
COMBINATORIAL APPROACH TO ABV-PACKETS FOR GLN

CONNOR DAVID RIDDLESDEN
Bachelor of Science, Coventry University, 2020

A thesis submitted
in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

in

MATHEMATICS

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Connor David Riddlesden, 2022



COMBINATORIAL APPROACH TO ABV-PACKETS FOR GLN

CONNOR DAVID RIDDLESDEN

Date of Defence: August 12, 2022

Dr. A. Fiori Associate Professor Ph.D.
Thesis Supervisor

Dr. A. Akbary Professor Ph.D.
Thesis Examination Committee Member

Dr. H. Kharaghani Professor Ph.D.
Thesis Examination Committee Member

Dr. J. Sheriff Assistant Professor Ph.D.
Chair, Thesis Examination Committee



Dedication
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Abstract

There exists a significant conjecture in the local Langlands correspondence that A-packets are ABV-

packets. For the case G = GLn, the conjecture reduces to ABV-packets for orbits of Arthur type

being singletons, which is a specialisation of the wider conjecture known as the Open-Orbit con-

jecture. We can reduce the complexity of this problem by considering the combinatorial geometry

of these objects using multisegments, since there exists a natural relationship between this descrip-

tion and the structure of ABV-packets. The first part of this thesis investigates interpretations of

the Zelevinskii Involution. We then use combinatorial approaches involving endoscopic decomposi-

tions and numerical invariants to study the partial ordering in the Open-Orbit conjecture, which will

lead to the proof that ABV- packets for orbits of Arthur type in GLn are singletons. Finally, we use

a numerical-based argument to conjecture families of ABV-packets for which the partial ordering

relation is not satisfied for.
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Chapter 1 : Introduction

The Langlands program is an extremely important set of conjectures in number theory and geometry.

Inside the Langlands program lies the local Langlands correspondence for which there exists a

significant conjecture: A-packets are ABV-packets. Both A-packets and ABV-packets will be finite

sets of irreducible representations of GLn when restricting to G = GLn, which we will do in this

thesis. This significant conjecture was first presented by Cunningham et al. [4]. Further for G =

GLn, the conjecture reduces to ABV-packets for orbits of Arthur type being singletons, which is a

specialisation of the wider conjecture known as the Open-Orbit conjecture. The primary motivation

for this thesis has been to study the Open-Orbit conjecture for different families of ABV-packets and

prove the conjecture that ABV-packets for orbits of Arthur type in GLn are singletons. The study of

these conjectures requires one to also study an involution on the set of irreducible representations

of GLn, commonly known as the Zelevinskii involution. In this study we will be required to look at

the geometry of moduli spaces of Langlands parameters which was first discussed by Zelevinskii.

For a wider study of the geometry of moduli spaces of Langlands parameters including those groups

outside of G = GLn see the work of Cunningham et al. [5].

The approach taken to the problem in this thesis avoids the need to understand highly technical

objects about which the conjectures are actually made. Instead we will focus on the combinato-

rial geometry of these technical objects since one can more easily deduce properties about them.

One method for studying the combinatorial geometry is through the use of multisegments, which

have become an effective combinatorial depiction for objects in representation theory. Multiseg-

ments simply consist of a collection of sequences of integers and can be used to describe conjugacy

classes of orbits of Langlands parameters. One method of realising the Zelevinskii involution on

multisegments is through the Mœglin-Waldspurger algorithm. The Zelevinskii involution also has

an interesting combinatorial application for the so-called Schützenberger involution in the theory

of Young tableaux. Knight and Zelevinskii in [9] use a multisegment depiction to prove that the

Schützenberger involution and Mœglin-Waldspurger algorithm emit equivalent results. Therefore

1



1. INTRODUCTION

the desire to study the Mœglin-Waldspurger algorithm is also highly motivated by its additional

applications to the Young tableaux, which has further applications to both Schubert Calculus and

Schur functions.

Chapter 2 begins with the background material concerning how the project fits in to the local

Langlands program, describes the geometry of moduli spaces of Langlands parameters, and their

simplification to a multisegment description. Following this it introduces the Zelevinskii involution,

which is interpreted as an involution on multisegments, along with the Open-Orbit conjecture, and

a partial ordering of multisegments.

Chapter 3 studies various methods for implementing the Zelevinskii involution. The first method

which is presented in Section 3.1 is the Mœglin-Waldspurger algorithm which is implemented on

the multisegment description. Knight and Zelevinskii in [9] show that there exists a method of using

the maximum flow through a network to implement the Zelevinskii involution. In Section 3.2, we

define an analogous network to Knight and Zelevinskii’s, and relate this to the Mœglin-Waldspurger

algorithm. Furthermore, we discusses how the Mœglin-Waldspurger algorithm can be implemented

on the network, which leads to a greater understanding of the algorithm.

Our study of the Open-Orbit conjecture for ABV-packets is contained in Chapter 4. The key is

to study the interaction of a partial ordering and an involution which, perhaps surprisingly, does not

always respect this ordering. We employ two combinatorial techniques in this process:

1. Endoscopic Decomposition: We partition a multisegments into sub-multisegments and then

run the algorithm on each of the individual partitions.

2. Numerical Invariants: This categorises the multisegments using various numerical properties

and creates various combinatorial optimisation problems based on these properties.

These techniques will then be used to categorise various families of ABV-packets that either satisfy

or fail to satisfy a relation which is understood to imply a packet is a singleton and will be introduced

in Chapter 2. This leads to the most significant result of the thesis: ABV-packets for orbits of Arthur

type in GLn are singletons, which is shown using a numerical argument in Section 4.2.

Finally, Chapter 5 concludes the thesis with a brief overview of areas which require further

research, and questions that still remain.
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Chapter 2 : Background and Motivation

The background material for this thesis is contained between Section 2.1 and Section 2.4 inclusively.

Following on from the background, there is a main focus on establishing how the relations discussed

in the Open-Orbit conjecture in Section 2.4 can be reflected by both a rank and multisegment de-

scription in Section 2.5.

The complete breakdown of each section in the chapter is:

2.1 We discuss the necessary background for how the thesis fits into the local Langlands corre-

spondence.

2.2 We fix the case for G = GLn and study how the objects can be represented by “rank triangles”.

2.3 We introduce the notion of a multisegment and give an explicit algorithm to swap between the

rank triangle and multisegment descriptions.

2.4 We present the notion of the conormal bundles and discover how its introduction gives rise to

both the Zelevinskii involution and the Open-Orbit conjecture.

2.5 We look into how relations from the Open-Orbit conjecture can be interpreted in terms of a

partial ordering on the rank triangles and multisegments.

2.1 Background

The Langlands program is a collection of significant conjectures which are described by Edward

Frenkel as ‘a grand unified theory of mathematics’ [8]. This collection of conjectures were first

proposed by Canadian mathematician Robert Langlands in a series of papers between 1967 and

1970, hence the eponymous name for the program, and describe a number of relationships between

many seemingly unrelated areas of mathematics from number theory, to harmonic analysis, on to

geometry and even further to quantum physics [10, 11]. One significant application of the Langlands

program was in the solution to Fermat’s Last Theorem by Wiles and Taylor in 1994 [18].

3



2.1. BACKGROUND

One specific area of the Langlands program, and the main focus of this research, is the local

Langlands correspondence/conjectures. To present the local Langlands correspondence we must set

up the notations and introduce a couple of key terms.

Let G be a reductive algebraic group over a p-adic field F , then Langlands derived a new com-

plex group, the Langlands dual group, which is denoted by Ĝ. Some important examples of Lang-

lands dual groups are as follows:

Table 2.1: Examples of Langlands Dual Groups

G GLn Sp2n SO2n+1 SO2n

Ĝ GLn(C) SO2n+1(C) Sp2n(C) SO2n(C)

Building off this construction one can define an L-group to be denoted LG and is such that

LG =WF n Ĝ 1, where WF is the dense subgroup of the Galois group and denotes the Weil-Deligne

group.

Definition 2.1.1 ([14, Definition 3.2.1.]). A Langlands parameter (L-parameter) is a continuous

homomorphism

φ : WF ×SL2(C)→ LG,

that satisfies the properties:

1. If p : LG→WF and q : WF ×SL2(C)→WF are the natural projections, then p◦φ = q, i.e., the

following diagram commutes

WF ×SL2(C) LG

WF

φ

q p

2. φ(WF) consists of semisimple elements of LG.

3. The restriction of φ to SL2(C) is an algebraic representation.
1In this thesis we will only study the case in which Ĝ is split, thus the semidirect product WF n Ĝ can simply be

considered as the direct product WF × Ĝ.

4



2.1. BACKGROUND

Thus we find that the group Ĝ acts on the set of L-parameters by conjugation. So let us denote

the set of equivalence classes of L-parameters as Φ(G/F).

We can now present the local Langlands correspondence.

The local Langlands correspondence postulates that there exists a surjective finite to
one mapping Ω from the equivalence classes of irreducible admissible representations
of G/F to the equivalence classes of L-Parameters φ : WF ×SL2(C)→ Ĝ. [10, 11]

Note we will thus define the L-packet of φ to be the inverse image of Φ under this map Ω.

Naturally we only want to consider the conjugacy classes of Ĝ acting on the set of Langlands

parameters, so it is natural to study the stabiliser of the action H = Ĝφ. Both Ĝ and H are topological

groups, thus we can consider Aφ = H/H0, where H0 is the connected component of the identity e of

H. Note a topological space decomposes into its connected components and by construction Aφ will

be a finite group.

The enhanced Langlands parameter is (φ, p) where p is an irreducible representation of Aφ.

With this we may give a stronger form of the local Langlands correspondence: there exists a bi-

jection between irreducible admissible representations of G/F up to isomorphism and enhanced

Langlands parameters (φ, p) up to isomorphism. Hence an equivalent formation for the L-packet for

φ is therefore given by those representations associated to each pair (φ, p) for the fixed φ.

Definition 2.1.2 ([14, Section 3.2.3.]). The infinitesimal parameter for G is a continuous homomor-

phism λ : WF → LG such that λ is a section of LG→WF and the image of λ consists of semisimple

elements in LG.

Now let Fq be the residue field of F where q denotes the cardinality of this residue field and let

IF denote the inertia subgroup of F . Then there exists an exact sequence

1→ IF →WF → Gal
(
Fq/Fq

)
→ 1.

For any w ∈WF , let dw ∈ SL2(C) be such that

dw =

|w| 12 0

0 |w|− 1
2

 ,

5



2.1. BACKGROUND

where | · | : WF→R is a fixed norm homomorphism, trivial on IF and sending a topological generator

of Gal(Fq/Fq), called Frob, to q .

Given any Langlands parameter φ : WF×SL2(C)→ LG, let us define the infinitesimal parameter

λφ of φ by

λφ : WF → LG,

w 7→ φ(w,dw),

for all w ∈WF . This gives a finite surjective mapping from Langlands parameters φ to infinitesimal

parameters of λ up to isomorphism.

For the unramified case the inertia group IF will be contained in the kernel whereas in the

ramified case we must consider both the Frobenius and the inertia group IF . We now will restrict to

the unramified case, so without loss of generality we may take WF = 〈Frob〉 then λ = λφ(Frob). For

G = GLn, the unramified infinitesimal parameter λ : WF → GLn(C) is determined by the image of

the Frobenius element. Note the element λ(Frob) is semisimple so we can simply assume that it lies

in the subgroup of diagonal matrices

λ(Frob) = diag(qa1 , . . . ,qan),

where a1, . . . ,an are complex numbers.

From here forward, we will simply just consider the unramified case and fix λ= λ(Frob). It turns

out it is natural to study Langlands parameters, and their associated L-packets, by grouping them

by infinitesimal parameters, since each Langlands parameter has a unique infinitesimal parameter.

Let us now define this set of Langlands parameters to be Λ = {φ | λφ = λ}. If we consider the map

SL2(C)→ Ĝ then this is a map of Lie groups. Let sl2 and ĝ be the respective Lie algebras of SL2(C)

and Ĝ then the map SL2(C)→ Ĝ is defined by the mapping of their Lie algebras sl2→ ĝ.

Every Langlands parameter φ ∈ Λ has the same infinitesimal parameter. Let us construct the

complex variety Vλ such that

Vλ = q-eigenspace of λ acting on ĝ.

6



2.1. BACKGROUND

We can now define a surjective map from Λ to the slightly simpler space Vλ:

Λ→Vλ : φ 7→ xφ := dϕ

0 1

0 0

 ,

where ϕ := φ◦ |SL2(C): SL2(C)→ Ĝ, thus we can consider Vλ as the moduli space of Langlands

parameters [4, Proposition 4.2.2]. We will also denote the centraliser in Ĝ of λ as Hλ.

Remark 2.1.3. This centraliser Hλ will act on the complex variety Vλ.

Before we define a new type of packet, ABV-packets, we must first introduce the notion of

PerHλ
(Vλ) to denote Hλ equivariant perverse sheaves on Vλ

2. Note for every simple perverse sheaf

in PerHλ
(Vλ), we can define it in terms of an intersection cohomology sheaf I C (Cφ,Lp), where Cφ is

the orbit of φ and Lp is a local system on Cφ associated to the irreducible representation p of Aφ, the

equivariant fundamental group. There is a natural bijection between isomorphism classes of simple

perverse sheaves I C (Cφ,Lp) (with fixed Cφ) and representations of Aφ. Consequently, there exists a

bijection between the I C (Cφ,Lp) on Vλ and Πλ(G/F). The local Langlands correspondence can be

interpreted as saying that we have a bijection between the sets of equivalence classes of

Simple Perverse Sheaves←→
Orbits of L-parameters

with their
Associated Local System

←→ Enhanced L-parameters←→ Representations,

{I C (Cφ,Lp)}←→ {(Cφ,Lp)}←→ {(φ, p)}←→Πλ(G/F).

To partially justify the introduction of these complex objects into the interpretation of the local

Langlands correspondence, we remark that the Fourier transform on perverse sheaves agrees with

the Aubert involution on admissible representations. This is known for G = GLn but is conjectured

more generally. This intrinsic relationship between the two involutions defined on either side of

this bijection is one strong reason to believe the introduction of perverse sheaves into the theory is

natural. Let us denote the characteristic cycle of a sheaf to be CC.

2In this thesis we will not need to explicitly describe perverse sheaves, since complete descriptions are available
throughout the surrounding literature on the project and the concept is not relevant for the overall goals of the thesis.

7



2.1. BACKGROUND

Definition 2.1.4 ([1]). For any Hλ-orbit C in Vλ we may associate an ABV-packet for C to consist of

the collection of simple perverse sheaves for which T ∗C (V ) (the conormal bundle Definition 2.4.1)

is in the support of CC(I C (Cφ,Lp)), which denotes the characteristic cycle of the perverse sheaf

I C (Cφ,Lp).

Each A-parameter ψ, defined below, will determine elements in the conormal bundle to the orbit

Cφψ
. Thus the introduction of the complex object of simple perverse sheaves instead allows us to

study the Hλ-orbits in Vλ and the characteristic cycles of their conormal bundle.

There also exists a natural partial ordering on Hλ-orbits in which we say that C ≤ D if C ⊂ D.

There exists a key property for the characteristic cycles of simple perverse sheaves.

Proposition 2.1.5. If [C] ∈CC(I C (D,Lp)) then C ≤ D.

We will now consider an augmentation of L-parameters, which Arthur introduced [2].

Definition 2.1.6 ([14, Definition 3.4.1.]). Let G be a reductive group over F , and LG be an L-group

for G. Then we define an Arthur parameter (or A-parameter) for G to be a homomorphism:

ψ : 〈Frob〉×SL2(C)×SL2(C)−→ LG,

(w,x,y) 7−→ ψ
0(w,x,y)ow,

such that:

1. The restriction of ψ |WF×SL2 is a Langlands parameter for G.

2. The restriction ψ0 to the last copy of SL2 is a morphism of algebraic groups.

3. ψ0 |WF has bounded image in the complex topology on Ĝ.

Note the collection of all A-parameters for G is denoted Ψ(G), and there exists an injective map

from Ψ(G) to Φ(G/F) given by

ψ 7→ φψ(w,x) = ψ(w,x,dw)
3.

3The fact that this map is injective is not immediately obvious since it follows from the Jacobson-Morozov Theorem
[14]. It will not generally be true that the map also holds the property of being surjective.

8



2.2. SPECIALIZING TO THE CASE OF GLN

Let Π(G/F) be the set of equivalence classes of irreducible admissible representations of G/F .

Then for each Langland parameter φ ∈Φ there exists a previously defined L-packet Πφ ⊂Π(G/F).

In [2] Arthur introduced A-packets, which are simply expansions of L-packets [2]. Each A-packet

is associated with an A-parameter ψ and is an expansion of the L-packet Πφψ
. Note for the case in

which G = GLn each A-packet is equal to the associated L-packet, and each A-packet is a singleton.

Furthermore, there exists a significant conjecture which explains a relationship between A-

packets and ABV-packets (See [5, 17]).

Conjecture 2.1.7. A-packets are ABV-packets.

For the specific case G = GLn because A-packets are known to be singletons, the conjecture

reduces to ABV-packets for orbits of Arthur type being singletons. It is known that there are ABV-

packets that are not singletons (See [5, Section 1.3 - Main Results]). Therefore the study of ABV-

packets for orbits of Arthur type is of the upmost importance, and there will be a key focus on

examining this family of ABV-packets using various combinatorial approaches in this thesis.

2.2 Specialising to the case of GLn

In this research, we will simply fix G = GLn. We note that for G = GLn, the A-packets are all

singletons and equal to their associated L-packet. It is also known that for the GLn case the Fourier

transform on perverse sheaves agrees with the Aubert involution on admissible representations [7,

Corollary 7.3].

In GLn the objects Vλ and Hλ have very concrete descriptions, in particular they are the direct

products of varieties of the form:

Vλ =⊕k Hom(Ek,Ek+1) and Hλ =⊕kGL(Ek),

where Ek denotes an eigenspace of λ(Frob) which is associated to the eigenvalue λk. Note the

eigenspaces Ek and Ek−1 have an implied relationship between their associated eigenvalues

λk = qλk−1.

9



2.2. SPECIALIZING TO THE CASE OF GLN

Let fi, j denote a map between the eigenspaces Ei→ E j. We will refer to the elements of Vλ as quiver

representations and denote them by

f = ( fk,k+1) ∈ ⊕k Hom(Ek,Ek+1).

Then there exists maps for each i≤ j such that

fi, j = f j−1, j ◦ · · · ◦ fi,i+1.

Each map fi, j has an associated rank ri, j, which naturally construct rank triangles as follows

r1,1 r2,2 r3,3 r4,4 · · ·

r1,2 r2,3 r3,4
. . .

r1,3 r2,4
. . .

r1,4
. . .

. . .

.

Remark 2.2.1. Assuming that Vλ and Hλ are defined as above, then their orbits can be classified by

the ranks of each map fi, j, which will be shown in Proposition 2.3.7.

Proposition 2.2.2 ([4, Section 1.5]). The rank triangles of the maps fi, j have three key properties:

1. ri, j ≤ ri, j−1,

2. ri, j ≤ ri+1, j, and

3. rl,k− rl, j ≤ ri,k− ri, j, where l < i,k ≤ j.

