
DO SOCIOLINGUISTIC VARIATIONS EXIST IN PROGRAMMING?

FARIHA NAZ
Bachelor of Computer Science and Information Technology, NED University of

Engineering and Technology, 2010

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Fariha Naz, 2015

DO SOCIOLINGUISTIC VARIATIONS EXIST IN PROGRAMMING?

FARIHA NAZ

Date of Defense: July 23, 2015

Dr. Jacqueline E. Rice
Supervisor Associate Professor Ph.D.

Dr. Kevin Grant
Committee Member Associate Professor Ph.D.

Dr. Javid Sadr
Committee Member Assistant Professor Ph.D.

Dr. Inge Genee
Committee Member Associate Professor Ph.D.

Dr. Howard Cheng
Chair, Thesis Examination Com-
mittee

Associate Professor Ph.D.

Abstract

Machine learning techniques are currently widely used in the analysis of natural language.

This thesis focuses on extending these techniques for analysis of programming languages.

In particular we are interested in determining whether there are differences in the use of

programming languages that might be associated with the authors’ gender. There are cur-

rently few studies that address possible relationships between linguistics and programming.

In this thesis we use computer programs as the samples in our dataset. These programs have

been written using the C++ programming language. We also acquired sociolinguistic in-

formation about the programmers, with the focus especially on gender. We use machine

learning and statistical techniques to identify patterns (in language use) that are consistent

for male and female programmers. The results of numerous experiments are encouraging.

We demonstrate that we can predict the gender of programmers with 71% accuracy and

detect similarities or dissimilarities in their programming style.

iii

Acknowledgments

I am grateful to Dr. Jacqueline E. Rice for placing her belief and allowing me to explore

this new research area. I would also like to express gratitude to Dr. Kevin Grant, Dr. Inge

Genee, and Dr. Javid Sadr as my committee members for listening to my ideas and offering

guidance. I felt like I was home due to the friendly, respectful, and caring behavior of the

faculty members.

I am thankful to my fellow students for their continuous support throughout this journey.

I would like to extend my gratitude towards many people inside and outside the university

that have guided my way through this process and were there for me.

I am thankful for all of my family members including my mother Prof. Riaz-un-Nisa Syed

(late), M. Rehman, Dr. Nauman, Sana, Basit, Bisma, M. Ali, Aisha, Imaan, and my ex-

tended family for their continuous guidance, love, and support.

iv

Contents

Contents v

List of Tables vii

List of Figures ix

1 Introduction 1
1.1 Motivation and Hypotheses . 2
1.2 Possible Contributions . 4
1.3 Organization of Thesis . 4

2 Background and Literature Review 5
2.1 Sociolinguistics . 5

2.1.1 Sociolinguistic Variation . 6
2.1.2 Related Work . 7
2.1.3 Gender-Based Variations in Language 7
2.1.4 Authorship Attribution in Programs 9

2.2 Machine Learning . 11
2.2.1 Supervised Learning (or Classification) 12
2.2.2 Data Transformation . 13

2.3 SVMlight . 14
2.4 WEKA . 17

2.4.1 Data Format . 17
2.4.2 Data Preprocessing . 18
2.4.3 Classification Algorithms . 18
2.4.4 J48 Algorithm . 18
2.4.5 Naı̈ve Bayes Algorithm . 19
2.4.6 K∗ Algorithm . 20
2.4.7 Attribute Selection . 21
2.4.8 Information Gain . 22
2.4.9 Correlation Based Feature Subset Selection 22

2.5 Model Evaluation Techniques . 23
2.5.1 Hold out Method . 24
2.5.2 Cross Validation . 24
2.5.3 Evaluation Metrics . 25

v

CONTENTS

3 Methodology 28
3.1 Experimental Work . 28
3.2 Step 1: Creating the Dataset . 32
3.3 Step 2: Numerical Representation . 35

3.3.1 Term Frequency (tf) and Inverse Document Frequency (idf) 36
3.4 Step 3 and 4: Machine Learning Methods with Testing Protocol 37

3.4.1 Parameter Settings . 47
3.5 Results . 48

3.5.1 Experiment 1 . 49
3.5.2 Experiment 2 . 50
3.5.3 Experiment 3 . 51
3.5.4 Experiment 4 . 52
3.5.5 Experiment 5 . 53
3.5.6 Experiment 6 . 54

3.6 Discussion . 55
3.6.1 Method 1: Hold Out . 55
3.6.2 Method 2: Leave-One-Out Cross-Validation (LOOCV) 56

3.7 Threats To Validity . 57
3.8 Programming Environment . 59

4 Analysis of Features 60
4.1 Reducing the Set of Features . 60
4.2 Statistical Approach . 64
4.3 Frequency of Occurrence . 65
4.4 Visual Analysis of the Shortest and the Longest Programs 68
4.5 Problem-specific Analysis . 70
4.6 Relationship between Features . 73

4.6.1 Pair 1: operators “/” and “+” . 74
4.6.2 Male-authored Programs . 75
4.6.3 Female-authored Programs . 76
4.6.4 Pair 2: data type “bool” and operator “==” 77
4.6.5 Male-authored Programs . 77
4.6.6 Female-authored Programs . 78

5 Conclusion 80
5.1 Future Research Directions . 83

Bibliography 86

A Terminology 89
A.1 Project Survey and Questionnaire . 91

B Detail of Features 96

C Frequency of Features 98

vi

List of Tables

2.1 2x2 Confusion Matrix. 26

3.1 List of 50 Features. 30
3.2 Data Collection. 33
3.3 Information about the Dataset. 35
3.4 List of Four Features. 42
3.5 List of Seven Features. 45
3.6 50 Features and LOOCV. 49
3.7 50 Features and Test Set with 30% Samples. 51
3.8 Four Features and LOOCV. 52
3.9 Four Features and Test Set with 30% Samples. 53
3.10 Seven Features and Test Set with 30% Samples. 54
3.11 Seven Features and LOOCV. 54

4.1 Subset of Features. 61
4.2 F-measures Based on LOOCV. 62
4.3 J48 Confusion Matrix (Experiment 2, with four features and LOOCV). . . . 63
4.4 K* Confusion Matrix (Experiment 5, with seven features and LOOCV). . . 64
4.5 Means of Frequency Per 100 Tokens. 66
4.6 Seven Features Frequency Means and Standard Deviations. 67
4.7 T-test for Two Features . 70
4.8 Domain Specific Female-written Programs 71
4.9 Domain Specific Male-written Programs 71
4.10 T-Test (ρ-values) . 73
4.11 Strongly Correlated Pair(s) Based on Raw Frequency in Male-Authored

Programs. 74
4.12 Strongly Correlated Pair(s) Based on Raw Frequency in Female-Authored

Programs. 74

B.1 C++ Reserved Keywords and their Meanings. 96
B.2 C++ Operators and their Details. 97
B.3 C++ Comments . 97

C.1 Frequency of Features in Female-Written Programs. 98
C.2 Frequency of Features in Male-Written Programs. 100
C.3 Frequency of Features Per 100 Tokens in Female-Written Programs. 102
C.4 Frequency of Features Per 100 Tokens in Male-Written Programs. 104
C.5 Correlation Based on Raw Frequency of Features in Female-Authored Pro-

grams. 106

vii

LIST OF TABLES

C.6 Correlation Based on Raw Frequency of Features in Male-Authored Pro-
grams. 106

viii

List of Figures

3.1 Experiment 1. 39
3.2 Experiment 2. 40
3.3 Experiment 3. 41
3.4 Experiment 4. 43
3.5 Experiment 5. 44
3.6 Experiment 6. 46

ix

Chapter 1

Introduction

Human beings use “natural language” [35] such as English, French, and Urdu to commu-

nicate with each other. The use of natural language varies depending on the way people

choose to behave within a society. The differences that influence language use mostly oc-

cur due to social factors such as age, region, ethnicity, socio-economic status (SES), and

gender [31]. Socio-economic status includes education level, occupation, and income [35].

Similarly, in the society of programmers, differences in the utilization of a programming

language may occur due to the above social factors as well.

Programming languages are designed for giving instructions to a computer (machine)

in order to accomplish specific tasks [36]. A computer programmer (or software developer)

writes programs using programming language in order to offer a solution to computational

problems. For example, ExcelTM is software which can be utilized to carry out various

tasks in order to perform mathematical functions. The syntax of a program is quite strictly

determined by the programming language which is designed for facilitating instructions to

a computer. Nonetheless, the choices left up to the programmer include the use of key-

words, operators, statements, and comments. Thus, we used these choices to investigate the

sociolinguistic variations in programming.

Computer programs are developed by programmers of different ages, genders, and eth-

nicities using various programming languages. For this reason, there may be the possibility

of finding variations in how people use programming language in terms of the choices of

keywords, operators, statements, and comments [39]. In this project we explore the pos-

1

1.1. MOTIVATION AND HYPOTHESES

sibility of identifying the gender of the computer program’s author by applying machine

learning techniques. We also examine possible statistical differences based on the usage of

the above features to identify characteristics of male-written and female-written computer

programs. Are there differences in the writing of computer programs that can be correlated

with the gender of the programmers? To answer this question we start the investigation by

considering male-written and female-written computer programs as our dataset.

Many problems that are related to the analysis and organization of data can be posed

as machine learning problems. The kind of data being analyzed may vary. For instance,

the data could be text documents written in natural language [22, 4] or computer programs

written in Java [9]. We propose using several popular supervised learning techniques, in-

cluding support vector machine (SVM), decision trees (J48), bayes classifier (naı̈ve bayes),

and nearest-neighbor (K*). The open-source implementations that we have chosen are

the SVMlight and WEKA libraries, as they are mature libraries that are well-known in the

machine-learning community. To perform statistical analysis we used SPSS [3].

SVMlight is an open-source implementation of the support vector machine algorithm

developed by Joachims [23]. This algorithm is used to categorize various kinds of data

belonging to the area of natural language and bioinformatics [4, 37]. WEKA [20] is also

an open-source machine learning tool which is widely used. Previous uses include catego-

rization of files stored on hard drives [42] and of programs written in Java [9]. WEKA is

composed of various algorithms that can be used to preprocess data, extract features, and

perform supervised or unsupervised learning of different kinds of data. We used SPSS for

the statistical analysis of variations in features that could be used to identify characteristics

of male-written and female-written C++ programs.

1.1 Motivation and Hypotheses

Misek-Falkoff [34] suggested that software linguistics is a domain in which techniques

from linguistics can be applied to software applications. Each natural language has a gram-

2

1.2. POSSIBLE CONTRIBUTIONS

mar which includes rules related to sentence structure, semantics, and lexicon. These rules

are observed in the writing of text documents. Similarly, C++ is a programming language

with its own grammar that allows specific syntax, semantics, and vocabulary to be utilized

in the construction of computer programs. She suggested that techniques from linguistics

can be used to analyze a program or a software package. One of the reasons for this is

that in natural language a text is a collection of statement sequences. Similarly a computer

program is a form of writing which qualified as a text. It is a collection of various sentences

which is intended to be instructive or devised primarily to communicate. For this reason

our first hypothesis is that the programs can be treated as text documents and the techniques

that deal with text documents in natural language may be applicable to computer programs.

For instance, to construct the numerical representation of computer programs we use term

frequency and inverse document frequency (tf-idf) technique. This technique is popular for

creating a numerical representation of text documents written in natural language [40, 46].

As first proposed by sociolinguist William Labov [31], social variability may influence

linguistic variability. The linguistic variables are phonetic, morphosyntactic, lexical, and

stylistic variables. The social variables that are studied by sociolinguists include socio-

economic status (SES), age, ethnicity, region, and gender. Some researchers have examined

these ideas in the area of natural language, in order to identify a specific social variable, that

is, gender [4, 27]. In accordance with this, our second hypothesis, the social factor of gender

may also correlate with variability in the writing and the development of C++ programs.

For this study we investigate whether we can determine if gender, as a social factor,

correlates with the language use of computer programs. Gender was selected as the single

social variable as a means of narrowing the scope of the study. This study builds on the

work of Argamon et al., which is focused on the categorization of text documents on the

basis of the author’s gender [5, 4, 27]. In the future, we could include other variables such

as age and socio-economic status as social variables.

3

1.3. ORGANIZATION OF THESIS

1.2 Possible Contributions

This research may assist in identifying the gender of programmers using several ma-

chine learning algorithms. These algorithms include decision trees, naı̈ve bayes, nearest

neighbor, and support vector machine. Various researchers used these algorithms to ana-

lyze various kinds of data [22, 9, 42, 41]. The application of this work could include the

following:

• The supervised learning models may aid in the automatic categorization of computer

programs on the basis of the author’s gender.

• The development of an Integrated Development Environment (IDE) could aid in im-

proving the understanding of different programming styles by providing suggestions

to male and female programmers.

• The knowledge about how different groups of programmers think and program dif-

ferently could aid in the design of development teams.

• The knowledge about the use of programming languages could be used in the teach-

ing of programming.

1.3 Organization of Thesis

In Chapter 2 we give an overview of sociolinguistics, machine learning, supervised

learning, SVMlight and WEKA on the basis of the related research in these fields.

Chapter 3 provides the methodology that we apply to categorize female-written and

male-written C++ programs. We explain the four main steps that we utilize in our method-

ology and describe all five experiments and their results. We also discuss threats to validity

as well as the programming environment that we used.

Chapter 4 describes some analysis of features to identify gender-based variations.

In Chapter 5 we conclude this research and discuss possible future directions.

4

Chapter 2

Background and Literature Review

In this chapter we discuss related works that act as a foundation for this study in the area of

sociolinguistics, authorship analysis (attribution), and machine learning.

2.1 Sociolinguistics

In a society a social identity is embodied in factors including speech, writing, clothing,

commodities, and mannerisms. Each society imposes certain conventions on its members

in terms of a person’s occupation, age, gender, and socio-economic status (SES) [31, 35].

Wardhaugh [43] defines a society as “any group of people who are drawn together for a

certain purpose or purposes”, and a language as “what the members of a particular society

speak”. Within a society people belonging to different age, gender and SES groups (among

others) are distinguishable based on the features of their oral communication including

accent, grammar use and vocabulary [35]. The field of sociolinguistics involves the study

of linguistic variation as it correlates with social factors which may influence the use of a

language within a society [31, 35]. Linguistic variation that correlates with social factors is

referred to as sociolinguistic variation.

The term sociolinguistics was coined by Currie [13] when he wrote about regional vari-

ation in the usage of the English language among Americans. However, sociolinguistic

variation also occurs due to variables related to social class, gender, and age. The correla-

tion between social and linguistic variation was first demonstrated by Fischer [15] which

provided the basis for the sociolinguistic analysis of language. The language used by a

5

2.1. SOCIOLINGUISTICS

society is influenced by a number of factors. These factors in turn produce identifiable

differences in oral or written communication.

Misek-Falkoff [34] explored the relationship between software and linguistics. As a re-

sult of her explorations she identified a new domain that she called “Software Linguistics”.

An analysis of natural language can be done by analyzing different phonetic, morphologi-

cal, syntactic and semantic structures of a language on the basis of a set of rules which may

be referred to as the grammar of a language [35]. For example, natural language analysis

may be performed by examining each part of a word or how different words were grouped

together within a sentence to express thoughts. Misek-Falkoff suggested that similar tech-

niques were applicable towards the analysis of software code.

2.1.1 Sociolinguistic Variation

Sociolinguistics plays a critical role in analyzing differences in the use of natural lan-

guage on the basis of social variables [31, 35]. The identification and interpretation of

gender differences in a society of authors based on writing style has been explored by re-

searchers [5, 4, 27] using techniques including machine learning and statistical analysis,

as well as the combination of these approaches. Some researchers extended the field of

identifying differences between authors of text documents towards the authors of computer

programs.

In the case of determining various differences between authors of computer programs

(members of the programming “society”) similar or dissimilar patterns were identified on

the basis of their programming styles [28]. A society of programmers is composed of people

who are drawn together to develop software in order to solve a computational problem.

Some variations may be found in computer programs that are written as part of software

and there may be social variables that influence the programmer’s style, just as society

influences a person’s verbal or written communication [39]. For instance, different ways

to decompose or solve a particular computer programming problem might bring out some

6

2.1. SOCIOLINGUISTICS

variations, and differences in terms of identifier names used for methods and/or variables.

Knowledge of these rules was used to demonstrate how groups use the same programming

language to develop a software or computer program.

2.1.2 Related Work

2.1.3 Gender-Based Variations in Language

Argamon et al. [5] investigated gender differences in English literature as part of the

large dataset known as the British National Corpus (BNC). The BNC is composed of both

fiction and non-fiction texts including articles and books. The documents used in the study

are articles/books that belong the fiction and non-fiction genres. The dataset used in [5]

was composed of 604 documents and the average length of each document was more than

2,000 words. Each author contributed at most six documents as part of the dataset. The

usage of lexical and syntactic features was analyzed according to the gender of authors.

More than 1000 features were selected including a list containing 467 function words (e.g.

in, without, he, it, one, of, a), and a list consisting of different sequences of words on the

basis of parts-of-speech. A combination of machine learning and statistical analysis was

employed to identify differences based on the authors’ writing style. The machine learning

techniques were applied to identify relevant features and statistical techniques were em-

ployed to test the significance of the gender-based differences in the frequency of features

and their correlation with the two genres.

Argamon et al. [5] used a machine learning method named EG algorithm [32] to se-

lect a small set of the most useful features from 1000 features. The small list of features

had an impact on the identification of textual documents on the basis of author’s gender.

As a result, only 50 features were identified by the EG algorithm that played a role in the

differentiation between male-written and female-authored texts. The Student’s t-test and

Mann-Whitney U test statistical techniques were applied to identify differences in the us-

age of features based on the gender of authors. The feature frequencies were computed

7

2.1. SOCIOLINGUISTICS

per 10,000 tokens/words. In terms of frequency the distinguishing features of male texts

were determiners and quantifiers, words that modify and precede nouns (e.g. that, one,

two, more). In the documents written by men the determiners were more prevalent. The

frequency mean of determiners was 2288, whereas in the documents authored by females

the frequency mean for these words was 2060. In the female-written documents, the pres-

ence of pronouns (e.g. I, you, myself, herself, she) was dominant. The frequency mean

of pronouns in female written documents was 1367, whereas in the male authored texts

the frequency means of this type of words was 1142. The researchers observed that the

differences between documents authored by males and females depend on the way ideas,

people, and objects were presented. To investigate the features within a particular genre

the correlation between male/female writing and non-fiction/fiction was computed using

Pearson’s Product Moment Coefficient [18]. Pearson’s correlation demonstrated that there

was a strong relationship between the characteristics found in documents written by male

(female) and nonfiction (fiction) genres.

