the PV array, and 

simulation and plant losses are other contributors to the uncertainty in solar energy 

generation assessments (Schnitzer et al. 2012). The accuracy of solar radiation estimations 

on tilted surfaces using global horizontal radiation data solely, degrades considerably, and 

mostly depends on the direct and diffuse separation model’s accuracy for the study region 

(Gueymard 2009). The Erbs et al. model, which has been utilized in our research, is 

extensively employed and recognized as a universal method (Gueymard 2009). Gueymard 

(2009) compared measured global radiation on tilted plane with estimations from ten 

transposition models and found that the Perez model, which has been implemented in our 

research, provides one of the best results, particularly under clear skies.  

The measured peak power of PV modules may be about 10% less than the nameplate 

rating sometimes (Atmaram et al. 2008). Furthermore, PV modules’ power decline over 

time or degradation rate is about 0.3-0.8% annually (Thevenard and Pelland 2013).  
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PV systems’ availability (scheduled and unscheduled maintenance activities) 

influence their power output (Moore and Post 2008). Moore and Post (2008) investigated 

a 3.51MW PV system and found that its average overall effective availability for five 

successive years was about 99.7%.  

In adition, on average, soiling can lead to 1.5% to 6.2% of PV energy losses annually 

(Thevenard and Pelland 2013). Considering the convoluted process of snow accumulation 

on PV panels and variable nature of snowfall, for various study locations and for fixed-tilt 

systems, annual PV losses resulting from snow coverage have been measured ranging from 

0% to 25% (Ryberg and Freeman 2015). 

 Using a statistical simulation approach, Thevenard and Pelland (2013) combined 

uncertainties from various sources to estimate the overall uncertainty in photovoltaic yield 

predictions. Their estimates of uncertainties in various factors affecting system 

performance including year-to-year climate variability, average horizontal radiation, 

radiation calculation in the plane of the array, power rating of PV modules, losses due to 

dirt and soiling, losses due to snow, and other sources of error were 3.9%, 5%, 3%, 3%, 

2%, 1.5%, and 5% respectively. Based on their study, the combined (total) uncertainty 

(standard deviation) in the system’s yield over its lifetime was about 7.9%. The global 

uncertainty attached to the output of PV systems may differ from one system to another 

significantly (Thevenard and Pelland 2013). Using the values presented in the literature and 

the ‘rule of squares’ described by Thevenard and Pelland (2013), the combined uncertainty 

for our PV system output was estimated to be about 9.5%. 
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2.5.4 Uncertainties in wind energy production estimation 

The anemometer-based measurements uncertainty (1-2%), the spatial variation 

uncertainty (1 -2%), the vertical extrapolation uncertainty (0 - 6%), the turbine performance 

uncertainty (0 - 4%), the electrical losses uncertainty (1- 2%), the environmental effects 

uncertainty (1%), the curtailment uncertainty (1-4%), the long term wind resource 

uncertainty (1-6%), and the uncertainty due to inter-annual variability (1-10%) are the main 

contributors to the wind energy production uncertainty (Clifton et al. 2016). Based on the 

values presented by literatures, the estimated overall wind energy uncertainty was about 

11%. 

2.6 Results and discussions 

Employing the aforementioned methodology to the University of Lethbridge campus 

area, the available roof area for photovoltaic equipment and the photovoltaic energy 

potential was assessed. Based on 2010-2014 electricity usage of the University and 

evaluated renewable energy potential, this study can help to determine an efficient plan to 

implement a renewable energy program for clean energy generation on campus. 

A total of 1,015,808 m2 area was found to be suitable for the installment of PV panels 

in the site (Table 2-5 and Figure 2-3). This total area was reduced to that which would be 

covered by PV modules. Having this large area, it is possible to install a series of large PV 

arrays with about 45 MW capacity at the University of Lethbridge campus.  

The hourly solar radiation on inclined PV panels was estimated using the Erbs et al. 

(1982) and Perez et al. (1990) models for years 2010 to 2014. Then, the hourly potential 

energy outputs from this distribution of area was approximated. Potential electricity output 
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from the large-scale installation of PV is extremely large, and with more efficient panels it 

is possible to generate even more electricity. The annual electricity production of this 

system is shown in Table 2-6.  

Table 2-5: Available area for installing PV modules in the study area. 

Locations Suitable area (m2) 

Flat free lands 207,979 

Rooftop 32,145 

Parking lots 111,474 

Coulees 664,210 

 

Figure 2-3: Available suitable area for PV and wind turbine installation at the campus. 

Table 2-6: Annual solar electricity production in the study area. 

Year Generation (MWh) 

2010 71,700 

2011 74,700 

2012 72,900 

2013 73000 

2014 72,800 
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The energy consumption of the University increased between 3-5% annually from 

2010 to 2014. It was usually higher during summer (July and August) and autumn 

(September and October) months with the largest amount in July (Figure 2-4). The total 

summer electricity consumption was about 10% higher than the total winter electricity 

consumption on average. On the other hand, the highest potential of solar electricity 

generation existed during summer months (July and August), spring (March, April, and 

May), and early autumn (September). The largest amount of solar electricity could be 

mostly produced in July (Figure 2-4). The electricity consumption decreased from summer 

to winter, when the solar electricity potential declined as well. In late autumn (November) 

and winter months (December, January) the solar electricity generation had the lowest 

potential while the lowest consumption existed in December and February. Therefore, the 

peak months of electricity consumption and solar electricity generation, and the months 

with lowest electricity consumption and lowest solar electricity potential, approximately 

coincide. On average, the annual electricity generation of this solar PV system is about 2.8 

times greater than the annual electricity usage of the campus.  

 

Figure 2-4: Monthly electricity usage and solar PV electricity potential at the campus. 
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For the five successive years, the average seasonal daily electricity consumption in 

winter (averaged over three winter months) was about 1.3%, 1.8%, and 1.0% lower than 

that in summer, autumn (September, October, and November), and spring, respectively 

(Figure 2-5). The average seasonal daily solar electricity generation (averaged over three 

months) in spring was about 50% more than that in winter (December, January, and 

February), 5% more than that in summer, and 31% more than that in autumn. It was about 

3.3, 3.1, 2.5, and 2.2 times greater than the average seasonal daily electricity consumption 

in spring, summer, autumn, and winter, respectively. The average daily solar PV electricity 

generation over all seasons was about 2.8 times of the average daily solar electricity 

consumption (Figure 2-5). 

 

 

 

 

 

 

 

 

 

 

Figure 2-5: 5-year average seasonal daily electricity consumption and 5-year average 

seasonal daily solar PV electricity potential at the campus. 
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The availability of solar PV electricity during times of high demand of energy is one 

of the important advantages of this technology, particularly in hot and sunny days 

(Richardson and Harvey 2015). During daytime, when solar electricity is available, the 

electricity demand was higher, and as shown in Figure 2-6, the highest amount of solar 

electricity generation and energy consumption occurred almost simultaneously (Figure 

2-6). Between noon and 16:00 pm, the 5-year annual average hourly electricity 

consumption was higher (with the highest amount at 15:00 pm), while the 5-year annual 

average hourly PV electricity generation was higher between 11:00 am and 15:00 pm (with 

the highest amount at 13:00 pm) (Figure 2-6). The maximum 5-year annual average hourly 

PV electricity generation is approximately 7.7 times greater than the maximum amount of 

5-year annual average hourly electricity consumption (Figure 2-6). The peak-shaving 

ability (the ability of PV systems to match peak load and provide more electricity at times 

with higher demand) is more important for small PV systems because their contribution to 

an electric grid is insignificant. Whereas, the energy produced by a large PV system can 

influence the electric grid significantly (Richardson and Harvey 2015). 

 

Figure 2-6: 5-year annual average hourly electricity consumption and 5-year annual 

average hourly solar PV electricity potential at the campus. 
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While solar energy is only available when the Sun is shining, wind energy generation 

occurs also at night. Wind energy plays an important role in the energy supply. Therefore, 

the assessment of its technical and economic potential in different regions is crucial (Ritter 

et al. 2015). A model based on the turbine power curve was used to evaluate the wind 

electricity potential in the study site employing meteorological data from 2011-2014 on an 

hourly basis. The wind velocity characteristics at the turbine hub height determines the 

turbine’s potential output, and consequently the economic viability of wind energy 

production in a region (Ritter et al. 2015). For each hour of day, annual and 5-year mean 

wind speeds at the hub height were calculated (Figure 2-7). The fluctuations of the 5-year 

average wind velocity at a specific hour of the day due to the month and season change is 

shown by the corresponding standard deviations (Quan and Leephakpreeda 2015). From 

early morning to afternoon, the annual average hourly mean wind speed increases (the 

highest wind speed appears mostly around 15:00), and then it decreases from evening to 

night, so the lower amounts occur during night (Figure 2-7).  
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Figure 2-7: The 5-year annual average hourly wind speed at the hub height. 

 

The wind rose diagram of the site at the hub height (Figure 2-8) indicates that the 

predominant wind blowing direction is between west and southwest. In addition, it 

illustrates the speed of winds based on their directions (Figure 2-8). For example, in 2014, 

35% of all recorded winds had a direction between 220° and 276° and a speed less than 22 

m/s (Figure 2-8). 
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Figure 2-8: Wind rose diagram (left) for the site at the hub height illustrating the wind 

directions and wind speeds (m/s), and wind speed distribution diagram (right), for 2014. 

In any month strong winds can occur, however they often blow in winter (Figure 2-9). 

The wind energy potential is smaller during summer months when the electricity 

consumption is higher (Figure 2-9). The 5-year average wind electricity generation in 

January is about 12% more than the 5-year average electricity consumption in this month, 

while in July, the 5-year average wind electricity potential is about 44% lower than the 5-

year average electricity consumption. Therefore, a combination of both wind and solar 

electricity, especially for small renewable energy installations, could better match the 

demand profile. The 5-year annual average electricity potential of the wind system was 

about 16% smaller than the 5-year annual average electricity consumption of the university.  
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Figure 2-9: Monthly wind electricity potential of the proposed system at the campus. 

Wind energy production differs from one day to another day significantly (Figure 

2-10). In summer months, the 5-year average daily wind electricity potential is mostly 

lower than the 5-year average daily electricity demand (Figure 2-10). However, during 

winter, spring, and autumn, in some days the generation exceeds the daily consumption 

(Figure 2-10). Among the five years, the maximum electricity consumption occurred on 

July 2, 2013 (102.16 MWh) which was about 5 times greater than the wind energy potential 

in this day (20.27 MWh). The highest wind energy potential existed on January 23, 2010 

(210.8 MWh) which was 3.7 times larger than the electricity demand in this day (56.96 

MWh). The maximum 5-year average daily wind turbine energy potential in winter, spring, 

summer, and autumn was about 1.54, 1.18, 0.88, and 1.09 of the maximum 5-year average 

daily electricity usage in these seasons respectively. On average, over all seasons, the 5-

year daily wind energy potential was almost always lower than 5-year average electricity 

demand (Figure 2-10). 
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Figure 2-10: 5-year average seasonal daily electricity consumption and 5-year average 

seasonal wind electricity potential at the campus. 

Among the five years, in 2011 and 2012 respectively, the annual average hourly wind 

energy potential in about 46% and 13% of the 24 hours exceeded the annual average hourly 

electricity consumption, while in other years, this potential was lower than the usage in all 

hours (Figure 2-11). The wind energy potential was higher during day hours, whereas the 

electricity demand was also higher (Figure 2-11). While the maximum annual average 

hourly wind potential occurred at 15:00 pm or 16:00 pm in each of the 5 years, the highest 

annual average electricity usage took place at 15:00 pm in these years. The maximum 

annual average hourly wind energy potential was about 88%, 106%, 102%, 88%, and 83% 

of the maximum annual average hourly electricity usage in the five successive years 

respectively (Figure 2-11). In the five years, the lowest annual average hourly electricity 

consumption took place at 3:00 am or 4:00 am, whereas the minimum annual average 

hourly wind energy potential existed between 1:00 am and 4:00 am. Therefore, there was 
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a good agreement between hourly wind energy potential and hourly electricity demand 

(Figure 2-11).  

Figure 2-11: 5-year annual average hourly electricity consumption and 5-year annual 

average wind electricity potential at the campus. 

During night-time (between 22:00 pm and 5:00 am), the 5-year average hourly wind 

electricity potential was about 16% lower than the 5-year average hourly electricity usage. 

Therefore, the proposed wind energy system could not provide enough energy to meet 

electricity demand during nights.  

Among the selected years, the year 2014 had the smallest potential of wind power 

generation and the second smallest potential of PV electricity while having the highest 

electricity consumption. In 2014, for instance, 44% of the total annual wind electricity 

potential existed in the night-time. In December and January, the night-time wind 

electricity potential was about 7% and 5% more than the electricity consumption 

respectively (Figure 2-12). In winter months, the night-time electricity demand was higher 

than the day-time electricity consumption (Figure 2-12). In other months, the night-time 

wind potential was on average 36% lower than the night-time electricity consumption 

(Figure 2-12). In 2014, the total annual day-time and night-time wind electricity potential 

was about 71% and 74% of the total annual day-time and night-time electricity 
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consumption, respectively. The total day-time wind energy potential in December, January, 

and April was about 2.4%, 2%, and 8.7% higher than the total electricity usage in these 

months respectively (Figure 2-12). In other months, on average, the total monthly wind 

energy potential was about 66% of the electricity consumption (Figure 2-12). 

 

Figure 2-12: Total monthly day-time and night-time wind electricity generation and 

total monthly day-time and night-time electricity consumption in 2014. 

Wind and solar together could generate enormous energy during day-time (Figure 

2-13). On average, the 5-year average monthly electricity that could be produced by the 

combined wind and solar PV system would be 3.6 times greater than the 5-year average 

monthly electricity consumption (Figure 2-13). The combined system could produce more 

energy in spring months (March and April) than other months (Figure 2-13). 
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Figure 2-13: Total monthly combined wind and PV electricity potential and total 

monthly electricity consumption. 

The proposed grid-tied PV and wind system can help the university save money. We 

have assumed that the average purchase price of grid electricity and the average sale price 

of electricity are 13.5¢/kWh and 6¢/kWh, respectively. The approximate costs for installing 

a utility scale wind turbine and a utility scale PV system are about 2 $/W and 2 $/W 

respectively, depending on the choice of products, the size of the system, and the site 

characteristic (Dodge David and Dylan 2016). The weighted average investment cost for 

onshore wind decreased about two-thirds between 1983 and 2015 globally, from 

USD4766/kW to USD1550/kW (Seyboth et al. 2016). The solar PV cost has declined 

significantly as well, and solar PV electricity is competitive in many energy markets 

(Seyboth et al. 2016).  

In summary, the University of Lethbridge could install renewable energy systems on 

campus that would cover the university’s annual cost of electricity significantly. Herein, 

we assume the university finances the entire project at rate 4% (constant annual interest 

rate) over 25 years; the manufacturer’s performance warranty. Developments at the federal 

and provincial level indicate substantial financial support will be available for such 
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institutional development of renewable, clean electrical generation. We assume federal and 

provincial grants would cover 50% of the cost of these installations. We also assume that 

the operation and maintenance cost for the solar PV system and the wind turbine system 

are 10$/kW/year and 11$/kW/year respectively (Wang and Singh 2009, Whaley 2016). 

Under those assumptions, and using the year 2014 as an example, the annual electricity cost 

of the university will decline about 90% (Table 2-7).  

Table 2-7: Annual cash flow, proposed University of Lethbridge Renewable Electrical 

system. 

Month Electricity cost ($) with no 

renewables, 2014 

Monthly cost of electricity with the 

proposed renewable system ($), 2014 

Jan -$303,426 -70,475 

Feb -$276,078 -27,822 

Mar -$306,651 21,092 

Apr -$301,423 73,994 

May -$292,920 -25,217 

Jun -$290,625 -18,938 

Jul -$338,384 26,420 

Aug -$325,056 -85,199 

Sep -$325,161 -55,666 

Oct -$324,167 27,511 

Nov -$300,173 -130,952 

Dec -$280,972 -87,279 

Annual -3,665,037 -352,532 

2.7 Conclusion 

Environmental and economic concerns promote investments on renewable energy 

systems. In this study, solar and wind electricity generation potential at the University of 

Lethbridge campus were investigated. Results showed that there is 1,015,808 m2 of suitable 

area available for placing a 46 MW solar PV system in the site which would produce about 

2.8 times of the university annual electricity usage on average. The proposed wind system 

could cover about 84% of the university electricity demand annually on average. 

Additionally, on average, the 5-year average monthly electricity that could be produced by 
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the combined wind and solar system would be 3.6 times greater than the 5-year average 

monthly electricity consumption. Consequently, the university could decrease its electricity 

cost by 90% approximately. Therefore, the presented hybrid renewable system in this study 

could help the university to achieve a green energy future target which seems economically 

viable. 
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Chapter 3: Evaluating solar energy technical and economic potential on rooftops in 

an urban setting: the city of Lethbridge, Canada 

 

3.1 Introduction 

Extensive energy generation and consumption are the main anthropogenic sources of 

greenhouse gas emissions and air pollution (two-thirds of all human-induced GHG 

emissions) (International Energy Agency 2015). Unless sufficient countermeasures are 

taken in the energy sector, the progressive deterioration of the environment related to these 

emissions will continue. The rapid and growing global movement toward low-carbon 

energy sources in response to the imperative of addressing global warming may support a 

global sustainable energy future, and alleviation of some environmental burdens 

(International Energy Agency 2015). By introducing new sources of natural capital and 

exploiting replenishing resources, renewables play a crucial role in efforts to de-carbonise 

energy supplies and avert negative impacts associated with climate change (Mueller et al. 

2016). Renewable energy systems use diverse sources, localise energy generation, decrease 

transport costs, and reduce long-term price variability (Mueller et al. 2016). Renewables 

are now well recognised as a main stream source of electricity worldwide and supplied 

19.3% of the global final energy usage in 2015 (Sawin et al. 2017). Increasing development 

of solar PV is mostly due to improving competitiveness and cost parity with other 

technologies, new government plans, increasing awareness of the potentials of this 

technology, and rising electricity demand (Sawin et al. 2017). Substantial increases in 

rooftop solar PV installation resulted in buildings becoming the largest available urban 

source of space for deployment (International Renewable Energy Agency 2016). In fact, 

globally, about half of the presently installed PV capacity is composed of distributed PV 

systems. Although, a large capacity is still untapped (Castellanos et al. 2017).  
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To supply the increasing needs for energy while reducing climate change and 

maintaining quality of life, cities require rigorous and holistic sustainable action plans. 

Cities currently accommodate more than 50% of the global population and are an important 

contributor to global warming, accounting for 65% of global energy demand and 70% of 

human-induced (energy-related) CO2 emissions (International Renewable Energy Agency 

2016). Immense renewable energy sources have the largest potential to improve the 

sustainability of the urban environment, and PV has demonstrated the most potential to 

contribute in the energy mix, among available micro-generation technologies (International 

Renewable Energy Agency 2016, Gooding et al. 2013). The number of cities worldwide 

that have decided to move toward 100% renewable energy and carbon neutrality targets 

has increased. Some cities have implemented promising policy measures to motivate 

distributed clean energy development, including rules that oblige utility companies to buy 

renewable power and building codes that compel the installation of renewable technologies 

(International Renewable Energy Agency 2016). Some cities and local authorities plan to 

create a livable, sustainable, and resilient space for their inhabitants (Sawin et al. 2017). 

However, in general, cities are not well-equipped to cope with many urban growth and 

sustainability challenges (Kammen and Sunter 2016).  