Proof. Using the notions used in the proof of Proposition 2.3.7. Then the proofs of the three key

properties are as follows:

1. Since j−1 < j then ker( fi, j−1)⊂ ker( fi, j), and by the rank-nullity theorem ri, j ≤ ri, j−1.

2. Since i < i+1 then im( fi, j)⊂ im( fi+1, j), and hence ri, j ≤ ri+1, j directly follows.

10
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3. The relations between the ranks can be expressed by rl,k − rl, j = dim
(
im( fl,k)∩ker( fk, j)

)
and ri,k − ri, j = dim

(
im( fi,k)∩ker( fk, j)

)
. Since l < i then im( fl,k) ⊂ im( fi,k). Therefore

rl,k− rl, j ≤ ri,k− ri, j.

2.3 Multisegments

We will now present a purely combinatorial interpretation of these quiver representations, which

represent elements of Vλ.

Definition 2.3.1. Let us define a segment to be a non-empty set of consecutive integers

∆ = (b,b+1, . . . ,e−1,e).

Then a multisegment will be a collection of segments

α = {∆1,∆2, . . . ,∆r},

where each segment is indexed by i, for 1 ≤ i ≤ r, to differentiate between possible duplicates of

segments.

We will see that there is a bijection between rank triangles satisfying Proposition 2.2.2 and

multisegments.

Algorithm : Multisegment Construction Using the rank triangles we can inductively construct

multisegments by:

1. In the rank triangle identify the ri, j which is the lowest and leftmost nonzero entry.

2. Add to your multisegment α the segment ∆ = (i, . . . , j).

3. Decrease the rank rk,l by one for each value of k, l such that i≤ k ≤ l ≤ j.

4. Repeat until all ri, j in the triangle are equal to zero.

The following Lemma plays an important role in the proof that the multisegment construction algo-

rithm inductively constructs a multisegment.

11
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Lemma 2.3.2 ([4, Section 1.5]). The multisegment construction algorithm is admissible with the

rank triangles, i.e., following each iteration the following properties of rank triangles remain satis-

fied:

1. ri, j ≤ ri, j−1,

2. ri, j ≤ ri+1, j, and

3. rl,k− rl, j ≤ ri,k− ri, j, where l < i,k ≤ j.

Proof. Given an arbitrary rank triangle then using the multisegment construction algorithm let us

construct an iterative triangle in which rI,J the lowest and leftmost nonzero entry (shown below in

red) from the rank triangle.

. . . . . . . . .
... . . . . . . . . .

· · · rI−1,J−4 rI,J−3 rI+1,J−2 rI+2,J−1 rI+3,J rI+4,J+1 · · ·

. . . rI−1,J−3 rI,J−2 rI+1,J−1 rI+2,J rI+3,J+1

. . .

. . . rI−1,J−2 rI,J−1 rI+1,J rI+2,J+1

. . .

. . . rI−1,J−1 rI,J rI+1,J+1

. . .

. . . rI−1,J rI,J+1

. . .

. . . rI−1,J+1

. . .

. . . . . .

...

The multisegment construction algorithm then states that each value inside this iterative triangle will

be decreased by one.

Firstly to prove 1) and 2) remain satisfied, we can consider a smaller triangle

ri, j−1 ri+1, j

ri, j

,

and the different possibilities for which it lies in our rank triangle.

12
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Case 1:

The smaller triangle is completely outside the iterative triangle, so ri, j−1,ri+1, j,ri, j all lie outside the

iterative triangle. Thus each rank remains unchanged so ri, j ≤ ri, j−1 and ri, j ≤ ri+1, j will still be

satisfied.

Case 2:

The smaller triangle is completely inside the iterative triangle, so ri, j−1,ri+1, j,ri, j all lie inside the

iterative triangle. Thus each rank will be decreased by 1. Then since ri, j ≤ ri, j−1 and ri, j ≤ ri+1, j

were satisfied in the original rank triangle then decreasing each value by 1 will mean (ri, j− 1) ≤

(ri, j−1−1) and (ri, j−1)≤ (ri+1, j−1) are satisfied following the iteration.

Case 3:

The smaller triangle overlaps the left diagonal of the iterative triangle, so ri, j−1,ri+1, j,ri, j can be

rewritten as rI−1, j−1,rI, j,rI−1, j where only the rank rI, j lies inside the iterative triangle. Thus rI, j

will be decreased by 1. Now since rI−1, j−1 and rI−1, j lie outside the iterative triangle then they

remain unchanged, so rI−1, j ≤ rI−1, j−1 remains satisfied. Recall that in the original triangle

rI−1,k− rI−1, j ≤ rI,k− rI, j

must be satisfied. Now let j = J. Then

rI−1,k = rI−1,k− rI−1,J ≤ rI,k− rI,J,

since by construction rI−1,J = 0.

Similarly, by construction we also know that rI,J ≥ 1, so

rI−1,k ≤ rI,k− rI,J ≤ rI,k−1.

Therefore we have proved that rI−1, j ≤ rI, j−1 is satisfied.
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Case 4:

The smaller triangle overlaps the right diagonal of the iterative triangle, so ri, j−1,ri+1, j,ri, j can be

rewritten as ri,J,ri+1,J+1,ri,J+1 where only the rank ri,J lies inside the iterative triangle. Thus ri,J will

be decreased by 1. Now since ri+1,J+1 and ri,J+1 lie outside the iterative triangle then they remain

unchanged, so ri,J+1 ≤ ri+1,J+1 remains satisfied. Recall that in the original triangle

rl,J− rl,J+1 ≤ ri,J− ri,J+1

must be satisfied. Now let l = I,

rI,J = rI,J− rI,J+1 ≤ ri,J− ri,J+1,

since by construction rI,J is the lowest nonzero entry so rI,J+1 = 0. Similarly, by construction we

also know that rI,J ≥ 1, so

ri,J+1 ≤ ri,J− rI,J ≤ ri,J−1.

Therefore we have proved that ri,J+1 ≤ ri,J−1 is satisfied.

Thus since 1) and 2) remain satisfied for all possible positions of the smaller triangle, then 1) and

2) are admissible following the algorithm.

Once again to prove 3) remains satisfied, we can consider a number of different cases, however

this time we will consider the different permutations in which a box with corners rl, j,rl,k,ri, j,ri,k can

lie in our rank triangle.

Case 1:

The box is completely outside the iterative triangle, so rl, j,rl,k,ri, j,ri,k all lie outside the iterative

triangle. Thus each rank remains unchanged so

rl,k− rl, j ≤ ri,k− ri, j

will still be satisfied.
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Case 2:

The box is completely inside the iterative triangle, so rl, j,rl,k,ri, j,ri,k all lie inside the iterative trian-

gle. Thus each rank will be decreased by 1. Then since

rl,k− rl, j ≤ ri,k− ri, j

was satisfied in the original rank triangle, then decreasing each value by 1 will mean

(rl,k−1)− (rl, j−1) = rl,k− rl, j ≤ ri,k− ri, j = (ri,k−1)− (ri, j−1)

will still be satisfied following the iteration.

Case 3:

The ranks ri,k,ri, j are contained in the iterative triangle, and the rank rl,k,rl, j lies outside the iterative

triangle. Thus ri,k,ri, j will both be decreased by 1. Then since

rl,k− rl, j ≤ ri,k− ri, j

was satisfied in the original rank triangle, and

(ri,k−1)− (ri, j−1) = ri,k− ri, j.

Then we find that

rl,k− rl, j ≤ ri,k− ri, j = (ri,k−1)− (ri, j−1)

is also true. Thus we have proved that

rl,k− rl, j ≤ (ri,k−1)− (ri, j−1)

will still be satisfied following the iteration.
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Case 4:

Similarly, the ranks rl,k,ri,k are contained in the iterative triangle, and the rank rl, j,ri, j lies outside

the iterative triangle. Thus rl,k,ri,k will both be decreased by 1. Then since

rl,k− rl, j ≤ ri,k− ri, j

was satisfied in the original rank triangle. Then we find that

(rl,k−1)− rl, j = rl,k−1− rl, j ≤ ri,k−1− ri, j = (ri,k−1)− ri, j

is also true. Thus we have proved that

(rl,k−1)− rl, j ≤ (ri,k−1)− ri, j

will still be satisfied following the iteration.

Case 5:

Only one corner of the box is contained in the iterative triangle, so only the rank ri,k lies inside the

iterative triangle.. Thus ri,k will be decreased by 1 and the rest remain unchanged. We now strive to

prove that

rl,k− rl, j ≤ (ri,k−1)− ri, j.

By construction rl, j = 0, so instead we need prove

rl,k ≤ (ri,k−1)− ri, j

will still be satisfied following the iteration. To prove this we will need to consider a number of

subcases:

Case 5a:
The case in which ri,k = rI,J , thus rl,J = 0 and rI, j = 0. Therefore rl,k = rl,J = 0 and
(rI,J−1)−rI, j = rI,J−1≥ 0, since rI,J > 0 by the multisegment construction algorithm.
Thus

rl,k = rl,J = 0≤ rI,J−1 = (rI,J−1)− rI, j = (ri,k−1)− ri, j,

so rl,k ≤ (ri,k−1)− ri, j remains satisfied.
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Case 5b:
The case in which ri,k = rI,k for k < J, thus rI, j = 0. Therefore what remains is to prove

rl,k ≤ (rI,k−1)− rI, j = rI,k−1.

Now by rule 2), we know that rl,k ≤ ·· · ≤ rI−1,k ≤ rI,k−1 is satisfied.

Case 5c:
The case in which ri,k = ri,J for i > I, thus rl,J = 0. Therefore what remains is to prove

rl,k = rl,J = 0≤ (ri,J−1)− ri, j.

Now by rule 1), we know that ri, j ≤ ·· · ≤ ri,J+1 ≤ ri,J − 1, so 0 ≤ (ri,J − 1)− ri, j is
satisfied.

Case 5c:
Finally, if i > I and k < J then we have two relations from the original rank triangles

rI,k− rI,J ≥ rl,k− rl,J = rl,k, (E1)

ri,J− ri, j ≥ rI,J− rI, j = rI,J,

ri,J− rI,J ≥ ri, j, (E2)

Now taking the sum of E1 and E2 we find

(ri,J + rI,k)−2rI,J ≥ rl,k + ri, j.

We also have the relation ri,k− ri,J ≥ rI,k− rI,J from the original triangle which gives
ri,k + rI,J ≥ rI,k + ri,J . Thus

ri,k− rI,J = (ri,k + rI,J)−2rI,J ≥ (ri,J + rI,k)−2rI,J ≥ rl,k + ri, j.

Thus ri,k − 1 ≥ rl,k + ri, j since rI,J ≥ 1 by the multisegment construction algorithm.
Therefore we have found (ri,k−1)− ri, j ≥ rl,k is satisfied.

Therefore we have proved that

rl,k ≤ (ri,k−1)− ri, j

will still be satisfied following the iteration for all possible cases.

Definition 2.3.3. Let α be a multisegment, then let us define the multiplicity of a segment (i, . . . , j),

denoted by mi, j to be the number of times in which the segment (i, . . . , j) appears in α.
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Given that the multisegment construction algorithm inductively forms multisegments. Then the

following proposition provides an incredibly quick alternative for computing the algorithm.

Proposition 2.3.4. The multiplicity of a segment (i, . . . , j) in the multisegment is given by

mi, j = ri, j− ri−1, j− ri, j+1 + ri−1, j+1.

Note that we assume that the rank is equal to 0 if it is not defined inside the rank triangle.

Proof. Let us now consider the following formation,

ri, j

ri−1, j ri, j+1

ri−1, j+1

.

The multiplicity of the segment (i, i + 1, . . . , j− 1, j) is given by the number of times in which

the multisegment construction algorithm is carried out for which ri, j is the lowest and leftmost

nonzero entry of the rank triangle, so the point of the iterative triangle. Thus we consider the

number of different cases in which ri, j is decreased by 1. Since the algorithm only adds the segment

(i, i+1, . . . , j−1, j) to the multisegment when ri, j > 0 and ri−1, j = ri, j+1 = ri−1, j+1 = 0. Thus

mi, j = ri, j− (The cases in which ri, j is not at the point of the iterative triangle).

Now let us consider these different cases:

1. The case in which ri−1, j, ri−1, j+1, ri, j, ri, j+1 are all contained inside the iterative triangle, then

there are ri−1, j+1 possibilities for this.

2. The case in which only ri−1, j and ri, j, are all contained inside the iterative triangle, then there

are (ri−1, j− ri−1, j+1) possibilities for this.

3. The case in which only ri, j and ri, j+1, are all contained inside the iterative triangle, then there

are (ri, j+1− ri−1, j+1) possibilities for this.

Therefore we have found that

mi, j =ri, j− [ri−1, j+1 +(ri−1, j− ri−1, j+1)+(ri, j+1− ri−1, j+1)] ,

=ri, j− ri−1, j− ri, j+1 + ri−1, j+1.

18



2.3. MULTISEGMENTS

Similarly to the ranks, we can naturally construct a triangle for the multiplicity of the segments

in the multisegment using Proposition 2.3.4 as follows

m1,1 m2,2 m3,3 m4,4 · · ·

m1,2 m2,3 m3,4
. . .

m1,3 m2,4
. . .

m1,4
. . .

. . .

.

Unsurprisingly, there also exists a converse algorithm that forms the rank triangle from the

associated multisegment and basis.

Algorithm : Rank Triangle Construction Given a multisegment then we can inductively construct

a rank triangle by:

1. Construct the initial rank triangle by letting ri, j := 0 for all {i, j} such that m ≤ i < j ≤ n,

where m and n respectively denote the minimum and maximum values appearing in any of the

segments.

2. For each segment ∆ = (b, . . . ,e) in multisegment α increase ri, j by one for each value b≤ i <

j ≤ e.

Note this algorithm can be simply implemented by using the formula

ri, j = ∑
n≤i≤ j≤k

mn,k.

Proposition 2.3.5. The Multisegment Construction and Rank Triangle Construction algorithms are

inverses.

Proof. Firstly, we can use the formula

ri, j = ∑
n≤i≤ j≤k

mn,k

to find the rank ri, j from the multisegment description. Now recall that the multisegment construc-

tion algorithm can be implemented using

mi, j = ri, j− ri−1, j− ri, j+1 + ri−1, j+1.
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If we now substitute this into the formula then we should find that the right-hand side of the equation

will hence be equal to ri, j. Note that there must exist a minimum and maximum value for n,k which

we will denote a and b respectively.

ri, j = ∑
a≤n≤i
j≤k≤b

mn,k,= ∑
a≤n≤i
j≤k≤b

(rn,k− rn−1,k− rn,k+1 + rn−1,k+1),

= ∑
a≤n≤i
j≤k≤b

rn,k− ∑
a≤n≤i
j≤k≤b

rn−1,k− ∑
a≤n≤i
j≤k≤b

rn,k+1 + ∑
a≤n≤i
j≤k≤b

rn−1,k+1,

= ∑
a≤n≤i
j≤k≤b

rn,k− ∑
a−1≤n′≤i−1

j≤k≤b

rn′,k− ∑
a≤n≤i

j+1≤k′≤b+1

rn,k′+ ∑
a−1≤n′≤i−1
j+1≤k′≤b+1

rn′,k′ ,

=

 ∑
a≤n≤i
j≤k≤b

rn,k− ∑
a−1≤n′≤i−1

j≤k≤b

rn′,k

+

− ∑
a≤n≤i

j+1≤k′≤b+1

rn,k′+ ∑
a−1≤n′≤i−1
j+1≤k′≤b+1

rn′,k′

 ,

=

(
∑

j≤k≤b
ri,k− ∑

j≤k≤b
ra−1,k

)
+

(
− ∑

j+1≤k′≤b+1
ri,k′+ ∑

j+1≤k′≤b+1
ra−1,k′

)
,

Note that a−1 is less than the minimum value so we can assume all rank ra−1,l = 0 for all l. This

will also be true for any ranks for b+1.

= ∑
j≤k≤b

ri,k− ∑
j+1≤k′≤b+1

ri,k′ = ri, j− ri,b+1 = ri, j.

The rank and multisegment triangles are vector spaces of the same dimension. We have defined

linear maps between them through the Multisegment Construction and Rank Triangle Construction

algorithms. We have then proved above that the composition of two linear maps form an identity

map. Therefore we have found that the two algorithms will be inverses.

Similarly, we can also construct a canonical quiver representation from a multisegment.

Algorithm : Quiver Representation Construction Given a multisegment α then let us first define

a vector space Wk for each integer k appearing in a segment in α, whose basis is indexed by ∆ ∈ α

and k ∈ ∆, so the basis will be

{~e∆,k | ∆ ∈ α,k ∈ ∆}.
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Note that the dimensions of each space is thus determined by the total number of appearances of

each k in segments of α. A multisegment will then determine the equivalence classes of the quiver

representation g for a series of maps which take gi, j : Wi→Wj according to the rule

gi, j(~e∆,i) =

 ~e∆, j, j ∈ ∆;

0, otherwise.

Remark 2.3.6. The rank triangle of the associated quiver representation is the rank triangle con-

structed by the rank triangle construction.

Proposition 2.3.7. Assuming that Vλ and Hλ are defined as in Section 2.2, then their orbits can be

classified by the ranks of each map

fi, j = f j−1, j ◦ · · · ◦ fi,i+1.

Proof. By Krull-Remak-Schmidt’s ([6, Theorem 1.7.4]) and Gabriel’s ([6, Theorem 4.4.13]) Theo-

rems, every orbit has a representative of the form produced by the quiver representation construction

from a uniquely determined multisegment. By Proposition 2.3.5 and Remark 2.3.6 there is a bi-

jection between such quiver representations and rank triangles.

2.4 Zelevinskii Involution

We are now in a position to be able to present the conormal bundle for orbits in V and con-

sequently the Zelevinskii involution. Following this we will then present the Mœglin-Waldspurger

algorithm in Section 3.1 which gives an algorithm for computing the Zelevinskii involution using

multisegments.

E1 E2 E3 E4 Er−1 Er

f1

g1

f2

g2

f3

g3

fr−1

gr−1

V

V∗

Figure 2.1: The maps between vector spaces

Naturally there also exists a dual space associated with the vector space V over the field F which

is denoted V ∗.
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Using the duality on

Hom(Ei,Ei+1)
∗ ∼ Hom(Ei+1,Ei),

where the duality of the homomorphisms is defined by

〈 f ,g〉= tr( f ◦g).

We can then express

V ∗ =⊕Hom(E j+1,E j).

The dual space consists of all linear maps θ : V → F and will also form a vector space. If we

now denote the respective H-orbits of V and V ∗ as C and D then their respective orbits will be in

terms of the fi’s and gi’s given in the Figure 2.1.

Definition 2.4.1 ([5, Proposition 6.3.]). The conormal bundle of C for V is denoted T ∗C (V ) and given

by

T ∗C (V ) = {( f ,g) ∈V ×V ∗ | f ∈C, f ◦g = g◦ f} .

The notion of the conormal bundle is most commonly defined using differential geometry in

terms of manifolds. Therefore this Lie theoretic description is very much unusual. From above the

duality of the homomorphisms is defined by

〈 f ,g〉= tr( f ◦g).

Recall that both V and V ∗ are part of the Lie algebra g and tr( f ◦g) is (up to scaling) the restriction

of the Killing Form on g.

There naturally exists a projection map from the conormal bundle T ∗C (V ) to V ∗,

ρ : T ∗C (V )−→V ∗,

( f ,g) 7−→ g.
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Proposition 2.4.2 ([5, Lemma 6.5.]). Given the projection map ρ : T ∗C (V )−→V ∗, then

ρ(T ∗C (V )) = D

is well defined.

This involution is often referred to as the Zelevinskii involution [19].

Proof. Firstly observe T ∗C (V ) has a natural group action of ∏GL(Ei) which determines D uniquely.