Argamon et al. [4] also explored gender differences using a total of 600 French literary

and historical textual documents. In this dataset each author was represented by multiple

documents. In this case, the machine learning algorithm support vector machine (SVMlight

[22] as described briefly in section 2.3) was used to distinguish between male-written and

female-written documents. The advantage of machine learning over statistical analysis of

data was the construction of predictive model(s). Argamon et al. [4] created the sup-

port vector machine (SVM) model using labeled data samples of male-written and female-

written documents. The support vector machine model was developed using SVMlight to

discriminate between male-authored and female-authored documents on the basis of word

distribution, usage, and their frequencies. The prevalent words and features present in the

documents were identified using the support vectors from the SVM model. The model was

able to predict the gender of the writers accurately by 90%. The results from [4] were

similar to those from [5].

8

2.1. SOCIOLINGUISTICS

In much of the literature [22, 33] the categorization of textual documents was performed

on the basis of the topic of documents; as a result the list of features used in a categorization

was usually very large. However, Koppel et al. [27] used writing style to categorize text

documents which resulted in the hand-selected set of features. The EG algorithm [26] was

used as a learning method as well as a feature reduction algorithm for the gender-based

categorization of the 566 documents that were part of the British National Corpus (BNC).

The model created by the EG algorithm was able to achieve accuracy of approximately

80% when unseen textual documents were classified. The gender-based categorization of

text documents written in English and French languages demonstrates that the different

machine learning techniques can be utilized to analyze and classify the text documents of

various natural languages.

The problem of categorizing text documents had also been pursued in the context of au-

thorship analysis (or attribution) [27]. Authorship analysis is a process which distinguishes

the author on the basis of their writing style. A feature was referred to as a “writer-specific

feature” if it varied throughout the dataset but there was smaller (or no) variation in the

writing of an individual author. The researchers assumed that over a period of time a writer

developed consistent habits of composition style in terms of different features including

word usage, sentence structures, phrase choices, and lexical categories [28]. Thus, author-

based differences can be identified to analyze the authorship of text documents in natural

language.

2.1.4 Authorship Attribution in Programs

The investigation of the divergence between the writings of different authors had been

extended towards programming languages to demonstrate that an author of computer pro-

grams can also be identified. There were several differences in terms of feature usage that

were associated with an author and can be extracted on the basis of coding style. Author-

ship attribution was applied towards the detection of plagiarism and the identification of

9

2.2. MACHINE LEARNING

sources of computer viruses [28, 8]. Krsul and Sappford [28] classified computer programs

to identify the author based on a set of features and coding style. The dataset used in the

study was composed of programs written in C programming language. There 88 programs

were collected from different problem domains. Both statistical and machine learning tech-

niques were employed to identify the authors of the programs. The authors were recognized

based on programmer-specific features. The set of features was found on the basis of the

style and the structure of C programs. The statistical analysis of dataset was carried out

using SAS [2] to identify feature-based differences. In addition, LNKnet software [29]

was used to identify relevant features as well as to apply machine learning methods on

the dataset. Thus, features were eliminated that contributed little to the classification of

programs. Using LNKnet, various supervised and unsupervised learning algorithms were

applied to the given dataset. For instance, neural network algorithms, nearest neighbor

algorithms, k-means clustering, feature selection algorithms, and n-fold cross-validation

(LOOCV) techniques were employed.

Some of the features examined to distinguish among programmers included the use and

placement of brackets and comments; lengths of variable and comments; usage of data

structures (or data type); and occurrences of “for” and “while” loops. The selection of

variable names was also analyzed to investigate if a name represented the usage of a given

variable. In addition to the analysis of features, the researchers also suggested that structural

information can be acquired by visual analysis of computer programs. For instance, the use

of blank lines was noticed because programmers used blank lines to separate independent

blocks of code. These kinds of the repeated patterns were identified [28] in the construction

of programs. Hence, the recognition of the authorship of C program was possible even

with a limited dataset because programmers used style conventions with which they were

familiar.

10

2.2. MACHINE LEARNING

2.2 Machine Learning

With the advent of big data machine learning has become extremely popular with algo-

rithms being used to analyze all manner of data, including text (e.g. document classification

[22, 4]), biological data (e.g. genes and proteins [37]), and media (e.g facial recognition in

images/video [41]). Machine learning algorithms are useful to acquire knowledge and in-

teresting information from diverse types of data. Machine learning computer programs (or

algorithms) automatically recognize patterns after learning from datasets in order to make

decisions about future (or new) datasets.

Machine learning algorithms can be divided on the basis of how data can be dealt with

in two particular approaches: supervised and unsupervised learning algorithms [18]. The

assignment of datasets which is based on pre-defined class labels is called supervised learn-

ing (or classification). As an example, numeric values like +1 and −1 may represent two

different classes. All data samples (or instances) that are present in the datasets may be as-

sociated with these class labels. However, in unsupervised learning (or clustering), datasets

are not associated with predefined class labels. In clustering, datasets are divided into mul-

tiple groups to identify classes based on the similarity and dissimilarity among a set of data

samples/tuples/instances that are present in datasets.

To utilize machine learning algorithms with textual data, in the field of text mining

[42], there are four components: document representation, dimension (or feature) reduc-

tion, learning method, and testing protocol [39, 27]. Text mining is the procedure of iden-

tifying information and patterns from various types of textual data. The documents are

represented as a vector which is composed of various features (dimensions) and their fre-

quencies. Sometimes there are irrelevant features that may provide inaccurate results. The

use of various feature reduction algorithms may be beneficial to reduce the dimensions by

keeping only relevant features. The popular machine learning algorithms are employed as

learning methods in order to construct models, which identify interesting patterns that can

be used to accurately predict future (or unseen) datasets. As described in section 2.5, the

11

2.2. MACHINE LEARNING

reliability of the machine learning models are tested using k-fold cross validation. The

average values of evaluation metrics are collected in order to analyze the performance of

models.

2.2.1 Supervised Learning (or Classification)

Supervised learning (or classification) is the process of determining a model that distin-

guishes data into different classes. The model is derived based on the analysis of a set of

training data, that is, data for which class labels are known [18]. These models are called

classifiers. The role of a classifier is to predict the categories of test data based on class

labels. The classification of data can be performed using different machine learning algo-

rithms directly or using their open-source implementation(s). The algorithms that can be

applied to classify data include the support vector machine (SVM), naı̈ve bayes, and the

decision tree. The procedure of classification is a two-step process that includes

(i) learning (or training of a model), and

(ii) classification (or testing of a model).

In the learning step, a classifier is constructed on a predetermined set of classes and

training data samples (or instances). The machine learning algorithms build a classifier

(or model) by analyzing a training set in order to generalize useful information. In the

classification step, the model is assessed by using test data samples (or instances) and their

associated class labels [18]. Different evaluation metrics can be used to collect the results of

the model on a given test dataset. These results give the percentage of the test data samples

(or instances) that are correctly classified by the classifier. Supervised learning algorithms

focus on the accuracy, precision, recall, and f-measure of a classifier (or model) for evalu-

ation purposes. The values for these metrics range from 0% to 100%. The associated class

labels of test data samples (or instances) are compared with the predictions produced by

the model. If the results of the model (or classifier) are closer to 100%, then the model is

considered useful to classify future (or unseen) data samples (or instances).

12

2.2. MACHINE LEARNING

As an example, suppose a manager of some hypothetical store wants to classify a large

set of items in the store based on the three kinds of responses to a sales campaign: good

response, average response, and no response [18]. The model will be produced based on the

features that are associated with the price and brand of an item. The resulting classification

will distinguish each class from the others. This will demonstrate an organized picture

of the given dataset. In this instance, the classification of the data would be beneficial to

understand the impact of the sales campaign, and help to design a more effective campaign

in the future on the basis of the above pre-defined features.

2.2.2 Data Transformation

Supervised learning algorithms require a particular data format [21] to perform the anal-

ysis of the dataset. In our study, the dataset was composed of computer programs that were

treated as text documents. For this reason, the given dataset was transformed into the format

required for classification algorithms using term frequency inverse document frequency (tf-

idf) technique. The tf-idf is one of the techniques used in the area of automatic text retrieval

[40] to create a numerical representation of textual documents in terms of features.

Term Frequency-Inverse Document Frequency (tf-idf) is a “vector-space model which

represents an object as a vector of weighted indexing term, and define(s) object similarity

in terms of those vectors.” [46]. The tf-idf vector quantity has two parts: the tf part and the

idf part. Term Frequency (tf) deals with one data sample and counts the number of times

a specific word (or feature) appears in a data sample. Inverse Document Frequency (idf)

counts the number of times the same word (or feature) has been seen in the entire dataset

[46]. The tf-idf of a feature is the product of tf and idf. As a result, each textual document

can be transformed into a numerical representation.

To perform supervised learning we used a dataset with two class labels. To illustrate the

format of the dataset for a two-class learning problem, suppose that D is a complete dataset

which consists of Xi and Yi. We have Xi ∈ {X1,X2, . . . ,Xn}, where n is the total number

13

2.3. SVMLIGHT

of tuples which are present in the dataset [18]. Each Xi is associated with the class label

Yi ∈ {+1,−1}. An individual tuple is composed of features, and a set of features which

represents a single tuple is referred to as a feature vector. In the following section we

discuss SVMlight and WEKA suite.

2.3 SVMlight

As described above, there are various machine learning algorithms that can be utilized

to perform the classification of a given dataset. The state-of-the-art supervised learning

method is the support vector machine (SVM), which is used in many applications including

face detection [7], text categorization [4, 22], and searching for information on the internet

[10]. For this reason, we also used the support vector machine algorithm as one of our four

classification methods.

SVMlight, an open-source implementation of SVM [23], is used to categorize a two-class

dataset; to apply standard kernel functions; to handle sparse representation; and to compute

leave-one-out estimates of the precision and the recall evaluation metrics. The required

format of the dataset is composed of tuples and class labels. Each tuple is represented by

various features to create feature vectors as <feature>:<value>, where <feature> is the

index of the feature and <value> is a numeric quantity.

The machine learning algorithm SVM is a kernel-based algorithm. The kernel function

K(xi,x j) = ϕ(xi)
T ·ϕ(x j)

calculates the dot product for the training vectors xi in the possible high dimensional

space [21]. In other words, training tuples (or data samples) of both linear (separable by a

straight line) and nonlinear (not separable by a straight line) data can be mapped into the

possible high dimensional space using kernel function.

There are four basic kernel functions that are accessible using SVM light: linear, poly-

14

2.3. SVMLIGHT

nomial, radial basis function (RBF), and sigmoid kernel [21]. If a function draws a straight

line to separate tuples (or data samples) of two classes, then this function is referred to as

the “linear kernel function”, and data is considered to be linearly separable. By default, the

linear kernel is selected in SVMlight . If no straight line exists to separate classes, then data

is linearly inseparable. The kernel functions which implement nonlinear mapping include

the following: polynomial, radial basis function (RBF), and sigmoid kernel.

During the learning step, the choice of kernel plays a role in generalizing properly from

the training tuples. In addition, the parameters of the SVM and the kernel need to be set

in order to mitigate the risk of information loss and increase the performance [6]. Using

SVMlight, the linear kernel function can be used if a dataset is composed of a large number

of features [21]. The non linear kernel is suitable when the number of instances is larger

than the number of features, so that features can be modeled in a higher dimensional space.

In this work we have more instances than features. Thus, we used the radial basis kernel

function:

K(xi,x j) = exp(− γ ‖xi− x j‖2),

where γ is the kernel parameter which should be greater than zero.

Furthermore, in the learning step, SVM searches for the maximum marginal hyperplane

(MMH) which is the hyperplane with large distanced margin. A hyperplane that separates

data tuples is defined as [18]:

W ·X +b = 0,

where X = (X1,X2, . . . ,Xn) is a tuple consisting n attribute values, W =W1,W2, . . . ,Wn is

a weight vector, and b (bias) is a scalar. There is a possibility of finding various separating

hyperplanes for a given training tuples. The hyperplane is created in the new dimension to

separate the training tuples, on the basis of class labels. The hyperplane can be found using

15

2.4. WEKA

support vectors and margins.

The distance between the hyperplane and the essential training tuples (support vectors)

is useful to find the smallest or the largest distanced margins. Margins can be found on both

sides of the hyperplane and continue to move away until the support vector of either class is

found [18]. Generally, the margin with the larger distance on both sides of the hyperplane

is accurate, because there will be less chance to misclassify during the prediction of class

labels of unseen data in the classification step [45].

The training tuples that are present above or on the separating maximum margin hyper-

plane (MMH) are classified with one class label. Otherwise, data samples that fall below

or on the (separating) MMH are labeled as another class. Using SVMlight [21], the SVM

parameter (C) can be employed to handle the trade-off between the margin and the learning

error.

Support vectors are critical training tuples that give the most information about class

labels Yi. These tuples lie closest to the hyperplane and, for all i, satisfy the following

equation [18]

Yi(W ·X +b)> 1.

The SVM algorithm with even a small set of support vectors may give a good general-

ization of training data. The addition and removal of these tuples may have an impact on

the classification of datasets in both learning and classification steps [18]. For instance, in

the case of a dataset with two pre-defined class labels such as +1 and−1, if SVM finds data

tuples (support vectors) above or on the margin of the hyperplane, then these data samples

are classified as +1. Otherwise, data samples that fall below or on the margin of the hyper-

plane are labeled as−1. Hence, the goal of SVM is to search and find the “best” hyperplane

using support vectors and margins to predict the test tuples more accurately.

16

2.4. WEKA

2.4 WEKA

In addition to SVMlight we used Waikato Environment for Knowledge Analysis (WEKA)

[20] which is an open-source machine learning software. WEKA is composed of various

algorithms related to the preprocessing of data, feature selection, classification, clustering,

and association rules. In this work, WEKA was used to perform the following tasks:

• to apply three filters to preprocess the given dataset,

• to use three supervised learning algorithms, and

• to apply two attribute selection algorithms to extract a small set of features.

2.4.1 Data Format

WEKA uses a particular representation of a dataset which is referred to as attribute-

relation file format (ARFF). The ARFF file is composed of a matrix with rows and columns.

The rows represent instances/tuples and the columns represent features/attributes [45]. The

ARFF file format contains three tags:

(i) @relation

(ii) @attribute

(iii) @data

First is the header which gives information about the relation, which is in the format

@relation <relation-name>; the second part provides information about the attributes (or

features) and represented as @attribute <attribute-name><datatype>, where datatype can

be numeric (integer numbers), string (textual values) or nominal (list of possibilities); and

the last part consists of instances (or tuples) [20, 45].

In some cases, the instances have features with zero value. To explicitly represent only

nonzero features, a sparse data file would be a practical choice. A sparse data file is also

17

2.4. WEKA

composed of the three tags as described above. However, the representation of instances

is enclosed in a curly braces with the index number and value of nonzero attribute in the

format: <index> <space> <value>, where <index> is the attribute (or feature) index

starting from zero. In the sparse data files, features with zero values are not represented

and it would be beneficial to visually analyze the features that are associated with the tuples

and class labels in the given dataset. After the construction of datasets and the collection

of results using various classification algorithms, comparative analysis may provide new

insights about the dataset.

2.4.2 Data Preprocessing

To preprocess data, there are various filters present in WEKA such as NonSparse-

ToSparse, Randomize, and Remove [45]. The NonSparseToSparse filter converts ARFF

files into the data file which contains instances and their nonzero features. The Randomized

filter is used to shuffle the order of the tuples/samples in the dataset. The Remove filter is

useful to remove the features in order to create a dataset with relevant and useful features

only.

2.4.3 Classification Algorithms

WEKA contains different types of machine learning methods but in this research we

focused on the most widely used: classification (or supervised learning) algorithms. We

developed three additional classifiers (or models) using the WEKA implementations of de-

cision trees (J48), nearest-neighbor (K∗), and naı̈ve bayes (NB) to categorize male-written

and female-written computer programs. In the following subsections we briefly describe

the above classification algorithms.

2.4.4 J48 Algorithm

C4.5 is an extension of ID3, a basic decision tree, which deals with numeric features,

unavailable values, and prune decision trees [45]. WEKA contains an implementation of

18

2.4. WEKA

C4.5 algorithm known as the J48 algorithm. A decision tree is constructed in a recursive

way on the basis of features that partition the instances into distinct classes. A flow chart-

like tree structure is called a decision tree. The topmost node is a root node; each internal

node (non-leaf node) denotes a test on an attribute; each branch represents an outcome of

the test; and each leaf node holds a class label [18]. All the internal nodes are denoted by

rectangles and leaf nodes are denoted by ovals.

J48 algorithm works on a “divide-and-conquer” technique to learn from instances to

identify the probability distribution of instances in the given dataset [45]. The probability

distribution is identified by analyzing the class distribution and is usually stored in the leaf

node of the tree. During the construction of a tree, gain ratio is used to determine the “best”

attribute which serves as node in the decision tree [38, 17]. The test is carried out on the

attribute to compare the numerical value of the attribute with a constant. The test is chosen

that extracts the maximum amount of information from a set of instances.

To incorporate tests into the tree, two outcomes are required [45]. Each node must

have a minimum of two (default value) instances which can be applied with the use of the

minNumObj (M) parameter in WEKA. Each attribute can be used multiple times during

the construction of a tree. To find a class label for a test instance, attribute values of that

instance are tested against the decision tree. To classify the test tuple, a path is traced from

the root to a leaf node. A tree can be pruned to remove irrelevant nodes from the decision

tree [18, 45]. The pruning of the tree is controlled by the confidenceFactor (C) parameter.

The default value of C is twenty-five percent and works well for most of the cases.

2.4.5 Naı̈ve Bayes Algorithm

Naı̈ve Bayes is a simple Bayesian classifier and commonly used to categorize docu-

ments for a two-class situation [27]. Bayesian classifier is a statistical classifier because it

predicts the probability of a given instance that belongs to a particular class. Naı̈ve Bayes

works on the assumption that each attribute that is associated with a given class is indepen-

19

2.4. WEKA

dent of other features. This is referred to as “class conditional independence” [25]. The

dataset consisted of instances and their class labels. Each instance/tuple is represented in

terms of the features/attributes. Naı̈ve Bayes identifies the highest probability for a partic-

ular class label Ci, and chooses that label using the following formula [18, 45]:

P(Ci|X) =
P(X |Ci)P(Ci)

P(X)
,

where P(Ci|X) is the probability that an instance X will belong to a particular class.

The class with the highest probability is chosen [18]. P(X |Ci) is the probability of X based

on a specified class. P(Ci) is the probability of instance that belongs to a particular class

Ci. There are two class labels: male and female. P(X) is the probability of an instance

X observed and is often constant. The WEKA implementation of naı̈ve bayes model is a

“standard probabilistic nave bayes classifier” [45] which uses estimator classes [24]. We are

interested in the use of a parameter which is useKernelEstimator (K). The reason for using

this parameter is that we want to use the procedure which does not assume any particular

distribution for the numeric features.

2.4.6 K∗ Algorithm

K∗ is used to perform the supervised learning of a dataset [42, 30] and is considered

suitable for continuous feature values. This is a nearest-neighbor method and implemented

as part of the WEKA tool as a “nearest neighbor with generalized distance function” [45].

There are various distance functions to compute the distance between instances. The dis-

tance was calculated between training and test instances by considering all possibilities.

