
ANSWER EXTRACTION FOR SIMPLE AND COMPLEX QUESTIONS

SHAFIQ RAYHAN JOTY
Bachelor of Science in Computer Science and Information Technology

Islamic University of Technology (Bangladesh), 2005

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Shafiq Rayhan Joty, 2008

I dedicate this thesis to my beloved parents whose endless support and
inspiration has always been with me at each and every step of my life.

iii

Abstract

When a user is served with a ranked list of relevant documents by the standard docu-

ment search engines, his search task is usually not over. He has to go through the entire

document contents to find the precise piece of information he was looking for. Question

answering, which is the retrieving of answers to natural language questions from a doc-

ument collection, tries to remove the onus on the end-user by providing direct access to

relevant information. This thesis is concerned with open-domain question answering. We

have considered both simple and complex questions. Simple questions (i.e. factoid and

list) are easier to answer than questions that have complex information needs and require

inferencing and synthesizing information from multiple documents.

Our question answering system for simple questions is based on question classification

and document tagging. Question classification extracts useful information (i.e. answer

type) about how to answer the question and document tagging extracts useful information

from the documents, which is used in finding the answer to the question.

For complex questions, we experimented with both empirical and machine learning ap-

proaches. We extracted several features of different types (i.e. lexical, lexical semantic,

syntactic and semantic) for each of the sentences in the document collection in order to

measure its relevancy to the user query. One hill climbing local search strategy is used

to fine-tune the feature-weights. We also experimented with two unsupervised machine

learning techniques: k-means and Expectation Maximization (EM) algorithms and evalu-

ated their performance. For all these methods, we have shown the effects of different kinds

of features.

iv

Acknowledgments

I take much pleasure to express my profound gratitude to my supervisor Dr. Yllias Chali for

his persistent and inspiring supervision and helping me learn the ABC of Natural Language

Processing. It would not have been possible to complete this work without his encourage-

ment, patience, suggestions, generosity and support.

I also thank my M.Sc. supervisory committee members Dr. Howard Cheng and Dr. Sajjad

Zahir for their valuable suggestions and guidance. I wish to thank Dr. Giuseppe Carenini

for serving as the external examiner. I thank Dr. Stacey Wetmore for her kind consent to

chair my thesis defense.

My cordial thanks to NSERC and the University of Lethbridge for the financial and travel

support. I am also thankful to all my fellow researchers and faculty members in the De-

partment of Mathematics and Computer Science for their spontaneous cooperation and

encouragement. Furthermore, I would like to express thanks to my friends Salimur Choud-

hury, Munir Hossain, Sardar Haque, Sadid Hasan, Mohammad Islam and Iftekhar Basith

for their friendship and encouragement, and for helping me keep sanity as I completed this

thesis.

I wish to thank Dr. Dekang Lin, Dr. Satoshi Sekine, Dr. Sameer Pradhan, and Dr. Chin-

Yew Lin for supporting this thesis by giving their tools and data.

Above all, my sincere gratitude to the Almighty who creates and makes things happen.

v

Contents

Approval/Signature Page ii

Dedication iii

Abstract iv

Acknowledgments v

Table of Contents vi

List of Tables x

List of Figures xi

1 Introduction 1
1.1 Overview . 1
1.2 Question Answering . 5
1.3 Text Summarization . 8
1.4 State of the Art Question Answering Systems 11

1.4.1 Knowledge Base Systems . 11
1.4.2 Logical Form Representation Systems 12
1.4.3 Multi Corpus Systems . 14
1.4.4 Hybrid Systems . 15

1.5 State of the Art Query-based Summarization Systems 16
1.5.1 Graph-based Method . 16
1.5.2 Summarization Based on Lexical Chain 17
1.5.3 Summarization Based on QA System 18
1.5.4 Summarization Based on Statistical Models 19

1.6 Our Approaches . 19
1.7 Statistical Machine Learning for NLP Problems 21
1.8 Thesis Outline . 23

2 Mathematical Machinery 25
2.1 Introduction . 25
2.2 Gaussian Statistics . 25

2.2.1 Gaussian Modeling: Mean and Variance of a Sample 27
2.2.2 Likelihood and Joint Likelihood 27
2.2.3 Bayesian Classification . 28
2.2.4 Discriminant Function . 29
2.2.5 Convexity . 30
2.2.6 Jensen’s Inequality . 30

vi

2.2.7 Auxiliary Functions . 31
2.3 Unsupervised Clustering . 31

2.3.1 Number of Clusters in Unsupervised Learning 34
2.3.2 K-means Algorithm . 34
2.3.3 EM Algorithm for Gaussian Clustering 37

2.4 Information Retrieval . 41
2.4.1 Indexing Documents . 42
2.4.2 Queries . 43
2.4.3 Lucene . 46
2.4.4 Case Folding and Stemming . 46
2.4.5 Paragraph Indexing . 47

2.5 Chapter Summary . 47

3 Document Processing 48
3.1 Overview of Selected Tools . 49

3.1.1 WordNet 3.0 . 49
3.1.2 OAK System . 51
3.1.3 Lingpipe . 52

3.2 Tagging Documents . 53
3.2.1 Tokenization and Sentence Splitting 53
3.2.2 Co-reference Resolution . 53
3.2.3 Stemming with OAK Systems . 55
3.2.4 Part of Speech . 56
3.2.5 Chunked Part of Speech . 59
3.2.6 Named Entity Tagging . 60
3.2.7 Word Sense Tagging . 62
3.2.8 Lexical Chain Extraction . 64
3.2.9 BE Extraction . 65
3.2.10 Syntactic Parsing: Word Dependencies Tagging 67
3.2.11 Semantic Parsing: Semantic Role Labeling 69

3.3 Chapter Summary . 70

4 Answering Simple Questions 71
4.1 Introduction . 71

4.1.1 Problem Definition . 71
4.1.2 Chapter Outline . 73

4.2 Question Normalization and Classification 75
4.2.1 TREC Questions . 75
4.2.2 Question Normalization . 77
4.2.3 Question Classification . 80

4.3 Query Creation and Passage Retrieval . 85
4.3.1 Query for Factoid and List Questions 85

vii

4.3.2 Query for Definition Questions . 87
4.4 Document Tagging . 87
4.5 Answer Extraction . 88

4.5.1 List and Factoid Questions . 88
4.5.2 Definition Questions . 92

4.6 Answer Ranking . 94
4.6.1 Answer Patterns . 94
4.6.2 Answer Ranking Formula . 99
4.6.3 Answer Thresholds . 100

4.7 Evaluation . 101
4.7.1 Factoid Questions . 101
4.7.2 List Questions . 103
4.7.3 Other Question . 105
4.7.4 Per-series Combined Scores . 105

4.8 Discussion and Concluding Remarks . 106

5 Answering Complex Questions 107
5.1 Introduction . 107

5.1.1 Problem Definition . 107
5.1.2 Our Approaches . 109
5.1.3 Chapter Outline . 110

5.2 Document Processing . 111
5.3 Query and Sentence Processor . 111
5.4 Feature Extraction . 112

5.4.1 Lexical Features . 113
5.4.2 Lexical Semantic Features . 126
5.4.3 Syntactic Features . 130
5.4.4 Semantic Features . 138
5.4.5 Graph-based Similarity Measure 143

5.5 Ranking Sentences . 148
5.5.1 DUC 2007 Summarizer: An Experiment with Empirical Approach . 148
5.5.2 Learning Feature-weights: A Local Search Strategy 149
5.5.3 Statistical Machine Learning Approaches 151

5.6 Redundancy Checking and Generating Summary 161
5.7 Experimental Evaluation . 162

5.7.1 DUC Data . 162
5.7.2 Evaluation Measures . 162
5.7.3 ROUGE . 164
5.7.4 Experiments . 171
5.7.5 Comparison . 177

5.8 Chapter Summary . 179

viii

6 Conclusion and Future Work 181
6.1 Conclusion . 181

6.1.1 Simple Question Answering . 181
6.1.2 Complex Question Answering . 182

6.2 Future Work . 184
6.2.1 Simple Question Answering . 184
6.2.2 Complex Question Answering . 185

Bibliography 186

Appendix-A: Question Type Examples 195

Appendix-B: Sample System Generated Summaries 202

Appendix-C: OAK System 150 Named Entities 208

ix

List of Tables

2.1 Inverted file example . 43

3.1 Penn Treebank POS tagset . 57
3.2 Penn Treebank POS tagset continued . 58
3.3 Score of the senses . 64

4.1 When question categories . 81
4.2 Who question categories . 81
4.3 Where question categories . 82
4.4 How question categories . 84
4.5 What simple question categories . 84
4.6 UofL score for factoid questions . 102
4.7 Scores for the factoid component . 103
4.8 Scores for the list component . 105
4.9 Multiple comparison based on ANOVA of per-series score. 106

5.1 Subset of dependency relations . 122
5.2 ROUGE-1 measures in k-means learning 172
5.3 ROUGE-2 measures in k-means learning 173
5.4 ROUGE-3 measures in k-means learning 173
5.5 ROUGE-4 measures in k-means learning 173
5.6 ROUGE-L measures in k-means learning 174
5.7 ROUGE-W measures in k-means learning 174
5.8 ROUGE-SU measures in k-means learning 174
5.9 ROUGE-1 measures in EM learning . 175
5.10 ROUGE-2 measures in EM learning . 175
5.11 ROUGE-3 measures in EM learning . 175
5.12 ROUGE-4 measures in EM learning . 176
5.13 ROUGE-L measures in EM learning . 176
5.14 ROUGE-W measures in EM learning . 176
5.15 ROUGE-SU measures in EM learning . 176
5.16 ROUGE-1 measures in local search technique 177
5.17 ROUGE-2 measures in local search technique 177
5.18 ROUGE-3 measures in local search technique 177
5.19 ROUGE-4 measures in local search technique 178
5.20 ROUGE-L measures in local search technique 178
5.21 ROUGE-W measures in local search technique 178
5.22 ROUGE-SU measures in local search technique 178
5.23 ROUGE F-scores for different systems . 179

x

List of Figures

1.1 Common architecture of QA system . 6

2.1 Example of four normal distributions . 26
2.2 Convex function . 30
2.3 (a) data points (b) Gaussian mixture model 33
2.4 K-means initialization for five clusters . 36
2.5 K-means convergence . 36
2.6 Soft clustering in EM . 37
2.7 EM initialization for five clusters . 40
2.8 Clusters after 10 iterations . 41
2.9 Clusters after 110 iterations . 42

3.1 Hierarchy tree for computer . 52
3.2 Hash indexed by synsetID . 63
3.3 Partial disambiguation graph . 63
3.4 Lexical chain graph . 65

4.1 Model of our QA system . 74

5.1 Example of a dependency tree . 123
5.2 Example of syntactic tree . 134
5.3 (a) Syntactic tree (b) subtrees . 135
5.4 Example of semantic trees . 139
5.5 Two STs composing a STN . 140
5.6 Semantic tree with some of its fragments 142
5.7 LexRank similarity . 144
5.8 Log-likelihood values for random initial mean values 159
5.9 Precision and recall . 163

xi

Chapter 1

Introduction

1.1 Overview

The size of the publicly indexable world-wide-web has provably surpassed several billions

of documents and as yet growth shows no sign of leveling off. Dynamic content on the

web is also growing as time-sensitive materials, such as news, financial data, entertainment

and schedules become widely disseminated via the web. Search engines are therefore in-

creasingly challenged when trying to maintain current indices using exhaustive crawling.

Even using state of the art systems such as AltaVista’s Scooter which reportedly crawls ten

million pages per day, an exhaustive crawl of the web can take weeks. This vast raise in the

amount of online text available and the demand for access to different types of information

have, however, led to a renewed interest in a broad range of Information Retrieval (IR)

related areas that go beyond the simple document retrieval. These areas include question

answering, topic detection and tracking, summarization, multimedia retrieval (e.g., image,

video and music), chemical and biological informatics, text structuring, text mining, ge-

nomics, etc.

Automated Question Answering (QA)—the ability of a machine to answer questions,

simple or complex, posed in ordinary human language—is perhaps the most exciting tech-

nological development of the past six or seven years (Strzalkowski and Harabagiu, 2008).

Nonetheless, the expectations are already tremendous, reaching beyond the discipline it-

self, which is a subfield of Natural Language Processing (NLP), a branch of both Artificial

Intelligence and Computer Science. This excitement is well justified because finding the

right answer to a question often requires non-trival knowledge and intelligence.

Web search engines offer access to billions of web documents covering virtually every

1

topic of interest. A lot of information is thus sitting behind the search interface of the

average search engine, waiting to be uncovered and returned in response to users’ queries.

Question answering provides a few solutions to the limitations of current search engine

technology, which include unusefulness of a sizable part of the output, limited support for

specific information needs, restrictions on input syntax for query formulation, and coarse

output granularity.

Frequently, search engines return hyperlinks to thousands of documents per query.

Given that the majority of the web search engine users view 10 documents or less, more

than 99% of the output is useless. Either relevant information is present among the very

few hits, or the search is deemed a failure. In a more general context, finding accurate infor-

mation easily and fast is becoming a de-facto requirement in both time-sensitive domains

such as the stock exchange, and in regular tasks such as writing a report. Consequently,

there is a need for specific (Who won the Nobel prize in peace in 2006?) rather than general

information (Find anything about Nobel prize in peace in 2006). With present search tech-

nology, there is a limited support for the specific information needs. Many search engines

try to address the problem by developing advanced interfaces to support complex, boolean

queries. However, few queries submitted on the web contain boolean operators and the

usage of boolean operators actually has a very small impact on the results (Strzalkowski

and Harabagiu, 2008).

Output granularity is another disadvantage of the search engines. As the web contin-

ues to grow, it is increasingly likely that a board range of specific information needs are

answered by a few short fragments of web documents. Search engines return hyperlinks

to full-length web documents, possibly accompanied by a document fragment in which the

keywords are highlighted. To actually find a relevant information, users must read the few

documents. Even if relevant information is inside the first hit returned, finding it can still

be time-consuming if the document is very long.

2

QA systems act as advanced interfaces for web searching, permitting users to use the

natural language and concentrate on what they are actually looking for, rather than on the

artificial constraints imposed by a particular syntax. Submitting written questions to an

answer engine is easier than building an artificial query from a set of keywords organized

around various operators. Furthermore, users are presented directly with a small set of short

answers, which are easier to read and evaluate than a set of full-length web documents.

QA research attempts to deal with a wide range of question types including: fact, list,

definition, how, why, hypothetical, semantically-constrained, and cross-lingual questions.

Search collections vary from a small local document collections, to an internal organization

documents, to a compiled newswire reports, to the world wide web.

Today’s automatic question-answering systems are revolutionizing the processing of

textual information. By combining complex natural language processing techniques, so-

phisticated linguistic representations, and advanced machine learning methods, automatic

question-answering systems can find exact answers to a wide variety of natural language

questions in unstructured texts. The process of providing a brief and precise answer to a

question is quite different from the task of information retrieval or information extraction,

but it depends on both as important components.

Several academic and commercial web-based QA systems are available now. For in-

stance, Ask Jeeves1 search engine, automatic question answering engine2, START3 QA

system at MIT, QuALiM4 system by the University of Edinburgh are the well-known QA

systems where users can write natural language questions in English. There are several

multilingual QA systems that support questions in different languages. For example, An-

swerBus5 answers questions in English, French, Spanish, German, Italian and Portuguese.

1http://www.ask.com/
2http://www.answers.com/bb/
3http://start.csail.mit.edu/
4http://demos.inf.ed.ac.uk:8080/qualim/
5http://www.answerbus.com/index.shtml

3

The DFKI6 system supports English, Spanish and German languages.

Considerable advances have been made in answer extraction accuracy over the last

6 years, but QA does not stop with answer extraction. Answering analytical, exploratory,

hypothetical and other open-ended complex questions requires a two-way dialogue between

the user and the system. It requires producing answer estimates that can support political,

business or military decisions. In order to provide useful answers, an analytical QA system

will be expected to consider user’s questions in a larger context of an analytical task, as

well as the implications of that task on the user’s intentions and information needs. It will

require helping users ask the right questions and guiding them to the information that best

satisfies their needs. Rather than answering individual questions in isolation, QA systems

are now expected to work through a series of interrelated questions, employing various

contextual devices to keep track of co-references, elliptical expressions, and maintaining

complex discourse representation models to support intelligent dialogue with the user. By

analyzing user interactions with an analytical QA system, dynamic interaction models can

be developed that would anticipate user information needs and their likely next move, even

before a question is asked. Finally, the next generation of QA systems will need to tackle

the problem of justifying the correctness of the answers they return.

This thesis concerns open-domain question answering. The counterpart to open-domain

is restricted-domain. Restricted-domain documents are of a known subject and sometimes

include a known format or a knowledge base, such as the PLANES system (Waltz, 1978).

The PLANES system’s domain is aircraft maintenance and flight data, and uses a knowl-

edge base contained in a database. When a user asks a question, the system turns their

question into a database query. If a restricted-domain system does not use a knowledge

base, the subject or topic of the data is known beforehand. In these cases, extraction pat-

terns can be created such that the system can easily access the information contained in the

6http://experimental-quetal.dfki.de/redirect.jsp

4

documents of a certain subject. KAAS (Diekema, Yilmazel, and Liddy, 2004) is a system

that performs such extraction techniques in a restricted-domain system.

Open-domain question answering is when any document set can be used and extrac-

tion techniques will not be tailored to the subject of the data. This means questions

about any subject can be asked, which makes extracting information increasingly difficult

since the Information Extraction (IE) systems are highly dependent on domain knowledge

(Moldovan et al., 2000). To be an open-domain question answering system, the QA system

must handle questions of different types: simple or complex. In this thesis, we deal with

both simple and complex questions.

1.2 Question Answering

Some questions are easier to answer which we call simple questions. For example, the

question, “Who is the president of Pakistan?” asks for a person name. This type of ques-

tions (i.e. factoid) requires small snippets of text as the answers. Again, the question

“Which countries has Pope John Paul II visited?” asks for a list of small snippets (i.e. list

questions) of text. Finding answers to these questions are easier than questions that have

complex information needs. People frequently ask these questions and they want QA sys-

tem that is more efficient than Internet search, but at the same time is flexible, robust and

not fussy, just like Google. Hence, the first problem taken up in Chapter 4, is Answering

Simple Questions.

The best factoid QA system (Moldovan, Clark, and Bowden, 2007) can now answer

over 70% of arbitrary, open-domain factoid questions. Recent approaches to simple ques-

tion answering have the basic structure shown in Figure 1.1. The question is the input

and classified as asking for a named entity from a small list of categories. Additionally,

the question is filtered into query terms during which the query terms may themselves be

5

expanded to include the most common co-occuring words with the query. The query is pre-

sented to the Information Retrieval (IR) engine for document retrieval. This engine, given

the query, looks at the database of documents and outputs the most relevant documents or

passages. The IR engine acts as a “fast” match for the system, reducing the number of doc-

uments to be examined. The next stage is to select the exact answer, given the information

about the answer class and the top documents.

Figure 1.1: Common architecture of QA system

Research in open-domain QA is catalyzed by competitive evaluations conducted by the

question answering track of the Text Retrieval Conference (TREC)7, an annual event spon-

sored by the U.S. National Institute of Standards and Technology (NIST). Starting in 1999,

the TREC QA evaluations initially focused on factoid questions. Moving beyond factoids,

the current TREC QA systems can also provide composite answers to definition-style and

biography questions, such as “What is photon” or “Who is Tom Cruise?”, list questions

such as “Name the books written by Paul Krugman”, and even relationship questions that

look for connections between specific entities, e.g. “What is Suresh Premachandran’s con-
7http://www.trec.nist.gov/

6

nection to the Tamil Tigers?”

After having made substantial headway in factoid and list questions, researchers have

turned their attention to more complex information needs that cannot be answered by sim-

ply extracting named entities (persons, organization, locations, dates, etc.) from docu-

ments. For example, the question: “Describe the after-effects of cyclone Sidr-Nov 2007 in

Bangladesh” requires inferencing and synthesizing information from multiple documents.

It is normally understood as an (intellectually challenging) human task, and perhaps the

Google answer service8 is the best general purpose illustration of how it works (Amigo et

al., 2004). In this service, users send complex queries which cannot be answered simply

by inspecting the first two or three documents returned by a search engine. For example

(Harabagiu, Lacatusu, and Hickl, 2006), “What are the key activities in the research and

development phase of creating new drugs?” or “What are the main events and important

personalities in Myanmar leading up to and since the government changed in September

1988?” Answers to such complex information needs are provided by experts who, com-

monly, search the Internet, select the best sources, and assemble the most relevant pieces of

information into a report, organizing the most important facts and providing additional web

hyperlinks for further reading. This information synthesis task is understood, in Google

Answers, as a human task for which a search engine only provides the initial starting point.

The goal of this thesis is to develop a QA system that can accomplish information synthesis

tasks.

From a computational linguistics point of view, information synthesis can be seen as

a kind of topic-oriented, informative multi-document summarization, where the goal is to

produce a single text as a compressed version of a set of documents with a minimum loss

of relevant information. Unlike indicative summaries (which help to determine whether

a document is relevant to a particular topic), informative summaries must be helpful to

8http://answers.google.com/

7

answer, for instance, factual questions about the topic.

Document Understanding Conferences (DUC)9, sponsored by the Advanced Research

and Development Activity (ARDA), is run by the National Institute of Standards and Tech-

nology (NIST) to further progress in summarization and enable researchers to participate

in large-scale experiments.

The “definition” and “other” questions in the TREC-QA track and query-relevant sum-

marization task of DUC exemplify the shift from simple information needs to more com-

plex information needs. Therefore, the second problem, addressed in Chapter 5, is Answer-

ing Complex Questions.

1.3 Text Summarization

Though search engines provide a means to access huge volumes of information by retriev-

ing the documents considered relevant to the user’s query, the user still has to go through

the entire document content to judge its relevance. This contributes towards a serious in-

formation overload problem. It has become a necessity to have tools that can digest the

information present across various sources and provide the user with condensed form of

the most relevant information (Kolla, 2004). Summarization is one such technology that

can satisfy these needs.

Summarization can be defined in several ways: According to Mani and Maybury (1999),

“Summarization is the process of distilling the most important information from the source

(or sources) to produce an abridged version for a particular user (or users) and task (or

tasks)”. According to Mani (2001), “goal of summarization system is to take an informa-

tion source, extract content from it and present the most important content to the user in

a condensed form and in a manner sensitive to the user’s or applications’s need.” Input to

9http://duc.nist.gov/

8

summarization process can be in different formats like text, video, audio, image, etc. We

concentrate only on the textual format of the input hence we call Text Summarization.

Different summaries can be generated for the same input source depending on their

functionality and usage (Mani, 2001). One of the most important factors is the compression

rate which is the ratio of the summary length to the source length.

Single document summaries are generated from a single document and multi-document

summaries are generated from a collection of documents. Multi-document summarization

involves identification of the various concepts spread across the collection in order to obtain

more compression and reduce redundancy.

Summaries can be “indicative”, highlighting the salient content of the document with-

out much of an explanation or can be “informative”, explaining certain concept to the max-

imum possible detail at the given compression rate. Summaries can be generated by just

copying and pasting the text from the source (extracts), or can be generated in abstractor’s

own words (abstracts). If the intended audience of the summarizer is a broad readership

community, the summaries contain the information considered salient in the author’s view-

point which is known as generic summaries. User-focused or query-relevant summaries

are generated to be read by a specific group of people having interests in a specific topic

or concepts and they include information relevant to the user’s interests irrespective of its

salience in the document. Summaries can be fragments of sentences providing the gist of

the document (useful for indexing); or can be highly polished fluent text that can be used

as substitute for the actual documents, like abstracts of journal articles.

The summarizing operations can be applied on elements such as words, phrases, clauses,

sentences or discourse. Elements can be analyzed at various linguistic levels: morphologi-

cal, syntactic, semantic and discourse/pragmatic. Based on the level of linguistic analysis

of the source, summarization methods can be broadly classified into two approaches (Mani,

2001):

9

Shallow Approaches These methods do surface level analysis of the document. They

consider features such as word count, presence of cue phrases, position of sentence,

to extract the salient sentences and re-arrange them to form a coherent summary.

Deeper Approaches These methods perform deeper syntactic and semantic analysis of

the document content to identify the salient portions. They require highly domain-

specific information to be able to perform deeper analysis.

Text Summarization is also increasingly exploited in the commercial sectors. Oracle’s

“Context” uses the summarization to mine textual databases. “InXight” summarizer 10

provides summaries for the documents retrieved by the information retrieval engine. Mi-

crosoft’s word processor provides the autosummarize option to highlight the main concepts

on the document. BT’s ProSum, IBM’s Intelligent Miner 11 are some of the other tools pro-

viding summaries to speed up the process of information access.

Several advanced tools have been developed in recent times using summarization tech-

niques to meet certain requirements (Mani and Maybury, 1999). Newsblaster (McKeown

et al., 2003) and NewsInEssence (Radev et al., 2001) allow the users to be updated about

the interesting events happening around the world without the need to spend time search-

ing for the related news articles. Meeting summarizer (Waibel et al., 1998) combines the

speech recognition and summarization techniques to browse the contents of the meeting.

Persival (McKeown et al., 1998), and Healthdoc (Hirst et al., 1997), aid physicians by pro-

viding a “recommended treatment” for particular patient’s symptoms from the vast online

medical literature. Broadcast news navigator (Maybury and Merlino, 1997) is capable of

understanding the news broadcast and present the user with the condensed version of the

news. IBM’s Re-Mail (Rohall et al., 2004) can summarize the threads of email messages

based on simple sentence extraction techniques.
10http://www.inxight.com/products/skds/sum/
11http://www-306.ibm.com/software/data/iminer/

10

Headlines, outlines, previews of movies, synopses, reviews, digests, biography, bulletins

are different examples of summaries that we use in our daily activities.

1.4 State of the Art Question Answering Systems

Researchers working on question answering are trying new directions in QA research to

see which methods provide the best results. The following are the types of systems that are

currently being developed.

1.4.1 Knowledge Base Systems

Knowledge base systems involve extracting certain information beforehand and using it

later. Any information that is extracted before a question is asked will not have to be

extracted when that question is asked, thus providing a faster answer than if it had to be

extracted on answer retrieval time.

One such system is MAYA (Kim et al., 2001) that creates a database of answers before

any questions are asked. There are only fifteen types of entities this system considers as

answers. Each passage that contains a possible answer (i.e. any of the fifteen entities)

is kept, and when a question is asked, the answer that is contained in the passages most

closely related to the question is given as the answer. Katz et al. (2003) developed a

similar method of question answering that uses knowledge bases to compile facts about

every subject before any definition questions are asked.

Clifton and Teahan (2004) built a knowledge base of questions from the document

set. They use knowledgeable agents (Teahan, 2003) that are based on the knowledge grids

proposed by Cannataro and Talia (2003). These knowledgeable agents go through the

documents and form questions around entities they find. For instance, from the phrase,

11

“John Lennon died on December 8th, 1980 during a public dramatic interpretation of J.D.

Salinger’s Catcher in the Rye.” their system forms the question-answer pair, “When did

John Lennon die?” and “December 8th, 1980”. When a question is asked, the system will

check whether it has the knowledge to answer the question by determining which questions

they have identified match the incoming question.

1.4.2 Logical Form Representation Systems

In these systems, the question and the sentences that contain a possible answer are repre-

sented in a logical form. The systems use the logical form to determine whether the logical

form of a possible answer follows from the logical form of the question. PowerAnswer 2

(Moldovan et al., 2004) is a QA system that uses logical proofs. Their method is outlined in

Moldovan et al. (2002). The algorithm involves defining nouns as entities. These entities

are then modified by verbs, adjectives and semantic categories, which are used to answer

questions.

An example of how their system answers a question is (Dubien, 2005):

Question: What is the Muslim Brotherhood’s goal?

Question Logical Representation (LR):

(exists x0 x1 x2 x3 (Muslim_NN(x0) & Brotherhood_NN(x1) &

nn_NNC(x2,x0,x1) & PURPOSE_SR(x3,x2)))

Their system defined x0 and x1 as Muslim and Brotherhood respectively, then combines

them to make entity x2. Their system knows that a “goal” is equivalent to the Semantic

Relation (SR) PURPOSE, and x3 will be the final goal for entity x2 (Muslim Brotherhood).

The next step is to turn passages with prospective answers into LR form. In this case

the answer is contained in this passage:

12

The Muslim Brotherhood, Egypt’s biggest fundamentalist group established in

1928, advocates turning Egypt into a strict Muslim state by political means,

setting itself apart from militant groups that took up arms in 1992.

And its logical form is:

(exists e1 e2 e3 e4 e5 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

(Muslim_NN(x1) & Brotherhood_NN(x2) & nn_NNC(x3,x1,x2) & Egypt_NN(x4)

& _s_POS(x5, x4) & biggest_JJ(x5) & fundamentalist_JJ(x5) & group_NN(x5)

& SYNONYMY_SR(x3,x5) & establish_VB(e1,x20,x5) & in_IN(e1,x6) & 1928_CD(x6)

& TEMPORAL_SR(x6,e1) & advocate_VB(e2,x5,x21) & AGENT_SR(x5,e2) & PURPOSE

_SR(e3,e2) & turn_VB(e3,x5,x7) & Egypt_NN(x7) & into_IN(e3,x8)& strict_JJ

(x15,x14) & Muslim_NN(x8) & state_NN(x13) & nn_NNC(x14,x8,x13) & PROPERTY_

SR(x15,x14) & by_IN(e3,x9) & political_JJ(x9) & means_NN(x9) & MEANS_SR

(x9,e3) & set_VB(e5,x5,x5) & itself_PRP(x5) & apart_RB(e5) & from_IN

(e5, x10) & militant_JJ(x10) & group_NN(x10) & take_VB(e6,x10,x12)& up_IN

(e6,x11) & arms_NN(x11) & in_IN(e6,x12)& 1992_CD(x12) & TEMPORAL_SR(x12,e6)

The answer will be in a PURPOSE semantic relation and the system already knows

that it will be the Muslim Brotherhood’s PURPOSE, which means that the answer to the

question will be the other phrase involved in that PURPOSE relation. The other phrase

refers to the phrase e3, which is “turning Egypt into a strict Muslim state by political

means”. These pre-defined semantic relations make it possible to answer these types of

questions.

13

1.4.3 Multi Corpus Systems

Some systems use secondary collections of documents, in addition to the primary collection

in which the answer is to be found (Voorhees, 2003). Question answering involves finding

the answer in the primary set of documents, so any answers found outside those documents

can only supplement the answers from the primary set. The most popular corpus that is

used to try to improve answer finding is the Internet.

BBN’s system (Xu et al., 2002) first used the original corpus to find possible answers.

Then it performed a search with Google12 with the question. When a query is entered,

Google displays the top ranked documents to that query, and for each document a summary

containing key words from the query is generated. Their system would rank answers by

how many times the answer is in the summary of the top 100 documents from the Google

query. This is a similar method to Wu et al. (2003)’s web-proofing method, where their

system created a query for Google and ranked prospective answers by how many times

those answers occurred compared to other prospective answers.

Lin et al. (2003) and Wu et al. (2004) took the opposite approach with their systems

and rather than using the original corpus to discover the answer, they used only the Internet.

They then attempted to find the answer in the original set of documents. The EagleQA sys-

tem (Chen et al., 2004) extracts answers from both the web, using the Google summaries,

and by a query on the text of the question using the original corpus. The Google summary

answers are used later to rank the answers extracted from the primary corpus.

12http://www.google.com/

14

1.4.4 Hybrid Systems

There are many question answering systems that have a serial architecture, such as An-

swerFinder (Molla and Gardiner, 2004). A serial QA system consists of modules, each

designed to perform a specific task. Data is passed from one module to the next.

Hybrid systems can also take advantage of multiple corpus methods as well. An exam-

ple of one of these systems is PIQUANT II (Chu-Carroll et al., 2004). PIQUANT II makes

use of multiple methods of finding answers. They developed their system so that they could

use any method of ranking and extracting answers and could find the answer in any corpus.

For each method, it would return the top ranked answers to the system. These answers go

through answer justification. In answer justification, their system ensures the answer is in

the original set of documents and, if found, the answer is returned to the user.

TextMap (Echihabi et al., 2003) uses three different methods of extracting and ranking

answers; knowledge-based, pattern-based and statistical-based. They use these methods on

the original corpus as well as on the web, through a Google search. Then, if the top ranked

answer is found on the web, it searches the list of answers from the original corpus and, if

found, it will return the top answer and the document the answer is found in.

The University of Amsterdam’s Quartz QA system (Jijkoun et al., 2003) (Jijkoun and

de Rijke, 2004) (Ahn et al., 2004) uses multiple corpora as well as using different methods

on these sources. They use a total of seven combinations of ways to extract answers. The

sources include: Wikipedia 13, The Internet by using Google and Knowledge Base created

from entities from the original corpus.

Their system uses these corpora, along with the original, to form a bank of answers that

are all “proved” on the web, with a method similar to the one described by Magnini et al.

(2002).
13http://en.wikipedia.org/

15

1.5 State of the Art Query-based Summarization Systems

Researchers all over the world working on query-based summarization are trying different

directions to see which methods provide the best results. The following are different types

of systems that are currently being developed.

1.5.1 Graph-based Method

The LexRank method addressed in (Erkan and Radev, 2004) was very successful in generic

multi-document summarization. An extended version of the original LexRank method was

introduced by (Otterbacher, Erkan, and Radev, 2005). As in LexRank, the set of sen-

tences in a document cluster is represented as a graph, where nodes are sentences and links

between the nodes are induced by a similarity relation between the sentences. Then the

system ranked the sentences according to a random walk model defined in terms of both

the inter-sentence similarities and the similarities of the sentences to the topic description

or question. This idea is captured by the following mixture model:

p(s|q) = d× rel(s|q)
∑z∈C rel(z|q)

+(1−d)×∑
v∈C

sim(s,v)
∑z∈C sim(z,v)

× p(v|q) (1.1)

Where, p(s|q) is the score of a sentence s given a question q, is determined as the sum

of its relevance to the question and the similarity to the other sentences in the collection.

C is the set of all sentences in the collection. The value of the parameter d which is called

“bias”, is a trade-off between two terms in the equation and is set empirically. For higher

values of d, we prefer the relevance to the question to the similarity to the other sentences.

16

The relevance of a sentence s to the question q is computed by:

rel(s|q) = ∑
w∈q

log(t fw,s +1)× log
(
t fw,q +1

)
× id fw

Where, t fw,s and t fw,q are the number of times word w appears in s and q, respectively

and id fw is the Inverse Document Frequency (IDF) of word w.

The system measures the cosine similarity weighted by word IDFs as the similarity

between two sentences in a cluster:

sim(x,y) =
∑w∈x,y t fw,x× t fw,y× (id fw)2√

∑xi∈x (t fxi,x× id fxi)
2×
√

∑yi∈y (t fyi,y× id fyi)
2

1.5.2 Summarization Based on Lexical Chain

The systems based on lexical chain first extract the nouns, compound nouns and named

entities as candidate words (Li et al., 2007). Then using WordNet, the systems find the

semantic similarity between the nouns and compound nouns. After that, lexical chains are

built in two steps:

1. Building single document strong chains while disambiguating the senses of the words

and;

2. building multi-chain by merging the strongest chains of the single documents into

one chain.