The closure ρ(T ∗C (V )) will be a union of orbits. Note there will only be finitely many orbits, and

ρ(T ∗C (V )) is closed, thus it is clearly the union of at most finitely many closures of orbits. We also

know that ρ(T ∗C (V )) is irreducible, that is, not the union of two disjoint closed subsets. If it were,

then, so too is ρ(T ∗C (V )), and by continuity of the projection map T ∗C (V ) would also be reducible. But

T ∗C (V ) is irreducible because it is a vector bundle over C = H/StabC, which is irreducible because

H = ∏GL(Ei) is irreducible.

Note from this point on D will no longer be used to denote the orbits in V ∗ and will instead be

used to denote a new Hλ orbit.

Proposition 2.4.3 ([16, Corollary 2]). The map on the set of orbits given by C 7→C∗ is a bijection

from H-orbits in V to H-orbits in V ∗.

Further there exists a relationship between characteristic cycles of the intersection cohomology

sheaf and their Fourier transform denoted by FT :

Proposition 2.4.4 ([4, Proposition 3.2.1]). If I C (Cφ,Lp) is a simple perverse sheaf then

CC(FT (I C (Cφ,Lp))) =CC(I C (Cφ,Lp))
∗.

In the context of GLn this gives that

FT (I C (C,L1)) = I C (C∗,L1),

where the 1 in L1 denotes the trivial representation of the trivial group.
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Hence there exists a corollary to Proposition 2.1.5 for GLn [7, Corollary 7.3]:

Corollary 2.4.5. For the case of GLn, if [C] ∈CC(I C (D,L1)) then C∗ ≤ D∗.

Remark 2.4.6. Therefore if [C] ∈ CC(I C (D,L1)) then we find C ≤ D and C∗ ≤ D∗, which may

seem counterintuitive since one may expect that following the involution the inequality will reverse

to instead be D∗ ≤C∗. Thus it is quite reasonably to expect that in many cases

CC(I C (D,L1)) = [D].

In Chapter 4, we will show a number of examples of orbits for which the inequalities C ≤ D and

C∗ ≤ D∗ are both satisfied.

This leads us to present a significant conjecture for ABV-packets in GLn:

Conjecture 2.4.7 (Open Orbit). For the case of GLn, suppose T ∗C (V ) has an open H-orbit. If C ∈

CC(I C (D,Lp)) then

C = D,

hence the ABV-packet for C is a singleton.

Remark 2.4.8. There are examples of orbits, for which T ∗C (V ) does not have an open orbit, for

which the conclusion of the conjecture does not hold (See [5]).

The study of this conjecture is not a trivial problem, so the remainder of this thesis will be

devoted to setting up the notation for which we can then study conjecture for various families of

Langlands parameters.

2.5 Partial Ordering Relation

We will now define a partial ordering relation for rank triangles based upon the containment

conditions for H-orbits defined in Section 2.4:

Proposition 2.5.1 ([4, Section 1.5]). C⊂D if and only if ci, j ≤ di, j for all i, j, where ci, j and di, j are

the associated ranks ri, j for C and D respectively.

There also exists a partial ordering relation for multisegments which we can study following the

introduction of the following action between any two segments of the multisegment.
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Proposition 2.5.2. Let ∆1 and ∆2 be any two segments in an arbitrary multisegment α, then we can

construct a new multisegment β by replacing each ∆1 and ∆2 in α with respectively


∆1∩∆2 and ∆1∪∆2, if ∆1∩∆2 6= /0 and ∆1 6= ∆2;

∆1∪∆2, else if ∆1∪∆2 is a segment;

∆1 and ∆2, otherwise.

then we have that α≤ β.

Note we denote the first action as the union intersection and the second as conjunction. The

third action will simply leave the multisegment unchanged.

We will now introduce a new and extremely important relation between pairs of segments in

a multisegment. This relation will be used to continue our study of actions on multisegments and

further to an algorithm which can be used to compute the associated dual multisegment.

Definition 2.5.3 ([13]). Given any two segments ∆1 = (b1, . . . ,e1) and ∆2 = (b2, . . . ,e2), then we

say that ∆1 precedes ∆2 if b1 < b2, e1 < e2, and b2 ≤ e1 +1.

There also exists an implicit relationship between the actions on pairs of segments and the pre-

ceding relation.

Proposition 2.5.4. If we take a single action on α to generate β, then α 6= β if and only if the two

segments which we take the action on in α have a preceding relation.

Proof. Firstly, let ∆1 = (b1, . . . ,e1) and ∆2 = (b2, . . . ,e2) be the two segments in α for which we

take an action on to form β. Without loss of generality, we can assume that e1 ≥ e2.

Let us assume α 6= β, then by construction there will be nα−2 segments in α and β which will

be identical since they remain fixed by the single action. Note a single action on α will replace ∆1

and ∆2 with either one or two segments. If the action only creates one segment, then it uses the

conjunction action and α 6= β since nβ < nα. To use conjunction action the two segments must be

such that e1 > e2, b1 > b2 and e2 = b1−1, thus ∆2 will precede ∆1. Alternatively, if the action creates

two segments then the union intersection action must have been used, since α 6= β. By definition

∆1 ∩∆2 6= /0 and e1 ≥ e2, so e2 > b1− 1. Also note that neither ∆1 or ∆2 should be completely

contained in the other, otherwise, their union intersection would simply form ∆1 and ∆2. So e1 6= e2
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hence e2 < e1 following the assumption, and b2 < b1, because we already know e2 > b1−1 and if

b2 ≥ b1 then ∆2 would be completely contained in ∆1. Therefore if the action creates two segments

then e2 < e1, b2 < b1 and e2 > b1−1, thus ∆2 will precede ∆1. Consequently, both cases imply that

the two segments which we take the action on in α have a preceding relation.

Conversely, let us assume the two segments ∆1 and ∆2 which we take the action on in α have a

preceding relation, so ∆2 will precede ∆1. Therefore we have conditions that e1 > e2, b1 > b2 and

e2 + 1 ≥ b1. The action will fix all segments in α except for ∆1 and ∆2, which will be replaced by

one segment if e2 +1 = b1, or ∆3 = (b2, . . . ,e1) and ∆4 = (b1, . . . ,e2) if e2 +1 > b1. In the first case

α 6= β trivially follows at the number of segments in the multisegments differ. In the second case, ∆3

and ∆4 will not be identical to ∆1 and ∆2, since e1 > e2 and b1 > b2. Thus in either case α 6= β.

It now follows that we have a relation from the partial ordering of multisegments to the partial

ordering of the rank triangles of their associated orbits.

Proposition 2.5.5. Suppose that α is any multisegment and β is a multisegment such that α ≤ β.

Let C and D be their respective corresponding conjugacy classes. Then ci, j ≤ di, j for all i, j, where

ci, j and di, j are the associated ranks ri, j for the conjugacy classes C and D respectively. For ease of

notation we will denote this as C ≤ D.

In other words, following the formation of the new multisegment β, then each of the associ-

ated ranks in the triangle of α will be less than or equal to the corresponding rank in the triangle

associated to β.

Proof. It will be sufficient to show that following a single action on the multisegment α to create a

new multisegment β will result in C ≤ D since any subsequent action will also have to satisfy this

property. By Proposition 2.5.4, the multisegment will only change if the two segments in which the

action is taken on have a preceding relation. Therefore if the action is taken on two non-preceding

segments then it follows that C = D. Alternatively, let us now assume that the multisegment α 6= β,

then without loss of generality we can assume that the action was taken ∆1 = {b1, . . . ,e1} and ∆2 =

{b2, . . . ,e2} where ∆2 will precede ∆1 (e1 > e2, b1 > b2 and e2 +1≥ b1.). The contributions to the

ranks will only change for the integers contained in the segments thus we only need to show the

ranks ci, j ≤ di, j for b2 ≤ i≤ j ≤ e1 for the first two actions:
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1. Firstly, let us assume ∆1 ∩ ∆2 6= /0 and following the preceding relation the intersection is

∆1 ∩ ∆2 = {b1, . . . ,e2} and union ∆1 ∪ ∆2 = {b2, . . . ,e1}. By construction ∆1 and ∆2 will

contribute two to the rank triangle of C for each ci, j such that b1 ≤ i ≤ j ≤ e2, and one for

any other ci, j such that b1 ≤ i ≤ j ≤ e1 or b2 ≤ i ≤ j ≤ e2. Now studying the contributions

of ∆1 ∩ ∆2 and ∆1 ∪ ∆2 in the rank triangle of D, we see that two will be contributed for

any di, j such that b1 ≤ i ≤ j ≤ e2, otherwise, one will be contributed for any other di, j in

b2 ≤ i≤ j ≤ e1. Thus ci, j ≤ di, j for all i, j following the union intersection.

2. To use the conjunction action the two segments must be such that b1 = e2 + 1. In the rank

triangle of C, ∆1 and ∆2 will contribute one to the ranks ci, j such that b1 ≤ i ≤ j ≤ e1 and

b2 = e1 + 1 ≤ i ≤ j ≤ e2. Following the conjunction ∆1 ∪∆2 will contribute one to the rank

triangle of D for each di, j such that b2 ≤ i≤ j ≤ e1, which thus encapsulates the contribution

of α so ci, j ≤ di, j following conjunction.

Therefore we have proved that for all three actions ci, j ≤ di, j, and hence whenever α≤ β then their

associated rank triangles will be such that ci, j ≤ di, j for all i, j.

Likewise, it is also possible to study the relation from the partial ordering of the rank triangles

to the partial ordering of the multisegments corresponding to their associated orbits.

Proposition 2.5.6. Let C and D be the rank triangles associated to α and β with identical top rows.

If C and D are both admissible and C ≤ D, then

α≤ β.

Proof. Firstly, by assumption that the top rows of both C and D are the same, thus α and β will

both have identical elements from which their multisegments are formed since they are admissible.

Comparing α and β then we can now remove any multisegments in which α and β both contain.

With the remaining segments in α and β, let us choose the longest segment in both containing the

maximum element e then by construction the segment ∆β chosen from β must be of greater length

than that segment ∆α from α since C ≤ D. Also let b denote the base value of ∆β, then there must

exist at least one segment in α ending in b, and let us choose the longest such segment ∆′. This

follows from the fact that a segment ending in b in β ensures the following property Db−1,b < Db,b.
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Therefore by the initial assumptions we find

Cb−1,b ≤ Db−1,b < Db,b =Cb,b.

If the union of these two segments form ∆β then we are done. Otherwise, we need to show that

there exists a segment ∆∗ overlapping ∆α with base value greater than b. So using a similar argument

to above, let us denote the base value of ∆α to be bα then

Cb−1,bα−1 ≤ Db−1,bα−1 < Dbα−1,bα−1 =Cbα−1,bα−1.

So there exists a segment containing bα−1 in which the base value is greater than or equal to b. In

fact, the base value of ∆∗ is simply greater than b since ∆′ is the longest segment with base value

b and does not contain bα−1. Also ∆α is the longest segment ending in e, so the end of ∆∗ is less

than e. Once again we check if the union of all these segments form ∆β at which point we are done.

Otherwise, we have to recursively repeat this argument instead for the new segment ∆∗ until the

union of all of the segments found form ∆β.

Thus we have shown the segment ∆β can be constructed by the actions on α and hence we can

compare α and β once again and remove any segments which they both contain. Note there may

exist more than one segment (i.e. not only ∆β) in common, since when union intersection is used it

also creates a smaller segment which could also appear in both. Following this removal note C and

D will once again remain admissible, and C≤D since any other segment generated in the formation

of ∆β will be of length less than the original segment. Thus by a recursive argument α≤ β.

Therefore, Proposition 2.5.5 and Proposition 2.5.6 imply an overall relation between the partial

ordering relation of multisegments and the rank triangles of their associated orbits.

Corollary 2.5.7. Suppose that α and β are multisegments with respective corresponding conjugacy

classes C and D. Then there exists a partial ordering on multisegments if and only if there exists a

partial ordering on the corresponding conjugacy classes, that is,

α≤ β if and only if C ≤ D.
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Chapter 3 : Interpreting the Zelevinskii Involution

In this chapter, we study combinatorial interpretations of the Zelevinskii involution. These combi-

natorial methods will use the multisegment and rank triangle description previously introduced in

Chapter 2 in order to compute the associated duals.

In Section 3.1, we will first introduce the Mœglin-Waldspurger algorithm for computing the

Zelevinskii involution and find some preliminary results about this algorithm. The algorithm assem-

bles segments of the dual by following a natural ordering based upon the precedes relation between

segments. We will study how this natural ordering changes throughout the algorithm and the pro-

cedure in which segments of the dual are constructed. Given the dual multisegment is constructed

using natural orderings then it may come as no surprise that we can define a network in order to

represent these orderings. Furthermore, the surrounding literature shows that there exists a method

using maximum flows through a network to implement the Zelevinskii involution.

In Section 3.2, we will generate a network based on the preceding relations defined by the

original multisegment and show that the Mœglin-Waldspurger algorithm can be computed using

this network. This will then allow us to show that there exists an abridged version of the Mœglin-

Waldspurger algorithm for which we can add the extra condition that the segments must also initially

precede. This work leads to an important consequence in Corollary 3.2.12 that the dual multiseg-

ment can be constructed by exclusively using the initial natural ordering of the multisegments, which

is a significant result in the thesis and will be instrumental in a number of the discussions that follow

in Chapter 4.

Finally, we present a complete example in Section 3.3 for G = GL16(C) using the ideas from

Chapter 2 and use the Network Computation of the Dual presented prior to it in the chapter to

evaluate the dual.
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3.1 Mœglin-Waldspurger Algorithm

Mœglin and Waldspurger’s paper [13] detailing the implementation of the Zelevinskii invo-

lution using their eponymous algorithm includes a highly technical argument demonstrating their

equivalence. The crux of this argument stems around the preceding condition first introduced in

Definition 2.5.3.

The upcoming argument follows very closely [[13, Section II]], where we have translated both

the language and the notation to follow that already in use. As previously discussed in the Quiver

Representation Construction algorithm (See Section 2.3), given a multisegment α = {∆1, . . .∆n}

then the basis will be

{~e∆,k | ∆ ∈ α,k ∈ ∆}.

Note that the dimensions of each space is thus determined by the total number of appearances of

each k in segments of α.

We can then fix an endomorphism f of W by

f (~e∆i,a) =

 ~e∆i,a+1, if a+1 ∈ ∆i;

0, otherwise.

This endomorphism given by f will be the element of V associated with the multisegment α, and

we now seek to find an element g of V ∗ which commutes with f .

The use of the precedes relation can then be introduced by the following Lemma:

Lemma 3.1.1 ([13, Lemma II.4]). Let α = {∆1, . . .∆n} be a multisegment, f be the element of V

associated with it. An element g of V ∗ commutes with f if and only if there exists a complex valued

function on the set of pairs of segments contained in α, denoted by ν, satisfying:

1. ν(∆i,∆ j) = 0, if ∆ j does not precede ∆i.

2. For all i ∈ {1, . . . ,n} and a ∈ ∆i,

g(~e∆i,a) = ∑
j

ν(∆i,∆ j)~e∆i,a−1,

summed over j such that a−1 ∈ ∆ j.
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The following proof is the translation of the proof provided in [13].

Proof. Let g be an element of V ∗. We define a set of complex numbers {µ(∆i,a;∆ j,a−1)} by the

following formulas

g(~e∆i,a) = ∑
j

µ(∆i,a;∆ j,a−1)~e∆i,a−1,

summed over all j such that a− 1 ∈ ∆ j, for all i ∈ {1, . . . ,n} and a ∈ ∆i. It is convenient here to

assume that µ(∆i,a;∆ j,a−1) is zero if a 6∈ ∆i or a−1 6∈ ∆ j. We have for all i∈ {1, . . . ,n} and a∈ ∆i:

( f g−g f )(~e∆i,a) = ∑
j
[µ(∆i,a;∆ j,a−1)−µ(∆i,a+1;∆ j,a)]~e∆ j,a,

summed over all j such that a ∈ ∆ j.

Hence f and g commute if and only if the following relations are satisfied for all i, j ∈ {1, . . . ,n},

a ∈ ∆i∩∆ j:

(1) If a−1 ∈ ∆ j and a+1 ∈ ∆i, then

µ(∆i,a;∆ j,a−1) = µ(∆i,a+1;∆ j,a).

(2) If a−1 ∈ ∆ j and a+1 6∈ ∆i, then

µ(∆i,a;∆ j,a−1) = 0.

(3) If a+1 ∈ ∆i and a−1 6∈ ∆ j, then

µ(∆i,a+1;∆ j,a) = 0.

Suppose that f and g commute and define ν as follows:

(a) ν(∆i,∆ j) = 0, if for all elements a of ∆i, a−1 does not belong to ∆ j.

(b) ν(∆i,∆ j) = µ(∆i,a;∆ j,a−1), if there exists one and only one element, denoted a of ∆i, such that

a−1 belongs to ∆ j, and if ∆ j does not contain the element a. According to (3), ν(∆i,∆ j) = 0 if

∆ j does not precede ∆i.

(c) Let us now fix a,∆i,∆ j such that a is an element of ∆i and ∆ j, and a− 1 belongs to ∆ j. Let c

(resp. d) be the greatest integer such that (a− c) (resp. (a+d)) belong to ∆i (resp. ∆ j), that is,

31



3.1. MŒGLIN-WALDSPURGER ALGORITHM

c = a− b∆i (resp. d = e∆ j -a) where b∆ and e∆ denote the base and end values respectively of

the segment ∆. Thanks to (1) and (2), then from (1) and (3) we obtain the following additional

conditions for µ:

(4)

µ(∆i,a;∆ j,a−1) =

 µ(∆i,a+d +1;∆ j,a+d), if a+d +1 ∈ ∆i,

0, otherwise.

(5)

µ(∆i,a;∆ j,a−1) =

 µ(∆i,a− c;∆ j,a− c−1), if a− c−1 ∈ ∆ j,

0, otherwise.

Thus µ(∆i,a;∆ j,a− 1) = 0 if ∆ j does not precede ∆i, and according to (4) and (5) coincides with

µ(∆i,a′;∆ j,a′−1) for all a′ belonging to ∆i and ∆ j such that a′−1 belongs to ∆ j.

We then set

ν(∆i,∆ j) = µ(∆i,a;∆ j,a−1).

It is clear that we have

g(~e∆i,a) = ∑
j

ν(∆i,∆ j)~e∆i,a−1,

summed over j such that a−1 ∈ ∆ j.

This finishes the proof of the direct assertion of the lemma and the converse immediately follows

thanks to the calculation of ( f g−g f ).

Therefore any element g of V ∗ must hence be constructed from those segments that precede,

otherwise the element will not commute with f . The intricate nature of the use of this preceding

relation in the Mœglin-Waldspurger algorithm allows us to find the associated dual multisegment

without actually finding a representative. The equivalency of these representatives generated by the

Zelevinskii involution and the multisegments by the Mœglin-Waldspurger algorithm is demonstrated

in [13].

We can now begin to introduce the Mœglin-Waldspurger algorithm which will compute the

multisegment associated to the dual orbit from the original multisegment. The algorithm will use

the previously defined preceding relation between segments given in Definition 2.5.3.
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Algorithm : Mœglin-Waldspurger [13] Given a multisegment α with maximum value e then we

can compute the multisegment α̃ associated to the dual orbit as follows:

1. Let m = e be the maximum value in the multisegment and set ∆m to be the shortest segment

whose maximal value is m.