The K∗ classifier is based on the use of an entropic distance measure to provide prediction

for future datasets. K∗ is also able to handle missing attribute values. In the WEKA imple-

mentation an important parameter of this algorithm is the blending parameter, which is the

“sphere of influence” [11]. This sphere will demonstrate the number of important neighbor

20

2.4. WEKA

instances.

Similar instances are identified using an entropic distance metric. The distance from the

training sample is calculated. The new/test instance x is compared with the existing/training

ones bi using the distance metric [45]. Class labels are assigned to the new (test) instance

on the basis of the closest k-nearest existing instances, bi [19] as in the equation

K∗(bi,x) =− logP∗(bi,x),

where i ∈ {1,2, ...k} and P is the probability of all possible paths from a training (b) to

a test (x) instance.

2.4.7 Attribute Selection

Generally a dataset is represented by a set of features, and relevant features/attributes

are usually unknown. The presence of irrelevant features degrades the predictive ability of

models. For this reason, a small set of features should be chosen, consisting of features

that are sufficient for learning and improving the quality of the concept description (model)

[14, 5]. WEKA also contains various algorithms to identify useful features. To optimize the

performance of model, numerous statistical and machine learning algorithms can be used

to choose relevant features from a given dataset. The attribute selection process in WEKA

is composed of two aspects [45]:

• an attribute evaluator, and

• a search method.

Attribute evaluator methods are used to extract relevant features from original features.

The attribute (or feature) selection methods are heuristic procedures to evaluate the value

of an attribute either as a subset or as an individual. These include InfoGainAttributeEval

and CfsSubsetEval [45]. There are various search methods that work in combination with

attribute evaluators to identify the “best” features. The attribute selection process aids in the

21

2.4. WEKA

extraction of important features and enables one to identify irrelevant features which may

confuse the machine learning system (or classification model). However, the reduction in

the dimensionality (number of features) of a dataset may impact the performance of learning

algorithms.

2.4.8 Information Gain

In this thesis the single-attribute evaluator InfoGainAttributeEval from WEKA was ap-

plied on the given dataset. InfoGainAttributeEval is a statistical technique which evaluates

features on the basis of Information Gain. Information gain is calculated on the basis of

the difference between the original information about the proportion of classes and the new

information that is obtained after the identification of the useful attribute. The information

gain is calculated using the following formula [18, 45]:

InfoGain(Class,Attribute) = H(Class)−H(Class|Attribute)

InfoGainAttributeEval determines the amount of information about the class label that

has been gained using an attribute. This evaluator was combined with the ranking method

known as Ranker [45]. The ranking method constructs a list to show the rank of an indi-

vidual attribute based on the value of Information Gain. The Ranker method enables us to

identify features that can either be retained or discarded. As a result, a small number of

features can be identified which may have an impact on the performance of the machine

learning models.

2.4.9 Correlation Based Feature Subset Selection

Evaluating each attribute individually is faster but less accurate. For this reason, we also

use an attribute subset evaluator, that is, CfsSubsetEval to select a subset of features [45].

The correlation-based feature subset selection (CFS) is a part of WEKA and calculates the

predictive ability of individual attribute along with the redundancy of features within the

22

2.5. MODEL EVALUATION TECHNIQUES

subset [17]. We used forward selection to begin with all the features. A subset of useful

features evolves from the list of candidate subsets. The features within the subset are highly

correlated with the class but have low correlation with each other. The CfsSubsetEval works

with various standard search methods such as best-first search and genetic algorithm.

In this research we use the Genetic search method which is a simple genetic algorithm

implemented as part of WEKA software. This search algorithm is analogous to “natural

selection” [16], which holds the notion that the life of organisms is related, evolves naturally

over time, and descendants may vary from ancestor. As a result, during the evolutionary

process of the population of organisms only the fittest (best) ones survive. This method

works in the following way, as described in [18].

The population of features is created to use for searching. This population consists of

randomly generated rules. The rule is a string which is composed of bits representing fea-

tures and classes. The rule of fitness, which is the notion that the fittest individual survives

within the population, is evaluated on the basis of data tuples. As a result, a new popula-

tion is developed which consists of the rules that have been accumulated from the survived

individuals. The offspring of the population is created by the application of crossover and

mutation, which are genetic operators. Crossover is the swapping of substrings from one

rule (string) to another, in order to create new strings. Mutation is the process of inserting,

deleting, rearranging, duplicating, and moving a selected bit in the rule (string). The new

populations continue to be generated until a population evolves in which each rule (string)

satisfies a rule of fitness. Using WEKA, the parameters can be tweaked [45]. The param-

eters include crossover probabilities, number of generations, population size, seed, starting

point of attribute to create a population, number of generations and mutations.

2.5 Model Evaluation Techniques

In supervised learning there are two steps: learning and classification (as described in

section 2.2.1). The common techniques to handle data in order to perform the supervised

23

2.5. MODEL EVALUATION TECHNIQUES

learning are: hold out and cross validation methods.

2.5.1 Hold out Method

The hold out method is used to divide the entire dataset into two independent sets which

are partitioned using fixed percentage of split [18]. One dataset is composed of two-thirds

of the data samples/tuples that were used in the learning step, that is, in training and con-

struction of the model. The other dataset consists of the remaining one-third of the tuples

that are reserved for testing of the model (the classification step of the supervised learning

[45, 18]). The test dataset should not be used during the learning step to reduce the chance

of inaccurate predictions.

In the presence of scarce data the drawback of using the hold out method is that there

is the possibility of overfitting or underfitting. Sometimes the knowledge from a given

training dataset is not sufficient to accurately classify a test dataset. There is then a high

risk that random predictions made by the model will work and be “learned”; that is, there

is a risk of learning the incorrect information from the dataset. This can result when the

model learns from the given training dataset but on the test dataset only 50% of the data was

classified correctly. This problem is called overfitting [14]. The opposite of this problem is

underfitting in which the model is biased because it misses important information in terms

of the relevant features and class labels. Hence, the hold out method reduces the amount of

data available to develop a model in the learning step and tests a model in the classification

step. This can be mitigated by applying cross validation [14]. The k-fold cross validation

technique is used in the thesis.

2.5.2 Cross Validation

Cross validation is a model evaluation technique in which a dataset is partitioned using

a fixed number of folds (k) [18, 45]. As an example, 2-fold partition splits the dataset into

two partitions and uses each partition for training and testing. This process is repeated two

times so that during the test of a model each instance is used at least once.

24

2.5. MODEL EVALUATION TECHNIQUES

Leave-one-out cross validation (LOOCV) is a special case and can be applied using

WEKA and SVMlight. LOOCV is n-fold cross validation, where n=k and “n” is the total

number of instances that are present in the dataset. There will be “n” turns in which each

instance is left out of the training set and is then used as test set for validating a model.

To further describe leave-one-out cross validation, suppose that there are n data tuples (or

instances), then the training and testing needs to be carried out n times and the number of

iterations will be k = n. For each iteration training of the model will be performed using

n-1 data tuples. The model will be tested using the remaining data tuples (or instances).

The averages of the model evaluation metrics of all runs (or iterations) is used as the final

estimates of the predictive ability of developed models.

2.5.3 Evaluation Metrics

The predictive quality of a model (or classifier) is identified by analyzing various evalu-

ation metrics such as accuracy, recall, precision, and f-measure [18, 20]. The score of each

evaluation metric is computed using a confusion matrix which consists of values represent-

ing how many samples gave TP (true positives), TN (true negatives), FP (false positives),

and FN (false negatives).

A confusion matrix demonstrates how well a model is able to classify the number of

tuples (or instances) that are associated with various classes. The diagonal elements of the

matrix show the instances that are classified correctly. For instance, the confusion matrix is

a table of size “m x m”, as shown in Table 2.1, where m is the number of classes. In this

confusion matrix samples from female programmers are considered to be positive tuples,

while those from male programmers are considered to be negative tuples [18]:

• true positives (TP) are positive tuples that the model correctly predicted as being

positive tuples;

• true negatives (TN) are negative tuples that the model correctly predicted as being

negative tuples;

25

2.5. MODEL EVALUATION TECHNIQUES

• false positives (FP) are negative tuples that are misclassified by the model as positive

tuples; and

• false negatives (FN) are positive tuples that are incorrectly labeled as negative tuples

by the classifier.

Table 2.1: 2x2 Confusion Matrix.

Predicted Class

Actual Class

GENDER Female Male TOTAL

Female TP FN P

Male FP TN N

TOTAL P′ N′ P+N

Using a confusion matrix the accuracy, precision, recall and f-measure for the model can

be calculated as described in [18, 9, 45]. Accuracy is defined as the percentage of instances

that are labeled correctly by the classifier/model. This measure reflects the performance of

the model in the recognition of instances that were associated with various classes. The

accuracy of the model can be calculated by using the following formula [18]:

Accuracy =
T P+T N

P+N

In supervised learning other measures can also be used to analyze the performance of

the model [18]. Precision measures the percentage of positive data tuples that are classified

as a specific class and actually belong to the specific class. A precision score of 100% (or

1) for a class demonstrates that every instance that labeled as that class does indeed belong

to that class. It is the “measure of exactness” [18] and can be computed as:

Precision =
T P

T P+FP

26

2.5. MODEL EVALUATION TECHNIQUES

Recall measures the percentage of positive data tuples that are correctly classified as a

specific class label; however, there is no information about data tuples (or instances) that are

mislabeled by the model. A recall score of 100% (or 1) for a class demonstrates that every

instance that is associated with the class is labeled as belonged to that class but without the

information of other instances that are misclassified. It is the “measure of completeness” or

“true positive rate” [18], as shown in the following formula:

Recall =
T P

T P+FN
,or

Recall =
T P
P

Precision and recall are used widely in supervised learning [18, 42]. In some cases there

tends to be an inverse relationship between precision and recall [18, 9]. Therefore, there

is a possibility that sometimes models may achieve high precision but low recall. Many

researchers in this field and in the area of information retrieval used f-measure to represent

the combined measure of both precision and recall. F-measure represents the “harmonic

mean of precision and recall” [18] as shown below [18, 45]:

F−measure =
(2∗Recall ∗Precision)
(Recall +Precision)

,or

F−measure =
2.T P

2.T P+FP+FN

As a result, researchers also used f-measure to evaluate the predictive ability of classifi-

cation models [9, 18]. In the case of binary (two-class) classification problem, the average

values of the evaluation metrics would be considered “best” if they lie near 100%.

27

Chapter 3

Methodology

In this chapter, we discuss the significant steps which we use to move forward towards

the categorization of computer programs. We describe our experimental work and results.

We also discuss potential threats towards the validity of this research. Additionally, we

provide the overview of the programming environment used in this study to perform various

experiments.

3.1 Experimental Work

To pursue the sociolinguistic analysis of computer programs we need to perform four

main steps [27, 39]:

(i) create the dataset;

(ii) transform the dataset into a numerical representation;

(iii) apply machine learning method(s), specifically, supervised learning methods; and

(iv) apply testing protocol.

Our dataset consists of C++ computer programs collected from computer science courses

that are offered at the University of Lethbridge. The numerical representation of a given

dataset is produced by calculating the frequency of a set of features. The machine learning

methods consist of various algorithms that are applied to the dataset to develop concept

descriptions. The concept descriptions are referred to as models or classifiers. The ma-

chine learning methods include decision trees (J48), nearest neighbor (K*), support vector

28

3.1. EXPERIMENTAL WORK

machine (SVM), and naı̈ve bayes (NB). These perform the supervised learning of the com-

puter programs to construct models. We then use cross-validation as a testing protocol to

assess the models developed by the supervised learning methods.

In the early stages of this research work, we used an automated parts-of-speech (POS)

tagger [1] on a C++ program (code sample) in an attempt to choose a set of attributes/fea-

tures that might be useful to aid in the categorization. The POS tagger divided each line

of a program into segments and identified tokens (separated by blank spaces). However,

these segments and tokens were not a useful match to what were considered to be relevant

segments and/or tokens in a programming language. This was not surprising as the POS

tool generated labeling of each token which was based on parts-of-speech such as nouns,

verbs, adverbs, and prepositions.

During the application of the POS tagger we ran into some issues. One problem with

the usage of the POS tagger was that the data inside quotes was not tagged and tokenized

correctly. Another issue was that the lexical category of datatype (“int”) was mislabeled.

Generally, the data type of a variable or function was employed to describe the type of

data being stored. However, the POS tagger labeled “int” as a noun [39], whereas the “int”

data type should probably be considered to be an adjective since it described the data being

stored.

Each programming language possesses its own vocabulary and principles (or grammar).

For this work we developed a set of features as listed in Table 3.1 from the Buse and Weimer

work [9] and the C++ programming language. Some of the features and their meanings are

described in appendix B. Below we present an overview of keywords, operators, loops, and

comments.

• Keywords are identifiers that are predefined and have special meaning in a program-

ming language [39]. These are words specified in the language definition which

describe how data is manipulated and stored in memory. There are also some user-

defined identifiers that are not part of the language definition and can be altered ac-

29

3.1. EXPERIMENTAL WORK

cording to the wish of the programmer.

• Operators are symbols specified in the definition of the C++ language to perform

specific mathematical or logical operations. Operators are part of expressions, which

are sequences of operators and operands that are used for the purposes of computing

a value or designating a function.

• The execution of a group of statements (or block of code) multiple times or a certain

number of times in a sequence is possible using various loops.

• Comments store additional information written in single or multiple lines within a

program so that anyone can acquire an understanding regarding the line of code or

functions. Their purpose is strictly to aid the person reading the program to under-

stand what the program is supposed to do.

Table 3.1: List of 50 Features.

C++ Vocabulary Features

Keywords

#include, #de f ine, using, void, cout, cerr,

cin, return, exit, int, f loat, char, const

double, bool, new, break, public, private

Operators
<, −>, >, &, &&, +, ++, !, ! =, ==, =,

−, −−, ∗, /, |, ‖, /=, +=, -=, ∗=,<=, >=

Comments //*, //, /* */

Brackets {}, ()

Block Execution f or, while, switch

To illustrate, consider the C++ program in Figure 3.1 which performs the summation of

two numbers, ten times. In this program, we have:

30

3.1. EXPERIMENTAL WORK

• user-defined identifiers (or variables): sum, f irstNumber, secondNumber, and i. All

of the variables are of the same integer “int” datatype to store natural numbers {0 , 1,

. . .};

• various keywords: #include, using namespace std, main, f or, cout, and return; and

• operators: =, <, ++, and +.

The keyword for in program Listing 3.1 (line number 8) represents the loop with counter

“i” to specify the number of times each line of code within the loop (line number 9-12) will

be executed. An expression sum = f irstNumber+ secondNumber; consists of two opera-

tors, the assignment (=) and addition (+) operators. The two expressions f irstNumber++;

and secondNumber++; contain the same increment (++) operator which will increase the

value of each of the variables by one. The multi-line comment (/*) and the single-line

comment (//) provide details about the program. Listing 3.2 contains the output of program

Listing 3.1 which is the summation of two numbers performed 10 times.

Listing 3.1: Sample C++ Program.

1 # include "iostream"

2 using namespace std;

3 int main()

4 {

5 int sum;

6 int firstNumber = 1;

7 int secondNumber = 2;

8 /* This for loop runs the code for 10 times. */

9 for(int i = 0;i < 10;i++)

10 {

11 sum = firstNumber + secondNumber; // addition of ←↩

two numbers

31

3.2. STEP 1: CREATING THE DATASET

12 firstNumber++; // add 1 in the ←↩

firstNumber

13 secondNumber++; // add 1 in the ←↩

secondNumber

14 cout <<"Sum : "<< sum <<"\n"; // print sum

15 }

16 return 0;

17 }

Listing 3.2: Output of the Program 3.1.

1 Sum = 3

2 Sum = 5

3 Sum = 7

4 Sum = 9

5 Sum = 11

6 Sum = 13

7 Sum = 15

8 Sum = 17

9 Sum = 19

10 Sum = 21

3.2 Step 1: Creating the Dataset

This research project was approved by the University of Lethbridge Human Subject Re-

search Committee on March 5, 2012 under protocol number 2012-012. For this research,

we collected C++ assignments and associated these with sociolinguistic information about

the writer/programmer. The sociolinguistic information was assembled via a survey given

32

3.2. STEP 1: CREATING THE DATASET

out to students in the computer science classes. Part of the survey included asking for per-

mission to use the students’ assignments in this research. The programming assignments

were written by past and current students of the University of Lethbridge, as a requisite

of their course work. Personally identifying information including names of participants,

course numbers and titles, and names of instructors was sometimes included in the com-

ments to the computer programs. This type of information was removed from the data

before beginning our analysis to maintain privacy and confidentiality

In Table 3.2 we listed the classes, the number of participants, the number of individual

samples, and the number of multiple samples from female participants excluding the indi-

vidual ones. The classes of 1000 level (first year) represent introductory ones, 2000 (sec-

ond year) demonstrate intermediary level, 3000 level (third year) are the advanced ones,

and 4000 (fourth year) are the highest level even graduate students take it. The reason for

having fewer multiple samples than single samples is that there are few female student and

some female students provided us with multiple C++ assignments while other students gave

us only one assignment.

Table 3.2: Data Collection.

Class Levels Female Male Samples Multiple Samples
(Female)

1000 7 19 7 19

2000 1 8 1 2

3000 7 11 7 5

4000 4 12 4 5

Total 19 50 19 31

The dataset we gathered for this work consisted of a total of 100 C++ programs which

are 50 male-written and female-written programs. In our dataset we have programs written

to solve various problems arising in various domains of computer science. Some domains

33

3.2. STEP 1: CREATING THE DATASET

are broad, such as image processing (which is addressed at the University of Lethbridge at

a fourth year level) or computer graphics (which is addressed at a third year level). Others

are more specific to a particular problem and we refer to them based on the name of the

problem. For instance, the problem/domain that we refer to as the Date domain (which

was a problem posed for one of the first year programming courses) is composed of two

problems: one problem deals with the comparison of three date formats while the other

problem calculates the number of days between two dates.

From the problems presented in the first year programming courses, we identified more

domains based on the name of their problems, including Pig Latin (translate sentences from

English into Pig Latin), anagrams of words (convert word to all of its possible anagrams),

and examining temperatures (calculate averages, the lowest and the highest temperatures

for a particular year). The domain of sorting strings (presented in the third year courses),

analysis of DNA sequences to identify the aligned substrings from two sequences or strings

(presented in the fourth year courses), just to name a few. In our dataset, sample programs

are not evenly distributed on the basis of problems, domains, or levels. As shown in Table

3.2 for some of the problems or domains, there are no female-written programs. For some

of the problems or domains there are no male-written programs. In some cases, one pro-

grammer might have developed multiple programs for different problems belonging to the

same domain.