The systems rank sentences using a formula that involves a) the lexical chain, b) key-

words from query and c) named entities. For example, (Li et al., 2007) uses the following

formula:

17

Score = αP(chain)+βP(query)+ γP(nameentity)

where P(chain) is the sum of the scores of the chains whose words come from the

candidate sentence, P(query) is the sum of the co-occurrences of key words in a topic and

the sentence, and P(nameentity) is the number of name entities existing in both the topic

and the sentence. The three coefficients α, β and γ are set empirically. Then the top ranked

sentences are selected to form the summary.

1.5.3 Summarization Based on QA System

These systems summarize the documents based on the use of a question answering sys-

tem (Molla and Wan, 2006). At first, the topic sentences are converted to a sequence of

questions as the underlined QA system is designed to answer only simple (i.e. factoid, list)

questions. This is done in two steps:

1. Transforming the indicative forms into questions.

2. Splitting the complex sentences into several individual questions.

For example, the sentence “Include information regarding trends, side effects and con-

sequences of such use” could be converted into three questions:

1. What are the trends of such use?

2. What are the side effects of such use?

3. What are the consequences of such use?

Then the QA system normalizes, classifies the question and finds the candidate answers

along with the sentences in which the answers appeared. Instead of extracting the exact

18

terms as answers, the systems extract the sentences for each of the questions in the topic.

In this way, the systems generate the summary.

1.5.4 Summarization Based on Statistical Models

There are systems that simplify the query sentences by converting one complex query sen-

tence into several simple sentences (Harabagiu, Lacatusu, and Hickl, 2006) (Pingali, K.,

and Varma, 2007) (Toutanova et al., 2007). These systems rank the sentences based on a

mixture model where each component of the model is a statistical model. For example, the

mixture model introduced by (Pingali, K., and Varma, 2007) is as follows:

Score(s) = α×QIScore(s)+(1−α)×QFocus(s,Q) (1.2)

Where, Score(s) is the score for sentence s. Query-independent score (QIScore) and query-

dependent score (QFocus) are calculated based on probabilistic models.

1.6 Our Approaches

Our approach for answering simple questions (Chapter 4) is based on document tagging

and question classification. Question classification extracts useful information (i.e. answer

type) from the question about how to answer the question. Document tagging extracts

useful information from the documents, which will be used in finding the answer to the

question. We used different available tools to tag the documents. Our system classifies the

questions using manually developed rules.

TREC 2007 evaluation of our system (Chali and Joty, 2007b) shows that out of 360

factoid questions 93 are globally correct which is almost 26% accuracy. Our system is

19

ranked 4th among 51 participants in factoid question answering. The average F-measure

of our system in the list questions is 0.132 which is ranked 6th among 51 participants. The

average per-series score of our system is 0.1410 which is almost the same score as the 10th

system in TREC 2007.

For complex questions (Chapter 5) we experimented with both empirical approach and

machine learning approach. Our system (Chali and Joty, 2007a) that participated in DUC-

2007 was based on the empirical approach. We then experimented with several statistical

machine learning techniques for this particular problem and evaluated their results. Our

empirical approach used six features in order to rank a sentence while our machine learning

techniques used eighteen features to rank a sentence. We also experimented with the effects

of different types of features in generating good summaries using each of the algorithms.

To assess the contribution of different features in generating quality summaries the features

are grouped into several classes. They are as follows:

Lexical: N-gram (N= 1, 2, 3, 4), LCS, WLCS score, skip bi-gram, head, head synonym

and BE overlap.

Lexical Semantic: Synonym, hypernym/hyponym, gloss, dependency-based similarity and

proximity based similarity.

Syntactic: Tree kernel-based syntactic feature.

Semantic: Shallow semantic tree kernel-based semantic feature.

Cosine Similarity: Graph-based similarity.

Our experiments show that including syntactic and semantic features improves the per-

formance. Comparison among the learning approaches are also shown. Comparing with

DUC 2007 participants, our systems achieve top scores and there is no statistically signifi-

cant difference between our system and the DUC 2007 best system.

20

1.7 Statistical Machine Learning for NLP Problems

As a broad subfield of Artificial Intelligence, Machine Learning (ML) is concerned with the

design and development of algorithms and techniques that allow computers to learn. The

major focus of machine learning research is to extract information from data automatically,

by computational and statistical methods.

Many important tasks within NLP require a substantial amount of knowledge, usually

provided manually by practitioners within the field. However, with a shift to automatic

processing of large amounts of language data, empirical methods have sought to reduce

the dependence of manually embedding knowledge into NLP systems, and to let learning

algorithms acquire the knowledge from available data. Data classification is a thoroughly

active research topic within ML, and much research where ML and NLP have been com-

bined is aimed at transforming a common NLP problem so that it can be represented as a

classification problem. As a result, it is not uncommon to see that most well known ML

techniques have been applied to just about every possible NLP task, where feasible.

Linear classifiers come in various flavours, but all are relatively simple to understand

and are computationally efficient, particularly with 2-class problems. For example, linear

threshold algorithms can calculate a weighted sum from input features, and then depending

on whether that sum is greater or smaller than a certain threshold, a decision can be made as

its class. Thresholds are determined through the use of training data. Such classifiers have

been applied to text categorization (Dagan, Karov, and Roth, 1997) (Lewis et al., 1996),

shallow parsing (Munoz et al., 1999) and Part of Speech (POS) tagging (Roth and Zelenko,

1998).

Decision trees are used to partition large samples of data into a hierarchical structure.

Commonly associated as a tool for classification, they are also capable of generalizing seen

data into sets of rules. They are generic enough to be applied to many subtasks of NLP,

21

and have been found in machine translation (Tanaka, 1996), parsing (Haruno, Shirai, and

Ooyama, 1998), text categorization (Weiss et al., 1999) and word-sense disambiguation

(Brown et al., 1991).

Clustering is a powerful method as it is one of the few that is fully unsupervised. It

aims to discover natural partitions within data by grouping entities into clusters based on

their similarity. This technique is utilized in syntactic and semantic classification (Hughes,

1994) and information retrieval (Ibrahimov, Sethi, and Dimitrova, 2001).

Statistical machine learning is a flavor of machine learning distinguished by the fact

that the internal representation is a statistical model, often parameterized by a set of proba-

bilities. For illustration (Berger, 2001), consider the syntactic question of deciding whether

the word chair is acting as a verb or a noun within a sentence. Any fifth-grader would have

little difficulty with the problem. But how to program a computer to perform this task?

Given a collection of sentences containing the word chair and, for each, a labeling noun or

verb, one could invoke a number of machine learning approaches to construct an automatic

“syntactic disambiguator” for the word chair. A rule-inferential technique would construct

an internal representation consisting of a list of lemmae, perhaps comprising a decision

tree. For instance, the tree might contain a rule along the lines “If the word preceding chair

is to, then chair is a verb.” A simple statistical machine learning representation might con-

tain this rule as well, but now equipped with a probability: “If the word preceding chair is

to, then with probability p chair is a verb.”

These applications of ML to NLP problems were quite successful. For example, given

a reasonable number of instances of one particular type of entity in training data, learning

algorithms such as Support Vector Machine (SVM) or Maximal Entropy (MAXENT) can

recognize 80-90% instances of that type in test documents with similar accuracy. The ear-

liest automatic POS tagging systems, based on an expert-systems architecture that requires

the knowledge of English grammar, achieved a per-word accuracy of only around 77%

22

on the popular Brown corpus of written English. Surprisingly, perhaps, it turns out that a

knowledge of English syntax is not at all necessary or even helpful in designing an accurate

tagging system. Starting with a collection of text in which each word is annotated with its

part of speech, one can apply statistical machine learning to construct an accurate tagger. A

successful architecture for a statistical part of speech tagger uses Hidden Markov Models

(HMMs), an abstract state machine whose states are different parts of speech, and whose

output symbols are words. In producing a sequence of words, the machine progresses

through a sequence of states corresponding to the parts of speech for these words, and at

each state transition outputs the next word in the sequence. After automatically learning

model parameters from this dataset, HMM-based taggers have achieved accuracies in the

95% range.

The success of Hidden Markov Model tagging supports the claim that knowledge-free

(in the sense of not explicitly embedding any expert advice concerning the target prob-

lem) probabilistic methods are up to the task of sophisticated text processing and, more

surprisingly, can outperform knowledge-rich techniques (Berger, 2001).

We follow this claim by experimenting with statistical machine learning techniques in

the task of answering complex questions.

1.8 Thesis Outline

The remaining chapters of this thesis are organized as follows:

• Chapter 2 reviews the mathematical tools on which the QA systems rely.

• Chapter 3 is a discussion of various methods of tagging useful information in the

documents.

• Chapter 4 addresses our approach for answering simple questions.

23

• Chapter 5 includes our approaches to answer questions which are complex in nature.

• Chapter 6 consists of concluding remarks about our findings and our views on the

future of QA systems.

24

Chapter 2

Mathematical Machinery

2.1 Introduction

Our question answering systems rely on different tools and mathematical backgrounds.

The QA system for simple questions uses information retrieval technique to retrieve the

relevant passages to the query from the whole document collection. Hence, it demands

that we give some background information about the information retrieval systems: the in-

dexing methodology, searching and ranking strategy, querying options, etc. Again the QA

system for complex questions is based on statistical machine learning techniques which

requires the basics of Gaussian distributions, Bayesian networks and clustering techniques.

This chapter reviews the mathematical tools and essential backgrounds on which the ques-

tion answering systems rely: the Gaussian statistics, likelihoods, Bayesian classification,

convexity, the k-means algorithm, the EM algorithm and information retrieval.

2.2 Gaussian Statistics

The normal distribution (also known as Gaussian distribution) (Bilmes, 1997), is an impor-

tant family of continuous probability distributions, applicable in many fields. Each member

of the family is defined by two parameters: the mean and standard deviation. The standard

normal distribution is the normal distribution with a mean (µ) of zero and a variance (σ2)

of one. Figure 2.1 shows four normal distributions.

A multivariate Gaussian distribution is a specific probability distribution which is a

generalization to higher dimensions of one-dimensional normal distribution defined above.

The Gaussian probability density function (pdf) for the d-dimensional random variable x is

25

Figure 2.1: Example of four normal distributions

given by:

p(µµµ,ΣΣΣ)(x) =
e
−1
2 (x−µµµ)T

ΣΣΣ−1(x−µµµ)

√
2π

d√
det(ΣΣΣ)

(2.1)

where µµµ, the mean vector and ΣΣΣ, the covariance matrix are the parameters of the Gaus-

sian distribution.

• The mean vector µµµ contains the mean values of each dimension, µi = E(xi), with E(x) be-

ing the expected value of x. The mean vector µµµ of dimension d is: µµµ = [µ1,µ2, · · · ,µd]
T

• All of the variances cii and covariances ci j are collected together into the covariance

matrix ΣΣΣ of dimension d×d:

∑ =



c1,1 c1,2 · · · c1,d

c2,1 c2,2 · · · c2,d

...
...

...
...

cd,1 cd,2 · · · cd,d



26

The covariance ci j of two components xi and x j of x measures their tendency to vary

together (i.e. co-vary),

ci j = E
[
(x j−µ j)(xi−µi)

]
(2.2)

∑ = E
[
(x−E [x]) (x−E [x])T

]
(2.3)

2.2.1 Gaussian Modeling: Mean and Variance of a Sample

We can estimate the parameters µµµ and ΣΣΣ of the Gaussian models from the data points:

Mean estimate : µ̂µµ = 1
N ∑

N
i=1xixixi (2.4)

Unbiased covariance estimate : Σ̂ΣΣ = 1
N−1 ∑

N
i=1(xixixi−µµµ)T (xixixi−µµµ) (2.5)

2.2.2 Likelihood and Joint Likelihood

The likelihood of a sample point xxxi given a model Θ is given by the value of the probability

density function (pdf) for that data point. That means p(xxxi|Θ) (i.e. Eq 2.1) gives the like-

lihood of the data point xxxi and the joint likelihood of a series of samples X = xxx1,xxx2, · · · ,xxxN

for a given model Θ (Θ is a Gaussian distribution) is given by:

p(X |Θ) =
N

∏
i=1

p(xxxi|Θ) =
N

∏
i=1

p(xxxi|µµµ,ΣΣΣ) (2.6)

We might choose to compute the log likelihood instead of likelihood as log-likelihood

27

turns the product into sum:

p(X |Θ) =
N

∏
i=1

p(xxxi|Θ)⇔ log p(X |Θ) = log
N

∏
i=1

p(xxxi|Θ) =
N

∑
i=1

log p(xxxi|Θ)

In case of Gaussian distribution, it also avoids the computation of the exponentials. By

applying log to the equation:

p(x|Θ) =
e
−1
2 (x−µµµ)T

ΣΣΣ−1(x−µµµ)

√
2π

d√
det(ΣΣΣ)

(2.7)

logp(x|Θ) =
1
2
[
−dlog(2π)− log(det(ΣΣΣ))− (x−µµµ)T

ΣΣΣ
−1(x−µµµ)

]
(2.8)

Note that, log(x) is a monotonically growing function, the log-likelihoods have the

same relations of order as the likelihoods:

p(x|Θ1) > p(x|Θ2)⇔ logp(x|Θ1) > logp(x|Θ2)

2.2.3 Bayesian Classification

How can we tell that a certain feature vector xxxi from a set of several feature vectors X

belongs to a certain class qk? We use the Bayes’ decision rule to decide this:

X ∈ qk i f P(qk|X ,Θ)≥ P(q j|X ,Θ),∀ j 6= k

Which means, given a set of classes qk, with their own parameters in model Θ, a set of

one or more feature vectors X belongs to the class which has the highest probability once

we know the sample X. P(qk|X ,Θ) is called the a posteriori probability, as it depends on

having seen the sample, as opposed to the a priori probability, P(qk|Θ) which does not

28

depend on any sample but depends on the parameters of the model Θ. One can calculate

the posterior probability using Bayes’ law as it says:

P(qk|X ,Θ) =
p(X |qk,Θ)P(qk|Θ)

p(X |Θ)
(2.9)

where qk is a class, X is a sample containing one or more feature vectors and Θ is the

parameter set of all class models. If p(X |Θ) = const (that is the features are equi-probable),

then P(qk|X ,Θ) is proportional to p(X |qk,Θ)P(qk|Θ) for all classes:

P(qk|X ,Θ) ∝ p(X |qk,Θ)P(qk|Θ),∀k

2.2.4 Discriminant Function

Discriminant function is a set of functions fk(x) that allows to classify a sample x into k

classes qk if:

x ∈ qk⇔ fk(x,Θk)≥ fn(x,Θn),∀n 6= k

Here, the k functions fk(x) are called discriminant functions. So, the a posteriori prob-

ability p(qk|xi) is a discriminant function:

xxx ∈ qk ⇔ P(qk|xxxi)≥ P(qn|xxxi),∀n 6= k

⇔ p(xxxi|qk)P(qk)≥ p(xxxi|qn)P(qn),∀n 6= k

⇔ logp(xxxi|qk)+ logP(qk)≥ logp(xxxi|qn)+ logP(qn),∀n 6= k

29

2.2.5 Convexity

A function f (x) is convex or concave up if:

f (αx0 +(1−α)x1)≤ α f (x0)+(1−α) f (x1) f or all 0≤ α≤ 1

That means, if one selects any two points x0 and x1 in the domain of a convex function, the

function always lies on or under the chord connecting x0 and x1:

Figure 2.2: Convex function

2.2.6 Jensen’s Inequality

Jensen’s inequality is the most useful property of convex functions. If f is convex in x, then

f (E[x])≤ E[f (x)] or f
(

∑
x

p(x)x
)
≤∑

x
p(x) f (x) (2.10)

where p(x) is a pdf. For example, the following condition holds for any pdf p:

log
(

∑
x

p(x)x
)
≤∑

x
p(x)log(x) since (−log) is convex

30

2.2.7 Auxiliary Functions

Auxiliary functions are simply pointwise lower (or upper) bounds on a function. For exam-

ple, the function f (x) = x−1 is an auxiliary function for log x because x−1 ≥ log x for

all x. We are interested in the auxiliary functions that bounds the change in log-likelihood

between two models. If Θ1 is one model and Θ2 is another model, then we are looking for

an auxiliary function A(Θ2,Θ1) such that:

L(s|Θ2)−L(s|Θ1) ≥ A(Θ2,Θ1) and A(Θ,Θ) = 0

where L is the log-likelihood. This indicates that if we can find a Θ2 such that A(Θ2,Θ1)>

0, then Θ2 is a better model than Θ1—in a maximum likelihood sense.

The EM algorithm introduced in the next section finds a local maximum model starts

with a initial model Θ1, then replace it by a superior model Θ2 and repeat until no superior

model can be found.

2.3 Unsupervised Clustering

The aim of cluster analysis is to divide the data or samples into a number of useful sub-

sets based on the similarity of data points. The method used in order to select sentences

for query-based summary extraction, is called unsupervised learning. That means, before

the learning begins, it is not known how many subsets (clusters) there are or how they are

distinguished from each other (i.e. the training data are not labeled with the class informa-

tion).

For example, suppose we record the spectra of a hundred thousand stars (Russel and

Norvig, 2003). Then how many different kinds (i.e. “red giant”, “white dwarf” etc.) of

31

stars are there and which stars will fall in certain kind? The problem is that the stars do

not have these labels with them. So, astronomers had to perform unsupervised clustering

to identify these categories.

Unsupervised clustering begins with data (Russel and Norvig, 2003). Figure 2.3 shows

data points, each of which specifies the values of two continuous attributes. The data points

might correspond to stars and the attributes might correspond to spectral intensities at two

particular frequencies.

Clustering techniques assumes that the data are generated from a mixture distribution, P.

Such a distribution has k components, each of which is a distribution. A data point is gen-

erated by first choosing a component and then generating a sample from that component.

Let the random variable C denote the component, with values 1,....,k; then the mixture

distribution is given by :

P(x) =
k

∑
i=1

P(C = i)P(x|C = i) (2.11)

where x refers to the values of the attributes for a data point. For continuous data, each

component distribution is a multivariate Gaussian and the mixture model is called mixture

of Gaussians. The parameters of a mixture of Gaussians are:

wi = P(C = i) : weight of component i in the mixture model.

µµµi : mean of component i.

ΣΣΣi : covariance matrix of component i.

Figure 2.3(b) shows a mixture of three Gaussians; this mixture is in fact the source of

the data in 2.3(a). The unsupervised clustering problem, then is to recover a mixture model

(i.e. parameters and weights of the components) like the one in Figure 2.3(b) from raw data

like that in Figure 2.3(a).

32

Figure 2.3: (a) data points (b) Gaussian mixture model

Clearly, if we knew which component generated each data point, we could just select

all the data points from a given component and then applying the multivariate version of

the formula— (2.4) and (2.5), we would fit the parameters of each component to the data.

On the other hand, if we knew the parameters of each component, then we could at least

in a probabilistic sense (Eq:2.9), assign each data point to a component. Unfortunately, we

know neither the data assignments nor the parameters.

The basic idea of the unsupervised clustering algorithms is to pretend that we know

the parameters of the model and then to infer the probability that each data point belongs

to each component. Then, we refit the components to the data. The process iterates until

convergence. Hence, we get the following steps for the unsupervised clustering algorithms:

• a set of models for the classes qk (may not be Gaussian), defined by a parameter set

Θ (means, variances, priors,...)

• a measure of membership, that measures to which extent a data point “belongs” to a

model

• a way to update the model parameters as a function of the membership information.

33

The measure of membership either calculates the distance measure (k-means) or assign

probability (EM). In the case of a distance measure, the models that are closer to the data

characterize it better and in case of probability measure, the models with a larger likelihood

for the data explain it better.

We have used k-means (hard clustering) and EM (soft clustering) unsupervised algo-

rithms for clustering sentences according to their relatedness to the query in order to gen-

erate query-based summaries.

2.3.1 Number of Clusters in Unsupervised Learning

Both k-means and EM algorithms follow a simple and easy way to cluster a given data

set through a pre-specified number of clusters k, therefore the problem of determining “the

right number of clusters” has attracted considerable interest. There are several approaches

(such as “iK-Means” by (Mirkin, 2005), Hartigan’s method (Hartigan and Wong, 1979)

etc.) to estimate the number of clusters. These methods may also give incorrect number of

clusters.

However, in case of our problem, we simply assume that we have two clusters: 1. Query-

relevant cluster that contains the sentences which are relevant to the user-questions, and

2. Query-irrelevant cluster that contains the sentences that are not relevant to the user-

questions.

2.3.2 K-means Algorithm

K-means is a hard clustering algorithm that defines clusters by the center of mass of their

members (Manning and Schutze, 2000). We start with a set of initial cluster centers and

go through several iterations of assigning each object to the cluster whose center is closest.

34

After all objects have been assigned, we recompute the center of each cluster as the centroid

or mean µµµ of its members. The distance function is Euclidean distance.

In what follows we describe the k-means algorithm for estimating a mixture model fol-

lowing (Manning and Schutze, 2000):

Synopsis of the algorithm:

• Start with K initial prototypes µµµk, k = 1, · · · ,K.

• Do:

1. For each data point xxxn, n = 1, · · · ,N, compute the squared Euclidean distance
from the ith prototype:

dk(xxxn) = ‖xxxn−µµµk‖2 = (xxxn−µµµk)T (xxxn−µµµk)

Note that, we have used squared Euclidean distance instead of true Euclidean
distance. Since the square root is a monotonically growing function squared
Euclidean distance has the same result as the true Euclidean distance but the
computation overload is smaller when the square root is dropped.

2. Assign each data point xxxn to its closest prototype µµµk, i.e., assign xxxn to the class
qk if

dk(xxxn) < dl(xxxn),∀l 6= k

3. Replace each prototype with the mean of the data points assigned to the corre-
sponding class;

4. Go to 1.

• Until: no further change occurs.

The global criterion is:

J =
K

∑
k=1

∑
xxxn∈qk

dk(xxxn)

which represents the total squared distance between the data and the models they belong to

and k-means finds the local minimum.

Figure 2.4 and Figure 2.5 show an example of k-means applied to a sample of five

clusters. The data-points are represented by randomly chosen 2 dimensional feature vec-

35

Figure 2.4: K-means initialization for five clusters

Figure 2.5: K-means convergence

36

tors. Figure 2.4 shows the initialization of clusters and Figure 2.5 shows the convergence

situation after 26 iterations.

2.3.3 EM Algorithm for Gaussian Clustering

EM algorithm can be considered as a “soft” version of k-means algorithm described above

(Manning and Schutze, 2000). As k-means, we start with a set of random cluster centers,

c1 and c2 (figure 2.6). In k-means clustering, we would arrive at the final centers shown on

the right side in one iteration. The EM instead does a soft assignment, which, for example,

makes the lower right point mostly a member of c2, but also partly a member of c1. As

a result, both cluster centers move towards the centroid of all three objects in the first

iteration. Only after the second iteration we do reach the stable final state. EM finds the

Figure 2.6: Soft clustering in EM

model which maximizes the likelihood of the data locally. Since, we are assuming that the

data is generated by k-Gaussians, we wish to find the maximum likelihood model of the

37

form:

P(xxx) =
k

∑
i=1

P(C = i)P(xxx|C = i) (2.12)

=
k

∑
i=1

P(C = i)P(xxx|µµµi,ΣΣΣi) (2.13)

In this model, we need to assume a weight wi = P(C = i) for each Gaussian, so that

the integral of the combined Gaussians over the whole space is 1. We need to initialize the

parameters: µµµi and ΣΣΣi so that, it finds a good local maximal.

EM algorithm is an iterative solution to the following circular statements (Manning and

Schutze, 2000):

Estimate: If we knew the value of Θ (i.e. wi,µµµi,ΣΣΣi), we could compute the expected values

of the hidden structure (i.e. the probabilities to be in a cluster) of the model.

Maximization: If we knew the expected values of the hidden structure of the model, then

we could compute the maximum likelihood value of Θ.

We break the circularity by beginning with a guess for Θ and iterating back and forth

between an expectation and a maximization step, hence the name EM algorithm. In the

expectation step, we compute expected values for the hidden variables hi, j which are cluster

membership probabilities. Given the current parameters, we compute how likely it is that

an object belongs to any of the clusters. The maximization step computes the most likely

parameters of the model given the cluster membership probabilities.

In the following, we describe the EM algorithm for estimating Gaussian mixture fol-

lowing (Manning and Schutze, 2000).

38

Synopsis of the algorithm:

• Start with K initial Gaussian models: N(µµµk,ΣΣΣk) k = 1, · · · ,K, with equal priors set to
P(qk) = 1/K.

• Do:

1. Estimation step: compute the probability P(q(i)
k |xxxn,Θ

(i)) for each data point

xxxn, n = 1, · · · ,N, to belong to the class q(i)
k

P(q(i)
k |xxxn,Θ

(i)) =
P(q(i)

k |Θ
(i))p(xxxn|q

(i)
k ,Θ(i))

p(xxxn|Θ(i))
=

P(q(i)
k |Θ

(i))p(xxxn|µµµ
(i)
k ,ΣΣΣ

(i)
k)

∑ j P(q(i)
j |Θ(i))p(xxxn|µµµ

(i)
j ,ΣΣΣ

(i)
j)

This step gives a labeling of the data by telling to which extent a point xxxn be-
longs to the class qk. This represents a soft classification, since a point can
belong, e.g., by 60% to class 1 and by 40% to class 2.

2. Maximization step: - update the means:

µµµi+1
k =

∑
N
n=1xxxnP(q(i)

k |xxxn,Θ
(i))

∑
N
n=1 P(q(i)

k |xxxn,Θ(i))

- update the variances:

ΣΣΣ
(i+1)
k =

∑
N
n=1 P(q(i)

k |xxxn,Θ
(i))(xxxn−µµµ(i+1)

k)(xxxn−µµµ(i+1)
k)T

∑
N
n=1 P(q(i)

k |xxxn,Θ(i))

- update the priors:

P(qk(i+1)|Θ(i+1)) =
1
N

N

∑
n=1

P(q(i)
k |xxxn,Θ

(i))

Here, all the data points participate to the update of all the models, but their
participation is weighted by the value of P(qk(i)|Θ(i)).

3. Go to 1.

• Until: the total likelihood increase for the training data falls under some desired
threshold.

A key property of the EM algorithm is monotonicity: with each iteration of E and M

steps, the likelihood of the model given the data increases. However, often it does not find

the global maximum.

39

Figure 2.7: EM initialization for five clusters

The global criterion is the joint likelihood of all data with respect to all the models:

λ(Θ) = log p(X |Θ)

= log∑
Q

p(X ,Q|Θ)

= log ∑
Q

P(Q|X ,Θ)p(X |Θ) (applying Bayes rule)

= log
K

∑
k=1

P(qk|X ,Θ)p(X |Θ)

Applying Jensen’s inequality
(
log∑ j λ jy j ≥ ∑ j λ j log y j i f ∑ j λ j = 1

)
, we obtain:

λ(Θ)≥ J(Θ) =
K

∑
k=1

P(qk|X ,Θ)log p(X |Θ)

=
K

∑
k=1

N

∑
n=1

P(qk|xxxn,Θ)log p(xxxn|Θ)

Hence, the criterion J(Θ) represents a lower bound for λ(Θ) which is our desired auxiliary

40

Figure 2.8: Clusters after 10 iterations

function. This criterion is locally maximized by the EM algorithm. Figure 2.7, Figure

2.8 and Figure 2.9 show examples of EM applied to a sample (10,000 data points) of five

clusters as in k-means above. As in above, the data-points are represented by randomly

chosen 2 dimensional feature vectors. Figure 2.7 shows the initialization of clusters by

EM and Figure 2.8 shows the situation after 10 iterations. Note that, at each step, the total

log-likelihood increases and after iteration 10 we have not got the convergence. Figure 2.9

shows the clusters after 110 iterations when we have got the convergence.

2.4 Information Retrieval

Question answering systems find the answer to a question in a collection of documents. In

most cases, it is not feasible to process each document in a collection sequentially every

time a new question is to be answered. An information retrieval system can be used to

index the documents and allow a QA system to query the IR system, thus retrieving only

41

Figure 2.9: Clusters after 110 iterations

the documents that are relevant to the question.

2.4.1 Indexing Documents

Information retrieval system indexes all non-stop words in a document. The set of stop

words is mostly made up of extremely common determiners, pronouns, and prepositions.

Soem examples of stop words are: “the”, “that”, “an”, “by”, “at”, “from”, “how” etc.

The IR systems exclude these stop words to save space or to speed up searches. For each

word indexed, the number of occurrences of the word in each document is saved. To

demonstrate how an inverted index stores words, here is an example with a collection that

has 7 documents with a total of seven different words.

• Document D1 contains {W1, W2, W3}

• Document D2 contains {W1, W3, W4, W7}

42

W1 D1,D2,D5
W2 D1,D2,D4,D5,D7
W3 D1,D2,D4{2}
W4 D2,D4,D6{3}
W5 D3,D4,D5,D7{2}
W6 D4,D6
W7 D2,D3,D7

Table 2.1: Inverted file example

• Document D3 contains {W2, W5, W7}

• Document D4 contains {W2, W3, W3, W4, W5, W6}

• Document D5 contains {W1, W2, W5}

• Document D6 contains {W4, W4, W4, W6}

• Document D7 contains {W2, W5, W5, W7}

The inverted file entries for each word are shown in Table 2.1.

2.4.2 Queries

Once the documents are indexed, an information retrieval system allows you to retrieve

documents relevant to a query. The two main ways to query the documents with an IR

system are boolean and vector-space. The inverted file from Table 2.1 will be used as an

example for the following sections.

43

Boolean

Boolean queries are made up of basic boolean operators: AND, OR and NOT. For instance,

the query “W4 AND W6” will return the results of the intersect of the set of documents that

contain W4 and the set of documents that contain W6. This query will retrieve documents

D4 and D6.

Vector-Space

Vector-Space (Jurafsky and Martin, 2000, pages 647-651) queries, also called vector-cosine,

are a way of ranking documents based on a query. In this ranking method, the documents

and the query are represented as n-dimensional vectors with each dimension representing

a word in the query. The rank of the document for the query will be the cosine of the angle

between the query-vector and the document-vector.

The query of k terms will be represented as the vector qqqk, where wi,k is the weight of

the i-th term in the query:

qqqk = (w1,k,w2,k, . . . ,wn,k)

Each document j will be represented as the vector ddd j, where wi, j represents the number

of occurrences of term i in document j1:

ddd j = (w1, j,w2, j, . . . ,wn, j)

The formula for the vector cosine method for finding the rank is:

1wi, j may represent other measures such as t f ∗ id f of a word

44

cosα =
qqqk.ddd j

|qqqk|
∣∣ddd j
∣∣ =

∑
n
i=1 wi, j×wi,k√

∑
n
i=1 w2

i, j×
√

∑
n
i=1 w2

i,k

where α is the angle between qqqk and ddd j. Documents will not be considered if they

do not contain any words from the query. This formula will yield the cosine of the angle

between the query-vector and the document-vector. As an example, the documents will

be ranked on the query W3 and W4 and W6. There are no AND and OR operations for a

vector-space query. The inverted file in Table 2.1 will be used as the set of documents.

In this example, the occurrences of the terms will affect the weight. Since W6 is only

used two times, we will weight it more than the other terms and the query vector will be

qqq = (1,1,2). The rank for each document will be calculated as follows:

qqq.ddd1

|qqq| |ddd1|
=

(1×1)+(1×0)+(2×0)√
1+1+4×

√
1+0+0

=
1√
6
≈ 0.40824829

qqq.ddd2

|qqq| |ddd2|
=

(1×1)+(1×1)+(2×0)√
1+1+4×

√
1+1+0

=
2√

6×
√

2
≈ 0.57735027

qqq.ddd4

|qqq| |ddd4|
=

(1×2)+(1×1)+(2×1)√
1+1+4×

√
4+1+1

=
5√

6×
√

6
≈ 0.83333333

qqq.ddd4

|qqq| |ddd6|
=

(1×0)+(1×3)+(2×1)√
1+1+4×

√
0+9+1

=
5√

6×
√

10
≈ 0.64549722

The order in which the documents are returned is: D4, then D6, then D2, and then

finally D1. Documents D3, D5 and D7 will not be considered because they do not contain

any of the words of the query.

45

2.4.3 Lucene

We are using Java based Lucene2 as our information retrieval system. Lucene is a group

of tools that lets users create their own information retrieval system with the provided

modules. Moldovan et al. (2004) notes that because of the Lucene system’s ability to

have a greater understanding of natural language, the passages retrieved can be more rele-

vant to the query.

2.4.4 Case Folding and Stemming

Multiple words could be indexed as the same word in the inverted index. Case folding is

when words that include upper case letters are indexed to the same entry as words without

upper case letters. In stemming the words are indexed by their stems. A stem of the word

is the part left after the affixes have been taken off. Affixes can take different forms and are

letters that are used to modify the base form of a word. An example of this are the suffixes:

“ly”, “er”, “ess”, “ed”, and “ing”.

Lucene allows us to index the documents in a case folding and stemmed manner. Thus

“World” would be indexed as the same word as “world” and “bank” will be indexed the

same as the word “banking”. This is useful because it will find more words that are related

to the query term, but presents similar problems to case insensitivity. For stemming we are

using the Porter Stemmer (Porter, 1980) in Lucene.

2http://jkarta.apache.org/lucene/

46

2.4.5 Paragraph Indexing

We indexed paragraphs instead of documents. A paragraph is a complete thought and most

pronouns in a paragraph will represent the named entity that is already contained in the

paragraph. A paragraph that does not explicitly contain the topic will rarely involve the

topic. Indexing by paragraph helps us exclude the text that is unlikely to have the an-

swer, hence minimizes the processing time for finding an answer. Harabagiu and Maiorano

(1999) found that there is an increase in accuracy if documents are indexed by paragraph.

2.5 Chapter Summary

In this chapter, we described the mathematical theories and tools on which we built our

QA systems. In the next chapter, we describe how the documents are preprocessed before

extracting answers to the questions.

47

Chapter 3

Document Processing

Our question answering systems require different kinds of preprocessing of the documents.

In this chapter, we give a detailed description of the different tags and parses that were done

and the tools that were used to do the tagging and parsing 1.

We utilized different outside systems to aid in tagging documents including:

• WordNet (http://wordnet.princeton.edu/)

• Minipar (http://www.cs.ualberta.ca/ lindek/minipar.htm)

• OAK System (http://nlp.cs.nyu.edu/oak/)

• Lingpipe (http://www.alias-i.com/lingpipe/)

• Basic Element (BE) extractor (http://www.isi.edu/cyl/BE)

• Charniak Parser (http://www.cs.brown.edu/people/ec/software)

• ASSERT semantic role labeling system (http://cemantix.org/assert)

In preprocessing, we added different tags to the document sentences in order to add

useful information to the words. We also did different kinds of parsing of the document

sentences. The tags and parses that we did include:

• Tokenization and sentence splitting

• Part of speech tagging

1The examples in this chapter are taken from DUC 2007.