2. If there does not exist a segment that precedes ∆m whose maximal value is m−1, then go to

step 5.

3. Amongst the segments that precede ∆m whose maximal value is m−1, select ∆m−1 to be the

shortest such segment.

4. Set m := m−1 and return to step 2.

5. For each segment ∆i for m≤ i≤ e remove the maximal value i from this segment. Following

the removal of these end values, let us denote the new multisegment to be α′.

6. The dual segment formed will be ∆′ = (m, . . . ,e).

Generating the segment ∆′ will be from here forward referred to as a single iteration of the algorithm.

To find the complete dual multisegment α̃ one will need to continue this process recursively using

α̃ =
{

∆
′, (̃α′)

}
.

Mœglin and Waldspurger then prove in [13, Theorem 13] that α̃ will be equal to the multisegment

of the dual representation found by the Zelevinskii involution.

Example 3.1.2. Let us consider the multisegment given by

α = {(1),(1,2),(2,3),(2,3),(3),(3,4)} .

We can compute the dual multisegment α̃ using the Mœglin-Waldspurger algorithm as shown below.

At each iterative step the segments chosen for each ∆i are labelled in red and their end point has a red

box around it. Once removed by the algorithm the end integer will then be greyed out. The progress

of the construction of the dual multisegment at the start of the iteration is then shown below the

iteration, and each constructed segment is labelled depending on the iteration it was generated in.
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1st

α 1

1 2 ∆2

2

2

3

3 ∆3

3

3 4 ∆4

α̃ α̃

2nd

α′ 1
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3
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α̃ α̃′′

2 3 4
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∆′

∆′′
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2

3 ∆3

3
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3 4

α̃ α̃[3]

2 3 4

321

3

∆′

∆′′

∆[3]
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α[4] 1 ∆1

1 2

2

2

3 ∆2

3

3

3 4

α̃ α̃[4]

2 3 4

321

3

3

∆′

∆′′

∆[3]

∆[4]

Final

α 1

1 2

2

2

3

3

3

3 4

α̃ 2 3 4

321

3

3

21

∆′

∆′′

∆[3]

∆[4]

∆[5]

Figure 3.1: Implementing the Mœglin-Waldspurger algorithm.

Therefore we have found that the multisegment associated to the dual is given by

α̃ = {(2,3,4),(1,2,3),(3),(3),(1,2)} .

We can define a special family of multisegments:

Definition 3.1.3. We say that a multisegment α is self-dual if it has the property

α = α̃.

We will now present a couple more examples of highly structured multisegments and how the

Mœglin-Waldspurger algorithm can be computed on them. Note that we will use a single diagram
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for each example - the blue arrows will indicate the segments generated and be labelled with the

iteration for which the segment was generated on.

Example 3.1.4. The first example is a simple multisegment (See Definition 4.2.6) for which each

segment has the same length and the end values reduce by one each time.

1 2 3

2 3 4

3 4 5

1

1

2

2

3

3

Figure 3.2: The Mœglin-Waldspurger algorithm on a simple multisegment.

The dual of {(1,2,3),(2,3,4),(3,4,5)} is {(1,2,3),(2,3,4),(3,4,5)}, hence this multisegment

has an additional property of being self-dual.

Example 3.1.5. This example is a ladder multisegment (See Definition 4.2.12) for which there ex-

ists a complete ordering of the segments based around their base and end values.

1

2

3 4 5

4 5 6

6 7

1

1

2

23

3

3

Figure 3.3: The Mœglin-Waldspurger algorithm on a simple multisegment.

The dual of {(1),(2),(3,4,5),(4,5,6),(6,7)} is {(1,2,3,4),(4,5,6),(5,6,7)}.

Further studies of both simple multisegments and ladder multisegments will be found in Chapter 4.
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Following the computation of the algorithm in both Example 3.1.4 and Example 3.1.5 then one

may be inclined to believe that we can always partition the multisegments into sub-multisegements

of the form shown in Example 3.1.5. In other words, create sub-multisegements which contain

firstly the shortest segment containing the maximal value not chosen in a sub-multisegment and

then segments which precede the previously chosen segment and are both shortest and end with the

highest value. Following this we can then compute the duals of sub-multisegments independently

to form the dual of the overall multisegment. In general this will not be true as we will see in the

next example. Section 4.1 will be devoted to this study of partitioning multisegments into sub-

multisegments.

Example 3.1.6. Let us consider the multisegment given by

α = {[0,4], [1,2], [2,3], [3,5]} .

If we partition the multisegment into sub-multisegments using the procedure described above, then

we generate two sub-multisegments

α1 = {[0,4], [3,5]} and α2 = {[1,2], [2,3]} ,

which corresponds to the dual multisegment

{α̃1, α̃2}= {[0], [1], [2,3], [3,4], [4,5], [1,2], [2,3]} .

However the Mœglin-Waldspurger algorithm instead finds the dual to be

α̃ = {[0], [1], [2], [3], [1,3], [2,4], [4,5]} ,

which is clearly not the same.

There also exists an analogous algorithm to the Mœglin-Waldspurger which instead constructs

the multisegments starting from the smallest value appearing in any segment of α. This analogous

description is often used in the literature surrounding this topic. However in general we will only

need to consider the original algorithm.
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Algorithm : Alternative Mœglin-Waldspurger [13] Let us define ζ to be a function which com-

putes the dual of a multisegment α by an inductive method. To simplify the notation we will now

represent the segment (i, i+1, . . . , j) by [i, j], or if the segment is a singleton (i) then [i]. Thus each

segment in α will hence be of the form [i, j] for 1 ≤ i ≤ j. We will define the multiplicity of the

segment [i, j] in α by mi, j and the weights of the multisegment to be (g1,g2 . . .), where gi for all i are

simply given by the multiplicity of i in α. So ζ(α) is found by the following inductive process:

1. Set i1 = min{i | gi 6= 0}.

2. Let us set

j1 = min{ j | mi1, j 6= 0} and jt+1 = min{ j | j > jt ,mi1+t, j 6= 0}, (for t = 1, . . . , p−1).

Note the sequence terminates once jp+1 does not exist, that is, mi1+p, j = 0 for all jp < j.

3. Set

α
(n+1) = α

(n)− [i1, j1]− [i1 +1, j2]−·· ·− [i1 + p−1, jp]

+ [i1 +1, j1]+ [i1 +2, j2]+ · · ·+[i1 + p, jp],

where [i, j] = 0 if i > j.

4. The dual multisegment then becomes

ζ

(
α
(n)
)
= ζ

(
α
(n+1)

)
+[i1, i1 + p−1].

5. Repeat for each α(n) until α(n) is empty.

To illustrate the fact that both algorithms compute the same multisegments associated to the

dual, let us repeat Example 3.1.2 using the alternative Mœglin-Waldspurger algorithm.

Example 3.1.7. Let consider the multisegment

α = [1]+ [1,2]+ [2,3]+ [2,3]+ [3]+ [3,4].
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We can compute the dual multisegment α̃ using the alternative Mœglin-Waldspurger algorithm as

follows:

1st: Firstly, the multiplicities are given by (g1,g2,g3,g4) = (2,3,4,1), so set i1 = 1 then we find

that ( j1, j2, j3) = (1,3,4). This results in ζ(α) = ζ(α′)+ [1,3], where

α
′ = α− [1]− [2,3]− [3,4]+ [2,1]+ [3]+ [4],

= [1,2]+ [2,3]+ [3]+ [3]+ [4].

2nd: The multiplicities are given by (g1,g2,g3,g4) = (1,2,3,1), so set i1 = 1 then we find that

( j1, j2) = (2,3). This results in ζ(α) = ζ(α′′)+ [1,3]+ [1,2], where

α
′′ = α

′− [1,2]− [2,3]+ [2]+ [3],

= [2]+ [3]+ [3]+ [3]+ [4].

3rd: The multiplicities are given by (g1,g2,g3,g4) = (0,1,3,1), so set i1 = 2 then we find that

( j1, j2, j3) = (2,3,4). This results in ζ(α) = ζ(α[3])+ [1,3]+ [1,2]+ [2,4], where

α
[3] = α

′′− [2]− [3]− [4]+ [3,2]+ [4,3]+ [5,4] = [3]+ [3].

4th: The multiplicities are given by (g1,g2,g3,g4) = (0,0,2,0), so set i1 = 3 then we find that

j1 = 3. This results in ζ(α) = ζ(α[4])+ [1,3]+ [1,2]+ [2,4]+ [3], where

α
[4] = α

[3]− [3]+ [4,3] = [3].

5th: Finally, the multiplicities are given by (g1,g2,g3,g4) = (0,0,1,0), so set i1 = 3 then we find

that j1 = 3. This results in ζ(α) = ζ(α[5])+ [1,3]+ [1,2]+ [2,4]+ [3]+ [3] where

α
[5] = α

[4]− [3]+ [4,3] = /0.

Thus the algorithm terminates after this iteration.
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Therefore we have found that the multisegment associated to the dual is given by

ζ(α) = [1,3]+ [1,2]+ [2,4]+ [3]+ [3],

and hence equal to that generated by the Mœglin-Waldspurger algorithm as shown in Example 3.1.2.

Theorem 3.1.8. Given a multisegment α then both the Mœglin-Waldspurger and Alternative Mœglin

Waldspurger algorithms compute the same dual multisegment of α.

Proof. To prove that the two algorithms are equivalent, we will simply show that at each inductive

stage of the algorithm they construct the same dual segment and start the following iteration at the

same point. This implies that the overall dual multisegments computed by each of algorithms will

thus be equal.

Firstly, let α be a multisegment. Then we will define α− to be such that the segment [i, j] ∈ α if

and only if the segment [− j,−i] ∈ α−. We can do this since the construction of the multisegments

is simply assigning an index to each of the eigenvalues.

Let us now compute the first iteration of the alternative Mœglin Waldspurger algorithm on α:

1. Set i1 = min{i | gi 6= 0}.

2. Then let us assume that jp+1 is the first jt > j1 which does not exist. So we have the set

( j1, . . . , jp) which has been arbitrarily chosen and satisfies the conditions defined in the algo-

rithm.

3. So

α
′ = α− [i1, j1]− [i1 +1, j2]−·· ·− [i1 + p−1, jp]

+ [i1 +1, j1]+ [i1 +2, j2]+ · · ·+[i1 + p, jp].

4. The dual multisegment can be defined recursively by

ζ(α) = ζ
(
α
′)+[i1, i1 + p−1],

so [i1, i1 + p−1] ∈ ζ(α).
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Further, let us now compute the first iteration of the Mœglin Waldspurger algorithm on α−:

(1) −i1 will largest value in α− since i1 was the smallest value in α. Also [− j1,−i1] is the

shortest segment in α− ending with −i1, because by construction and above [i1, j1] is the

shortest segment starting with i1. So let ∆−i1 = [i1, j1].

(2-4) For each n = 1, . . . , p− 1, there exists a segment [in+1, jn+1] for which in+1 = in + 1 and

jn+1 > jn by the alternative Mœglin Waldspurger algorithm on α. Note each of these segments

will be the shortest possible segment starting with in+1 which satisfy these conditions. So let

∆−in+1 = [− jn+1,−in+1]. Then by above we have−in+1 =−in−1<−in and− jn >− jn+1. By

the alternative Mœglin Waldspurger algorithm on α, each im ≤ jm for m = 1, ..., p. Therefore

for each n = 1, ..., p−1;

− jn ≤−in =−in+1 +1,

so we have satisfied the conditions for which ∆−in+1 precedes ∆−in , and ∆−in+1 is the shortest

such segment in each case. Note that there will be no segment that precedes ∆−ip , because in

the alternative Mœglin Waldspurger algorithm there does not exist a segment which starts at

i1 + p and is such that jp+1 > jp so the preceding conditions will not be met.

(5) If we now remove each i from ∆i for i =−i1− p+1, . . . ,−i1, to do this we can use

(
α
−)′ = α

−− [− j1,−i1]− [− j2,−i1−1]−·· ·− [− jp,−i1− p+1]

+ [− j1,−i1−1]+ [− j2,−i1−2]+ · · ·+[− jp,−i1− p].

(6) Let us add the segment [−i1 + p−1,−i1] to ζ(α−).

It is clear that both algorithms compute the same dual segment since [−i1− p+ 1,−i1] in α−

corresponds to [i1, i1 + p− 1] in α. What remains is to prove that the starting point of the next

iterations are equivalent.
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To prove this let us compute

[(
α
−)′]− =

[
α
−− [− j1,−i1]− [− j2,−i1−1]−·· ·− [− jp,−i1− p+1]

+ [− j1,−i1−1]+ [− j2,−i1−2]+ · · ·+[− jp,−i1− p]
]−

,

=
(
α
−)−− [− j1,−i1]−− [− j2,−i1−1]−−·· ·− [− jp,−i1− p+1]−

+[− j1,−i1−1]−+[− j2,−i1−2]−+ · · ·+[− jp,−i1− p]−,

= α− [i1, j1]− [i1 +1, j2]−·· ·− [i1 + p−1, jp]

+ [i1 +1, j1]+ [i1 +2, j2]+ · · ·+[i1 + p, jp],

= α
′.

Therefore both algorithms will iteratively compute the same duals.

3.1.1 Understanding the Mœglin-Waldspurger Algorithm

This subsection will be dedicated to studying the process in which the Mœglin-Waldspurger

algorithm selects end values to form segments in the dual multisegment. We will also investigate

how the preceding relations change, and prove a number of facts about how the algorithm proceeds.

For ease of notation, given a segment ∆ = (b,b+1, . . . ,e−1,e), then we say the base of ∆ is b and

the end of ∆ is e. That is, the base of a segment corresponds to the smallest integer and the end

of the segment to the largest integer in the segment. Therefore the length of the segment ∆ will be

given by e−b+1.

Proposition 3.1.9. During each iteration of the Mœglin-Waldspurger algorithm the preceding seg-

ments will be chosen in increasing length.

Proof. Let m be the integer chosen from the segment ∆m by the Mœglin-Waldspurger. If m is not

the base of the segment generated by the algorithm, then there exists a segment ∆m−1 that precedes

∆m with end value m− 1. Let bm denote the base value of the segment ∆m, then by the precedes

condition bm−1 < bm, which implies that

m−bm +1 < m−bm−1 +1,
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and

m−bm +1≤ (m−1)−bm−1 +1.

Thus the length of the preceding segments will be chosen in increasing length.

As a consequence, throughout each iteration of the Alternative Mœglin-Waldspurger algorithm

the proceeding segments will also be chosen in increasing length.

The preceding relations will adjust following each iteration of the algorithms, so the preceding

relations in α′ are not strictly those from α. In light of this Lemma 3.1.1 may seem counterintuitive,

since the precedes relation initially defined by Mœglin and Waldspurger in [13] will remain fixed

when computing g of V ∗.

The relations change with each iteration of the algorithm for both versions of the Mœglin-

Waldspurger algorithm.

Proposition 3.1.10. Let ∆1 = [b1,e1] and ∆2 = [b2,e2] be two segments in the multisegment with

no preceding relation between them. In order to create a preceding relation (∆1 precedes ∆2 in α′)

between them after applying one iteration of the Mœglin-Waldspurger algorithm, then the following

conditions must be satisfied:

1. The segments ∆1 and ∆2 must be such that e1 = e2 and b1 > b2.

2. There must exist a segment ∆3 = [b3,e1 + 1] for which e1 + 1 is chosen from ∆3 in the same

iteration as e1 from ∆2, hence b2 < b3 ≤ b1.

Proof. Firstly, we are only considering a single iteration of the Mœglin-Waldspurger algorithm so

there can only be a singular change to the end values of any segments. This will not impact the

base values so it follows that b1 > b2 for any preceding condition to be formed. Also following the

iteration the end value of ∆1 must be greater than the end value of ∆2. This must be an aspect that is

changed during the iteration since this condition cannot already be true otherwise ∆1 would initially

precede ∆2. Additionally the end value of ∆2 cannot be greater than that of ∆1 since this would

require more than one iteration to generate a preceding relation. By process of elimination the end

values must be equal.
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In order to now generate a precedes condition the e1 must be chosen from ∆2 before the e1 is

chosen from ∆1. Note if there are no preceding segments of both ∆1 and ∆2 then e1 would be chosen

from ∆1 since b1 > b2. Likewise if there exists a segment that precedes ∆1 (and hence also ∆2) then

e1 would be chosen from ∆1. It follows that there must instead exist a segment ∆3 that only precedes

∆2. Note we are only considering a single iteration so the end value of ∆3 must be e1 +1 and since

it precedes ∆2 but not ∆1 then b2 < b3 ≤ b1.

For example ∆1 = (2,3,4), and ∆2 = (1,2,3,4). By construction there is no preceding relation

on this iteration, however if the end value (4) of ∆2 is removed during this next iteration then ∆2 will

be such that it precedes ∆1, that is, ∆′2 = (1,2,3) will precede ∆1 = (2,3,4). However the value (4)

of ∆2 is only removed before the value (4) of ∆1 if there exists a segments ∆3 which precedes ∆2

but not ∆1 and selects the value in the same iteration, that is, ∆3 = (2,3,4,5). Following a single

iteration, we will therefore have ∆1 = (2,3,4), ∆′2 = (1,2,3) and ∆′3 = (2,3,4), so a new preceding

relation has been generated since ∆′2 will now be preceded by both ∆1 and ∆′3.

Proposition 3.1.11. Let ∆1 = [b1,e1] and ∆2 = [b2,e2] be two segments in the multisegment such

that ∆1 precedes ∆2. In order to destroy this preceding relation (∆1 does not precede ∆2 in α′) after

applying one iteration of the Mœglin-Waldspurger algorithm, then the following conditions must be

satisfied:

1. The segments ∆1 and ∆2 must be such that e1−1 = e2.

2. There must exist a segment ∆3 = [b3,e2] for which e1 is chosen from ∆1 in the same iteration

as e1−1 from ∆3, hence b2 ≤ b3 < b1.

Proof. Firstly, we are only considering a single iteration of the Mœglin-Waldspurger algorithm so

there can only be a singular change to the end values of any segments. This will not impact the base

values so b1 > b2 will remain satisfied and the condition e1 > e2 must be broken. Therefore e1 > e2

must initially be true be able to be broken by a single iteration, hence e1−1 = e2. In order to now

destroy the precedes condition e1 must be chosen from ∆1 in a separate iteration to the e1−1 from

∆2. It follows that there must instead exist a segment ∆3 that is preceded by ∆1 and is chosen before

∆2. Note ∆3 will only be chosen following ∆1 before ∆2 if it precedes ∆1 and has length less than or

equal to ∆2 so b2 ≤ b3 < b1.
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For example ∆1 = (2,3,4), and ∆2 = (0,1,2,3). By construction there initially exists a preceding

relation on this iteration. However if the end value(s) (4) from ∆1 are removed by the algorithm

but the end value of ∆2 (4) remains fixed then the end values of both multisegments will eventually

become equal. If this happens then during this next iteration there will be no such preceding relation.

However for this to happen there must exist a segment ∆3 which precedes ∆1, has an end value of (3)

and has a base value greater than or equal to the base value of ∆2, thus we could take ∆3 = (1,2,3).

Following a single iteration, we will therefore have ∆′1 = (2,3), ∆2 = (0,1,2,3) and ∆′3 = (1,2), so

the initial preceding relation between ∆1 and ∆2 will no longer exist.

As we will see in the next proposition the creation and destruction of preceding relations will

only have an influence when the maximum value in the multisegment reduces during the computa-

tion of the Mœglin-Waldspurger algorithm.