As indicated in Table 3.3, the data was male-skewed due to the low number of female

students in the various computer courses. In order to balance out the dataset, it was nec-

essary to oversample the submissions from the female programmers. Oversampling is the

resampling of the samples (programs) that are associated with a particular class label in or-

der to equalize the number of samples within the dataset [18]. We achieved this by utilizing

either one or at most five different assignments written by the same female programmer, as

reported in Table 3.2. For male students, we considered only one assignment. This way we

were able to produce a balanced class dataset which had the same number of tuples/samples

34

3.3. STEP 2: NUMERICAL REPRESENTATION

for the class labels of male and female. The increase in the size of the dataset enabled the

classification methods such as decision trees (J48), nearest neighbor (K*), support vector

machine (SVM), and naı̈ve bayes (NB) to extract useful information about the male-written

and female-written programs. As a result, the four developed models were able to accu-

rately categorize the test dataset of computer programs on the basis of the programmer’s

gender.

Table 3.3: Information about the Dataset.

Gender Number of Participants Provided Samples Used Samples

Male 65 240 50

Female 19 64 50

Total 84 304 100

The collected C++ assignments were treated as text documents in order to apply differ-

ent machine learning algorithms in an attempt to distinguish the gender of the author/pro-

grammer. Each assignment was composed of one or multiple C++ (.cpp) files. In the case

of assignments with various C++ files, we concatenated all of the files into a single file. In

the dataset the maximum numbers of tokens and lines of code 2999 and 892 respectively.

Each file was manually cleaned to avoid falsification of the identified features. The clean-

ing process involved the removal of white spaces and the removal of comments that contain

information about the human subjects, courses, and instructors. Hence, there was no loss of

important information from the data in terms of the frequency of various features, namely

keywords, comments, operators, and brackets.

3.3 Step 2: Numerical Representation

In this research, the classification model took inputs as a vector of continuous (or nu-

meric) feature values and gave outputs/results in the form of discrete (or nominal) values.

35

3.3. STEP 2: NUMERICAL REPRESENTATION

The class labels were nominal, that is, male and female. Using the list of features, the C++

assignments were transformed into the appropriate data format. The dataset was then used

to train and to test all four classification models including decision trees, support vector

machine, naı̈ve bayes, and nearest neighbor.

Each computer program was treated as a text document. In each document the tf-idf

value for an individual feature (as listed in Table 3.1) was calculated to convert the original

dataset into a numerical representation. Feature occurrences over the entire dataset were

represented using term frequency and inverse document frequency (tf-idf).

3.3.1 Term Frequency (tf) and Inverse Document Frequency (idf)

Each computer program is split up into tokens that are separated by white spaces. The

term frequency (tf) factor is defined as the number of times a feature/term is found in a pro-

gram [40]. For example, in a program (D1) the frequency of occurrence of the feature “for”

is 10 and the total number of tokens in program D1 is 100. The “for” keyword represents

a token through which we identified the occurrence of the “for” loops in a program. As a

result, we computed the term frequency (tf) for the “for” feature in D1 as 0.1.

To compute the inverse document frequency (idf) factor for a feature we applied the

following formula:

idf = log10
N
n
,

where N is the total number of programs that are present in the dataset and n is the

number of programs in which a feature can be found. As an example, in a given dataset N

is 100 due to the presence of a total of 100 documents. The “for” loops are present only in

ten different programs, hence n = 10 for the feature “for”. Thus, the idf factor for the “for”

keyword, which represented the number of “for” loops in the entire dataset, is equal to 1.

In a program, for a given feature, the term frequency and inverse document frequency

36

3.4. STEP 3 AND 4: MACHINE LEARNING METHODS WITH TESTING PROTOCOL

(tf-idf) vector F is obtained by the multiplication of its two factors as demonstrated below:

F = tf∗ idf.

After computing the F value for each feature over each sample, we recorded F values to

produce a feature vector. We needed to normalize the F value of each feature to unit length

[22, 40], in order to equalize the length of each feature vector. For this purpose, we used

the normalization factor [40] as shown below:

Feature =
F√√√√(Occ

∑
i=1

(Fi)
2

) ,

where F represents the feature (or attribute) and Occ is the number of total features. For

our research, the value of Occ is 50 as listed in Table 3.1.

3.4 Step 3 and 4: Machine Learning Methods with Testing Protocol

Our experiments used two techniques to handle data, in order to develop various classi-

fication models:

(i) the use of cross-validation technique, and

(ii) the use of the hold out method, that is, a fixed split of the dataset into two divisions.

The above techniques were reported in section 2.5. We performed six different experi-

ments using 100 C++ programs as instances/tuples. However, we used a different number

of features in several experiments:

• The first experiment consisted of 50 features (as listed in Table 3.1) and used the

cross-validation technique.

• The second experiment consisted of 50 features and the hold out method.

37

3.4. STEP 3 AND 4: MACHINE LEARNING METHODS WITH TESTING PROTOCOL

• The third experiment used four features (as indicated in Table 3.4) and the cross-

validation technique.

• The four experiment used four features and the hold out method.

• The fifth experiment used seven features (as listed in Table 3.5) and the hold out

method.

• The last experiment used seven features and the cross-validation technique.

We expanded on each of the six experiments below. All six experiments used the same

dataset and numerical representation (tf-idf) as reported above. In all of the experiments,

data instances/tuples/samples and features/attributes were associated with the male and fe-

male class labels. To carry out experiments and to develop classification models we used

WEKA software suite and SVMlight. We reported results from the six experiments in terms

of precision, recall, f-measure, true positive (TP), false positive (FP), and true negative

(TN). For each classification model the values TP, FP, and TN were the raw numbers of

computer programs acquired from the confusion matrix.

The WEKA software suite (described in section 2.4) was used to extract information

from the C++ dataset in order to construct three classification models. Using WEKA, var-

ious filters were used to produce the appropriate data file format (as described in section

2.4.2). The NonSparseToSparse filter was applied to convert the regular representation of

the dataset into the sparse data format so that only nonzero features could be listed.

WEKA is one set of implementations of machine learning algorithms that is being used

in this research. WEKA requires that the dataset to be formatted in a specific manner. This

format is as follows: the user-defined name of the relation, the list of features and class

labels, and data samples (as described in section 2.4). In every experiment, each instance

consists of <attribute> <value> and the associated class label. The <attribute> is the

index of the attribute which starts from zero and the <value> is the tf-idf quantity of each

38

3.4. STEP 3 AND 4: MACHINE LEARNING METHODS WITH TESTING PROTOCOL

attribute. The class label for programs that are authored by male programmers and repre-

sented as negative tuples/examples are denoted as “male”. We use the “female” class label

to represent positive tuples corresponding to programs written by female programmers.

The format for SVMlight requires data tuples with class labels and feature vectors to be

described as <feature>:<value>. The <feature> is the index of the feature which starts

from one. We used -1 to denote the male-written programs which were referenced by neg-

ative tuples. To represent positive tuples denoting programs written by female students,

we used +1 as the class label. To categorize the same dataset (C++ assignments) in all of

the experiments, we converted the sparse dataset into the appropriate format required for

SVMlight.

100 C++
programs

Identification of 50
attributes/features

found in programs.

Numerical represen-
tation of C++ pro-
grams using tf-idf.

Construct four models:
J48, K∗, NB, and SVM.

Evaluate four mod-
els using LOOCV.

Analyze accuracy,
f-measure, TP, FP

and TN values.

Figure 3.1: Experiment 1.

39

3.4. STEP 3 AND 4: MACHINE LEARNING METHODS WITH TESTING PROTOCOL

In the first (as shown in Figure 3.1) and the second experiment (as shown in Figure 3.2),

we used a total of 100 tuples/samples and 50 features which were associated with the male

and female class labels, as listed in Table 3.1. Using WEKA, three models were created

including decision trees (J48), naı̈ve bayes (NB), and nearest-neighbor (K∗) models. The

fourth model was developed using SVMlight. In the first experiment the leave-one-out cross

validation (LOOCV) technique (described in section 2.5.2) was applied to evaluate each of

the four models and the results were collected in terms of the evaluation metrics (described

in section 2.5.3).

100 C++
programs

Dataset with 50 features.

Training Set: 70%Test Set: 30%

Construct four models:
J48, K∗, NB, and SVM.

Evaluate four mod-
els using Test set.

Analyze accuracy,
f-measure, TP, FP

and TN values.

Figure 3.2: Experiment 2.

40

3.4. STEP 3 AND 4: MACHINE LEARNING METHODS WITH TESTING PROTOCOL

In the second experiment we applied the hold out method and separated the dataset into

two partitions. In this experiment the learning step consisted of constructing the same four

models using one partition of the data which was composed of 70% of computer programs.

Next, in the classification step, we evaluated the predictive ability of the four models using

the other partition with 30% of computer programs.

100 C++
programs

Dataset with 50 features.

Attribute/Feature se-
lection using Info-
GainAttributeEval.

Create datasets with
reduced number

(four) of features.

Construct four models:
J48, K∗, NB, and SVM.

Evaluate four mod-
els using LOOCV.

Analyze accuracy,
f-measure, TP, FP

and TN values.

Figure 3.3: Experiment 3.

41

3.4. STEP 3 AND 4: MACHINE LEARNING METHODS WITH TESTING PROTOCOL

As shown in Figure 3.3 the third experiment used only four features (listed in Table 3.4).

These features were selected from the dataset using the Information Gain statistical measure

(InfoGainAttributeEval) for feature selection (described in section 2.4.7). This feature (or

attribute) selection method used the Ranker algorithm, which ranked features, according to

the Information Gain. After the application of information gain measure (InfoGainAttribu-

teEval) and the Ranker method, we were able to find the highest ranked features among 50

features. This meant that, after the evaluation of every single feature, the Ranker sorted the

features and produced a ranked list of features based on the information gain measure, as

shown above in Table 3.4.

Table 3.4: List of Four Features.

C++ Vocabulary Features

Keywords double

Operators /, ==, +

As a result, we found only four features that may have had an impact on the predictive

ability of the classifiers after analyzing the values of the f-measure evaluation metric. We

observed that the division operator achieved the highest ranking and the double datatype

had the lowest ranking as listed below:

1. division operator (/),

2. equality operator (==),

3. addition operator (+), and

4. double datatype (double).

The Remove filter was utilized to remove the features with rank zero and to extract a

dataset with a reduced number of features (the above four features only). This filter is part of

WEKA and can be employed to exclude the remaining irrelevant features from the dataset.

42

3.4. STEP 3 AND 4: MACHINE LEARNING METHODS WITH TESTING PROTOCOL

The purpose of excluding the irrelevant features/attributes is to remove “noise” so that the

classification models are not confused when decisions are formed. In the third experiment,

the naı̈ve bayes (NB), decision tree (J48), and nearest-neighbor (K∗) classification models

were again created using WEKA. The transition of the dataset into the appropriate format,

as mentioned above, was needed to construct the fourth model. The support vector machine

classifier was trained for the dataset with a small number of features using the SVMlight.

The leave-one-out cross-validation (LOOCV) was used to evaluate all of the developed

models which mitigated the risk of learning from the small dataset and gathering inaccurate

generalizations from the dataset.

100 C++
programs

Dataset with four features
instead of 50 features.

Training Set: 70%Test Set: 30%

Construct four models:
J48, K∗, NB, and SVM.

Evaluate four mod-
els using Test set.

Collect precision, recall,
and f-measure values.

Figure 3.4: Experiment 4.

43

3.4. STEP 3 AND 4: MACHINE LEARNING METHODS WITH TESTING PROTOCOL

In the fourth experiment, we used the dataset created in the third experiment by using

the information gain measure to identify useful features. We discovered only four features

from the same 100 samples/tuples. The dataset was divided into two partitions using the

hold out method (described in section 2.5.1). The overview of this experiment was demon-

strated in Figure 3.3. One dataset contained 70% of the samples and was used to train each

model. The other dataset was composed of 30% of the samples and was used to test each

model.

100 C++
programs

Dataset contained
seven features only.

Training Set: 70%Test Set: 30%

Construct four models:
J48, K∗, NB, and SVM.

Evaluate four mod-
els using Test set.

Collect precision, recall,
and f-measure values.

Figure 3.5: Experiment 5.

In the fifth experiment, as shown in Figure 3.5, we attempted to select a small set of

features that played a role in identifying the gender of the authors of the C++ programs. We

applied a correlation-based feature subset selection (CfsSubsetEval) evaluator [17]. This

method worked with various algorithms, but we used a Genetic algorithm (as described in

44

3.4. STEP 3 AND 4: MACHINE LEARNING METHODS WITH TESTING PROTOCOL

section 2.4.7). As a result, we were able to apply both dimension reduction and feature

extraction to our original dataset.

Table 3.5: List of Seven Features.

C++ Vocabulary Features

Keywords double, char, bool,

Operators >=, +, ==, /

We found only seven features, as shown in Table 3.5. These were associated with

the class labels but independent of each other. Among these seven there were the same

four features (e.g. /, ==, +, double), which were identified by InfoGainAttributeEval and

Ranker method as the highest ranked features. We applied the hold out method (described

in section 2.5.1) to partition the dataset into two independent sets. The training partition

again contained 70% of the programs while the test partition was composed of 30%.

45

3.4. STEP 3 AND 4: MACHINE LEARNING METHODS WITH TESTING PROTOCOL

100 C++
programs

Attribute selection
out of 50 features

using CfsSubsetEval.

Create dataset with
seven features.

Construct four models:
J48, K∗, NB, and SVM.

Evaluate four mod-
els using LOOCV.

Collect precision, recall,
and f-measure values.

Figure 3.6: Experiment 6.

In the last experiment as presented in Figure 3.6 naı̈ve bayes (NB), decision trees (J48),

and the nearest-neighbor (K∗) models, implemented as parts of WEKA, were created using

only seven features, as listed in Table 3.5 above, using the same 100 instances. To develop

the fourth model, the support vector machine, the dataset was converted into the required

format using the approach described above in Experiment 1. The support vector machine

classifier was built from the dataset with a small number of features using SVMlight. Leave-

one-out cross-validation (LOOCV) was used to evaluate all of the developed models.

46

3.5. RESULTS

3.4.1 Parameter Settings

For all of the experiments which were reported above we tweaked a few parameters

and left the rest with their default values [21]. Using WEKA machine learning software

we employed supervised learning algorithms and attribute evaluators. We developed three

out of the four models using WEKA; specifically, decision trees, nearest neighbor, and

the bayesian classifier models. We also used attribute evaluators (information gain and

correlation feature subset) to extract a set of reduced features from the original dataset. For

the fourth supervised learning model (support vector machine model) we used SVMlight

software.

• Using WEKA we applied the Randomized filter so that the instances in the dataset

would be randomly shuffled before the application of the supervised learning methods

[45]. To randomly shuffle the order of instances and the attribute values the seed value

was set to the default value of 42. We set a seed value of 50 in all of the experiments

because we had a small number of features (attributes) and instances (tuples).

• For the K∗ nearest neighbor algorithm, we changed the treatment mode for missing

values (M) to “d” so that the model would ignore those values. The global blending

(B) parameter value can be used from 0% to 100% [11]. We set the “B” to 70% to

specify the number of neighbors to be considered significant.

• We set the useKernelEstimator (K) parameter for the naı̈ve bayes algorithm to “true”

so that the classifier did not assume any specific distribution of the dataset [45, 42].

• In the case of the support vector machine (SVMlight [21, 45]) we used a radial basis

kernel function (t = 2) with a value of γ (g = 4.0). We applied a trade-off between

learning error and margin using the (c) parameter with a value of 4.0.

• In the case of feature selection using CfsSubsetEval and Genetic search, we used the

default settings [45]; however, we set the parameter seed of the Genetic method to

the value of 8.

47

3.5. RESULTS

3.5 Results

In this section we discuss the results of six experiments to evaluate the predictive abil-

ity of the four models including decision tree (J48), nearest neighbor (K*), support vector

machine (SVM), and naı̈ve bayes (NB). We use accuracy, precision, recall, f-measure, true

positive (TP), false positive (FP), and true negative (TN) (see section 2.5.3). In each ex-

periment the table shows the values of the three evaluation metrics, TP, FP, and TN. The

description of these values are as follows:

(i) Accuracy is the ratio of computer programs that are correctly classified.

(ii) Precision is the ratio of computer programs that are correctly classified as female-

written (positive tuples).

(iii) Recall gives the overall ratio of programs that are correctly and incorrectly classified

as female-written (positive tuples).

(iv) F-measure, the common approach, is the harmonic mean of recall and precision.

(v) True positive (TP) is the number of programs that are classified as female-written

programs.

(vi) False positive (FP) is the number of male-written programs that are classified as

female-written programs.

(vii) True negative (TN) is the number of correctly classified male-written programs.

In the following sections we report results from the six experiments. In each experiment

four classification models are developed with the goal of distinguishing between male-

authored and female-authored computer programs. Our main interest lies in the models

that achieve the highest values of the accuracy and f-measure evaluation metrics [9, 18]. A

value greater than or equal to 70% for either of these metrics is used to further delve into

the number of computer programs that are classified or misclassified by the models. This is

done by exploring the values of TP, FP, and TN for each experiment.

48

3.5. RESULTS

3.5.1 Experiment 1

In this experiment, we used 50 features and did not scale down the dimension of our

dataset. We used leave-one-out cross-validation (LOOCV) which performed the task of the

division of a dataset into training and testing to return final results in terms of evaluation

metrics. In this technique the entire dataset of 100 programs was used. As shown in Table

3.6, the SVM model performed well (accuracy = 75%). This model was able to correctly

label the majority of the female-written programs (f-measure = 74.4%). In comparison with

the other models, this model was able to categorize 36 out of 50 female-written programs

(TP = 36/50) and 39 out of 50 male-written programs (TN = 39/50). This model misclassi-

fied a small number of male-written computer programs as female-written programs (FP =

11/30).

The K∗ model achieved the highest values in comparison with the J48 and the NB

models. This model correctly labeled the majority of computer programs belonging to both

classes (accuracy = 72%) and correctly classified the majority of female-written programs

(f-measure = 71.9%). A total of 39 out of 50 female-written programs (TP = 39/50) and

33 out of 50 male-written programs (TN = 33/50) were correctly labeled by this model.

However, this model misclassified 17 male-written computer programs as female-written

programs (FP = 17/50) and we observed that the value of FP impacts the performance of

this model in terms of f-measure.

Table 3.6: 50 Features and LOOCV.

Models Accuracy
(%)

Precision
(%)

Recall
(%)

F-measure
(%)

TP
(/50)

FP
(/50)

TN
(/50)

J48 63 63 63 63 33 20 30

K∗ 72 72.3 72 71.9 39 17 33

SVM 75 76.6 72 74.2 36 11 39

NB 66 66 66 66 33 17 33

49

3.5. RESULTS

3.5.2 Experiment 2

In this experiment, we applied the hold out method to create a training partition and

testing partition but used the same number of programs and features as in experiment 1.

Using one partition (training set) of 70% computer programs we constructed the four clas-

sification models. The other partition (test set) of 30% computer programs was utilized to

evaluate the performance of the models. The hold out method reduced the amount of data

used in the learning and classification steps. Therefore, there was a risk that the models

were either not able to learn accurate information or not able to correctly categorize a new

dataset.