48

• Chunked part of speech tagging

• Word sense tagging

• Named entity tagging

• Co-reference resolution

• Basic element extraction

• Word dependency tagging

• Shallow Semantic parsing

First, we give an overview of the three most important tools our systems use to tag/parse

sentences. Then, the sections describe how we used those tools to tag specific information

to the sentences.

3.1 Overview of Selected Tools

3.1.1 WordNet 3.0

WordNet is a semantic lexicon for the English language. It groups English words (i.e.

nouns, verbs, adjectives and adverbs) into sets of synonyms called synsets, provides short,

general definitions (i.e. gloss definition), and records the various semantic relations be-

tween these synonym sets. Every synset contains a group of synonymous words or collo-

cations (a collocation is a sequence of words that go together to form a specific meaning,

such as ”car pool”); different senses of a word are in different synsets. The meaning of the

synsets is further clarified with short defining glosses (definitions and/or examples). For

49

example, the noun computer has two senses and the synset and gloss definition for each of

them are:

03082979 computer, computing machine, computing device, data processor, electronic

computer, information processing system (a machine for performing calculations au-

tomatically)

09887034 calculator, reckoner, figurer, estimator, computer (an expert at calculation (or at

operating calculating machines))

Each synonym set is identified by a synset ID (e.g. 03082979, 09887034). Most synsets

are connected to other synsets via a number of semantic relations. The semantic relations

include:

For nouns:

Hypernyms: Y is a hypernym of X if every X is a (kind of) Y (pen to element)

Hyponyms: Y is a hyponym of X if every Y is a (kind of) X (pen to ballpoint pen)

Coordinate terms: Y is a coordinate term of X if X and Y share a hypernym (pen and

marker)

Holonym: Y is a holonym of X if X is a part of Y (computer to platform)

Meronym: Y is a meronym of X if Y is a part of X (computer to CRT)

For verbs:

Hypernym: the verb Y is a hypernym of the verb X if the activity X is a (kind of) Y (travel

to movement)

Troponym: the verb Y is a troponym of the verb X if the activity Y is doing X in some

manner (lisp to talk)

50

Entailment: the verb Y is entailed by X if by doing X you must be doing Y (sleeping by

snoring)

Coordinate terms: those verbs sharing a common hypernym (travel and journey)

For adjectives:

Related nouns

Participle of verb

For adverbs:

Root adjectives

One useful relation is hyponym/hypernym. A hyponym for a word is a set of things

that are instances of that word. For example, the hyponym set for sense one of computer

includes different types of computers such as: analog computer, digital computer, home

computer, node, client, guest, number cruncher etc. A hypernym set is the opposite of a hy-

ponym set. Sense one of computer has a hypernym set of machine, device, instrumentality,

artifact, etc. With hypernym sets and hyponym sets a hierarchy is formed, with hyponym

set being more specific and hypernym being more general. A part of the hierarchy tree

formed by these relations for first sense of computer is in Figure 3.1.

3.1.2 OAK System

OAK System (Sekine, 2002), from New York University, is a collection of tools that can

tag documents in many different ways:

• Sentence splitter

51

Figure 3.1: Hierarchy tree for computer

• Tokenizer

• Part of speech tagger

• Chunker

• Named entity tagger

3.1.3 Lingpipe

Lingpipe2 developed by Alias-i, Inc 3 can tag documents in the following ways:

• Tokenizer
2http://www.alias-i.com/lingpipe/
3http://www.alias-i.com/

52

• Sentence splitter

• Named entity tagger

• Co-reference resolution

3.2 Tagging Documents

3.2.1 Tokenization and Sentence Splitting

Before text is tokenized and split into sentences, it is just a string of characters. Tokeniza-

tion is splitting a string of characters into lexical elements such as words and punctuation.

Sentence splitting separates the sentences (Jurafsky and Martin, 2000, page 180). We used

OAK system for this purpose.

3.2.2 Co-reference Resolution

Knowing which terms are referring to which entities is very helpful in answering questions

(Ageno et al., 2004). There are different tasks when resolving the references in a document.

A person can be refered to by his full name, first name and last name or by a pronoun

(pronoun resolution). For example, in the following passage, Angelina Jolie is referred to

by her last name Jolie and pronouns She, her.

Angelina Jolie lives on the edge. Jolie, 25, delights in making waves. She is

the woman who literally jumped in a swimming pool in her ballgown after

winning a Golden Globe Award for “Gia” (1998).

53

Being able to resolve the references could help the QA system discover that Angelina

Jolie’s age is 25 again the pronoun resolution helps our systems to deduct that “Angelina

Jolie” jumped in a swimming pool after winning a Golden Glove award for ”Gia” in 1998.

One problem that arises is that not every instance of someone’s name represents that

person (Dubien, 2005). A person’s name can be referring to one of the things they have

made, as in this example:

Even a minor Rothko on paper, not to mention a Picasso or a Miro, generally

tops $250,000.

In this example, generally tops $250,000 is not a fact about Picasso, but rather a fact

about his paintings.

Co-reference Resolution with Lingpipe

Lingpipe resolves references to the named entities; person, location and organization. It

gives each of these named entities (person, location or organization) in the document an ID

and each reference to that entity will have the same ID. For example the above passage got

tagged with Lingpipe:

〈s i=“0”〉〈 ENAMEX ID=“0” TYPE=“PERSON’〉 Angelina Jolie 〈/ENAMEX〉lives

on the edge. 〈/s 〉 〈 s i=“0”〉〈 ENAMEX ID=“0”TYPE=“PERSON”〉 Jolie 〈/ENAMEX〉,

25, delights in making 〈 ENAMEX ID=“1” TYPE=“LOCATION”〉 waves.〈/ENAMEX〉〈/s

〉〈 s i=“1”〉〈ENAMEX ID=“0” TYPE=“FEMALE PRONOUN”〉She〈/ENAMEX〉 is the

woman who literally jumped in a swimming pool in 〈 ENAMEX ID=“0” TYPE=“FEMALE

PRONOUN”〉 her 〈/ENAMEX〉 ballgown after winning a 〈 ENAMEX ID=“2” TYPE=

“PERSON”〉 Golden Globe Award 〈/ENAMEX〉 for “〈 ENAMEX ID=“3” TYPE=

“ORGANIZATION”〉 Gia〈/ENAMEX〉” (1998).〈/s〉

54

In this passage, Angelina Jolie is given the reference ID 0. Lingpipe resolves the pro-

nouns she and her as a reference to Anjelina Jolie. It resolves also the last name Jolie as

Anjelina Jolie. But, sometimes it fails to resolve the last name as well as pronouns.

Our system uses Lingpipe only for pronoun resolution. Before documents are tagged

by OAK system, our system tags documents with Lingpipe and replace all pronouns with

the entity they are representing.

The above passage will be changed to:

Angelina Jolie lives on the edge. Jolie, 25, delights in making waves. An-

gelina Jolie is the woman who literally jumped in a swimming pool in Angelina

Jolie’s ballgown after winning a Golden Globe Award for “Gia” (1998).

Both our summarizing and question answering systems benefit from co-reference resolu-

tion. It helps our summarizing system find the similarity between the question and candi-

date sentence and rank accordingly. It helps our QA system when possible answers will be

matched to patterns with entities from the question.

3.2.3 Stemming with OAK Systems

Stemming is the process for reducing inflected (or sometimes derived) words to their stem

or root form. So, a stem of a word is the part left after the affixes have been taken off.

Affixes can take different forms and are letters that are used to modify the base form of

a word. Examples of these are the suffixes; “en”, “ly”, “er”, “ess”, “ed”, and “ing”. A

stemming algorithm (for example, Porter stemmer) reduces the words “fishing”, “fished”,

“fish”, and “fisher” to the root word, “fish”. We used the OAK system for stemming.

55

For example :

Input Passage Angelina Jolie lives on the edge. Jolie, 25, delights in making waves. She

is the woman who literally jumped in a swimming pool in her ballgown after winning

a Golden Globe Award for “Gia” (1998).

Stemmed Passage Angelina Jolie life on the edge. Jolie, 25, delight in make wave. She

be the woman who literally jump in a swimming pool in her ballgown after win a

Golden Globe Award for “Gia” (1998).

3.2.4 Part of Speech

Each word in a sentence is classified as a Part Of Speech (POS) that depends on the way

the word is being used. For instance, the word mail can be used as a noun (Did you receive

that mail I sent you?) or as a verb (Could you mail me that book?). The systems available

can tag documents with part of speech with fairly high accuracy (almost 95%).

To be consistent, systems use sets of universal tags for parts of speech. Penn Treebank

POS tag set (Marcus, Santorini, and Marcinkiewicz, 1994) is the most popular one and

we used it because this Treebank was used to train the OAK system. Tables 3.1 and 3.2

include a list of the Penn Treebank tags and examples of words that can be tagged with

them.

For example,

Input Passage Angelina Jolie lives on the edge. Jolie, 25, delights in making waves. She

is the woman who literally jumped in a swimming pool in her ballgown after winning

a Golden Globe Award for “Gia” (1998).

Stemmed POS tagged Passage Angelina/NNP Jolie/NNP life/NN on/IN the/DT edge/NN.

56

Tag Description Example
CC Coordinating conjunction and, but, or
CD Cardinal number 1, 2, two, 44
DT Determiner a, the, an
EX Existential there there
FW Foreign word moi, coupe, carpe
IN Preposition/subord. conjunction in, on, by
JJ Adjective red, mean, good
JJR Adjective, comparative faster, closer, taller
JJS Adjective, superlative fastest, closest
LS List item maker 3, 1, Two
MD Modal should, can, may
NN Noun, singular or mass frog, dog, lamp
NNS Noun, plural frogs, dogs, lamps
NNP Proper noun, singular CNN, Mary
NNPS Proper noun, plural Carolinas
PDT Predeterminer all, both
POS Possessive ending ’s
PRP Personal pronoun I, she, you
PP$ Possessive pronoun their, your
RB Adverb slowly, never
RBR Adverb, comparative slower
RBS Adverb, superlative slowest
RP Particle up, off
SYM Symbol (mathematical or scientific) +,%
TO to to
UH Interjection um, ah, oops
VB Verb, base form sit
VBD Verb, past tense sat
VBG Verb, gerund/present participle sitting
VBN Verb, past participle sat
VBP Verb, non-3rd ps. sing. present sit
VPZ Verb, 3rd ps. sing. present sits
WDT wh-determiner which, that
WP wh-pronoun what, who
WP$ Possessive wh-pronoun whose
WRB wh-adverb how, where

Table 3.1: Penn Treebank POS tagset

57

Tag Description Example
Pound sign
$ Dollar sign $
. Sentence-final punctuation .?!
, Comma ,
: Colon, semi-colon ; : ...
(Left bracket character
) Right bracket character

Straight double quote
‘ Left open single quote ‘
“ Left open double quote “
’ Right open single quote ’
” Right close double quote ”

Table 3.2: Penn Treebank POS tagset continued

Jolie/NNP, 25/CD, delight/NN in/IN make/VB wave/NN. She/PRP be/VB the/DT

woman/NN who/WP literally/RB jump/VBP in/IN a/DT swimming/NN pool/NN

in/NN her/PRP ballgown/NN after/IN win/NN a/DT Golden/NNP Globe/NNP Award/NNP

for/IN “/“ Gia/NNP ”/” (/-LRB- 1998/CD)/-RRB- ./.

The two most popular POS taggers are the maximum entropy tagger (Ratnaparkhi,

1996) and the Brill tagger (Brill, 1994). The maximum entropy tagger uses probabilities to

tag the document with the set of tags that are most likely to be correct. These probabilities

are learned through supervised machine learning techniques. This tagger uses a decision

tree to see all the possible tags for a sentence and finds the most probable tagging of the

sentence as a whole.

The Brill tagger, also known as transformation-based tagging (Jurafsky and Martin,

2000, page 118), uses supervised machine learning as well, but learns sets of rules instead

of probabilities. First it tags each word with the most probable tag for that word, and then

it goes over the passage, applying the most probable set of rules for the situations.

For POS tagging, we are using the OAK System which uses a method similar to the

58

Brill tagger, but has 13% fewer errors (Sekine, 2002).

3.2.5 Chunked Part of Speech

Chunked part of speech is grouping words into different phrases. It is also referred to as

a shallow parse since it is done with one pass (Jurafsky and Martin, 2000). Ramshaw and

Marcus (1995) outline a transformation-based way of tagging chunked part of speech. This

machine learning method learns rules for whether a word belongs in a noun phrase, verb

phrase, or preposition phrase, given the part of speech tags of the word and the words that

are already in these types of phrases.

For example,

Input Passage Angelina Jolie lives on the edge. Jolie, 25, delights in making waves. She

is the woman who literally jumped in a swimming pool in her ballgown after winning

a Golden Globe Award for “Gia” (1998).

Stemmed Chunked POS tagged Passage [NP Angelina/NNP Jolie/NNP life/NN] [PP

on/IN] [NP the/DT edge/NN] ./. [NP Jolie/NNP] ,/, [NP 25/CD] ,/, [NP delight/NN

] [PP in/IN] [VP make/VB] [NP wave/NN] ./. [NP She/PRP] [VP be/VB] [NP

the/DT woman/NN] [NP who/WP] [ADVP literally/RB] [VP jump/VBP] [PP in/IN

] [NP a/DT swimming/NN pool/NN] [PP in/NN] [NP her/PRP] [NP ballgown/NN

] [PP after/IN] [NP win/NN] [NP a/DT Golden/NNP Globe/NNP Award/NNP] [PP

for/IN] “/“ [NP Gia/NNP] ”/” (/-LRB- [NP 1998/CD])/-RRB- ./.

(Li and Roth, 2001) used this shallow parsing for question answering, instead of a

deeper syntactic parse. They found that in certain situations, such as when lower quality

text is used for extracting answers, a system using a shallow parse can be more effective

and flexible at answering the questions. An example of lower quality text is when the text

59

was not edited for spelling and grammar. Our document collection contains both lower

quality (BLOG06) and high quality texts (Newswire), so both shallow parse and syntactic

parse are beneficial.

OAK performs a shallow parse of a document using chunked POS with a method similar

to (Ramshaw and Marcus, 1995).

3.2.6 Named Entity Tagging

Named Entities (NE) are defined as terms that refer to a certain entity. For instance, Canada

refers to a certain country, and $200 refers to a certain quantity of money. The different

classes of named entities our system recognizes are dependent on which named entities get

tagged by the named entity tagger.

Our QA system used named entity tagging in order to extract the candidate answers.

When our system classifies questions, it also discovers the answer type of the question. This

answer type is often a named entity, and if that named entity is tagged, possible answers

will be easier to extract with the answer extractor.

There are many ways to tag different named entities. One involves pattern matching

from a list of examples of the entity. For instance, the entity city can be tagged by com-

paring an entity to a list of all cities. This will require some kind of look up table because

running through the whole list for every new word will be time consuming (Dubien, 2005).

Another method of tagging certain named entities is by pattern matching using regular

expressions. Where the named entity is a quantity (e.g. percentage), the pattern “number%”

or “number percent” could be used to discover entities that are percentages.

60

Named Entity tagging using OAK System

We used OAK system to tag the documents with named entity. OAK system has 150 named

entities that can be tagged. They are included in a hierarchy. They are found either by

pattern matching from a list of examples of entities or by regular expressions. For instance,

city is best found with a list of cities, since that is almost the only way to tell if an entity

is referring to a city. Appendix C outlines all the 150 named entities that OAK system

currently tags.

Since OAK tags all entities at the same time, some entities that can be more than one

thing will only be classified as one of them. For instance, Paris could be the name of a city

or the name of a person. OAK will only tag it as a person. As a result, our system cannot

answer the question that asks for “Paris” as city.

An example of a chunked part of speech and named entity tagged sentence is:

[NP The/DT shuttle/NN] [NP 〈SPACESHIP Discovery/NNP 〉] [VP is/VBZ

scheduled/VBN to/TO dock/VB] [PP with/IN] [NP 〈SPACESHIP Mir/NNP

〉] 〈DATE later/RB [NP this/DT week/NN 〉] and/CC [VP retrieve/VB] [NP

astronaut/NN 〈MALE FIRSTNAME Andrew/NNP 〉 〈MALE FIRSTNAME

Thomas/NNP 〉] ,/, [NP the/DT last/JJ] [PP of/IN] [NP seven/CD] [NP

〈NATIONALITY American/NNP 〉] [VP to/TO work/VB] [PP on/IN] [NP

the/DT station/NN] [PP in/IN] [NP the/DT 〈YEAR PERIOD last/JJ three/CD

years/NNS 〉] ./.

Named Entity tagging with WordNet

As discussed previously, WordNet has sets for each synset called hyponyms which are

words that are instances of that word. The hyponym set for computer has different kinds

61

of computers. This hyponym list can be loaded as a list of examples and a system can be

made to tag these examples inside the document, similar to how OAK system tags NEs.

To use this method, our QA system should first know what word’s hyponym list is going

to be used to tag the document. Knowing the NE our system is looking for will allow our

QA system to tag only the entities relevant to the question. These entities will be discovered

with question classification module of our QA system. The hyponym list is then extracted

and compared to the words of the document, and the entities that are in the list are tagged

as possible answers.

3.2.7 Word Sense Tagging

Each word in WordNet has multiple senses for the different ways the word can be used.

Word Sense Disambiguation (WSD) is the process of determining in which sense a word is

being used. Once the system knows the correct sense that the word is being used, WordNet

can be used to determine synonyms. This is useful for seeing if a word from the question

is associated with a word in the passage by being in the same synonym set. To tag the

correct sense we developed a WSD system (Chali and Joty, 2007c) and participated in

SemEval 2007 WSD competition. Our system achieved encouraging result (60% accuracy)

in SemEval-2007.

Our system creates a list of nouns in the passage. Each candidate word is expanded to all

of its senses. We created a hash representation to identify all possible word representations,

motivated from (Galley and McKeown, 2003). Each word sense is inserted into the hash

entry having the index value equal to its synsetID. For example, athlete and jock are inserted

into the same hash entry (Fig 3.2).

On insertion of the candidate sense into the hash we check to see if there exists an entry

into the index value, with which the current word sense has one of the relations: 1) repeti-

62

Figure 3.2: Hash indexed by synsetID

Figure 3.3: Partial disambiguation graph

tion, 2) synonym, 3) hypernym/hyponym and 4) gloss. No disambiguation is done at this

point; the only purpose is to build a representation used in the next stage of the algorithm.

This representation can be shown as a disambiguation graph (Galley and McKeown, 2003)

where the nodes represent word instances with their WordNet senses and weighted edges

connecting the senses of two different words represent semantic relations (Fig 3.3).

We use the intermediate representation (Fig 3.3) to perform the WSD. We add the

weight of all edges leaving the nodes under their different senses. The one sense with

the highest score is considered the most probable sense. For example, in Fig 3.3 bass is

connected with three words: pitch, ground bass and sound property by its instrument sense

and with one word: fish by its food sense. For this specific example all the semantic rela-

63

tions are of hyponym/hypernym type (score 0.33). So we get the score as in Table 3.3.

Sense Mnemonic Score Disambiguated Sense
4928349 Musical Instrument 3×0.33 = 0.99 Musical Instrument
7672239 Fish or Food 0.33 (4928349)

Table 3.3: Score of the senses

In case of tie between two or more senses, we select the one sense that comes first in

WordNet, since WordNet orders the senses of a word by decreasing order of frequency.

3.2.8 Lexical Chain Extraction

Concepts of coherence and cohesion enable us to capture the theme of the text. Coherence

represents the overall structure of a multi-sentence text in terms of macro-level relations

between clauses or sentences (Halliday and Hasan, 1976). Cohesion, as defined by (Hall-

iday and Hasan, 1976), is the property of holding text together as one single grammatical

unit based on relations (i.e. ellipsis, conjunction, substitution, reference, and lexical cohe-

sion) between various elements of the text. Lexical cohesion is defined as the cohesion that

arises from the semantic relations between the words in the text (Morris and Hirst, 1991).

Lexical cohesion among words are represented by lexical chains.

Several methods have been proposed to compute lexical chains (Barzilay and Elhadad,

1997), (Hirst and St-Onge, 1997), (Silber and McCoy, 2002), (Galley and McKeown,

2003). We followed the similar method as (Galley and McKeown, 2003), in which in

the first step we perform the word sense disambiguation using the disambiguation graph

(Section 3.2.7), then we form the lexical chains in the second step.

In the previous section (Section 3.2.7) we described the word sense disambiguation

step using the disambiguation graph. At this point, we have already assigned a sense to

64

Figure 3.4: Lexical chain graph

each word. The next step is to build the actual lexical chains by processing the entire

disambiguation graph. In this step, we remove all semantic links that connect words taken

under wrong senses and keep only the links that connect the words with their right senses.

We are left with the edges that are the actual lexical chains of our algorithm. For example,

in Figure 3.3 the word bass’s disambiguated sense is “music instrument” (4928349). If the

final sense of the words pitch, ground bass and sound property is the sense by which it is

connected with bass then we get the chain graph as Figure 3.4 which represents the lexical

chain: (bass, pitch, ground bass, sound property).

In our QA system, we used this to extract the number of word associations between the

question and the passage with candidate answer and use this in order to rank the candidate

answers. We extracted the lexical chains from the documents for the text summarization

system with which we participated in DUC 2007 (Chali and Joty, 2007a). We used lexical

chain as one of the features for ranking a sentence to be included in the summary.

3.2.9 BE Extraction

Basic Elements (BEs) are defined as follows (Hovy et al., 2006):

65

• the head of a major syntactic constituent (noun, verb, adjective or adverbial phrases),

expressed as a single item, or

• a relation between a head-BE and a single dependent, expressed as a triple:

(head|modifier|relation).

With BE represented as a head-modifier-relation triple, one can quite easily decide

whether any two units match or not- considerably more easily than with longer units. For

instance, “United Nations”, “UN”, and “UNO” can be matched at this level (Hovy et al.,

2006). Example BEs for the sentence “The Frankfurt-based body said in its annual report

released today that it has decided on two themes for the new currency: history of European

civilization and abstract or concrete paintings” are as follows:

body|frankfurt-based|nn

said|body|subj

said|in|guest

said|its|in

report|annual|mod

said|released|fc

released|report|subj

released|today|mod

decided|it|subj

decided|on|guest

decided|two|on

decided|themes|obj

currency|new|mod

themes|currency|for

66

civilization|european|mod

history|civilization|of

civilization|abstract|conj

paintings|concrete|mod

abstract|paintings|conj

In order to extract the BEs, a syntactic parser (Minipar) is used to produce a parse tree

and then a set of “cutting rules” are used to extract just the valid BEs from the tree. The BEs

shown above are generated by BE package 1.0 distributed by ISI4. We used the standard

BE-F breaker included in the BE package.

We might be hitting a limit imposed by the representation of sentences and queries

which ignores syntax or semantics, so including these two features might be helpful. More-

over, the task like query-based summarization that requires the use of more complex syn-

tactic and semantics, the approaches with only Bag of Words (BOW) are often inadequate

to perform fine-level textual analysis. In the next two subsections, we discuss the syntactic

and semantic parsing.

3.2.10 Syntactic Parsing: Word Dependencies Tagging

To discover word dependencies, a syntactic parse is used. Syntactic parsing is analyzing a

sentence using the grammar rules. One method to tag word dependencies is by using the

Charniak parser 5 to get a statistical syntactic parse of the passages. These probabilities are

found using supervised machine learning. The probability is the chance that two words are

dependent, given certain variables including part of speech and distance.

4BE website:http://www.isi.edu/ cyl/BE
5available at ftp://ftp.cs.brown.edu/pub/nlparser/

67

The following is an example of a sentence parsed with the Charniak parser:

(S1 (S (NP (NNP Angelina) (NNP Jolie))

(VP (AUX is)

(NP (NP (DT the) (NN woman))

(SBAR (WHNP (WP who))

(S (VP (ADVP (RB literally))

(VBD jumped)

(PP (IN in)

(NP (NP (DT a) (VBG swimming) (NN pool))

(PP (IN in) (NP (PRP$ her) (NN ballgown)))))

(PP (IN after)

(S (VP (VBG winning)

(NP (DT a) (NNP Golden) (NNP Globe) (NN Award))

(PP (IN for)

(NP (NP (‘‘ ‘‘) (NNP Gia\) (’’ ’) (NNP \) (POS ’))

(PRN (-LRB- -LRB-) (NP (CD 1998)) (-RRB- -RRB-)))))

)))))))

(. .)))

(Pasca and Harabagiu, 2001) demonstrated that with the syntactic form one can see

which words depend on other words. There should be a similarity between the words that

are dependent in the question and the dependency between words of the passage containing

the answer. The importance of syntactic feature in question answering is described by

(Zhang and Lee, 2003), (Moschitti et al., 2007) and (Moschitti and Basili, 2006).

In our text summarizer system, we used the Charniak parser to parse the sentence as

well as the query into syntactic trees before finding the syntactic similarity between the

68

query and the sentence.

3.2.11 Semantic Parsing: Semantic Role Labeling

The study of shallow semantic information such as predicate argument structures anno-

tated in the PropBank(PB) project (Kingsbury and Palmer, 2002) is a promising research

direction (Moschitti et al., 2007). To experiment with semantic structures, we parse the sen-

tences as well as the questions semantically using a Semantic Role Labeling (SRL) system

like ASSERT 6.

ASSERT is an automatic statistical semantic role tagger, that can annotate naturally

occuring text with semantic arguments. When presented with a sentence, it performs a full

syntactic analysis of the sentence, automatically identifies all the verb predicates in that

sentence, extracts features for all constituents in the parse tree relative to the predicate, and

identifies and tags the constituents with the appropriate semantic arguments.

For example, the output of the SRL system for the sentence “The report also said

Duisenberg expects the future relationship between the dollar and the euro, which officially

goes into effect on Jan. 12, to be stable.”:

1) [ARG0 the report] [ARGM-DIS also] [TARGET said] [ARG1 Duisenberg

expects the future relationship between the dollar and the euro which

officially goes into effect on Jan. 12, to be stable]

2) the report also said [ARG0 Duisenberg] [TARGET expects] [ARG1 the

future relationship between the dollar and the euro which officially

goes into effect on Jan. 12, to be stable]

6available at http://cemantix.org/assert

69

The example sentence contains two verbs (predicates) with their arguments. The main pred-

icate is “said”, followed by a subordinate predicate “expects”. The subordinate predicate is

always a part of one of the arguments of the main predicate.

3.3 Chapter Summary

In this chapter, we discussed the tags that we need in our QA systems and the tools that were

used to perform the required tagging. We used these tags to extract useful information from

the documents and also to find the similarity between a document-sentence and a query-

sentence. In the next chapter, we discuss our method for answering simple questions.

70

Chapter 4

Answering Simple Questions

4.1 Introduction

4.1.1 Problem Definition

When a user is served with a ranked list of relevant documents by the standard document

retrieval systems (i.e. search engines), his search task is usually not over. The next step

for him is to look into the documents in search for the precise piece of information he

was looking for. This method is time consuming, and a correct answer could easily be

missed, by either an incorrect query resulting in missing documents or by careless reading.

Question answering tries to remove the onus on the end-user, by providing more direct

access to the relevant information.

Given a collection of documents (such as the World Wide Web or a local collection) the

QA system should be able to retrieve answers to questions posed in natural language. QA

is regarded as requiring more complex natural language processing techniques than other

types of information retrieval such as document retrieval, and it is sometimes regarded as

the next step beyond search engines.

While information retrieval is workable, users now demand better tools. It is because,

they want to cut time and effort involved in formulating effective queries and then they want

their results to be real answers—not just the list of relevant links. They want to spend less

time in searching and more time in thinking about what they found and using it for whatever

purpose they started the search in the first place. They want to perform transactions quickly

and efficiently; in other words, they want QA that is more efficient than Internet search, but

at the same time is flexible, robust and not fussy, just like Google. For example, given the

71

question “Who won the Nobel prize in peace in 2006?” what a user really wants is the

answer “Dr. Muhammad Yunus”, instead of reading through lots of documents that contain

the words “win”, “nobel”,“prize”, “peace” and “2006” etc.

As introduced in Chapter 1, QA research attempts to deal with a wide range of question

types including: fact, list, definition, how, why, hypothetical, semantically-constrained and

cross-lingual questions. Some questions are easier to answer which we call simple ques-

tions. For example, “Who killed Abraham Lincoln?”. This type of questions (i.e. factoid)

require small snippets of text as the answers. Again, the question “What are the titles of

the books written by Paul Krugman?” asks for a list of small snippets (i.e. list questions)

of text.

Modern automatic QA systems normally consist of three separate components: a) a

question processing module, b) a document processing module and c) an answer extraction

module. In question processing, a natural language question is transformed into a query

which can be used to retrieve documents (using an information retrieval module) that may

contain answers to the question. Once the retrieval step is complete, the document process-

ing component identifies specific text passages in retrieved documents where the answer is

most likely to be found. Finally, the answer extraction component returns the actual text

snippet that represents the exact answer to the user’s question.

The Text REtrieval Conference (TREC) has been running a QA track to support the

competitive research on question answering, since 1999 (TREC8). The focus of the QA

track is to build a fully automatic open-domain question answering system, which can an-

swer different types of questions based on very large document sets. Today, the TREC QA

track is the major large-scale evaluation environment for open-domain question answer-

ing systems. With our QA system, we participated in TREC 2007. The TREC question

answering track currently has three types of questions:

72

Factoid questions that require only one answer. Example1: For which newspaper does

Krugman write?

List questions that require a non-redundant list of answers. Example2: What are the titles

of the books written by Krugman?

Other questions that require a non redundant list of facts about the target that has not

already been discovered by a previous answer. For example, the fact that “Krugman

criticizes Bush administration” could be an answer of the “other” question for the

target “Paul Krugman”.

Our QA system for answering simple questions is based on document tagging and ques-

tion classification. Question classification extracts useful information (i.e. answer type)

from the question about how to answer the question. Document tagging extracts useful

information from the documents, which will be used in finding the answer to the question.

The global architecture of our QA system is given in Figure 4.1. We used different available

tools to tag the documents. Our system classifies the questions using manually developed

rules.

4.1.2 Chapter Outline

The remaining sections of this chapter are organized as follows:

• Section 4.2 includes descriptions of question normalization, question categories and

how our system goes about classifying questions into those categories.

• Section 4.3 summarizes the querying technique to information retrieval systems.

1target id 216, TREC 2007
2target id 216, TREC 2007

73

Figure 4.1: Model of our QA system

• Section 4.4 is a discussion of various methods of tagging useful information in the

documents and how we used them in our system.

• Section 4.5 describes the methods in which our system goes about extracting candi-

date answers from the documents.

• Section 4.6 outlines how our system ranks those candidate answers and returns the

answer that is considered the most probable.

• Section 4.7 is the evaluation based on TREC 2007.

• Section 4.8 consists of concluding remarks about our findings and views on the future

of question answering systems.

74

4.2 Question Normalization and Classification

Classifying questions is a way to handle a group of similar questions in a similar way,

rather than handling each question individually. Extracting the answer type from the ques-

tion is crucial in finding the answer because the question contains the only clues available

to find the answer. If information is incorrectly extracted from the question there is al-

most no chance to get a correct answer, but, if information is incorrectly extracted from a

passage containing the correct answer, there is still a chance of finding the correct answer

(Hermjakob, 2001).

Classifying a question based on answer type can narrow down the entities that could

be possible answers. Answer types are, for the most part, named entities. A Named Entity

(NE) is a term for a specific type of entity. Examples of NEs are; people’s names, organi-

zations’ names, dates, names of places and quantities. Knowing which type of information

the question is asking for is a large step toward answering the question. For instance, in the

question, “Who is the CEO of 3M company?” the answer type is NE person. The candidate

answers can be narrowed down to only the person names found in the retrieved passages.

4.2.1 TREC Questions

In order to derive a method to extract answer types from questions, we first need a large set

of questions. The National Institute of Standards in Technology (NIST) has been running

a QA track in TREC since 1999, and has included almost 3,500 questions since then. We

used these questions for the purpose of finding different categories and ways to classify

them as well as ways for our system to go about answering them.

The format of the question answering track changes somewhat from one year to the

next. These changes provided us with a variety of questions. TREC 8 (Voorhees, 1999)

75

and TREC 9 (Voorhees, 2000) had a simple format. Systems were given fact questions

that either had terms or a short statement as answers. These questions are called factoid

questions. Examples of factoid questions are:

How hot is the core of the Earth?

How long would it take to get from Earth to Mars?

In TREC 10 (Voorhees, 2001) and TREC 11 (Voorhees, 2002), NIST added a list task,

with questions that required a fixed number of answers. Factoid questions were also in-

cluded in these years. Examples of list questions with a set number of answers are:

What are 3 residences of Queen Elizabeth II of the United Kingdom?

List 10 countries where motorcycles are produced.

In TREC 12 (Voorhees, 2003), the definition question type was introduced. Definition

questions require as much unique and important information about a topic as possible. The

importance of information was judged by NIST. In TREC 12, it was specified if a question

was a list, definition or factoid question. Examples of definition questions are:

Who is Aaron Copland?

What is a golden parachute?

From TREC 13 (Voorhees, 2004), the format of how the questions were presented was

changed. Instead of giving a basic list of questions, questions were grouped by their targets.

The target of the group of questions is the theme of the questions. The target is given first,

and then the questions that are about the target are listed after it. In the questions, the target

is often referred to by a pronoun. The format of definition questions are also changed, and

they are now referred to as “Other” questions. Other questions require a list of unique facts

about the target that have not already been given as answers to previous questions of the

target, and are just stated as “Other.” For example, a portion of a target description from

TREC 2007 is:

76

<target id = "222" text = "3M">
<qa>

<q id = "222.1" type="FACTOID">
When was the 3M founded?

</q>
</qa>
<qa>

<q id = "222.2" type="FACTOID">
Where is the company based?

</q>
</qa>
<qa>

<q id = "222.7" type="LIST">
What brand name products does 3M manufacture?

</q>
</qa>
<qa>

<q id = "222.8" type="OTHER">
Other

</q>
</qa>

</target>

4.2.2 Question Normalization

Before classifying the questions, our system changes some of the questions into a standard

form that will be easier to classify.

For any question starting with a preposition followed by the word what or which, the

preposition is extracted. Another quick question reformulation is extracting the name of

from questions that start with What was the name of or What is the name of. Some other

major normalizations involve:

77

Pronoun Resolution

The questions addressing a target often refer to the target by pronouns (i.e. he, she, it, they,

his, her, its, their). We replace the personal pronouns (i.e. he, she, it, they) by the target

and the possessive pronouns (i.e. his, her, its, their) by target’s. For example, given the

target “Paul Krugman”, the question: “From which university did he receive his doctor-

ate?” is normalized to “From which university did Paul Krugman receive Paul Krugman’s

doctorate?”.