Onsite rooftop PV energy micro-generation could decrease the electricity distribution 

and transmission costs and losses (Gagnon et al. 2016). The lack of investors’ and home-

owners’ awareness about rooftop PV potential, and the detailed information deficit 

regarding rooftop spaces suitable for PV installation are important barriers that have 

impeded the adoption of rooftop PV systems (Castellanos et al. 2017, Strupeit and Palm 

2016). Significant research on city-wide distributed renewable energy generators is 
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required to attain a sustainable urban energy mix (Kammen and Sunter 2016). This research 

focuses on the technical and economic potential of the roof-mounted photovoltaic (PV) 

systems in large areas. Estimation of PV potential are challenging, but indispensable for 

relevant renewable energy policy making (Castellanos et al. 2017). The evaluation of the 

adequate available roof surfaces is the most crucial stage in implementation of roof-

integrated PV applications (Izquierdo et al. 2008). Using light detection and ranging 

(LiDAR) data, geographic information system (GIS) methods, and PV-performance 

modeling, the proposed method is an efficient and scalable technique that can be automated 

and replicated effectively. A new detailed method for calculating solar resource availability 

using ArcGIS was employed (Mirmasoudi et al. 2018). Solar analyst required inputs which 

were calculated for the region and the accuracy of the simulated radiation was examined 

by comparing the results with measured data. Moreover, measured meteorological data 

were used to define a slope factor that was applied to ArcGIS simulated global radiation 

estimates on horizontal surfaces. Additionally, the economic potential of rooftop PV 

systems has been investigated. Considering all building types in the city boundary including 

commercial and industrial buildings is one of the strengths of the applied methodology. In 

addition to the quantification of the potential amount of electricity generation, the results 

reveal which percentage of roof areas are economically viable for PV deployment. The 

findings can provide an established reference point for rooftop PV in the region and be used 

by energy and building sectors, and policy makers to assess new development opportunities 

and guide investments towards clean energy technologies (Izquierdo et al. 2008). To our 

knowledge, a rigorous comprehensive assessment of rooftop PV technical potential and 

economic attractiveness in our study region has not been previously published.   
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3.2 Background 

Technical potential quantifies the maximum possible energy production utilizing a 

specific renewable energy technology in a particular location or region (Gagnon et al. 

2016). Rooftops are the best situated parts of buildings to harvest solar energy and generate 

electricity (Kanters and Davidsson 2014). Calculating the rooftop solar potential is not 

always simple (Kanters and Davidsson 2014). Rooftop PV potential in urban environments 

has been estimated in the various regions across globe (Ordóñez et al. 2010). Depending 

on the size of the study region, the type of available data , and the expected results, different 

methods of estimation have been used (Gooding et al. 2013). These methods try to assess 

essential elements such as solar incident intensity, usable roof area availability, and 

shadows cast by nearby objects (Gooding et al. 2013). Some studies establish a relationship 

between population density, building densities, and roof areas, especially for large regions 

(Gooding et al. 2013). The outputs of studies like these are not usually applicable at 

individual and local scales (Gooding et al. 2013). Based on a representative sample of 

buildings, Ordóňez et al. (2010) used statistical construction data and digital urban maps to 

measure the useful roof surface area of the sample, and extrapolated the characterization of 

the sample to the total study region to estimate the solar energy potential in Andalusia 

(Spain). Izquierdo et al. (2008) calculated the roof area available for solar applications 

based on land use, population and building density data using a representative sample of 

GIS maps of urban areas. They assessed irradiation potential by employing hourly 

meteorological data from weather stations using Erbs model and Liu–Jordan isotropic 

model. Establishing a relationship between per capita suitable rooftop area and population 

density by linear regression on solar rooftop potential data from 1600 cities, IEA 

(International Energy Agency) Energy Technology Perspectives report (2016) derived the 
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rooftop solar PV power capacity in other cities. Sometimes the inclination angles of 

different rooftop surfaces and the spatio-temporal variation of insolation are ignored. The 

IEA value may be used as a starting point in evaluating PV generation potential, but follow-

up evaluation is required. 

There are three essential methods for identifying the suitable roof surfaces for PV 

installation in urban settings: constant-value methods, manual selection methods, and GIS-

based methods (Gagnon et al. 2016). Constant-value methods assume that a certain fraction 

of total roof area is usable for placing PV panels (Gagnon et al. 2016). Presenting several 

methods for creating rooftop PV supply curves, Denholm and Margolis (2008) translated 

the total roof area into usable area using an availability factor. They estimated that 

residential and commercial buildings in their study site have roof area availability factors 

of 22-27% and 60-65%, respectively. The availability factor of roof area takes into account 

obstructions and shading from other parts of the roof or neighbouring features (Denholm 

and Margolis 2008). The constant value method is simple and not computationally intensive 

because it does not take into account the complexity of rooftops and surrounding objects 

such as tree canopies (Gagnon et al. 2016). Manual selection method uses sources such as 

aerial photography and Google Earth to assess the suitability of roof planes of buildings 

individually (Gagnon et al. 2016, Anderson et al. 2010). Although manual selection can 

precisely determine the total suitable rooftop area, it is time-consuming and cannot be easily 

applied to large sites (Gagnon et al. 2016). Anderson et al. (2010) used an IMBY (In My 

Backyard) solar simulation tool which allows users to draw polygons to estimate the total 

rooftop area within a city.  
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GIS-based methods are the most practical and effective techniques for the estimation 

of usable rooftop area (Gagnon et al. 2016, Verso et al. 2015, Martín et al. 2015, Singh and 

Banerjee 2015, Jakubiec and Reinhart 2013). These methods are more precise than 

constant-value methods and can be applied to much larger data sets compared with a 

manual selection approach (Gagnon et al. 2016). Martin et al. (2015) reviewed different 

procedures for the solar potential assessment in urban areas. Singh & Banerjee (2015) used 

land use data and GIS-based satellite image analysis for estimating the building footprint 

area and the rooftop PV potential for the Indian city of Mumbai. They employed the Liu-

Jordan model to calculate the plane-of-array irradiation and determined the optimum PV 

tilt angle for the study site and inferred that up to 20% of the average daily electricity 

demand of the city can be met by rooftop PV. Jakubiec & Reinhart (2013) presented a 

method for estimating city-wide electricity gains from PV panels by creating 3D urban 

models using LiDAR data and ArcGIS, Daysim–based hourly radiation simulations, and 

hourly calculated rooftop temperatures. Creating a 3D urban model is crucial when 

assessing PV rooftop potential in an urban environment (Martín et al. 2015). A 

comprehensive study of the spatial dimensions of the site is required to gain an accurate 

knowledge of the PV potential (Martín et al. 2015). The emergence of LiDAR technology 

has provided a great opportunity for dense urban area mapping (Huang et al. 2015).  

Methods using DEMs employ rooftop irradiation or the number of annual daylight 

hours in determining proper roof areas (Jakubiec and Reinhart 2013). The DEMs are often 

generated from LiDAR data, and are the most accurate source for measuring the details of 

an entire urban area (Jakubiec and Reinhart 2013). Gagnon et al. (2016) used LiDAR data, 

GIS methods, and PV-generation modeling to estimate the suitable rooftops for installing 
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PV in 128 cities in the United States. Then, they estimated the PV potential of the entire 

continental United States employing the results from analysis of areas covered by LiDAR 

data. Jochem et al. (2009) used LiDAR point clouds and a region-growing process to detect 

potential roof points and perform solar potential analysis for each point. They considered 

the shadow cast by adjacent objects and the effects of cloud cover by calculating the horizon 

of each point within the point cloud and employing data from a nearby ground weather 

station, respectively. Using a GIS-based method and utilizing LiDAR data, Gooding et al. 

(2013) ranked seven major UK cities according to their capacity to generate electricity from 

roof-mounted PV systems. They calculated a solar city indicator taking into account the 

socio-economic factors such as income, education, environmental consciousness, building 

stock, and ownership. The results revealed that the local buildings’ characteristics affect 

the physical and socio-economic rooftop PV potential of a city significantly and indicated 

areas that require policy attention to promote  maximum PV use (Gooding et al. 2013). 

Different procedures for analyzing solar potential in urban environments have various 

drawbacks, and the existing rooftop PV evaluations inferred from the methods may be 

imprecise (Castellanos et al. 2017, Jakubiec and Reinhart 2013). In some methods, the 

shading caused by urban context such as trees and neighboring buildings is not considered, 

or differentiation among the orientations and slopes of roof segments are not conducted 

(Jakubiec and Reinhart 2013). Many studies require assumptions about the orientation and 

slope of rooftops (Boz et al. 2015). Furthermore, few solar potential estimation methods 

suppose that all rooftops are flat and a constant portion of them is suitable for PV 

installation (Jakubiec and Reinhart 2013). Rooftop PV studies rarely investigate the 

economic potential of these systems (Fath et al. 2015). In this chapter, a new detailed 
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method for calculating solar resource availability using ArcGIS was employed. 

Additionally, the economic potential of rooftop PV systems was investigated. 

3.3 Methods 

Modeling the built area, the insolation incident assessment, and the estimation of the 

suitable roof area are essential in evaluating a building’s potential in solar rooftop PV 

energy generation (Santosa et al. 2014). Urban area modeling is an active research field in 

Geography (Santosa et al. 2014). Urban areas are dense environments composed of diverse 

artificial and natural features. This complexity makes building rooftops attractive for solar 

PV installation (Redweik et al. 2013). Building rooftops provide a large expanse of 

generally unused area for PV energy production (Gagnon et al. 2016). In the urban context, 

the existence of various artificial and natural objects including buildings and trees 

influences the sunlight regime considerably (Huang et al. 2015). Accordingly, an accurate 

solar insolation simulation model that considers the complexity of the urban form is 

required to identify relevant aspects of the urban energy landscape (Huang et al. 2015). In 

an urban environment, representations of three-dimensional form such as elevation, surface 

slope and aspect, and surrounding obstructing objects determine the accuracy of such 

simulations (Tooke et al. 2012). Roof surfaces with different slopes and orientations, 

reflection and shadings from the neighboring objects were modeled separately.  

3.3.1 Study area 

This study was conducted in Alberta, Canada. Solar electricity can become a 

mainstream energy source in Canada (Canadian Solar Industries Association 2018). The 

premium quality renewable resources of Alberta could allow this province to become a 

leader in solar, wind, and bioenergy. Notwithstanding this potential, much of the province’s 
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renewable resources are untapped (People Power Planet Partnership 2018). The city of 

Lethbridge (49.7° N, 112.8° W) is in southern Alberta, Canada, a region that receives 

relatively high rates and extensive hours of solar radiation, with an annual mean daily 

global horizontal radiation of 3.77 kWh/m2 and 2,506 hours of bright sunlight (Figure 3-1) 

(Natural Resources Canada 2017b, City of Lethbridge 2017a). With a moderate continental 

climate, Lethbridge is characterized by warm summers and mild winters, and has more than 

320 days of sunshine per year, which is relatively high among Canadian cities (City of 

Lethbridge 2017a). This city has a total land area of 124.3 km2 with a large and growing 

volume of residential and commercial buildings, which justifies new steps toward building 

a self-sustainable urban setting (City of Lethbridge 2017a). To our knowledge, an extensive 

evaluation of rooftop photovoltaic solar potential has not yet been undertaken in this city. 

Low-height and horizontally dispersed buildings over a large area most likely provide a 

significant rooftop PV electricity potential. The total number of residential, government, 

medical, educational, commercial, industrial, cultural buildings in Lethbridge is 55877 

(January 2017) (Table 3-1) (City of Lethbridge 2017c). This city had a total population of 

96,828 in 2016 (City of Lethbridge 2017b). 

Table 3-1: The number of buildings in Lethbridge. 

Building type Number of buildings Share of sectors (%) 

Residential 53,545 95.8 

Industrial 1,207 2.16 

Commercial 822 1.5 

Education 131 0.23 

Government 69 0.12 

Recreation 68 0.12 

Cultural/Heritage 17 0.03 

Medical 16 0.03 

Transportation 1 0.002 

Community Center 1 0.002 
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Figure 3-1: Study area, the City of Lethbridge (Esri Canada Ed 2013). 

3.3.2 Data 

The size of the study area is an important variable in a solar potential analysis (Martín 

et al. 2015). Vector cartographic maps, digital cadastral services, state geographic 

information systems, digital elevation and digital surface models (DEM and DSM), and 

aerial photos are different resources that are widely used in evaluating solar potential. These 

resources provide required information about building shape, footprint, height, type, 

location and other urban features (Martín et al. 2015). The need for more detailed city 
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models has led to increasing use of LiDAR point clouds which contain a wealth of Earth 

surface information (Martín et al. 2015). Large volumes of LiDAR data collected in July 

2015, with vegetation in full leaf-on condition, were provided by the City of Lethbridge 

through the University of Lethbridge, and used to represent the study area in ArcGIS. The 

resolution of LiDAR data is 1 m2. The city boundary data and a polygon shape file of 

building footprints provided by the City of Lethbridge were used to determine the extent of 

the study area and to identify rooftops (City of Lethbridge 2017c, d).  

3.3.3 Processing LiDAR data to drive suitable rooftop area for PV application  

LiDAR data are usually provided in LAS format (a standard format for LiDAR data 

interchange) and a defined spatial reference is not typically embedded in them (Figure 3-2) 

(Esri 2013, 2019). The proper spatial reference information of LAS files that was indicated 

in the LiDAR metadata was defined. Using LiDAR data, two kinds of high-quality 

elevation models including digital surface model (DSM) and digital elevation model 

(DEM) can be produced. First return (surface return) or DSM encompasses elevation 

information for buildings, tree canopies, and bridges, while DEM or ground or bare earth 

represents the topography (Huang et al. 2015, Esri 2016b, Jochem et al. 2009). To analyze 

the shading, slope, and azimuth (orientation) of each roof segment at a resolution of 1m2, 

LiDAR data was processed. The digital surface model or DSM with a 1×1 meter cell size 

was created via maximum value interpolation technique to model the high-relief urban area 

(Figure 3-2) (Esri 2016b). For generating a DSM from LiDAR data, the maximum value is 

the best technique for biasing the result to higher elevations (Esri 2016b). Because PV 

panels are placed on top of buildings, the building footprint data was used to clip DSM 

(Gagnon et al. 2016, Boz et al. 2015). Before intersecting these two files, a 1-m buffer was 
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applied to building footprint areas (Boz et al. 2015). LiDAR data may contain some noise 

and may not be precise enough close to the roof edges, and thus may be unable to provide 

an accurate representation of roof borders (Boz et al. 2015). As a result, there is no explicit 

or absolute roof boundary discernible from LiDAR data. Applying this 1-m buffer helped 

to eliminate noise in LiDAR data (Boz et al. 2015). It was assumed that the whole area of 

rooftops cannot be covered by PV panels and the extent of roof surfaces devoted to the 

panels is assumed to be bounded by a 1-m-wide perimeter area. This margin area is also 

required for safety and maintenance purposes (Boz et al. 2015). 

Different methods have been used to extract roof footprints from LiDAR data. For 

instance, Huang et al. (2015) used vegetation information, normalized difference vegetation 

index (NDVI), from color-infrared image and height information from DSM to recognize 

building roof surfaces. Chaves and Bahill (2010) used an elevation mask to exclude the 

locations lower than a specific height. To extract building roof surfaces from the LiDAR 

data, DSM was clipped by a building footprint polygon shape file. Most of the buildings 

are single homes with mainly ridged roofs. Topographic characteristics such as hillshade, 

slope, and aspect were calculated using the extracted DSM from the LiDAR point cloud 

(Huang et al. 2015). 
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Figure 3-2: Spatial layers: a) aerial imagery, b) LiDAR point clouds, c) DSM, d) building 

footprint polygons. 

3.3.3.1 Rooftop Slope Analysis 

The steepest downhill fall from each cell to its eight surrounding cells (the largest 

elevation change over distance between each cell and its adjacent cells) was calculated in 

ArcGIS using the average maximum technique (Esri 2014). The slope of each square meter 

of roof surfaces in the study area was determined. Lower slope values represent flatter 
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planes (Esri 2014). Surfaces with a tilt less than 10 degrees are usually defined as flat planes 

(Gagnon et al. 2016, Boz et al. 2015). PV panels installed on pitched roofs usually have an 

inclination angle equal to the slope of the roof (Verso et al. 2015). On the flat or almost flat 

roofs, PV panels can be installed with a desired slope (Verso et al. 2015). The optimal PV 

panel tilt angle varies with latitude. PV systems with tilt angles equal to latitude produce 

more yearly electricity than others, while those with slopes larger than latitude generate 

more constant energy but have lower annual production (McKenney et al. 2008). Lower 

slopes lead to more electricity production in summer, whereas higher tilt angles induce 

larger energy generation in winter (McKenney et al. 2008). In fact, with higher slopes, the 

difference between summer and winter energy production decreases, and throughout the 

year the energy flow is more consistent, while with lower slopes the fluctuation  of 

produced energy during summer and winter is considerably higher, meaning that over the 

course of a year, generated electricity exhibits a significant seasonal change.  Accordingly, 

a slope classification logic was utilized to organize different rooftop surfaces with various 

slopes according to their suitability for PV installation (Table 3-2) (Boz et al. 2015).  

Slope evaluation with LiDAR data is not always precise or perfectly accurate. The 

calculated slope might vary throughout a surface with a unique actual slope due to noise in 

the LiDAR data. Noise is generated when light pulses encounter an object which does not 

belong to the roof surface (Boz et al. 2015). To reduce noise and obtain the most accurate 

results, the Majority filter was used. Using this filter, cell slope values were replaced based 

on the majority of their contiguous neighboring cells (Boz et al. 2015). 
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Table 3-2: Slope classes for roof areas (Boz et al. 2015). 

Slope Value (Degree) Class 

0-10 1 

10-20 2 

20-30  3 

30-40  4 

40-50  5 

50-60  6 

60-90 7 

 

3.3.3.2 Rooftop Azimuth Analysis 

Solar panels oriented toward a specific direction exhibit maximum performance 

(Gagnon et al. 2016). Azimuth (aspect) identifies the compass direction that the surface 

slope faces at the installed location. The azimuth in positive degrees was derived from the 

input elevation dataset (the LiDAR-generated DSM) for each square meter of roof area 

utilizing ArcGIS (Gagnon et al. 2016). Aspect values were measured clockwise, from 0 

that defines north to 360 which again indicates north. Flat areas have an aspect value of -1. 

The azimuth measurements were categorized into nine classes (Figure 3-3) (Gagnon et al. 

2016). Next, to eliminate noise, the Majority filter was used (Boz et al. 2015). Azimuth 

values are used to detect all roof planes. A roof plane is composed of contiguous areas with 

same azimuth (Gagnon et al. 2016). Roof planes were converted to polygons, thereby 

individual square meters of roof surfaces were dissolved into homogeneous roof planes. 

Then, to calculate a single average tilt for each individual roof segment, the Zonal Statistics 

tool was applied to the slope raster (Gagnon et al. 2016). 
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Figure 3-3: Rooftop azimuth classes (Gagnon et al. 2016). 

 

3.3.3.3 Shading Analysis 

To model the spatio-temporal variation of insolation on different facets of urban 

surfaces and to determine the unobscured fractions of each roof plane for most of the time, 

a shading simulation was applied to the city’s DSM to illustrate the spatial and temporal 

variation of the shadows. The gradual movement of shadows cast by nearby features 

throughout a day influences the performance of PV systems significantly, and makes it of 

particular importance to consider the variations in length and direction of shadows in PV 

installments. By running the shading simulation for each daylight hour for March 21 

(vernal equinox), June 21 (summer solstice), September 21 (autumnal equinox), and 

December 21 (winter solstice) the hourly and seasonal variations of shading were assessed 

(Gagnon et al. 2016). To investigate the illumination pattern over time and to exclude roof 

segments that are extremely shaded, ArcGIS hillshade capability was employed to generate 

a shaded relief based on the local illumination angle (sun's relative position) and shadows 

(Figure 3-4) (Esri 2017a). 

https://www.timeanddate.com/calendar/summer-solstice.html
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Figure 3-4: Hourly illumination and shading pattern example, June 21. 