From Table 3.7 we investigated only those models which resulted in the accuracy and

f-measure of more than 70%. The first model which performed well was SVM. The model

correctly classified the computer programs from both classes and achieved an accuracy of

86.7% and an f-measure of 87.5%. Hence, in comparison with other models, this model

was able to categorize 14 out of 15 female-written programs (TP = 14/15) and 12 out of

15 male-written programs (TN = 12/15). Only 3 male-written computer programs were

misclassified as female-written programs (FP = 3/15).

The K∗ and NB models achieved similar results. These models were able to accurately

classify 73.3% of computer programs (accuracy = 73.3%). However, a difference occurred

in terms of the f-measure. The K∗ model resulted in an f-measure of 72.9% while the

NB model resulted in an f-measure of 73.2%. The K∗ model correctly labeled 13 female-

written programs (TP = 13/15), mislabeled 6 female-written programs (FP = 6/15), and

correctly labeled 9 male-written programs (TN = 9/15). The NB model correctly classified

12 female-written programs (TP = 12/15), incorrectly classified 5 female-written programs

(FP = 5/15), and correctly classified 10 male-written programs (TN = 10/15).

50

3.5. RESULTS

Table 3.7: 50 Features and Test Set with 30% Samples.

Models Accuracy
(%)

Precision
(%)

Recall
(%)

F-measure
(%)

TP
(/15)

FP
(/15)

TN
(/15)

J48 63.3 63.4 63.3 63.3 10 6 9

K∗ 73.3 75.1 73.3 72.9 13 6 9

SVM 86.7 82.4 93.3 87.5 14 3 12

NB 73.3 73.8 73.3 73.2 12 5 10

3.5.3 Experiment 3

In this experiment, the statistical measure of information gain was used to calculate the

probabilities of the features on the basis of associated class labels. Features with an infor-

mation gain value greater than zero were considered (as listed in Table 3.4). As shown in

Table 3.8, the J48 model correctly classified the majority of computer programs as demon-

strated by the accuracy measure. The fact that the J48 model achieved the accuracy of 70%

interested us most. This model resulted in an f-measure of 69.4%. In comparison with

other models, this model was able to categorize 42 out of 50 male-written programs (TN

= 42/50). There were only 28 female-written programs labeled correctly by the model (TP

= 28/50). This model misclassified a small number of male-written computer programs as

female-written programs (FP = 8/50).

51

3.5. RESULTS

Table 3.8: Four Features and LOOCV.

Models Accuracy
(%)

Precision
(%)

Recall
(%)

F-measure
(%)

TP
(/50)

FP
(/50)

TN
(/50)

J48 70 71.7 70 69.4 28 8 42

K∗ 69 69.1 69 69 33 14 36

SVM 67 65.5 72 68.6 36 19 31

NB 59 60.2 59 57.8 21 12 38

3.5.4 Experiment 4

For experiment 4, we used the same dataset created after the application of information

gain measure. We applied the hold out method instead of the cross-validation technique and

created two partitions. One partition was used to train the models, and the other partition

was reserved for testing. In this experiment none of the models were able to achieve more

than 70% accuracy or f-measure. However, we observed that the J48 model performs better

than the remaining models as shown in Table 3.9. The model was able to correctly classify

the majority of computer programs (accuracy = 66.7%). This model achieved the highest f-

measure of 67.3%, classified 8 female-written programs correctly (TP = 8/15), misclassified

7 male-written programs (FP = 7/15) which had an impact on the f-measure, and correctly

classified 12 male-written programs (TN = 12/15) which had an effect on the accuracy of

the model.

52

3.5. RESULTS

Table 3.9: Four Features and Test Set with 30% Samples.

Models Accuracy
(%)

Precision
(%)

Recall
(%)

F-measure
(%)

TP
(/15)

FP
(/15)

TN
(/15)

J48 66.7 70.2 66.7 67.3 8 7 12

K∗ 56.7 63.8 56.7 57 8 10 9

SVM 50 38.9 63.6 48.3 7 11 8

NB 56.7 61.3 56.7 57.4 7 9 10

3.5.5 Experiment 5

In this experiment, we extracted a subset of features using a correlation-based feature

subset selection evaluator (CfsSubsetEval) with the genetic search algorithm. We discov-

ered only seven features as listed in Table 3.5. The three models K∗, SVM and J48 per-

formed well with seven features in comparison with experiment 4 (four features). As listed

in Table 3.10, the K∗ model achieved the highest accuracy and f-measure. The K∗ model

resulted in an accuracy of 80% and f-measure of 79.9%, correctly classified 11 female-

written programs (TP = 11/15), misclassified 2 female-written programs (FP = 2/15), and

correctly classified 13 male-written programs (TN = 13/15).

The J48 model was able to label the programs with an accuracy of 73.3%. This model

resulted in an f-measure of 73.2%, classified 10 female-written programs (TP = 10/15), and

12 male-written programs (TN = 12/15) correctly which had impact on the accuracy of the

model. However, 3 male-written programs (FP = 3/15) were misclassified which was the

same for the SVM model. The SVM model also performed well and correctly classified

computer programs with accuracy of 70%. This model correctly labeled 9 female-written

programs (f-measure = 66.7%, TP = 9/15). A total of 12 out of 15 male-written programs

(TN = 12/15) were correctly classified.

53

3.5. RESULTS

Table 3.10: Seven Features and Test Set with 30% Samples.

Models Accuracy
(%)

Precision
(%)

Recall
(%)

F-measure
(%)

TP
(/15)

FP
(/15)

TN
(/15)

J48 73.3 73.8 73.3 73.2 10 3 12

K∗ 80 80.5 80 79.9 11 2 13

SVM 70 75 60 66.7 9 3 12

NB 66.7 67.9 66.7 66.1 8 3 12

3.5.6 Experiment 6

In this experiment, we used a dataset with only seven features (as in experiment 5), 100

data tuples (samples), and employed the LOOCV technique instead of hold out in order to

extract important information from the whole dataset. The K∗ and J48 models achieved

similar results. In terms of accuracy these models were able to accurately classify 70% and

71% of the dataset. However, the difference occurred in the labeling of the female-written

programs. The K∗ model resulted in an f-measure of 71% while the J48 model achieved

an f-measure of 69.9%. The K∗ model correctly labeled 36 female-written programs (TP =

36/50) which impacted the f-measure, mislabeled 15 female-written programs (FP = 15/50),

and correctly labeled 35 male-written programs (TN = 35/50). The J48 model correctly

classified 32 female-written programs (TP = 32/50), incorrectly classified 12 female-written

programs (FP = 12/50), and correctly classified 38 male-written programs (TN = 38/50)

which had impact on the accuracy.

54

3.6. DISCUSSION

Table 3.11: Seven Features and LOOCV.

Models Accuracy
(%)

Precision
(%)

Recall
(%)

F-measure
(%)

TP
(/50)

FP
(/50)

TN
(/50)

J48 70 70.3 70 69.9 32 12 38

K∗ 71 71 71 71 36 15 35

SVM 66 64.8 70 67.3 35 19 31

NB 61 62.4 61 59.8 22 11 39

3.6 Discussion

In this section we perform comparative analysis of the models on the basis of accuracy,

f-measure, true positive (TP) and false positive (FP). Accuracy reflects the overall perfor-

mance of the model in the recognition of computer programs that are male-written and

female-written (both classes). We observe that in some cases there tends to be an inverse

relationship between precision and recall due to the number of false positives [9]. For this

reason, f-measure is used which combines the precision and recall into a single measure.

The true positive (TP) and false positive (FP) measures demonstrate the performance of the

model in terms of classifying female-written computer programs (that is, we are classifying

the data into a single class).

The goal is to reach 100% f-measure and accuracy of a model [18, 9, 45]. Our main

interest lies in values equal to or greater than 70%. For our dataset (with 50 samples) the

goal is to achieve a true positive (TP) of 50 for the LOOCV approach and 15 for the hold

out approach. In the case of LOOCV the entire dataset is used in the supervised learning

and there are 50 programs associated with each class label. In the hold out method, models

are evaluated using the test partition which is composed of 30% of the dataset. As a result

there are only 15 programs for each class label. The best possible value for a false positive

(FP) is 0 for all cases.

55

3.6. DISCUSSION

3.6.1 Method 1: Hold Out

The results from experiment 2 (section 3.5.2), 4 (section 3.5.4), and 5 (section 3.5.5)

are discussed here to show the differences in the performance of the models. In these

experiments the data division is performed using the hold out technique (see section 2.5.1).

We use a fixed percentage of computer programs to divide the dataset into a partition with

70% and a partition with 30% of the programs. The first partition (70%) is used for training

and developing (learning step) the model. The second partition (30%) is used for testing

(classification step) the model. The experimental results are based on the performance of

the models in the classification step of the supervised learning.

We notice that in experiments 2 and 4, SVM and K* work well with 50 and seven

features. SVM is the state-of-the-art supervised learning method. The NB model performs

better only in experiment 2 (50 features). The performance of the NB model decreases

in the presence of four features (experiment 4) and seven features (experiment 5) because

there is not enough information in the reduced set to allow it to “learn”.

The performance of the J48 model is improved in experiments 4 and 5. One of the

reasons is that J48 is able to extract information from the dataset because of its feature se-

lection method which identifies the most important features. The models from experiments

2, 4, and 5 are not considered for further analysis because of the hold out method. This

method reduces the number of samples (by partitioning the entire data into two sets) for

each class label (male and female). The models from the above experiments are not able to

learn accurate information completely and might be unreliable to classify future datasets.

Therefore, we applied n-fold cross validation (LOOCV) to develop and consider models

for further analysis.

3.6.2 Method 2: Leave-One-Out Cross-Validation (LOOCV)

Unlike with the hold out method, the entire dataset is used in both training and vali-

dation for experiments 1 (section 3.5.1), 3 (section 3.5.3), and 6 (section 3.5.6). In each

56

3.7. THREATS TO VALIDITY

experiment, there are a different number of features but the same four classification al-

gorithms are implemented to develop the models. We use leave-one-out cross-validation

(LOOCV). This is n-fold cross validation, where n=k and represents the total number of

samples that are present in the dataset (see section 2.5.2). LOOCV automatically performs

the two steps of the supervised learning. This method performs 100 iterations to train and

test models because there are 100 computer programs in the dataset. The averages values

of the evaluation measures from all iteration are used as the final performance estimates.

We observe in experiment 1 (using 50 features) that SVM outperforms K*. This is likely

because SVM extracts more generalized information from the dataset in high dimensional

feature spaces [33]. Thus, the performance of both the nearest neighbor (K*) model and

support vector machine (SVM) model is better in comparison with other models. In exper-

iment 3 we used a reduced set of four features and only J48 resulted in a better f-measure

than the other models. In contrast, with the use of seven features (experiment 6) both K*

(71% of f-measure) and J48 (70% of f-measure) models performed well. These models are

able to categorize the majority of computer programs accurately.

For further analysis of the feature usage in male-authored and female-authored pro-

grams we considered the subset of seven features in the male-authored and female-authored

programs (see chapter 4). The reason for this is that results in experiment 6 (seven features)

improve in comparison with experiment 3 (four features). The models do not perform quite

as well as in experiment 1 (50 features) but still provide results that are very close to the

50 features results while offering a more manageable set of features for deeper analysis.

In both hold out (method 1) and leave-one-out cross validation (method 2) the three mod-

els including SVM, K*, and J48 are able to categorize computer programs better than the

NB model. Overall we conclude that our experiments demonstrate that information about

authors’ gender can be identified from the computer programs written by these authors.

57

3.7. THREATS TO VALIDITY

3.7 Threats To Validity

Buse and Weimer [9] observed that in this form of research some threats towards the

validity of the results would be identifiable. We identify several potential threats to validity

in our work:

(i) The dataset was composed of only 100 computer programs. The result of this threat

can be observed in the fact that experiments with the hold out method achieved the

highest results. On the application of the LOOCV method we were not able to acquire

results as high, indicating that the small dataset gave insufficient data for training

when partitioned further using the hold out method.

(ii) The number of female participants in our study. We had more male-written programs

than female-written programs. For this reason, we resampled programs written by

female programmers to increase the number of programs. Having programs belonging

to various domains and solving varying problems could result in variation in feature

usage that was not necessarily linked to the authors gender (or other sociolinguistic

variables). Because we needed to resample to acquire an equal number of samples

for each gender, we ran the risk of features connected to a particular domain/problem

being identified as those used by female authors.

(iii) Another threat to validity is the level of courses from which various programs had

been collected. The dataset was not evenly distributed across the class levels, that

is, among first year, second year, third year, and fourth year. Most of the programs

belonged to participants in the introductory and intermediate computer science classes

at the University of Lethbridge. There is the possibility that these courses imposed a

specific coding style regarding comments, indentations, and the use of data types.

(iv) In our experiments, the performance of the four classification models varies due to

the different underlying mechanisms, application of two model evaluation techniques,

58

3.8. PROGRAMMING ENVIRONMENT

and different number of features. As we evaluate the model performance we need to

be aware of these variations and their underlying (potential) reasons.

(v) We used a fixed and small set of features to classify male-written and female-written

C++ programs. Our models were trained for these features. Thus, it may be possible

that other important features from the C++ language were not part of our selected set

of features.

3.8 Programming Environment

All experiments were run on a Mac Book Air, running Lion 10.7.2, with an Intel Core 2

Duo processor, and 2 GB of memory. The term frequency and inverse document frequency

(tf-idf) of 50 features were calculated based on the formula given by [40] using the Java

programming language. These features were manually identified and employed to represent

100 C++ samples. There were three tools used in the research: SVMlight, WEKA, and

SPSS.

SVMlight, as described in section 2.3, is an open-source implementation of the support

vector machine written in the C programming language by Joachims [23]. WEKA is also

an open-source and is composed of various machine learning algorithms implemented by

Witten and Frank [45, 20]. SPSS [3] is a commercial software package used to perform

statistical analyses on datasets.

In this research we employed WEKA to implement various filters, three classification

algorithms, and two attribute selection methods. Various filters were used to preprocess

the dataset (as described in 2.4.2) including NonSparseToSparse, StringToNominal, and

Remove. We implemented three supervised learning/classification algorithms (as reported

in section 2.4.3) to categorize male-authored and female-authored C++ programs. We at-

tempted to identify and select relevant features using two feature selection methods, as

described in section 2.4.7. We used SPSS to investigate the correlation between features

and gender (section 4.2). We also explored whether there exists a significance difference

59

3.8. PROGRAMMING ENVIRONMENT

between the use of features in male-authored and female-authored programs (section 4.2).

60

Chapter 4

Analysis of Features

In this thesis we began with the 50 features/attributes as listed in Table 3.1 in Chapter 3. As

described in section 3.1, these features were selected based on the work in [9] and on the

basic units of the C++ programming language. These features were chosen without con-

sidering how they might be associated with male-written and female-written programs. We

found that the gender of programmers could be accurately predicted by the four machine-

learning models with f-measures ranging from 63% to 74.22% (as reported in section 3.5.1).

4.1 Reducing the Set of Features

To delve further into the findings of the machine-learning models, we applied two fea-

ture evaluators to identify the most relevant features. The selected feature evaluators were

information gain (InfoGainfeatureEval), and correlation-based feature subset selection (Cf-

sSubsetEval) (as described in section 2.4.7). The seven features listed in Table 4.1 were

identified using CfsSubsetEval. A subset of these /, ==, + and double were also the

highest ranked features as found by the InfoGainfeatureEval. These features were then

used to develop the same four classification models using the leave-one-out cross-validation

(LOOCV) technique to identify whether a subset of features was enough to categorize com-

puter programs as either male-written or female-written programs based on the gender of

programmers.

61

4.1. REDUCING THE SET OF FEATURES

Table 4.1: Subset of Features.

Features Representation Meaning

Double double Store a 64-bit
floating point value.

Boolean bool Store one of two values
(True or False).

Division / Perform the division operation.

Addition + Perform the addition operation.

Character char Store a character
value (e.g. ‘c’).

Equality == Compare values to check
if they are equal.

Greater than or equal to >= Check if a value is either greater
than or equal to a second value.

Table 4.2 shows the performance of the four models with 50 features, four features, and

seven features. Using only four features the J48 model achieved the highest f-measure in

comparison with the remaining models. However, when we broaden the analysis to include

all seven features found by CfsSubsetEval, we see that K∗ results in the highest f-measure

in comparison with the other models. The set of four features reduces the performance of

models, but with seven features we can still obtain a 71% f-measure.

62

4.1. REDUCING THE SET OF FEATURES

Table 4.2: F-measures Based on LOOCV.

Classification
Algorithms

F-measure Based
On 50 Features
(Experiment 1)

F-measure Based
On Four Features

(Experiment 2)

F-measure Based
On Seven Features

(Experiment 5)

J48 63% 69.4% 69.9 %

K∗ 71.9% 69% 71%

SVM 74.22% 68.56% 67.30 %

NB 66% 57.8% 59.8 %

We performed comparative analyses for the experiments using the reduced set of fea-

tures and the LOOCV technique, as shown in Table 4.2. There is an improvement in the

performance of the J48 model for the dataset with the seven features; however, this is not

the case for the remaining three models. One reason for this improvement is the underly-

ing concept of the J48 classification algorithm. This is a basic decision tree, constructed

recursively by partitioning tuples into associated classes. During the construction of a tree

the algorithm applies an attribute selection evaluator known as the gain ratio, to determine

the “best” attribute [38, 17]. This way the attribute is selected that extracts the maximum

amount of information from the dataset to distribute tuples into distinct classes.

The SVM model performs the worst with the seven features in comparison with 50

features because the number of features plays a role in finding the “best” maximum margin

hyperplane [21, 33]. The J48, K∗, and NB models result in higher f-measures with seven

features than with four features as discussed in section 3.6.2. One possible reason for the

increase is that reducing to four features removes too much information. The addition of a

few features back to the subset of four features increases performance, although not quite

as high as with 50 features. Is the difference significant? It may not be, but the results are

close, as discussed below.

To further explore only models with the highest f-measures on the basis of subsets of

63

4.1. REDUCING THE SET OF FEATURES

four and seven features from experiments 2 and 5 (described in section 3.5.2 and 3.5.5) we

used a confusion matrix (described in section 2.5). The computation of f-measure is based

on the data from the confusion matrix (as described in section 2.5.3). In experiment 2, the

f-measure of 69.4% is achieved by the J48 model which is better than the rest of the models.

This model accurately classified 28 out of 50 as female-written programs and 42 out of 50

programs as male-written programs. As shown in Table 4.3, 70 programs were correctly

classified; however, there were 22 programs mislabeled as male-written and 8 programs

mislabeled as female-written. One of the drawbacks of the J48 model is the overfitting of

data; we noticed that the model is more biased towards the male class label. The model is

not able to categorize female-written programs accurately.

Table 4.3: J48 Confusion Matrix (Experiment 2, with four features and LOOCV).

GENDER F M TOTAL

F 28 22 50

M 8 42 50

TOTAL 36 64 100

In experiment 5 the K* model achieved the highest f-measure of 71%. Table 4.4 shows

that the K* model accurately predicted the gender of 36 female authors and 35 as male

authors; thus, 71 programs were correctly classified. We noticed that the model is not

biased towards one class label. The K* model incorrectly predicted gender for 14 female-

written and 15 male-written programs.