Proposition 3.1.12. Let ∆ be any segment of a multisegment α. When carrying out the Mœglin-

Waldspurger algorithm on α, then it is not possible that both of the integers i− 1 and i of ∆ are

chosen to be in dual segments with the same end value.

Proof. Let eα be the maximum value of our multisegment α. When we compute the dual of α using

the Mœglin-Waldspurger algorithm then all the segments of the dual ending in eα must be computed

before any segment ending in a value less than eα. The iterations computing these segments will

also choose ∆eα
in order of shortest to largest. Then any preceding segments chosen during each

iteration must then be such that they are chosen with increasing length in order for them to precede.

Now given that the ∆eα
must also increase with each ongoing iteration then in turn ∆eα−1,∆eα−2, . . .

will also increase in length every iteration.

To show this let us use double induction on the pair (i,k) for i ≥ 1 and k ≥ 0, where i denotes

the ith iteration of the Mœglin-Waldspurger algorithm for which a segment ending eα is generated

and k denotes the segment ∆eα−k which is chosen. For ease of notation we will say that ∆i
eα−k (if it

exists) is the segment in which eα− k is chosen from on the ith iteration.

We already know by Proposition 3.1.9 that when i = 1 ∆1
eα−k is longer than ∆1

eα−(k−1) for all

k > 0. Additionally when k = 0 ∆i
eα

is longer than ∆i−1eα
for all i > 1, since the segments ending in

the maximum value are chosen in ascending order of length and new segments ending in eα cannot

be created since this would contradict the fact that eα is the maximum value.
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Let us now assume that it is true for i = n and k = m− 1 (for n ≥ 1,m > 0) and i = n− 1 and

k = m (for n > 1,m≥ 0). Now we need to prove that for i = n and k = m that ∆n
eα−m is longer than

∆
n−1
eα−m. If we assume that instead ∆n

eα−m is shorter than ∆
n−1
eα−m. Recall that the Mœglin-Waldspurger

always chooses the shortest segment for any end value. If both ∆n
eα−m and ∆

n−1
eα−m are present and end

with eα−m during the n− 1, then this would imply that ∆
n−1
eα−m is shorter than or the same length.

Therefore if ∆n
eα−m is to be shorter than ∆

n−1
eα−m then it must be newly created and hence eα− (m−1)

must have been end value of ∆n
eα−m on the (n−1)th iteration, that is, ∆

n−1
eα−(m−1).

By the inductive hypothesis (i = n and k = m− 1), ∆n
eα−(m−1) is longer than ∆

n−1
eα−(m−1). If the

end value eα− (m−1) of ∆
n−1
eα−(m−1) is removed then it will become ∆n

eα−m and hence will be strictly

shorter than ∆n
eα−(m−1). This will lead to a contradiction since Proposition 3.1.9 states that the

preceding segments which are chosen must be in increasing order of length. Therefore we have

proved that as i increases then the length of the segment ∆i
eα−k must also increase for k ≥ 0.

During each iteration the lengths of the new segments generated by removing the end values of

∆eα
,∆eα−1, . . . will become shorter. It will therefore not be possible for a segment to be chosen twice

for the same end value eα, since segments must be chosen in increasing order of length during both

the iteration and for the respective end values.

Corollary 3.1.13. Whilst computing all segments ending in the maximum value using the Mœglin-

Waldspurger algorithm the preceding relations can remain the same. That is, if you use the new

precedes relations of α′ or simply inherit those from α the algorithm will make the same choices.

Corollary 3.1.14. Whilst computing all segments with the minimum value being the base value

using the alternative Mœglin-Waldspurger algorithm the preceding relations can remain the same.

Proposition 3.1.15. Whilst computing all segments corresponding to the maximum value using the

Mœglin-Waldspurger algorithm each segment can only be used at most once, and for each i ≤ eα

the segment ∆i must be chosen in increasing length as the iterations go on.

Proof. This follows from the proof of Proposition 3.1.12

Corollary 3.1.16. Each iteration of the Mœglin-Waldspurger algorithm chooses the longest possible

dual segment ending with the maximum value remaining in the multisegment.
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The algorithm can therefore be implemented one end value at a time and through the construction

of a table of all segments categorised by their end values in increasing order of length. Then each

segment corresponding to the maximum value will be chosen in order and any segment chosen from

a subsequent row must then have length greater than or equal to the previous segment. If we relook

at Example 3.1.2 then the original multisegment has maximum value 4 and the table would be as

follows:

Table 3.1: Implementing the Mœglin-Waldspurger algorithm on maximum value 4

End Values (n) Segments ending in n

4 [3,4]

3 [3] [2,3] [2,3]

2 [1,2]

1 [1]

Following the computations, any segment which was chosen will have its end values removed

and be moved down a row if it still exists.

3.2 Network Approach

In this section we will study how networks can be used in the implementation of the Zelevinskii

involution. Following this, we look into what this network theoretic approach means for the Mœglin-

Waldspurger algorithm, which will in turn allow us to present an abridged version of the Mœglin-

Waldspurger algorithm that restricts the choices at each stage. These restrictions and the graph

theoretic description will be instrumental in the main results of the thesis presented in Chapter 4.

The decision to study the network description of the Zelevinskii Involution follows from the sur-

rounding literature, mainly Zelevinskii’s work with Knight. In their paper [9], Knight and Zelevin-

skii use the results of Poljak’s theorem for describing the maximal rank of the pth power of matrices

with a given pattern [15]. This allows for the formation of a closed form solution for finding the

rank triangle associated to the dual multisegment. Let b and e respectively denote the minimum and

maximum integers of the multisegment α. Knight and Zelevinskii construct a graded vector space

E = Eb⊕Eb+1⊕·· ·⊕Ee−1⊕Ee,
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comparable to the vector space shown in Figure 2.1 in which the dimension of each Ei is equal to the

associated weight gi (the multiplicity of i in the multisegment α). Each f ∈V will be nilpotent and

hence a Jordan decomposition can be chosen consisting of Jordan graded cells. Each cell associated

to a segment [i, j] and consists of f -invariant subspace of V

Li⊕Li+1⊕·· ·⊕L j−1⊕L j,

where dim(Lk) = 1 , Lk ⊂ Ek, and f (Lk) = Lk+1 for k = i, . . . , j−1.

Following on from the Jordan decomposition, we then define Ti, j for all (i, j) to be the set of all

maps

v : [b, i]× [ j,e]→ [i, j]

such that v(k, l) ≤ v(k′, l′) whenever k ≤ k′ and l ≤ l′. These maps will simply correspond to all

possible chains that can be made when constructing g in the Zelevinskii involution. Knight and

Zelevinskii then use the maps to formulate the closed form solution as follows:

Theorem 3.2.1 ([9, Theorem 1.2]). For any multisegment α = (mi, j)b≤i≤ j≤e, we have

r̃i, j = min
v∈Ti, j

∑
(k,l)∈[b,i]×[ j,e]

mv(k,l)+k−i,v(k,l)+l− j.

The proof then follows by interpreting the isomorphism classes of the associated quiver repre-

sentation as graded nilpotent operators previously discussed. A network is then formed using this

description and the maps Ti, j are pivotal in the formation of the directed edges. The maximum-flow

and minimum cut theorem is then used alongside Poljak’s theorem to construct the various flows

through the network and complete the argument. This discussion of Knight and Zelevinskii is the

first and only in which a network flow argument is used for the implementation of either the Zelevin-

skii involution. In their paper, they do state that the link to the Mœglin-Waldspurger algorithm would

be dealt with in a separate publication, however this paper doesn’t appear to have materialised in

any of their further work. Thus the following subsection will be devoted to studying the network, a

slightly abridged version and their relation to the Mœglin-Waldspurger algorithm.
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3.2.1 Network Theoretic Description

Firstly, we will present the network given by Knight and Zelevinskii in [9] as a single network.

To do this we represent each integer contained inside of the multisegment as two vertices with an

edge between of capacity of 1 to ensure that the integer is only used once, and take into account how

the network changes for each pair of integers (i, j) contained in the multisegment. The formation of

the network then follows:

Given a multisegment α with m segments, then let us arbitrarily index each segment in the multi-

segment α with an integer 1≤ n≤m, thus α = {∆1, . . . ,∆m}. Then for each integer i in the segment

∆, we will create two vertices vi,∆,0 and vi,∆,1 and add an edge from vi,∆,0 to vi,∆,1 with capacity 1. We

will also create two extra vertices the source (s) and the sink (t). This network is currently highly

disconnected so additional edges will be added in the following discussion - these edges will encode

the preceding relations from the multisegment description. We will define an algorithm which com-

pletes the network with these edges and computes the associated dual multisegment.

Algorithm : Network Computation of the Dual

Following the precedes condition of the Mœglin-Waldspurger algorithm given in Definition 2.5.3

we can see that given two segments in α

∆1 = (b1, . . . ,e1) and ∆2 = (b2, . . . ,e2),

where ∆1 precedes ∆2 then there are the following possible matchings from integers in ∆2 to ∆1 by

the Mœglin-Waldspurger algorithm:

(∆2,b2)→ (∆1,b2−1), (∆2,b2 +1)→ (∆1,b2), · · · · · · , (∆2,e1)→ (∆1,e1−1), (∆2,e1 +1)→ (∆1,e1).

Hence for each integer n such that b2 ≤ n≤ e1 +1 there is a possible matching from n in ∆2 to n−1

in ∆1. To represent this in the network, we therefore construct an edge for each pair of segments ∆1

and ∆2 in which ∆1 precedes ∆2, and such n from vn,∆2,1 to vn−1,∆1,0 with capacity 1.

Fixing this network, we now run the following process for each ordered pair (i, j) such that

bα ≤ i≤ j ≤ eα:
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(i) We add an edge from the source (s) to v j,∆,0 with capacity 1 for every ∆ such that j ∈ ∆.

(ii) Similarly, we add an edge from vi,∆,1 to the sink (t) with capacity 1 for every ∆ such that i ∈ ∆.

(iii) Compute the maximum flow from the source to the sink through the corresponding network

and denote this by αi, j.

The values given by αi, j will be in the form of a triangle with the same dimensions as the original

rank triangle for α.

Recall that the relations change with each iteration of the algorithm for both versions of the

Mœglin-Waldspurger algorithm. We now want to prove that taking the maximum flow on this orig-

inal network will simply correspond to carrying out the Mœglin-Waldspurger algorithm.

Theorem 3.2.2. Given a multisegment α then

αi, j = α̃i, j,

where α̃i, j denotes the (i, j)-th value of the rank triangle associated to the dual.

Proof. This follows from the fact that the network presented in [9, Lemma 3.2] by Knight and

Zelevinskii has equivalent flow at each pair (i, j) to our network, and they proved that this would be

equal to the ranks of the dual in [9, Lemma 3.3] .

Corollary 3.2.3. The triangles of maximum flows αi, j have three key properties:

1. αi, j ≤ αi, j−1,

2. αi, j ≤ αi+1, j, and

3. αl,k−αl, j ≤ αi,k−αi, j, where l < i,k ≤ j.

The fact that αi, j will produce an admissible triangle (Proposition 2.2.2) directly follows from

Theorem 3.2.2. However we can also prove this using the argument of the independent flows:

Proof. Given an arbitrary multisegment α then the proofs of the three key properties using maximum

flows are as follows:
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1. Let assume that αi, j > αi, j−1, then by construction we have more flows from i to j than from

i to j−1. This would contradict the fact that αi, j−1 is maximum, since we could simply just

end the flows from i to j at j−1 to increase αi, j−1. Therefore αi, j ≤ αi, j−1.

2. Let assume that αi, j > αi+1, j, then by construction we have more flows from i to j than from

i+1 to j. This would contradict the fact that αi+1, j is maximum, since we could simply just

start the flows from i to j at i+1 to increase αi+1, j. Therefore αi, j ≤ αi+1, j.

3. The expression given by αl,k−αl, j provides the maximum number of flows that originating

from l that can reach k but not j. Let us assume αl,k−αl, j ≤ αi,k−αi, j, where l < i,k ≤ j.

Given any flow originating from l that can reach k but not j, then we can change the start

point of this flow from l to i since l < i. Therefore we find that αl,k−αl, j ≤ αi,k−αi, j, where

l < i,k ≤ j.

3.2.2 Ford-Fulkerson Algorithm

The Ford-Fulkerson Algorithm can be used to find the maximum flow of a network, N. As we

have already discussed the maximum flow through a network is required in the Network Computa-

tion of the Dual, and can therefore be used in generating the dual rank triangle by Theorem 3.2.2.

The basic idea of the algorithm is to begin with an empty network and attempt to push additional

flow from the source to the sink. This is carried out by searching for a so-called augmenting paths

in which the flow can be increased along. If no augmenting path exists then the algorithm stops and

the maximum flow has been achieved.

Note: It may be necessary to decrease the flow through a backwards edge to ultimately increase

the flow through a network.

Definition 3.2.4 (Residual Network). A residual network, R, can be described as r : V ×V →R and

is such that

ri j = ci j− fi j.

The residual network contains edges where ri j 6= 0. Therefore for the edges in the residual network

we have two possibilities:
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3.2. NETWORK APPROACH

i) If 0 < ri j and (i, j) is a forward edge then it is possible to increase the flow along the edge (i, j).

ii) If 0 < ri j and (i, j) is a backward edge then it is possible to increase the backward flow along

the edge (i, j) by decreasing the forward flow along the edge ( j, i).

Definition 3.2.5 (Augmenting Path). An augmenting path is a path (i1, i2, . . . , ik) in the residual

network, R, where i1 = s, ik = t and 0 < rin in+1 .

A network is at its maximum flow if and only if there is a feasible flow through the network and

there exists no augmenting path in the residual network.

Example 3.2.6. Given the network, N, in Figure 3.4 with the flow, F , then the associated residual

will be given by the residual network, R in Figure 3.5.

Figure 3.4: The original network, N, in which the flow and capacity are denoted by f/c. Note that
the total flow from s to t is 5.

Figure 3.5: The respective residual network, R. Note that there is positive residual capacity on a
number of paths eg. p = {s,1,2, t}, therefore p is an augmenting path of R.

The residual capacity of the path p is

rmin = min{rs1,r12,r2 t}= min{2,1,1}= 1.

For each augmenting path, the edge with the smallest residual capacity will be a bottleneck for the

path. Hence the flow along the augmenting path can only be increased by a maximum of rmin.
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3.2. NETWORK APPROACH

Let us now formally define the Ford-Fulkerson algorithm.

Algorithm 1 Ford-Fulkerson
1: Begin

2: for all (i, j) ∈ E do . Sets initial flow to zero.

3: fi j := 0

4: f ji := 0

5: end for

6: while there is an augmenting path, (i1, i2, . . . , ik), from s to t in N do

7: rmin := min
(
ri1 i2 ,ri2 i3 , . . . ,rik−1 ik

)
8: Increase the flow along the augmenting path by rmin

9: end while

10: return f

11: End.

Example 3.2.7.

We will now use the Ford-Fulkerson al-

gorithm to find the maximum flow in the

network in Figure 3.6. We will arbitrarily

pick the augmenting path since we have no

pre-determined method for this. Firstly, we

set the initial flow to be empty so the residual

network will be the original network, N with

0 values for all backward flows. We will

then use the augmenting paths seen right.

Note: Since A → D is a non-empty flow

then we increase the negative flow D → A

as stated in the algorithm in order to add our

augmenting path 3© into the network.

Figure 3.6: A network, N.

Table 3.2: Augmenting Paths

Augmenting Path rmin

1© : s→ A→ D→ t 8

2© : s→C→ D→ t 2

3© : s→C→ D→ A→ B→ t 4

4© : s→ A→ D→ B→ t 2

5© : s→C→ D→ B→ t 3
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3.2. NETWORK APPROACH

Figure 3.7: The iterations of the Ford-Fulkerson algorithm on the network.

Therefore we have found using the Ford-Fulkerson algorithm that the maximum flow through the

network, N will be 19, which is found by taking the sum of the flows through each of the augmenting

paths.

3.2.3 Relation to the Mœglin-Waldspurger Algorithm

The Mœglin-Waldspurger algorithm works by trying to find the maximum length chain from the

maximum remaining value along the shortest preceding segments. We can seek to do something

similar on our fixed network by pushing flows that will then correspond to the maximum flows of

the network for each pair (i, j) when the sources and sinks are added. To do this, we must ensure

that longer flows are always checked before shorter flows, so let us now denote an algorithm for

implementing this.
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3.2. NETWORK APPROACH

Algorithm : Pushing Flows through Network

Let us denote the minimum and maximum integers in the multisegment α to be bα and eα respec-

tively, then we will push the maximum flow along [b,e] in the following order:

1. Set e := eα.

2. Set b := bα.

3. Push the maximum flow along [b,e] by choosing edges associated the shortest segment which

do not already have flow along them (if possible).

4. If b 6= e then set b := b+1, and return to step 3.

5. If b = e and e > bα, set e := e−1 and return to step 2.

Each value contained in the rank triangle must be finite, hence the multisegment α which is it

associated to must contain a finite number of segments.

Lemma 3.2.8. Taking the Pushing Flows through Network algorithm will still result in the elements

being chosen in the correct order.

In other words, given any segment ∆ = [b,e] then for any integer n such that b ≤ n < e, n must

be chosen by the algorithm after n+1.

Proof. Let us assume that n from a segment ∆= [b,e] is the first such value from the multisegment α

which has flow pushed through before before n+1 from ∆. Then there exists a segment ∆1 = [b1,e1]

that contains n+ 1 which precedes ∆, hence b < b1, e < e1, and b1 ≤ e+ 1. However, n+ 2 in ∆1

must have had flow pushed through it before n+1, but n+1 in ∆ did not have the same flow routed

through it, since n+1 is chosen after n. There must exist a segment ∆2 = [b2,e2] that is preceded by

∆1, and is such that n+2 from ∆1 is chosen to have the same flow pushed through it as n+1 from

∆2. Note ∆1 precedes both ∆,∆2 so b2 ≥ b since the algorithm chooses the shorter segment first.

(∗) However, when n+ 1 is chosen from ∆1, n from ∆2 are not both chosen to have the same

flow routed through them, then it results from the fact that n is chosen from ∆ instead. Therefore

either:

1. n 6∈∆2: So b2 = n+1, but this would contradict the precedes condition since b≤ n thus b2 6< b.
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3.2. NETWORK APPROACH

2. n ∈ ∆2: There exists ∆3 = [b3,e3] containing n+ 1 that precedes ∆2, and n,n+ 1 are chosen

respectively from ∆2,∆3 by the algorithm in the same dual segment.

Since both n,n+1 ∈ ∆2 and ∆3 precedes ∆2 then n+1 < e3. However n+2 must have been chosen

from ∆3 prior to n+1, but not in the same flow as n+1 from ∆2 since this has already been chosen

in a flow with n+2 from ∆1 . Hence there exists a segment ∆4 = [b4,e4] that precedes ∆3. Note both

∆2,∆4 precede ∆3 so b4 ≥ b2 since the algorithm chooses the shorter segment first. Thus we are back

round to (∗) in our argument, so continuing this process recursively would result in a multisegment

containing infinite segments, which contradicts the formation of G. Therefore there can never be an

n,n+1 in a segment of α in which n is chosen before n+1 by the algorithm.

Note that the flow [b,e] will be completely contained in the flows [b−n,e+m] for 0≤ n≤ b−bα

and 0 ≤ m ≤ eα− e, however the maximum flows for each [b− n,e+m] will have already been

pushed before [b,e].