 

3.3.4 Suitable Roof Surfaces Selection 

Suitable locations for the placement of PV panels possess particular attributes 

(Chaves and Bahill 2010). Various criteria for selecting suitable roof planes based on their 

slope (tilt), aspect (azimuth), minimum amount of contiguous area, and received incident 

solar radiation were applied. Because Lethbridge is located in the northern hemisphere, all 

roof surfaces oriented toward northwest through northeast (292.5-67.5 degrees) were 

excluded (Gagnon et al. 2016, Huang et al. 2015). The slope of roof surfaces should be less 

than 60 degrees, and rooftops larger than 10 m2 were considered to be suitable for placing 

PV panels (Gooding et al. 2013, Huang et al. 2015, Boz et al. 2015). The smallest practical 

residential solar system that can exhibit a tangible energy production is a 1.5-kW system 

(Gagnon et al. 2016, Solar Choice 2016). Such systems require approximately 10 m2 of 

area (Gagnon et al. 2016). This criteria also excludes objects such as chimneys, dormers, 

and heating, ventilation, and air conditioning (HVAC) apparatus located on roofs 

(Camargo et al. 2015). In addition, desirable roof surfaces should receive an acceptable 

https://en.wikipedia.org/wiki/Heating
https://en.wikipedia.org/wiki/Ventilation_(architecture)
https://en.wikipedia.org/wiki/Air_conditioning
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number of sunlight hours. In hillshade raster, the illumination status of each square meter 

of rooftops in each hour is illustrated by an integer value ranging from 0 to 255 (Esri 2017a). 

At summer solstice, between 9 a.m. and 3 p.m., cells with more than 50% of the full 

brightness value were considered not shaded and others with lower brightness were filtered 

out (Boz et al. 2015). By examining a sample of these cells, we found that they have more 

than 20% of the maximum illumination at winter solstice, between 11 a.m. and 2 p.m. 

Investigation of the hillshade raster of different months showed that the aforementioned 

brightness threshold leads to reasonable results, meaning that rooftops with reasonable 

aspects and exposure to the sun were selected. This multi-criteria strategy eliminates 

unsuitable rooftop areas that lack appealing characteristics, but it is expected that non-

optimally tilted and oriented roof planes will also become economically viable and 

attractive for placing PV panels in the future due to cost reductions and improved efficiency 

(Figure 3-5) (Fath et al. 2015). 

 

Figure 3-5: Examples of suitable rooftop area selection (roof applications such as 

chimneys have been excluded). 
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The file of roof segments with appropriate slope and aspect was created, and then run 

through a Dissolve function which merges contiguous polygons with a specific common 

characteristic to produce continuous suitable areas. Next, the rooftop polygon file was 

converted to a raster file and reclassified. The reclassified hourly hillshade raster files were 

combined with the rooftop raster by applying Raster Calculator. Employing Python syntax, 

Raster Calculator utilizes Map Algebra expressions consisting of various geoprocessing 

operators on multiple inputs to create a desirable raster (Esri 2017b). To evaluate the actual 

practicable roof expanse and the PV installed (nameplate or nominal or rated) capacity, the 

projected roof areas were determined from building footprints and used to calculate the 

oblique area of each suitable roof segment.  

3.3.5 Solar resource evaluation 

The solar radiation estimation can be conducted by using different solar models, 

ground-based meteorological stations or meteorological satellite measurements (Santosa et 

al. 2014). Solar resource potential was assessed for the entire study area utilizing Solar 

Analyst. Solar Analyst uses the DSM to produce global, direct, and diffuse insolation maps 

for a geographic area (Boz et al. 2015). Solar Analyst considers the atmospheric effects, 

latitude and elevation of the region, steepness (slope) and compass direction (aspect), daily 

and seasonal variation of the sun position, shadows and topography, while ignoring local 

weather and temperature (Gooding et al. 2013, Verso et al. 2015). Cloud cover has the 

largest influence on radiation attenuation in the atmosphere (Tooke et al. 2012). Solar 

Analyst uses defined default values for the diffuse proportion of global radiation (𝐾𝐷) and 

the ratio of the insolation received at the Earth’s surface as direct radiation along the 

shortest atmospheric path at sea level to the insolation at the upper border of the atmosphere 
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(𝜏𝑠𝑙, transmittivity), which should be adjusted for local atmospheric conditions 

(Mirmasoudi et al. 2018, Jakubiec and Reinhart 2013, Esri 2016a). Accordingly, utilizing 

meteorological measured data over five years from a station (Lethbridge CDA, located at 

49° 42’ 0” N, 112° 46’ 60” W) inside the study region  and calculating the actual values of 

required inputs (𝐾𝐷 = 0.429, 𝜏𝑠𝑙 = 0.589), the effects of cloud cover and local 

atmospheric conditions have been included. All meteorological data were obtained from 

Alberta Agriculture and Forestry, Alberta Climate Information Service (ACIS) 

(https://agriculture.alberta.ca/acis, 2016). Instead of 𝜏𝑠𝑙 in global annual solar radiation 

calculation, we used 𝐾𝑇𝑠𝑙 (the ratio of measured global solar radiation on a horizontal 

surface against the extraterrestrial radiation at sea level) (Mirmasoudi et al. 2018). Between 

11:30 and 12:30 hours for each day of the years 2010 to 2014, the hourly 𝐾𝑇  was evaluated 

for the station (Ruiz‐Arias et al. 2009). For estimating solar radiation, the annual mean of 

these 𝐾𝑇 values was used. Then, the diffuse fraction of hourly global radiation was 

estimated utilizing Erbs et al. model (Equation (3-1)) (Duffie and Beckman 2013).  

𝐾𝐷 = {

1.0 − 0.09𝐾𝑇                                                                                      ;  𝐾𝑇 ≤ 0.22

0.9511 − 0.1604𝐾𝑇 + 4.388𝐾𝑇
2 − 16.638𝐾𝑇

3 + 12.336𝐾𝑇
4   ; 0.22 ≤  𝐾𝑇 ≤ 0.8  

0.165                                                                                                     ;   𝐾𝑇 > 0.80

  (3-1) 

Solar Analyst algorithm utilizes sea level transmissivity (Fu and Rich 2000). Hence, using 

Equation 3-2,  𝐾𝑇𝑍 was adjusted  for sea level, where 𝑧 represents elevation (Ruiz‐Arias et 

al. 2009). 

𝐾𝑇𝑍 = 𝐾𝑇𝑠𝑙
𝑒𝑥𝑝 (−0.000118𝑧−1.638×10−9𝑧2)                                                                         (3-2) 

https://agriculture.alberta.ca/acis


74 
 

 Next, Zonal Statistics was used to average the annual solar radiation values of all individual 

square meters inside each suitable rooftop segment to identify the roofs’ received total solar 

radiation (Wh/m2). 

In order to assess the accuracy of simulated solar radiation, the results were compared 

with measured insolation obtained from ACSI for the aforementioned station. The mean 

bias error (𝑀𝐵𝐸) and the mean absolute bias error (𝑀𝐴𝐵𝐸) for comparing the monthly 

average observed and simulated insolation were calculated (Equation 3-3).  

𝑀𝐵𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑥𝑖)
𝑛
𝑖=1   ,    𝑀𝐴𝐵𝐸 =

1

𝑛
∑ |𝑦𝑖 − 𝑥𝑖|
𝑛
𝑖=1     ,    𝑅2 = 1 −

∑ (𝑥𝑖−𝑦𝑖)
2𝑛

𝑖=1

∑ (𝑥𝑖−𝑥̅)
2𝑛

𝑖=1

       (3-3) 

where 𝑥𝑖, 𝑦𝑖 , 𝑛 , and  𝑥̅ are the 𝑖th measured value, the 𝑖th calculated value, the total number 

of insolation data, and the mean measured global radiation respectively (Besharat et al. 

2013). 𝑀𝐵𝐸 illustrates the model’s inclination toward radiation overestimation (positive 

value) or underestimation (negative value) (Despotovic et al. 2015). The coefficient of 

determination (R2) derived from regression analysis was used to interpret how precisely the 

actual data points are approximated by the model and to determine the extent to which the 

two data sets are in agreement (Besharat et al. 2013). For 2017 measured radiation, the 

analysis revealed that the R2 is 0.98, which means the model predicts the insolation very 

well and there is a very good fit between the two data sets. In addition, the distribution of 

residuals did not exhibit a strong non-linear relationship of measured and modeled results. 

Also, 𝑀𝐵𝐸 of 5% and 𝑀𝐴𝐵𝐸 of 12% were determined, which are in acceptable ranges 

(Figure 3-6, Table 3-3). 𝑀𝐵𝐸 and 𝑀𝐴𝐵𝐸 are normalized by the average of the measured 

radiation. The monthly measured radiation ranges from 174.2 MJ/m2 to 928.6 MJ/m2 with 

an average equal to 477.8 MJ/m2. 
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Figure 3-6: Observed versus modelled total monthly solar radiation with calculated 

annual average diffuse proportion and transmittivity. 

 

Table 3-3: Regression relationships between monthly observed and modelled total 

solar radiation with calculated annual average diffuse proportion and transmittivity. 

𝒚 = 𝒂 + 𝒃𝒙 𝑺𝒕𝒅. 𝑬𝒓𝒓𝒐𝒓𝒂 𝒕𝒂 𝒑 𝑺𝒕𝒅. 𝑬𝒓𝒓𝒐𝒓𝒃 

𝒚 = −𝟔𝟏. 𝟒𝟏𝟏 + 𝟏. 𝟏𝟕𝟒𝒙 30.718 -1.999 <0.001 0.056 

𝒕𝒃 𝒑 𝑹𝟐 𝑴𝑩𝑬 𝑴𝑨𝑩𝑬 

21.007 <0.001 0.989 0.050 0.120 

Using default values of ArcGIS leads to 33% underestimation of radiation (Figure 3-7, 

Table 3-4), while the employed method induces 5% overestimation considering 2017 

measured data.  
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Figure 3-7: Observed versus modelled total monthly solar radiation with solar analyst’s 

default diffuse proportion and transmittivity. 

Table 3-4: Regression relationships between monthly observed and modelled total solar 

radiation with solar analyst default diffuse proportion and transmittivity. 

𝒚 = 𝒂 + 𝒃𝒙 𝑺𝒕𝒅. 𝑬𝒓𝒓𝒐𝒓𝒂    𝒕𝒂    𝒑 𝑺𝒕𝒅. 𝑬𝒓𝒓𝒐𝒓𝒃 

𝒚 = −𝟕𝟗. 𝟖𝟒𝟐 + 𝟎. 𝟖𝟒𝟐𝒙 21.466 -3.719 <0.001 0.039 

   𝒕𝒃    𝒑 𝑹𝟐 𝑴𝑩𝑬 𝑴𝑨𝑩𝑬 

21.560 <0.001 0.967 -0.325 0.325 

Using monthly averaged values of 𝐾𝐷 and 𝜏𝑠𝑙 obtained over the years 2010 to 2014 

and considering the 2017 measured data, 𝑀𝐵𝐸 of 1% and 𝑀𝐴𝐵𝐸 of 9.21% were 

determined which are slightly better than the results of utilizing annual 𝐾𝐷 and 𝜏𝑠𝑙 (Figure 

3-8, Table 3-5). However, for annual rooftop PV electricity potential estimation it seems 

more practical and sufficiently accurate to use one set of 𝐾𝐷 and 𝜏𝑠𝑙. Hence, the annual 

values of 𝐾𝐷 = 0.429 and 𝜏𝑠𝑙 = 0.589 can be used for solar radiation calculations in the 

study area. Note also that Solar Analyst does not calculate the reflected component of 

radiation. 
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Figure 3-8: Observed versus modelled total monthly solar radiation with calculated 

monthly averaged diffuse proportion and transmittivity. 

Table 3-5: Regression relationships between monthly observed and modelled total solar 

radiation with calculated monthly averaged diffuse proportion and transmittivity. 

𝒚 = 𝒂 + 𝒃𝒙 𝑺𝒕𝒅. 𝑬𝒓𝒓𝒐𝒓𝒂    𝒕𝒂    𝒑 𝑺𝒕𝒅. 𝑬𝒓𝒓𝒐𝒓𝒃 

𝒚 = −𝟑𝟏. 𝟕𝟔𝟗 + 𝟏. 𝟎𝟔𝟏𝒙 34.240 -0.928 <0.001 0.062 

   𝒕𝒃    𝒑 𝑹𝟐 𝑴𝑩𝑬 𝑴𝑨𝑩𝑬 

17.038 <0.001 0.979 -0.010 0.092 

PV panels are usually installed with a desirable tilt angle on flat rooftops, hence 

simulated global solar irradiance on horizontal surfaces was converted to insolation on 

oblique planes. Hourly measured global solar irradiance data obtained from a station in the 

study region (Lethbridge CDA) over five years was transferred to tilt planes utilizing 

transposition and separation models (Perez et al. model (1990), and Erbs et al. model 

(1982)) considering the reflected component of radiation (Duffie and Beckman 2013). A 

slope factor was extracted from this transposition and was applied to ArcGIS simulated 

global horizontal radiation. In this method, roof segments with slopes between 0° and 10° 

are considered as flat. Based on the Perez et al. model (1990), the radiation on a tilted 
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surface has three components: beam, diffuse and ground reflected. The reflected radiation 

is defined as 𝐼𝜌(
1−𝑐𝑜𝑠𝛽

2
)  where 𝐼, 𝜌, and 𝛽 are the global radiation on a horizontal surface, 

the diffuse reflectance of the surroundings (albedo coefficient), and the tilt angle of the 

surface, respectively (Duffie and Beckman 2013). Solar radiation on PV panels increased 

by about 7% when the ground reflected component was taken into account, compared with 

the case when the ground reflected component was ignored (𝜌 was set to zero). Figure 3-9 

shows different stages of LiDAR data processing for an example building with a complex 

roof surface.  

 

Figure 3-9: Various steps of data processing for an example building. 

3.3.6 Rooftop PV electricity production simulation 

Electricity output evaluation of a PV system requires the estimation of resource 

availability, the physically available area, and the technology’s performance (Izquierdo et 

al. 2008). The performance capacity of the flat rooftop PV systems is simulated by 
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considering a packing factor which reflects the access space between installed panels 

required for maintenance purposes and to avoid shading from vicinity panels (row spacing) 

(Anderson et al. 2010, Wirth and Schneider 2016). Usually solar modules require an 

installation area about 2.5 times greater than their own surface area which means that about 

40% of the suitable flat area is usually covered by solar panels (Wirth and Schneider 2016). 

The ratio of panel area to roof surface for inclined roofs which accounts for necessary 

module spacing for racking clamps was taken as 98% (Gagnon et al. 2016). Technical 

characteristics and assumptions for PV performance modeling are presented in Table 3-6.  

Table 3-6: PV system technical characteristics (Gagnon et al. 2016, International 

Energy Agency 2016, Fath et al. 2015, Philipps and Warmuth 2017). 

PV system technical characteristics 

Module efficiency (η) Performance ratio (PR) Inverter efficiency 

15%  80% 95% 

Ratio of panel area to suitable rooftop area Module tilt angle for flat roofs 

0.4 (Flat roofs) 0.98 (Inclined roofs) Area latitude angle= 49° 

System azimuth 

South facing (Flat roofs) Azimuth classification 

Electricity output 𝐸 is computed by means of the following equation (International 

Energy Agency 2016, Fath et al. 2015): 

𝐸 = 𝑀𝐼𝑟𝑟 ∗ 𝐴 ∗ 𝜂 ∗ PR                                                                                                      (3-4) 

where 𝑀𝐼𝑟𝑟 is the average irradiation of each suitable rooftop, and 𝐴 is the actual surface 

area of each suitable rooftop (Fath et al. 2015). Shading simulation being accounted for 

each rooftop’s 𝑀𝐼𝑟𝑟 by solar analyst. PR is the performance ratio of an implemented system 

and is defined as below (Schmalensee 2015):             

𝑃𝑅 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝐴𝐶 𝑦𝑖𝑒𝑙𝑑 (𝑘𝑊ℎ 𝑦⁄ )

𝐷𝐶 𝑝𝑜𝑤𝑒𝑟 𝑟𝑎𝑡𝑖𝑛𝑔(𝐾𝑊)×8,760(ℎ 𝑦)×𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑙𝑎𝑛𝑒−𝑜𝑓−𝑎𝑟𝑟𝑎𝑦 𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒(𝑊 𝑚2)/1,000(𝑊 𝑚2⁄ )⁄⁄
                  

                                                                                                                                        (3-5) 
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The parameter PR compares the actual annual AC energy yield and the expected DC 

output of an identical ideal and lossless PV system at the same location and can be used to 

quantify the overall system losses (Schmalensee 2015). Actual energy yield, and hence PR, 

is significantly influenced by actual insolation, various losses including shading losses, 

module efficiency losses, and system losses (Schmalensee 2015). Losses due to 

accumulation of snow and soil on panels’ surface, module parameter mismatch, resistance 

in the DC circuit, and DC current ripple and algorithm error caused by the switching 

converter which performs the maximum power point tracking function contribute in the 

system losses (Table 3-7) (Ropp et al. 1997). PR can be calculated according to Equation 

(3-6) (Ropp et al. 1997). Furthermore, inverter efficiency (𝜂𝑖𝑛𝑣) usually ranges from 92% 

to 95% (Vignola et al. 2008). Multiplying the PR by the PV module efficiency, the overall 

system efficiency can be calculated (Pelland et al. 2006).  

PR = 𝜂𝐷𝑢𝑠𝑡 . 𝜂𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ . 𝜂𝐷𝐶𝑙𝑎𝑠𝑠 . 𝜂𝑀𝑃𝑃𝑇 . 𝜂𝑖𝑛𝑣                                                                  (3-6) 

Table 3-7: Values representing various losses used in system efficiency calculation 

(Equation (3-6)) (Ropp et al. 1997). 

Parameter Value 

𝜼𝑫𝒖𝒔𝒕 96% 

𝜼𝒎𝒊𝒔𝒎𝒂𝒕𝒄𝒉 95% 

𝜼𝑫𝑪𝒍𝒂𝒔𝒔 98% 

𝜼𝑴𝑷𝑷𝑻 95% 

Reich et al. (2012) investigated the performance of 100 German PV systems and 

found that, in part because of Germany’s cool climate, the PR of some systems exceed 90%. 

Given that southern Alberta’s solar resources are 30% greater than Germany and 

considering the latitude similarity between most German cities and southern Alberta, 

comparable PV system performances are anticipated (McKenney et al. 2008, Pelland and 

Poissant 2006). In addition, McKenney et al. (2008) developed spatial models of global 
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insolation and photovoltaic potential for Canada assuming a PR of 0.75. In addition, 

Pelland and Poissant (2006) evaluated the potential of building integrated photovoltaics 

(BIPV) in Canada considering a value of 0.75 for the PR of PV systems. With technology 

advancements, significant improvement in PV systems’ performance and module 

efficiency have occurred over past years, hence, a PR of 80% seems attainable in southern 

Alberta. 

3.3.7 Rooftop PV Economic potential assessment  

The economic attractiveness of the rooftop PV systems under current market 

conditions is investigated to determine whether a specific location is profitable for PV 

installation or not. Most PV potential studies have not considered the economic feasibility 

of the PV installations, while, home owners and investors install PV facilities when these 

systems are economically viable (Fath et al. 2015). Renewables are not currently cost 

competitive in all places, hence it is important to determine the economically viable fraction 

of solar PV electricity generation potential. 