64

4.2. STATISTICAL APPROACH

Table 4.4: K* Confusion Matrix (Experiment 5, with seven features and LOOCV).

GENDER F M TOTAL

F 36 14 50

M 15 35 50

TOTAL 51 49 100

Selecting a subset of features allows us to perform more detailed analyses to explore

gender differences, which we will discuss in the remainder of this chapter. First, we ana-

lyze the frequency of the seven features within the dataset. Secondly, we briefly discuss the

dataset in term of programs and their problem domains. Thirdly, we carry out visual anal-

ysis of the shortest and the longest male-written and female-written programs. Fourthly,

we perform problem-specific analysis. Finally we explore the correlation (γ) of the seven

features within the male-written and female-written programs.

4.2 Statistical Approach

In this thesis we are dealing with two groups of programmers which are “male” and

“female”. We are interested in examining how programmers in these groups develop com-

puter programs using various programming styles which are related to the use of different

features. We hope to determine whether the differences are real or occur by chance. A

statistical test is performed to determine whether observations are statistically significant or

not in terms of the ρ-value that can be found in the output.

The statistical technique t-test is a “bivariate statistical test” [12] and is a common ap-

proach to compare two groups in terms of their means. We carried out a two-tailed test to

find out whether either mean is greater than the other one. In other words, we are inter-

ested in determining whether the differences are greater than a random chance in order to

determine whether the difference can be considered to be statistically significant. In t-test

a null hypothesis is tested against the alternate hypothesis. The null hypothesis (Ho) states

65

4.3. FREQUENCY OF OCCURRENCE

that there is no difference in two groups (µ1 = µ1) because it might occur by chance. The

alternate hypothesis (Ha) stated that there is a difference in two groups (µ1 6= µ1). The result

from the t-test either supports or rejects the Ho. If the null hypothesis is rejected then the

alternate hypothesis is supported but cannot be proved. The ρ-value provides evidence that

either the difference is due to the random chance or not [12]. A threshold value of 0.05

is used to determine the statistical significance of the difference between two groups. The

ρ-value less than 0.05 represents that the difference is real which leads to the rejection of

the null hypothesis (Ho). The ρ-value that is greater than 0.05 demonstrates that the likeli-

hood of the result occurring by chance is high and Ho (the null hypothesis) can be accepted.

Thus, the results are non-significant.

One of the reason that this might occur is the absence of a large number of samples

due to which it is not possible to find a statistically significant difference. Studies with

a small number of samples are bound to have “deficient power” [12], which means that

it is not possible to know if results would be different in the presence of a large number

of samples. In the following sections we analyze the use of seven features and visually

identified features to determine if the difference in the use of features between the two

groups of programmers is statistically significant.

4.3 Frequency of Occurrence

We first investigated which of the seven features are more likely to appear in male-

written or female-written programs. Argamon et al. [5] identified gender-based differences

in the usage of features by computing the feature frequencies per 10,000 tokens or words.

Their results showed that the frequency of determiners was higher in male-authored docu-

ments while the frequency of pronouns was higher in female-authored documents. In this

section we follow a similar approach to evaluate the reduced set of seven features in terms

of their frequency of occurrences.

We use two different methods to compute the frequencies. In the first method we use

66

4.3. FREQUENCY OF OCCURRENCE

raw frequencies (u) of each feature within our dataset by ignoring the total number of

tokens (v) that are part of a computer program. In other words, we count occurrences of

each feature within a program without considering how many tokens are present in that

program (that is, the length of the program). In the second method we divide the frequency

(u) of each feature within a program by the total number of tokens (v) and multiply the

result by 100, that is, (u
v ∗100). We use the second approach in order to determine whether

the length of the program has an impact on the frequency of features.

Table 4.5: Means of Frequency Per 100 Tokens.

Features Female Male

/ 0.294 0.379

== 0.789 1.322

+ 0.924 0.815

>= 0.077 0.154

double 1.036 0.152

char 0.543 0.315

bool 0.361 0.378

67

4.3. FREQUENCY OF OCCURRENCE

Table 4.5 shows that the mean frequency of each feature within the dataset is smaller

in the token-based calculation. The mean values for the features /, ==, >= and bool are

higher for male-written programs. The mean values for the features +, double and char are

higher in female-written programs. These values are extracted from C.3 and C.4. For each

feature we are interested in determining whether the occurrences of these seven features are

different in male-written programs and female-written programs.

Table 4.6: Seven Features Frequency Means and Standard Deviations.

Features Female
µF (σF)

Male
µM (σM)

ρ-value

/ 1.8 (2.19) 3.36 (4.75) .039*

== 7.04 (12.67) 10.88 (12.7) .133

+ 6.38 (10.16) 6.3 (7.28) .964

>= 0.44 (0.95) 1.04 (1.68) .032*

double 4.82 (9.55) 1.22 (4.59) .019*

char 2.58 (3.67) 1.78 (2.15) .187

bool 2.18 (2.68) 2.82 (3.19) .281

Table 4.6 shows the mean (µ), standard deviation (σ), and the test of significance (ρ-

value) of frequency of each feature within the dataset.µ and σ are calculated to demonstrate

the variation in the occurrences of features in the female-written programs (Table C.1)

and male-written programs (Table C.2). To further explore the significance of differences

among the frequency of the seven features in male-written and female-written programs

we carried out the t-test using SPSS [3]. We use the t-test to determine which hypothesis

is acceptable for the each feature (dependent variable) in the group (independent variable)

of programmers. We have a total of 100 programs in our dataset. There are 50 programs

written by both female and male programmers. In the case of female programmers we have

68

4.4. VISUAL ANALYSIS OF THE SHORTEST AND THE LONGEST PROGRAMS

multiple programs from the same author; however, the change in the use of features in one

program does not impact on the other programs. Thus, we can say that each program is

independent in both groups [12].

As described in section 4.2, we observed that in Table 4.6 the statistically significant

differences (values with ∗) are found in the use of three features: /, >=, and double. There-

fore, for these three features the alternate hypothesis (Ha) cannot be rejected and we con-

sider the findings to be significant. However, for the remaining features the null hypothesis

(Ho) cannot be rejected and the findings are not considered to be statistically significant.

In other words, the use of the /, >=, and double features were found to have statistically

significant different frequency usage when comparing male-written and female-written pro-

grams.

We also considered that possibly visual inspection might identify differences that the

machine learning or frequency analysis did not identify, and so in the following section we

investigate this possibility.

4.4 Visual Analysis of the Shortest and the Longest Programs

In this section we visually investigate the seven features by examining the shortest and

the longest male-written and female-written programs. We found that the shortest program

written by a female had 141 tokens. In this program we found only the + operator out

of the set of seven features. Additionally, comments and print statements (cout) occurred

more frequently in the shortest female-written program than in the shortest male-written

program.

The smallest male-written program consisted of 107 tokens. Among the seven features

only the == operator was found in the program. There was one cout statement and there

were no comments. The shortest male-written and female-written programs belonged to

different domains of computer science. The female program was written as a computer

game of rock-paper-scissors while the male program was written to calculate benefits of

69

4.4. VISUAL ANALYSIS OF THE SHORTEST AND THE LONGEST PROGRAMS

timely bill payment. Of the seven features, we observed that the == operator appeared

more in the male-written program and the + operator appeared more in the female-written

program. However, in addition to the seven features we identified that there was a difference

in the use of other features that were not in our subset, notably comments (as described in

Table B.3) and print (cout) statements, which were used much more by the female author.

The largest male-written program had a total number of 2999 tokens while the largest

female-written program had 2950 tokens. The longest male-written and female-written

program both belonged to the domain of computer graphics. They were written to solve

different computational problems. The female-written program developed to draw multi-

ple pentahedra. The male-written program constructed multiple hypnocubes and colored

tetrahedron. The /, +, and >= features appeared more frequently in the male-written than

in the female-written program. In the female-written program ==, char, bool, comments

and print (cout) statements appeared more frequently than in the male-written program.

The differences in the use of comments and print statements within the largest male-written

and female-written programs appear to be a factor in the gender-based differences for the

number of tokens.

To further explore the gender differences around the use of comments and print state-

ments we counted their raw frequency in each male-written and female-written program. In

male-written programs the total frequency of comments was 1274. The total frequency of

print statements was 461. In female-written programs the total occurrence of each of these

was lower, 1219 and 344 respectively. These findings contradict the results from the shortest

and the longest programs which found that comments and print (cout) statements appeared

more frequently in the female-written programs than in the male-written programs. There-

fore, to determine whether the observations are statistically significant or not we carried out

t-test and used cutoff ρ-value of 0.05. As shown in Table 4.7 all ρ-values are greater than

0.05; hence, there are no significant differences in the use of cout and comments features

between the two groups of programmers.

70

4.5. PROBLEM-SPECIFIC ANALYSIS

Table 4.7: T-test for Two Features

Features Female
µ (σ)

Male
µ (σ)

ρ-value

cout 25.48 (26.14) 9.22 (11.97) .259

comments 24.38 (33.4) 6.88 (8.27) .855

After investigating the gender-based differences for these features we also observed

that the programs in the dataset were developed to solve various computational problems

either from the same or the different domains of computer science. In the next section we

examine the above findings regarding the seven features, comments, and print statements

using programs that solve the same computational problem in a specific domain.

4.5 Problem-specific Analysis

Could the differences in the use of the features depend on the type of the problem? Or

do variations occur based on the domain of the problem? To investigate the above questions,

we chose the following eight programs that each addressed the same problem. Four samples

were chosen from each of male and female authors. This gave us a small dataset with

consistency in both the domain and the problem for this analysis. The programs were all

written to solve a problem in which each program takes three dates in different formats as

the input, and prints the relationship between these dates. One step the program often made

was to check whether the dates were the same or not.

71

4.5. PROBLEM-SPECIFIC ANALYSIS

Table 4.8: Domain Specific Female-written Programs

/ == + >= double char bool cout // //∗ /* */ Tokens

4 42 6 1 0 0 6 32 41 0 0 956

4 16 6 0 0 0 8 16 7 2 10 1039

4 12 7 0 0 0 6 18 11 0 1 805

4 55 6 3 0 0 9 19 0 0 1 901

16 125 25 4 0 0 29 85 59 2 12 3701

Table 4.8 shows the number of occurrences for each feature in each of the female-

written programs. The sum for each feature over all four programs is given in bold in the

last row of Table 4.8. This table shows that ==, >=, and multi-line (//* and /* */) comments

have higher occurrences in the four selected female-written programs. In these programs,

== and >= are frequently used in conditional statements to check if two values are equal

or not in order to make a decision. The >= feature is used to compare numerical values.

The == operator is used to compare various kinds of values. Comments offered additional

information to the human reader, potentially increasing the readability of the program.

Table 4.9: Domain Specific Male-written Programs

/ == + >= double char bool cout // //∗ /* */ Tokens

4 43 6 0 0 1 6 30 0 0 1 854

4 18 6 0 0 0 7 31 9 0 0 879

4 17 7 0 0 1 6 29 70 0 0 1077

5 24 6 0 0 0 12 15 70 0 0 1088

17 102 25 0 0 2 31 105 149 0 1 3898

Similarly, Table 4.9 shows the number of occurrences for each feature in each of the

72

4.5. PROBLEM-SPECIFIC ANALYSIS

male-written programs. The sum for each feature over all four programs is given in bold

in the last row of Table 4.9. This table shows that the frequency of the char, cout, and

single-line comments (//) is higher in the four selected male-written programs than in

female-written programs. The char feature is used to define the data type of variables in

the programs. The cout feature is used to print text to the computer screen which relays

information to the user of the program. A comparison of Tables 4.8 and 4.9 shows that the

frequency of the + operator is the same, and the double data type does not appear in either

male-written or female-written program samples. The features ==, >=, and multi-line (//*

and /* */) comments have occurred more often in the four female-written programs than in

the four male-written programs.

The gender-based differences in the use of seven features could depend on the specific

problem domain. Although == appears more in the longest female-written program and

>= appears more in the longest male-written program, we see that in female-written pro-

grams belonging to the three dates problem both of these features appear more frequently

than in male-written programs. However, the longest programs (both female and male au-

thored) were written to solve problems in the domain of computer graphics. Furthermore,

in the 8 programs from the three dates problem females write programs with more multiline

comments than males, while males write programs with more cout statements than females.

We again used the t-test to determine whether the difference in the use of features in

the Date domain are statistically significant. We observe in Table 4.10 that ρ-values for

all features are greater than 0.05 indicating that the results are not statistically significant.

This is not surprising, given the small number of programs in the Date domain. However

another possible reason for this is that it is possible that the use of features is not related to

the problem domain.

73

4.6. RELATIONSHIP BETWEEN FEATURES

Table 4.10: T-Test (ρ-values)

/ == + >= double char bool cout // //∗ /* */

.391 .652 1.00 .252 - .182 .771 .377 .341 .391 .326

Additionally, we were interested in analyzing connections between pairs of the seven

features. Although CfsSubsetEval already offers some of this information, we analyzed

how the pairs were connected within our dataset. In the next section we use Pearson’s

Product Moment Coefficient (γ) [18] and two-tailed test of significance in order to identify

which pairs of features, within the subset of seven features, are strongly dependent on each

other.

4.6 Relationship between Features

In this section we investigate whether there is a relationship between pairs of features.

Our interest lies in identifying which pairs of features are linearly dependent on each other

within the male-written and female-written programs. Using γ we cannot infer a cause-

effect relationship, but we can characterize the programming style of males and females by

examining the strength of relationship between features. We used Statistical Package for

the Social Sciences (SPSS) [3] to compute γ and ρ-value for pairs of features across male-

written and female-written programs within the entire dataset. The value of γ is useful to

demonstrate the existence of a linear relationship between two features within the dataset

of programs. Based on the value of γ there are three possibilities [18]:

(i) γ = 0 shows that features are independent and they are not correlated with each other;

(ii) γ > 0 shows that features are positively correlated so a higher value of γ shows that

there is a strong correlation between the given features; and

(iii) γ < 0 shows that features are negatively correlated. This means that as the occurrence

of one feature increases, the occurrence of the other feature decreases.

74

4.6. RELATIONSHIP BETWEEN FEATURES

In Tables C.5 and C.6, we list γ values in a correlation matrix on the basis of the orig-

inal feature frequencies. We evaluate the value of γ for each pair of features to determine

whether there is no relationship, a positive linear relationship, or a negative linear relation-

ship. A correlation (γ) of greater than 0.5 indicates a strong linear relationship [9]. In the

following we examine each pair with γ value greater than 0.5 and ρ-value less than 0.05, as

shown in Tables 4.11 and 4.12.

Table 4.11: Strongly Correlated Pair(s) Based on Raw Frequency in Male-Authored Pro-
grams.

Feature 1 Feature 2 γ ρ-value

/ + 0.817 .000*

== bool 0.73 .000*

Table 4.12: Strongly Correlated Pair(s) Based on Raw Frequency in Female-Authored Pro-
grams.

Feature 1 Feature 2 γ ρ-value

/ + 0.356 .011*

== bool 0.535 .000*

4.6.1 Pair 1: operators “/” and “+”

In male-authored programs we see that the pair / and + has a stronger positive linear

relationship as demonstrated by γ = 0.817 and ρ-value = .000 which represents the signifi-

cance as shown in Table 4.11. For both male-authored and female-authored programs there

is a strong positive linear relationship between / and +, and it is statistically significant for

both. However for male-authored program the correlation is stronger, as listed in Table

4.12.

In both groups these operators are used to perform different kinds of arithmetical opera-

75

4.6. RELATIONSHIP BETWEEN FEATURES

tions and work with numerical values. The operator / is used to perform division while the

+ operator is used to perform addition. One of the reasons for the difference in the strength

of the relationship could be that in our dataset we have multiple problems within the do-

main that are solved by the same female programmer. This is not the case in the group of

male programmers.

To further explore how these features correlate with gender we examine differences

based on programs in which the pair of features appear together. We observe that in the

dataset / and + operators appear frequently in male-written samples that belong to the

domains of computer graphics (third year), image processing (fourth year), binary search

(second year), and dates (first year). The two features in female-written programs belong

to the domains of computer graphics, dates, circle, and DNA analysis. We find that one

of the reasons is that in the dataset there are more male-written samples in domains which

solve a specific problem such as the three dates problem, hypnocube problem, binary search

problem, and the problem of image processing. In our dataset, the problems of circle and

DNA analysis have more female-written samples. The three dates problem and hypnocube

problem both have male-written and female-written participants. In the following discus-

sion we explore differences in the use of / and + operators on the basis of computational

problems and their domains.

4.6.2 Male-authored Programs

The pair / and + has a very strong linear relationship in male-written programs. These

operators appear together in 37 male-written (out of 50) programs, as shown in Table C.2.

Each program is written by an individual programmer because we have more male partic-

ipants and so it was not necessary to use multiple samples from a single author. In these

37 programs there is one program in the domain which solves the problem of creating dif-

ferent text boxes. In the domain of computer graphics there are four programs written to

deal with the problem of simulating multiple hypnocubes and colored tetrahedron. There

76

4.6. RELATIONSHIP BETWEEN FEATURES

are eight programs written to handle lists for binary search. There are 17 programs which

work with dates and there are 8 programs in the domain of image processing. Thus, / and

+ operators appear in the male-authored programs belonging to the domains of computer

graphics, binary searches, image processing, and dates.

4.6.3 Female-authored Programs

In female-authored programs the pair of features / and + has a weaker linear relationship

than in male-authored programs (see Tables 4.11 and 4.12). In the dataset there are 28 (out

of 50) programs that use both operators, as shown in Table C.1. In the group of female

programmers we have multiple samples that belong to the same participant because of the

underrepresentation of female participants in the field of computer science. There are 13

unique female authors. There is one program in each domain in which this pair appears

including image processing; sorting strings; linked lists; and anagrams. There are twelve

programs written to solve different problems in the domains of computer graphics and dates.

There are six programs belonging to each of the above domains.

In the domain of computer graphics one problem deals with the simple simulation of

hypnocube, and the other problem deals with multiple hypnocubes and colored tetrahedron.

There are a total of five programs belonging to the three dates problem and one program

solves the two dates problem in the date domain. There are two programs that belong to the

domain of examining temperatures. There are three programs that calculate the area of a

circle passing through multiple points. There are four programs that belong to the domain

of bioinformatics in which two different problems have been solved: one is to find the local

alignment of the given DNA sequence and the other is to find the global alignment. We see

that the pair of features / and + appears in the female-authored programs that belong to the

domains of computer graphics, dates, circle, and DNA analysis.