Apostrophe Resolution

Question with ’s after the question word means is. For example, the question Where’s

Montenegro? is changed to “Where is Montenegro?”

“What” Factoid Normalization

There are different ways to say the same thing. For example, the questions: “Name a film

in which Jude Law acted.”, “Jude Law was in what movie?”, “Jude Law acted in which

film?”, “What is a film starring Jude Law?”, “What film was Jude Law in?” and “What

film has Jude Law appeared in?”, ask for the same information. So, they should all be

classified as What questions, and more specifically, as What-Film questions. Our system

will handle questions that involve the word which as a what question. Questions, like “Jude

Law acted in which film?” and “Jude Law was in what movie?”, that do not start with a

question word are changed to “What film was Jude Law acted in?” and “What movie was

Jude Law in?”, which are not in proper English, but our system will classify this form

better. For this method, our system will first put a What at the beginning of the question,

78

followed by the second half of the question, forming What movie in these examples. Then,

was is added followed by the first half of the question, resulting in What movie was Jude

Law acted in?.

“What” Definition Normalization

There are questions that ask for why someone was famous, and questions requiring a def-

inition of what something was. We considered these questions to be definition questions

for our system, and normalize them to the form “What is X?” or “Who is X?”, where X is

the target. For example, the questions: “What is Francis Scott Key famous for?”, “What is

Colin Powell best known for?”, “Define thalassemia.” and “What does ciao mean?” are

changed to “Who is Francis Scott Key?”, “Who is Colin Powell?”, “What is thalessemia?”

and “What is ciao?” respectively.

“What” List Normalization

Some list questions include the number of entities to be included in the list of answers

which is helpful in returning answers for these questions, we extract the number, and re-

format these questions to a general format. For each of these questions, the number is

passed on to be used when the answer list is returned. Examples of normalization of these

questions are:

• What are the titles of books written by Krugman? is normalized to What titles of

books written by Krugman?

• Name 10 auto immune diseases. is normalized to What auto immune diseases?

79

• What are the 3 currencies Brazil has used since 1980? is normalized to What curren-

cies Brazil has used since 1980?

4.2.3 Question Classification

Our system classifies questions into one of the categories: who, when, why, how, where,

and what. Any question that does not include one of the first five stems (Whom is consid-

ered as Who) is considered as what question. Once the questions are categorized into one

of the categories, a finer classification is done to extract the answer type of the question.

Classifying questions aids our system in finding the answer type of the question, as well

as helping to create the query in which the passages will be retrieved from our informa-

tion retrieval system. Our system classifies questions using rules that we derived through

observation from a test bed of questions. Supervised machine learning can also be used

to classify questions, using methods similar to those outlined by (Hermjakob, 2001) and

(Li and Roth, 2002). There are some other methods of finding answer types. Pinchak and

Lin (2006) proposes a probabilistic model to find the answer types of “what”, “where”

and “who” questions. Pinchak and Bergsma (2007) addresses a method based on adjective

expansion and web co-occurrence count to find the answer types for the “how-adjective”

questions.

When Questions

When questions (Table 4.1) always ask for a date, but there are a few that are only asking

for a day, and not a full year. The ones asking for a day will be asking for a special day that

might appear on the same day each year, like a birthday, or a day that has a rule for when it

is, such as labour day.

80

Question Type Answer Type Pattern Example
When-Day DATE without YEAR “When is” When is Father’s day?
When-Year DATE with YEAR “All the rest” When was Nimitz born?

Table 4.1: When question categories

Who Questions

There are three types of who questions outlined in Table 4.2. We pass the target directly

to the answer extractor for the who definition questions. The answer type for who list

is person, which is passed to the answer extractor along with the number of persons (if

present in the question). For who factoid the answer extractor is given the information that

the answer type is either person or organization.

Question Type Answer Type Pattern Example
Who-Definition FACTS “Who [is or was] [NAME] Who is Peter Weir?

Who-List PERSONS “Who [are or
were or have]

Who are pro-
fessional female
boxers?

Who-Factoid PERSON or ORG. All the rest Who invented paper?

Table 4.2: Who question categories

Where Questions

Most where questions require a type of location. There are other where questions that ask

for a certain college or university someone went to. They are outlined in Table 4.3. For

questions asking for schools, the answer extractor extracts all the schools. Other where

questions ask for some kind of location more specifically the NEs: CITY, PROVINCE,

COUNTRY, GEOGRAPHICAL LOCATION. For these questions, the answer extractor

81

will extract these entities.

Question Type Answer Type Pattern Example

Where-School UNIVERSITY
college or university
or school or degree

Where did Bill Gates
go to college?

Where-Location LOCATION all the rest Where is Las Vegas?

Table 4.3: Where question categories

Why Questions

These questions require reasons, which are not entities that our system currently recognizes.

How Questions

Most how questions are easy to classify and are of the form, “How X”, where X (adjec-

tive) gives clues about what kind of entity the question is asking for. Table 4.4 gives the

examples of “how-adjective” questions. The answer type for most of the how questions

is straightforward. The exception is the how many questions (not shown in table) because

they require a count of a certain entity. These questions start with the phrase How many

and after it comes the entity needs to be counted. Examples of “How many” questions are:

How many rooms does the Las Vegas MGM Grand Hotel have?, How many times a day

do observant Muslims pray?, How many layers of skin do we have? These questions have

a pattern of where the answer is found. The entities to be counted from these questions are

rooms, times a day, and layers. For these questions this entity needs to be found and kept

for the answer extraction module.

To extract the entity, first we extract how many from the start of each question, then tag

82

the question with a shallow parse. The reason we take off the how many first is because

most taggers and parsers are trained on documents without question words and because of

that, they do not do a very good job of tagging questions (Hermjakob, 2001). The last noun

of the first noun phrase of each tagged question will be the entity that needs to be counted.

In the above example the entities will be: rooms, times and layers respectively.

What Questions

Some what questions are classified by pattern matching and, for the rest of questions, the

question focus is used to classify the questions.

What questions classified by pattern matching:

The what questions that are classified by patterns are in Table 4.5. “What definition” ques-

tions are handled similarly to the “who definition” questions, where the target is given to

the answer extractor. “What acro” questions are looking for either the acronym for a cer-

tain entity, or what an acronym stands for. For the “what verb” questions, the answer type

is ambiguous. For example, there are many types of things that can be invented, discovered,

and eaten. Our system does not answer these questions. These questions can be answered

using patterns in the syntactic parse of the documents. Once we add a syntactic parse of

the documents to our system, We will attempt to handle these questions.

What questions classified by focus:

The what questions that are not classified by pattern matching can be classified by discov-

ering the focus of the question. In the question, “What country is the leading exporter of

goats?”, the question focus is country. The focus of the question is a clue about what type

of entity the answer will be. The importance of question focus when classifying questions

83

Question Type Answer Type Pattern Example
How-Large AREA or VOL-

UME
How [big or
large]

How big is Mars?

How-Late TIME or TIME
PERIOD

How [late] How late is Disneyland open?

How-Accurate PERCENTAGE How [accu-
rate]

How accurate is HIV tests?

How-Distance DISTANCE How [far or
tall or wide or
short or high
or close or
deep]

How tall is Tom Cruise?

How-Often TIME PERIOD How [often or
frequent]

How often is someone murdered in USA?

How-Long DISTANCE or
TIME PERIOD

How long How long is Columbia River?

How-Much MONEY or VOL-
UME

How much How much did the first Barbie cost?

How-Temp TEMPERATURE How [warm or
cold or hot]

How hot is the sun?

How-Fast SPEED or TIME
PERIOD

How fast How fast is sound?

How-Old AGE How old How old is the universe?
How-Death METHOD OF

DEATH
How did
[NAME] die?

How did Anne Frank die?

How-Method Method No pattern How did Hawaii become a state?

Table 4.4: How question categories

Question Type Answer Type Pattern Example
What-Definition FACTS What [is or are] What is caffeine?
What-Acro INSTITUTE

or ACRO or
PHRASE

“ stand(s) for” or “acronym
for” or “abbreviation for” or
the ((acronym) or (abbrevia-
tion))

What does CNN stand for?

What-Verb THING question ends in a verb What do manatees eat?

Table 4.5: What simple question categories

84

is discussed in (Ferret et al., 2001). Once the questions are all tagged with chunked parts of

speech, patterns are used to extract the question focus. A complete list of focus extracting

patterns, where X represents the focus of the question, is:

• [NP What (type or kind or breed)] [PP of] [NP X]

• [NP What X]

• [NP What] [NP X]

• (’s or ’) X]

• [NP What] [VP (is or was)] [NP X]

• [NP Name X]

• [NP Name] [NP X]

These focuses are then matched to a named entity, and that will be considered the

answer type of the question. For each of these questions, the answer type is passed to the

answer extractor.

4.3 Query Creation and Passage Retrieval

4.3.1 Query for Factoid and List Questions

We are using Java based Lucene 3 as our information retrieval system. (Moldovan et al.,

2004) notes that because of the Lucene system’s ability to have a greater understanding

of natural language, the passages retrieved can be more relevant to the query. We index

3http://jkarta.apache.org/lucene/

85

all paragraphs in the document collection in case folded and stemmed fashion. Therefore,

“bank” will be indexed as the same as the “banking”. The query in Lucene can be thought

as “vector-space on top of boolean”, that means it will satisfy the boolean true as well as it

will rank documents. We query the documents using three methods:

• Expanded boolean query

• Important word boolean query

• Expanded vector-space query

Expanded Boolean Query

We take all the nouns, verbs and adjectives from the question that are not stop words, and

find synonyms for each of them, using WordNet. We use these synonyms to form a query,

where each word in the synonym set for a word is separated by OR, and each synonym set is

separated by AND. Our system does not include the words contained in the question focus

when creating the expanded query as, (Moldovan et al., 1999) shows that the question focus

is often not found in a document with the answer. When the focus is a state, city, country,

nationality or date, the answer will appear as that specific entity, and those focus words

will not necessarily appear in the documents.

For example, if a question has two words that are extracted, say Word1 and Word2, and

the synonym set for Word1 is S11 and S12 and the synonym set for Word2 is S21, S22 and

S23, the boolean query will be: “(S11 OR S12) AND (S21 OR S22 OR S23)”. This query

ensures that all documents retrieved should be somehow related to the question. These

queries are often too restrictive and retrieve no documents. We did not perform any word

sense disambiguation for the query-words as the context for these words is not large enough

86

to apply our WSD system. We took the first sense synonym set from the WordNet for the

query-words.

Important Word Boolean Query

If the first method retrieves no documents, then our system forms a boolean query with

the proper nouns and dates from the question. For example, for the question: “What is the

population of Canada in 2006?”, the important word boolean query will be: Canada OR

2006. This will usually retrieve the document with the answer to the question, but will also

retrieve many documents unrelated to the question.

Expanded Vector-Space Query

If the previous two methods retrieve no documents, then a vector-space search is performed

taking all the important words in the query along with their synonyms. Vector-space query

is described in Section 2.4.2.

4.3.2 Query for Definition Questions

For definition questions we do a query just on the subject (focus) to be defined.

4.4 Document Tagging

The document tagging module of our system tags useful information from the passages

retrieved by Lucene. The detailed description of the tags and the tools utilized is given in

Chapter 3. So, in this section we just list them. The tags that we used are:

87

1. Tokenization and sentence splitting using OAK systems (Section 3.2.1)

2. Co-reference resolution using Lingpipe (Section 3.2.2)

3. Part of speech tagging using OAK systems (Section 3.2.4)

4. Stemming using OAK systems (Section 3.2.3)

5. Chunked part of speech tagging using OAK systems (Section 3.2.5)

6. Name entity tagging using OAK systems and WordNet (Section 3.2.6)

7. Word sense tagging using our developed WSD system (Section 3.2.7)

4.5 Answer Extraction

Our method of extracting answers is different for the list and factoid questions (which

require extracting named entities) from the definition questions (that are extracted using

patterns).

4.5.1 List and Factoid Questions

Since the answer types and question types are known from the question classifier, and the

documents are tagged with both shallow parse and named entities, extracting the informa-

tion from the documents will use patterns to extract the named entities associated with the

answer type. For some questions, the answer is not tagged and will be extracted with just

patterns from the documents.

The answers for certain types of questions can also be extracted with patterns rather than

our approach of extracting answers using the answer type. These patterns can be learned by

88

using machine learning techniques (Ravichandran and Hovy, 2002). Many groups (Roussi-

nov, Ding, and Robles-Flores, 2004), (Tanev, Kouylekov, and Magnini, 2004), (Echihabi

et al., 2003), (Nyberg et al., 2003), (Wu et al., 2003) and (Prager et al., 2003) have used a

similar technique in their systems to discover patterns for finding answers.

“How Many” Questions

How many questions are answered using patterns and not named entities since these ques-

tions are looking for a count of a certain entity. We discovered that answers will appear

frequently in the tagged documents in the pattern “[NP NUMBER ENTITY]”. For the ques-

tion, “How many hexagons are on a soccer ball?”, the entity to be counted is hexagons, so

the pattern it is trying to match is [NP NUMBER hexagons]. This pattern is found in the

following passage:

[PP After/IN] [NP all/DT] ,/, [NP a/DT buckyball/NN] [NP ’s/POS struc-

ture/NN] [PP of/IN] [NP 12/CD pentagons/NNS] and/CC [NP 20/CD hexagons/NNS

] [VP is/VBZ] [ADVP just/RB] [PP like/IN] [NP that/DT] [PP of/IN] [NP

a/DT classic/JJ soccer/NN ball/NN] ./.

This module will extract 20 hexagons and send that as a possible answer, along with

the passage it is found in, to the answer ranker.

WordNet is also used to get synonyms for the entity that is being counted. For example,

given the question, “How many floors are in the Empire State building?” the synset (floor,

level, storey and story) of the word floor can be used to extract answers from the passage:

“The Empire State building climbed to an unthinkable height of 102 stories in that city four

years later.”

89

Names of People

The OAK system tags people in four ways: 1. person, 2. last name, 3. female firstname and

4. male firstname. This presents a problem because the OAK tagger tags everything at once

from a list of names. Some last names are missing from the list of tags, and other names

are also names of cities, such as the name Paris. The answer extracting module needs to

extract the full name of the person when it is available. Some examples of problems and

their patterns for solutions are:

[NP 〈CITY DETROIT/NNP 〉] :/: [NP 〈MALE FIRSTNAME Juan/NNP 〉

Gonzalez/NNP] [VP was/VBD] [ADVP back/RB] [PP in/IN] [NP the/DT

starting/VBG lineup/NN] [PP after/IN] [VP missing/VBG] [NP three/CD

games/NNS] [PP because/IN of/IN] [NP a/DT sore/JJ foot/NN] but/CC

[VP may/MD be/VB sidelined/VBN] [PP after/IN] [VP aggravating/VBG

] [NP it/PRP] [SBAR while/IN] [VP running/VBG] [NP the/DT bases/NNS

] [ADVP when/WRB] [NP he/PRP] [VP hit/VBD] [NP a/DT triple/JJ] ./.

In this example, the name Juan is followed by the untagged last name Gonzalez. This

can be fixed by the pattern “〈[A-Z]NAME [A-Za-z]NNP 〉 [A-Za-z]/NNP”. Notice that it

will also get last name, as well as the other two types.

Some people have last names that are usually considered to be first names:

[NP P.S./NNP 〈MALE FIRSTNAME Kevin/NNP 〉 〈MALE FIRSTNAME

Ryan/NNP 〉] [NP forwards/RB a/DT 〈CITY Sacramento/NNP Bee/NNP 〉

] [VP clipping/VBG describing/VBG] [NP a/DT paper/NN sign/NN] [PP

on/IN] [NP the/DT men/NNS] [NP ’s/POS room/NN wall/NN] [PP in/IN]

[NP the/DT state/NN] [NP Capitol/NNP] [NP ’s/POS 〈FACILITY Legisla-

tive/NNP Office/NNP 〉 Building/NNP] :/: “/“ [VP Please/VB wash/VB] [NP

90

your/PRP$ hands/NNS] [PP before/IN] [VP touching/VBG] [NP legisla-

tion/NN] ./. ”/”

This will present the pattern of “〈NAME TYPE NAME/NNP 〉 〈NAME TYPE NAME/NNP

〉”.

Dates

There are two types of date questions, one looking for a certain day that happens every

year, and ones that are looking for a particular day. Some dates that are tagged by OAK do

not fit into either of these categories and are considered relative dates. These include today,

this year, this month, next week and midnight. These dates are not helpful in answering

questions, and are eliminated right away. Also, answers to questions that are looking for a

particular date should have a four digit year in them.

Quantities

OAK tags each quantity it sees as a quantity, but does not tag quantities together that are

of the same measurement if the quantities are of different units. For instance, it will tag

the measurement 4 foot 2 inches as 〈 PHYSICAL EXTENT 4 foot 〉 〈 PHYSICAL EXTENT

2 inches 〉. We can extract the full quantity if we use a pattern that extracts more than one

quantity when two quantities of the same measurement are together.

91

Other Types of Questions

For the rest of the questions, possible answers are extracted by extracting the named entities

associated with the answer type of the question. This is done by pattern matching with “〈NE

X 〉” where X is a possible answer if NE is a named entity tag corresponding the answer

type of the question. These entities are listed in Appendix A.

4.5.2 Definition Questions

In fact finding questions, there is always a topic that is being sought. If the question is

“Who is X?” (X being a name of a person), there will be different methods for finding facts

for it, compared to a non-person entity that will be phrased as “What is a Y?” We have

chosen to implement a method of pattern finding to answer fact based questions.

Pattern Finding

The fact finding patterns were determined by manually examining definition questions from

the TREC question test bed, which includes examples of facts for each question. We used

the following steps to determine the patterns:

Step 1: Manually Finding Facts

The fact sentences are found by forming a query from the topic, and retrieving relevant

passages from our information retrieval system. NIST provides answers to past definition

and other questions that can be used to form a query to try to get a specific fact.

For the question “Who is Aaron Copland?”

The following sentence contains the fact that Aaron Copland is a composer.

His circle of friends included Picasso and Piet Mondrian, composer Aaron Copland,

92

actors Charlie Chaplin and Paulette Goddard, and titans of U.S. industry such as the Fords

and Rockefellers.

Step 2: Chunking Fact Sentences

The fact sentences are then chunked and patterns are observed. For example:

[NP His/PRP$ circle/NN] [PP of/IN] [NP friends/NNS] [VP included/VBD] [NP

Picasso/NNP and/CC Piet/NNP Mondrian/NNP] ,/, [NP composer/NN Aaron/NNP Cop-

land/NNP] ,/, [NP actors/NNS Charlie/NNP Chaplin/NNP and/CC Paulette/NNP God-

dard/NNP] ,/, and/CC [NP titans/NNS] [PP of/IN] [NP U.S./NNP industry/NN such/JJ]

[PP as/IN] [NP the/DT Fords/NNP and/CC Rockefellers/NNP] ./.

Step 3: Pattern Creation

Patterns are formulated from manual observations of the tagged sentences. The pas-

sage shows that information contained before the target, which is in the noun phrase, is a

pattern to find out a fact about this target. Our current definition patterns include, with X

representing facts and TARGET representing the subject of the fact:

• [NP X TARGET]

• [TARGET] , X (, or . or ;)

• [TARGET] (is or are) X (. or ;)

• X called [TARGET]

• [BEGINNING OF SENTENCE] [TARGET], X, is X

• [TARGET] and other [NP X]

93

4.6 Answer Ranking

This module gives a score to each possible answer, and returns the one with the highest

score, or the answers with the highest scores if a list of answers is required. It is possible

that the corpus will not contain the answer to the question. Because of this, answers should

only be given if the system is sure that the answer is correct. If a list of answers is required

by the question, this module will only pass on answers that are over a certain rank.

4.6.1 Answer Patterns

As stated in the previous section, many systems use lexical patterns to extract answers from

the documents, in contrast to our approach of extracting named entities. Our system used

the following patterns to rank answers.

Date of Birth and Date of Death

The date of birth and date of death of a person are sometimes put in brackets, after a

person’s name, e.g. “PERSON (DATE - DATE)”. For example, the sentence “Elvis Presley

(1935-1977), James Dean (1931-1955) are the new men.” contains such patterns.

“What” Location Questions

When a location is the answer type of the question, and the question contains a preposition

like in, on, from or near, those words will frequently appear before the location entity that

is the answer. For questions that contain on and from, in can also appear before the answer.

Examples of these types of questions are:

94

• What continent is Togo on?

• What continent is India on?

An example of a sentence with this pattern, for the question “What continent is Togo

on?” is:

The president, who returned home early on Tuesday after a three-day visit to

Mali and Togo in West Africa, agreed to undergo the most intensive medical

check-up to date as a bid by the government and the African National Congress

to refute damaging rumours that his health was deteriorating.

“When” Questions Ending in a Verb

Some questions end with a verb that represents the particular action that is being asked

about. Examples of these questions are:

• When was Microsoft established?

• When was the first Wal-Mart store opened?

• When was Hiroshima bombed?

For these questions, an answer is usually found in the following pattern, “VERB in

〈DATE〉”, where VERB represents a verb with a stem that is a synonym of the last verb

from the question. An example of a sentence with this type of pattern for the question,

“When was the first Wal-Mart store opened?”, is:

Supercenters, the first of which opened in 1988, had already transformed the

$420 billion-a-year grocery business.

95

Who Action

Who questions often contain the action of being. For example: who was Khmer Rouge’s

first leader? There are some questions that contain a physical action that are not being:

who wrote “Dubliners”? These actions are represented in the passages that the answers

are in, but might take different forms. For these types of questions, our system takes the

pattern of the whole action. For example, the question “who wrote“Dubliners”?”, has the

action “wrote “Dubliners””, and is the pattern our system uses to rank.

Word Association

Lexical chains (Morris and Hirst, 1991) are created when we associate words together that

have a similar theme. (Moldovan and Novischi, 2002) discussed using WordNet to help

with the associations between words. Besides synonym, hypernym, hyponym and gloss

each word in WordNet has derivationally related forms as well. The derived form for a

noun is a verb that is associated with the noun. With these tools there can be a path formed

from the question words to the words of the passage of a possible answer.

In order to find this association, we extracted the important words (i.e. nouns, verbs, ad-

jectives and adverbs) from the passage with candidate answer as well as from the question.

Then, we perform our WSD algorithm on these words (where the passage words preceeds

the question words) and form lexical chains. Now, we check for each of the question words

whether we have got any chain or not. A chain indicates there is association between the

question word and the passage words. In this way we count the number of association.

For example,

Question: For which newspaper does Krugman write?

Passage: Paul Krugman is also an author and a columnist for the New York Times.

96

the passage words author and columnist are associated with the question word write by

their semantic relation (gloss of author and columnist in this case). So, the number of

association is two: one is for Krugman (repetition) and one is for write (gloss).

WordNet Glossary

For most words, WordNet has a glossary entry which contains a definition of the word.

Our system extracts the glossary entry for the proper nouns in the question. For definition

questions, the glossary entry for the target is used. For factoid questions, our system tags the

WordNet glossary entry with named entities, and if it contains the answer type, that answer

is given a higher rank. For definition questions, the WordNet glossary entry is passed to the

redundancy checker to rank facts. For the question, “where is Belize located?”, Belize is a

proper noun and its WordNet gloss is:

a country on the northeastern coast of Central America on the Caribbean; for-

merly under British control.

The gloss tagged with POS and NE is:

a/DT country/NN on/IN the/DT northeastern/JJ coast/NN of/IN 〈 GEOLOGI-

CAL REGION Central/NNP America/NNP 〉 on/IN the/DT 〈GEOLOGICAL REGION

Caribbean/NNP 〉 ;/: formerly/RB under/IN 〈NATIONALITY British/JJ 〉 con-

trol/NN.

For where questions, GEOLOGICAL REGION is an accepted answer type, and both

Central America and Caribbean are acceptable answers for this question.

97

Target distance

One other method that is commonly used to rank answers is the distance between a possible

answer and keywords from the question (Kwok, Etzioni, and Weld, 2001) (Chen et al.,

2004). Our system calculates distance as the count of words and punctuation between the

important words from the question and the possible answer. For example, the question

“What does Kurt Vonnegut do for a living?”, has a target of Kurt Vonnegut. The following

passage contains the answer to this question:

Trust a crowd, says author Kurt Vonnegut, to look at the wrong end of a miracle

every time.

The answer author is considered, by our system, to be one word away from the target

of the question.

Redundancy Checking

Answers that appear frequently should be given a higher rank if the retrieved documents

are related to the question.

If the question requires more than one answer, each answer returned by the system

should be unique. When this module returns an answer, it performs a check to see if

the answer has already been included in the final answer list. This check is performed

by checking whether the answer contains nouns that have already appeared in a previous

answer.

For definition questions, an answer can contain more than one fact. For example for

the target Jane Goodall, the phrase, the British primatologist, gets extracted. This contains

the fact that she is British, and the fact that she is a primatologist. If this is the case, then

98

the phrase that contains two or more facts is added to the list of answers, and if either

of the contained facts were found in the list, their score will be added to the score of the

combination fact.

Our system counts each redundancy as an occurrence, which will be used in ranking

answers.

4.6.2 Answer Ranking Formula

The ranking formula is developed by reviewing which weights for the methods above

yielded the highest accuracy on the corpus of questions and their answers.

Formula for Factoid and List Questions

For factoid and list questions our answer ranking formula is:

score of an occurance of a candidate answer = (6×w1)+(w2)+(3×w3)+ 1
w4

where,

w1 denotes whether the answer is found in a pattern associated with the question type. The

value will be 1 if it was found in such a pattern, and 0 if it was not.

w2 denotes how many words from the question are represented in the passage with the

answer, plus 3 more points for each word that is represented by a disambiguated

word.

w3 denotes if the answer appears in the WordNet glossary for important words from the

question. (value of 0 if it does not and 1 if it does)

w4 denotes the distance between the important words from the question and the answer.

99

Each answer’s final rank is the sum of the ranks of the occurrences of that answer. This

method of giving a higher score to answers that appear more than once is discussed in

(Clarke, Cormack, and Lynam, 2001).

(Dubien, 2005) used this formula to rank the possible answers. This formula was de-

rived using a test bed of 300 questions from TREC 1999 to TREC 2004. I created a test

bed of 100 (50 factoid and 50 list) questions from TREC 2005 and TREC 2006 and test the

performance of this formula. These questions from were chosen because our system ex-

tracts the answers to them. The average chance of our system, at random, picking a correct

answer to a question in this test bed is about 10%. This means approximately one in ten

extracted answers is correct. With this ranking formula, our system is able to answer this

test bed correctly 64% of the time. This shows that this method of ranking is improving the

chance of picking a correct answer.

Formula for Definition Questions

Of all our methods of ranking answers, only answer redundancy is applicable to definition

questions. We rank answers to definition questions, giving them one point for repetition

and four points if found in the WordNet gloss.

4.6.3 Answer Thresholds

When an answer is given for a question, the confidence that the answer is correct should

be high. Even if the question answering system could return more than one candidate

answer to the user, only the ones that have a chance of being correct should be shown (Xu,

Licuanan, and Weischedel, 2003). For questions where a list of answers is required, all the

answers should be correct, so the threshold should be a bit greater than that of an answer

100

candidate.

Our system does not currently use an answer checking threshold because our method for

ranking answers is different for different types of questions. The threshold needs to be set as

a relative value or a constant value, and we have not yet determined an appropriate relative

score for which an answer is considered to be correct or incorrect. This is a direction that

requires further consideration.

4.7 Evaluation

4.7.1 Factoid Questions

The system response to a factoid question was either exactly one [doc-id, answer-string]

pair or the literal string NIL. Since there was no guarantee that a factoid question had an

answer in the document collection, NIL was returned by the system when it believed there

was no answer. Otherwise, answer-string was a string containing precisely an answer to the

question, and doc-id was the id of a document in the collection that supported answer-string

as an answer.

Each response was independently judged by two human assessors. When the two as-

sessors disagreed in their judgments, a third adjudicator made the final determination. Each

response was assigned exactly one of the following five judgments:

Incorrect the answer string does not contain a correct answer or the answer is not respon-

sive;

Not supported the answer string contains a correct answer but the document returned does

not support that answer;

Inexact the answer string contains a correct answer and the document supports that an-

101

swer, but the string contains more than just the answer or is missing bits of the an-

swer;

Locally correct the answer string consists of exactly a correct answer that is supported by

the document returned, but the document collection contains a contradictory answer

that the assessor believes is better;

Globally correct the answer string consists of exactly the correct answer, that answer is

supported by the document returned, and the document collection does not contain a

contradictory answer that the assessor believes is better.

For example, Krugman taught in Yale university and now he is teaching in Princeton

university. So, the globally correct answer to the question, “ At which university does

Krugman teach?” will be Princeton and locally correct answer is Yale university.

Out of 360 FACTOID questions in TREC 2007, 16 had no known correct response in

the document collection, hence “NIL” is the correct answer for these questions. Table 4.6

shows our scores for FACTOID questions.

Total Globally
Correct

Locally
Correct

Incorrect Unsupported Inexact Accuracy “NIL”
Preci-
sion

“NIL”
Recall

360 93 5 231 12 19 0.258 8/153 =
.052

8/16 =
.5

Table 4.6: UofL score for factoid questions

It can be seen that, our system (Chali and Joty, 2007b) could give 93 globally correct

answers and 5 locally correct answers. The accuracy is computed as the ratio of the number

of globally correct to the number of factoid questions. Table 4.7 shows the most accurate

run for the factoid component for each of the top 10 groups out of 51 groups (Dang, Kelly,

and Lin, 2007). Also reported are the recall and precision of recognizing when no answer

102

exists in the document collection. NIL precision is the ratio of the number of times NIL

was returned and correct to the number of times it was returned; NIL recall is the ratio of

the number of times NIL was returned and correct to the number of times it was correct

in the entire test set (16). If NIL was never returned, NIL precision is undefined and NIL

recall is zero.

Our accuracy is almost 26% which is fourth in the ranking.

Run Tag Submitter Accuracy “NIL” Pre-
cision

“NIL”
Recall

LymbaPA07 Lymba Corporation 0.706 0.000 0.000
LCCFerret Language Computer Corpora-

tion
0.494 0.000 0.000

lsv2007c Saarland University 0.289 - 0.000
UofL University of Lethbridge 0.258 0.052 0.500
QASCU1 Concordia University 0.256 0.000 0.000
FDUQAT16A Fudan University 0.236 0.053 0.312
pronto07run3 Universita di Roma “La

Sapienza”
0.222 0.000 0.000

ILQUA1 State University of New York
(SUNY) at Albany

0.222 0.000 0.000

Ephyra3 Carnegie Mellon University
and Universitaet Karlsruhe

0.208 0.048 0.062

QUANTA Tsinghua University (State
Key Lab)

0.206 0.091 0.062

Table 4.7: Scores for the factoid component

4.7.2 List Questions

A system’s response to a list question consists of an unordered set of [doc-id, answer-

string] pairs such that each answer-string represents a correct answer instance. Each in-

stance was evaluated in the same manner as the factoid questions, i.e., assigned one of the

following judgments: incorrect, not supported, not exact, locally correct, and globally cor-

103

rect. Instances that were judged to be globally correct were then manually grouped into

equivalence classes, where each equivalence class was considered a distinct answer. Thus,

systems were not rewarded (and were in fact penalized) for returning equivalent answers

multiple times.

The final set of known globally correct answers for a list question was compiled from

the union of distinct globally correct answers across all runs plus additional distinct answers

the assessor found during question development. For the 85 list questions in the test set,

the median number of known distinct globally correct answers per question was 7, with a

minimum of 2 and a maximum of 64. A systems response to a list question was scored

using instance precision (IP) and instance recall (IR) based on the complete list of known

distinct globally correct answers. Let S be the number of such answers, D be the number

of distinct globally correct answers returned by the system, and N be the total number of

instances returned by the system. Then IP = D/N and IR = D/S. Precision and recall were

then combined to produce an F-score with equal weight given to recall and precision:

F =
2× IP× IR

IP+ IR

The score for the list component of a run was the average F-score over the 85 questions.

Our system achieved the “average F-measure” score of 0.132 with recall and precision

weighted equally (α = 0.5) which is ranked sixth. Table 4.8 gives the average F-score of

the run with the best list component score for each of the top 10 groups.

104

Run Tag Submitter F-score
LymbaPA07 Lymba Corporation 0.479
LCCFerret Language Computer Corporation 0.324
ILQUA1 State University of New York (SUNY) at Albany 0.147
QASCU1 Concordia University 0.145
Ephyra3 Carnegie Mellon University and Universitaet Karlsruhe 0.144
UofL University of Lethbridge 0.132
FDUQAT16B Fudan University 0.131
IITDIBM2007T Indian Institute of Technology, Delhi 0.125
FDUQAT16A Fudan University 0.107
pronto07run3 Universita di Roma “La Sapienza” 0.103

Table 4.8: Scores for the list component

4.7.3 Other Question

The method for evaluating “Other” questions is outlined in (Dang, Kelly, and Lin, 2007).

Our system achieved the “average pyramid F-score” (with β = 3) of 0.030 over 70 other

questions which is not a good score.

4.7.4 Per-series Combined Scores

The three component scores measure a system’s ability to process each type of question,

but may not reflect the system’s overall usefulness to a user. Since each series is a mixture

of different question types, we can compute a weighted average of the scores of the three

question types on a per-series basis, and take the average of the per-series weighted scores

as the final score for the run (Voorhees, 2005). In 2007, the weighted score for an individual

series was computed as:

WeightedScore = 1
3 ×Factoid + 1

3 ×List + 1
3 ×Other

Table 4.9 shows the results of the multiple comparison for the 10 groups with the highest

final per-series score (Dang, Kelly, and Lin, 2007).

105

Run Tag Submitter score
LymbaPA07 Lymba Corporation 0.4839
LCCFerret Language Computer Corporation 0.3575
FDUQAT16B Fudan University 0.2310
lsv2007c Saarland University 0.2296
QASCU1 Concordia University 0.2216
ILQUA1 State University of New York (SUNY) at Albany 0.2023
Ephyra3 Carnegie Mellon University and Universitaet Karlsruhe 0.1804
IITDIBM2007T Indian Institute of Technology, Delhi 0.1735
QUANTA Tsinghua University (State Key Lab) 0.1592
csail3 Massachusetts Institute of Technology (MIT) 0.1415

Table 4.9: Multiple comparison based on ANOVA of per-series score.

Our system achieved average per-series score of 0.1410 which is almost the same as the

10-th system in TREC 2007.