3.3.7.1 PV Dynamic investment assessment 

Net present value (NPV) is used to perform an economic potential analysis and to 

assess the profitability of the solar rooftop projects (Equation 3-7) (Fath et al. 2015). NPV 

illustrates the difference between the current value of cash inflows and the present value of 

cash outflows. 

𝑁𝑃𝑉 = −𝐼0 + ∑
𝐶𝐹𝑡

(1+𝑟)𝑡
𝑇
𝑡=1   ,                                                                                           (3-7) 

where 𝑡 is the time of cash flow,  𝑇 is the total time period or the system life time (25 years), 

𝑟 is the interest rate (2%), and 𝐶𝐹𝑡 ($/year) is the net cash flow at time t (Equation 3-8) 
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(Fath et al. 2015, MacKinnon and Mintz 2017). The parameters 𝑖𝑑𝑒𝑔, 𝑝𝑒𝑙, 𝑖𝑒𝑙, 𝑐𝑜𝑝, and 𝑖𝑜𝑝  

represent the annual degradation rate of generated electricity (0.25 %/year), average 

electricity price, annual increase in generated electricity price, operating cost, and annual 

increase in operating cost respectively (Equation 3-8) (Fath et al. 2015). 

𝐶𝐹𝑡 = 𝐸𝑎 × (1 − 𝑖𝑑𝑒𝑔)
𝑡 × 𝑝𝑒𝑙 × (1 + 𝑖𝑒𝑙)

𝑡 − 𝑐𝑜𝑝 × (1 + 𝑖𝑜𝑝)
𝑡
                                   (3-8) 

In Alberta, from 2013 to 2017, the average increase in the consumer price index of 

all items such as food, shelter, and transportation was 1.56%, hence 𝑖𝑜𝑝 was set to 1.56% 

(Statistics Canada 2018). In Lethbridge, the electricity price varies, and with higher 

electricity prices, solar PV systems become more feasible. While the average power price 

has been 7.3 ¢/kWh from 2012 to 2018, great changes in regulated electricity rates have 

been occurring historically (Government of Alberta 2018). Other fees that are charged on 

electricity bills may increase as well, for instance, average transmission rate in 2027 is 

forecasted to be about 42 $/MWh which is 33% more than that in 2018 (Statistics Canada 

2018, Alberta Electric System Operator 2016, Kuby Renewable Energy Ltd 2018). Solar 

energy generation can reduce the energy charge, the variable cost of distribution, and the 

transmission charge on electricity bills (Kuby Renewable Energy Ltd 2018). Estimate of 

𝑝𝑒𝑙, 𝑖𝑒𝑙 , and  𝑐𝑜𝑝 are assumed to be 0.08 $/kWh, 3.5%, and 15 $/kW/year. There is a $36 

million rebate program in Alberta, introduced by the provincial government for installing 

solar PV on residential and commercial buildings aiming to offset up to 30% of residential 

solar installation costs and up to 25% of solar installation costs for businesses and non-

profits (Alberta Government 2017a). We assumed that 25% of the capital costs for all 

installations would be covered by this program.  
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Generated solar electricity 𝐸𝑎(kWh/year) provides cash inflows, and in an 

economically feasible system, the related electricity revenue surpasses all upfront capital 

costs 𝐼0 and maintenance and operational expenditures over the system’s lifetime. A PV 

system is economically attractive when its NPV is larger than zero (Fath et al. 2015). In 

2016, the residential grid-connected rooftop PV systems (up to 10 kW), commercial grid-

connected rooftop PV systems (between 10 kW to 250 kW), and industrial grid-connected 

rooftop PV systems (above 250 kW) cost between 3 to 3.5 CAD$/W, 2.5 to 3 CAD$/W, 

and 2 to 2.5 CAD$/W respectively (Poissant et al. 2017). Up to a 12.5% decline in PV 

system prices occurred from 2015 to 2016 (Poissant et al. 2017). Therefore, the upfront 

investments for 3kW, 10kW, and 250kW PV system sizes have been assumed to be 2,680 

($/kW), 2,200 ($/kW), and 1,760 ($/kW) respectively, applying a 12% reduction to the 

2016 system prices (Poissant et al. 2017). Based on these system installment costs, the 

following relationship between system size 𝑃(kW) and investment 𝐼0($/kW) was created to 

calculate the specific investment for other rooftop PV system sizes: 

𝐼0 = 2877.2 × 𝑃−0.064                                                                                                 (3-9) 

Using Equation (3-9), the initial investment cost for the midpoint of each system size class 

presented in Table 3-8 has been calculated (Fath et al. 2015). For systems larger than 50 

kW and smaller than 5 kW the midpoints were set to 60 kW and 3 kW.  

Table 3-8: Initial investment cost of PV system classes derived from Equation (3-9). 

System size (kW) Install cost ($/kW) 

𝑷 ≤ 𝟓 2,640 

𝟓 < 𝑷 ≤ 𝟏𝟎 2,600 

𝟏𝟎 < 𝑷 ≤ 𝟐𝟎 2,400 

𝟐𝟎 < 𝑷 ≤ 𝟓𝟎 2,300 

𝑷 > 𝟓𝟎 2,200 
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3.4 Results and discussion 

Applying the preceding method to the City of Lethbridge, 38,496 suitable rooftop 

segments with a total actual area of about 2,372,000 m2 were identified which cover 

approximately 30% of the total roof area. The accuracy of the rooftop segment selection 

has been examined by analyzing and investigating several buildings’ rooftop areas using 

the region’s aerial image. The individual suitable segments belong mostly to residential 

(about 83%) and commercial (about 9%) buildings, providing about 48% and 20% of the 

suitable area respectively (Figure 3-10, Table 3-9). Most of the segments are flat or have a 

slope less than 20° (about 91% of them or 84% of the suitable area). Low slope and flat 

roofs allow us to install PV panels with the most effective tilt angle (Boz et al. 2015). 

 

Figure 3-10: Percentage of rooftop segments in different slope classes. 

While industrial and commercial buildings account for just about 3% and 4% of the 

flat individual segments, they constitute the largest portion of the suitable flat area (m2), 

about 22% and 18% of the available flat area respectively, demonstrating the importance 
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of these sectors’ engagement in developing a successful solar PV industry in cities (Table 

3-9). Furthermore, rooftop PV installation by homeowners can boost the urban solar 

electricity generation significantly because residential buildings with roof pitch between 

10° and 20° account for more than 25% of the total suitable roof area (about half of the 

segments), which is the highest share among various building types and slope classes 

(Table 3-9). 

Table 3-9: Suitable rooftop segment area (m2) and its percentage by building type and 

slope classes. 

Building type 

Slope Classes 

0° - 10° 10° - 20° 20° - 30° 

m2 % m2 % m2 % 

Residential 368,544 15.54 598,017 25.21 163,377 6.89 

Commercial 414,781 17.49 26,845 1.13 16,614 0.7 

Industrial 513,397 21.64 22,403 0.94 4,000 0.17 

Education 109,708 4.62 9,595 0.40 2,306 0.10 

Others 94,299 3.98 4,489 0.19 4,496 0.19 

Total area 1,500,729 63.26 661,349 27.88 190,794 8.04 

Building type 

Slope Classes 

30° - 40° 40° - 50° 50° - 60° Total Area 

m2 % m2 % m2 % m2 % 

Residential 9,155 0.39 1,066 0.04 125 0.01 1,140,285 48.07 

Commercial 2,825 0.12 508 0.02 99 0.00 461,673 19.46 

Industrial 1,130 0.05 470 0.02 132 0.01 541,531 22.83 

Education 1,390 0.06 451 0.02 294 0.01 123,745 5.22 

Others 1,340 0.06 185 0.01 121 0.01 104,932 4.42 

Total area 15,840 0.67 1,066 0.11 772 0.03 2,372,165  

Some building rooftops have more than one suitable segment, especially those with 

complex structure. After combining multiple suitable segments of individual buildings’ 

rooftops, it was found that about 48% of the all buildings possess a suitable roof plane 

which could host PV systems (26,959 buildings). About 94% of these buildings are 

residential (Figure 3-11). 
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Figure 3-11: Percentage (%) of the different building sectors with suitable roof surface for 

PV installment. 

The majority of the suitable rooftop planes of residential buildings (45% of them) 

have an area between 20 m2 and 50 m2, while most of the commercial and industrial 

building’s suitable rooftops fall between 500 m2 and 1000 m2 (Figure 3-12). Around 13%, 

22%, 49%, and 32% of the commercial, industrial, education, and other buildings with 

suitable rooftops have a PV appropriate roof surface larger than 1000 m2 and smaller than 

22,000 m2, respectively (Figure 3-12). Suitable rooftops larger than 22000 m2 exist in 

education and commercial sectors (Figure 3-12). 

 

Figure 3-12: Area histogram of buildings’ suitable roof plane for PV installment. 
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Residential buildings with suitable rooftops mostly (about 90%) can accommodate 

PV systems with a size less than 10 kW, while suitable rooftops of commercial, industrial, 

education, and other building types demonstrate larger system capacity (Figure 3-13). For 

instance, while just 0.09% of the suitable residential rooftops can host PV systems larger 

than 100 kW, around 45% of the education buildings with suitable rooftops can provide 

sufficient space for rooftop PV systems larger than 100 kW (Figure 3-13). 

 

Figure 3-13: PV system size histogram of rooftops for different building types. 

The identified suitable surfaces provide enough area for installing approximately 218 

MW of rooftop PV systems, with residential buildings accounting for about half of the 

installed capacity. Based on the computed solar radiation, this installment could generate 

around 301 ± 29 (SD (standard deviation)) GWh of solar electricity annually (Figure 3-14). 

More than half of this electricity would be produced by residential buildings’ rooftop (about 

57%) (Figure 3-14). Industrial and commercial buildings are the second and third largest 

potential contributors to rooftop PV energy production (Figure 3-14). Combining all 
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uncertainties in various stages of the system yield evaluation, a total of 9.5% uncertainty in 

solar PV energy output calculation is estimated (Thevenard and Pelland 2013). In 2015, in 

Lethbridge, electricity usage per person (for all sectors) was 8.2 MWh (Environment 

Lethbridge 2017). This consumption is lower than provincial and national average 

electricity consumption and recently has not changed significantly from year to year 

(Environment Lethbridge 2017). Considering the city’s population in 2016, the estimated 

rooftop PV electricity would enable the city to offset almost 38% of its annual electricity 

consumption. 

 

Figure 3-14: Rooftop PV electricity potential generation by different building 

sectors. 

Capacity factor (CF), which shows the difference between the actual performance of 

a PV system and the energy output of an ideal and lossless PV system with alike rated 

capacity receiving constant irradiance (1000 W/m2), is used to compare different power 

systems’ potential in producing energy (Schmalensee 2015). For instance, typical yearly 

capacity factors for hydropower plants, natural gas combined cycle plants, coal power 

plants and wind plants are about 40%, 44%, 64%, and 31% respectively. System energy 

yield is proportional to the capacity factor, where capacity factor is defined as (Schmalensee 

2015): 
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𝐶𝐹 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝐴𝐶 𝑦𝑖𝑒𝑙𝑑 (𝑘𝑊ℎ/𝑦𝑒𝑎𝑟)

𝐷𝐶 𝑝𝑒𝑎𝑘 𝑝𝑜𝑤𝑒𝑟 𝑟𝑎𝑡𝑖𝑛𝑔(𝑘𝑊)×8,760(ℎ𝑜𝑢𝑟 𝑦𝑒𝑎𝑟)⁄
                                                            (3-10) 

The average capacity factor of the determined rooftop PV systems is about 16 ± 1.5%, 

which is very promising for this urban region. 

The NPV graphs for system size classes presented in Table 3-8 and various electricity 

output level are delineated in Figure 3-15 to indicate annual electricity threshold for 

profitable systems. 

 

Figure 3-15: NPV graphs for different system size classes versus annual electricity yield. 

Systems with an initial investment of 2,640 $/kW need to generate about 994 

kWh/kW/year to become economically viable (Figure 3-15, Table 3-10). The initial cost of 

systems with 2,200 $/kW investment will be compensated over their lifetime if they 

produce at least 854 kWh/kW/year (Figure 3-15, Table 3-10). Based on NPV graphs, about 

96% of the identified suitable rooftop systems are profitable. Small systems occupying 

small areas are the most likely to fail to be economically justified. However, with more 
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decline in PV costs and improved efficiencies, small areas can achieve a higher packing 

factor, produce more energy and become economically attractive.  

Table 3-10: Minimum (kWh/kW/year) solar energy production for a NPV= 0. 

System capital cost Minimum(kWh/kW/year) solar energy production for a NPV= 0  

2,640 994 

2,600 981 

2,400 917 

2,300 886 

2,200 854 

Recently, the Climate Leadership Plan was introduced by the provincial government, 

with a goal of  ending the use of coal for electricity production by 2030 and utilizing more 

renewable sources (Government of Alberta 2017). According to this plan, 5,000 MW of 

new renewable energy capacity will be built by 2030, with renewables to supply 30% of 

the electricity demand which can lead to a significant growth in clean energy investment 

(Government of Alberta 2017). 

3.5 Conclusion 

Rising climate change risks and global sustainability challenges along with the 

significant decreases in costs of renewables have led to recognition of solar electricity 

systems as major parts of mitigation strategies (Castellanos et al. 2017). Providing end users 

with a self-managed, usable energy source with minimal operation and maintenance costs, 

rooftop PV is distinct among low-carbon technologies (Strupeit and Palm 2016). Here, an 

exhaustive rooftop PV potential assessment in an urban area has been conducted in order 

to fill a gap in the available public information about the potential of such systems. 

Alberta’s electricity generation sector currently relies heavily on fossil fuels, and coal in 

particular, producing approximately 17% of the province’s annual GHG emissions in 2015 

(Government of Alberta 2017). To achieve the goal of zero emissions from coal-based 
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electricity production of the Alberta climate plan by 2030, some supporting programs such 

as the “Residential and Commercial Solar Program” and “Alberta Municipal Solar 

Program” have been established to stimulate the PV system installation on buildings and 

municipal facilities (Government of Alberta 2017). In response to this great movement 

towards more renewable energy sources, this study tries to present an effective and scalable 

methodology for simulating the insolation resource and rooftop solar PV energy and 

economic potential in an urban area in Southern Alberta. LiDAR data and ArcGIS was 

employed to identify suitable rooftops for PV installation and the Solar Analyst simulation 

engine was applied and adjusted based on data characterizing the local environment to 

accurately assess the region’s insolation resource. Precise solar radiation resources 

assessment in a large area like an urban area is always challenging, hence a new method 

was developed to calculate solar radiation using ArcGIS. In addition, the slope of PV 

modules installed on flat roofs, and the reflected radiation component have been taken into 

account. Finally, utilizing market prices and dynamic investment methods, the economic 

potential of rooftop PV systems were investigated. Results illustrated that rooftop PV has 

a great potential to offset the city’s energy demand. The study described in this thesis 

chapter was undertaken in part to increase the awareness about the characteristics and 

economics of rooftop PV, which is vital to more renewable energy deployment. The results 

of this research can assist investors in energy and building sectors and accelerate an 

informed transition towards a more sustainable future.  
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Chapter 4: Multi-Criteria PSO-based optimal design of grid-connected hybrid 

renewable energy systems 

4.1 Introduction 

The global economy relies heavily and increasingly on fossil fuels. Currently fossil 

fuels supply about 85% of human energy demands (Mitchell 2015, Bhandari et al. 2015, 

Akram et al. 2017). The side effects of combustion and inefficient use of energy are the 

main causes of emerging climate change, which is one of the primary global challenges we 

face today (Mitchell 2015). The risks of climate change cannot be diminished without a 

considerable reduction in fossil fuel usage and a transformation in global energy production 

(Mitchell 2015). Massive renewable energy deployment and energy-saving improvements 

in efficiency of energy use are the two prime paths towards limiting global climate change 

(Wang and Singh 2008). Furthermore, the deployment of renewable energy sources will 

result in increased energy independence and security (Wang and Singh 2008). Using 

current technology, it is feasible to meet 100% of global energy demand reliably by 

renewable resources (wind, water, and the sun) by 2050 without imposing excessive costs 

(Delucchi and Jacobson 2011).  

Renewable energy generation from wind and solar sources depends on weather 

conditions, which vary and often can not be accurately predicted (Bhandari et al. 2015). 

Hence, renewable energy sources are considered to be unreliable and often unavailable.  

They also require relatively high capital investments (Wang and Singh 2008, Bhandari et 

al. 2015). Integrating different renewable power sources can help to alleviate their 

individual unreliability (Nafeh 2011).  Hybrid systems provide a practical path to achieving 

a balance among cost, emissions, and load availability (Wang and Singh 2008, Bhandari et 
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al. 2015). Precise planning of HRESs components is essential in attaining the most cost-

effective hybrid system with the most reliable energy output (Wang and Singh 2008, 

Bhandari et al. 2015). Connecting HRESs to the grid can also mitigate the unpredictable 

nature of electricity production from renewable resources (Khare et al. 2016). 

Solar and wind resources are ample in our study region. In this research, they are 

employed simultaneously to mitigate their respective variations and instabilities. By 

incorporating storage batteries into such hybrid systems (PV and wind turbine), fluctuations 

in each intermittent resource’s energy production can be smoothed out, making the three 

components complementary to one another (Wang and Singh 2008). Excess solar and wind 

energy production (production higher than demand) can be stored for times when energy 

production is too little to meet the demand (Wang and Singh 2008). By minimizing the 

waste and curtailments of renewable energy systems, batteries can increase energy 

availability,  match supply and demand, and decrease the operational costs (Wang and 

Singh 2008). The amount of renewable energy production, load demand, and the site 

characteristics will determine the appropriate size of the battery (Jahanbani and Riahy 

2011).  

Consumer’s greenhouse gas emission footprint can be reduced by limiting the amount 

of the purchased electricity from the grid below a specific threshold. To design and size 

different components of a HRES, particle swarm optimization has proven to be an 

outstanding metaheuristic method (Del Valle et al. 2008). This method can find nearly 

optimal solutions to highly nonlinear, multi-criteria design problems. Multi-criteria design 

is a promising approach to aggregate various design objectives (Wang and Singh 2009).  



94 
 

4.2 Background 

The optimal design of renewable energy systems is receiving increasing attention and 

becoming an active field of research (Erdinc and Uzunoglu 2012, Maleki et al. 2017). The 

primary goal of reducing the system cost (lifetime cost including the fixed costs (capital 

and maintenance costs) and operational expenditures) is achieved by employing economic-

environment (emission) or techno-economic optimization approaches (Erdinc and 

Uzunoglu 2012, Alsayed et al. 2013). Various optimization algorithms including genetic 

algorithm (GA) (Bilal et al. 2010), simulated annealing (SA) (Ekren and Ekren 2010), 

particle swarm optimization (PSO) (Maleki et al. 2017), linear programming (Ter-Gazarian 

and Kagan 1992), neural networks (Mellit and Benghanem 2007), simplex algorithm 

(Lagorse et al. 2009), dynamic programming (Margeta and Glasnovic 2010), stochastic 

approache (Cabral et al. 2010), iterative and probabilistic approaches (Prasad and Natarajan 

2006, Tina et al. 2006), response surface methodology (Ekren and Ekren 2008), design 

space based approach (Arun et al. 2009), quasi-Newton algorithm (Ashok 2007), and 

energy hub concept (Alejandro et al. 2009) have been used. Various storage and backup 

strategies have been sugested; including battery storage, pumped hydro storage (PHS), 

internal combustion engines (ICE), and connection to the conventional grid, to reduce the 

impact of the random nature of renewable energy sources (RES) (González et al. 2015). 