77

4.6. RELATIONSHIP BETWEEN FEATURES

4.6.4 Pair 2: data type “bool” and operator “==”

In male-authored samples the pair of bool and == has a strong positive linear rela-

tionship (Table 4.11); however, in female-authored samples this pair has a moderate linear

relationship (Table 4.12). For both groups the ρ-value is .000 which indicated that the re-

sults are statistically significant. In the domain from first year including anagrams, Pig

Latin, and three dates the bool is frequently used as the method return type and very rarely

used as a data type for a variable. The == operator is used to check equality of string

(“yes”), numeric and bool (True/False) values. In our dataset we find that this pair occurs

in male-written samples that belong to the domains such as binary searches, dates, and

computer graphics. In female-written samples this pair appears in programs belonging to

the domains including anagrams (first year), computer graphics (third year), and dates (first

year).

One reason for this could be that in the dataset there are more male-written samples

in domains which solve a specific problem such as the three dates problem, the hypnocube

problem, and the binary searches problem. Similarly, the female-written programs are more

in the domains which solve the problem of anagrams and pentahedra. The problem of

three dates problem and the hypnocube problem both have male-written and female-written

participants. Next, we will discuss gender differences in the occurrences of the bool and

== features on the basis of computational problems and their domains in order to see how

they vary in each group of programmers.

4.6.5 Male-authored Programs

In male-authored programs the == and bool features have a much stronger linear rela-

tionship than in female-authored programs. Table C.2 shows that the two features appear

together in 31 programs (out of 50). These programs encompass several different domains

of computer science. 17 male-written programs belong to the domain of dates. Eight pro-

grams handle lists for binary searches. There are 5 programs that belong to the domain

78

4.6. RELATIONSHIP BETWEEN FEATURES

of computer graphics and solve the problem of creating multiple hypnocubes and colored

tetrahedron (same problem as females). There is one male-written program that deals with

the domain of converting words from English to Pig Latin (same domain as females). Thus,

the pair of features bool and == is most frequent in the male-authored programs belonging

to the domains of computer graphics, binary searches, and dates.

4.6.6 Female-authored Programs

Examining Table C.1 shows that the two features bool and == appear together in 23

(out of 50) female-authored programs. In the domain of dates, five programs solve the three

dates problem. Six programs solve the anagrams problem. There are two programs that be-

long to the domain of translating words from English into Pig Latin. In the female-written

programs there are three problems in the domain of data structures: linked lists, maps, and

multisets. For each problem there is only one program which is written by the same pro-

grammer. There is one program in the domain of compilers. In the domain of computer

graphics there are two programs related to multiple hypnocubes and colored tetrahedron

while one program deals with the simple simulation of hypnocube. We also find that there

are two programs that solve the new problem of simulating multiple pentahedron with dif-

ferent styles belonging to the domain of computer graphics. Hence, the two features appear

more frequently in the female-authored programs belonging to the domains of computer

graphics, date, and anagrams.

As a result of analyzing our dataset on the basis of ρ-values we find that the pair of ==

and bool has a significant positive linear relationship in female-authored programs and in

male-authored programs, as shown in Tables 4.11 and 4.12. However, in terms of γ this pair

is more positively correlated (linearly dependent on each other) in males than in females.

Another gender-based difference occurs in the pair / and +. On the basis of γ this pair has

a stronger positive linear relationship in male-authored programs than in female-authored

programs. This pair has a weak correlation in female-authored programs.

79

4.6. RELATIONSHIP BETWEEN FEATURES

After analyzing the dataset on the basis of correlation we are aware that the dataset is

not evenly partitioned in terms of domains of computer science. Various computational

problems are either from the same or different domains. Some problems in specific do-

mains have not been solved by either female or male programmers, and some problems

have a greater number of male participants than female participants. On the basis of corre-

lation we cannot make unwarranted claims about the pairs of features because this measure

does not infer a cause-effect relationship. Thus, γ only measures the strength of the linear

relationship between the features and the ρ-value provides sufficient evidence towards the

significance of the above findings.

80

Chapter 5

Conclusion

Sociolinguist William Labov [31] demonstrated that social variability may influence lin-

guistic variability. In the society, the social variability might be seen in socio-economic

status (SES), age, ethnicity, region, and gender on the basis of language use [27, 5]. Sim-

ilarly, within the society of programmers there may be a possibility of finding variations

in the use of programming language due to social factors. We selected gender as the sin-

gle social variable to determine differences in the use of language. Hence, in this work

we have investigated whether we can determine if gender, as a social factor, influences the

development of computer programs written in the C++ language.

This study is based on the work of Argamon et al. [4, 5, 27], which categorized French

and English text documents on the basis of the author’s gender. They used various super-

vised learning and statistical techniques to analyze the language usage in male-authored and

female-authored text documents. Thus, if gender-based categorization can be carried out

via supervised learning in two natural languages, then this opens the door to extrapolation

to artificial languages. For this reason, the aim of this study is to investigate the effects that

gender might have on the use of programming languages.

Programming languages provide much less room for linguistic variation than natural

language. The syntax of a program is quite strictly determined by the programming lan-

guage. The choices left up to the programmer include the approach to solving the compu-

tational problems, spacing and the use of keywords, operators, statements, and comments.

When put this way the breadth of choice for a programmer seems quite large. Misek-Falkoff

81

5. CONCLUSION

[34] suggests that techniques from linguistics can be used to analyze the language used to

develop software, which is composed of computer programs. This gives additional support

to our proposal to use natural language techniques in an artificial setting.

In this work we used various techniques from the area of automatic text retrieval, ma-

chine learning, and statistics. First, we used tf-idf technique to create a numerical represen-

tation of computer programs (as described in section 3.3). This technique is widely used

in the area of automatic text retrieval [40]. We used a dataset of 100 C++ programs which

were written by male and female programmers. The underrepresentation of females in the

field of computer science prevented the collection of enough sample programs from female

participants (as shown in Table 3.3). For this reason, we have a small number of sam-

ples overall for some particular problems. Also, for some problems there are not enough

samples from both genders.

Secondly, we used various machine learning methods to categorize male-written and

female-written computer programs. These methods included support vector machines (SVM),

decision trees (J48), naı̈ve bayes (NB), and nearest-neighbor (K*) (as described in Chapter

2). These methods have been used to categorize text documents in various natural languages

[4, 33, 22]. As far as we are aware, this is the first attempt to pursue the idea of categorizing

C++ programs on the basis of the author’s gender, and to investigate gender differences on

the basis of language use.

In machine learning various algorithms can be used to develop classification models.

We performed five experiments using different algorithms (as described in sections 2.2.1

and 2.4.3), different ways of partitioning the dataset into training and test data (as explained

in section 2.5), and different numbers of features using various feature selection algorithms

(as described in section 2.4.7). In the first experiment we used 50 features and applied the

leave-one-out cross validation (LOOCV) technique (as described in section 3.5.3). In the

best case scenario we were able to correctly categorize 74.2% of the programs based on the

gender of the author. In the second experiment we used 50 features and applied hold out

82

5. CONCLUSION

methods. We were able to categorize programs by the author’s gender accurately by 87.5%.

In the third experiment we applied an attribute selection evaluator, information gain, to

extract a subset of four features (as described in section 3.5.3). We then used the LOOCV

technique to again create classification models using only four features. We were able to

accurately predict the gender of 69.4% of our sample programs. In the third experiment we

again used four features but applied the hold out technique to divide the dataset instead of

the LOOCV technique (as described in section 3.5.3). We were able to accurately predict

the gender of 67.3% of the programs.

In the fourth experiment we used the correlation feature subset attribute evaluator to

identify a subset of seven features (as described in section 3.5.4). This gave better results

than four features. We again used the hold out technique for dividing the dataset into

training and testing sets. In the best case scenario we were able to correctly categorize

79.9% of the programs based on the gender. In the fifth experiment we used the seven

features and the LOOCV technique (as described in section 3.5.3). With this combination

we were able to accurately predict the gender of 71% of our sample programs.

We were interested in the results acquired from the first, the third, and the fifth experi-

ment because we applied the LOOCV technique in each of these experiments. Use of the

LOOCV technique is recommended over the hold out method to mitigate the risk of incor-

rect generalizations of the dataset [9, 18]. In addition the risk of random selection of data

samples from one class was also reduced. Therefore, the models from these experiments

should be able to generalize and extract more useful information from the given dataset in

order to accurately classify future datasets.

After the application of machine learning techniques we performed further analysis of

the subsets of features in the group of male-written and female-written programs. We were

able to make some interesting observations based on the small dataset and various analyses.

1. From the subset of seven features we found that within our dataset of 100 programs

a significant difference was found in the use of three features /, >= and double. The

83

5.1. FUTURE RESEARCH DIRECTIONS

frequency of / and >= features was higher in male-written programs than female-

written programs (as described in section 4.3). The frequency of the double feature

was higher in female-written programs than in male-written programs.

2. We also explored relationships between pairs of features (as described in section 4.6).

In our dataset / and + have a stronger positive linear relationship in male-written

programs than in female-written programs.

3. Similarly, the features bool and == have a stronger positive linear relationship in

male-written programs than in female-written programs.

During various analyses of our dataset we found potential threats including not enough

data, few female authors, and varying problem domains. To solve these threats using ma-

chine learning techniques we oversampled female-written programs, we used LOOCV to

mitigate the problem of incorrect generalization of dataset, and we considered various met-

rics and measures such as accuracy, TP, TN, FP, and f-measure.

5.1 Future Research Directions

Future work may be carried out in a number of directions. Some possible avenues are

listed below.

• In the future it would be interesting to use another social variable such as the level of

experience of our participants in various programming languages.

• In the future, we would like to perform statistical analyses of 50 features/attributes.

In addition, we would carry out Student’s t-test [5, 18] on the 50 features, the subset

of features, and their frequency to identify the gender-based differences.

• It would be interesting to develop software to integrate all of the supervised learning

algorithms that are used in this thesis to classify computer programs written in other

programming languages.

84

5.1. FUTURE RESEARCH DIRECTIONS

• In the future we would be interested to use other attribute selection algorithms to iden-

tify the conservative estimates of the performance of the four classification models

on the unseen large dataset.

• We currently have a small dataset composed of 100 data samples and a total of 2999

tokens. It would be interesting to extend this study by using a large dataset of pro-

grams written either in the same or different programming languages associated with

male and female programmers. To handle the large dataset we will need to use other

storage spaces rather than loading it into main memory as we are currently doing.

For this purpose, we could use a tool like Hadoop [44] to distribute and parallelize

the tasks of analyzing a large amount of data and to develop various classification

models.

• In this work we used supervised learning methods to categorize computer programs

written in the C++ programming language. It would be interesting to employ unsu-

pervised learning methods [45] to identify groups of male and female programmers

on the basis of the similarity among their coding styles in terms of their feature us-

ages.

• Based on our exploratory effort, we now know that there are likely to be gender-

based differences in programming. We would like to employ unsupervised learning

methods and statistical techniques in order to cluster programs on the basis of the

same problem domain, or identify groups of male and female programmers in terms

of the similarities in their usage of features.

• We hope to use these results to improve teaching practice; to design the development

teams; to further explore gender-based differences in programming; and to motivate

more females to enter or stay in the field of computer science.

• The development of an Integrated Development Environment (IDE) may aid in pro-

viding suggestions of writing programs on the basis of gender. This way the quality

85

5.1. FUTURE RESEARCH DIRECTIONS

of software might be improved that is written by male and female programmers. This

contribution might lead to the development of automatic error detection and correc-

tion if patterns of the group’s most common mistakes are known.

86

Bibliography

[1] Part-of-speech tagger @ONLINE. http://cst.dk/tools/index.php.

[2] SAS/STAT 9.2 User’s Guide, 1:ANOVA-FREQ, 4th edition, 2008.

[3] IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp., 2013.

[4] S. Argamon, J. Goulain, R. Horton, and M. Olsen. Vive la différence! text min-
ing gender difference in french literature @ONLINE. Digital Humanities Quar-
terly, 3(2), 2009. http://www.digitalhumanities.org/dhq/vol/3/2/000042/
000042.html.

[5] S. Argamon, M. Koppel, J. Fine, and A. R. Shimoni. Gender, genre, and writing style
in formal written texts. TEXT, 23:321–346, 2003.

[6] A. Ben-hur and J. Weston. A users guide to support vector machines. Methods in
Molecular Biology, 609:223–239, 2010.

[7] C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2:121–167, 1998.

[8] S. Burrows and S. M. M. Tahaghoghi. Source code authorship attribution using n-
grams. Proceedings of the 12th Australasian Document Computing Symposium, Mel-
bourne, Australia, RMIT University, pages 32–39, 2007.

[9] R. P. L. Buse and W. Weimer. Learning a metric for code readability. IEEE Trans-
actions on Software Engineering (TSE Special Issue on the ISSTA 2008 best papers),
36(4):546–558, 2010.

[10] H. Chen and M. Chau. Web mining: Machine learning for web applications. Technical
report, University of Arizona.

[11] J. G. Cleary and L. E. Trigg. K*: An instance-based learner using an entropic distance
measure. In 12th International Conference on Machine Learning, pages 108–114,
1995.

[12] L. M. Connelly. t-tests. Medsurg Nursing, 20(6):341, 2011.

[13] H. C. Currie. A projection of socio-linguistics: the relationship of speech to social
status. The Southern Speech Journal, 18:28–37, 1952.

[14] P. Domingos. A few useful things to know about machine learning. Communications
of the ACM, 55(10):78–87, 2012.

87

BIBLIOGRAPHY

[15] J. L. Fischer. Social influences on the choice of a linguistics variant. Word, 1958.

[16] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine learning.
Addison-Wesley Publishing Company, Inc.

[17] M. A. Hall. Correlation-based Feature Subset Selection for Machine Learning. PhD
thesis, University of Waikato, 1998.

[18] J. Han, M. Kamber, and J. Pei. Data Mining Concepts and Techniques. Elsevier and
Morgan Kaufmann Publishers, 3rd edition, 2012.

[19] P. Hart. The condensed nearest neighbour rule. IEEE Trans. Inf. Theory., 14(3):515–
516, 1968.

[20] G. Holmes, A. Donkin, and I. H. Witten. Weka: A machine learning workbench. In
Proc. Australia and New Zealand Conf. Intelligent Information Systems, 1994.

[21] C. Hsu, C. Chang, and C. Lin. A practical guide to support vector classification, 2010.

[22] T. Joachims. Text categorization with support vector machines: Learning with many
relevant features. Technical report, Universitá Dortmund.

[23] T. Joachims. Making large-scale svm learning practical. advances in kernel methods-
support vector learning. 1999.

[24] G. H. John and P. Langley. Estimating continuous distributions in bayesian classi-
fiers. In Eleventh Conference on Uncertainty in Artificial Intelligence, pages 338–345,
1995.

[25] S. M. Kamruzzaman, F. Haider, and A. R. Hasan. Text classification using data min-
ing. Proc. International Conference on Information and Communication Technology
in Management (ICTM-2005), 2005.

[26] J. Kivinen and M. K. Warmuth. Additive versus exponentiated gradient updates for
linear prediction. Information and Computation, 132(1):1–64, 1997.

[27] M. Koppel, S. Argamon, and A. Shimoni. Automatically categorizing written texts by
author gender. Literary and Linguistic Computing, 17(4):401–412, 2002.

[28] I. Krsul and E. Spafford. Authorship analysis: Identifying the author of a program.
Computers and Security, 16(3):233–248, 1997.

[29] L. Kukolich and R. Lippmann. LNKnet User’s Guide. MIT Lincoln Laboratory, MIT
Technology Licensing Office, RM E32-300, 200 Carleton Street, Cambridge, MA
02142-1324, 1995.

[30] M. Kukreja, S. A. Johnston, and P. Stafford. Comparative study of classification algo-
rithms for immunosignaturing data. BMC Bioinformatics, 2012.

88

5.1. FUTURE RESEARCH DIRECTIONS

[31] W. Labov. The linguistic variable as a structural unit. Washington Linguistics Review
3, pages 4–22, 1966.

[32] N. Littlestone. Learning quickly when irrelevant attributes abound: A new lin-
earthreshold algorithm. Machine Learning, 2(4):285–318, 1987.

[33] R. Mamoun and M. A. Ahmed. A comparative study on different types of approaches
to the arabic text classification. 2014.

[34] L. D. Misek-Falkoff. The new field of software linguistics: An early-bird view. SIG-
METRICS performance evaluation review, 11(2):35–51, 1982.

[35] W. O’Grady and J. Archibald. An Introduction Contemporary Linguistic Analysis.
Pearson Education Canada, 6th edition, 2008.

[36] J. F. Pane, C. A. Ratanamahatana, and B. A. Myers. Studying the language and struc-
ture in non-programmers’ solutions to programming problems. International Journal
of Human-Computer Studies, 54(2):237–264, 2001.

[37] P. Pavlidis, I. Wapinski, and W. S. Noble. Support vector machine classification on
the web. 20(4):586–587, 2004.

[38] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers,
San Mateo, CA, 1993.

[39] J. E. Rice, I. Genee, and F. Naz. Linking linguistics and programming: How to
start?(work in progress). In Proc. 25th Annual Psychology of Programming Interest
Group Conference-PPIG, 2014.

[40] G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.
Information Processing & Management, 5(24), 1988.

[41] N. Sebe, M. S. Lew, Y. Sun, I. Cohen, T. Gevers, and T. S. Huang. Authentic facial
expression analysis. Image and Vision Computing, 25(12):1856–1863, 2007.

[42] S. Vijayarani and M. Muthulakshmi. Comparative analysis of bayes and lazy clas-
sification algorithms. International Journal of Advanced Research in Computer and
Communication Engineering, 2(8), 2013.

[43] R. Wardhaugh. An Introduction to Sociolinguistics. Blackwell Publishers, Oxford,
UK, 1992.

[44] T. White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2009.

[45] I. H. Witten and E. Frank. Data Mining Practical Machine Learning Tools and Tech-
niques. Morgan Kaufmann Publishers, 2nd edition, 2005.

[46] G. Zweig, P. Mguyen, J. Droppo, and A. Acero. Continuous speech recognition with
a tf-idf acoustic model. International Speech Communication Association, 2010.

89

Appendix A

Terminology

Here we provide a brief overview of the terminology that is used throughout this thesis,
which may be unfamiliar to non-programmers.

• Program:
A program is a text file created by a programmer using a known programming (or
artificial) language such as C, C++, or Java. A program may contain variables, in-
structions, functions, loops, and other statements.

• Software:
Software is a computer program composed of either a single file or a number of
distinct files written in any programming language to fulfill specific computational
tasks. In professional settings, teams of people work towards the development of
the same software. For this reason, the term “software” refers to data and associated
documentation such as system documentation, user documentation and so forth.

• Open-Source Software:
Open-source software is a kind of software which has its program files, data, and
documentation(s) publicly available. The program files may be enhanced or modified
by other programmers for their own and others’ usage. For example, WEKA, which
is used in this thesis, is an open-source software.

• Feature/Attribute:
In order to categorize any kind of dataset, WEKA and SVMlight require a feature
list. A feature is created by transforming raw data into a representation that is suited
for machine learning tasks. In the case of computer program files (as a dataset),
keywords, operators, loops (for/while), brackets, and comments, are considered as
features. The term “feature” is interchangeable with “attribute”.