4.8 Discussion and Concluding Remarks

In 2007, we have improved (compared to (Chali and Dubien, 2004)) our ranks in all three

types of questions though our score for “Other” questions is very poor. This overall im-

provement was primarily because of our expanded classification and the addition of word

dependencies to answer ranking. We will have to concentrate on answering “Other” ques-

tions. Our system extracted the answers from the top 100 (50 AQUAINT-2 + 50 BLOG06)

relevant documents provided by TREC instead of using the whole collection. Our system

did not find answers (i.e. NIL) for 153 factoid questions. According to the TREC 2007

evaluation there were 16 questions with “NIL” answers. Our system could find 8 correct

“NIL” answers. This clearly indicates that if we would use the whole document collection,

our system could have found more answers (i.e. less number of “NIL” answers) hence, we

could have scored better in TREC 2007.

106

Chapter 5

Answering Complex Questions

5.1 Introduction

5.1.1 Problem Definition

As introduced in chapter 1, QA systems attempt to deal with both simple and complex

questions. In the previous chapter, we described our method for answering simple ques-

tions that are generally of type factoid and list. After having made substantial headway in

factoid and list questions (such as “Who won the nobel prize in peace in 2006?” or “Name

the books written by Dr. Muhammad Yunus”), researchers have turned their attention to

more complex information needs that cannot be answered by simply extracting named en-

tities (persons, organization, locations, dates, etc.) from documents. For example, the

questions “Describe steps taken and worldwide reaction prior to the introduction of the

Euro on January 1, 1999. Include predictions and expectations reported in the press.”

require inferencing and synthesizing information from multiple documents. This informa-

tion synthesis in NLP can be seen as a kind of topic-oriented, informative multi-document

summarization, where the goal is to produce a single text as a compressed version of a set

of documents with a minimum loss of relevant information. Unlike indicative summaries

(which help to determine whether a document is relevant to a particular topic), informa-

tive summaries must be helpful to answer, for instance, factual questions about the topic

(Amigo et al., 2004).

We believe that complex questions cannot be answered using the same techniques

that have so successfully been applied to the answering of “factoid” questions. Unlike

informationally-simple factoid questions, complex questions often seek multiple different

107

types of information simultaneously and do not presuppose that one single answer could

meet all of its information needs. For example, with a factoid question like “How accurate

are HIV tests?”, it can be safely assumed that the submitter of the question is looking for

a number or a range of numbers. However, with complex questions like “What are the

causes of AIDS?”, the wider focus of this question suggests that the submitter may not

have a single or well-defined information need and therefore may be amenable to receiving

additional supporting information that is relevant to some (as yet) undefined informational

goal.

Over the past three years, complex questions have been the focus of much attention in

both the automatic question-answering and Multi Document Summarization (MDS) com-

munities. While most current complex QA evaluations (including the 2004 AQUAINT

Relationship QA Pilot, the 2005 TREC Relationship QA Task, the TREC definition (and

other) questions and the 2006 GALE Distillation Effort) require systems to return unstruc-

tured lists of candidate answers in response to a complex question, recent MDS evaluations

(including the 2005, 2006 and 2007 Document Understanding Conferences (DUC)) have

tasked systems with returning paragraph-length answers to complex questions that are re-

sponsive, relevant, and coherent.

The DUC conference series is run by the National Institute of Standards and Technol-

ogy (NIST) to further progress in summarization and enable researchers to participate in

large-scale experiments. We used the main task of DUC 2007 for evaluation. The task was:

“Given a complex question (topic description) and a collection of relevant documents,

the task is to synthesize a fluent, well-organized 250-word summary of the documents that

answers the question(s) in the topic”.

For example, given the topic description (from DUC 2007):

<topic>

108

<num>D0703A</num>

<title> steps toward introduction of the Euro </title>

<narr>

Describe steps taken and worldwide reaction prior to

the introduction of the Euro on January 1, 1999.Include

predictions and expectations reported in the press.

</narr>

</topic>

and a collection of relevant documents, the task of the summarizer is to build a summary

that answers the question(s) in the topic description.

5.1.2 Our Approaches

We experimented with both empirical approach and machine learning approach. Our sys-

tem (Chali and Joty, 2007a) that participated in DUC 2007 was based on the empirical

approach. We then experimented with several machine learning techniques for this partic-

ular problem and evaluated their results. Our systems involve the following major steps:

• Document processing

• Query processing

• Feature extraction

• Sentence ranking

• Redundancy removing and

• Summary generating

109

Our systems (i.e. empirical approach and machine learning approach) differ mainly in

feature extraction and sentence ranking phases. Our empirical approach used six features

in order to rank a sentence while our machine learning techniques used eighteen features

to rank a sentence.

5.1.3 Chapter Outline

The remaining sections of this chapter are organized as follows:

• Section 5.2 includes brief information about document processing for our summa-

rizer systems.

• Section 5.3 summarizes the processing done to extract useful information from the

query and each of the sentences in the document collection.

• Section 5.4 is a discussion of various features and the way we can extract those from

the document collection.

• Section 5.5 describes the methods by which our systems rank the sentences. It in-

cludes our empirical approach and machine learning approach.

• Section 5.6 outlines how our systems remove the redundant sentences and generate

summaries of fixed length.

• Section 5.7 is the evaluation of our systems.

• Section 5.8 consists of concluding remarks about our findings and our views on the

future of text summarization.

110

5.2 Document Processing

Document processing for text summarization involves:

1. Tokenization and sentence splitting using OAK systems (Section 3.2.1)

2. Co-reference resolution using Lingpipe (Section 3.2.2)

3. Part of speech tagging using OAK systems (Section 3.2.4)

4. Stemming using OAK systems (Section 3.2.3)

5. Chunked part of speech tagging using OAK systems (Section 3.2.5)

6. BE extraction using BE package provided by ISI (Section 3.2.9)

7. Syntactic tree extraction using Charniak parser (Section 3.2.10)

8. Semantic tree extraction using semantic role labeler system ASSERT (Section 3.2.11)

All of these tasks and the tools used are described in detail in Chapter 3.

5.3 Query and Sentence Processor

Query processor module performs the chunked POS tagging and extracts the important

words (i.e. nouns, verbs, adjectives and adverbs) from the query. It takes the first synonym

list for each of these words and hypernym, hyponym list and important words from the

gloss definitions of each of the nouns. The hierarchy level is restricted to 2 and 3 for

hypernym and hyponym respectively. It creates a list of these related words which we call

query related words. When it extracts these words it excludes the stop words. For example,

given the query:

111

“Include predictions and expectations reported in the press.”

This module extracts the following lists:

• Important words: report, include, prediction, press, expectation

• Synonym words: study, fourth estate, anticipation, prevision, outlook and prospect

• Hypernym/hyponym words: document, essay, case study, white book, blue book,

green paper, position paper, estate, press corps, reasoning, projection, prophecy, pre-

figuration, belief, promise, foretaste, possibility, anticipation and apprehension.

• Gloss words: write, document, describe, finding, individual, group, accord, recent,

study, hill, dale, newspaper, writer, photographer, act, predict, reasoning, future, be-

lief, mental, picture, and future.

Sentence processor module is invoked for each sentence in the document collection. It

extracts the important words (i.e. nouns, verbs, adjectives and adverbs), synonyms, hyper-

nyms, hyponyms and gloss words for the sentence as we did for the query.

5.4 Feature Extraction

We have used 18 different features in total that can be divided into several categories:

112

5.4.1 Lexical Features

N-gram Overlap

N-gram overlap is the recall between the query and the candidate sentence. This can be

computed as follows:

N−gram overlap score =
∑gramn∈SCountmatch (gramn)

∑gramn∈SCount (gramn)

Where n stands for the length of the n−gram, S is the candidate sentence, and Countmatch

(gramn) is the maximum number of n-grams co-occurring in the query and the candidate

sentence. Count (gramn) is the number of n−gram.

1-gram Overlap Measure

It measures the number of words common in the sentence in hand and the query related

words. This can be computed as follows:

1−gram Overlap Score =
∑w1∈SCountmatch (w1)

∑w1∈SCount (w1)

Where S is the set of important words (i.e. nouns, verbs, adjectives and adverbs) in

the candidate sentence and Countmatch is the number of matches between the sentence

important words and query related words. Count (gramn) is the number of w1.

Note that, in order to measure the 1-gram score, we took the query related words instead

of the exact query words. The motivation behind this is, the sentence which has word(s)

that are not exactly the query words but their synonyms, hypernyms, hyponym or gloss

words, will get counted.

Example:

Query Describe steps taken and worldwide reaction prior to introduction of the Euro on

113

January 1, 1999. Include predictions and expectations reported in the press.

Sentence The Frankfurt-based body said in its annual study released today that it has de-

cided on two themes for the new currency: history of European civilization and ab-

stract or concrete paintings.

1-gram Score 0.06666

Note that, the above sentence got 1-gram overlap score of 0.06666 even though it has

no exact word common with the query words. It got this score because the sentence word

study is the synonym of the query word report.

Other N-gram Overlap Measures

With the view to measure other N-gram (N=2,3,4) overlap scores a query pool and a

sentence pool is created. In order to create the query pool, we took the query sentences. For

each query sentence, we create a set of related sentences by replacing an important word

(i.e. nouns, verbs, adjectives and adverbs) by its synonym(s). we created a sentence pool

in the same way.

For example, we have a sentence pool for the following sentence:

• The Frankfurt-based body say in its annual report released today that it has decided

on two themes for the new currency: history of European civilization and abstract or

concrete paintings.

• The Frankfurt-based organic structure say in its annual report released today that it

has decided on two themes for the new currency: history of European civilization

and abstract or concrete paintings.

• The Frankfurt-based body say in its annual report released today that it has decided

on two themes for the new currency: history of European civilization and abstract or

concrete picture.

114

• The Frankfurt-based body say in its annual report released today that it has decided

on two subjects for the new currency: history of European civilization and abstract

or concrete paintings.

• The Frankfurt-based body say in its annual report released today that it has decided

on two topics for the new currency: history of European civilization and abstract or

concrete paintings.

• The Frankfurt-based body say in its annual study released today that it has decided

on two themes for the new currency: history of European civilization and abstract or

concrete paintings.

• The Frankfurt-based body say in its annual study released today that it has determined

on two themes for the new currency: history of European civilization and abstract or

paintings.

• The Frankfurt-based body say in its annual study released today that it has made up

on two themes for the new currency: history of European civilization and abstract or

concrete paintings.

In the same way, we will have a query pool for each of the query sentences. We measure

the recall based n-gram (n=2, 3, 4) using the following formula:

N−gram overlap score(S,Q) =
∑gramn∈SCountmatch (gramn)

∑gramn∈SCount (gramn)
(5.1)

n−gram score = argmaxi(argmax j N−gram overlap score(si,q j)) (5.2)

Where, n stands for the length of the n− gram(n = 2,3,4) and Countmatch (gramn) is

the maximum number of n-grams co-occurring in the query and candidate sentence. q j is

115

the jth sentence in the query pool and si is the ith sentence in the sentence pool.

Example

Query Describe steps taken and worldwide reaction prior to introduction of the Euro on

January 1, 1999. Include predictions and expectations reported in the press.

Sentence Despite skepticism about the actual realization of a single European currency

as scheduled on January 1, 1999, preparations for the design of the Euro note have

already begun.

2-gram: 0.14815

3-gram: 0.0800

4-gram: 0

Longest Common Subsequence

A sequence W = [w1,w2, ...,wn] is a subsequence of another sequence X = [x1,x2, ...,xm] ,

if there exists a strict increasing sequence [i1, i2, ..., in] of indices of X such that for all j =

1,2, ...,n we have xi j = w j (Cormen, Leiserson, and Rivest, 1989). Given two sequences

S1 and S2, the longest common subsequence (LCS) of S1 and S2 is a common subsequence

with maximum length (Lin, 2004).

The longer the LCS of two sentences is, the more similar the two sentences are. We

used LCS-based F-measure to estimate the similarity between the document sentence S of

length m and the query sentence Q of length n as follows:

116

Rlcs(S,Q) =
LCS(S,Q)

m
(5.3)

Plcs(S,Q) =
LCS(S,Q)

n
(5.4)

Flcs(S,Q) = (1−α)×Plcs(S,Q)+α×Rlcs(S,Q) (5.5)

Where, LCS(S,Q) is the length of a longest common subsequence of S and Q and α is

a constant that determines the importance of precision and recall. we set the value of α

as 0.5 that means the equal importance to precision and recall. We call the Equation 5.5,

LCS-based F-measure. Notice that, Flcs is 1 when, S=Q; and Flcs is 0 when there is

nothing in common between S and Q.

One advantage of using LCS is that it does not require consecutive matches but in-

sequence matches that reflect sentence level word order as n-grams. The other advantage

is that it automatically includes longest in-sequence common n-grams, therefore no prede-

fined n-gram length is necessary. Moreover it has the property that its value is less than

or equal to the minimum of unigram (i.e. 1-gram) F-measure of S and Q. Unigram recall

reflects the proportion of words in S that are also present in Q; while unigram precision is

the proportion of words in Q that are also in S. Unigram recall and precision count all co-

occuring words regardless of their orders; while LCS counts in-sequence co-occurrences.

By only awarding credit to in-sequence unigram matches, LCS measure also captures

sentence level structure in a natural way. Consider the following example:

S1 John shot the thief

S2 John shot the thief

S3 the thief shot John

117

Using S1 as reference sentence and S2 and S3 as the sentences under consideration,

S2 and S3 would have the same 2-gram score, since they both have one bigram (i.e. “the

thief”) in common with S1. However, S2 and S3 have very different meanings. In case of

LCS, S2 has a score of 3/4=0.75 and S3 has a score of 2/4=0.5, with α = 0.5. Therefore,

S2 is better than S3 according to LCS.

However, LCS suffers one disadvantage that it only counts the main in-sequence words;

therefore, other alternative LCSes and shorter sequences are not reflected in the final score.

For example, given the following candidate sentence:

S4 the thief John shot

Using S1 as its reference, LCS counts either “the thief” or “John shot”, but not both;

therefore, S4 has the same LCS score as S3 while, 2-gram would prefer S4 than S3.

In order to measure LCS score for a sentence we took a similar approach as the pre-

vious section (i.e. sentence pool and query pool). we calculated the LCS score using the

following formula:

LCS score = argmaxi(argmax j Flcs(si,q j))

Where, q j is the jth sentence in the query pool and si is the ith sentence in the

sentence pool.

Example:

Query Describe steps taken and worldwide reaction prior to introduction of the Euro on

January 1, 1999. Include predictions and expectations reported in the press.

Sentence Despite skepticism about the actual realization of a single European currency

as scheduled on January 1, 1999, preparations for the design of the Euro note have

already begun.

118

LCS Score: 0.27586

Weighted Longest Common Subsequence

LCS has many nice properties as we described in the previous sections. Unfortunately,

the basic LCS also has a problem that it does not differentiate LCSes of different spatial

relations within their embedding sequences (Lin, 2004). For example, given a reference

sequence S and two candidate sequences Y1 and Y2 as follows:

S: A B C D E F G

Y1 : A B C D H I K

Y2 : A H B K C I D

Y1 and Y2 have the same LCS score. However, Y1 should be better choice than Y2 be-

cause Y1 has consecutive matches. To improve the basic LCS method, we can remember

the length of consecutive matches encountered so far to a regular two dimensional dynamic

program table computing LCS. We call it weighted LCS (WLCS) and use k to indicate the

length of the current consecutive matches ending at words xi and y j. Given two sentences

X and Y, the WLCS score of X and Y can be computed using the similar dynamic program-

ming procedure as stated in (Lin, 2004). We computed the WLCS-based F-measure in the

same way as before, using both the question pool and sentence pool.

WLCS score = argmaxi(argmax j Fwlcs(si,q j))

Example:

Query Describe steps taken and worldwide reaction prior to introduction of the Euro on

January 1, 1999. Include predictions and expectations reported in the press.

119

Sentence Despite skepticism about the actual realization of a single European currency

as scheduled on January 1, 1999, preparations for the design of the Euro note have

already begun.

WLCS Score: 0.15961

Skip-Bigram Measure

Skip-bigram is any pair of words in their sentence order, allowing for arbitrary gaps. Skip-

bigram measures the overlap of skip-bigrams between a candidate sentence and a query

sentence (Lin, 2004). Using the example given earlier:

S1 John shot the thief

S2 John shoot the thief

S3 the thief shoot John

S4 the thief John shot

each sentence has C(4,2)=6 skip-bigrams1. For example, S1 has the following skip-

bigrams: (“John shot”, “John the”, “John thief”, “shot the”, “shot thief” and “the thief”)

S2 has three skip bi-gram matches with S1 (“John the”, “John thief”, “the thief”), S3 has

one skip bi-gram match with S1 (“the thief”), and S4 has two skip bi-gram matches with

S1 (“John shot”, “the thief”).

The skip bi-gram score between the document sentence S of length m and the query

sentence Q of length n can be computed as follows:

1C(n,r) = n!
r!×(n−r)!

120

Rskip2(S,Q) =
SKIP2(S,Q)

C(m,2)
(5.6)

Pskip2(S,Q) =
SKIP2(S,Q)

C(n,2)
(5.7)

Fskip2(S,Q) = (1−α)×Pskip2(S,Q)+α×Rskip2(S,Q) (5.8)

Where, SKIP2(S,Q) is the number of skip bi-gram matches between S and Q and α is a

constant that determines the importance of precision and recall. We set the value of α as 0.5

that means the equal importance to precision and recall. C is the combination function. We

call the equation 5.8 skip bigram-based F-measure. We computed the skip bigram-based

F-measure using the formula:

SKIP BI−GRAM = argmaxi(argmax j Fskip2(si,q j))

For example, given the following query, the following sentence got skip bi-gram score

of 0.05218.

Query Describe steps taken and worldwide reaction prior to introduction of the Euro on

January 1, 1999. Include predictions and expectations reported in the press.

Sentence Despite skepticism about the actual realization of a single European currency

as scheduled on January 1, 1999, preparations for the design of the Euro note have

already begun.

Note that, skip bi-gram counts all in-order matching word pairs while LCS only counts

one longest common subsequence.

We can put the constraint on the maximum skip distance, dskip, between two in-order

words that is allowed to form a skip bi-gram to avoid the spurious matches like “the the” or

121

“of from”. For example, if we set dskip to 0 then it is equivalent to bi-gram overlap measure.

If we set dskip to 4 then only word pairs of at most 4 words apart can form skip bi-grams.

In our experiment, we set dskip = 4.

Modifying the equations: 5.6, 5.7 and 5.8 to allow the maximum skip distance limit

is straightforward: We count the skip bi-gram matches, SKIP2(S,Q), within the maximum

skip distance and replace the denominators of the equations with the actual numbers of

within distance skip bi-grams from the reference sentence and the candidate sentence re-

spectively.

Head Overlap

We can parse a sentence by minipar2 to get its dependency tree. Figure 5.1 shows an

example dependency tree (a portion of the large tree) for the first part of the sentence

“Frankfurt-based body said in its annual report released today that it has decided on two

themes for the new currency: history of European civilization and abstract or concrete

paintings.” The links in the diagram represent dependency relationships. The direction of

a link is from the head to the modifier in the relationship. Labels associated with the links

represent types of dependency relations (i.e. subj, mod etc.). Table 5.1 lists a subset of the

relations in minipar outputs.

Relation Description Example
subj subject of a verb John eats rice
mod adjunct modifier of any type of head annual report
det determiner of a noun the man
nn prenomial modifier of a noun strong contestant
pcomp complement of a preposition in its

Table 5.1: Subset of dependency relations

2Available at http://www.cs.ualberta.ca/ lindek/minipar.htm

122

Figure 5.1: Example of a dependency tree

Exact Head Overlap:

Heads in sentences are important words that should be counted when we are measuring

the relevancy between two sentences. The number of heads common in between two sen-

tences can indicate how much they are relevant to each other. In order to extract the heads

from both query and sentence, the query and the sentence are parsed by minipar. From the

parse trees we extract the heads and measure the overlap between them as follows:

Exact head overlap score =
∑w1∈HeadSet Countmatch (w1)

∑w1∈HeadSet Count (w1)

Where HeadSet is the set of head words in the sentence and Countmatch is the number

of matches between the HeadSet of query and sentence.

Head Related-words Overlap:

We take the synonyms, hyponyms and hypernyms of both the query-head words and

sentence-head words and measure the overlap similarly using the formula:

Head related words score =
∑w1∈HeadRelSet Countmatch (w1)

∑w1∈HeadRelSet Count (w1)

123

Where, HeadRelSet is the set of synonyms, hyponyms and hypernyms of head words

in the sentence and Countmatch is the number of matches between the head related sets of

the query and the sentence.

Example:

For example, below we list the head words for a query and a sentence and their mea-

sures:

Query: Describe steps taken and worldwide reaction prior to introduction of the Euro on

January 1, 1999. Include predictions and expectations reported in the press.

Heads for Query: include, reaction, take, describe, report, Euro, introduction, press, pre-

diction, 1999, expectation

Sentence: The Frankfurt-based body said in its annual report released today that it has

decided on two themes for the new currency: history of European civilization and

abstract or concrete paintings.

Heads for Sentence: history, release, currency, body, report,painting, say, abstract, civi-

lization, theme, decide.

Exact Head Score: 0.1

Head Related Score: 0

Basic Element Overlap Measure

We extracted BEs for the sentences in the document collection (see Section 3.2.9 for de-

tails). Once we get the BEs for a sentence, we computed the Likelihood Ratio (LR) for

each BE (Zhou, Lin, and Hovy, 2005). The LR score of each BE is an information theo-

retic measure that represents the relative importance in the BE list from the document set

124

that contains all the texts to be summarized. Sorting the BEs according to their LR scores

produced a BE-ranked list.

Our goal is to generate a summary that will answer the questions about a certain topic.

The ranked list of BEs in this way contains important BEs at the top which may or may not

be relevant to the topic questions. We filter those BEs by checking whether they contain any

word which is a query word or a query related word (i.e. synonyms, hypernyms, hyponyms

and gloss words).

For example, for the following sentence:

Query: Describe steps taken and worldwide reaction prior to introduction of the Euro on

January 1, 1999. Include predictions and expectations reported in the press.

Sentence: The Frankfurt-based body said in its annual report released today that it has

decided on two themes for the new currency: history of European civilization and

abstract or concrete paintings.

BE “decided|themes|obj” is not considered as it does not contain any word from the

query words or query relevant words but BE “report|annual|mod” is taken as it contains a

query word “report”. In this way, we filter out the BEs those are related to the query.

The score of a sentence is the sum of its BE scores divided by the number of BEs in

the sentence. By limiting the number of the top BEs that contribute to the calculation of

the sentence scores, we can remove the BEs with little importance and the sentences with

many less important BEs. If we set the threshold to 100, it means that only the topmost 100

BEs in the ranked list can contribute to the normalized sentence BE score computation. For

this thesis, we did not set any threshold— that means we took all the BEs counted when

calculating the BE scores for the sentences.

125

5.4.2 Lexical Semantic Features

Synonym Overlap

Synonym overlap measure is the overlap between the list of synonyms of the important

words extracted from the candidate sentence and query related words. This can be com-

puted as follows:

Synonym Overlap Score =
∑w1∈SynSet Countmatch (w1)

∑w1∈SynSet Count (w1)

Where SynSet is the synonym set of the important words in the sentence and Countmatch is

the number of matches between the SynSet and query related words.

Hypernym/Hyponym Overlap

Hypernym/hyponym overlap measure is the overlap between the list of hypernyms (level

2) and hyponyms (level 3) of the nouns extracted from the sentence in consideration and

query related words. This can be computed as follows:

Hypernym/hyponym overlap score =
∑h1∈HypSet Countmatch (h1)

∑h1∈HypSet Count (h1)

Where HypSet is the hyponym/hyponym set of the nouns in the sentence and Countmatch is

the number of matches between the HypSet and query related words.

126

Gloss Overlap

Gloss overlap measure is the overlap between the list of important words that are extracted

from the gloss definition of the nouns in the sentence in consideration and query related

words. This can be computed as follows:

Gloss Overlap Score =
∑g1∈GlossSet Countmatch (g1)

∑g1∈GlossSet Count (g1)

Where GlossSet is the set of important words (i.e. nouns, verbs and adjectives) taken

from the gloss definition of the nouns in the sentence and Countmatch is the number of

matches between the GlossSet and query related words.

Example: For example, given the following query, the following sentence got synonym

overlap score of 0.33333, hypernym/hyponym overlap score of 0.1860465 and gloss over-

lap score of 0.1359223.

Query Describe steps taken and worldwide reaction prior to introduction of the Euro on

January 1, 1999. Include predictions and expectations reported in the press.

Sentence The Frankfurt-based body said in its annual report released today that it has

decided on two themes for the new currency: history of European civilization and

abstract or concrete paintings.

Statistical Similarity Measures

Statistical similarity measures are based on the co-occurance of similar words in a corpus.

We have used two statistical similarity measures:

127

Dependency-based similarity measure

This method uses the dependency relations among words in order to measure the simi-

larity (Lin, 1998b). It extracts the dependency triples and then uses a statistical approach to

measure the similarity. We used the thesaurus provided by (http://www.cs.ualberta.ca/ lin-

dek/downloads.htm). Using the data, one can retrieve most similar words for a given word.

The similar words are grouped into clusters.

Note that, for a word there can be more than one cluster. Each cluster represents the

sense of the word and its similar words for that sense. So, selecting the right cluster for a

word is itself a problem. Our goals are : i) to create a bag of similar words to the query

words and ii) once we get the bag of similar words (dependency based) for the query words,

we have to measure the overlap score between the sentence words and this bag of words.

Creating Bag of Similar Words:

For each query-word we extract all of its clusters from the thesaurus. Now, in order

to determine the right cluster for a query word we measure the overlap score between the

query related words (i.e. exact words, synonyms, hypernyms/hyponyms and gloss) and the

clusters. The hypothesis is that, the cluster that has more words common with the query

related words is the right cluster. We choose the cluster for a word which has the highest

overlap score.

Overlap scorei =
∑w1∈QueryRelatedWordsCountmatch (w1)

∑w1∈QueryRelatedWordsCount (w1)
(5.9)

Cluster = argmaxi(Overlap Scorei) (5.10)

where QueryRelatedWords is the set of exact words, synonyms, hyponyms/hypernyms,

and gloss words for the words in the query (i.e query words) and Countmatch is the number

of matches between the query related words and the ith cluster of similar words.

128

Measuring Overlap Score:

Once we get the clusters for the query words, we measured the overlap between the

cluster words and the sentence words which we call dependency based similarity measure:

DependencyMeasure =
∑w1∈SenWordsCountmatch (w1)

∑w1∈SenWordsCount (w1)

Where, SenWords is the set of words for the sentence and Countmatch is the number of

matches between the sentence words and the cluster of similar words.

Proximity-based similarity measure

This similarity is computed based on the linear proximity relationship between words

only (Lin, 1998a). It uses the information theoretic definition of similarity to measure the

similarity. We used the thesaurus provided by (http://www.cs.ualberta.ca/ lindek/downloads.htm)

to measure this feature. The similar words are also grouped into clusters.

We took the similar approach to measure this feature as the previous section except that

we used a different thesaurus.

Example: For example, For the following query and sentence we got the following mea-

sures:

Query: Describe steps taken and worldwide reaction prior to introduction of the Euro on

January 1, 1999. Include predictions and expectations reported in the press.

Sentence: The Frankfurt-based body said in its annual report released today that it has

decided on two themes for the new currency: history of European civilization and

abstract or concrete paintings.

Dependency-based Similarity Score: 0.0143678

Proximity-based Similarity Score: 0.04054054

129

So far, we have included the lexical features in other words Bag of Words (BOW) (i.e.

without any structural information) features. The task like query-based summarization that

requires the use of more complex syntactic and semantics, the approaches with only BOW

are often inadequate to perform fine-level textual analysis. The importance of syntactic and

semantic features in this context is described by (Zhang and Lee, 2003), (Moschitti et al.,

2007) and (Moschitti and Basili, 2006).

An effective way to integrate syntactic and semantic structures in machine learning al-

gorithms is the use of tree kernel functions (Collins and Duffy, 2001) which has been suc-

cessfully applied to question classification (Zhang and Lee, 2003), (Moschitti and Basili,

2006). In more complex tasks such as computing the relatedness between the query sen-

tences and the document sentences, to our knowledge no study uses kernel functions to

encode syntactic/semantic information.

In the following two subsections, we describe the syntactic and semantic features and

how we computed these two similarity measures.

5.4.3 Syntactic Features

In order to calculate the syntactic similarity between the query and the sentence, we first

parse the sentence as well as the query into a syntactic tree using a parser like (Charniak,

1999) and then we calculate the similarity between the two trees using the tree kernel

(Collins and Duffy, 2001).

Syntactic parsing and building trees

As introduced in Section 3.2.10, syntactic parsing is analyzing a sentence using the gram-

mar rules. Following is an example of a sentence from DUC 2007 parsed with the Charniak

130

parser:

(S1 (S (NP (NNP Anjelina) (NNP Jolie))
(VP (AUX is)
(NP (NP (DT the) (NN woman))

(SBAR (WHNP (WP who))
(S (VP (ADVP (RB literally))
(VBD jumped)
(PP (IN in)
(NP (NP (DT a) (VBG swimming) (NN pool))
(PP (IN in) (NP (PRP$ her) (NN ballgown)))))
(PP (IN after)

(S (VP (VBG winning)
(NP (DT a) (NNP Golden) (NNP Globe) (NN Award))
(PP (IN for)
(NP (NP (‘‘ ‘‘) (NNP Gia\) (’’ ’) (NNP \) (POS ’))
(PRN (-LRB- -LRB-) (NP (CD 1998)) (-RRB- -RRB-))))))))))))

(. .)))

In order to use the tree kernel functions for measuring the syntactic similarity, we need

to convert the representation above to its corresponding tree. We designed an algorithm

to build tree from this representation. The algorithm extracts the substrings based on the

number of “left” and “right” parenthesis and creates nodes in the tree for these substrings.

We process the substring in the node until we get a single element (terminal or nonterminal).

The algorithm is as follows:

131

Input: The String S that represents the tree
Output: The Tree T
Data: Array Substrings[]
Remove the First “(” and the Last “)” from S
Extract the first constituent (node) from S and make it as root (R) of the tree T
Mark R as processed
Substrings[] = extractSubstrings(S)
createChildren(Substrings,R)
while not all the nodes in the tree are marked as processed do

Traverse the tree to look for a node N which is not processed
Str = getSubstring(N) // “Str” is the string represented by the unprocessed node N
Remove the First “(” from Str
Remove the Last “)” from Str
Extract the first constituent (node) from Str and make it as Node (N) of the tree T.
Mark N as processed.
Substrings[] = extractSubstrings(Str)
createChildren(Substrings[],N)

end
return T ;

Algorithm 1: Building tree from parenthesis representation

Input: The String S
Output: The Array of Substrings, SubStrs[]
Data: Scalar left, right, begin and end
begin = 0
for (i = 0; i < length(S); i++) do

if S[i] ==′ (′ then
left++

end
if S[i] ==′)′ then

right++
end
if le f t == right then

end = i
push S[begin, ·,end] into SubStrs
begin = i+1

end
end
return SubStrs

Algorithm 2: Extracting substrings from a string

132

Input: Array SubStrings[]
Input: Scalar P
Output: A subtree T with P as root
Data: Scalar parentNodeNo
foreach str ∈ SubStrings do

create a new node N with data str
set P as N’s parent in T
set N as a child of P in T

end
Set the sibling links for the new nodes (N)
return T

Algorithm 3: Building subtrees for substrings

Applying the algorithm for example, to the following output of Charniak parser we get

the parse tree as in Figure 5.2.

Query: Include predictions and expectations reported in the press.

Parser output:

(S1 H:0 (S H:0 (VP H:0 (VB H:0 Include)

(NP H:0 (NP H:2 (NNS H:0 predictions) (CC H:0 and) (NNS H:0 expectations))

(VP H:0 (VBN H:0 reported) (PP H:0 (IN H:0 in) (NP H:1 (DT H:0 the) (NN

H:0 press))))))

(. H:0 .)))

Syntactic Similarity Measure using Tree Kernel Function

Above we built the syntactic tree from the parenthesis representation. Every syntactic tree

T is represented by an m-dimensional vector v(T) = (v1(T),v2(T), · · ·vm(T)), where the

ith element vi(T) is the number of occurrences of the ith tree fragment in tree T . The tree

fragments of a syntactic tree are all of its sub-trees which include at least one production

with the restriction that no production rules can be broken into incomplete parts. Figure 5.3

shows a portion of the above example tree and its subtrees.

133

Figure 5.2: Example of syntactic tree

134

Figure 5.3: (a) Syntactic tree (b) subtrees

135

Implicitly we enumerate all the possible tree fragments 1,2, · · · ,m. These fragments

are the axis of this m-dimensional space. Note that this could be done only implicitly, since

the number m is extremely large. Because of this, (Collins and Duffy, 2001) defines the

tree kernel algorithm whose computational complexity does not depend on m.

The tree kernel of two syntactic trees T1 and T2 is actually the inner product of v(T1)

and v(T2):

T K(T1,T2) = v(T1).v(T2) (5.11)

We define the indicator function Ii(n) to be 1 if the sub-tree i is seen rooted at node n

and 0 otherwise. It follows:

vi(T1) = ∑
n1∈N1

Ii(n1)

vi(T2) = ∑
n2∈N2

Ii(n2)

Where N1 and N2 are the set of nodes in T1 and T2 respectively. So, we can derive:

T K(T1,T2) = v(T1).v(T2)

= ∑
i

vi(T1)vi(T2)

= ∑
n1∈N1

∑
n2∈N2

∑
i

Ii(n1)Ii(n2)

= ∑
n1∈N1

∑
n2∈N2

C(n1,n2) (5.12)

where we define C(n1,n2) = ∑i Ii(n1)Ii(n2). Next, we note that C(n1,n2) can be computed

in polynomial time, due to the following recursive definition:

136

1. If the productions at n1 and n2 are different then C(n1,n2) = 0

2. If the productions at n1 and n2 are the same, and n1 and n2 are pre-terminals, then

C(n1,n2) = 1

3. Else if the productions at n1 and n2 are not pre-terminals,

C(n1,n2) =
nc(n1)

∏
j=1

(1+C(ch(n1, j),ch(n2, j))) (5.13)

where, nc(n1) is the number of children of n1 in the tree; because the productions at n1

and n2 are the same, we have nc(n1) = nc(n2). The ith child-node of n1 is ch(n1, i).

In cases where the query is composed of two or more sentences, we compute the simi-

larity between the document sentence (s) and each of the query-sentences (qi) then we take

the average of the scores as the syntactic feature value.

Syntactic similarity value = ∑
n
i=1 T K(qi,s)

n

Where n is the number of sentences in the query q and s is the sentence under consider-

ation. TK is the similarity value (tree kernel) between the sentence s and the query sentence

q based on the syntactic structure. For example, for the following sentence s and query q

we get the score:

Query (q): Describe steps taken and worldwide reaction prior to introduction of the Euro

on January 1, 1999. Include predictions and expectations reported in the press.

Sentence (s): Europe’s new currency, the euro, will rival the U.S. dollar as an international

currency over the long term, Der Spiegel magazine reported Sunday.