Many evaluation indices have been used to model power supply reliability (Xu et al. 2013). 

Loss of load expected (LOLE)1, Loss of power supply probability (LPSP) , the levelised 

cost of energy (LCOE)2 (the net value of the unit cost of electricity over the lifetime of the 

                                                           
1 Considering the daily peak load fluctuations, LOLE calculates the number of days that the peak load 

surpasses the installed system capacity (Okinda and Odero 2015). 
2 LCOE =

𝑇𝑃𝑉×𝐶𝑅𝐹

𝐸𝐿
; 𝐸𝐿(kWh), 𝐶𝑅𝐹, and 𝑇𝑃𝑉 are, respectively, the annual output, capital recovery factor, and 

the total present value of all system components costs (Rouhani et al. 2013, Okinda and Odero 2015) 
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generation), and the annual net balance are some of the reliability indexes utilized in hybrid 

optimization studies (Jahanbani and Riahy 2011, Mohammed et al. 2016, Okinda and 

Odero 2015). Erdinc and Uzunoglu (2012) and Bhandari et al. (2015) reviewed hybrid 

renewable power systems optimization and sizing techniques presented in the literature.  

To minimize the gap between renewable energy production and electricity demand 

over a 24-hour time span, Kellogg et al. (1996) used an iterative optimization to propose 

several viable combination of PV, wind, and storage for a stand-alone residential home 

system, ultimately selecting the combination with the minimum total annual cost. 

Gavanidous and Bakirtzis (1992) designed an autonomous wind-PV-battery bank system 

to supply electricity to a building, using a trade-off method that systematically selects the 

size of various system components by minimizing the “loss of load probability” (LOLP)3 

as well as the initial investment. Nafeh (2011) utilized a Genetic Algorithm to optimize the 

design of a residential PV-wind hybrid energy system with battery storage. Simulating the 

proposed hybrid system in MATLAB, they aimed to minimize the hybrid system’s total 

cost while meeting a specific reliability target through satisfying an LPSP constraint. 

Utilizing two iterative search algorithms for designing renewable sources and battery 

capacity separately, Akram et al. (2017) proposed  a methodology for optimal sizing of a 

grid-linked PV-wind-battery system based on maximum reliability and minimum cost 

constraints. Minimizing the levelised cost of energy while achieving high energy reliability, 

Mahesh and Sandhu (2017) employed a Genetic Algorithm to optimally design a grid-

linked PV-wind-battery system utilizing an energy filter algorithm for regulating the energy 

                                                           
3 LOLP =

∑ 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 𝐿𝑜𝑎𝑑 𝑇𝑖𝑚𝑒𝑡
0

8760
× 100%, (LOLP is the fraction of hours at which there is an electricity deficit) 

(Garcia and Weisser 2006, Mohamed et al. 2016). 
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injected into the grid. Minimizing the net present value (NPV) (the difference between 

the present value of cash inflow and the present value of costs over time) objective 

function, González et al. (2015) utilized a Genetic Algorithm and the net annual balance 

index to design an optimal wind-PV grid-linked system for a rural township with 1271 

residential dwellings. Maleki et al. (2017) presented an economic model for a grid-linked 

residential PV-wind turbine-fuel cell-solar thermal collector hybrid system. They used a 

modified heuristic particle swarm optimization method over a 24-hour period to determine 

the conditions for optimal operation of the system.  

This research extends the attempts to optimize HRESs by integrating solar, wind, and 

battery with conventional grid for a university, providing a detailed plan based on the 

results. Cost, reliability, and emissions were modeled and different scenarios were 

investigated. These types of assessments will be required frequently in the future as 

engineers, planners, and managers develop policies that lead institutions to transition from 

conventional grid-based power to local and regional solar PV and wind turbine sources of 

electricity. The methodology outlined in this research is based on a combination of the loss 

of power supply probability, the annualized system cost, and quantities of greenhouse gas 

emission avoided by adoption of the HRES design. Considering the required (allowable) 

LPSP, the optimal configuration of the system was determined first, and then, among all 

the possible choices, the system with the lowest annual cost was found. The potential of the 

systems to reduce the resulting overall carbon intensity was also considered as a constraint. 

The goal of the project was to find a balance between LPSP, the total annual cost of the 

system, and the GHG emission footprint. A key feature of this research is the use of real 

on-time data for a university with large electricity consumption to investigate the behaviour 
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of the proposed methodology and the structure of the required systems. A great deal of 

additional research in this area is needed to plan for replacement of conventional electrical 

grids and accelerate the movement towards renewable energy and sustainability (Wang and 

Singh 2008).  

4.3 Methods 

4.3.1 Multi-objective optimal design of hybrid renewable energy generation systems 

Grid-connected or stand-alone hybrid generation systems are composed of various 

parallel connected energy resources such as photovoltaic cells, wind turbines, and storage 

batteries (Wang and Singh 2008, Bhandari et al. 2015, Nafeh 2011, Jayachandran and Ravi 

2017, Wang and Singh 2009). When demand exceeds the renewable generation plus battery 

capacity, energy must be drawn from the conventional utility grid, which can usually be 

assumed to be fossil fuel based (Kellogg et al. 1996, Akram et al. 2017). When the 

renewable generated electricity exceeds the demand and the storage batteries are fully 

charged, extra power is diverted to the grid, balancing the demand load and generated 

power (Owayjan et al. 2013, Wang and Singh 2008, Kellogg et al. 1996). In effect, the 

utility grid plays a backup role here (Akram et al. 2017). Each of these electricity sources 

possesses specific economic, technical, and environmental characteristics which can be 

improved by incorporating individual sources into a hybrid generation system (Wang and 

Singh 2008). The aim of this incorporation and the attempt to determine the optimum 

design for it is to balance multiple conflicting objectives in order to meet the energy 

demand, while simultaneously optimizing a set of desirable economic, environmental, and 

operational-reliability measures (Wang and Singh 2008, 2009). In addition, the integration 

of PV and wind decreases the required battery storage capacity compared with the single 
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utilisation of renewables (Bhandari et al. 2015). The reliability of the energy generated by 

the hybrid system considering the weather condition variability together with the overall 

system cost are two crucial design concerns (Bhandari et al. 2015, Akram et al. 2017). The 

main objective here is to ascertain the optimal size of the hybrid system components while 

satisfying the preceding criteria. To determine the optimum wind turbine, PV, and battery 

size, the hybrid system may be considered as an autonomous (off-grid) system (Akram et 

al. 2017, Xu et al. 2013). In this context, producing extra energy and selling it to the grid is 

not considered to be desirable (Alsayed et al. 2013). The environmental advantages of 

renewable hybrid systems are compromised by purchasing power from the utility grid; henc 

minimizing the amount of power purchased is considered as an optimization objective (Xu 

et al. 2013). 

4.3.2 Photovoltaic performance simulation 

Operation simulation of different system elements is the first stage in HRESs sizing 

(Bhandari et al. 2015, Nafeh 2011). Receiving insolation of 𝐺𝑇  (W/m2) (the total solar 

radiation on the tilted PV plane), PV modules with an efficiency of 𝜂𝑐 and an area of 

𝐴𝑃𝑉 (m
2) exhibit a power output of 𝑃𝑃𝑉 given by (Gavanidous and Bakirtzis 1992, Mahesh 

and Sandhu 2017, Diaf et al. 2007): 

𝑃𝑃𝑉 = 𝜂𝑐 . 𝐴𝑃𝑉 . 𝐺𝑇 . 𝑃𝑅                                                                                                   (4-1)                                                                                           

Performance ratio (PR) that represents the overall system losses was set to 80% 

(Schmalensee 2015). Using transformation and separation models, measured hourly global 

horizontal insolation data obtained from a nearby station is converted to insolation on the 

tilted plane of PV array. The beam and diffuse fractions of total horizontal hourly radiation 

were separated and evaluated using the Erbs et al. (1982) model (Duffie and Beckman 
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2013). Utilizing the Perez et al. (1990) model, the diffuse radiation on the tilted surface was 

estimated (Duffie and Beckman 2013, Yang et al. 2007). The Perez et al. model renders the 

diffuse radiation on the tilted surface using Equation (4-2). 

𝐼𝑑,𝑇 = 𝐼𝑑[(1 − 𝐹1) (
1+𝑐𝑜𝑠𝛽

2
) + 𝐹1

𝑎

𝑏
+ 𝐹2𝑠𝑖𝑛𝛽]                                                              (4-2) 

where 𝐹1 and 𝐹2 are circumsolar and horizon brightness coefficients. 𝐼𝑑 (Wh/m2) and 

𝛽(degrees) are diffuse components of the hourly radiation on a horizontal plane and the 

slope angle of the surface, i.e. the array surface tilt angle from horizontal, and 𝑎 and 𝑏 are 

given by Equation (4-3) (Duffie and Beckman 2013). 

𝑎 = max (0, 𝑐𝑜𝑠𝜃),       𝑏 = max (cos (85°), 𝑐𝑜𝑠𝜃𝑧)                                                     (4-3) 

𝜃 and 𝜃𝑧 are angle of incidence (the angle between the beam radiation on a surface and the 

normal to that surface) and zenith angle (the angle between the vertical and the line from 

the surface to the sun), respectively. 𝐼𝑏𝑅𝑏 (Wh/m2) and 𝐼𝜌𝑔(
1−𝑐𝑜𝑠𝛽

2
) (Wh/m2) are the beam 

and ground reflected components of insolation on a tilted surface respectively. 𝑅𝑏 is the 

ratio of beam radiation on the oblique surface to that on a horizontal surface, 𝐼 (Wh/m2) 

denotes hourly total radiation on a horizontal surface, 𝐼𝑏 (Wh/m2) is beam radiation on a 

horizontal surface, and 𝜌𝑔 is the ground reflectance (the albedo) (Duffie and Beckman 

2013). 

In addition, the effect of temperature and various losses on efficiency were 

considered. The operating temperature of PV cells was evaluated employing the Skoplaki 

model (Equation (4-5)) (Skoplaki et al. 2008). 

𝜂𝑐 = 𝜂𝑇𝑟𝑒𝑓[1 − 𝛽𝑟𝑒𝑓(𝑇𝑐 − 𝑇𝑟𝑒𝑓)]                                                                                 (4-4) 
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𝑇𝑐 = 𝑇𝑎 + (
0.32

8.91+2.0𝑉𝑓
)𝐺𝑇       ;                𝑉𝑓 > 0                                                                    (4-5)                         

where 𝜂𝑇𝑟𝑒𝑓 and 𝛽𝑟𝑒𝑓 (℃
−1) are the efficiency of PV module and the efficiency correction 

coefficient at temperature 𝑇𝑟𝑒𝑓 = 25℃ and at solar radiation of 1000 W/m2, respectively. 

𝑇𝑐, 𝑇𝑎, 𝑉𝑓, 𝐺𝑇 are the PV cell operating temperature (℃), the ambient air temperature (℃), 

the wind velocity in the windward side of the PV array (m/s), and irradiance on module 

surface (W/m2) (Skoplaki et al. 2008). The equation 𝑉𝑓  = 𝑉𝑤 0.67⁄  relates near the PV 

array wind speed (𝑉𝑤) to the free stream wind speed (𝑉𝑓 ) (undisturbed natural air flow 

speed (International Electrotechnical Commission 2018)). 

4.3.3 Wind turbine performance simulation 

The underlying equation that illustrates the wind turbine’s mechanical power yield is 

(Bhandari et al. 2015, Duffie and Beckman 2013): 

𝑃 =
1

2
𝜌𝐴𝑊𝑇,𝑆𝐴𝐶𝑃𝑣

3                                                                                                      (4-6) 

where 𝜌, 𝐴𝑊𝑇,𝑆𝐴, 𝐶𝑃, and 𝑣 are, respectively, the air density (kg/m3), the area swept by the 

turbine blades (m2), the turbine power coefficient (Betz’s coefficient with a theoretical 

maximum of 0.593) which illustrates the ratio of the turbine output to the total energy 

contained in the wind, and the wind speed (m/s) (Bhandari et al. 2015). For a good design, 

the power coefficient can reach a value of 0.50 (Hemami 2012). The combined efficiency 

of the drive train and generator (the system’s efficiency in generating electricity), 𝜂, is 

assumed to be 0.9 (Duffie and Beckman 2013). Using the power curve method, wind 

turbine electrical power output can be evaluated by means of the following piecewise model 

(Mathew 2006): 
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𝑃𝑊 =   

{
 
 

 
 
 0                                                                                                  ;  𝑣 < 𝑣𝑖     

𝑎𝑣𝑛 + 𝑏 = 𝑃𝑅 (
𝑣𝑛−𝑣𝑖

𝑛

𝑣𝑟
𝑛−𝑣𝑖

𝑛 )                                                      ;  𝑣𝑖 ≤ 𝑣 ≤ 𝑣𝑟   

  𝑃𝑅                                                                                            ;  𝑣𝑟 < 𝑣 ≤ 𝑣𝑜
0                                                                                                 ; 𝑣 > 𝑣𝑜   

          (4-7) 

where       𝑃𝑊 =
1

2
𝜌. 𝐴𝑊𝑇,𝑆𝐴. 𝜂𝑊𝑇 . 𝐶𝑃 . 𝑣𝑟

3                                                                                         (4-8) 

where 𝑣𝑖, 𝑣𝑟, 𝑣𝑜, 𝑃𝑅, 𝑛 are cut-in velocity (m/s), rated velocity (m/s), cut-out velocity (m/s), 

turbine’s rated power (W), and the velocity-power proportionality, respectively (Figure 

4-1) (Duffie and Beckman 2013, Mathew 2006). The velocity power proportionality was 

assumed to be three (Jahanbani and Riahy 2011, Mathew 2006). Table 4-2 demonstrates 

the wind turbine typical technical parameters utilized in the simulations. 

Table 4-1: Wind turbine technical parameters. 

𝑷𝑹 2.0 MW 

𝒗𝒊 2.0 m/s 

𝒗𝒓 12.0 m/s 

𝒗𝒐 25.0 m/s 

 

Figure 4-1: Wind turbine typical power curve and essential wind turbine characteristic 

velocities. 
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4.3.4 Battery storage modelling 

By improving the availability and stability of grid-connected and off-grid renewable 

energy systems, energy storage elevates the value of renewable energy (Divya and 

Østergaard 2009). The maximum depth of discharge (the discharge extension, as batteries 

are not usually discharged fully), rated battery capacity, battery longevity, and self-

discharge rate (the discharge rate when battery is not used) are fundamental battery 

characteristics utilized in battery design and sizing (Bhandari et al. 2015, Divya and 

Østergaard 2009). Battery types include Lead acid, sodium sulphur (NaS), lithium ion (Li 

ion), metal air, and flow batteries (Divya and Østergaard 2009). Divya and Østergaard 

(2009) reviewed battery energy storage technology employed in the power sector and its 

influence on power systems, and investigated different methods for evaluating economic 

benefits of battery design and configuration. Lead-acid battery is the most technically 

mature (Divya and Østergaard 2009). The majority of battery models employed in 

reliability and stability analysis of power systems are not based on a specific battery 

technology type (Divya and Østergaard 2009).  

Battery capacity (𝐶𝐵𝑎𝑡) is usually the key design variable in system sizing (Nafeh 

2011). The state of charge of a battery at time  𝑡, 𝑆𝑂𝐶(𝑡), is a function of the battery’s state 

of charge at time (𝑡 − 1) combined with the energy generation and consumption conditions 

in time interval from (𝑡 − 1) to 𝑡 (Diaf et al. 2007). The time variable t is generally 

measured in hours. When the wind and solar PV output exceeds the energy demand, the 

battery is charging and the available battery capacity at hour t [𝐶𝐵𝑎𝑡(𝑡) (kWh)] is (Ai et al. 

2003, Diaf et al. 2007, Jahanbani and Riahy 2011): 
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𝐶𝐵𝑎𝑡(𝑡) = 𝐶𝐵𝑎𝑡(𝑡 − 1)(1 − 𝜎) + (𝐸𝑃𝑉(𝑡) + 𝐸𝑊𝑇(𝑡) −
𝐸𝐿(𝑡)

𝜂𝑖𝑛𝑣
) 𝜂𝐵𝑎𝑡                             (4-9) 

where 𝐶𝑏𝑎𝑡(𝑡 − 1), 𝜎, 𝐸𝑃𝑉(𝑡), 𝐸𝑊𝑇(𝑡), 𝐸𝐿(𝑡), 𝜂𝑖𝑛𝑣, 𝜂𝑏𝑎𝑡 are, respectively, the available 

battery capacity at hour (𝑡 − 1) (kWh), battery hourly self-discharge rate (0.01), energy 

generated by PV at time 𝑡 (kWh), energy generated by wind turbine at time 𝑡 (kWh), load 

demand at time 𝑡 (kWh), inverter efficiency (it is assumed that 𝜂𝑖𝑛𝑣 is constant and about 

95%), and the battery bank charge efficiency (Ai et al. 2003, Vignola et al. 2008, Mahesh 

and Sandhu 2017). When the renewable generated electricity is smaller than the load 

demand, the battery is discharging, and the available battery capacity is (Ai et al. 2003, 

Diaf et al. 2007, Gavanidous and Bakirtzis 1992, Jahanbani and Riahy 2011, Mahesh and 

Sandhu 2017): 

𝐶𝐵𝑎𝑡(𝑡) = 𝐶𝐵𝑎𝑡(𝑡 − 1)(1 − 𝜎) − (
𝐸𝐿(𝑡)

𝜂𝑖𝑛𝑣
− (𝐸𝑃𝑉(𝑡) + 𝐸𝑊𝑇(𝑡))) 𝜂𝑏𝑎𝑡−𝑑𝑖𝑠                  (4-10)      

The battery’s discharging efficiency (𝜂𝑏𝑎𝑡−𝑑𝑖𝑠) is assumed to be 1, while the charge 

efficiency varies with charging current, ranging between 65% and 85% (Nafeh 2011, Diaf 

et al. 2007, Ai et al. 2003). Battery efficiency during charging was taken into account 

(Gavanidous and Bakirtzis 1992). Over-charging or over-discharging reduces battery 

lifetime (Nafeh 2011). To prolong life span, the battery’s capacity must be kept within the 

following range at any hour 𝑡 (Diaf et al. 2007, Gavanidous and Bakirtzis 1992): 

(𝐶𝐵𝑎𝑡)𝑚𝑖𝑛 ≤ 𝐶𝐵𝑎𝑡(𝑡) ≤ (𝐶𝐵𝑎𝑡)𝑚𝑎𝑥                                                                              (4-11) 

The maximum admissible battery capacity, (𝐶𝐵𝑎𝑡)𝑚𝑎𝑥, can be considered as the battery’s 

nominal or rated capacity, (𝐶𝐵𝑎𝑡)𝑛, and the depth of discharge (DOD) may be used to define 

the minimum acceptable battery capacity (Diaf et al. 2007, Ai et al. 2003): 

(𝐶𝐵𝑎𝑡)𝑚𝑖𝑛 = 𝐷𝑂𝐷 × (𝐶𝐵𝑎𝑡)𝑛  ,  (𝐶𝐵𝑎𝑡)𝑚𝑎𝑥 = (𝐶𝐵𝑎𝑡)𝑛                                               (4-12)                            
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The DOD is usually about 30-50%; in this research, DOD was assumed to be 30% (Ai et 

al. 2003). 