Lemma 3.2.9. If we use the Pushing Flows through Network Algorithm, then we will achieve the

maximum flow for each pair (b,e).

Proof. The Ford-Fulkerson algorithm works by simply pushing flows through the network. If we be-

gin at [bα,eα] then we can simply push the maximum flow. We can then set this to be a flow through

the network. Following this, we can then move on to the next iteration [bα+1,eα] (with sources and

sinks connected to the vertices associated 0 for bα + 1 and 1 for eα respectively). The order of the

process ensures that all flows containing [bα + 1,eα] have already been chosen. Therefore on this

iteration it will be the last one for which additional flow can be pushed from [bα+1,eα]. We already

have a feasible flow given by the previous iteration(s), and thus the Ford-Fulkerson algorithm states

that in order to achieve the maximum flow we must push any augmenting flows.

Let us assume that we are required to use a backwards edge from i to i+1 in order to increase

the flow, hence decrease an already allocated flow along the edge from i+ 1 to i. Given that the

network has a very rigid structure then we have a very restrictive formation for the flow between i

and i+1 that use backwards edges.
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∆l2 , i ∆l1 , i

∆k2 , i−1 ∆k1 , i−1

(a) Smallest Backwards Flow

∆ln , i ∆ln−1 , i

∆kn , i−1 ∆kn−1 , i−1

∆lz , i

∆kz , i−1

∆l2 , i

∆k2 , i−1

∆l1 , i

∆k1 , i−1

(b) Generalised Backwards Flow

Figure 3.8: Possible backwards flows for each pair (i, j).

The edges in each graph represent preceding relations. If we denote [bi,ei] to be the original

segment ∆i. Then we can immediately say that

bl1 ≤ i = (i−1)+1≤ ek1 +1.

Likewise we also have that bkn < bl1 , and given that the shortest segment is always chosen then

bk j ≤ bk j+1 . Therefore we find that

bk1 ≤ bk2 ≤ ·· · ≤ bkn < bl1 .

By Lemma 3.2.8, a from a segment ∆ must always be chosen for a flow before a−1. If we assume

that i ∈ ∆k1 , then it must have been chosen in a previous flow with i+ 1 from a segment ∆ or to

begin a new flow. If we assume that ek1 ≥ el1 , then this implies that if ∆ exists then ∆l1 would also

be preceded by ∆. However if this was the case then i from ∆l1 should have been chosen instead of i

from ∆k1 since it is shorter. Therefore we find that ek1 < el1 when i ∈ ∆k1 . Otherwise, let us assume

i 6∈ ∆k1 then ek1 = i−1, hence

ek1 = i−1 < i≤ el1 .

Overall we have found that we have the following inequalities relating ∆l1 and ∆k1 : bl1 ≤ ek1 + 1,

bk1 < bl1 , and ek1 < el1 , which establishes that ∆l1 originally precedes ∆k1 and hence there exists an

edge between ∆l1 , i and ∆k1 , i− 1 in our network. This edge should instead be used in place of the

flow which uses backwards edges.

We have therefore demonstrated that a backwards edge will never be required when choosing

the shortest possible segment each time, thus we can push each of these augmented flows through

the original network without changing any of the previous maximum flows. We can recursively
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continue this argument made for [bα + 1,eα] for all [b,e] in the order described in the algorithm to

then find that the final flow pushed through the network will achieve the maximum flow for each

pair (b,e).

Remark 3.2.10. A natural question to ask is: how do these individual flows which are passed

through the network by algorithm correspond to the multisegment description? If we look at an

individual flow from e to b which is pushed through the network at an iteration, then it corresponds

to a new augmenting flow which wasn’t previously pushed by a longer flow containing [b,e]. If we

now look at the multiplicity of these new flows for each [b,e] and denote it by Fb,e. Then we find

Fb,e = (Maximum Flow from e to b)− (Maximum Flow of longer flows containing e to b),

= αb,e− (αb−1,e +αb,e+1−αb−1,e+1),

= α̃b,e− α̃b−1,e− α̃b,e+1 + ˜αb−1,e+1,

= m̃b,e.

Therefore we have found that the multiplicity of these new flows is equivalent to the multiplicity of

the segments in the dual multisegment for each (b,e).

Theorem 3.2.11. The Pushing Flows through Network algorithm will generate flows which will

each correspond to a segment in the dual multisegment.

Proof. This follows from Lemma 3.2.9 that states that the algorithm will achieve a flow that is equal

to all of the maximum ranks, and Remark 3.2.10 that shows that these flows will then be equivalent

to the multisegments from the rank triangle.

Corollary 3.2.12. The Mœglin-Waldspurger algorithm can be carried out using only the original

preceding relations.

In other words at steps 2 and 3 in the Mœglin-Waldspurger algorithm we can change the pre-

cedes condition on ∆m to be that ∆m−1 must have originally preceded.

We have therefore found that a method for pushing maximum flows can be used with the implicit

choice that we choosing the shortest segment each time.
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3.2. NETWORK APPROACH

We will illustrate this through the following example:

Example 3.2.13. Let α = {[1,3], [2,4], [3,5], [4]}, then we can now run both the original Mœglin-

Waldspurger algorithm and the abridged version, which only uses the initial preceding relations.

1 2 3

2 3 4

4

4
3

3 5

1

1

2

2

4

4

(a) Original Algorithm

1 2 3

2 3 4

4
2

43 5

1

1

3

3

4

4

(b) Abridged Algorithm

Figure 3.9: The implementation both versions of the Mœglin-Waldspurger algorithm.

As expected, both versions of the Mœglin-Waldspurger algorithm find the same dual of multi-

segment for α, which is α̃ = {[1,3], [2,4], [3,5], [4]}. Notice that a precedes relation is generated

following the first iteration, and is then used by the original algorithm. We can also see from this

example that the abridged version will not always find the segments in the same order as the origi-

nal. This follows from the fact that it does not take advantage of use of the new preceding relations

which are generated with each iteration, and hence will not always be able to choose the longest

paths in descending order for each end value. It therefore follows that Corollary 3.1.16 will not be

true for this abridged version of the algorithm.

In this, section we have discussed two significant combinatorial interpretations of the Zelevinskii

involution. The first, interpretation is that for pairs (i, j) the maximum flow through the network

of the initial preceding relations will be equal to the ranks computed by the Mœglin-Waldspurger

algorithm. The second is that exists an abridged version of the Mœglin-Waldspurger algorithm,

which allows us to find the dual multisegment by fixing the initial preceding relations. These two

interpretations will be of massive importance in Chapter 4 as we study some of the conjectures in

the local Langlands correspondence which were first discussed in Chapter 2.
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3.2.4 Example of Network Computation of the Dual

We will now use the Network Computation of the Dual algorithm on the same example detailed

in Example 3.1.2 to demonstrate that this new algorithm will also compute the associated dual. Let

us consider the multisegment α, and label the segments contained inside it as follows:

α = {[1], [1,2], [2,3], [2,3], [3], [3,4]}= {∆1,∆2,∆3,∆4,∆5,∆6} .

We can now create the fixed network which we will run the algorithm on. This network is shown in

Figure 3.10, and outlines the preceding relations between segments in α.

Figure 3.10: The fixed network of preceding relations.

Note that each edge in the network has capacity 1 and to simplify the diagram we have collapsed the

two vertices vn,∆i,0 and vn,∆i,1 onto a single vertex indexed by n,∆i, thus each vertex in the network

(except for the source and sink) will have a restriction that only a single flow can be sent through it.

We can now run the algorithm for all ordered pairs (i, j) such that 1≤ i≤ j≤ 4. If we look at the

case in which (i, j) = (1,4), then we construct edges from the source to all vertices with initial index

4 and from all vertices with initial index 1. The corresponding network is shown in Figure 3.11. If

we then implement the Ford-Fulkerson algorithm on this network, then we find the maximum flow

to be 0 which thus implies r1,4 = 0.
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Figure 3.11: The network constructed for (i, j) = (1,4).

Continuing this process for all pairs (i, j), we obtain the following rank triangle for the dual

α̃1,1 α̃2,2 α̃3,3 α̃4,4

α̃1,2 α̃2,3 α̃3,4

α̃1,3 α̃2,4

α̃1,4

=

2 3 4 1

2 2 1

1 1

0

.

This rank triangle above corresponds to the following multisegment

α̃ = {[1,2], [1,3], [3], [3], [2,4]} ,

which will be the multisegment associated to the dual. Therefore the Network Computation of the

Dual algorithm gives the same dual as the two algorithms shown in the example in Section 3.1.

3.3 Complete Example

Now that we have established both the interpretation of objects in GLn and a method for com-

puting the dual orbit in Chapter 2, then it makes sense to present a complete example illustrating

60



3.3. COMPLETE EXAMPLE

them. Let us fix G = GL16(C), if we study the Vogan variety determinded by

λ = diag(q2,q2,q,q,q,q,1,1,1,1,q−1,q−1,q−1,q−1,q−2,q−2),

then Vλ ⊆ gl16(C). We can index these eigenvalues as follows:

λ0 = q−2, λ1 = q−1, λ2 = 1, λ3 = q, λ4 = q2.

Therefore Vλ will be a matrix of the following form:

Vλ =





0 x4 0 0 0

0 0 x3 0 0

0 0 0 x2 0

0 0 0 0 x1

0 0 0 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x4 ∈Mat2,4(C)

x2,x3 ∈Mat4,4(C)

x1 ∈Mat4,2(C)


.

Let us denote Eλi to be the eigenspace of λ(Frob) with eigenvector λi, then

Vλ = Hom(Eλ3 ,Eλ4)×Hom(Eλ2 ,Eλ3)×Hom(Eλ1 ,Eλ2)×Hom(Eλ0 ,Eλ1),

so Vλ is a representation variety for the quiver of type A:

λ0 λ1 λ2 λ3 λ4
x1 x2 x3 x4 .

Thus we can represent x ∈Vλ as follows:

x = (x4,x3,x2,x1) ∈Mat2,4(C)×Mat4,4(C)×Mat4,4(C)×Mat4,2(C).

Similarly, Hλ = Aut(Eλ4)×Aut(Eλ3)×Aut(Eλ2)×Aut(Eλ1)×Aut(Eλ0), so

h = (h4,h3,h2,h1,h0) ∈ GL2(C)×GL4(C)×GL4(C))×GL4(C)×GL2(C).
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Thus the action of Hλ×Vλ→Vλ is given by

(h4,h3,h2,h1,h0) · (x4,x3,x2,x1) :=
(
h4x4h−1

3 ,h3x4h−1
2 ,h2x4h−1

1 ,h1x4h−1
0

)
.

If we fix the matrix representation Vλ, then we can study the orbit and also compute the associated

dual, so let

x4 =

1 0 0 0

0 0 1 0

 ,x3 =



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1


,x2 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


,x1 =



0 0

1 0

0 0

0 1


.

Then we can compute the rank triangle as follows:

2 4 4 4 2

2 3 3 2

1 2 1

1 1

0

(Given by the multiplicities of the eigenvalues)

(Ranks of the initial matrices x1,x2,x3,x4)

(Ranks of the compositions x2x1,x3x2,x4x3)

(Ranks of the compositions x3x2x1,x4x3x2)

(Ranks of the composition x4x3x2x1)

We can then use Proposition 2.3.4 in order to construct the triangle for the multiplicity of segments

in the associated multisegment

0 0 0 0 0

1 1 1 1

0 0 0

1 1

0

This corresponds to the multisegment

α = {[1,2], [2,3], [3,4], [4,5], [1,4], [2,5]}= {∆1,∆2,∆3,∆4,∆5,∆6} .
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We can now create the fixed network which we will run the algorithm on. This network is shown in

Figure 3.12, and outlines the preceding relations between segments in α.
∆1,1 ∆1,2

∆2,2 ∆2,3

∆3,3 ∆3,4

∆4,4 ∆4,5

∆5,4∆5,3∆5,2∆5,1

∆6,2 ∆6,3 ∆6,4 ∆6,4

Figure 3.12: The fixed network of preceding relations for the complete example.

Note that each edge in the network has capacity 1 and to simplify the diagram we have collapsed

the two vertices vn,∆i,0 and vn,∆i,1 onto a single vertex indexed by n,∆i, thus each vertex in the network

(except for the source and sink) will have a restriction that only a single flow can be sent through it.

We can now run the algorithm for all ordered pairs (i, j) such that 1≤ i≤ j ≤ 5. Following this

process, we obtain the following rank triangle for the dual

2 4 4 4 2

2 3 3 2

1 2 1

1 1

0

This rank triangle above corresponds to the following multisegment

α̃ = {[1,2], [2,3], [3,4], [4,5], [1,4], [2,5]} ,

which is equal to the original multisegment so α is self-dual (Definition 3.1.3).

63



Chapter 4 : Combinatorics of Numerical Invariants

We have previously established a number of different methods for finding the dual of a multisegment,

however we are yet to study properties and relations satisfied by the multisegments corresponding

to specific families of ABV-packets. Thus we now devote this chapter to further our investigation

into ABV-packets, and will use the previously discussed methods and some new combinatorial ap-

proaches to do this. We will first seek to study in Section 4.1 the effect of the Mœglin-Waldspurger

algorithm when we partition a multisegments into sub-multisegments and then run the algorithm on

each of the individual partitions. Following this in Section 4.2, we will then examine multisegments

in terms of different numerical invariants and characteristics. Through which we will prove that a

large collection of α’s will satisfy the partial ordering relation:

For all multisegments β such that α≤ β and α̃≤ β̃, we find α = β.

This inspection will lead us to examining Remark 2.4.6 and the Open Orbit Conjecture 2.4.7.

These families of α’s for which the partial ordering relation will be satisfied are outlined in

Theorem 4.2.9, Theorem 4.2.23, Theorem 4.2.35, and Theorem 4.2.39. The work on simple

multisegments and ladder multisegments, in Theorem 4.2.9 and Theorem 4.2.23 respectively, is

based upon unpublished work by my supervisor Dr. Fiori, however our main focus will be my

generalisation of these results to much larger and more significant families of multisegments. Most

significantly in Section 4.2, the numerical invariants will be used to prove the important conjecture:

ABV-packets for orbits of Arthur type in GLn are singletons,

by means of Theorem 4.2.35. Finally, we will flip the problem on its head and present a method

for generating multisegments which violate the partial ordering relation in Section 4.3, and present

a conjecture with subsequent corollaries following a numerical study.
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4.1 Endoscopic Decomposition

For any multisegment α, we can decompose it into sub-multisegments αi’s such that

α =
⊔

i

αi.

On the level of conjugacy classes this corresponds to a decomposition of each of the vector spaces

Vk =
⊕

i

V (i)
k

into a direct sum. One can then consider the quiver representations which preserve this decomposi-

tion. Such a decomposition corresponds to an inclusion of an endoscopic subgroup4.

The requirement that α =
⊔

i αi implies that there exists a collection of quiver representations

for each of the αi’s that combine to form one of type α. It is automatic that any element of the

conormal bundle arising in the smaller endoscopic subgroup induces one for the larger group. That

is, the union ⊔
i

α̃i

will give us elements which commute with representations for α.

The total number of possible endoscopic decompositions is equal the total number of possible

partitions of a set. The sequence of numbers describing the number of partitions of a set are epony-

mously named Bell numbers after Eric Temple Bell, who wrote about them in his work on Bell

polynomials in 1934 [3]. The Bell numbers are denoted by Bn and the sequence which follows starts

at n = 0:

1,1,2,5,15,52,203,877,4140, . . . ; 5

where each Bn will correspond to the number of possible endoscopic decompositions of a multiseg-

ment that contains n segments.

4This terminology arises from the connection to endoscopy in the Langlands program, however we will solely focus
on the relation to the multisegment description in this thesis.

5The sequence of Bell numbers is given by A000110 from the On-Line Encyclopaedia of Integer Sequences.
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Given the increasingly large number of possible decompositions, it may come as no surprise that

if a decomposition of αi’s is chosen at random, then it will typically not be such that

α̃ =
⊔

i

α̃i.

However, we will certainly have

α̃≥
⊔

i

α̃i.

Example 4.1.1. Let us consider the multisegment

α = {(123),(234),(345)},

then according to the Bell numbers there will be five possible endoscopic decompositions. For each

of these decompositions, we will study tiα̃i and t̃iα̃i.

1. The trivial decomposition in which α remains fixed, so α1 = α. Note α is self dual (α = α̃).

Hence ti=1α̃i = α̃ = α and t̃i=1α̃i = ˜̃α = α.

2. The complete decomposition in which α1 = {(123)}, α2 = {(234)} and α3 = {(345)}. Then

t
i=1,2,3

α̃i = {(1),(2),(2),(3),(3),(3),(4),(4),(5)},

and

t̃
i=1,2,3

α̃i = {(12345),(234),(3)},

which is formed by the union intersection of (123) with (345) in α.

3. The endoscopic decomposition in which α1 = {(123),(234)} and α2 = {(345)}. Then

t
i=1,2

α̃i = {(12),(23),(3),(34),(4),(5)},

and

t̃
i=1,2

α̃i = {(123),(34),(2345)},

which is formed by the union intersection of (234) with (345) in α.
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4. The endoscopic decomposition in which α1 = {(123)} and α2 = {(234),(345)}. Then

t
i=1,2

α̃i = {(1),(2),(23),(3),(34),(45)},

and

t̃
i=1,2

α̃i = {(1234),(23),(345)},

which is formed by the union intersection of (123) with (234) in α.

5. The endoscopic decomposition in which α1 = {(123),(345)} and α2 = {(234)}. Then

t
i=1,2

α̃i = {(1),(2),(23),(3),(34),(4),(5)},

and

t̃
i=1,2

α̃i = {(12345),(23),(34)},

which is formed by the union intersection of (123) with (234) in α followed by (1234) with

(345).

As seen in each of the decompositions we can form t̃iα̃i using union intersection on α. Thus we

now seek to generalise this idea and prove a number of key facts about endoscopic decomposition.

Let us now define nα to be equal to the number of segments in α. Note that we will further discuss

a number of other numerical invariants in Section 4.2.

An alternate way of looking at endoscopic decomposition is that it splits up the network dis-

cussed in Section 3.2 into a collection of subnetworks, which we will then compute the Network

Computation of the Dual algorithm on in order to construct
⊔

i α̃i. We will use this alternate descrip-

tion in the proof of the following:

Lemma 4.1.2. Let α =
⊔

i αi be any endoscopic decomposition of α, then

nα̃ ≤ n⊔
i α̃i

= ∑
i

nα̃i
≤ N,

where N denotes the total number of integers (including their repeated appearances) in the multi-

segment α.
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Proof. Firstly, there can never be a case in which an empty segment is contained in the multisegment.

Since the Mœglin-Waldspurger algorithm preserves the value N number of total elements in the dual

multisegment, then the maximum number of segments in
⊔

i α̃i will occur when every segment has

a single element. This occurs when the αi’s are equal to the individual elements of α, since each

α̃i will then be made up of all singletons, and thus the overall union
⊔

i α̃i will simply consist of N

singletons.

We also have the trivial decomposition in which the multisegment α remains fixed, since it is

broken into one partition. In this case
⊔

i α̃i = α̃, so there will be nα̃. Let us assume that there exists

a decomposition such that ∑i nα̃i
< nα̃. If we use the network description from Chapter 3 then an

endoscopic decomposition forms subnetworks from a larger network and hence edges are removed

since the initial preceding relations will only remain inside each of these sub-multisegments in the

decomposition. This will result in the overall sum of the flows at each iterative step will being less

than or equal to the original. Therefore, there can never exist a decomposition such that ∑i nα̃i
< nα̃,

since this would require at least one segment to be of greater length. So, we have obtained the

required inequality

nα̃ ≤∑
i

nα̃i
≤ N.