Scores: 90, 41

137

Average Score: 65.5

5.4.4 Semantic Features

Semantic Role Labeling and Shallow Semantic Parsing

In the previous section, we have given an improvement on BOW by the use of syntactic

parses, but these, too are not adequate when dealing with complex questions whose answers

are expressed by long and articulated sentences or even paragraphs. Shallow semantic

representations, bearing a more compact information, could prevent the sparseness of deep

structural approaches and the weakness of BOW models (Moschitti et al., 2007).

Initiatives such as PropBank (PB) (Kingsbury and Palmer, 2002) have made possible

the design of accurate automatic Semantic Role Labeling (SRL) systems (Hacioglu et al.,

2003). Attempting an application of SRL to QA hence seems natural, as pinpointing the

answer to a question relies on a deep understanding of the semantics of both.

For example, consider the PB annotation:

[ARG0 all] [TARGET use] [ARG1 the french franc] [ARG2 as their currency]

Such annotation can be used to design a shallow semantic representation that can be

matched against other semantically similar sentences, e.g.

[ARG0 the Vatican] [TARGET uses] [ARG1 the Italian lira]

[ARG2 as their currency]

In order to calculate the semantic similarity between the query and the sentence, we

first represent the annotated sentence/query using the tree structures like Figure 5.4 which

we call semantic tree (ST). In the semantic tree, arguments are replaced with the most

138

Figure 5.4: Example of semantic trees

important word—often referred to as the semantic head. We look for noun, then verb,

then adjective, then adverb to find the semantic head in the argument. If none of these is

present, we take the first word of the argument as the semantic head. This reduces the data

sparseness with respect to a typical BOW representation.

However, sentences rarely contain a single predicate: it happens more generally that

propositions contain one or more subordinate clauses. For instance let us consider a slight

modification of the second sentence: “the Vatican, located wholly within Italy uses the Ital-

ian lira as their currency.” Here, the main predicate is “uses” and the subordinate predicate

is “located”. The SRL system outputs the following two annotations:

(1) [ARG0 the Vatican located wholly within Italy] [TARGET uses]

[ARG1 the Italian lira] [ARG2 as their currency]

(2) [ARG0 the Vatican] [TARGET located] [ARGM-LOC wholly]

[ARGM-LOC within Italy] uses the Italian lira as their currency

giving the STs in Figure 5.5. As we can see in Figure 5.5(A), when an argument node

corresponds to an entire subordinate clause, we label its leaf with ST, e.g. the leaf of

ARG0. Such ST node is actually the root of the subordinate clause in Figure 5.5(B). If

taken separately, such STs do not express the whole meaning of the sentence, hence it

139

Figure 5.5: Two STs composing a STN

is more accurate to define a single structure encoding the dependency between the two

predicates as in Figure 5.5(C). We refer to this kind of nested STs as STNs.

The algorithm to build the semantic tree is as follows:

Input: The Set of Strings S that represent the tree
Output: The Tree T
Build a separate tree for each of the sentences in S.
Assign the “part of” relation by comparing the target with the leaves of other trees.
Assign the “parent-child” relation for the trees.
Find the root tree and denote it as the current tree(CT).
if CT has child(ren) call: addChild(CT,CT).
assign CT as T.
return T.

Algorithm 4: Building semantic tree

140

Input: CurrentTree,WorkingTree
Output: The Tree T
Initialize one empty queue Q and one empty stack S.
Push the child(ren) of WorkingTree into Q and S.
while Q is not empty do

remove the first element (p) from queue Q.
merge p with the CurrentTree.

end
while S is not empty do

pop the element (p) from stack S.
denote p as the WorkingTree.
addChild(CurrentTree, WorkingTree)

end
assign CurrentTree as T.
return T.

Algorithm 5: Adding child(ren)

Input: ParTree,TarTree
Output: The Marged ParTree
Search the TARGET of the TarTree in the arguments of ParTree.
Merge the TarTree under that argument.
return ParTree.

Algorithm 6: Merging two trees

Shallow Semantic Tree Kernel (SSTK)

Note that, the tree kernel (TK) function described in Section 5.4.3 computes the number of

common subtrees between two trees. Such subtrees are subject to the constraint that their

nodes are taken with all or none of the children they have in the original tree. This definition

of subtrees makes the TK function appropriate for syntactic trees but for the semantic trees

this definition is not well suited. For instance, although the two STs of Figure 5.4 share

most of the subtrees rooted in the ST node, the kernel defined in Section 5.4.3 computes no

match.

The critical aspect of steps: (1), (2) and (3) of the TK function (Section 5.4.3) is that

the productions of two evaluated nodes have to be identical to allow the match of further

141

descendants. This means that common substructures cannot be composed by a node with

only some of its children as an effective ST representation would require. (Moschitti et al.,

2007) solve this problem by designing the Shallow Semantic Tree Kernel (SSTK) which

allows to match portions of a ST.

The SSTK is based on two ideas: first, it changes the ST, as shown in Figure 5.6 by

adding SLOT nodes. These accommodate argument labels in a specific order i.e. it pro-

vides a fixed number of slots, possibly filled with null arguments, that encode all possible

predicate arguments. Leaf nodes are filled with the wildcard character * but they may al-

ternatively accommodate additional information. The slot nodes are used in such a way

that the adopted TK function can generate fragments containing one or more children like

for example those shown in Figure 5.6 (b) and (c). As previously pointed out, if the argu-

ments were directly attached to the root node, the kernel function would only generate the

structure with all children (or the structure with no children, i.e. empty).

Figure 5.6: Semantic tree with some of its fragments

Second, as the original tree kernel would generate many matches with slots filled with

the null label, we have set a new step 0 in the TK calculation:

(0) if n1 (or n2) is a pre-terminal node and its child label is null, C(n1,n2) = 0;

142

and subtract one unit to C(n1,n2), in step 3:

(3) C(n1,n2) =
nc(n1)

∏
j=1

(1+C(ch(n1, j),ch(n2, j)))−1

The above changes generate a new C which, when substituted (in place of original C)

in Eq. 5.12, gives the new SSTK.

For example, for the following sentence s and query q we get the semantic score:

Query (q): Describe steps taken and worldwide reaction prior to introduction of the Euro

on January 1, 1999. Include predictions and expectations reported in the press.

Sentence (s): The Frankfurt-based body said in its annual report released today that it has

decided on two themes for the new currency history of European civilization and

abstract or concrete paintings.

Scores: 6, 12

Average Score: 9

5.4.5 Graph-based Similarity Measure

In (Erkan and Radev, 2004), the concept of graph-based centrality is used to rank a set of

sentences, in producing generic multi-document summaries. A similarity graph is produced

for the sentences in the document collection. In the graph, each node represents a sentence.

The edges between nodes measure the cosine similarity between the respective pair of

sentences. The degree of a given node is an indication of how much important the sentence

is. Figure 5.7 shows an example of a similarity graph for 4 sentences.

Once the similarity graph is constructed, the sentences are then ranked according to

their eigenvector centrality. The LexRank performed well in the context of generic summa-

143

Figure 5.7: LexRank similarity

rization. To apply LexRank to query-focused context, a topic-sensitive version of LexRank

is proposed in (Otterbacher, Erkan, and Radev, 2005). We followed a similar approach in

order to calculate this feature. The score of a sentence is determined by a mixture model

of the relevance of the sentence to the query and the similarity of the sentence to other

high-scoring sentences.

Relevance to the question

We first stem out all the sentences in the collection and compute the word IDFs (Inverse

Document Frequency) using the following formula:

id fw = log
(

N +1
0.5+ s fw

)

Where, N is the total number of sentences in the cluster, and s fw is the number of

sentences that the word w appears in.

We also stem out the questions and remove the stop words. The relevance of a sentence

s to the question q is computed by:

rel(s|q) = ∑
w∈q

log(t fw,s +1)× log
(
t fw,q +1

)
× id fw

Where, t fw,s and t fw,q are the number of times w appears in s and q, respectively.

Mixture Model

144

In the previous section, we measured the relevance of a sentence to the question but

a sentence that is similar to the high scoring sentences in the cluster should also have a

high score. For instance, if a sentence that gets high score based on the question relevance

model is likely to contain an answer to the question, then a related sentence, which may

not be similar to the question itself, is also likely to contain an answer (Otterbacher, Erkan,

and Radev, 2005).

We capture this idea by the following mixture model:

p(s|q) = d× rel(s|q)
∑z∈C rel(z|q)

+(1−d)×∑
v∈C

sim(s,v)
∑z∈C sim(z,v)

× p(v|q) (5.14)

Where, p(s|q) is the score of a sentence s given a question q, is determined as the sum

of its relevance to the question and the similarity to the other sentences in the collection.

C is the set of all sentences in the collection. The value of the parameter d which we call

“bias”, is a trade-off between two terms in the equation and is set empirically. For higher

values of d, we prefer the relevance to the question to the similarity to other sentences.

The denominators in both terms are for normalization. We measure the cosine similarity

weighted by word IDFs as the similarity between two sentences in a cluster:

sim(x,y) =
∑w∈x,y t fw,x× t fw,y× (id fw)2√

∑xi∈x (t fxi,x× id fxi)
2×
√

∑yi∈y (t fyi,y× id fyi)
2

Equation 5.14 can be written in matrix notation as follows:

p = [dA+(1−d)B]T p (5.15)

A is the square matrix such that for a given index i, all the elements in the ith column

145

are proportional to rel(i|q). B is also a square matrix such that each entry B(i,j) is propor-

tional to sim(i,j). Both matrices are normalized so that row sums add up to 1. Note that as

a result of this normalization, all rows of the resulting square matrix Q = [dA +(1− d)B]

also add up to 1. Such a matrix is called stochastic and defines a Markov chain. If we view

each sentence as a state in a Markov chain, then Q(i,j) specifies the transition probability

from state i to state j in the corresponding Markov chain. The vector p we are looking for

in Eq. 5.15 is the stationary distribution of the Markov chain. An intuitive interpretation

of the stationary distribution can be understood by the concept of a random walk on the

graph representation of the Markov chain. With probability d, a transition is made from

the current node to the nodes that are similar to the query. With probability (1-d), a transi-

tion is made to the nodes that are lexically similar to the current node. Every transition is

weighted according to the similarity distributions. Each element of the vector p gives the

asymtotic probability of ending up at the corresponding state in the long run regardless of

the starting state. The stationary distribution of a markov chain can be computed by a sim-

ple iterative algorithm, called power method (Erkan and Radev, 2004). The power method

algorithm is shown in Algorithm 7. Its starts with a uniform distribution. At each iteration,

the eigenvector is updated by multiplying with the transpose of the stochastic matrix. Since

the Markov chain is irreducible and aperiodic, the algorithm is guaranteed to terminate.

The algorithm for computing graph-based similarity measure is shown in Algorithm 8.

146

Input: A stochastic, irreducible and aperiodic matrix MMM
Input: matrix size N, error tolerance ε

Output: eigen-vector ppp
ppp0 = 1

N 1;
t = 0;
repeat

t = t +1 ;
pppt = MMMT pppt−1;
δ = ||pppt− pppt−1||;

until δ < ε ;
return pppt ;

Algorithm 7: Power method

Input: An array SSS of n sentences,d,ε
Output: An array LLL of Graph-based Scores
Data: Array CosineMatrix[n][n], MMM[n][n], QuesRelevancyMatrix[n], L[n]
Data: Scalar QuesRelScore, RowSum, d, ε

for i← 1 to n do
QuesRelevancyMatrix[i] = getQuesRelScore(S[i]);
QuesRelScore = QuesRelScore+QuesRelevancyMatrix[i];

end
for i← 1 to n do

QuesRelevancyMatrix[i] = QuesRelevancyMatrix[i]/QuesRelScore;
end
for i← 1 to n do

for i← 1 to n do
CosineMatrix[i][j] = id f −modi f ied− cosine(S[i],S[j]);

end
end
for i← 1 to n do

RowSum = sum(CosineMatrix[i]);
for i← 1 to n do

CosineMatrix[i][j] = CosineMatrix[i][j]/RowSum;
end

end
MMM = d×QuesRelevancyMatrix+(1−d)×CosineMatrix;
LLL = PowerMethod (MMM,n,ε);
return LLL;

Algorithm 8: Computing graph-based similarity measure

147

5.5 Ranking Sentences

As mentioned earlier in this chapter, we are using several methods in order to rank sen-

tences to generate summaries. In this section, we will describe the systems in detail. The

Section 5.5.1 contains the brief description of the system with which we participated in

DUC 2007. Section 5.5.2 and Section 5.5.3 contain the description of our machine learn-

ing approaches.

5.5.1 DUC 2007 Summarizer: An Experiment with Empiri-

cal Approach

In the early stage of my thesis, we developed DUC 2007 summarizer system (Chali and

Joty, 2007a) to participate in DUC 2007 competition and gain experience. It was an em-

pirical approach for generating summaries. The summarizer was based on two distinct but

complementary concepts:

• how much the sentence is related to the user query and

• how much the sentence is salient to the overall concept.

Keeping these in focus we considered 6 important features:

1. Cosine similarity,

2. Lexical chain,

3. BE overlaps,

4. Question focus overlap,

148

5. Previous sentence overlaps and

6. Document overlap

We considered cosine similarity measure, for computing sentence importance based

on the concept of eigenvector centrality in a graph representation of sentences (Erkan and

Radev, 2004). Lexical chains efficiently identify the theme of the document. An additional

argument for considering the chain representation, as opposed to a simple word frequency

model, is the case when a single concept is represented by a number of words, each with

relatively low frequency. Because the chain combines the number of occurrences of all its

members, it can overcome the weight of the single word (Chali and Kolla, 2004). With BE

represented as a head-modifier-relation triple, one can quite easily decide whether any two

units match (express the same meaning) or not considerably more easily than with longer

units (Hovy et al., 2006). We considered question focus overlap feature to extract the sen-

tences, which are relevant to the topic and narration. We considered the other two features:

previous sentence overlaps and document overlap in order to increase the coherence among

the sentences in the summary.

Sentences were ranked by assigning feature-weights empirically. As our DUC 2007

system could not achieve one of the best results, we proposed to fine tune the weights. The

next section describes the summarizer system based on our weight learning methodology.

5.5.2 Learning Feature-weights: A Local Search Strategy

This system is an enhanced version of our DUC 2007 summarizer system. Instead of using

the six features described above we utilized 18 features extracted in Section 5.4 for each of

the sentences in the document collection. In order to fine-tune the weights of the features,

we have used a local search technique technique.

149

Initially, we set all the feature-weights, w1, · · · ,w18, as equal values (i.e. 0.5). Based on

the current weights we score the sentences and generate summaries accordingly. We evalu-

ate the summaries using the automatic evaluation tool ROUGE (Lin, 2004) and the ROUGE

value works as the feedback to our learning loop. Our learning system tries to maximize

the ROUGE score in every step by changing the weights individually. That means, to learn

weight wi, we change the value of wi keeping all other weight values (w j∀ j 6= i) stagnant.

For each weight wi, the algorithm achieves the local maximum of ROUGE value.

Once we have learned the feature-weights, we compute the final scores for the sentences

using the formula:

scorei =~xi.~w

Where, ~xi is the feature vector for i-th sentence, ~w is the weight vector and scorei is the

score of ith sentence.

150

Input: A sample of n data-points (xxx) each represented by a feature vector of length L
Input: Stepsize l, Weight Initial Value v
Output: An array www of learned weights
Data: Array of weight values: wL, Scalar rg1, rg2, k, f lag, prev
Initialize the weight values wi to v.
for i← 1 to L do

rg1 = rg2 = prev = k = f lag = 0
while (true) do

/* Score Sentences and Generate Summaries based on the
current weight values */

scoreSentences(www)
generateSummaries()
/* Get ROUGE value */
rg2 = evaluateROUGE() if rg1 6= rg2 AND k 6= 0 then

flag = 1
end
if rg1≤ rg2 then

prev = wi
wi+ = l
rg1 = rg2

end
if rg2≤ rg1 OR wi ≥ 1 then

if flag = 1 then
wi=prev

else
wi = v

end
break

end
k++

end
end
return www

Algorithm 9: Tuning weights using local search technique

5.5.3 Statistical Machine Learning Approaches

The method used for selecting sentences for query-based summary extraction, is of type

unsupervised learning, that means, before the learning begins, it is not known how many

subsets (clusters) there are or how they are distinguished from each other. The data points

151

correspond to the feature vectors of the sentences in the document collection that we ex-

tracted in Section 5.4. We experimented with two unsupervised learning techniques with

the features extracted in the previous section for the sentence selection problem:

1. K-means learning

2. Expectation Maximization (EM) learning

The K-means Learning

As described in Section 2.3.2, k-means is a hard clustering algorithm that defines clusters

by the center of mass of their members (Manning and Schutze, 2000). We start with a set

of initial cluster centers and go through several iterations of assigning each object to the

cluster whose center is closest. After all objects have been assigned, we recompute the

center of each cluster as the centroid or mean (µµµ) of its members. The distance function we

use is squared Euclidean distance instead of the true Euclidean distance. Since the square

root is a monotonically growing function, squared Euclidean distance has the same result

as the true Euclidean distance but the computation overload is smaller when the square root

is dropped.

152

Input: A sample of n data-points (xxx) each represented by a feature vector of length L
Input: Number of Clusters K
Output: An array SSS of K-means-based Scores
Data: Array dddnK, µµµK, ΣΣΣK
Data: Array CCCK, yyynK
Randomly choose K data-points as K initial means: µµµk, k = 1, · · · ,K.
repeat

for i← 1 to n do
for j← 1 to K do

dddi j =
∥∥xxxi−µµµ j

∥∥2 = (xxxi−µµµ j)T (xxxi−µµµ j)

end
if dddik < dddil,∀l 6= k then

assign xxxi to CCCk.
end

end
for i← 1 to K do

µµµi =
∑xxx j∈CCCi xxx j

|CCCi|
end

until no further change occurs ;
/* calculating the covariances for each cluster */
for i← 1 to K do

m = |CCCi|
for j← 1 to m do

ΣΣΣi + = (CCCi j−µµµi) ∗ (CCCi j−µµµi)T

end
ΣΣΣi ∗= (1/(m−1))

end
/* calculating the scores for sentences */
for i← 1 to n do

for j← 1 to K do

yi j = e
−1
2 (xxxi−µµµ j)T

ΣΣΣ
−1
j (xxxi−µµµ j)

√
2π

d√
det(ΣΣΣ j)

end
for j← 1 to K do

zi j = (yi j ∗w j)/∑
K
j=1 yi j ∗w j ; // where, w j = 1/K

end
m = max(µµµk) ∀k
Push zim to SSS

end
return SSS

Algorithm 10: Computing k-means based similarity measure

153

Ranking the Sentences

Once we have learned the means of the clusters using the k-means algorithm, our next

task is to rank the sentences according to a probability model. We have used Bayesian

model in order to rank the sentences. Bayes’ law says:

P(qk|xxx,Θ) =
p(xxx|qk,Θ)P(qk|Θ)

p(xxx|Θ)

=
p(xxx|qk,Θ)P(qk|Θ)

∑
K
k=1 p(xxx|qk,Θ)p(qk|Θ)

where qk is a class, xxx is a feature vector representing a sentence and Θ is the parameter

set of all class models. We set the weights of the clusters as equiprobable (i.e. P(qk|Θ) =

1/K). We calculated p(xxx|qk,Θ) using the gaussian probability distribution. The gaussian

probability density function (pdf) for the d-dimensional random variable xxx is given by:

p(µµµ,ΣΣΣ)(xxx) =
e
−1
2 (xxx−µµµ)T

ΣΣΣ−1(xxx−µµµ)

√
2π

d√
det(ΣΣΣ)

where µµµ, the mean vector and ΣΣΣ, the covariance matrix are the parameters of the gaus-

sian distribution. We get the means (µµµ) from the k-means algorithm and we calculate the

covariance matrix using the unbiased covariance estimation procedure:

Σ̂ΣΣ j =
1

N−1

N

∑
i=1

(xxxi−µµµ j)(xxxi−µµµ j)T

154

The EM Learning

The EM algorithm for gaussian mixture models is a well known method for cluster analysis.

A useful outcome of this model is that it produces a likelihood value of the clustering model

and the likelihood values can be used to select the best model from a number of different

models providing that they have the same number of parameters (i.e. same number of

clusters).

A significant problem with the EM algorithm is that it converges to a local maximum

of the likelihood function and hence the quality of the result depends on the initialization.

This problem along with a method for improving the initialization is discussed later in this

section.

As described in Section 2.3.3, EM is a “soft” version of k-means algorithm described

above (Manning and Schutze, 2000). As the k-means, we start with a set of random clus-

ter centers, c1 · · ·ck. In each iteration we do a soft assignment of the data-points to every

cluster by calculating their membership probabilities. EM is an iterative two step proce-

dure: 1. Expectation-step and 2. Maximization-step. In the expectation step, we compute

expected values for the hidden variables hi, j which are cluster membership probabilities.

Given the current parameters, we compute how likely it is that an object belongs to any

of the clusters. The maximization step computes the most likely parameters of the model

given the cluster membership probabilities.

Since, the data-points are considered to be generated by a mixture model of k-gaussians

of the form:

155

P(x) =
k

∑
i=1

P(C = i)P(x|C = i) (5.16)

=
k

∑
i=1

P(C = i)P(x|µµµi,ΣΣΣi) (5.17)

where the total likelihood of model Θ with k components given the observed data

points, X = xxx1, · · · ,xxxn is:

L(Θ|X) =
n

∏
i=1

k

∑
j=1

P(C = j)P(xxxi|Θ j) (5.18)

=
n

∏
i=1

k

∑
j=1

w jP(xxxi|µµµ j,ΣΣΣ j) (5.19)

⇔
n

∑
i=1

log
k

∑
j=1

w jP(xxxi|µµµ j,ΣΣΣ j) (taking the log likelihood) (5.20)

where P is the probability density function. µµµ j and ΣΣΣ j are the mean and covariance

matrix of component j, respectively. Each component contributes a proportion, w j, of the

total population, such that: ∑
K
j=1 w j = 1.

Log likelihood can be used instead of likelihood as it turns the product into sum. The

gaussian probability for d-dimensional data point xxxi in mixture j is given by:

P(xxxi|µµµ j,ΣΣΣ j) =
exp

−1
2 (xxxi−µµµ j)T

ΣΣΣ
−1
j (xxxi−µµµ j)

√
2π

d√
det(ΣΣΣ j)

(5.21)

In the following, we describe the EM algorithm for estimating a gaussian mixture:

156

Input: A Sample of n data-points (xxx) each represented by a feature vector of length
L

Input: Number of Clusters K
Output: An array S of EM-based Scores
Start with K initial Gaussian models: N(µµµk,ΣΣΣk) k = 1, · · · ,K, with equal priors set to
P(qk) = 1/K.
repeat

/* Estimation step: compute the probability P(q(i)
k |xxx j,Θ

(i)) for

each data point x j, j = 1, · · · ,n, to belong to the class q(i)
k */

for j← 1 to n do
for k← 1 to K do

P(q(i)
k |xxx j,Θ

(i)) =
P(q(i)

k |Θ
(i))p(xxx j|q

(i)
k ,Θ(i))

p(xxx j|Θ(i))

=
P(q(i)

k |Θ
(i))p(xxx j|µµµ

(i)
k ,ΣΣΣ

(i)
k)

∑
K
k=1 P(q(i)

k |Θ(i))p(xxx j|µµµ
(i)
k ,ΣΣΣ

(i)
k)

end
end
/* Maximization step: */
for k← 1 to K do

for j← 1 to n do
// update the means:

µµµi+1
k =

∑
n
j=1xxx jP(q(i)

k |xxx j,Θ
(i))

∑
n
j=1 P(q(i)

k |xxx j,Θ(i))

// update the variances:

ΣΣΣ
(i+1)
k =

∑
n
j=1 P(q(i)

k |xxx j,Θ
(i))(xxx j−µµµ(i+1)

k)(xxx j−µµµ(i+1)
k)T

∑
N
j=1 P(q(i)

k |xxx j,Θ(i))

// update the priors:

P(qk(i+1)|Θ(i+1)) =
1
n

n

∑
j=1

P(q(i)
k |xxx j,Θ

(i))

end
end

until the total likelihood increase falls under some desired threshold ;
return S

Algorithm 11: Computing EM-based similarity measure

157

Singularities

The covariance matrix, ΣΣΣ above must be non-singular or invertible. The EM algorithm

may converge to a position where the covariance matrix becomes singular (|ΣΣΣ|= 0) or close

to singular, that means it is not invertible anymore. If the covariance matrix becomes sin-

gular or close to singular then EM may result in wrong clusters. We restrict the covariance

matrices to become singular by testing these cases at each iteration of the algorithm as

follows:

i f (
√
|ΣΣΣ|> 1e−9) then update ΣΣΣ

else do not update ΣΣΣ

Discussion: Starting values for the EM algorithm

The convergence rate and success of clustering using the EM algorithm can be de-

graded by a poor choice of starting values for the means, covariances and weights of the

components. We experimented with one summary (for document number D0703A from

DUC 2007). The cluster means are initialized with a heuristic that spreads them randomly

around Mean(DATA) with standard deviation
√

Cov(DATA)∗10. Their initial covariance

is set to Cov(DATA) and the initial values of the weights are w j = 1/K, where K is the

number of clusters. That is, for d-dimensional data-points the parameters of jth component

are as follows:

158

~µ j = rand(1, · · · ,d)∗
√

ΣΣΣ(DATA)∗10+~µ(DATA)

ΣΣΣ j = ΣΣΣ(DATA)

w j = 1/K

The highly variable nature of the results of the tests is reflected in the very inconsistent

values for the total log likelihood (see Figure 5.8) and the results of repeated experiments

indicated that using random starting values for initial estimates of the means frequently

gave poor results. There are two possible solutions to this problem.

Figure 5.8: Log-likelihood values for random initial mean values

In order to get good results from using random starting values (as specified by the

algorithm above) we will run the EM algorithm several times and choose the initial config-

uration for which we get the maximum log likelihood among all configurations. Choosing

the best one among several runs is very computer intensive process. So, to improve the

outcome of the EM algorithm on gaussian mixture models it is necessary to find a better

method of estimating initial means for the components.

159

The best starting position for the EM algorithm, in regard to the estimates of the means,

would be to have one estimated mean per cluster, which is closer to the true mean of that

cluster.

To achieve this aim we explored the widely used “k-means” algorithm as a cluster

(means) finding method. That is, the means found by the k-means clustering above will

be utilized as the initial means for the EM and we calculate the initial covariance matrices

using the unbiased covariance estimation procedure:

Σ̂ΣΣ j =
1

N−1

N

∑
i=1

(~xi− ~µ j)(~xi− ~µ j)T

Ranking the Sentences

Once the sentences are clustered by the EM algorithm, we filter out the sentences which

are question-relevant by checking their probabilities, P(qr|xxxi,Θ) where, qr denotes the clus-

ter “question-relevant”. If for a sentence xxxi, P(qr|xxxi,Θ) > 0.5 then xxxi is considered to be

question-relevant. The cluster which has the mean values greater than the other one is

considered as the question-relevant cluster.

Our next task is to rank the question-relevant sentences in order to include them in

the summary. This can be done easily by defining a weight vector ~w for the features and

multiplying it with the feature vector ~xi representing the sentence. So, the rank of the

sentence (or feature vector) ~xi is given by:

scorei =~xi.~w

160

5.6 Redundancy Checking and Generating Summary

Once the sentences are scored, the easiest way to create summaries is just to output the

topmost N sentences until the required summary length is reached. In that case, we are

ignoring other factors: such as redundancy and coherence.

As we know that text summarization clearly entails selecting the most salient infor-

mation and putting it together in a coherent summary. The answer or summary consists

of multiple separately extracted sentences from different documents. Obviously, each of

the selected text snippets should individually be important. However, when many of the

competing sentences are included in the summary, the issue of information overlap be-

tween parts of the output comes up, and a mechanism for addressing redundancy is needed.

Therefore, our summarization systems employ two levels of analysis: first, a content level,

where every sentence is scored according to the features or concepts it covers and second,

a textual level, when, before being added to the final output, the sentences deemed to be

important are compared to each other and only those that are not too similar to other candi-

dates are included in the final answer or summary. (Goldstein et al., 1999) observed this in

what the authors called “Maximum-Marginal-Relevancy (MMR)”. Following (Hovy et al.,

2006), we modeled this by BE overlap between an intermediate summary and a to-be-added

candidate summary sentence.

We call this overlap ratio R, where R is between 0 and 1 inclusively. Setting R = 0.7

means that a candidate summary sentence, s, can be added to an intermediate summary, S,

if the sentence has a BE overlap ratio less than or equal to 0.7.

161

5.7 Experimental Evaluation

This section describes the results of experiments conducted using DUC 2007 dataset pro-

vided by NIST 3. Some of the questions these experiments address include:

• How do the different features affect the behavior of the summarizer system?

• Which one of the algorithms (K-means, EM and Local Search) performs better for

this particular problem?

5.7.1 DUC Data

The documents of DUC 2007 came from the AQUAINT corpus, comprising newswire

articles from the Associated Press and New York Times (1998-2000) and Xinhua News

Agency (1996-2000). NIST assessors developed topics of interest to them and choose a set

of 25 documents relevant (document cluster) to each topic.

Each topic and its document cluster were given to 4 different NIST assessors, including

the developer of the topic. The assessor created a 250-word summary of the document

cluster that satisfies the information need expressed in the topic statement. These multiple

“reference summaries” are used in the evaluation of summary content.

5.7.2 Evaluation Measures

Evaluation methods determine the quality of the summaries based on the overlap with

reference summaries. Precision (P) and Recall (R) are the widely used measures com-

puted based on the number of units (i.e. sentences, words, etc) common to both system-

generated and reference summaries. Recall is defined as the ratio of the number of units
3National Institute of Standards and Technology

162

(sentences/words) of the system-generated summaries in common with the reference sum-

maries to the total number of units in the reference summary while precision is the ratio

of the number of units of system-generated summaries in common with the reference sum-

maries to the total number of units in the system-generated summaries.

Figure 5.9: Precision and recall

In applications like IR, one can generally trade off precision and recall (one can select

every document in the collection and get 100% recall but very low precision, etc.) but

sometimes such a tradeoff does not make sense in many applications of NLP. For this

reason, a widely used measure in NLP, F-measure combines precision and recall into a

single measure of overall performance.

P =
Uc

Us +Uc

R =
Uc

Ur +Uc

F =
1

α
1
P +(1−α) 1

R

Where P is the precision, R is recall and α is a factor which determines the weighting

of precision and recall. A value of α = 0.5 is often chosen for equal weighting of P and R.

163

With this α value, F measure simplifies to 2PR/(R+P).

We carried out automatic evaluation of our summaries using ROUGE (Lin, 2004).

5.7.3 ROUGE

ROUGE which stands for “Recall-Oriented Understudy for Gisting Evaluation” is a col-

lection of measures that determines the quality of a summary by comparing it to reference

summaries created by humans. The measures count the number of overlapping units such

as n-gram, word-sequences, and word-pairs between the system-generated summary to be

evaluated and the ideal summaries created by humans. ROUGE measures considered in the

evaluation are: ROUGE-N (N=1,2,3,4), ROUGE-L, ROUGE-W and ROUGE-S.

ROUGE-N

ROUGE-N is n-gram recall between a candidate summary and a set of reference summaries

which is computed as follows:

ROUGE−N =
∑S∈Re f erenceSummaries ∑gramn∈SCountmatch (gramn)

∑S∈Re f erenceSummaries ∑gramn∈SCount (gramn)

where n is the length of n−grams and Countmatch (gramn) is the maximum number of

n-grams co-occurring in a candidate summary and a set of reference summaries.

When multiple references are used, we compute pairwise summary-level ROUGE-N

between a candidate summary s and every reference, ri, in the reference set. Final ROUGE-

N score is then obtained by taking the maximum of the summary-level ROUGE-N scores.

ROUGE−Nmulti = argmaxi (ROUGE−N(ri,s))

164

In the ROUGE evaluation package, the assessors use a jackknifing procedure. Given M

references, they compute the best score over M sets of M-1 references. The final ROUGE-

N score is the average of the M ROUGE-N scores using different M-1 references. For

example, let us consider a document having 4 sentences, A1, · · ·A4 comprising 20 words,

w1, · · · ,w20 as follows:

A1 : w1 w2 w3 w4 w5

A2 : w6 w7 w8 w9 w10

A3 : w11 w12 w13 w14 w15

A4 : w16 w17 w18 w19 w20

Given one peer summary S1 and three reference summaries R1, R2 and R3 as follows:

S1 : A1 A2 A3

R1 : A1 A3 A4

R2 : A2 A4

R3 : A1 A2

Let us denote ROUGE(X\R) as the ROUGE score of summary X without considering

reference summary R then using jackknifing procedure ROUGE − 1 score for peer sum-

mary S1 can be computed as follows:

165

ROUGE−1(S1\R1) = max(ROUGE−1(S1,R2),ROUGE−1(S1,R3))

= max(|A2|/(|A2|+ |A4|),(|A1|+ |A2|)/(|A1|+ |A2|))

= max(5/10,10/10)

= 1

ROUGE−1(S1\R2) = max(ROUGE−1(S1,R1),ROUGE−1(S1,R3))

= max((|A1|+ |A3|/(|A1|+ |A3|+ |A4|),(|A1|+ |A2|)/(|A1|+ |A2|))

= max(10/15,10/10)

= 1

ROUGE−1(S1\R3) = max(ROUGE−1(S1,R1),ROUGE−1(S1,R2))

= max((|A1|+ |A3|/(|A1|+ |A3|+ |A4|), |A2|/(|A2|+ |A4|))

= max(10/15,5/10)

= 0.66

ROUGE−1(S1)(Avg) = 0.887

ROUGE-L: Longest Common Subsequence

As described in Section 5.4.1, given two sequences Z = [z1,z2, · · ·zn] and X = [x1,x2, · · ·xm],

Z is said to be the subsequence of X if there exists a strict increasing sequence [i1, i2, · · · , in]

of indices of X such that for all j = 1,2, · · · ,n, we have xi j = z j. Given two sequences A

and B, the LCS is the common subsequence with maximum length.

166

Sentence-level LCS-based F-measure to estimate the similarity between two summary

sentences r of length m and s of length n (assuming r is a reference summary sentence and

s is a peer summary sentence) is as follows (Lin, 2004):

Rlcs =
LCS(r,s)

m

Plcs =
LCS(r,s)

n

Flcs =
PlcsRlcs

αRlcs +(1−α)Plcs

Consider the following example (Lin, 2004):

S1 : Police killed the gunman

S2 : Police kill the gunman

S3 : The gunman kill police

Using S1 as reference, both S2 and S3 have the same ROUGE-2 score even when they

differ in meaning. This can be differentiated using the ROUGE-L measure. S2 has the

ROUGE-L value as 3/4 and S3 has 1/2 with α = 0.5.