4.3.5 Objective function 

Achieving a rational trade-off between a system’s technically appealing 

characteristics and the associated costs requires an inclusive system cost estimate which 

includes many factors, such as the equipment cost, system longevity, and the interest rate 

(Wang and Singh 2008). The system’s initial cost or capital investment ( 𝐼𝐶), present worth 

of equipment replacement cost (𝐶(𝑅𝑒𝑝)), present worth of the system’s maintenance and 

operation cost (𝐶(𝑂&𝑀), and the annual costs of purchased electricity from the grid 

(𝐶𝐺𝑃𝑢𝑟) constitute the main expenditures. Selling electricity to the grid (𝑅𝐺𝑆𝑒𝑙) and selling 

obsolete equipment at the end of the system’s operation time (present worth of elements 

salvage value (𝑅(𝑆𝑎𝑙)) can create some revenue (González et al. 2015, Maleki et al. 2017, 

Nafeh 2011). The present worth of the total annual system cost ($/year) is presented by the 

following objective (fitness) function (𝐹𝐶) (Nafeh 2011, Maleki et al. 2017, González et al. 

2015, Wang and Singh 2009) 

𝐹𝐶 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(∑ 𝐶𝑜𝑠𝑡𝑖𝑖 − ∑ 𝐼𝑛𝑐𝑜𝑚𝑒𝑘)𝑘                                                                   (4-13) 

𝐹𝐶 =
∑ (𝐼𝐶𝑖+𝐶(𝑂&𝑀)𝑖+𝐶(𝑅𝑒𝑝)𝑖−𝑅(𝑆𝑎𝑙)𝑖)𝑖=𝑊𝑇,𝑃𝑉,𝐵𝑎𝑡

𝑁
+ 𝐶𝐺𝑃𝑢𝑟 − 𝑅𝐺𝑆𝑒𝑙 = 𝑓(𝐴𝑃𝑉 , 𝐴𝑊𝑇,𝑆𝐴, 𝐶𝐵𝑎𝑡)                   

                                                                                                                             (4-14) 

The total system cost is assumed to be a function of the total PV panel area (𝐴𝑃𝑉), 

the total wind turbine rotor swept area (𝐴𝑊𝑇,𝑆𝐴), and the battery storage capacity (𝐶𝐵𝑎𝑡) 

(González et al. 2015, Nafeh 2011). 𝐴𝑃𝑉 could be limited to the maximum available area 

for PV installment and 𝐴𝑊𝑇,𝑆𝐴 may be constrained according to the maximum number and 
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size of wind turbines that can be installed in the study area (Nafeh 2011). In addition, the 

allocated budget can be another restricting factor (Nafeh 2011). Instead of dividing the total 

cost by 𝑁 (system lifetime) to evaluate the annualized cost, total cost may be multiplied by 

recovery factor (𝐶𝑅𝐹) which is defined by Equation (4-15) (Maleki et al. 2015). 

𝐶𝑅𝐹 =
𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑐𝑜𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡
= 

𝑟(1+𝑟)𝑁

(1+𝑟)𝑁−1
                                                                               (4-15)                                                                         

𝑟 is the interest rate (Mohamed et al. 2016). The capital cost can be expressed by the 

following equation (González et al. 2015): 

𝐼𝐶 = 𝐼𝐶,𝑃𝑉 + 𝐼𝐶,𝑊𝑇 + 𝐼𝐶,𝐵𝑎𝑡 = 𝑁𝑃𝑉 ∙ 𝐼𝑃𝑉 ∙ 𝑃𝑃𝑉,𝑟𝑎𝑡 + 𝑁𝑊𝑇 ∙ 𝐼𝑊𝑇 ∙ 𝑃𝑊𝑇,𝑟𝑎𝑡 + 𝐼𝐵𝑎𝑡 ∙ 𝐶𝐵𝑎𝑡(4-16)  

where 𝑁𝑃𝑉 and 𝑁𝑊𝑇  are the number of PV modules, and the number of wind turbines 

(González et al. 2015). 𝐼𝑃𝑉, 𝐼𝑊𝑇 , and 𝐼𝐵𝑎𝑡 are the capital cost of PV panels in $/kW, the 

capital cost of wind turbine in $/kW, and the capital cost of battery storage in $/kWh 

(González et al. 2015). 𝑃𝑃𝑉,𝑟𝑎𝑡, 𝑃𝑊𝑇,𝑟𝑎𝑡, and 𝐶𝐵𝐴𝑇 are each panel’s rated (nominal) power, 

each wind turbine’s rated power, and the battery’s capacity (González et al. 2015). The 

number of PV panels (𝑁𝑃𝑉) can be calculated by dividing the total PV area (𝐴𝑃𝑉) by one 

panel’s area (𝐴𝑃𝑎𝑛𝑒𝑙) (González et al. 2015): 

𝑁𝑃𝑉 = 𝐴𝑃𝑉 𝐴𝑃𝑎𝑛𝑒𝑙⁄                                                                                                       (4-17)                                             

Also, the number of wind turbines (𝑁𝑊𝑇) can be calculated by dividing the total swept area 

(𝐴𝑊𝑇,𝑆𝐴) by a single turbine’s swept area (𝐴𝑆𝑊1) (González et al. 2015) :  

𝑁𝑊𝑇 = 𝐴𝑊𝑇,𝑆𝐴/ 𝐴𝑆𝑊1                                                                                                  (4-18)               

It was assumed that the module’s nominal maximum power under standard test 

conditions (STC) and the PV module’s dimensions are 270W and 1658 × 992 mm, 
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respectively. Since 2014, the cost of battery storage has decreased approximately 50%, and 

is anticipated to be reduced by 11.4% annually until 2020 due to continued technology 

improvement and increased competition (Power Advisory LLC 2017). Average battery 

costs were less than US$230/kWh in 2016, a significant decrease from about US 

$1,000/kWh in 2010 (Stevens and Chung 2017). The present worth (discounted value) of 

each component’s operation and maintenance cost after 𝑖 years is calculated as (González 

et al. 2015, Nafeh 2011): 

𝑁𝑃𝑉𝑂&𝑀 = ∑ 𝐶(𝑂&𝑀)𝑘 ∙
(1+𝑗)𝑖

(1+𝑟)𝑖
𝑁
𝑖=1                                                                                 (4-19) 

where 𝐶(𝑂&𝑀)𝑘, 𝑗, 𝑟 are, respectively, each component’s current operation and maintenance 

cost value ($/year), the annual (general) inflation rate, and the interest rate. 𝑘 and 𝑁 

represent different system components and the system lifetime respectively (Nafeh 2011, 

González et al. 2015). The annual maintenance and operation cost is taken to be 0.5% of 

the wind turbine capital cost, 0.5% of PV system capital cost, and 0% of battery storage 

capital cost for these three components. PV systems require minimum maintenance to 

function (Wang and Singh 2009). It is assumed that the lifetime of PV panels and wind 

turbines is equal to the lifespan of the system (25 years), therefore they do not need to be 

refurbished or replaced over the operational lifetime of the system (Lantz et al. 2013, Nafeh 

2011); thus only batteries need to be replaced. The total present worth of the capital and 

replacement costs of batteries is given by (Nafeh 2011, González et al. 2015, Wang and 

Singh 2009): 

𝐼𝐶,𝐵𝑎𝑡 + 𝑁𝑃𝑉𝑅𝑒𝑝,𝐵𝑎𝑡 = 𝐼𝐵𝑎𝑡 ∙ 𝐶𝐵𝑎𝑡 ∙ ∑ (
1+𝑗𝑅

1+𝑟
)
(𝑥−1)∙𝐿𝐵𝑎𝑡𝑋𝐵𝑎𝑡

𝑥=1                                           (4-20) 
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where 𝑋𝐵𝑎𝑡, 𝑗𝑅, and 𝐿𝐵𝑎𝑡 are, respectively, the total number of batteries’ replacement during 

system’s lifespan, the inflation rate of the equipment acquisition cost which is not 

necessarily equal to the general inflation rate, and the battery lifetime (González et al. 2015, 

Nafeh 2011). 𝑋𝐵𝑎𝑡 can be expressed as (Nafeh 2011):  

𝑋𝐵𝑎𝑡 = 𝑖𝑛𝑡[𝑁 𝐿𝐵𝑎𝑡⁄ ]                                                                                                   (4-21) 

The present worth of PV panel’s salvage value, 𝑁𝑃𝑉𝑆𝑎𝑙−𝑃𝑉, and the present worth of 

wind turbine salvage value, 𝑁𝑃𝑉𝑆𝑎𝑙−𝑊𝑇 , are given by (Nafeh 2011):   

𝑁𝑃𝑉𝑆𝑎𝑙−𝑃𝑉 = 𝑆𝑃𝑉 ∙ 𝐴𝑃𝑉 ∙
(1+𝑗)𝑁

(1+𝑟)𝑁
                                                                                   (4-22)                                                                    

𝑁𝑃𝑉𝑆𝑎𝑙−𝑊𝑇 = 𝑆𝑊𝑇 ∙ 𝐴𝑊𝑇,𝑆𝐴 ∙
(1+𝑗)𝑁

(1+𝑟)𝑁
                                                                             (4-23) 

where 𝑆𝑃𝑉  𝑎𝑛𝑑 𝐴𝑃𝑉 are the panels’ salvage value  per square meter ($/m2) at present and 

total panel area, respectively (Nafeh 2011). 𝑆𝑊𝑇  and 𝐴𝑊𝑇,𝑆𝐴 are turbine current salvage 

value ($/m2) and the total wind turbine rotor swept area. The battery storage salvage value 

is estimated to be very low, and hence can be disregarded (Nafeh 2011, Wang and Singh 

2009). It was presumed that the salvage price of a PV module is about 3% of its capital 

cost. Sometimes, decommissioning a wind farm at the end of its useful lifetime and 

reclamation may result in some of the investment not having economic worth due to the 

high costs of reclamation. The salvage price of a wind turbine was taken as 1% of its 

original capital cost. The cost of the inverter is ignored because it was not intended to 

optimize this component (Sharafi and ElMekkawy 2014). 

4.3.6 Energy management and control strategy 

When renewable energy generation is not sufficient to satisfy the load, the energy 

deficit will be provided by battery storage. If the demand is still not fully met, the remaining 
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deficit will be purchased from the grid (Ardakani et al. 2010). The power purchased from 

the utility grid at time 𝑡, 𝑃𝐺𝑃𝑢𝑟(𝑡), can be expressed as (Xu et al. 2013): 

𝑃𝐺𝑃𝑢𝑟(𝑡) = 𝑃𝐿(𝑡) − [𝑃𝑊𝑇(𝑡) + 𝑃𝑃𝑉(𝑡) + 𝑃𝐵𝑎𝑡−𝑑𝑐ℎ(𝑡)]                                              (4-24) 

When the renewable energy generation exceeds load demand, the excess energy is 

first used to charge the battery storage up to the maximum permissible level, with the 

remainder being fed directly into the utility grid (Xu et al. 2013). Thus the highest priority 

for meeting the load demand is assigned to renewable electricity, while purchasing power 

from the utility grid has the lowest priority in supplying power (Ardakani et al. 2010). The 

power fed into the grid at any hour 𝑡, 𝑃𝐺𝑆𝑒𝑙(𝑡), can be expressed as (Xu et al. 2013): 

𝑃𝐺𝑆𝑒𝑙(𝑡) = [𝑃𝑊𝑇(𝑡) + 𝑃𝑃𝑉(𝑡)] − [𝑃𝐿(𝑡) + 𝑃𝐵𝑎𝑡−𝑐ℎ(𝑡)]                                             (4-25) 

where 𝑃𝑊𝑇 , 𝑃𝑃𝑉, 𝑃𝐿, 𝑃𝐵𝑎𝑡−𝑑𝑐ℎ, and 𝑃𝐵𝑎𝑡−𝑐ℎ are, respectively, power generated by wind 

turbine, power generated by PV, demand load, power taken from battery (discharge), and 

power used to charge the battery. The annual cost of purchased electricity from the grid, 

𝐶𝐺𝑃𝑢𝑟, and the annual revenues from selling electricity to the grid, 𝑅𝐺𝑆𝑒𝑙, can be expressed 

as (González et al. 2015, Wang and Singh 2009): 

𝐶𝐺𝑃𝑢𝑟 = ∑ 𝑃𝐺,𝑃𝑢𝑟(𝑡) ∙ 𝜑(𝑡)
𝑇
𝑡=1                                                                                      (4-26) 

𝑅𝐺𝑆𝑒𝑙 = ∑ 𝑃𝐺,𝑠𝑜𝑙𝑑(𝑡) ∙  𝜉(𝑡)
𝑇
𝑡=1                                                                                      (4-27)                                

where 𝜑 ($/kW), 𝜉 ($/kW), and 𝑇 are the grid power price, the sale price of power supplied 

to the grid, and the operation time interval (8760 hours = 1 year) (González et al. 2015). 

The power purchased from the utility grid may be damped by the following constraints: 

∑ 𝑃𝐺𝑃𝑢𝑟(𝑡)
𝑇
𝑡=1 ≤ 𝑃𝐺𝑃𝑢𝑟,𝑚𝑎𝑥                                                                                                                        (4-28) 
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The maximum allowable power purchase from the utility grid is shown by 𝑃𝐺𝑃𝑢𝑟,𝑚𝑎𝑥 

(Ardakani et al. 2010).  

Sometimes it is assumed that the total annual renewable electricity generated by a 

HRES should be equal to the total annual electricity demand (the design criterion is net 

annual balance) (González et al. 2015). Producing extra renewable energy and selling it to 

the grid may be undesirable due to additional cost and social unacceptability of installing 

more HRES equipment. Alsayed et al. used the total energy lost (TEL) indicator to 

minimize the extra renewable energy generation (Alsayed et al. 2013).  

4.3.7 Renewable hybrid system reliability simulation 

Reliability measures the system’s ability to perform as intended during its life span, 

and evaluates the quality of the provided service in fluctuating load and weather conditions. 

Reliability analysis approximates the physical features of the system and utilizes 

mathematical modeling or simulation to manipulate the reliability factors (Wang and Singh 

2008). Reliability analysis is an attempt to lessen the uncertainties and risks in power 

generation, and is taking a center stage in system planning. Uncertainty and intermittency 

of renewable sources of energy, in conjunction with unknown fluctuations of load and 

random system collapses, make reliability analysis complicated (Wang and Singh 2008).  

Along with minimizing the total annual system cost, the system’s reliability adequacy 

is evaluated by means of the “loss of power supply probability” (LPSP) concept which 

demonstrates the long-term average unserved load fragment for the energy supplier (hybrid 

system) (Nafeh 2011, Diaf et al. 2007). A zero LPSP indicates that the demand will always 

be met, while a LPSP equal to unity means that the demand will never be satisfied (Nafeh 
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2011, Xu et al. 2013). The LPSP𝑚𝑎𝑥 (reliability threshold) is defined based on the energy 

prices and reliability desired to find a system with the lowest LPSP (Nafeh 2011). The 

system LPSP over the course of time span 𝑇 is given by Equation (4-29) (Nafeh 2011, Xu 

et al. 2013, Mahesh and Sandhu 2017). 

𝐿𝑃𝑆𝑃 =
∑ 𝐿𝑃𝑆(𝑡)𝑇
𝑡=1

∑ 𝐸𝐿(𝑡)
𝑇
𝑡=1

= ∑
𝐸𝐿(𝑡)−𝐸𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑(𝑡)

∑ 𝐸𝐿
𝑇
𝑡=1 (𝑡)

=𝑇
𝑡=1

∑ [𝐸𝐿(𝑡)−(𝐸𝑃𝑉(𝑡)+𝐸𝑊𝐺(𝑡)+𝐶𝐵𝑎𝑡(𝑡))]
𝑇
𝑡=1

∑ 𝐸𝐿(𝑡)
𝑇
𝑡=1

        (4-29) 

where 𝐸𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑(𝑡) is the total energy provided by the system at any time t. LPSP ≤ 𝜆𝐿 

where 𝜆𝐿 is the load’s permissible LPSP or the tolerance limit of the system reliability 

(LPSPmax ) (Xu et al. 2013, Mahesh and Sandhu 2017, Nafeh 2011). The “loss of power 

supply” for hour 𝑡 is illustrated by LPS(𝑡) which represents the insufficiency in renewable 

energy generated by the hybrid system and available stored energy in batteries to meet the 

load in hour 𝑡, 𝐸𝐿(𝑡) (Nafeh 2011). 𝑇 is the system’s operating time (8760 hours) (Xu et al. 

2013). Several possible operational situations for a hybrid grid-connected renewable energy 

system were examined to explore the behaviour of the proposed optimization method. 

4.3.8 Optimization strategy and design constraints 

The optimum size of the system’s components will be selected from among a set of 

finite samples by an iterative approach through minimizing the total annual cost (Xu et al. 

2013, Maleki et al. 2017). In a multi-objective problem solving procedure, a specific 

objective is defined as the main objective and others are considered as constraints and 

conditions to solve the problem and achieve the main objective (Mahesh and Sandhu 2017). 

Here, minimizing the total annual cost of the hybrid system is the main objective, while the 

minimization of the amount of purchased electricity and unmet demand, and maximization 

of the amount of avoided CO2 emissions are considered as necessary complementary 
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conditions. Hence, to solve the optimization problem, all the aforementioned constraints 

listed below should be satisfied: 

LPSP ≤ 𝜆𝐿,  (𝐶𝑏𝑎𝑡)𝑚𝑖𝑛 ≤ 𝐶𝑏𝑎𝑡(𝑡) ≤ (𝐶𝑏𝑎𝑡)𝑚𝑎𝑥,   ∑ 𝑃𝐺𝑃(𝑡)
𝑇
𝑡=1 ≤ 𝑃𝐺𝑃,𝑚𝑎𝑥 

𝐴𝑃𝑉,𝑚𝑖𝑛 ≤ 𝐴𝑃𝑉 ≤ 𝐴𝑃𝑉,𝑚𝑎𝑥 ,   𝐴𝑊𝑇,𝑆𝐴,𝑚𝑖𝑛 ≤ 𝐴𝑊𝑇,𝑆𝐴 ≤ 𝐴𝑊𝑇,𝑆𝐴,𝑚𝑎𝑥                          (4-30)         

 

4.3.8.1 Particle swarm metaheuristic optimization (PSO) method 

The particle swarm optimization technique was adopted for this non-linear, 

multidimensional objective function optimization. Kennedy and Eberhart devised particle 

swarm optimization in 1995 (Eberhart and Kennedy 1995). Showing astonishing promise 

in a variety of applications including power systems and solving large-scale nonlinear 

optimization problems, this evolutionary stochastic population-based heuristic 

optimization method operates so as to imitate animals’ social behaviour and movements, 

for example bird flocks seeking grain (forage) or schools of fish (Maleki et al. 2017, Poli 

et al. 2007, Del Valle et al. 2008). Unlike other methods that utilize the gradient of an 

objective function, direct operation in a continuous real number search space is the main 

feature of PSO (Khare and Rangnekar 2013). In light of the flexibility of PSO in managing 

numerous qualitative restrictions, in power system economic dispatch (ED) studies, the 

performance of PSO’s surpasses that of the majority of heuristic and mathematical 

approaches (Del Valle et al. 2008). For instance, designing a residential photovoltaic-wind 

turbine-fuel cell-solar thermal collector system, Maleki et al. (2017) demonstrated that PSO 

outperforms the genetic algorithm. Methaheuristic methods including PSO are 

recommended for designing HRESs owing to their provision of a rigorous search of 

probable solutions space (Mohammed et al. 2016). 
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In PSO, a random search space for the defined function is created and several particles 

(simple entities, population members, or possible solutions) are placed in it, and which can 

move inside the space with given velocities (random particles with random positions and 

random velocities) (Poli et al. 2007, Del Valle et al. 2008, Khare and Rangnekar 2013). 