We can also study how an endoscopic decompositions of multisegment will relate to the original

multisegment in terms of a partial ordering.

Proposition 4.1.3. Given an endoscopic decomposition α =
⊔

i αi, then either:

1. α̃ =
⊔

i α̃i,

2. or, α̃ can be recovered by taking a combination of the union intersection and conjunction

actions on
⊔

i α̃i, that is,
⊔

i α̃i ≤ α̃.

Proof. Let α =
⊔

i αi be an endoscopic decomposition, then:

1. α̃ =
⊔

i α̃i, will be the trivial case.

2. Alternatively, let α̃ 6=
⊔

i α̃i, and C, D be the rank triangles associated to
⊔

i α̃i, α̃. Then if

we use the network theoretic approach from Chapter 3 then C is formed from subnetworks
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of the network D. Therefore the overall sum of the flow associated to C will be less than or

equal to the flow through D for each (i, j), that is, ci, j ≤ di, j for all pairs (i, j). Also note that

ci,i = di,i for all i, since the associated vertices will remain the same hence C ≤ D, and by

Proposition 2.5.6 we have
⊔

i α̃i ≤ α̃. Therefore α̃ can be recovered by taking a combination

of the union intersection and conjunction actions on
⊔

i α̃i.

Proposition 4.1.4. Suppose that α is any multisegment with corresponding conjugacy class C. Also

let
⊔

i αi be an endoscopic decomposition of α, and denote D̃ to be the conjugacy class associated

to
⊔

i α̃i. Thus D = ˜̃D will be the conjugacy class associated to
⊔̃

i α̃i. Then

C ≤ D and D̃≤ C̃.

Proof. Firstly, if α̃ =
⊔

i α̃i then it immediately follows that D̃ = C̃. As a consequence, we will also

have that C = D.

Alternatively, if α̃ 6=
⊔

i α̃i then we use Proposition 4.1.3 to conclude that
⊔

i α̃i≤ α̃. We can then

relate the multisegment partial ordering to the partial ordering of ranks by using Proposition 2.5.5

to find that

D̃≤ C̃.

What remains is to prove C ≤ D or equivalently α ≤
⊔̃

i α̃i. To do this we first recall that αi =
˜̃αi,

and hence α =
⊔

i
˜̃αi. If we set β̃ =

⊔
i α̃i then by Proposition 4.1.3

⊔
i

˜̃αi ≤ ˜̃
β,

α ≤
⊔̃

i

α̃i,

which implies by Proposition 2.5.5 that

C ≤ D.

Therefore we have proved that the relation shown in Example 4.1.1 will hold for all endoscopic

decompositions. Given the increasingly large number of possible endoscopic decompositions, then

it will often therefore be the case that when C < D we will also have D̃ < C̃.
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4.2 Combinatorics of Numerical Invariants

Given any multisegment α then we will use the following six numerical invariants to study them:

i) eα := max(α);

ii) Lα := Length of the longest segment in α;

iii) nα := Number of segments in α;

iv) cα := Minimum number of segments in which ∪∆∈α∆ constructs;

Let us denote the segments generated by the minimal formation of ∪∆∈α∆ to be ∆1, . . . ,∆cα .

v) Sα := ∑
cα

i=1

∣∣∆i
∣∣;

vi) Cα := Maximum number of components in a decomposition α =
⊔

i αi for which α̃ =
⊔

i α̃i.

Note that if cα = 1, then there exists a single segment in the minimal formation of ∪∆∈α∆ . In

this case, let us define Sα := |∪∆∈α∆|.

Example 4.2.1. Given a multisegment

α = {[0,1], [1,3], [2,2], [3,4]},

then we can categorise it as follows.

i) eα = max(α) = 4;

ii) Lα = Length of [1,3] which is the longest segment in α = 3;

iii) nα = Number of segments in α = 4;

iv) cα := ∪∆∈α∆ = [0,4] so the minimum number of segments in which it constructs = 1;

v) Sα := |∪∆∈α∆|= |[0,4]|= 5;

vi) Cα := Maximum number of components in a decomposition α =
⊔

i αi for which α̃ =
⊔

i α̃i.

There exists a decomposition α1 = {[0,1], [1,3], [3,4]} and α2 = {[2,2]}, which satisfies the

property so Cα is at least two. Note that α is self dual so there exists a segment of length 3
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in the dual, which can only result from a component that contains three or more segments.

However by the pigeonhole principle, if there are at least three non-empty components in the

decomposition then a component which contains three segments cannot exist. Thus α̃ 6=
⊔

i α̃i,

when Cα ≥ 3 since the segment of length 3 in the dual cannot be generated by the Mœglin-

Waldspurger algorithm on the individual components. Therefore Cα is less than three, so we

can conclude Cα = 2.

Note that studying the case in which cα > 1 is unnecessary as there is effectively no interaction

between the individual components, so we could simply consider them individually. Thus we will

call a multisegment α connected if cα = 1. Further, we will call a multisegment α irreducible when

Cα = 1 and hence the decomposition α̃=
⊔

i α̃i into Cα number of components will be the irreducible

decomposition.

Lemma 4.2.2. Let α,β be multisegments and α̃, β̃ their respective dual multisegments. Then

i) For any two multisegments α, β with isomorphic quiver representations, cα = cβ and Sα = Sβ.

ii) If α≤ β then Lα ≤ Lβ.

iii) If α≤ β then nα ≥ nβ.

iv) nα̃ ≥ Lα and nα ≥ Lα̃.

v) Cα ≥ cα.

Proof. i) In Section 2.3, we showed that there exists a bijection between quiver representations,

their ranks and associated multisegments up to a change in the arbitrary labelling. Therefore

if two multisegments α, β have isomorphic quiver representations, then there must also exist a

bijection between the integers contained inside of the multisegments α and β. This bijection

must preserve the number of minimal formation of ∪∆∈α∆ hence cα = cβ, and finally it must

also preserve the lengths of these segments so Sα = Sβ.

ii) Taking the union intersection and conjunction of two segments can only increase the length of

the resulting segment so Lα ≤ Lβ.

iii) Taking the union intersection and conjunction of two segments either replaces the two segments

with one or two segments, thus nα ≥ nβ.
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iv) If we construct the dual of α, then each element inside of the largest segment must be mapped

into a different segment in the dual, therefore nα̃ ≥ Lα and by duality nα ≥ Lα̃.

v) cα denotes the minimum number of segments in which ∪∆∈α∆ can be broken into. Thus we

can decompose α into αi’s such that each α contains all ∆ which correspond to a component

formed by ∪∆∈α∆. Clearly we will thus have α =
⊔

i αi, and since α̃ is formed by the Mœglin-

Waldspurger algorithm and the precedes condition, then the dual of α will be formed by the

dual of each αi, so α̃ =
⊔

i α̃i. Therefore Cα ≥ cα.

Lemma 4.2.3. If Lα̃ = nα, α≤ β and α̃≤ β̃, then nα = nβ = Lα̃ = L
β̃
.

Proof. Using ii), iv) and iii) from Lemma 4.2.2 followed by the assumption, we find that

Lα̃ ≤ L
β̃
≤ nβ ≤ nα = Lα̃,

therefore

nα = nβ = Lα̃ = L
β̃
.

Note by duality we also have

nα̃ = n
β̃
= Lα = Lβ.

Lemma 4.2.4. Let α be an irreducible multisegment then

nα̃ ≥ Sα−nα +1.

Proof. Each of the Sα-distinct values, x, from ∪∆∈α∆ must appear at least once as the maximum

value of the segments in the dual, unless, x is one less than the minimum value from a segment. To

see this, notice that x will be used as one of the maximum values, except when the final occurrence

of x+1 is removed by the algorithm, and following this iteration x no longer appears in the multi-

segment. For this to occur x+1 must be the minimum value of a segment, otherwise, x would still

appear in the segments whenever an x+1 is removed.

The number of minimum values of a segment is exactly nα, however there are only nα − 1

possible maximum values which can be missed this way. Therefore the result follows, since we

72



4.2. COMBINATORICS OF NUMERICAL INVARIANTS

know at least Sα− (nα− 1) segments must start with distinct values, hence there must be at least

Sα−nα +1 in α̃.

Lemma 4.2.5. Let α be an arbitrary multisegment then

nα̃ +nα ≥ Sα +Cα.

Proof. Let

α = α1tα2t·· ·tαCα

be a maximal irreducible decomposition of α. Each αi will be an irreducible multisegment for

1≤ i≤Cα. so by Lemma 4.2.4 we have

nαi +nα̃i
≥ Sαi +1.

If we now sum over the i’s then we find

Cα

∑
i=1

nαi +nα̃i
= nα +nα̃ ≥ Sα +Cα =

Cα

∑
i=1

Sαi +1.

Further, if we fix some of the inherent properties of α then we can find more relations.

Definition 4.2.6. A multisegment α is simple if it has the form:

α = {[b, . . . ,e], [b+1, . . . ,e+1], . . . , [b+n−1, . . . ,e+n−1]}.

We saw an example of a simple multisegment in Example 3.1.4.

Proposition 4.2.7. If α is a simple multisegment then we can verify:

1. The dual of α is also simple.

2. nα̃ = Lα.

3. cα = 1.

4. Sα = nα +nα̃− cα = nα +Lα−1.
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Proof. Given a simple multisegment

α = {[b, . . . ,e], [b+1, . . . ,e+1], . . . , [b+n−1, . . . ,e+n−1]},

then its dual will be

α̃ = {[b, . . . ,b+n−1], [b+1, . . . ,b+n], . . . , [e, . . . ,e+n−1]}.

1. Simply studying the form of α̃ shows us that it is also simple.

2. The length of every segment in α is Lα = e−b+1, and the number of segments in the dual is

nα̃ = e−b−1, thus Lα = nα̃.

3. ∪∆∈α∆ = [b,e+n−1], therefore cα = 1.

4. Sα = (e+n−1)−b+1 = (e−b+1)+n−1 = Lα +nα−1 = nα̃ +nα− cα.

Lemma 4.2.8. If α is simple, α≤ β and Lα = Lβ, then α = β.

Proof. Firstly, the length of every segment in α is given by Lα. If we perform either the union in-

tersection or conjunction to form β then it will increase the length of a segment, which will result

in increase the length of the longest segment. This would contradict the fact that Lα = Lβ. Conse-

quently, the only way to ensure Lα = Lβ is to not perform union intersection or conjunction, hence

leave α unchanged so α = β.

Theorem 4.2.9. Let α be a simple multisegment. If β is a multisegment such that α≤ β and α̃≤ β̃,

then α = β.

Proof. Firstly, α is simple so by Proposition 4.2.7 ii) Lα = nα̃, and hence by Lemma 4.2.3 Lα = Lβ.

Therefore Lemma 4.2.8 states that α = β.

Therefore we have proved that the partial ordering relation will be satisfied for all simple multi-

segments.

Remark 4.2.10. The same will not be true for the case in which β is simple. In other words, if β is

a simple multisegment then for any α such that α≤ β and α̃≤ β̃ then it will not necessarily be true

that α = β. This will be illustrated in the example which follows.
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Example 4.2.11. Let us consider the multisegments

α = {[0,1][1], [2], [2,3]} and β = {[0,1], [1,2], [2,3]} .

The associated dual multisegments to α and β are

α̃ = {[0][1,2], [1,3]} and β̃ = {[0,2], [1,3]} .

Therefore, we have the conditions that α and β are multisegments such that β is simple, α ≤ β and

α̃≤ β̃, but α 6= β.

4.2.1 Ladder Multisegments

We will now study broader family of multisegments for which there exists a natural ordering

between each of the segments.

Definition 4.2.12 ([12]). We say that a multisegment α is a ladder if it has the form:

α = {∆1, . . . ,∆nα
},

where if we write ∆i = [bi,ei] then for each i < j we must have bi < b j and ei < e j.

We saw an example of a ladder multisegment in Example 3.1.5. Also note that any simple

multisegment will be a ladder multisegment, so we have seen an additional example of a ladder

multisegment in Example 3.1.4.

Following on from Section 3.1 in which we defined the Mœglin-Waldspurger algorithm and the

segment generated by an iteration of the algorithm by ∆′, then let us now specify that ∆′(α) will be

the segment generated by the first iteration of the Mœglin-Waldspurger algorithm. Also let us denote

α−∆′(α) to be the multisegment produced by the algorithm following the removal of the elements

chosen for ∆′(α), this will also be the multisegment in which the next iteration of the algorithm is

carried out on. Thus the dual multisegment will be recursively generated by

α̃ = {∆′(α), ˜α−∆′(α)}.
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Proposition 4.2.13. If α is a ladder multisegment then we can verify:

1. α−∆′(α) is a ladder multisegment.

2. α̃ is a ladder multisegment.

3. Let x+1 be an element chosen from ∆m+1 by the Mœglin-Waldspurger algorithm, then if x is

in ∆m it will be chosen to be in the same segment of the dual, otherwise, x+1 is the minimum

value of the segment in the dual.

4. Let x−1 be an element chosen from ∆m by the Mœglin-Waldspurger algorithm, then if x is in

∆m+1 it will be chosen to be in the same segment of the dual, otherwise, x−1 is the maximum

value of the segment in the dual.

5. The irreducible decomposition of a ladder multisegment is unique and has exactly Cα = cα

components.

Proof. 1. The maximum value in α is enα
. The Mœglin-Waldspurger algorithm is such that it

will choose the longest segment (ek, . . . ,enα
) such that ei+1 = ei + 1 for k ≤ i ≤ nα− 1 and

ei < ei+1 for 1 ≤ i ≤ k−1. Thus we only need to check α−∆′(α) satisfies the requirements

for a ladder multisegment for k− 1 ≤ i. Notice that for any j and each i < j, bi < b j by the

initial requirements. This will trivially remain satisfied since either bi = ei and ei is chosen by

the algorithm at which point the segment is completely removed so won’t need to conform to

the requirements; otherwise bi will remain unchanged and continue to satisfy the inequality.

For 1≤ i≤ k−1 the ei’s will remain unchanged so continue to satisfy ei < ei+1. Further, since

ei < ei+1 = ei+1 for k≤ i≤ nα−1, and both ei, ei+1 are reduced by one then ei−1 < ei+1−1

will remain. Finally, ek−1 will remain the same but ek will be reduced by one, however

by the construction and the Mœglin-Waldspurger algorithm ek−1 < ek and ek−1 + 1 6= ek so

ek−1 + 1 < ek,ek−1 < ek − 1 which shows the requirement remains satisfied following the

iteration. Therefore for each i < j, bi < b j and ei < e j for α−∆′(α), so α−∆′(α) is ladder

multisegment.

2. At each iteration of the Mœglin-Waldspurger algorithm on the ladder multisegment the maxi-

mum value of α will be chosen to end the new segment. By construction of a ladder multiseg-

ment, the multiplicity of this maximum value in the multisegment is one, therefore during any
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subsequent iteration following its removal the end value must be less than it. Also 1. states

that following each iteration a ladder multisegment will be retrieved, so the end value of an

iteration is always greater than the end value of the following iteration.

Similarly, if [ek,emα
] was constructed at one iteration of the algorithm then at the following

iteration we have two cases:

(a) The case in which ∆k+1, . . . ,∆mα
were all originally singletons, hence the end value of

the segment generated will be less than the base value ek chosen during the previous

iteration.

(b) Otherwise, let ∆i denote the highest segment which was not originally a singleton in α

then k + 1 ≤ i ≤ mα, then ei− 1 will be chosen to end the new segment. By Propo-

sition 3.1.9, the segments chosen at each iterative stage must be of increasing length,

hence all of the segments ∆k, . . .∆i will still be present with end values one less than at

the previous stage. Thus a segment can be constructed containing ek− 1, . . . ,ei− 1, so

the base value of the new segment will be less than ek− 1 and in turn be less than the

base value of the segment generated in the previous iteration.

Therefore at each iteration both the base and end values will be less than those chosen in the

previous iteration, so a ladder multisegment will be constructed.

3. Let x+1 be an element chosen from ∆m+1 by the Mœglin-Waldspurger algorithm. Note that

∆m+1 only precedes the segments ∆k for k ≤ m, since bk < bm+1 only if k ≤ m. By (1),

α−∆′(α) is also a ladder multisegment and the Mœglin-Waldspurger algorithm preserves the

ordering of the ladder multisegment. Since x+ 1 is chosen from ∆m+1 then for this iteration

em+1 = x+1 and em < em+1 = x+1. Therefore em ≤ x so let us consider the two cases:

(a) If em = x then it must be chosen to be in the same segment, since ek < em = x for all

k < m.

(b) If em < x then x+1 is the minimum value of the segment in the dual, since ek < em < x

for all k < m and ∆k only precedes ∆m+1 for k ≤ m.

4. Let x− 1 be an element chosen from ∆m by the Mœglin-Waldspurger algorithm. Note that

∆m can only be preceded by segments ∆k for k ≥ m+1, since bm < bk only if k ≥ m+1. By
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(1), α−∆′(α) is also a ladder multisegment and the Mœglin-Waldspurger algorithm preserves

the ordering of the ladder multisegment. Since x−1 is chosen from ∆m then for this iteration

em = x− 1 and x− 1 = em < em+1 < e j for j > m+ 1. Therefore when em = x− 1 then the

only possibility in which x− 1 is not the maximum value of a segment is when em+1 = x,

hence x is contained in ∆m+1. Since the Mœglin-Waldspurger chooses the maximum values of

segments in descending order then x−1 can only be chosen to start a segment if the algorithm

has already chosen every x. Therefore either x ∈ ∆m+1 so for some iteration em+1 = x and

hence x−1 ∈ ∆m will be chosen to be in the same segment, otherwise, x 6∈ ∆m+1 so x−1 ∈ ∆m

will be chosen to be the maximum value of a segment.

5. Firstly cα is the minimum number of segments which form ∪∆∈α∆, thus for each connected

segment let us denote it by ∆i. Then let us define αi to be the sub-multisegments that consist

of all the segments ∆ in α such that the union of these ∆’s form ∆i. By construction there will

be cα number of αi’s and every segment must be contained in exactly one αi, so α =
⊔

i αi.

Given two distinct components α j and αk, where ∪∆∈α j ∆ = [b j,e j] and ∪∆∈αk ∆ = [bk,ek].

Then without loss of generality let α j and αk be such that e j < bk. Also note that [b j,e j]∩

[bk,ek] = /0 so e j < bk +1, otherwise, ∪∆∈α jtαk ∆ would form a single segment and cα would

not be the smallest value. Now since e j < bk +1, then for any segments ∆ j in α j and ∆k in αk,

∆k will not precede ∆ j, so there will be no interaction between different components in the

Mœglin-Waldspurger algorithm. Thus α̃ =
⊔

i α̃i, since the Mœglin-Waldspurger algorithm

will only have to consider preceding elements inside of the individual components.