Summary-level LCS can be obtained by taking the union LCS matches between a ref-

erence summary, ri and every candidate summary sentence, s j. Given a reference summary

of u sentences containing a total of m words and a candidate summary, S of v sentences

containing a total of n words, the summary-level LCS-based F-measure can be computed

as follows:

167

Rlcs = ∑
u
i=1 LCS∪ (ri,S)

m

Plcs = ∑
u
i=1 LCS∪ (ri,S)

n

Flcs =
PlcsRlcs

αRlcs +(1−α)Plcs

For example, if ri = w1,w2,w3,w4,w5 and S contains two sentences s1 and s2 as follows:

s1 : w1 w3 w8 w9 w5

s2 : w1 w2 w3 w8 w5

We get the LCS-Score:

LCS(ri,s1) : w1 w3 w5

LCS(ri,s2) : w1 w2 w3 w5

LCS−Score : 4/5

ROUGE-W: Weighted Longest Common Subsequence(WLCS)

Consider the following example:

X: [A B C D E F G]

Y1: [A B C D K J L]

Y2: [A H B K C I D]

Both sentences, Y1 and Y2 have the same ROUGE-L score of 4/7 (α = 0.5) with X

as the reference. This would not reward the sentence Y1, which has consecutive sequence

168

of words, as compared with Y2. ROUGE-W provides an improvement to the basic LCS

method of computation by using the function f (n) to credit the sentences having the con-

secutive matches of words. F-measure based on WLCS can be calculated as follows:

Rwlcs = f−1
(

WLCS(X ,Y)
f (m)

)
Pwlcs = f−1

(
WLCS(X ,Y)

f (n)

)
Fwlcs =

PwlcsRwlcs

αRwlcs +(1−α)Pwlcs

By computing the ROUGE-W measure for the two candidate sentences in the above

example using f (k) = k2, we obtain scores of 0.571 and 0.286 for Y1 and Y2 respectively.

This enables us to differentiate between the two sentences based on the spatial distance

between the sequence of the words.

ROUGE-S: Skip-Bigram

Skip-bigram is any pair of words in their sentence order, allowing for arbitrary gaps (Lin,

2004). ROUGE-S measures the overlap of skip-bigrams between a candidate summary and

a set of reference summaries. Using the example given in Section 5.7.3:

S1 : Police killed the gunman

S2 : Police kill the gunman

S3 : The gunman kill police

S4 : the gunman police killed

169

Each sentence has C(4,2) = 6 skip-bigrams. For example, S1 has the following skip-

bigrams: (“police killed”, “police the”, “police gunman”, “killed the”, “killed gunman”,

“the gunman”).

S2 has three skip-bigram matches with S1 (”police the”, “police gunman”, ”the gun-

man”), S3 has one skip-bigram match with S1 (“the gunman”), and S4 has two skip-bigram

matches with S1 (“police killed”, “the gunman”).

The skip bi-gram score between the candidate summary sentence S of length m and the

reference summary sentence R of length n can be computed as follows:

Rskip2 =
SKIP2(S,R)

C(m,2)
(5.22)

Pskip2 =
SKIP2(S,R)

C(n,2)
(5.23)

Flcs =
Pskip2Rskip2

αRskip2 +(1−α)Pskip2

(5.24)

Where, SKIP2(S,Q) is the number of skip bi-gram matches between S and R and α is

a constant that determines the importance of precision and recall. We set the value of α as

0.5 that means the equal importance to precision and recall. C is the combination function.

ROUGE-S is extended with the addition of unigram as counting unit which is called

ROUGE-SU (Lin, 2004).

170

5.7.4 Experiments

Experimental Setup

We generated summaries for the 45 topics in DUC 2007 and experimented with the per-

formance of the machine learning techniques: local search, EM, k-means for the task of

query-based multi-document summary extraction. We also experimented with the effects

of different types of features in generating good summaries for each of the algorithms. To

assess the contribution of different features in generating quality summaries the features

are grouped into seven classes. For each of the methods, we generated summaries for each

of the systems as described below:

The LEX system generates summaries based on only lexical features: n-gram (n=1,2,3,4),

LCS, WLCS, skip bi-gram, head, head synonym and BE overlap.

The LEXSEM system considers only lexical semantic features: synonym, hypernym/hyponym,

gloss, dependency-based and proximity-based similarity.

The SYN system generates summary based on only syntactic feature.

The COS system generates summary based on the graph-based method.

The SYS1 system considers all the features except the syntactic and semantic features.

The SYS2 system considers all the features except the semantic feature and

the ALL system generates summaries taking all the features into account.

ROUGE parameters were set as the same as DUC 2007 evaluation setup. All the

ROUGE measures were calculated by running ROUGE-1.5.5 with stemming but no re-

moval of stopwords .

ROUGE run-time parameters:

ROUGE-1.5.5.pl -2 -1 -u -r 1000 -t 0 -n 4 -w 1.2 -m -l 250 -a

171

The K-means Learning

This section describes our experimental evaluation for the k-means algorithm.

ROUGE-N Measures

ROUGE-1

Table 5.2 shows the ROUGE-1 scores for different combinations of features in the k-

means learning. It is noticable that the k-means performs best for the graph-based cosine

similarity feature. Note that, including syntactic feature does not improve the score while

including syntactic and semantic features increases the score but not a significant amount.

Summaries based on only lexical features give us good ROUGE-1 evaluation.

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL
Recall 0.366130 0.360584 0.346485 0.378852 0.376102 0.365689 0.366989
Precision 0.397352 0.393334 0.378840 0.408700 0.403340 0.415188 0.415395
F-score 0.381037 0.376133 0.361847 0.393097 0.389245 0.388695 0.389695

Table 5.2: ROUGE-1 measures in k-means learning

ROUGE-2

Table 5.3 shows the ROUGE-2 scores for different combinations of features in the k-

means learning. Just like ROUGE-1 graph-based cosine similarity feature performs good

here. We get a significant improvement in ROUGE-2 score when we include syntactic

feature with all other features. Semantic feature does not affect the score much. Lexical

Semantic features perform good here.

ROUGE-3 and ROUGE-4

Table 5.4 and Table 5.5 show the ROUGE-3 and ROUGE-4 scores. For the two mea-

sures, we get best scores when we consider all features except semantic (SYS2).

ROUGE-L, ROUGE-W and ROUGE-SU

As Table 5.6, Table 5.7 and Table 5.8 show: the ROUGE-L, ROUGE-W and ROUGE-

172

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL
Recall 0.074488 0.076827 0.063012 0.085583 0.074625 0.077936 0.076737
Precision 0.080886 0.084017 0.069260 0.092514 0.080753 0.107239 0.109562
F-score 0.077543 0.080241 0.065973 0.088891 0.077568 0.090269 0.090258

Table 5.3: ROUGE-2 measures in k-means learning

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL
Recall 0.021390 0.023441 0.015861 0.028721 0.023376 0.027165 0.026775
Precision 0.023241 0.025699 0.017619 0.031123 0.021238 0.059437 0.057156
F-score 0.022274 0.024513 0.016691 0.029867 0.022256 0.037288 0.036467

Table 5.4: ROUGE-3 measures in k-means learning

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL
Recall 0.009388 0.010417 0.007346 0.013869 0.009837 0.012388 0.012388
Precision 0.010209 0.011449 0.008196 0.015055 0.010692 0.018749 0.015892
F-score 0.009780 0.010907 0.007747 0.014435 0.010247 0.014919 0.013923

Table 5.5: ROUGE-4 measures in k-means learning

173

SU scores are best for all features without syntactic and semantic, and including syntac-

tic/semantic features with other features does not improve the scores rather degrades the

scores. Summaries based on only lexical features achieve good scores.

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL
Recall 0.337800 0.331936 0.313296 0.346491 0.348463 0.340751 0.340980
Precision 0.366650 0.362165 0.342599 0.373882 0.393244 0.401221 0.401664
F-score 0.351575 0.346288 0.327208 0.359562 0.369502 0.368522 0.368843

Table 5.6: ROUGE-L measures in k-means learning

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL
Recall 0.097519 0.096689 0.090205 0.100854 0.099167 0.097279 0.097013
Precision 0.194786 0.194422 0.181533 0.200458 0.237490 0.241206 0.237345
F-score 0.129912 0.129085 0.120458 0.134129 0.139912 0.138643 0.137730

Table 5.7: ROUGE-W measures in k-means learning

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL
Recall 0.131197 0.127442 0.116302 0.139002 0.135857 0.134871 0.134734
Precision 0.154859 0.152065 0.139711 0.162368 0.176021 0.174262 0.174370
F-score 0.141963 0.138527 0.126825 0.149630 0.153353 0.152057 0.152011

Table 5.8: ROUGE-SU measures in k-means learning

The EM learning

Table 5.9 to Table 5.15 show different ROUGE measures for the feature combinations

in the context of the EM learning. It can be easily noticed that for all these measures

we get significant amount of improvement in ROUGE scores when we include syntactic

174

and semantic features along with other features. We get 3-15% improvement over SYS1

in F-score when we include syntactic feature and 2-24% improvement when we include

syntactic and semantic features. Cosine similarity measure does not perform that well as it

did in the k-means experiments. Summaries considering only the lexical features achieve

good results.

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL
Recall 0.383635 0.357353 0.346485 0.375816 0.379908 0.399173 0.398786
Precision 0.415776 0.390724 0.378840 0.406517 0.411503 0.411127 0.399358
F-score 0.398973 0.373172 0.361847 0.390465 0.395075 0.405062 0.399072

Table 5.9: ROUGE-1 measures in EM learning

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL
Recall 0.088564 0.079678 0.063012 0.087056 0.084658 0.089204 0.090564
Precision 0.095792 0.087032 0.069260 0.094192 0.091732 0.116060 0.138243
F-score 0.092018 0.083171 0.065973 0.090462 0.088053 0.100875 0.109436

Table 5.10: ROUGE-2 measures in EM learning

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL
Recall 0.031811 0.022991 0.015861 0.029427 0.027791 0.030895 0.031344
Precision 0.034267 0.025108 0.017619 0.031910 0.031190 0.061676 0.061117
F-score 0.032987 0.023997 0.016691 0.030612 0.028908 0.041168 0.041437

Table 5.11: ROUGE-3 measures in EM learning

Local Search Technique

The ROUGE scores based on the feature combinations are given in Table 5.16 to Table 5.22.

Summaries generated by including all features perform the best scores for all the measures.

175

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL
Recall 0.016970 0.010058 0.007346 0.014910 0.013263 0.016564 0.016479
Precision 0.018238 0.010981 0.008196 0.016208 0.014413 0.017971 0.017529
F-score 0.017578 0.010497 0.007747 0.015528 0.013814 0.017239 0.016988

Table 5.12: ROUGE-4 measures in EM learning

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL
Recall 0.354123 0.328675 0.313296 0.344994 0.348606 0.351070 0.340892
Precision 0.383792 0.359347 0.342599 0.373265 0.377634 0.399535 0.401865
F-score 0.368281 0.343217 0.327208 0.358481 0.362540 0.373738 0.368876

Table 5.13: ROUGE-L measures in EM learning

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL
Recall 0.102680 0.095728 0.090205 0.100541 0.101989 0.101529 0.100874
Precision 0.205188 0.192882 0.181533 0.200486 0.203428 0.221940 0.222817
F-score 0.136794 0.127893 0.120458 0.133868 0.135863 0.139323 0.138876

Table 5.14: ROUGE-W measures in EM learning

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL
Recall 0.145570 0.128454 0.116015 0.138369 0.143064 0.145246 0.143858
Precision 0.171446 0.153288 0.139414 0.162077 0.167845 0.186296 0.185299
F-score 0.157339 0.139623 0.126533 0.149153 0.154467 0.163230 0.161970

Table 5.15: ROUGE-SU measures in EM learning

176

We get 7-15% improvement over SYS1 in F-score when we include syntactic feature and 8-

19% improvement over SYS1 in F-score when we include syntactic and semantic features.

In this case also “lexical features” perform well but not better than “All features”.

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL
Recall 0.379911 0.358329 0.346485 0.375816 0.382146 0.388092 0.390038
Precision 0.411176 0.390928 0.378840 0.406517 0.414278 0.434648 0.438886
F-score 0.394821 0.373785 0.361847 0.390465 0.397564 0.410053 0.413023

Table 5.16: ROUGE-1 measures in local search technique

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL
Recall 0.085592 0.079904 0.063012 0.087056 0.086746 0.095388 0.099076
Precision 0.092626 0.087123 0.069260 0.094192 0.093983 0.114568 0.116389
F-
measure

0.088948 0.083334 0.065973 0.090462 0.090220 0.104102 0.107037

Table 5.17: ROUGE-2 measures in local search technique

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL
Recall 0.028875 0.023277 0.015861 0.029427 0.029303 0.035392 0.037140
Precision 0.031203 0.025368 0.017619 0.031910 0.031706 0.050452 0.051903
F-score 0.029987 0.024271 0.016691 0.030612 0.030457 0.041601 0.043298

Table 5.18: ROUGE-3 measures in local search technique

5.7.5 Comparison

Table 5.23 shows the F-scores of all the ROUGE measures for one baseline system, the best

system in DUC 2007 and our three learning algorithms taking all features into considera-

tion. The baseline system generates summaries by returning all the leading sentences (up

177

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL
Recall 0.014463 0.010268 0.007346 0.014910 0.014072 0.014889 0.015251
Precision 0.015654 0.011182 0.008196 0.016208 0.015256 0.027320 0.029803
F-score 0.015032 0.010703 0.007747 0.015528 0.014640 0.019274 0.020177

Table 5.19: ROUGE-4 measures in local search technique

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL
Recall 0.349695 0.330177 0.313296 0.344994 0.350893 0.362318 0.363528
Precision 0.378526 0.360162 0.342599 0.373265 0.380452 0.415256 0.427125
F-score 0.363443 0.344396 0.327208 0.358481 0.365075 0.386985 0.392769

Table 5.20: ROUGE-L measures in local search technique

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL
Recall 0.101698 0.095864 0.090205 0.100541 0.102449 0.104421 0.105361
Precision 0.202618 0.192696 0.181533 0.200486 0.204464 0.245776 0.247038
F-score 0.135353 0.127966 0.120458 0.133868 0.136502 0.146570 0.147720

Table 5.21: ROUGE-W measures in local search technique

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL
Recall 0.143767 0.128871 0.116015 0.138369 0.145345 0.148896 0.150174
Precision 0.168582 0.153138 0.139414 0.162077 0.170838 0.195479 0.196615
F-score 0.155044 0.139792 0.126533 0.149153 0.157064 0.169037 0.170285

Table 5.22: ROUGE-SU measures in local search technique

178

to 250 words) in the 〈T EXT 〉 field of the most recent document(s). It shows that the local

search technique outperforms the other two and the EM algorithm performs better than the

k-means algorithm. Comparing with the DUC 2007 participants our systems achieve top

scores and for some ROUGE measures (ROUGE-3, ROUGE-4, ROUGE-SU) there is no

statistically significant difference between our system and the best DUC 2007 system.

Algrothms ROUGE
1

ROUGE
2

ROUGE
3

ROUGE
4

ROUGE
L

ROUGE
W

ROUGE
SU

Baseline 0.334750 0.064900 0.018560 0.007940 0.310740 0.113810 0.112780
Best
System

0.43889 0.122850 0.045450 0.021780 0.405610 0.153600 0.174700

K-means 0.389695 0.08902580.036467 0.013923 0.368843 0.137730 0.152011
EM 0.399072 0.109436 0.041437 0.016988 0.368876 0.138876 0.161970
Local
Search

0.413023 0.107037 0.043298 0.020177 0.392769 0.147720 0.170285

Table 5.23: ROUGE F-scores for different systems

5.8 Chapter Summary

In this chapter, we presented our works on answering complex questions. We extracted

eighteen important features for each of the sentences in the document collection to measure

its relevancy to the query. Later we used a simple local search technique to fine-tune the

feature weights. We used the statistical clustering algorithms: EM and k-means to select

the relevant sentences for summary generation.

From our experiments, it is obvious that our systems achieve better results when we

include the tree kernel based syntactic and semantic features though summaries based on

only syntactic or semantic feature do not achieve good results. Graph-based cosine simi-

larity and lexical semantic features are also important for selecting relevant sentences. As

179

our lexical features include the ROUGE measures, summaries based on only lexical fea-

tures achieve good results also. Of the three learning algorithms, the local search technique

ourperforms the other two and the EM performs better than the k-means based learning.

As for this research problem, our training data were not labeled so we could not use

the supervised learning algorithms. Our future plan is to experiment with the supervised

learning techniques (i.e. SVM, MAXENT) and see how they perform for this problem.

180

Chapter 6

Conclusion and Future Work

6.1 Conclusion

6.1.1 Simple Question Answering

Our method for answering simple questions creates queries from the questions to extract

most relevant passages using the information retrieval system. The most important part of

our system is our question classifier, which uses rules we determined by manually observ-

ing a testbed of sample questions. Our system classifies questions by question type, and the

type of the answer. The documents retrieved earlier are then tagged to enable our system

to extract different information from the documents. Named entities are one of the types of

information extracted from the documents. Some of these named entities will represent the

answer type of the question. Our system then extracts possible answers that fit the type of

answer, dictated by the type of question, from the document set. After the possible answers

are extracted, our system uses an answer ranking formula to choose the answer ranked most

probable by our system. Our system ranks the answers according to various criteria that

we determined gave our system the best accuracy on the test set of questions as compared

to other formulae we tried.

Our method of question answering does not include any deep processing of the docu-

ments, and the run time is dependent on how many documents are retrieved for the ques-

tion being asked. In TREC 2007 evaluation, our system achieved almost 26% accuracy

for the factoid questions which was ranked fourth among 51 participants and the average

F-measure for list questions was 0.132 which was ranked sixth. Our system achieved the

“average pyramid F-score” (with β = 3) of 0.030 for the “Other” questions which is a

181

poor score. In TREC 2007, we focused mainly on the factoid and the list questions. For

the “Other” questions, we extracted the important facts about the target and gave the top-

ranked fact as the answer while “Other” questions need a list of non-redundant facts about

the target. This may be the reason that our system could not achieve good scores in “Other”

questions.

Taking all three types of questions for a topic into consideration, our system achieved

average per-series score of 0.1410 which is almost the same as the 10th system in TREC

2007. These results show that we have a relatively good accuracy compared to the other

systems that participated in TREC 2007.

6.1.2 Complex Question Answering

We investigated several methods for answering complex questions. The problem can be

rephrased as query-based summarization. In the early stage of my study, we participated in

DUC 2007 competition with a system which is based on six features: a) cosine similarity,

b) lexical chain, c) BE overlap, d) question-focus overlap, e) previous sentence overlap

and f) document overlap. We assigned the feature-weights empirically for ranking the

sentences. As the system could not achieve one of the best scores, we proposed an enhanced

version based on eighteen features and a local search technique to fine tune the feature-

weights. We also experimented with two unsupervised machine learning approaches for

the same problem. Our extracted features include: 1) lexical , 2) lexical semantic, 3) cosine

similarity, 4) syntactic, and 5) shallow-semantic features.

Our local search technique (i.e. hill climbing) tries to maximize the ROUGE score in

every step by changing the weights individually. For each weight wi, the algorithm achieves

the local maximum of the ROUGE value. In this way, once we learn the weights we rank

the sentences by multiplying the feature-vector with the weight-vector. We then generate

182

the summaries by taking the top N sentences.

We also experimented with two unsupervised learning techniques: 1) EM and 2) k-

means with the features extracted.

We assume that we have two clusters of sentences: 1. query-relevant and 2. query-

irrelevant. We learned the means of the clusters using the k-means algorithm then we used

Bayesian model in order to rank the sentences and generate the summaries accordingly (i.e.

by taking the top N sentences).

The learned means in the k-means algorithm are used as the initial means in the EM

algorithm. We applied the EM algorithm to cluster the sentences into two classes : 1)

query-relevant and 2) query-irrelevant. We take out the query-relevant sentences and rank

them using the learned weights (i.e. in local search). We then filter out the non-redundant

sentences using a redundancy checking module and generate summaries.

We also experimented with the effects of different kinds of features. Our evaluation

measures show that our systems achieve better results when we include tree kernel based

syntactic and semantic features. Our evaluations show that the local search technique out-

performs the other two and EM performs better than the k-means learning. As the local

search technique is a kind of supervised learning so it outperforms the other two unsuper-

vised techniques. Comparing with the DUC-2007 participants, our systems achieve top

scores and there is no statistically significant difference between our system and the top

DUC 2007 system.

183

6.2 Future Work

6.2.1 Simple Question Answering

Though in this year we improved our rank in all three types of questions but our scores are

not the best. We will have to improve the accuracy. We discovered that as the taggers and

parsers were not trained on questions, they tagged incorrectly in many settings. Tagging

questions correctly will lead to more accurate classifications.

We did not include the syntactic and semantic similarity measures between the possible

answers and the questions in ranking answers. We have the plan to include them in future.

As explained earlier our system processed the top 100 (50 AQUAINT-2 + 50 BLOG06)

relevant documents provided by TREC instead of using the whole collection. Our system

did not find answers (i.e. NIL) for 153 factoid questions while there were only 16 “NIL”

answers. Our system could find 8 correct “NIL” answers. So, we have the plan to extract

answers from the whole collection in future.

With the knowledge we gained from classifying questions, we could experiment with

machine learning techniques for classifying questions. We could develop patterns with

machine learning to extract the question focus, and use it to classify the question. Machine

learning could also be used to discover patterns in the document with which to extract

answers. If we could collect a complete list of patterns we could extract possible answers

using both patterns and named entities. Then our system would extract a list of possible

answers that contain a better percentage of correct answers.

184

6.2.2 Complex Question Answering

As addressed earlier, we experimented with one hill climbing local search technique and

two unsupervised learning techniques. As for this research problem, our training data were

not labeled so we could not use the supervised learning algorithms. Our future plan is

to label the data if possible and experiment with the supervised learning techniques (i.e.

SVM, MAXENT) and see how do they perform for this particular problem.

While our QA systems used several features to find relevant answers we expect that

by decomposing complex questions into the sets of subquestions that they entail, systems

can improve the average quality of answers returned and achieve better coverage for the

question as a whole. We have the plan to decompose the complex questions into several

simple questions before we find the similarity measures between the document sentence

and the query sentence.

The future starts now. In the next few years, conversational and cognitive augmentation

systems will eclipse the factoid QA and simple interactive QA. Capable artificial assistants

will take away the mundane and error-prone activities of searching and organizing informa-

tion and leave the person with more time and resources for crucial intellectual and creative

activities. More research will be needed to deliver this vision, but we are already part of

the way there.

185

References
Ageno, A., D. Ferres, E. Gonzalez, S. Kanaan, H. Rodriguez, M. Surdeanu, and J. Turmo.

2004. TALP-QA system at TREC-2004: Structural and Hierarchical Relaxation over
Semantic Constraints. In Proceedings of the 13th Text REtreival Conference, Gaithers-
burg, Maryland.

Ahn, D., V. Jijkoun, J. Kamps, G. Mishne, K. Muller, M. de Rijke, and S. Schlobach. 2004.
The University of Amsterdam at TREC2004. In Proceedings of the 13th Text REtreival
Conference, Gaithersburg, Maryland.

Amigo, E., J. Gonzalo, V. Peinado, A. Peinado, and F. Verdejo. 2004. An Empirical Study
of Information Synthesis Tasks. In Proceedings of the 42nd Annual Meeting of the
Association for Computational Linguistics, pages 207–es, Barcelona, Spain.

Barzilay, R. and M. Elhadad. 1997. Using Lexical Chains for Text Summarization. In Pro-
ceedings of the 35th Annual Meeting of the Association for Computational Linguistics
and the 8th European Chapter Meeting of the Association for Computational Linguis-
tics, Workshop on Intelligent Scalable Test Summarization, pages 10–17, Madrid.

Berger, A., 2001. Statistical Machine Learning for Information Retrieval. Ph.D. Thesis,
School of Computer Science, Carnegie Mellon University, Pittsburgh.

Bilmes, J. 1997. A Gentle Tutorial on the EM algorithm and its Application to Parameter
Estimation for Gaussian Mixture and Hidden Markov Models. In Technical Report
ICSI-TR-97-021, University of Berkeley.

Brill, E. 1994. Some Advances in Transformation-based Part of Speech Tagging. In
National Conference on Artificial Intelligence, pages 722–727, Seattle, Washington.

Brown, P. F., S. D. Pietra, D. Pietra, and R. L. Mercer. 1991. Word sense disambiguation
using statistical methods. In Proceedings of the 29th Annual Meeting of the Association
for Computational Linguistics, pages 264–270.

Cannataro, M. and D. Talia. 2003. The Knowledge Grid. Communications of the ACM,
46(1):89–93.

Chali, Y. and S. Dubien. 2004. University of Lethbridges participation in TREC-2004 QA
track. In Proceedings of the 13th Text REtreival Conference, Gaithersburg, Maryland.

Chali, Y. and S. R. Joty. 2007a. University of Lethbridge’s participation in DUC-2007
main task. In Proceedings of the Document Understanding Conference, Rochester.
NIST.

Chali, Y. and S. R. Joty. 2007b. University of Lethbridge’s Participation in TREC-2007
QA Track. In Proceedings of the sixteenth Text REtrieval Conference, Gaithersburg.
NIST.

186

Chali, Y. and S. R. Joty. 2007c. Word Sense Disambiguation Using Lexical Cohesion.
In Proceedings of the 4th International Conference on Semantic Evaluations, pages
476–479, Prague. ACL.

Charniak, E. 1999. A Maximum-Entropy-Inspired Parser. In Technical Report CS-99-12,
Brown University, Computer Science Department.

Chen, J., G. He, Y. Wu, and S. Jiang. 2004. UNT at TREC 2004: Question Answering
Combining Multiple Evidences. In Proceedings of the 13th Text REtreival Conference,
Gaithersburg, Maryland.

Chu-Carroll, J., K. Czuba, J. Prager, A. Ittycheriah, and S. Blair-Goldensohn. 2004. IBM’s
PIQUANT II in TREC2004. In Proceedings of the 13th Text REtreival Conference,
Gaithersburg, Maryland.

Clarke, C. L. A, G. V. Cormack, and T. R. Lynam. 2001. Exploiting redundancy in question
answering. In Proceedings of the 24th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 358–365, New Orleans,
Louisiana.

Clifton, T. and W. Teahan. 2004. Bangor at TREC 2004: Question Answering Track. In
Proceedings of the Thirteenth Text REtreival Conference, Gaithersburg, Maryland.

Collins, M. and N. Duffy. 2001. Convolution Kernels for Natural Language. In Proceed-
ings of Neural Information Processing Systems, pages 625–632, Vancouver, Canada.

Cormen, T. R., C. E. Leiserson, and R. L. Rivest, 1989. Introduction to Algorithms. The
MIT Press.

Dagan, I., Y. Karov, and D. Roth. 1997. Mistake-driven learning in text categorization. In
Proceedings of the 2nd Conference on Empirical Methods in Natural Language Pro-
cessing, Brown University, Providence, Rhode Island.

Dang, H. T., D. Kelly, and J. Lin. 2007. Overview of the TREC 2007 Question Answering
Track. In proceedings of the 16th Text REtrieval Conference, Gaithersburg, Maryland.
NIST.

Diekema, A. R., O. Yilmazel, and E. D. Liddy. 2004. Evaluation of Restricted Domain
Question-Answering Systems. In Proceedings of EACL Workshop on Question An-
swering in Restricted Domains, pages 2–7, Barcelona, Spain.

Dubien, S., 2005. Question Answering Using Document Tagging and Question Classi-
fication. M.Sc. Thesis, Department of Computer Science, University of Lethbridge,
Canada.

187

Echihabi, A., U. Hermjakob, E. Hovy, D. Marcu, E. Melz, and D. Ravichandran. 2003.
Multiple-Engine Question Answering in TextMap. In Proceedings of the Twelfth Text
REtreival Conference, pages 772–781, Gaithersburg, Maryland.

Erkan, G. and D. R. Radev. 2004. LexRank: Graph-based Lexical Centrality as Salience
in Text Summarization. Journal of Artificial Intelligence Research, 22:457–479.

Ferret, O., B. Grau, M. Hurault-Plantet, G. Illouz, L. Monceaux, I. Robba, and A. Vilnat.
2001. Finding an answer based on the recognition of the question focus. In Proceed-
ings of the Tenth Text REtreival Conference, Gaithersburg, Maryland.

Galley, M. and K. McKeown. 2003. Improving Word Sense Disambiguation in Lexical
Chaining. In Proceedings of the 18th International Joint Conference on Artificial Intel-
ligence, pages 1486–1488, Acapulco, Mexico.

Goldstein, J., M. Kantrowitz, V. Mittal, and J. Carbonell. 1999. Summarizing Text Doc-
uments: Sentence Selection and Evaluation Metrics. In Proceedings of the 22nd In-
ternational ACM Conference on Research and Development in Information Retrieval,
SIGIR, pages 121–128, Berkeley, CA.

Hacioglu, K., S. Pradhan, W. Ward, J. H. Martin, and D. Jurafsky. 2003. Shallow Seman-
tic Parsing Using Support Vector Machines. In Technical Report TR-CSLR-2003-03,
University of Colorado.

Halliday, M. and R. Hasan, 1976. Cohesion in English. Longman, London.

Harabagiu, S., F. Lacatusu, and A. Hickl. 2006. Answering complex questions with ran-
dom walk models. In Proceedings of the 29th annual international ACM SIGIR con-
ference on Research and development in information retrieval, pages 220 – 227. ACM.

Harabagiu, S. M. and S. J. Maiorano. 1999. Finding Answers in Large Collections of
Texts: Paragraph Indexing + Abductive Inference. In AAAI Fall Symposium on Ques-
tion Answering Systems, pages 63–71, North Falmouth, Massachusetts.

Hartigan, J. A. and M. A. Wong. 1979. A K-means Clustering Algorithm. Applied Statis-
tics, 28:100–108.

Haruno, M., S. Shirai, and Y. Ooyama. 1998. Using decision trees to contruct a practical
parser. In Proceedings of the joint 17th International Conference on Computational
Linguistics and 36th Annual Meeting of the Association for Computational Linguistics,
pages 505–511, Montreal, Canada.

Hermjakob, U. 2001. Parsing and Question Classification for Question Answering. In
Proceedings of the Association for Computational Linguistics 39th Annual Meeting
and 10th Conference of the European Chapter Workshop on Open-Domain Question
Answering, pages 17–22, Toulouse, France.

188

Hirst, G., C. DiMarco, E. Hovy, and K. Parsons. 1997. Authoring and generating health-
education documents that are tailored to the needs of the individual patient. In Proceed-
ings of the Sixth International Conference on User Modeling, pages 107–118, Sardinia,
Italy.

Hirst, G. and D. St-Onge. 1997. Lexical chains as representation of context for the de-
tection and correction of malapropisms. In Christiane Fellbaum, editor, WordNet: An
Electronic Lexical Database and Some of its Applications, pages 305–332. MIT press.

Hovy, E., C. Y. Lin, L. Zhou, and J. Fukumoto. 2006. Automated Summarization Eval-
uation with Basic Elements. In Proceedings of the Fifth Conference on Language Re-
sources and Evaluation, Genoa, Italy.

Hughes, J., 1994. Automatically Acquiring a Classification of Words. Ph.D thesis, School
of Computing, University of Leeds.

Ibrahimov, O., I. Sethi, and N. Dimitrova. 2001. Clustering of imperfect transcripts using
a novel similarity measure. In Proceedings of the Special Interest Group on Informa-
tion Retrieval Workshop on Information Retrieval Techniques for Speech Applications,
pages 23–35, New Orleans, LA.

Jijkoun, V. and M. de Rijke. 2004. Answer Selection in a multi-stream open domain
question answering system. In Proceedings 26th European Conference on Information
Retrieval, volume 2997 of LNCS, pages 99–111, Springer.

Jijkoun, V., G. Mishne, C. Monz, M. de Rijke, S. Schlobach, and O. Tsur. 2003. The Uni-
versity of Amsterdam at the TREC 2003 Question Answering Track. In Proceedings of
the Twelfth Text REtreival Conference, pages 586–593, Gaithersburg, Maryland.

Jurafsky, D. and J. H. Martin, 2000. Speech and Language Processing. Prentice Hall.

Katz, B., J. Lin, D. Loreto, W. Hildebrandt, M. Bilotti, S. Felshin, A. Fernandes, G. Marton,
and F. Mora. 2003. Integrating Web-Based and Corpus-Based Techniques for Question
Answering. In Proceedings of the Twelfth Text REtreival Conference, pages 426–435,
Gaithersburg, Maryland.

Kim, H., K. Kim, G. G. Lee, and J. Seo. 2001. MAYA: A Fast Question-answering System
Based on A Predictive Answer Indexer. In Proceedings of the Association for Compu-
tational Linguistics 39th Annual Meeting and 10th Conference of the European Chapter
Workshop on Open-Domain Question Answering, pages 9–16, Toulouse, France.

Kingsbury, P. and M. Palmer. 2002. From Treebank to PropBank. In Proceedings of the
international conference on Language Resources and Evaluation, Las Palmas, Spain.

Kolla, M., 2004. Automatic Text Summarization using Lexical Chains: Algorithms and Ex-
periments. M.Sc. Thesis, Department of Computer Science, University of Lethbridge,
Canada.

189

Kwok, C., O. Etzioni, and D. Weld. 2001. Scaling question answering to the Web. In
World Wide Web, pages 150–161, Hong-Kong.

Lewis, D., R. E. Schapire, J.P. Callan, , and R. Papka. 1996. Training algorithms for linear
text classifiers. In Proceedings of the 19th International Conference on Research and
Development in Information Retrieval, SIGIR, pages 298–306, Zurich, Switzerland.

Li, J., L. Sun, C. Kit, and J. Webster. 2007. A Query-Focused Multi-Document Sum-
marizer Based on Lexical Chains. In Proceedings of the Document Understanding
Conference, Rochester. NIST.

Li, X. and D. Roth. 2001. Exploring Evidence for Shallow Parsing. In Proceedings of the
Fifth Workshop on Computational Language Learning, pages 1–7, Toulouse, France.

Li, X. and D. Roth. 2002. Learning Question Classifiers. In Proceedings of the 19th
International Conference on Computational Linguistics, pages 1–7, Taipei,Taiwan.

Lin, C. Y. 2004. ROUGE: A Package for Automatic Evaluation of Summaries. In Proceed-
ings of Workshop on Text Summarization Branches Out, Post-Conference Workshop of
Association for Computational Linguistics, pages 74–81, Barcelona, Spain.

Lin, D. 1998a. An Information-Theoretic Definition of Similarity. In Proceedings of
International Conference on Machine Learning, pages 296–304, Madison, Wisconsin.

Lin, D. 1998b. Automatic Retrieval and Clustering of Similar Words. In Proceedings of
the International Conference on Computational Linguistics and Association for Com-
putational Linguistics, pages 768–774, Montreal, Canada.

Lin, J., A. Fernandes, B. Katz, G. Marton, and S. Tellex. 2003. Extracting Answers
from the Web Using Knowledge Annotation and Knowledge Mining Techniques. In
Proceedings of the Eleventh Text REtreival Conference, Gaithersburg, Maryland.