The objective function is evaluated for each of the particles at the particles’ present 

position, while in each iteration, each particle’s position is updated based on its own and 

its neighbours’ previous values (Poli et al. 2007, Del Valle et al. 2008). In this approach 

the particles possess memory, exchange information, and move around their neighbours’ 

and their own best found positions randomly (Poli et al. 2007). Essentially, a potential 

solution is a point (particle) that flies in the search space while having access and 

responding to information from other particles (Khare and Rangnekar 2013).  

The position of each particle in multidimensional search space, 𝑥𝑖 ∈ 𝑅
𝑛, and its 

velocity,  𝑣𝑖 ∈ 𝑅
𝑛, are determined by Equations (4-31) and (4-32) (Del Valle et al. 2008, 

Maleki et al. 2017). The position of each particle changes based on randomly generated 

velocities. 

𝑣𝑖
𝑘+1 = 𝜔. 𝑣𝑖

𝑘 + 𝜑1. 𝑟1. (𝑝𝑏𝑒𝑠𝑡,𝑖
𝑘 − 𝑥𝑖

𝑘) + 𝜑2. 𝑟2(𝑔𝑏𝑒𝑠𝑡
𝑘 − 𝑥𝑖

𝑘)                                       (4-31)                     

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1                                                                                                        (4-32) 

where 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … , 𝑥𝑖𝑑], 𝑣𝑖 = [𝑣𝑖1, 𝑣𝑖2, 𝑣𝑖3, … , 𝑣𝑖𝑑], and 1, 2, 3, …, d illustrate the 

possible dimensions for 𝑖 = 1, 2, 3, …, i particles having position 𝑥 and velocity 𝑣 (Khare 

and Rangnekar 2013). 𝜑1 and 𝜑2 are acceleration constants or learning factors (positive 

numbers representing cognitive and social parameters) and 𝑟1 and 𝑟2 are two uniformly 

distributed random numbers between 0 and 1 (Del Valle et al. 2008, Maleki et al. 2017). 

The parameters 𝑝𝑏𝑒𝑠𝑡,𝑖 and 𝑔𝑏𝑒𝑠𝑡 are the best individual particle position and the best global 
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swarm position respectively (Maleki et al. 2017). The parameter 𝑘 represents the present 

iteration and 𝜔 is the inertia weight that can be either a fixed value or a dynamically 

changing value (Khare and Rangnekar 2013, Del Valle et al. 2008).  

The first component of the velocity update equation, Equation (4-31), demonstrates 

the particle’s inclination to move in its current direction and denotes inertia momentum or 

habit. The second component of  𝑣𝑖
𝑘+1 denotes memory or self-knowledge and shows the 

tendency of each particle towards the best position achieved by the particle so far. Finally, 

the third component of  𝑣𝑖
𝑘+1 illustrates the particles’ urge towards the best position 

achieved by all particles (Del Valle et al. 2008). Based on this stochastic mechanism, each 

particle searches new areas to find the best position while it tries to avoid being trapped in 

any local optima (Jahanbani and Riahy 2011). Particles that pass the boundaries of the 

search space are returned to their previous position. 

Here, each particle has three dimensions which express the capacity of the 

components. The viability of each particle is examined by simultaneous simulation of 

fitness function and constraints. The operation of each particle (each configuration of 

HRESs) is modeled over one year using hourly climate data. The annual LPSP and CO2 

emissions are evaluated for the particle; subsequently, the objective function will be 

assessed for particles with desirable LPSP and CO2 emissions in the optimization process. 

If the cessation criteria are not satisfied, particles are updated and their performance and 

adequacy reevaluated. The cycle is stopped when tolerance criteria is fulfilled (Figure 4-2).  
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The following alternative modified version of PSO that proposes a constriction 

coefficient (𝜒) can also be used in order to improve the performance of the algorithm (Del 

Valle et al. 2008, Shi 2001): 

𝑣𝑖
𝑘+1 = 𝜒. [𝑣𝑖

𝑘 + 𝜑1. 𝑟1. (𝑝𝑏𝑒𝑠𝑡,𝑖
𝑘 − 𝑥𝑖

𝑘) + 𝜑2. 𝑟2(𝑔𝑏𝑒𝑠𝑡
𝑘 − 𝑥𝑖

𝑘)]                                     (4-33) 

𝜒 =
2

|2−𝜑−√𝜑2−4𝜑|
                       𝜑1 + 𝜑2 = 𝜑 > 4.0                                                    (4-34)                   

The typical value of 𝜑 is 4.1 which leads to a constant 𝜒 of 0.729  (Shi 2001). 

 

Figure 4-2: Executed steps in PSO algorithm (Maleki et al. 2017). 

The size of population and the iteration numbers for each particle influence the 

method’s performance (Maleki et al. 2017). The population size is usually determined 

empirically, and generally lies between 20 and 50 particles (Poli et al. 2007, Khare and 

Rangnekar 2013). 
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4.4 Results and discussion 

HRES systems are designed based on the historical University of Lethbridge 

electricity consumption. This medium-sized institution is located on the west side of the 

City of Lethbridge, southern Alberta, Canada (49° 40’ 38” N, 112° 51’ 51” W). Long-term 

hourly solar radiation, wind speed, and air temperature data for a nearby station, Lethbridge 

CDA (49° 42’ 0” N, 112° 46’ 60” W) was obtained from the Alberta Climate Information 

Service (ACIS) (http://agriculture.alberta.ca/acis, 2016). The university utility service 

supplied the university electricity consumption data. The simulations are carried out 

utilizing the meteorological data and load profile over the course of one year (year 2014) 

illustrated in Figure 4-3, Figure 4-4, and Figure 4-5. The utilization of hourly time-series 

data over one year assists us to capture the daily and seasonal variations of the weather data 

and demand and also, to consider the stochastic nature and intermittency of the renewable 

sources. The smallest potential of wind and the second smallest potential of PV electricity, 

but the highest electricity consumption during 2010 to 2014 occurred in 2014. 

http://agriculture.alberta.ca/acis
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Figure 4-3: Hourly electricity load over one year. 

The average wind speed at 10m elevation is 15.2 kph and the max wind speed is 63.6 

kph. The maximum load is 5484 kWh/h which happened in September 24 (2014) at 3:00 

pm (Figure 4-6). In all months, the maximum electricity consumption occurred at noon or 

in the afternoon (12:00 pm to 16:00 pm). The total annual electricity consumption was 

about 27,148 MWh. 
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Figure 4-4: Hourly wind speed data over one year. 

 

Figure 4-5: Hourly solar radiation data over one year. 

The electricity consumption pattern for some weekdays and weekends during 

November, April, and July are illustrated in Figure 4-7, Figure 4-8, and Figure 4-9. The 
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load profile of both weekdays and weekends are sharply peaked during afternoon and 

evening time. In November (Figure 4-7), the electricity consumption during 24 hour 

weekdays was about 23% more on average than that over 24 hour weekends, while in July, 

this difference was about 25% on average (Figure 4-9). Moreover, in November, the 

electricity demand during weekday daytime (8:00 am to 5:00 pm) was 33% higher on 

average than that over weekday nighttime (6:00 pm to 7:00 am) (Figure 4-7). However, 

during weekend daytime in November, the demand was on average 18% more than that 

over nighttime (Figure 4-7). In July, the electricity usage during weekday daytime (6:00 

am to 10:00 pm) was about 420% larger than that over weekday nighttime (23:00 pm to 

5:00 am) on average, while for weekends this number was about 320%. The proposed 

HRES should satisfy this high fluctuating electricity usage in a reliable way. Moreover, 

fluctuations of solar and wind energy make it more critical to design a satisfactory HRES 

that fulfils the demand. Generally, wind speed, solar insolation, load profile, and cost of the 

backup energy supplier and unit cost of grid electricity govern a hybrid system design 

(Ekren and Ekren 2009). 
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Figure 4-6: Maximum monthly hourly electricity consumption (kWh/hour). 

 

 

Figure 4-7: Electricity consumption pattern during some weekdays and weekends in 

November. 
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Figure 4-8: Electricity consumption pattern during some weekdays and weekends in 

April. 

 

 

Figure 4-9: Electricity consumption pattern during some weekdays and weekends in July. 

 

4.4.1 PSO factors 

 

Resolving large-scale multi-objective complex nonlinear optimization problems 

usually encompasses consideration of incompatible, contradictory, and conflicting design 

objectives (Ranjithan et al. 2001). The proposed PSO optimization methodology that can 
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reasonably simulate and integrate the nonlinear characteristics of the renewable 

technologies, the variable nature of renewable energy sources, and the dynamic and 

complex interaction between load and stochastic variations in generated renewable energy, 

is implemented in Python. In multi-objective optimization, a set of compromised and 

satisfactory solutions known as non-dominant or non-inferior solutions can be discovered 

by examining objectives which conflict in the sense that improving performance with 

respect to one may worsen another (Sharafi and ElMekkawy 2014, Khalkhali et al. 2010). 

Hence, a single optimum solution that can maximally satisfy all objectives may not be 

found in these problems (Khalkhali et al. 2010). Exploring a set of solutions is a viable 

empirical way of resolving such multiple-objective optimization problems (Fadaee and 

Radzi 2012). In the proposed multi-objective method, the annualized cost of systems is to 

be minimized while carbon footprint and reliability indicator of the systems are 

concurrently considered as restriction limits. Changing these constraints can reveal various 

non-inferior solutions; this method is known as an ԑ-constraint method, in which one 

objective is selected to be optimized while the others are treated as bound constraints 

(Sharafi and ElMekkawy 2014). 

The population of particles in PSO was set to 100 and each particle was characterized 

by three dimensions: the swept area of wind turbines, the PV area, and the battery capacity. 

Based on the extent of our search space, 𝜔, 𝜑1, and 𝜑2 were set to 0.03, 0.05, and 0.5. 

These values confine the movement of the particles while allowing them to search a larger 

area so as not to miss best solutions. These values were determined by a trial-and-error 

approach in setting initial conditions in multiple runs of the code. Appropriate selection of 

PSO parameters reduces the convergence time of the particles. Moreover, an allowable 
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convergence tolerance can be defined, based on the application, to shorten the running time 

(the minimal thresholds change during iteration). The standard deviation, an indicator of 

the spread (variability) of a distribution, for the PV, wind, and battery elements was used 

to terminate the optimization process (SciPy.org 2018). Figure 4-10 illustrates the overall 

simulation and optimization methodology. 

 

Figure 4-10: Overall simulation and optimization procedure flowchart. 

4.4.2 System factors 

The data utilized in the modeling is illustrated in Table 4-2. 

Table 4-2: Data used in the proposed simulation and optimization. 

Variable Index Value Source 

System lifetime 𝑁 25 years 
(González et al. 2015, Sharafi and 

ElMekkawy 2014) 

Battery lifetime 𝑛𝐵𝑎𝑡 10 
(Wang and Singh 2009, Jahanbani 

and Riahy 2011) 

Wind turbine lifetime 𝑛𝑊𝑇 25  

Interest rate 𝑟 2% (MacKinnon and Mintz 2017) 

PV module lifetime 𝑛𝑃𝑉 25  

Inflation rate 𝑗 1.5%  

Capital cost of large-scale wind 

turbine installation 
 

2.0 $/W (505.6 

$/m2) 
(Doluweera et al. 2018) 

Capital cost of large-scale PV 

installation 
 

2.0 $/W (328.3 

$/m2) 
(Doluweera et al. 2018) 

Capital cost of battery 𝐼𝐵𝑎𝑡 350 $/kWh  

O&M cost of wind turbine  
11 $/kW/year 

 (2.8 $/m2/year) 
(Wang and Singh 2009) 

O&M cost of fixed mount PV  
10 $/kW/year  

(1.64 $/m2/year) 
 

O&M cost of battery  0  
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Variable Index Value Source 

Salvage value of PV  
10 $/m2 (0.03 

capital cost) 
(Wang and Singh 2009) 

Salvage value of wind turbine  
5.1 $/m2 (0.01 

capital cost) 
 

Salvage value of  battery  0  

Electricity purchase price 𝜑 ($/kW) 0.135  

Electricity sell price 𝜉 ($/kW) 0.065  

Wind turbine efficiency  𝜂𝑊𝑇 90% (Duffie and Beckman 2013) 

Wind turbine power coefficient 𝐶𝑝 0.42  

PV efficiency 𝜂𝑇𝑟𝑒𝑓 15%  

Battery efficiency 𝜂𝐵𝑎𝑡 82% (Wang and Singh 2009) 

Battery self-discharge rate 𝜎 1% (Mahesh and Sandhu 2017) 

 

4.4.3 Simulation and optimization results 

4.4.3.1 PV-wind turbine-battery system 

Various renewable energy reliability levels were explored and the overall 

optimization method and HRES design algorithm behaviour were scrutinized. Proper 

design of generation and storage components aims to reliably supply the annual demand 

and decrease a consumer’s total yearly cost. LPSP is a statistical indicator and a 

fundamental index for adequacy assessment of generating systems that incorporates the 

intermittent nature of the renewable energy resources and the electricity load (Mohammed 

et al. 2016, Wang and Singh 2009).  Determining a mix of components that provide a 

desired LPSP is one of the important targets of the optimization (Abbes et al. 2014). 

Employing the explained method and the defined parameters, the HRES is designed for 

different LPSP values (Table 4-3, Figure 4-11). Results demonstrate the trade off and 

correlations among system reliability values and system component sizes in conjunction 

with annual costs and avoided GHG emissions. Given the random nature of the system 

generation in search space, there is a slight difference among results of different 

optimization runs. The size of the system components are limited by the available area (and 
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may be available budget). The goal of this optimization is to find a reliable system that 

satisfies all constraints including the size limitations. LPSP is selected based on these 

limitations and reliability concerns. Various thresholds for LPSP have been considered in 

different studies, including 5%, 7%, 8%, and 9% (Abbes et al. 2014, Borhanazad et al. 

2014). An acceptable LPSP for an on-grid system may be 2% (Athari and Ardehali 2016). 

The capital investment required for constructing a HRES is governed by the chosen LPSP. 

A set of non-inferior solutions are presented in Table 4-3. These solutions illustrate various 

systems with minimum annualized cost for different LPSP values.  

Capacity factors are common measures for comparing power systems (Schmalensee 

2015). Capacity factor illustrates the percentage of installed capacity that is utilized to 

produce electricity and serve a load profile, and for a wind turbine is the ratio of average 

energy yield to its rated capacity4 (Abed and El-Mallah 1997, Alberta Electric System 

Operator 2018). The capacity factor of a PV system compares the energy production of the 

system with an ideal system’s output with same rated capacity under constant peak 

irradiance (1,000 W/m2) (Schmalensee 2015). In sum, capacity factor demonstrates, over 

the course of a year, how much energy a power generating plant has produced on average 

relative to its rated capacity (Weis et al. 2010). Average wind capacity factor in southern 

Alberta over 2017 was 35%, however it can be as high as 40% (Doluweera et al. 2018, 

Alberta Electric System Operator 2018). Capacity factor of fixed mounted PV systems 

ranges from 10-20% in different provinces, and in Alberta, average capacity factor for fixed 

PV systems is about 15% (Doluweera et al. 2018). Hence, wind turbines are more efficient 

                                                           
4 Rated capacity or nominal capacity is the capacity provided by manufacturers at nominal (standard) 

operating conditions ((Sauer et al. 1999). 
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in generating energy. The optimization algorithm tends to use the wind and battery 

resources more than the solar resource especially for higher LPSP values when the 

renewable energy contribution is lower illustrating that the optimization algorithm has 

prioritized the wind resource (Table 4-3). The cost of the energy produced by the PV and 

wind turbine and the availability of renewable sources are other important factors here.  

By decreasing LPSP from 30% to 0.1%, APV surged about 3 times while AWT,SA 

increased only 1.2 times (Table 4-3). Results illustrate that systems with lower LPSP are 

larger and need larger available areas. Systems with lower LPSP values consist of nearly 

the maximal admissible amount of wind turbine swept area (AWT,SA,max= 24,000 m2)   and 

battery capacity (1,500 kWh) due to the absence of the sun during night, the turbines higher 

capacity factor, and battery’s low capital cost (Table 4-3). In addition, the ratio of sold 

power to purchase power rises when the dimension of the system increases or LPSP 

decreases (Figure 4-11). This ratio for a HRES with an LPSP equal to 0.1% is about 30% 

more than that of a HRES with a LPSP of 30%, notwithstanding that the first system must 

serve more load. Avoided GHG emissions for each case was calculated based on the net 

purchased electricity, which is the difference between purchased electricity and sold 

electricity. The amount of electricity that is not purchased (because of renewable energy 

production and compared with the base case) is calculated and the ratio of this value against 

the base case (no renewables) purchased electricity is used as the avoided GHG emissions. 

By decreasing LPSP, the amount of purchased electricity decreases and the amount of sold 

electricity increases. 

 



126 
 

Table 4-3: Designed HRES with different LPSP values. 

 LPSP 𝑨𝑷𝑽(m2) 𝑨𝑾𝑻,𝑺𝑨(m2) 𝑪𝑩𝑨𝑻(kWh) 

Purchased 

power 

(MWh) 

Sold 

power  

(MWh) 

Avoided 

grid  

electricity a 

(MWh) 

Avoided 

GHG 

emissions c 

(%) 

1 30% 8,619 18,297 1,015 16,289 2,712 13,751 50 

2 25% 13,981 18,248 1,015 15,387 3,049 14,811 55 

3 20% 12,849 19,370 1,223 15,287 3,462 15,323 57 

4 15% 14,242 20,247 1,290 14,856 3,980 16,272 60 

5 10% 17,275 21,295 1,250 14,166 4,757 17,740 65 

6 5% 18,783 22,243 1,298 13,745 5,364 18,768 69 

7 1% 19,213 23,238 1,346 13,490 5,914 19,572 72 

8 0.1% 25,065 22,066 1,257 12,884 5,873 20,138 75 

a: Avoided grid electricity = (total consumption b - (purchased power - sold power)). 

b: Total electricity consumption = 27,148 MWh. 

c: Avoided GHG emissions compared with base case (no renewables) = Avoided grid electricity / total 

electricity consumption. 

 

 

Figure 4-11: Ratio of sold renewable energy power to purchased utility grid power for 

systems presented in Table 4-3. 

The annual cost (2014) for purchasing grid electricity when there is no HRES (base 

case) was about $3,665,000. All the optimum systems (Table 4-3) have an annualized cost 

less than the base case since they compensate a significant part of the demand and are able 

to sell a considerable amount of energy. Energy generated by a HRES creates a revenue 

stream over the system’s lifespan. It is worth mentioning that the renewable electricity sold 

price is assumed to be less than half of the grid electricity purchase price (Table 4-2). The 
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annualized and capital cost of systems presented in Table 4-3 are depicted in Figure 4-12. 

A system with a LPSP of 5% has about 34% lower annual cost than the base case, which is 

a significant cost reduction (Figure 4-12).  This yearly cost reduction for a HRES with a 

LPSP of 0.1% is about 36%. 

 

Figure 4-12: Capital cast and annual cost of HRES with different LPSP values and 

different avoided GHG emissions. 

Appreciable cost abatement occurs when we increase the system’s ability to supply 

demand, thus reducing the amount of purchased power. By decreasing LPSP from 30% to 

0.1%, the annual cost of HRES declines by 13% taking into account the difference in the 

sold power to purchased power ratio (Figure 4-12). The designed systems possess a PV 

panel area not larger than 30,000 m2, a wind turbine swept area of less than 24,000 m2, and 

a battery storage capacity smaller than 1,500 kWh (Table 4-3). Finding solutions with small 

sizes could be a desirable target for the optimization due to their lower capital cost, 

however, larger systems with higher initial investments could have lower annualized costs. 