• Feature Vector:
A set of features that represent a single computer program is referred to as a feature
vector. The format <feature>:<value> is used, where <feature> is the index of an
attribute which starts either from one or zero, and <value> represents the frequency
of occurrence of a feature in terms of tf-idf score.

• Data Tuple/Instance:
A data tuple represents a single file, which is a component of a given dataset. Gen-

90

A. TERMINOLOGY

erally, a data tuple is composed of class labels and feature vectors. The term “in-
stances”,“samples”, and “examples” are used interchangeably with tuple.

91

 Project Information Sheet:

Sociolinguistics in Computer Programming

I would like to invite you to be a participant in a study combining the fields of linguistics and

computer science. This study is taking place under the supervision of Dr. Jackie Rice who is

presently serving as the Associate Dean and Associate Professor at the Dept. of Math and

Computer Science. I am aiding Dr. Jackie Rice in this study as a research assistant.

The purpose of the study is to investigate how analytic tools from the field of linguistics might

be applied to samples of computer programs. We hope this will allow us to identify how

information about the programmers or their sociological characteristics might be used to

improve current approaches to the development of computer programs. In addition,

information from this work may also be used in improving computer science education practices,

in much the way applied linguistics has been used in teaching English as a second language.

Should you agree to participate your participation in this study will consist of permitting us to

examine and analyse the C++ code that you have written for your assignment(s) in the previous

computer science courses by providing us the complete source code. You need to sign the

attached consent form and complete a short follow-up questionnaire. The questionnaire should

take less than 10 minutes to complete and is attached to this letter.

Your name will be removed from the data gathered during this study, and the data gathered will

be used only for research and teaching publication purposes. There are no anticipated risks to

this study. Anonymised data will be stored on a secure password-protected system to maintain

participants’ confidentiality, and all those with access to your data will sign confidentiality

agreements. Although there is no direct benefit to the participants, information from this study

will be used to advance the field of computer science.

Participation is entirely voluntary and you may withdraw at any time. Should you wish to

withdraw the data you have submitted to us will be destroyed. To withdraw from the study, ask

any further questions about the study, or to request an executive summary before the results

are published please contact Dr. Jackie or me:

A. TERMINOLOGY

A.1 Project Survey and Questionnaire

92

Dr. Jackie Rice

 j.rice@uleth.ca

Associate Dean and Associate Professor,

Dept. of Math and Computer Science,

University of Lethbridge, Lethbridge, AB, Canada

Fariha Naz

fariha.naz@uleth.ca

 Dept. of Math and Computer Science,

University of Lethbridge, Lethbridge, AB, Canada

Questions regarding your rights as a participant in this research may be addressed to the

Office of Research Services, University of Lethbridge (Phone: 403-329-2747 or Email:

research.services@uleth.ca).

A. TERMINOLOGY

93

CONSENT

YES / NO I have read and understood the information sheet.

YES / NO I understand the nature of this study and agree to participate.

YES / NO I understand that I can withdraw at any time.

Signed ________________________________ Date ______________________

(Questionnaire is on the following page)

A. TERMINOLOGY

94

QUESTIONNAIRE

 First Name: ________________________________

 Last Name: ________________________________

 Gender: ________________________________

(used to match questionnaire information with your code submission)

1. What was your first language spoken at home?

Answer: ________________________________

2. What was your major during your undergraduate degree (e.g. Electronics)? Currently,

what is your major in your graduate program (e.g. Computer Science, MSc)?

Answer:

 Undergraduate Major- ________________________________

 Graduate Major- ________________________________

3. What was the first computer programming language that you learned?

 Answer: ________________________________

4. What was the second computer programming language that you learned?

 Answer: ________________________________

5. Overall how many years/months of experience would you say you have as a programmer?

 Answer: ________________________________

6. For how long you have been developing computer programs in the C++ programming

Language? (e.g. 1 year, 2 years, 5 years, 10 years, or longer than 10 years).

 Answer: ________________________________

7. What other programming languages do you consider yourself to be familiar with (e.g. for

writing moderately complex programs)?

 Answer:

 ________________________________

 ________________________________ (continued on the following page)

A. TERMINOLOGY

95

 ________________________________

 ________________________________

8. If you have worked with several programming languages, how long have you worked with

each, either as a professional or a hobbyist (e.g. Java: 4 years)?

 Answer:

 ________________________________

 ________________________________

 ________________________________

 ________________________________

 9. While writing the code that you have submitted for this study, what was your

predominant consideration (e.g. completion of assignment)?

 Answer: ________________________________

 10. Considering your answer to question 9 above, how do you feel that this was reflected in

your code (e.g. able to complete assignment/your code is similar to what you had in mind)?

 Answer: ________________________________

11. Did you work alone on this code, or in a group/partner situation?

 Answer: ________________________________

12. If this was a joint/group effort, how much of the code would you estimate was “yours”?
For instance, 10%, 50%, 75%?

Answer: ________________________________

 13. Do you expect to be working with this code again?

 Answer: ________________________________

 End of questionnaire. Thank-you!

A. TERMINOLOGY

96

Appendix B

Detail of Features

Here we provide the list of features with their descriptions taken from the following re-
sources [39]:

1. Keywords Detail: http://en.cppreference.com/w/cpp/keyword

2. Operators Detail: http://en.cppreference.com/w/cpp/language/operator_precedence

3. Comments Detail: http://en.cppreference.com/w/cpp/comment

Table B.1: C++ Reserved Keywords and their Meanings.

Description Keywords

Loops f or, while

Datatypes int, f loat, char, double, bool

Constants const

Preprocessors #de f ine , #include

Access labels public, private

Standard Input (statement) cin

Decision making switch

Built-in functions return, exit

Standard Output (statements) cout

Standard Error or Output (statements) cerr

To include namespace using

Dynamic memory allocation new

Functions with no return value void

97

B. DETAIL OF FEATURES

Table B.2: C++ Operators and their Details.

Description Operator

Equality ==

Inequality ! =

Less than <

Division /

Addition +

Increment ++

Decrement −−
Address of &

Logical not !

Subtraction -

Assignment =

Bitwise OR |
Logical OR ‖
Greater than >

Logical AND &&

Multiplication ∗
Member selection −>

Division assignment /=

Less than or equal to <=

Addition assignment +=

Greater than or equal to >=

Subtraction assignment -=

Multiplication assignment ∗=

Table B.3: C++ Comments

Description Comments

Multi-line /* */, //*

Single-line //

98

Appendix C

Frequency of Features

Table C.1: Frequency of Features in Female-Written Programs.

Programs / == + >= double char bool Total Tokens

1 0 46 2 0 0 5 1 1288

2 7 3 64 0 2 2 1 534

3 3 0 7 0 0 2 6 414

4 3 0 0 0 11 2 1 613

5 3 6 14 0 4 4 0 771

6 4 16 9 0 0 0 2 1449

7 2 4 11 0 2 5 0 647

8 0 5 2 0 0 3 0 458

9 1 7 14 0 2 15 0 836

10 2 0 2 0 22 1 0 439

11 4 43 6 3 0 1 7 1150

12 0 5 1 0 0 2 1 570

13 0 0 1 0 0 3 1 1421

14 0 0 0 0 0 2 1 474

15 12 3 10 0 6 2 2 868

16 0 1 1 0 0 3 2 439

17 2 0 2 0 17 0 0 578

18 2 0 3 0 34 0 0 377

19 4 42 6 1 0 0 6 956

20 1 5 1 2 0 4 2 468

21 4 16 6 0 0 0 8 1039

99

C. FREQUENCY OF FEATURES

22 2 1 0 0 17 1 0 573

23 0 16 23 0 0 3 9 2950

24 3 0 7 0 1 2 7 570

25 2 0 3 0 34 0 0 526

26 0 1 0 0 0 5 2 411

27 2 5 16 0 2 11 0 621

28 2 6 8 3 2 4 0 652

29 0 0 0 0 19 0 0 332

30 0 1 0 0 0 3 2 198

31 4 12 7 0 0 0 6 805

32 3 14 1 0 2 2 2 1601

33 2 3 8 2 11 9 0 672

34 0 1 0 0 0 3 3 221

35 2 6 1 0 0 0 2 536

36 2 0 3 2 36 0 0 359

37 0 1 5 0 0 3 6 297

38 4 55 6 3 0 0 9 901

39 0 4 21 0 0 2 4 1364

40 1 0 17 0 0 2 1 1223

41 0 0 0 0 0 0 0 244

42 2 0 0 0 0 0 0 146

43 0 9 14 0 0 0 4 805

44 0 6 5 3 0 0 3 959

45 3 0 0 1 0 0 0 306

46 0 0 1 0 0 0 0 141

47 0 2 0 0 0 2 3 210

48 2 0 0 0 17 0 0 535

49 0 7 6 0 0 3 5 410

50 0 0 4 2 0 18 0 249

Total 90 352 318 22 241 129 109 34607

100

C. FREQUENCY OF FEATURES

Average 1.8 7.04 6.36 0.44 4.82 2.58 2.18 692.14

Table C.2: Frequency of Features in Male-Written Programs.

Programs / == + >= double char bool Total Tokens

1 0 1 0 0 0 0 0 107

2 2 11 15 0 0 3 0 464

3 0 9 9 5 0 1 0 557

4 0 0 0 0 0 2 0 334

5 0 8 0 0 0 2 1 570

6 12 6 1 0 0 2 2 584

7 3 0 0 0 3 2 2 421

8 0 14 0 2 0 2 0 1250

9 4 0 0 0 2 2 2 522

10 1 4 11 2 0 2 2 692

11 0 3 5 0 1 2 4 665

12 0 2 3 0 0 2 0 643

13 3 1 2 0 4 2 1 1166

14 30 8 48 2 0 2 0 2999

15 1 4 2 0 0 0 1 246

16 1 3 3 2 0 0 1 479

17 1 3 5 3 0 0 3 505

18 1 4 3 8 0 0 1 611

19 1 3 5 3 0 0 1 298

20 4 17 6 0 0 0 10 697

21 1 3 3 1 0 1 1 536

22 3 29 6 0 0 0 7 1210

23 4 43 6 0 0 1 6 854

24 0 1 4 0 0 4 4 262

25 8 45 12 3 0 1 8 1774

26 8 33 12 0 0 1 6 1083

101

C. FREQUENCY OF FEATURES

27 8 44 12 2 0 0 6 993

28 4 19 6 0 0 1 7 1234

29 4 5 14 0 2 5 0 745

30 2 5 7 0 0 5 0 534

31 2 3 8 2 14 5 0 637

32 2 3 7 0 0 11 0 463

33 2 3 12 0 0 5 0 603

34 10 3 11 4 29 5 0 1104

35 2 3 5 0 6 5 0 650

36 4 7 3 0 0 5 0 622

37 0 4 0 0 0 3 0 244

38 0 2 0 0 0 0 0 170

39 4 18 6 0 0 0 7 879

40 4 18 6 0 0 1 6 965

41 4 17 7 0 0 1 6 1077

42 0 1 2 0 0 0 2 272

43 2 7 6 3 0 0 2 741

44 3 29 6 0 0 0 7 742

45 1 8 3 1 0 0 1 490

46 8 44 12 3 0 1 8 1510

47 4 10 7 3 0 1 6 594

48 5 24 6 0 0 0 12 1088

49 1 2 1 0 0 0 2 334

50 4 10 7 3 0 1 6 677

Total 168 544 315 52 61 89 141 36897

Averages 3.36 10.88 6.3 1.04 1.22 1.78 2.82 737.94

102

C. FREQUENCY OF FEATURES

Table C.3: Frequency of Features Per 100 Tokens in Female-Written Programs.

Programs / == + >= double char bool

1 0 3.571 0.155 0 0 0.388 0.077

2 1.31 0.561 11.985 0 0.374 0.374 0.187

3 0.724 0 1.69 0 0 0.483 1.449

4 0.489 0 0 0 1.794 0.326 0.163

5 0.389 0.778 1.815 0 0.521 0.518 0

6 0.276 1.104 0.621 0 0 0 0.138

7 0.309 0.618 1.7 0 0.309 0.772 0

8 0 1.091 0.436 0 0 0.655 0

9 0.119 0.837 1.674 0 0.239 1.794 0

10 0.455 0 0.455 0 5.011 0.227 0

11 0.347 3.739 0.521 0.26 0 0.086 0.608

12 0 0.877 0.175 0 0 0.35 0.175

13 0 0 0.07 0 0 0.211 0.07

14 0 0 0 0 0 0.421 0.21

15 1.382 0.345 1.152 0 0.691 0.23 0.23

16 0 0.227 0.227 0 0 0.683 0.455

17 0.346 0 0.346 0 2.941 0 0

18 0.53 0 0.795 0 9.018 0 0

19 0.418 4.393 0.627 0.104 0 0 0.627

20 0.213 1.068 0.213 0.427 0 0.854 0.427

21 0.384 1.539 0.577 0 0 0 0.769

22 0.349 0.174 0 0 2.966 0.174 0

23 0 0.542 0.779 0 0 0.101 0.305

24 0.526 0 1.228 0 0.175 0.35 1.228

25 0.38 0 0.57 0 6.463 0 0

26 0 0.243 0 0 0 1.216 0.486

27 0.322 0.805 2.576 0 0.322 1.771 0

28 0.306 0.92 1.226 0.46 0.306 0.613 0

29 0 0 0 0 5.722 0 0

103

C. FREQUENCY OF FEATURES

30 0 0.505 0 0 0 1.515 1.01

31 0.496 1.49 0.869 0 0 0 0.745

32 0.187 0.874 0.062 0 0.124 0.124 0.124

33 0.297 0.446 1.19 0.297 1.636 1.339 0

34 0 0.452 0 0 0 1.357 1.357

35 0.373 1.119 0.186 0 0 0 0.373

36 0.557 0 0.835 0.557 10.027 0 0

37 0 0.336 1.683 0 0 1.01 2.02

38 0.443 6.104 0.665 0.332 0 0 0.998

39 0 0.293 1.539 0 0 0.146 0.293

40 0.081 0 1.39 0 0 0.163 0.081

41 0 0 0 0 0 0 0

42 1.369 0 0 0 0 0 0

43 0 1.118 1.739 0 0 0 0.496

44 0 0.625 0.521 0.312 0 0 0.312

45 0.98 0 0 0.326 0 0 0

46 0 0 0.709 0 0 0 0

47 0 0.952 0 0 0 0.952 1.428

48 0.373 0 0 0 3.177 0 0

49 0 1.707 1.463 0 0 0.731 1.219

50 0 0 1.606 0.803 0 7.228 0

Average 0.294 0.789 0.921 0.077 1.036 0.543 0.361

104

C. FREQUENCY OF FEATURES

Table C.4: Frequency of Features Per 100 Tokens in Male-Written Programs.

Programs / == + >= double char bool

1 0 0.934 0 0 0 0 0

2 0.431 2.37 3.232 0 0 0.646 0

3 0 1.615 1.615 0.897 0 0.179 0

4 0 0 0 0 0 0.598 0

5 0 1.403 0 0 0 0.35 0.175

6 2.054 1.027 0.171 0 0 0.342 0.342

7 0.712 0 0 0 0.712 0.475 0.475

8 0 1.12 0 0.16 0 0.16 0

9 0.766 0 0 0 0.383 0.383 0.383

10 0.144 0.578 1.589 0.289 0 0.289 0.289

11 0 0.451 0.751 0 0.15 0.3 0.601

12 0 0.311 0.466 0 0 0.311 0

13 0.257 0.085 0.171 0 0.343 0.171 0.085

14 1 0.266 1.6 0.066 0 0.066 0

15 0.406 1.626 0.813 0 0 0 0.406

16 0.208 0.626 0.626 0.417 0 0 0.208

17 0.198 0.594 0.99 0.594 0 0 0.594

18 0.163 0.654 0.49 1.309 0 0 0.163

19 0.335 1.006 1.677 1.006 0 0 0.335

20 0.573 2.439 0.86 0 0 0 1.434

21 0.186 0.559 0.559 0.186 0 0.186 0.186

22 0.247 2.396 0.495 0 0 0 0.578

23 0.468 5.035 0.702 0 0 0.117 0.702

24 0 0.381 1.526 0 0 1.526 1.526

25 0.45 2.536 0.676 0.169 0 0.056 0.45

26 0.738 3.047 1.108 0 0 0.092 0.554

27 0.805 4.431 1.208 0.201 0 0 0.604

28 0.324 1.539 0.486 0 0 0.081 0.567

29 0.536 0.671 1.879 0 0.268 0.671 0

105

C. FREQUENCY OF FEATURES

30 0.374 0.936 1.31 0 0 0.936 0

31 0.313 0.47 1.255 0.313 2.197 0.784 0

32 0.431 0.647 1.511 0 0 2.375 0

33 0.331 0.497 1.99 0 0 0.829 0

34 0.905 0.271 0.996 0.362 2.626 0.452 0

35 0.307 0.461 0.769 0 0.923 0.769 0

36 0.643 1.125 0.482 0 0 0.803 0

37 0 1.639 0 0 0 1.229 0

38 0 1.176 0 0 0 0 0

39 0.455 2.047 0.682 0 0 0 0.796

40 0.414 1.865 0.621 0 0 0.103 0.621

41 0.371 1.578 0.649 0 0 0.092 0.557

42 0 0.367 0.735 0 0 0 0.735

43 0.269 0.944 0.809 0.404 0 0 0.269

44 0.404 3.908 0.808 0 0 0 0.943

45 0.204 1.632 0.612 0.204 0 0 0.204

46 0.529 2.913 0.794 0.198 0 0.066 0.529

47 0.673 1.683 1.178 0.505 0 0.168 1.01

48 0.459 2.205 0.551 0 0 0 1.102

49 0.299 0.598 0.299 0 0 0 0.598

50 0.59 1.477 1.033 0.443 0 0.147 0.886

Averages 0.379 1.322 0.815 0.154 0.152 0.315 0.378

106

C. FREQUENCY OF FEATURES

In the following Tables, we present two correlation matrix computed for males and
females. This matrix is symmetric, so the diagonal values in the matrix are always 1. These
values represent that there is a strong relationship between the same features which is of no
interest. The values above and below the diagonal are the same. Thus, we report the values
only above the diagonal.

Table C.5: Correlation Based on Raw Frequency of Features in Female-Authored Programs.

Features / == + >= double char bool

/ 1 0.206 0.356 0.072 0.094 -0.18 0.145

== 1 0.05 0.395 -0.257 -0.086 0.535

+ 1 -0.057 -0.148 0.134 0.129

>= 1 -0.014 0.118 0.152

double 1 -0.206 -0.389

char 1 -0.226

bool 1

Table C.6: Correlation Based on Raw Frequency of Features in Male-Authored Programs.

Features / == + >= double char bool

/ 1 0.304 0.817 0.11 0.151 0.028 0.17

== 1 0.244 0.05 -0.175 -0.298 0.73

+ 1 0.195 0.072 0.136 0.052

>= 1 0.212 -0.183 -0.063

double 1 0.344 -0.214

char 1 -0.437

bool 1

107