Magnini, B., M. Negri, R. Prevete, and H. Tanev. 2002. Is it the right answer? Exploiting
web redundancy for answer validation. In Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, pages 425–432, Philadelphia, PA.

Mani, I., 2001. Automatic Summarization. John Benjamins Co, Amsterdam/Philadelphia.

Mani, I. and M. Maybury, 1999. Advances in Automatic Text Summarization. MIT Press.

Manning, C. D. and H. Schutze, 2000. Foundations of Statistical Natural Language Pro-
cessing. The MIT Press.

Marcus, M. P., B. Santorini, and M. A. Marcinkiewicz. 1994. Building a Large Annotated
Corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330.

190

Maybury, M. and A. Merlino. 1997. Multimedia summaries of broadcast news. In Pro-
ceedings of the IASTED International Conference on Intelligent Information Systems,
pages 442–449. IEEE Computer Society.

McKeown, K., R. Barzilay, J. Chen, D. Elson, D. Evans, J. Klavans, A. Nenkova, B. Schiff-
man, and S. Sigelman. 2003. Columbia’s newsblaster: New features and future direc-
tions (demo). In Proceedings of the Annual Meeting of the North American Association
for Computational Linguistics, Edmonton, Canada.

McKeown, K., R. Desmond, A. Jordan, and V. Hatzivassiloglou. 1998. Generating patient-
specific summaries of online literature. In AAAI 98 Spring Symposium on Intelligent
Text Summarization, pages 34–43, Stanford University.

Mirkin, B., 2005. Clustering for Data Mining: A Data Recovery Approach. Boca Raton
F1, Chapman and Hall/CRC.

Moldovan, D., C. Clark, and M. Bowden. 2007. Lymbas PowerAnswer 4 in TREC 2007.
In Proceedings of the 16th Text REtreival Conference, Gaithersburg, Maryland.

Moldovan, D., S. Harabagiu, C. Clark, M. Bowden, J. Lehmann, and J. Williams. 2004.
Experiments and Analysis of LCC’s two QA Systems over TREC2004. In Proceedings
of the 13th Text REtrevial Conference, Gaithersburg, Maryland.

Moldovan, D., S. Harabagiu, R. Girju, P. Morarescu, F. Lactusu, A. Novischi, A. Bad-
ulescu, and O. Bolohan. 2002. LCC Tools for Question Answering. In Proceedings of
the Eleventh Text REtreival Conference, Gaithersburg, Maryland.

Moldovan, D., S. Harabagiu, M. Pasca, R. Mihalcea, R. Girju, R. Goodrum, and V. Rus.
2000. The Structure and Performance of an Open-Domain Question Answering Sys-
tem. In 38th Annual Meeting of the Association for Computational Linguistics, pages
563–570, Hong Kong.

Moldovan, D., S. Harabagiu, M. Pasca, R. Mihalcea, R. Goodrum, R. Girju, and V. Rus.
1999. LASSO: A Tool for Surfing the Answer Net. In Proceedings of the 8th Text
REtreival Conference, Gaithersburg, Maryland.

Moldovan, D. and A. Novischi. 2002. Lexical Chains for Question Answering. In Pro-
ceedings of the International Conference on Computational Linguistics, pages 674–
680, Taipei, Taiwan.

Molla, D. and M. Gardiner. 2004. AnswerFinder at TREC 2004. In Proceedings of the
13th Text REtreival Conference, Gaithersburg, Maryland.

Molla, D. and S. Wan. 2006. Macquarie University at DUC 2006:Question Answering for
Summarisation. In Proceedings of the Document Understanding Conference. NIST.

191

Morris, J. and G. Hirst. 1991. Lexical cohesion computed by thesaural relations as an
indicator of structure of text. Computational Linguistics, 17(1):21–48.

Moschitti, A. and R. Basili. 2006. A Tree Kernel approach to Question and Answer
Classification in Question Answering Systems. In Proceedings of the 5th international
conference on Language Resources and Evaluation, Genoa, Italy.

Moschitti, A., S. Quarteroni, R. Basili, and S. Manandhar. 2007. Exploiting Syntactic and
Shallow Semantic Kernels for Question/Answer Classificaion. In Proceedings of the
45th Annual Meeting of the Association of Computational Linguistics, pages 776–783,
Prague, Czech Republic. ACL.

Munoz, M., V. Punyakanok, D. Roth, and D. Zimak. 1999. A learning approach to shallow
parsing. In Proceedings of the joint SIGDAT Conference on Emperical Methods in
Natural Language Processing and Very Large Corpora, pages 168–178, Maryland.

Nyberg, E., T. Mitaamura, J. Callan, J. Carbonell, R. Frederking, K. Collins-Thompson,
L. Hiyakumoto, Y. Huang, C. Huttenhower, S. Judy, J. Ko, A. Kupsc, L. V. Lita, V. Pe-
dro, D. Svoboda, and B. Van Durme. 2003. The JAVELIN Question-Answering Sys-
tem at TREC 2003: A Multi-Strategy Approach with Dynamic Planning. In Proceed-
ings of the Twelfth Text REtreival Conference, Gaithersburg, Maryland.

Otterbacher, J., G. Erkan, and D. R. Radev. 2005. Using Random Walks for Question-
focused Sentence Retrieval. In Proceedings of Human Language Technology Confer-
ence and Conference on Empirical Methods in Natural Language Processing, pages
915–922, Vancouver, Canada.

Pasca, M. and S. M. Harabagiu. 2001. Answer Mining from On-Line Documents. In
Proceedings of the Association for Computational Linguistics 39th Annual Meeting
and 10th Conference of the European Chapter Workshop on Open-Domain Question
Answering, pages 38–45, Toulouse, France.

Pinchak, C. and S. Bergsma. 2007. Automatic Answer Typing for How-Questions. In Pro-
ceedings of Human Language Technologies and the Conference of the North American
Chapter of the Association for Computational Linguistics, pages 516 – 523, Rochester,
New York.

Pinchak, C. and D. Lin. 2006. A Probabilistic Answer Type Model. In Proceedings of
the 11th Conference of the European Chapter of the Association for Computational
Linguistics, pages 393 – 400, Trento, Italy.

Pingali, P., Rahul K., and V. Varma. 2007. IIIT Hyderabad at DUC 2007. In Proceedings
of the Document Understanding Conference, Rochester. NIST.

Porter, M. F. 1980. An algorithm for suffix stripping. Program, 14(3):130–137.

192

Prager, J., J. Chu-Carroll, K. Czuba, C. Wlty, A. Ittycheriah, and R. Mahindru. 2003.
IBM’s PIQUANT in TREC2003. In Proceedings of the Twelfth Text REtreival Confer-
ence, pages 283–292, Gaithersburg, Maryland.

Radev, D. R., S. Blair-Goldensohn, Z. Zhang, and R. S. Raghavan. 2001. Newsinessence:
A system for domain-independent, real-time news clustering and multi-document sum-
marization. In Demo Presentation, Human Language Technology Conference, San
Diego, CA.

Ramshaw, L. and M. Marcus. 1995. Text Chunking Using Transformation-Based Learn-
ing. In D. Yarovsky and K. Church, editors, Proceedings of the Third Workshop on
Very Large Corpora, pages 82–94, Somerset, New Jersey. Association for Computa-
tional Linguistics.

Ratnaparkhi, A. 1996. A maximum entropy part-of-speech tagger. In Proceedings of the
Conference of Empirical Methods in Natural Language Processing, pages 133–142,
University of Pennsylvania.

Ravichandran, D. and E. Hovy. 2002. Learning Surface Text Patterns for a Question
Answering System. In Proceedings of the 40th Annual meeting of the association for
Computational Linguistics, pages 41–47, Philadelphia, PA.

Rohall, S. L., D. Gruen, P. Moody, M. Wattenberg, M. Stern, B. Kerr, B. Stachel, K. Dave,
R. Armes, and E. Wilcox. 2004. Remail: a reinvented email prototype. In Extended
abstracts of the 2004 conference on Human factors and computing systems, pages 791–
792. ACM Press.

Roth, D. and D. Zelenko. 1998. Part of speech tagging using a network of linear sep-
arators. In Proceedings of the joint 17th International Conference on Computational
Linguistics and 36th Annual Meeting of the Association for Computational Linguistics,
pages 1136–1142, Montreal, Canada.

Roussinov, D., Y. Ding, and J. A. Robles-Flores. 2004. Experiments with Web QA Sys-
tem and TREC2004 questions. In Proceedings of the 13th Text REtreival Conference,
Gaithersburg, Maryland.

Russel, S. and P. Norvig, 2003. Artificial Intelligence A Modern Approach, 2nd Edition.
Prentice Hall.

Sekine, S. 2002. Proteus Project OAK System (English Sentence Analyzer),
http://nlp.nyu.edu/oak.

Silber, H. G. and K. F. McCoy. 2002. Efficiently Computed Lexical Chains As an Interme-
diate Representation for Automatic Text Summarization. Computational Linguistics,
28(4):487–496.

193

Strzalkowski, T. and S. Harabagiu, 2008. Advances in Open Domain Question Answering.
Springer.

Tanaka, H. 1996. Decision tree learning algorithm with structural attributes: Application
to verbal case frame acquisition. In Proceedings of the 16th International Conference
on Computational Linguistics, pages 943–948, Copenhagen, Denmark.

Tanev, H., M. Kouylekov, and B. Magnini. 2004. Combining Linguistic Processing and
Web Mining for Question Answering: ITC-irst at TREC-2004. In Proceedings of the
Thirteenth Text REtreival Conference, Gaithersburg, Maryland.

Teahan, W. J. 2003. Knowing about knowledge: Towards a framework for knowledgeable
agents and knowledge grids. Technical report, Artificial Intelligence and Intelligent
Agents Tech Report AIIA 03.2, School of Informatics, University of Wales, Bangor.

Toutanova, K., C. Brockett, M. Gamon, J. Jagarlamudi, H. Suzuki, and L. Vanderwende.
2007. The PYTHY Summarization System: Microsoft Research at DUC 2007 . In
proceedings of the Document Understanding Conference, Rochester. NIST.

Voorhees, E. M. 1999. Overview of the TREC 1999 Question Answering Track. In
Proceedings of the 8th Text REtreival Conference, Gaithersburg, Maryland.

Voorhees, E. M. 2000. Overview of the TREC 2000 Question Answering Track. In
Proceedings of the 9th Text REtreival Conference, Gaithersburg, Maryland.

Voorhees, E. M. 2001. Overview of the TREC 2001 Question Answering Track. In
Proceedings of the 10th Text REtreival Conference, Gaithersburg, Maryland.

Voorhees, E. M. 2002. Overview of the TREC 2002 Question Answering Track. In
Proceedings of the Eleventh Text REtreival Conference, Gaithersburg, Maryland.

Voorhees, E. M. 2003. Overview of the TREC 2003 Question Answering Track. In Pro-
ceedings of the 12th Text REtreival Conference, pages 54–68, Gaithersburg, Maryland.

Voorhees, E. M. 2004. Overview of the TREC 2004 Question Answering Track. In Pro-
ceedings of the 13th Text REtreival Conference, pages 52–62, Gaithersburg, Maryland.

Voorhees, E. M. 2005. Using question series to evaluate question answering system effec-
tiveness. In Proceedings of the Human Language Technology Conference and Confer-
ence on Empirical Methods in Natural Language Processing, pages 299–306, Vancou-
ver, Canada.

Waibel, A., M. Bett, M. Finke, and R. Stiefelhagen. 1998. Meeting browser: tracking
and summarization meetings. In Proceedings of the 1998 DARPA Broadcast News
Workshop, Lansdowne, Virginia.

194

Waltz, D. L. 1978. An English Language Question Answering System for a Large Rela-
tional Database. Communications of the ACM, 21(7):526–539.

Weiss, S.M., C. Apte, F.J. Damerau, D.E. Johnson, F.J. Oles, T. Goetz, and T. Hampp.
1999. Maximizing text-mining performance. In IEEE Intelligent Systems, pages 63–
69.

Wu, L., X. Huang, L. You, Z. Zhang, X. Li, and Y. Zhou. 2004. FDUQA on TREC2004
QA Track. In Proceedings of the 13th Text REtreival Conference, Gaithersburg, Mary-
land.

Wu, M., X. Zheng, M. Duan, T. Liu, and T. Strzalkowski. 2003. Question Answering
By Pattern Matching, Web-Proofing, Semantic Form Proofing. In Proceedings of the
Twelfth Text REtreival Conference, pages 578–585, Gaithersburg, Maryland.

Xu, J., A. Licuanan, J. May, S. Miller, and R. Weischedel. 2002. TREC 2002 QA at
BBN: Answer Selection and Confidence Estimation. In Proceedings of the Eleventh
Text REtreival Conference, pages 96–101, Gaithersburg, Maryland.

Xu, J., A. Licuanan, and R. Weischedel. 2003. TREC 2003 QA at BBN: Answer Def-
initional Questions. In Proceedings of the Twelfth Text REtreival Conference, pages
98–108, Gaithersburg, Maryland.

Zhang, A. and W. Lee. 2003. Question Classification using Support Vector Machines.
In Proceedings of the Special Interest Group on Information Retrieval, pages 26–32,
Toronto, Canada. ACM.

Zhou, L., C. Y. Lin, and E. Hovy. 2005. A BE-based Multi-dccument Summarizer with
Query Interpretation. In Proceedings of Document Understanding Conference, Van-
couver, B.C. Canada.

195

Appendix-A

Question Type Examples

196

Example of Questions Types

When Questions

• WHEN DAY - Pattern “When is”

– Examples:

∗ When is hurricane season in the Caribbean?
∗ When is the summer solstice?

• WHEN YEAR - No pattern. Anything not a WHEN DAY

– Examples:

∗ When was Florence Nightingale born?
∗ When was the Nobel prize first given?

Who Questions

• WHO DEFINITION - Pattern “Who [is or was] [NAME]?”

– Examples:

∗ Who is William Wordsworth?
∗ Who is Langston Hughes?

• WHO LIST - Pattern “Who are”

– Examples:

∗ Who are professional female boxers?
∗ Who are 3 authors who have written books about near death experiences?

• WHO FACTOID - All the rest.

– Examples:

∗ Who is the prophet of the religion of Islam?
∗ Who invented paper?

Where Questions

• WHERE SCHOOL - Pattern “college, university, degree”

– Examples:

∗ Where did David Ogden Stiers get his undergraduate degree?
∗ Where did Bill Gates go to college?

197

• WHERE LOCATION - All the rest

– Examples:

∗ Where is Amsterdam?
∗ Where is Tufts University?

How Questions

• HOW LARGE - Pattern “How [big or large]”

– Examples:

∗ How big is Mars?
∗ How big does a pig get?

• HOW LATE - Pattern “How late”

– Examples:

∗ How late is Disneyland open?
∗ How late in pregnancy will airlines let you fly?

• HOW ACCURATE - Pattern “How accurate”

– Examples:

∗ How accurate are HIV tests?

• HOW DISTANCE - Pattern “How [far or tall or wide or short or high or close or deep]”

– Examples:

∗ How wide is the Milky Way Galaxy?
∗ How far away is the moon?
∗ How tall is Tom Cruise?

• HOW OFTEN - Pattern “How [often or frequent]”

– Examples:

∗ How often does the men’s soccer World Cup take place?
∗ How often does Hale Bopp comet approach the Earth?

• HOW LONG - Pattern “How long”

– Examples:

∗ How long did the Charles Manson murder trial last?
∗ How long does it take to travel from Tokyo to Niigata?

198

• HOW MUCH - Pattern “How much”

– Examples:

∗ How much vitamin C should you take in a day?
∗ How much is the Sacajawea coin worth?

• HOW TEMP - Pattern “How [warm or cold or hot]”

– Examples:

∗ How hot is the core of the Earth?
∗ How hot is the sun?

• HOW FAST - Pattern “How fast”

– Examples:

∗ How fast is the speed of light?
∗ How fast is the world spinning?

• HOW OLD - Pattern “How old”

– Examples:

∗ How old was George Washington when he died?
∗ How old must you be to become President of the United States?
∗ How old was Elvis when he died?

• HOW DEATH - Pattern “How did [NAME] die?”

– Examples:

∗ How did Anne Frank die?
∗ How did John Dillinger die?

• HOW METHOD - No pattern. Questions not classified yet are classified as this.

– Examples:

∗ How did Hawaii become a state?
∗ How did Cincinnati get its name?

What questions

• WHAT DEF - Patterns “What ((is) or (are)) [TERM TO BE DEFINED]”

– Examples:

∗ What is an atom?
∗ What are invertebrates?

199

• WHAT ACRO - Patterns “stand for or stands for or an acronym for or is the abbreviation for
or the ((acronym) or (abbreviation))”

– Examples:

∗ What does EKG stand for?
∗ What is the abbreviation for limited partnership?

• WHAT VERB - Pattern is question ends in a verb

– Examples:

∗ What did Alfred Noble invent?
∗ What do manatees eat?
∗ What did Vasco da Gama discover?

• WHAT CITY - Focus Pattern “city or town or capital or village”

– Examples:

∗ What city has the oldest relationship as a sister-city with Los Angeles?
∗ What city is Disneyland in?

• WHAT COUNTRY - Focus Pattern “country”

– Examples:

∗ What country is Aswan High Dam located in?
∗ What country made the Statue of Liberty?

• WHAT PROVINCE - Focus Pattern “province”

– Examples:

∗ What province in Canada is Niagara Falls located in?
∗ What province is Calgary located in?

• WHAT FLOWER - Focus Pattern “flower”

– Examples:

∗ What is Hawaii’s state flower?
∗ What is the Illinois state flower?

• WHAT BIRD - Focus Pattern “bird”

– Examples:

∗ What is the Ohio state bird?
∗ What is Maryland’s state bird?

200

• WHAT TREE - Focus Pattern “tree”

– Examples:

∗ What is California’s state tree?

• WHAT DATE - Focus Pattern “date or day”

– Examples:

∗ What date did the United States civil war start?
∗ What date did the Lusitania sink?

• WHAT YEAR - Focus Pattern “year”

– Examples:

∗ What year did Nintendo 64 come out?
∗ What year was Ebbets Field, home of Brooklyn Dodgers, built?

• WHAT NAME - Focus Pattern “name”

– Examples:

∗ What was Dr. Seuss’ real name?
∗ What is Tina Turners real name?

• WHAT CONTINENT - Focus Pattern “continent”

– Examples:

∗ What continent is Egypt on?
∗ What continent is India on?

• WHAT POPULATION - Focus Pattern “population”

– Examples:

∗ What is the population of Ohio?
∗ What is the population of the United States?

• WHAT COMPANY - Focus Pattern “company”

– Examples:

∗ What company created the Internet browser Mosaic?
∗ What company manufactures Sinemet?

• WHAT INSTRUMENT - Focus Pattern “instrument”

– Examples:

∗ What instrument does the concertmaster of an orchestra usually play?
∗ What instrument measures radioactivity?

201

• WHAT COLOR - Focus Pattern “color”

– Examples:

∗ What color is the top stripe on the United States flag?
∗ What color belt is first in karate?

• WHAT NATIONALITY - Focus Pattern “nationality”

– Examples:

∗ What nationality is Pope John Paul II?
∗ What is Al Jolson’s nationality?

202

Appendix-B

Sample System Generated Summaries

203

Example of System Generated Summaries for EM Learning

Following are the example summaries generated by our system based on EM learning for the docu-
ment collection of DUC 2007.

(1) Summary for the topic description (document set D0703A) : “Describe steps taken and
worldwide reaction to introduction of the Euro on January 1, 1999. Include predictions and
expectations reported in the press.”

The Euro will be launched on January 1, 1999. Local press reports
today said that the building societies have produced blueprints
for euro savings accounts, passbooks and cash-dispensers despite
the government’s increasingly Eurosceptical tone. Despite
skepticism about the actual realization of a single European
currency as scheduled on January 1, 1999, preparations for the
design of the Euro note have already begun. The European single
currency euro will go ahead on schedule on January 1, 1999 with
a broad membership, according to a survey of some prominent British
economists. The report also said Duisenberg expects the future
relationship between the dollar and the euro, which officially goes
into effect on Jan. 12, to be stable. Stressing that the introduction
of a single currency will be a great contribution to the unity of an
expanded European Union (EU), Juppe reiterated France’s commitment to
the timetable and criteria of the single currency system set in the
Maastricht treaty, under which the single European currency, recently
named Euro, will be realized by January 1, 1999. The Frankfurt-based
body said in its annual report released today that it has decided on
two themes for the new currency: history of European civilization and
abstract or concrete paintings. Europe’s new currency, the euro, will
rival the U.S. dollar as an international currency over the long term,
Der Spiegel magazine reported Sunday. The European Union member states
are required to completely replace their own national currencies with
the Euro from January 1, 2002.

(2) Summary for the topic description (document set D0708B) : “What countries are having
chronic potable water shortages and why?”

The move came against a backdrop of a severe water shortage in the country.
China is one of the many countries in the world facing water shortage, a
situation plaguing more than 300 of its 660-odd cities. Although Nepal is
rich in water resources, water shortage is pervasive in the country because
of its inability to tap the resources and the lack of well-managed supply
system. A Lebanese official has warned that his country is suffering an
annual water shortage of more than 1 billion cubic meters, the Daily Star

204

reported Friday. Due to the current drought in the Horn of Africa, water
shortage has reigned throughout the east African country and more than 2.2
million Kenyans are threatened by starvation. Fernandes was speaking to the
press on the water shortage problem in Luanda. The water shortage has caused
some 6,000 people in the province to move, the report added. In northwestern
China, which has half of the country’s land, arable land has become
increasingly desertified and sandstorms have become more frequent because of
improper use of water resources. It is widely believed here that water
shortage would be eased to a great extent once these plants become fully
operational. It was reported that water shortage brought by the El Nino
weather El Nino will be very serious in the Philippines. The Addis Ababa
Regional Water and Sewerage Authority announced that the shortage of potable
water in the capital city of Ethiopia will be solved in the last quarter of
this year.

Example of System Generated Summaries for K-means Learning

(1) Summary for the topic description (document set D0703A) : “Describe steps taken and
worldwide reaction to introduction of the Euro on January 1, 1999. Include predictions and
expectations reported in the press.”

About the future European currency, 20 percent feel "well informed ",
79 percent feel to be not well informed. The RBI has set up a working
group to study the implications of the Euro launch. The Euro will be
launched on January 1, 1999. The Council of Economic Ministers of
Thailand has ordered the Finance Ministry and the Bank of Thailand to
study the possibility as the single European currency is set to go
into circulation on January 1 next year. Local press reports today
said that the building societies have produced blueprints for euro
savings accounts, passbooks and cash-dispensers despite the government’s
increasingly Eurosceptical tone. The report also said Duisenberg
expects the future relationship between the dollar and the euro, which
officially goes into effect on Jan. 12, to be stable. He pointed out
that such a political plan concerns the future of France and Germany,
as well as the future role which the European countries will play in
the world. It has n’t been decided whether the Euro should include
country emblems. Despite skepticism about the actual realization of
a single European currency as scheduled on January 1, 1999,
preparations for the design of the Euro note have already begun.
The dollar has been weakening against European currencies in recent
months. Stressing that the introduction of a single currency will be
a great contribution to the unity of an expanded European Union (EU),
Juppe reiterated France ’s commitment to the timetable and criteria

205

of the single currency system set in the Maastricht treaty, under
which the single European currency, recently named Euro, will be
realized by January 1, 1999.

(2) Summary for the topic description (document set D0708B) : “What countries are having
chronic potable water shortages and why?”

The move came against a backdrop of a severe water shortage in the
country. In dry seasons the shortage of water is particularly acute.
Ningyang County Paper Mill, a large plant in east China ’s Shandong
Province, will take the lead early this year in trying a water
pollution treatment technology approved by the State Science and
Technology Commission (SSTC). The government is already implementing
several programs to overcome the water problem and would take about
five months to complete, Mahathir said in Jitra in the northern state
of Kedah after a political party function, according to the Malaysian
national news agency Bernama. It is widely believed here that water
shortage would be eased to a great extent once these plants become
fully operational. Petrides called on the public to make "painful
saving" of water and said his ministry will launch an intensive
campaign to increase public awareness of the problem. Although Nepal
is rich in water resources, water shortage is pervasive in the country
because of its inability to tap the resources and the lack of
well-managed supply system. Fernandes was speaking to the press on the
water shortage problem in Luanda. According to Bruno Mwanafunzi,
Director of Water Resources in the Ministry of Energy, Water and Natural
Resources, the situation in Umutara was exacerbated by an unusual
drought that hit the disaster area because of a prolonged dry season.
A Lebanese official has warned that his country is suffering an annual
water shortage of more than 1 billion cubic meters, the Daily Star
reported Friday.

Example of System Generated Summaries for Local Search Technique

(1) Summary for the topic description (document set D0703A) : “Describe steps taken and
worldwide reaction to introduction of the Euro on January 1, 1999. Include predictions and
expectations reported in the press.”

This new code has been issued to allow progress with the technical
preparations for the European single currency, scheduled to be
launched on January 1, 1999, said a press release issued here today.

206

The Euro will be launched on January 1, 1999. Local press reports
today said that the building societies have produced blueprints for
euro savings accounts, passbooks and cash-dispensers despite the
government’s increasingly Eurosceptical tone. Despite skepticism
about the actual realization of a single European currency as
scheduled on January 1, 1999, preparations for the design of the
Euro note have already begun. France has already struck one billion
coins of the European single currency euro, which will be launched
by January 1999, reported Agence France-Presse (AFP) on Thursday.
The European single currency euro will go ahead on schedule on
January 1, 1999 with a broad membership, according to a survey of
some prominent British economists. The report also said Duisenberg
expects the future relationship between the dollar and the euro,
which officially goes into effect on Jan. 12, to be stable. The
single currency will be also used in the reports issued by the
General Directorate of Monetary and Hard Currency Policy, Vasilescu
added. It hasn’t been decided whether the Euro should include
country emblems. Stressing that the introduction of a single currency
will be a great contribution to the unity of an expanded European
Union (EU), Juppe reiterated France’s commitment to the timetable
and criteria of the single currency system set in the Maastricht
treaty, under which the single European currency, recently named Euro,
will be realized by January 1, 1999.

(2) Summary for the topic description (document set D0708B) : “What countries are having
chronic potable water shortages and why?”

The move came against a backdrop of a severe water shortage in the country.
China is one of the many countries in the world facing water shortage, a
situation plaguing more than 300 of its 660-odd cities. Although Nepal is
rich in water resources, water shortage is pervasive in the country because
of its inability to tap the resources and the lack of well-managed supply
system. A Lebanese official has warned that his country is suffering an
annual water shortage of more than 1 billion cubic meters, the Daily Star
reported Friday. Due to the current drought in the Horn of Africa, water
shortage has reigned throughout the east African country and more than 2.2
million Kenyans are threatened by starvation. In dry seasons the shortage
of water is particularly acute. Fernandes was speaking to the press on the
water shortage problem in Luanda. The water shortage has caused some 6,000
people in the province to move, the report added. Even in Kathmandu, the
capital of the country, regular water supply can not be guaranteed. In
northwestern China, which has half of the country’s land, arable land has
become increasingly desertified and sandstorms have become more frequent
because of improper use of water resources. It is widely believed here that

207

water shortage would be eased to a great extent once these plants become
fully operational. It was reported that water shortage brought by the El
Nino weather El Nino will be very serious in the Philippines.

208

Appendix-C

OAK System 150 Named Entities

209

150 NEs Tagged by OAK system

Tag Example
NAME
PERSON Bill Clinton, Satoshi Sekine
LASTNAME Clinton, Sekine
MALE FIRSTNAME Bill, George
FEMALE FIRSTNAME Mary, Catherine

ORGANIZATION United Nations, NATO
COMPANY IBM, Microsoft
COMPANY GROUP Star Alliance, Tokyo-Mitsubishi Group
MILITARY The U.S. Navy
INSTITUTE the National Football League, ACL
MARKET New York Exchange, NASDAQ
POLITICAL ORGANIZATION
GOVERNMENT Department of Education, Ministry of Finance
POLITICAL PARTY Republican Party, Democratic Party, GOP
GROUP The Beatles, Boston Symphony Orchestra
SPORTS TEAM the Chicago Bulls, New York Mets
ETHNIC GROUP Han race, Hispanic
NATIONALITY American, Japanese, Spanish

LOCATION Times Square, Ground Zero
GPE Asia, Middle East, Palestine
CITY New York City, Los Angeles
COUNTY Westchester
PROVINCE State (US), Province (Canada), Prefecture (Japan)
COUNTRY the United States of America, Japan, England

210

Tag Example
REGION Scandinavia, North America, Asia, East coast
GEOLOGICAL REGION Altamira
LANDFORM Rocky Mountains
WATER FORM Hudson River, Fletcher Pond
SEA Pacific Ocean, Gulf of Mexico

ASTRAL BODY Halley’s comet, the Moon
STAR Sirius, Sun, Cassiopeia
PLANET the Earth, Mars, Venus

ADDRESS
POSTAL ADDRESS 715 Broadway, New York, NY 10003
PHONE NUMBER 222-123-4567
EMAIL sekine@cs.nyu.edu
URL http://www.cs.nyu/cs/projects/proteus

FACILITY Empire State Building, Hunter Mountain Ski Resort
GOE Pentagon, White House, NYU Hospital
SCHOOL New York University, Edgewood Elementary School
MUSEUM MOMA, the Metropolitan Museum of Art
AMUSEMENT PARK Walt Disney World, Oakland Zoo
WORSHIP PLACE Canterbury Cathedral, Westminster Abbey
STATION TOP
AIRPORT JFK Airport, Narita Airport, Changi Airport
STATION Grand Central Station, London Victoria Station
PORT Port of New York, Sydney Harbour
CAR STOP Port Authority Bus Terminal, Sydney Bus Depot

LINE Westchester Bicycle Road
RAILROAD Metro-North Harlem Line, New Jersey Transit
ROAD Lexington Avenue, 42nd Street
WATERWAY Suez Canal, Bering Strait
TUNNEL Euro Tunnel
BRIDGE Golden Gate Bridge, Manhattan Bridge

PARK Central Park, Hyde Park
MONUMENT Statue of Liberty, Brandenburg Gate
PRODUCT Windows 2000, Rosetta Stone
VEHICLE Vespa ET2, Honda Elite 50s
CAR Ford Escort, Audi 90, Saab 900, Civic, BMW 318i

211

Tag Example
TRAIN Acela, TGV, Bullet Train
AIRCRAFT F-14 Tomcat, DC-10, B-747
SPACESHIP Sputnik, Apollo 11, Space Shuttle Challenger, Mir
SHIP Titanic, Queen Elizabeth II, U.S.S. Enterprise

DRUG Pedialyte, Tylenol, Bufferin
WEAPON Patriot Missile, Pulser P-138
STOCK NABISCO stock
CURRENCY Euro, yen, dollar, peso
AWARD Nobel Peace Prize, Pulitzer Prize
THEORY Newtons law, GB theory, Blum’s Theory
RULE Kyoto Global Warming Pact, The U.S. Constitution
SERVICE Pan Am Flight 103, Acela Express 2190
CHARACTER Pikachu, Mickey Mouse, Snoopy
METHOD SYSTEM New Deal Program, Federal Tax
ACTION MOVEMENT The U.N. Peace-keeping Operation
PLAN Manhattan Project, Star Wars Plan
ACADEMIC Sociology, Physics, Philosophy
CATEGORY Bantam Weight, 48kg class
SPORTS Men’s 100 meter, Giant Slalom, ski, tennis
OFFENCE first-degree murder
ART Venus of Melos
PICTURE Night Watch, Monariza, Guernica
BROADCAST PROGRAM Larry King Live, The Simpsons, ER, Friends
MOVIE E.T., Batman Forever, Jurassic Park, Star Wars
SHOW Les Miserables, Madam Butterfly
MUSIC The Star Spangled Banner, My Life, Your Song
PRINTING 2001 Consumer Survey
BOOK Master of the Game, 1001 Ways to Reward Employees
NEWSPAPER The New York Times, Wall Street Journal
MAGAZINE Newsweek, Time, National Business Employment Weekly
DISEASE AIDS, cancer, leukemia

212

Tag Example
EVENT Hanover Expo, Edinburgh Festival
GAMES Olympic, World Cup, PGA Championships
CONFERENCE APEC, Naples Summit
PHENOMENA El Nino
WAR World War II, Vietnam War, the Gulf War
NATURAL DISASTER Kobe Earthquake
CRIME Murder of Black Dahlia, the Oklahoma City bombing

TITLE Mr., Ms., Miss., Mrs,
POSITION TITLE President, CEO, King, Prince, Prof., Dr.

LANGUAGE English, Spanish, Chinese, Greek
RELIGION Christianity, Islam, Buddhism
NATURAL OBJECT mitochondria, shiitake mushroom
ANIMAL elephant, whale, pig, horse
VEGETABLE spinach, rice, daffodil
MINERAL Hydrogen, carbon monoxide

COLOR black, white, red, blue
TIME TOP TIMEX
TIME 10 p.m., afternoon
DATE August 10, 2001, 10 Aug. 2001
ERA Glacial period, Victorian age

PERIODX 2 semesters, summer vacation period
TIME PERIOD 10 minutes, 15 hours, 50 hours
DATE PERIOD 10 days, 50 days
WEEK PERIOD 10 weeks, 50 weeks
MONTH PERIOD 10 months, 50 months
YEAR PERIOD 10 years, 50 years

NUMEX 100 pikel, 10 bits
MONEY $10, 100 yen, 20 marks
STOCK INDEX 26 5/8,
POINT 10 points
PERCENT 10%, 10.5 percent
MULTIPLICATION 10 times
FREQUENCY 10 times a day
RANK 1st prize, booby prize
AGE 36, 77 years old

213

Tag Example
MEASUREMENT 10 bytes, 10 Pa, 10 millibar
PHYSICAL EXTENT 10 meters, 10 inches, 10 yards, 10 miles
SPACE 10 acres, 10 square feet
VOLUME 10 cubic feet, 10 cubic yards
WEIGHT 10 milligrams, 10 ounces, 10 tons
SPEED 10 miles per hour, Mach 10
INTENSITY 10 lumina, 10 decibel
TEMPERATURE 60 degrees
CALORIE 10 calories
SEISMIC INTENSITY 6.8 (on Richter scale)

COUNTX N PERSON 10 biologists, 10 workers, 10 terrorists
N ORGANIZATION 10 industry groups, 10 credit unions
N LOCATION 10 cities, 10 areas, 10 regions, 10 states
N COUNTRY 10 countries

N FACILITY 10 buildings, 10 schools, 10 airports
N PRODUCT 10 systems, 20 paintings, 10 supercomputers
N EVENT 5 accidents, 5 interviews, 5 bankruptcies
N ANIMAL 10 animals, 10 horses, 10 pigs
N VEGETABLE 10 flowers, 10 daffodils
N MINERAL 10 diamonds

214