Based on the identified wind turbine swept area and PV panel area, the number of a specific 

turbine and number of PV panels can be determined (Nafeh 2011). According to these 
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results, a grid-tied HRES can be economically favourable; however, the capital investment 

may be significant. The initial investment of a HRES with an LPSP of 0.1% is 60% greater 

than that of a system with a LPSP of 30%, taking into account their different sold to 

purchase power ratio (Figure 4-12, Figure 4-11). 

The amount of power purchased from the utility grid which is presumed to be fossil 

fuel-based may fall inside a determined range (Wang and Singh 2009). The dynamic and 

multi-dimensional interaction among the renewable energy resources, their cost, the cost 

of grid power, the efficiency of various energy sources, and the availability of energy 

sources makes it hard to find the best solution. Therefore, in grid-linked systems, imposing 

a limitation on the amount of purchased electricity may help the algorithm to find systems 

that produce more renewable energy, buy less conventional electricity, and probably have 

less annualized cost. However, the high capital investment of these systems may be limited 

by the available budget, while their required area is limited by the available area 

restrictions. Furthermore, there is a trade-off between LPSP and the amount of purchased 

electricity, meaning that decreasing LPSP reduces the amount of purchased electricity. 

Optimization is a process of reconciling conflicting goals. Solving the problem for different 

situations and targets may assist the algorithm to find the most desirable solution. 

Moreover, restricting the amount of purchased electricity may be used as a tool to design 

more carbon-neutral systems. Generally, systems with lower LPSP have lower annual cost, 

consist of larger components, and produce and sell a greater amount of energy (Table 4-3). 

Hence, lower LPSP means greater reduction in carbon footprint, which is a favourable 

outcome.  
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Avoided GHG emissions for each case was calculated based on the net purchased 

electricity, which is the difference between purchased electricity and sold electricity (Table 

4-3). By replacing fossil fuel based grid electricity, the designed systems can reduce the 

carbon footprint more than 75%, which is a desirable environmental achievement. The 

main goal of renewable energy development is to reduce GHG emissions. Moreover, the 

overall consumers’ electricity costs over the long term will also significantly decline with 

the help of renewable energy systems. In the proposed optimisation technique, a limitation 

on purchased electricity along with other constraints can also be used to confine the 

systems’ carbon footprint and attain reliability targets concurrently. For instance, limiting 

the purchased power to 45% of the total demand, different systems can be designed with 

different amounts of avoided CO2 emissions. Imposing this limitation could reduce CO2 

footprint by about 79% for an LPSP equal to 4% compared with the base case, while this 

index for a system with an LPSP of 1% and purchased power to demand ratio of about 50% 

is 7% lower (Table 4-3, Table 4-4). With this limitation, the capital investment of a system 

with an LPSP of 4% (Table 4-4) is 17% greater than that of a system with an LPSP of 1% 

and a purchased power to demand ratio of about 50%, however the annualized cost of the 

second system is about 3% more (Table 4-3, Figure 4-12). For more reduction in CO2 

emissions, larger systems are required. Results presented in Table 4-3 and Table 4-4 

illustrate that systems with larger reduction in CO2 emissions have lower LPSP values and 

higher capital investments. The GHG emission reduction goal leads the algorithm to arrive 

at systems with larger wind and solar elements, lower battery capacity, and therefore, higher 

initial investments (Table 4-4).  
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Table 4-4: Designed HRES with a ratio of power purchased to total demand of 45%. 

LPSP 𝑨𝑷𝑽(m2) 𝑨𝑾𝑻,𝑺𝑨(m2) 𝑪𝑩𝑨𝑻(kWh) 
Capital investment 

($) 

Avoided GHG emissions 

(%) 

7% 34,758 20,196 583 21,905,055 78 

4% 32,490 21,386 688 21,803,585 79 

2.5% 33,558 20,480 868 21,755,492 78 

0.6% 32,187 21,223 942 21,709,873 78 

 

The scattergrams of generated 3-dimensional particles for an optimization run are 

depicted in Figure 4-13. After moving around, the particles will converge to the best found 

solution without getting trapped in a local minima (Figure 4-14). The standard deviation of 

PV area dimension (STD) of the particles that illustrates how particles gradually discover 

the optimum or near optimum solution is demonstrated in Figure 4-15. The behaviour of 

the proposed optimization procedure has been examined for many different LPSP and CO2 

emission targets. 

 

Figure 4-13: The initial population generated in search area in an optimization process. 
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Figure 4-14: Convergence of generated particles. 
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Figure 4-15: Standard deviation of PV area dimension of the particles. 

The operation and maintenance cost of the renewable systems is an essential factor 

that is reflected in the annualized cost. Figure 4-16 illustrates the total operation and 

maintenance cost variation of the presented solutions in Table 4-3. The operation and 

maintenance cost of systems has a reverse relationship with the LPSP value, and by 

decreasing LPSP from 30% to 0.1%, the cost increases by about 58%. 
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Figure 4-16: Relative increase in operation and maintenance cost of systems with various 

LPSP values. 

4.4.3.2 PV-battery system 

Utilizing a single renewable technology, especially when the energy demand is high, 

leads to an excessive system cost with a low reliability (Chauhan and Saini 2014).  Some 

non-dominated solutions are presented in Table 4-5. Compared with PV-wind turbine- 

battery options (Table 4-3), obtaining an LPSP of about 5% means that the annual cost will 

increase by 30% approximately, however, the capital investment surges by about 60% 

(Figure 4-12, Table 4-5, and Figure 4-17) . The ratio of the purchased grid electricity to the 

total demand for the sized systems illustrated in Table 4-5 ranges from 61% to 66%. As we 

can see, utilizing the PV technology solely is not as efficient and economically viable as 

employing wind turbine and PV concurrently. However, the annual costs of the proposed 

PV-battery options are lower than that of the base case. 
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Table 4-5: Designed PV, battery systems with various LPSP values. 

LPSP 𝑨𝑷𝑽(m2) 𝑨𝑾𝑻,𝑺𝑨(m2) 𝑪𝑩𝑨𝑻(kWh) Annual cost ($) 

30% 58,001 0 1,438 3,085,776 

20% 66,463 0 1,496 3,042,781 

17% 70,578 0 1,411 3,022,157 

10% 78,182 0 1,446 2,990,629 

5% 84,990 0 1,347 2,962,752 

1% 86,966 0 1,485 2,958,100 

 

Figure 4-17: Ratio of PV-battery system capital investment to the PV-wind turbine- 

battery system capital investment, for systems presented in Table 4-3 and Table 4-5. 

The selection of the optimum system may be based on the minimum annualized cost 

together with other objectives including reliability and GHG emission targets. A proposed 

system with the lowest annualized cost may be ignored because of its lower potential to 

reduce GHG emission. A system with higher GHG emission reduction potential may be 

refused due to its higher capital costs. Therefore, considering the conflicting targets, among 

the non-dominated options, based on a decision maker’s interests, one system may take 

precedence. There is some uncertainty, ambiguity, and variability attached to this selection 

owing to the intermittent nature of renewable resources and loads, uncertainties related to 
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the costs of the HRES components, and uncertainties pertaining to the renewable energy 

generation calculations. 

4.5 Conclusion 

Hybrid renewable energy systems have attracted great attention in recent years due 

to increasing concerns about climate change and energy security. Optimization of 

renewable energy systems and sizing can lead to a significant increase in renewable energy 

penetration because it reduces some of the economic hurdles (Erdinc and Uzunoglu 2012). 

To minimize electricity cost while reliably meeting annual electricity demand, the optimum 

combination of solar PV and wind generators coupled with battery banks for an energy 

intensive consumer was investigated. The large energy demand, significant daily and 

seasonal variability of demand, and fluctuations of wind and solar resources make arriving 

at an optimum design a critical task. It is not easy to mathematically model this nonlinear, 

multiple objective problem with traditional techniques (Khare and Rangnekar 2013). A 

particle swarm optimization (PSO) algorithm was developed to solve this non-linear and 

constrained optimization problem dealing with multiple conflicting goals. Different aspects 

of HRESs optimization were investigated and the performance of the proposed 

methodology was examined. The main contribution of this research is to propose a multi-

objective optimization method for planning a large-scale HRES that integrates the 

intermittent renewable sources with dispatchable grid power to satisfy a large demand with 

high reliability. The sensitivity and flexibility of the proposed method to different 

objectives were explored and a set of optimal options composed of PV and battery 

components and also PV, wind turbine, and battery components with different 

characteristics were presented.   
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Chapter 5: Summary and conclusions  

The potential of solar and wind energy resources in producing electricity at the 

University of Lethbridge campus to meet electricity demand, and the rooftop PV electricity 

potential of the City of Lethbridge, was investigated and evaluated in this research. In 

addition, using the University of Lethbridge electricity consumption data, a multi-criteria 

PSO-based optimal design of grid-connected hybrid renewable energy systems was 

developed to determine the optimum number and configuration of photovoltaic (PV) 

modules, wind turbines and battery units by minimizing the annual system cost while 

maximizing the reliability of the hybrid system in matching the electricity supply and 

demand. 

The following four objectives were presented in this thesis and addressed in Chapters 

2, 3, and 4: 

1- Quantify the full potential of solar and wind energy sources in generating electricity to 

meet the electrical demands of the University of Lethbridge (a feasibility assessment for 

campus solar PV and wind turbine installations). 

2- Estimate rooftop photovoltaic electricity potential of buildings in an urban environment, 

the City of Lethbridge, employing a multi-criteria approach using geographic information 

systems and LiDAR. 

3- Conduct an economic assessment utilizing present market prices to determine 

economically attractive rooftop PV systems in the City of Lethbridge. 
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4- Develop an optimal sizing and design strategy based on a heuristic particle swarm 

optimization (PSO) technique to determine the near optimum number and configuration of 

photovoltaic (PV) modules, wind turbines and battery units minimizing the annual system 

cost while maximizing the reliability of the hybrid system in matching the electricity supply 

and demand. 

In Chapter 2, which presented the results of employing Light Detection And Ranging 

(LiDAR) data and aerial photography to assess the solar photovoltaic electricity potential 

and wind turbine power curve method to estimate the wind electricity potential, a feasibility 

assessment for campus solar PV and wind installations was conducted. Measured weather 

data including hourly solar radiation data, hourly wind speed data, and hourly temperature 

data were used to simulate solar PV and wind turbine performance, and evaluate energy 

production. Separation and transposition models including Erbs et al. (1982) model and 

Perez et al. (1990) model were used to estimate the incident solar radiation received by the 

sloped PV surfaces utilizing measured global radiation on horizontal planes. The operating 

temperature of photovoltaic cells was assessed utilizing the Skoplaki model (Skoplaki et 

al. 2008) . The “Area Solar Radiation” tool was used to calculate the amount of radiant 

energy for the coulee area and then, areas receiving above a defined annual insolation were 

selected as suitable locations (coulee areas) for installing PV modules. Suitable rooftops, 

open spaces and parking lots were selected using aerial imagery in GIS. Wind turbine 

energy production was calculated using measured wind speed data and the power curve 

method. 

A comparison of the resulting solar PV and wind turbine generation over five years 

with the university electrical demand revealed that wind turbine and solar PV systems 
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together could generate more than 3.7 times of the annual electricity consumption of the 

university on average. There is 1,015,808 m2 of suitable area available for placing a 46 MW 

solar PV system on the campus, which would produce at least 2.8 times of the university 

annual electricity usage. In addition, the proposed wind system could cover about 84% of 

the university electricity demand annually on average. Employing this system, the annual 

electricity cost of the university could decrease about 90% (Table 2-7). By installing 

renewable systems, the University can achieve a sustainable energy future and demonstrate 

its commitment to environmental responsibilities. 

In Chapter 3, a multi-criteria approach based on geographic information systems 

(GIS) and light detection and ranging (LiDAR) data was used to estimate rooftop 

photovoltaic electricity potential of buildings in an urban environment, the City of 

Lethbridge. Unlike energy generation from fossil fuels, renewable energy sources have 

relatively low geographic density and are spread unevenly over large areas. Therefore, 

especially in cities where space has greater value and opportunity costs, finding suitable 

spaces for implementing solar PV systems is essential to promote the use of solar PV 

technologies. Using remote sensing data, the intricate topography of the city was modeled, 

and employing a new methodology, solar insolation incident at each location was 

estimated. An economic assessment was conducted utilizing present market prices to 

determine economically attractive rooftop PV systems. The total rooftop photovoltaic (PV) 

electricity potential was evaluated and compared with the local electricity demand. 

Effective expansion of rooftop solar PV power systems in the city was achieved by 

determining the geographic distribution of the best locations for installing the systems. 
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Chapter 3 results revealed that the rooftop PV electricity generation potential of the 

City of Lethbridge is approximately 301 ± 29 (SD) GWh annually (almost 38% of its annual 

electricity consumption in 2016), and about 96% of the recognized potential rooftop PV 

systems are economically feasible. The identified suitable rooftop surfaces provide enough 

area for installing approximately 218 MW of rooftop PV systems, with residential buildings 

accounting for about half of the installed capacity. The 38,496 suitable rooftop segments 

with a total actual area of about 2,372,000 m2 identified were approximately 30% of the 

total roof area. Results illustrated that the individual suitable rooftop segments belong 

mostly to residential (about 83%) and commercial (about 9%) buildings, providing about 

48% and 20% of the suitable area respectively. Most of the roof segments are flat or have 

a slope less than 20° (about 91% of them or 84% of the suitable area). While industrial and 

commercial buildings account for just about 3% and 4% of the flat individual segments, 

they constitute the largest portion of the suitable flat area (m2), about 22%, and 18% of the 

available flat area respectively. Residential buildings with roof pitch between 10° and 20° 

account for more than 25% of the total suitable roof area (about half of the segments), 

which is the highest share among various building types and slope classes. It was found 

that about 48% of the all buildings possess a suitable roof plane which could host PV 

systems (26,959 buildings). About 94% of these buildings are residential. Residential 

buildings with suitable rooftops most often (about 90%) can accommodate PV systems with 

a size less than 10 kW. This study demonstrated that the average capacity factor of the 

determined rooftop systems is about 16 ± 1.5%, which is very promising for this urban 

region. The results can assist in making informed policy decisions about investment in 

deployment of renewable energy generation. 
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In Chapter 4, optimum designs of hybrid renewable energy systems including PV 

modules, wind turbines, and battery storages was investigated. The unreliable nature of 

renewable resources are impediments to developing renewable projects. More reliable, 

effective, and economically feasible renewable energy systems can be designed and 

established by consolidating renewable energy sources such as wind and solar into hybrid 

systems supported by batteries and back-up power distribution units, such as conventional 

energy generators or grids (Erdinc and Uzunoglu 2012, Bhandari et al. 2015). A hybrid 

renewable energy system (HRES) offers a promising engineering solution to the intrinsic 

stochastic and intermittent nature of most renewables by enhancing the economic and 

technical performance of power plants (Erdinc and Uzunoglu 2012, Alsayed et al. 2013). 

In fact, in a well-designed HRES, multiple renewable energy sources complement each 

other (González et al. 2015). The precise design of such systems is a critical step towards 

their effective deployment. An optimal sizing and design strategy was developed based on 

a heuristic particle swarm optimization (PSO) technique to determine the optimum number 

and configuration of photovoltaic (PV) modules, wind turbines, and battery units, 

minimizing the annual system cost while maximizing the reliability of the hybrid system in 

matching the electricity supply and demand. In addition, by constraining the amount of 

conventional electricity purchased from the grid, environmental concerns were also 

considered in the presented method. Employing current time-series weather data and 

electricity demand profile, the proposed method was applied to a case study of power 

generation at the University of Lethbridge. Various systems with different reliabilities and 

potential of reducing consumer CO2 emissions were designed and the behaviour of the 

proposed method was comprehensively investigated.  
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Chapter 4 results illustrated how the capital investment required for constructing a 

HRES is governed by the chosen LPSP (Loss of power supply probability). Results 

indicated that systems with lower LPSP are larger and need more available area. It was 

found that the optimization algorithm tends to use wind and battery resources more than 

the solar resource. By decreasing LPSP from 30% to 0.1%, 𝐴𝑃𝑉  (total PV panel area) surged 

about 3 times while 𝐴𝑊𝑇,𝑆𝐴 (total wind turbine rotor swept area) increased only 1.2 times. 

In addition, the ratio of sold power to purchase power rises when the dimension of the 

system increases or LPSP decreases. This ratio for a HRES with an LPSP equal to 0.1% 

was about 30% more than that of a HRES with an LPSP of 30%, notwithstanding that the 

first system must also serve more load. All the optimum systems have an annualized cost 

less than the base case (when there is no HRES) since they compensate a significant part 

of the demand and are able to sell a considerable amount of energy. A system with an LPSP 

of 5% has about 34% lower annual cost than the  base case which is a significant cost 

reduction. By decreasing LPSP from 30% to 0.1%, the annual cost of HRES declines by 

13% taking into account their different sold power to purchased power ratio. In addition, 

results demonstrates that the initial investment of an HRES with an LPSP of 0.1% is 60% 

greater than that of a system with an LPSP of 30% taking into account their different sold 

to purchase power ratio. By replacing fossil fuel based grid electricity, the designed systems 

can reduce the carbon footprint more than 75%, which is a desirable environmental 

achievement. Results showed that systems with larger reduction in CO2 emissions have 

lower LPSP values and higher capital investments. Furthermore, the operation and 

maintenance cost of systems has a inverse relationship with the LPSP value, and by 

decreasing LPSP from 30% to 0.1%, operation and maintenance cost increases by about 

58%. For hybrid PV-battery systems, compared with PV-wind turbine-battery systems, 
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obtaining an LPSP of about 5% means that the annual cost will increase by 30% 

approximately, however, the capital investment surges by about 60%. Overall, reaching a 

certain reliability level with a HRES composed only of PV and batteries requires about 1.6 

times larger investment compared with a PV-wind turbine-battery combination. This study 

explored and illustrated that how utilizing hybrid renewable energy systems can assist 

reaching a balance among cost, emissions, and reliability. 

5.1  Recommendations for future research  

This thesis evaluated the potential of solar PV and wind turbine electricity generation 

at the University of Lethbridge campus and also the solar PV rooftop electricity potential 

at the City of Lethbridge. In addition, a multi-criteria PSO-based optimal design for grid-

linked hybrid renewable energy systems was presented. The following recommendations 

for future research and developments are determined: 

 The proposed method for evaluating solar and wind energy potential can be 

expanded by including the PV electricity potential of buildings’ façade in an urban setting. 

Building facades usually provide larger surfaces than rooftops, are free from other building 

apparatus including chimneys and ventilators, and accommodate PV panels in better 

maintenance conditions because often they do not gather snow and dust (Redweik et al. 

2013). 

 A more rigorous and meticulous economic assessment may be conducted 

considering detailed engineering characteristics of the renewable energy facility. 

 Environmental impacts of renewable energy facilities may be investigated, for 

example, a glare assessment may be conducted in the study areas to explore the glare 

produced by the solar PV facilities. 
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 Renewable energy employment evaluation may be expanded by investigating 

technical, economic, social or public, and cultural barriers to penetration in the energy mix. 

For instance, people sometimes do not support development of wind and solar facilities 

since they do not recognise why these technologies are advantageous (Sovacool 2009). 

Increasing development of renewable energy systems has confronted public opposition due 

to, for example, landscape change and its resultant changes and interruptions in adjacent 

residents’ routine life (Pasqualetti 2011). Therefore, multi-dimensional assessments of the 

potential constraints on renewable energy development are essential for increased 

investment in transition to renewables (Richards et al. 2012) . 

 The proposed optimization methodology used real electricity usage of the consumer 

over the course of one year. It may be more realistic to consider the variation of electricity 

consumption for a longer period of time and design a HRES that meets consumers’ long-

term electricity need. 
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