Let us assume that cα < Cα. Note that we have already shown that there is no interaction

between blocks, so the only possibility is that we can break one of the components αi into

more components αi1 and αi2 and α̃i = α̃i1 t α̃i2 . Note that αi is a ladder multisegment,

so αi =
{

∆1, . . . ,∆nαi

}
. By construction for some m = [1, . . . ,nαi − 1], there will be ∆m =

[bm,em] ∈ αi1 and ∆m+1 = [bm+1,em+1] ∈ αi2 . Recall that bm < bm+1, em < em+1 and since

∪∆∈αi∆ forms a single segment then bm+1 ≤ em + 1, therefore ∆m will precede ∆m+1. Also

note that em +1 is an element in ∆m+1 because em < em+1, therefore by (3) when the Mœglin-

Waldspurger algorithm selects em+1 from ∆m+1 then em will be selected from ∆m to be in the

same segment of the dual. Instead, let us consider α̃i1 and α̃i2 . Note ∆m+1 will only precede
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∆k for k ≤ m. However, ek < em for k < m thus em + 1 will be the minimum value of the

segment in the dual of αi2 by (3). Similarly, note that bm+1− 1 is an element in ∆m because

bm < bm+1, therefore by (4) when the Mœglin-Waldspurger algorithm selects bm+1− 1 from

∆m then bm+1 will be selected from ∆m+1 to be in the same segment of the dual. Instead, let

us consider α̃i1 and α̃i2 . Note ∆m is only preceded by ∆k for k ≥ m+1. However, bk > bm+1

for k > m+1 thus bm+1−1 will be the maximum value of the segment in the dual of αi1 by

(4). Therefore α̃i 6= α̃i1 t α̃i2 , hence we have a contradiction so Cα = cα.

Lemma 4.2.14. If nα̃+nα = Sα+Cα, α≤ β and α̃≤ β̃ then nα̃ = n
β̃
, nα = nβ and n

β̃
+nβ = Sβ+Cβ.

Proof. Using Lemma 4.2.2 iii) we know that nα ≥ nβ and n
β̃
≥ Sβ−nβ+Cβ by Lemma 4.2.5. Now

using the assumed conditions, we find

nα̃ ≥ n
β̃
≥ Sβ−nβ +Cβ ≥ Sα−nα +Cα = nα̃.

Therefore we find nα̃ = n
β̃

and n
β̃
= Sβ− nβ +Cβ, hence n

β̃
+ nβ = Sβ +Cβ. Finally, Sα− nα +

Cα = Sβ − nβ +Cβ which implies nα = nβ since Sα = Sβ and Cα = Cβ by Lemma 4.2.2 i) and

Proposition 4.2.13 v).

Lemma 4.2.15. If α and β are ladder multisegments such that α≤ β and nα = nβ, then α = β.

Proof. Recall that in order to obtain β we perform elementary operations on two segments ∆1 and ∆2.

When we perform these operations then we choose one of the three: union intersection, conjunction

or leave α unchanged. Notice that conjunction will only replace the two segments with one whereas

the other two will keep two segments. Thus we cannot perform conjunction since we have assumed

nα = nβ.

If we instead perform union intersection and let ∆3 = ∆1 ∩ ∆2 and ∆4 = ∆1 ∪ ∆2. However

∆3 ⊂ ∆4, therefore a single operation of union intersection will not form a β such that it is a ladder

multisegment. It could however be the case that multiple union intersections can be performed to

form such a β. To do this let us take another union intersection but this time it must involve ∆3, since

we need to break the condition ∆3 ⊂ ∆4. So let us perform union intersection on ∆3 and another

segment ∆5 contained in α, then ∆′3 = ∆3∩∆5 and ∆′4 = ∆3∪∆5. However, once again we find that

∆′3 ⊂ ∆3 ⊂ ∆4, which again forms a multisegment which is not a ladder multisegment. Therefore by
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recursion, no matter how many iterations of union intersection are performed it will not be possible

to recover the ladder multisegment property for β. So neither union intersection or conjunction can

be performed on α, hence α = β.

Lemma 4.2.16. Suppose α is a multisegment and that x ∈ ∆′(α) and that the occurrence of x in

∆′(α) is selected from a singleton of α, then for all y ∈ ∆′(α) such that y≥ x we have that y is also

selected from a singleton of α.

Proof. This follows from Proposition 3.1.9, since preceding segments must be chosen in increasing

length and if x is chosen from a singleton ∆x then for each y≥ x the segments ∆y chosen prior must

also be singletons.

Lemma 4.2.17. Suppose α is a multisegment such that

x ∈

(⋃
∆∈α

∆

)∖ ⋃
∆∈α−∆′(α)

∆

 ,

then for y≥ x+1 we have that y is selected from a singleton.

Proof. Let ∆ be the segment in α from which we select x+1, then x 6∈ ∆ or otherwise

x 6∈

(⋃
∆∈α

∆

)∖ ⋃
∆∈α−∆′(α)

∆

 .

So it follows that ∆ is a singleton and by Lemma 4.2.16 each y≥ x+1 is a singleton.

Lemma 4.2.18. Let α be an irreducible multisegment then

Sα−Sα−∆′(α) ≤min
{

nα−nα−∆′(α)+ cα−∆′(α),nα−nα−∆′(α)+1
}
,

with equality if none of the deleted segments are contained in other segments.

Proof. The value Sα−Sα−∆′(α) counts the number of distinct elements x where

x ∈

(⋃
∆∈α

∆

)∖ ⋃
∆∈α−∆′(α)

∆

 ,

that is, it counts the number of elements which are completely removed following a single iteration.
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Lemma 4.2.17 states that all but the smallest of these comes from deleting singletons from α,

this contributes nα−nα−∆′(α)+1 to the formula. However if cα−∆′(α) = 0 then in fact they all came

from singletons. Therefore strict inequality holds if any deleted segments are contained in another

segment and equality if none are.

Lemma 4.2.19. If α is an irreducible ladder multisegment then

nα̃ +nα = Sα + cα.

Proof. We will proceed by induction on Sα, the result is trivial when Sα = 0, so we assume that

Sα > 0 and hence Cα = cα = 1. The first step of the Mœglin-Waldspurger algorithm is to construct

a segment ∆′(α) that ends at eα. We then apply the algorithm recursively to the multisegment

α−∆′(α). It is important to note that the multisegment α−∆′(α) will also be a ladder multisegment

and following Lemma 4.2.18

Sα−Sα−∆′(α) = min
{

nα−nα−∆′(α)+ cα−∆′(α),nα−nα−∆′(α)+1
}
,

since it is irreducible and further it is a ladder multisegment so cα−∆′(α) ≤ 1. Therefore,

Sα−Sα−∆′(α) = nα−nα−∆′(α)+ cα−∆′(α),

and by the inductive hypothesis

n ˜α−∆′(α)
+nα−∆′(α) =Sα−∆′(α)+ cα−∆′(α),

=(Sα−nα +nα−∆′(α)− cα−∆′(α))+ cα−∆′(α),

=Sα− (nα−nα−∆′(α)).

Therefore Sα = nα+n ˜α−∆′(α)
. Given that n ˜α−∆′(α)

= nα̃−1= nα̃−cα, we combine the two equations

to find that nα̃ +nα = Sα + cα as required.

Corollary 4.2.20. For an arbitrary ladder multisegment α, we have nα̃ +nα = Sα + cα.

81



4.2. COMBINATORICS OF NUMERICAL INVARIANTS

Lemma 4.2.21. If α is any multisegment and

nα̃ +nα = Sα + cα,

then α is a ladder multisegment.

Proof. We shall prove the contrapositive of the statement, that is, if α is not a ladder multisegment

then

nα̃ +nα > Sα + cα.

We shall again proceed by induction on the total numbers of points x in α. If Cα > 1 then we

decompose it into irreducible components and consider

nα̃ +nα = ∑
i

nα̃i
+nαi ≥∑

i
(Sαi +Cαi)≥ Sα +Cα.

Then either:

1. At least one irreducible component is not a ladder multisegment, in which case we obtain the

result immediately by induction as the first inequality will be strict.

2. At least two of the irreducible components overlap in which case

Cα

∑
i=1

Sαi > Sα,

so the second inequality will be strict.

Therefore we are thus reduced to the case Cα = 1 which implies cα = 1.

First, recall that Lemma 4.2.18 states for an irreducible multisegment

Sα−Sα−∆′(α) ≤min
{

nα−nα−∆′(α)+ cα−∆′(α),nα−nα−∆′(α)+1
}
,

however since α is not a ladder multisegment, Cα−∆′(α) > 0 then

Sα−Sα−∆′(α) ≤ nα−nα−∆′(α)+1.
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Suppose that α−∆′(α) is not a ladder multisegment, then we apply the inductive hypothesis to

α−∆′(α) which is smaller than α,

n ˜α−∆′(α)
+nα−∆′(α) > Sα−∆′(α)+Cα−∆′(α) ≥ Sα−1− (nα−nα−∆′(α))+Cα−∆′(α),

so

n ˜α−∆′(α)
+nα +1 > Sα +Cα−∆′(α).

Further nα̃ = n ˜α−∆′(α)
+1, so we find nα̃ +nα > Sα +Cα−∆′(α), as required.

Instead let us consider α−∆′(α) is a ladder multisegment, and let us show that the following

inequality is strict

Sα−Sα−∆′(α) ≤ nα−nα−∆′(α)+1.

Since α is not a ladder multisegment then we have ∆1 = [b1,e1] and ∆2 = [b2,e2] in which at least

one of the following cases occurs:

1. b1 > b2 and e1 < e2:

(a) b1 = e1,

(b) b1 6= e1.

2. e1 = e2:

(a) b1 = e1,

(b) b2 = e2,

(c) b1 6= e1 and b2 6= e2.

3. b1 = b2 and e1 6= e2:

(a) b1 = e1,

(b) b2 = e2,

(c) b1 6= e1 and b2 6= e2.

For α−∆′(α) to be a ladder multisegment, it must have selected either e1 or e2 from one of the

segments. Thus we can consider each case separately:

1. If e2 becomes smaller and e1 does not then the result will not be a ladder multisegment, so let

us assume e1 is selected

(a) If we select ∆1 in the algorithm we delete the segment, however the segment ∆2 contains

e1, so Sα−∆′(α) does not decrease and hence by Lemma 4.2.18 the inequality will be

strict.

(b) Even though e′1 < e1 we will remain in case 1) thus the result will not be a ladder multi-

segment.
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2. In this case the algorithm either selects ∆1 or ∆2, but not both:

(a) If we select ∆1, then we delete ∆1. Since e1 ∈ ∆2 = ∆′2 so by Lemma 4.2.18 Sα−∆′(α) will

not decrease so the inequality will be strict. Instead, if we select ∆2 then it is because ∆2

is preceded by a ∆3 which does not precede ∆1. However ∆1 ⊆ ∆′3 hence the resulting

multisegment will not be a ladder multisegment.

(b) Identical to (a) by symmetry.

(c) If b1 = b2 then regardless of whether ∆1 or ∆2 is chosen the resulting α−∆′(α) will not

be a ladder multisegment. Without loss of generality, suppose b1 ≤ b2. If ∆2 is selected

then ∆′2 ⊆ ∆′1 = ∆1 which is not a ladder multisegment. Otherwise, ∆1 will be selected,

however that is only the case if ∆3 is selected and precedes ∆1 but not ∆2. However,

∆2 = ∆′2 ⊆ ∆′3, hence α−∆′(α) will not be a ladder multisegment.

3. b1 = b2 and e1 6= e2:

(a) By symmetry we may assume e2 > e1. If we select ∆1 then we delete ∆1, however since

e1 ∈ ∆2 this will not decrease Sα so again by Lemma 4.2.18 the inequality will be strict.

Instead if we select ∆2 and not ∆1, then we will still have ∆′1 = ∆1 ⊆ ∆′2. Hence it will

not be a ladder multisegment.

(b) Identical to (a) by symmetry.

(c) As b1 < e1 and b2 < e2, then by any modification to ∆1 and ∆2 we will still have b1 =

b2 = b′1 = b′2. Therefore it will not be a ladder multisegment.

Therefore

Sα−Sα−∆′(α) < nα−nα−∆′(α)+1,

and since α−∆′(α) is ladder multisegment then by Corollary 4.2.20 we have

n ˜α−∆′(α)
+nα−∆′(α) = Sα−∆′(α)+Cα−∆′(α),

84



4.2. COMBINATORICS OF NUMERICAL INVARIANTS

and hence

nα̃ +nα = nα +n ˜α−∆′(α)
+nα−∆′(α)−nα−∆′(α)+1,

> Sα−Sα−∆′(α)+n ˜α−∆′(α)
+nα−∆′(α),

= Sα−Sα−∆′(α)+Sα−∆′(α)+Cα−∆′(α),

= Sα +Cα−∆′(α).

However, α is not a ladder multisegment so Cα−∆′(α) ≥ 1 which implies

nα̃ +nα > Sα + cα.

Corollary 4.2.22. For an arbitrary multisegment α which is not a ladder multisegment, we have

nα̃ +nα > Sα +Cα ≥ Sα + cα,

and hence a multisegment α is a ladder multisegment if and only if

nα̃ +nα = Sα +Cα = Sα + cα.

Proof. For a multisegment which is not a ladder multisegment either:

1. At least one irreducible component is not a ladder multisegment, in which case following the

proof of Lemma 4.2.21 we obtain the inequality.

2. Two of the ladder multisegments overlap in which case

Cα

∑
i=1

(Sαi +1)> Sα + cα.

Theorem 4.2.23. Let α be a ladder multisegment. If β is a multisegment such that α≤ β and α̃≤ β̃,

then α = β.

Proof. Since α is a ladder multisegment then nα̃ + nα = Sα +Cα by Corollary 4.2.22. Using

Lemma 4.2.14, n
β̃
+nβ = Sβ+Cβ and nα = nβ, thus β is a ladder multisegment by Corollary 4.2.22.

Therefore we have satisfied all hypothesis of Lemma 4.2.15 so α = β.
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Remark 4.2.24. At each iterative step of the Mœglin-Waldspurger algorithm the set of preceding

segments which are chosen form an irreducible ladder multisegment. This follows from Proposi-

tion 3.1.9 and the properties discussed throughout this subsection must therefore be satisfied for

each iteration.

4.2.2 Arthur Type

We will now present the proof that another family of multisegments satisfy the partial ordering

relation on multisegments and relate this to a significant conjecture in the local Langlands corre-

spondence that

ABV-packets for orbits of Arthur type in GLn are singletons.

To do this we must first introduce this notion of Arthur type. A Langlands parameter of Arthur

type is a Langlands parameter phi such that φ = φψ (See Definition 2.1.6) as defined in the book

[5, Section 3.6]. One property that this enforces is that the corresponding multisegments must

have the property of being symmetric along the zero element i, where λi corresponds to the q0-

eigenspace. That is, if we relabel each element in the multisegment α to be such that i→ 0, i−1→

−1, i+ 1→ 1, . . . ; then the segment ∆ = [b,e] ∈ α if and only if the segment −∆ = [−e,−b] ∈ α.

A key consequence of this restriction is that we are now only considering symmetric irreducible

multisegments, so when Sα is odd then the description is trivial since 0 will be a central value.

Alternatively when Sα is even, we have to slightly modify the description to be such that the two

labelings each side of the symmetry will be−1
2 and 1

2 , and any subsequent values will then differ by

1 as they get further away from the centre. Note this description preserves the structure of their being

1 between each of the labelings of the eigenvectors, and hence preserves the previously discussed

properties. Further, we defined the maximum value of our multisegment to be eα so it will always

be true that Sα = 2eα +1.

Example 4.2.25. Given the multisegment

α = {[−2,−1], [−1,1], [0,0], [1,2]} ,

then α satisfies the conditions to be symmetric.
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Alternatively, let us consider the multisegment

β = {[−3,−2], [−2,2], [0,1], [2,3]} ,

then β is not symmetric, since ∆ = [0,1] ∈ β but −∆ = [−1,0] 6∈ β.

The previous propositions and lemmas relating to the numerical invariants will remain satisfied

for these specific families of symmetric multisegments. We will now extend our study of numerical

invariants of multisegments to the family of symmetric multisegments.

One may expect that given a Langlands parameter with a corresponding symmetric multisegment

α then the partial ordering relation will always be satisfied, however in the next example we will see

that this will not always be the case. In fact, even with an additional restriction that the multisegment

β must also be symmetric, then once again the following example will prove as a counter example

for the partial ordering relation.

Example 4.2.26. Let us consider the multisegments

α = {[−1][−1,0], [0,1], [1]} and β = {[−1], [0], [1], [−1,1]} .

Then by studying their rank triangles (below) we can see that α≤ β.

2 2 2

1 1

0

2 2 2

1 1

1

Both α and β are self dual hence

α̃ = {[−1][−1,0], [0,1], [1]} and β̃ = {[−1], [0], [1], [−1,1]} .

Therefore we have the conditions that α ≤ β and α̃ ≤ β̃. Thus α and β are both symmetric and do

not satisfy the partial ordering relation.

The restriction to only studying those Langlands parameters of Arthur type imposes a further

condition on the multisegment α that α must be formed from the union of simple symmetric multi-
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segments as discussed in [4, Remark 1.1].

Proposition 4.2.27. Let α be any multisegment which is formed by taking the union of m simple

symmetric multisegments α1, . . .αm. Then

α̃ = α̃1t·· ·t α̃m.

Proof. Let us assume that α1, . . .αm are simple symmetric multisegments, and α = α1 t ·· · tαm.

Then for all 1≤ i≤ m the multisegments have the following forms

αi = {[−ei,−bi], [−ei +1,−bi +1], . . . , [bi−1,ei−1], [bi,ei]} .

Without loss of generality, we can assume α1 contains the shortest segment containing the max-

imum value e and this segment is chosen first by Mœglin-Waldspurger algorithm, that is, e1 from

[b1,e1] in α1 is chosen first. Thus e1 is the maximum value in the multisegment α. By the natural

ordering of simple multisegments, the shortest possible preceding segments of [b1,e1] ending in n

will also be contained in α1 for −b1 ≤ n ≤ e1, and hence will be chosen by the algorithm from α.

Note −b1 will be chosen from the segment [−e1,−b1], and since e1 is the maximum value of the

multisegment then by symmetry−e1 is the minimum value, thus there cannot exist a segment which

precedes [−e1,b1].

If each of the chosen segments were singletons, then α1 is completely removed during that

iteration, and hence a simple symmetric remains. Otherwise, Theorem 3.1.8 states that both the

Mœglin-Waldspurger and Alternate Mœglin-Waldspurger algorithms will compute the same duals.

So let us now use the Alternate Mœglin-Waldspurger algorithm to compute the next iteration on α−

∆′(α). Firstly,−e1 will be the minimum value of the multisegment α due to symmetry and since it is

not removed from the segment [−e1,−b1] during the first iteration, then it will still be the minimum

value of α−∆′(α). Also [−e1,−b1− 1] will be the shortest segment in α−∆′(α) containing −e1,

since by symmetry [−e1,−b1] was the shortest segment containing −e1 in α, and following the first

iteration each segment either remains the same length or gets shorter by one. By the natural ordering

of simple multisegments, the shortest possible proceeding segments of [−e1,−b1] with base value

n will also be contained in α1 for −e1 ≤ n ≤ b1, and hence will be chosen by the algorithm from
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α. Note b1 will be chosen from the segment [b1,e1 − 1], and since the maximum value of the

multisegment α−∆′(α) is less than or equal to e1. Then the only possible case for a preceding

segment is if there exists 2≤ i≤ m such that ei = e1, however by the first iteration of the algorithm

bi ≤ b1, since [b1,e1] must be either the same length or shorter than [bi,ei] when ei = e1. Hence there

will be no preceding segment since bi ≤ b1.

Therefore the first two iterations of these Mœglin-Waldspurger algorithms construct the seg-

ments [−b1,e1] and [−e1,b1]. Notice that these iterations work exclusively on the segments of α1,

and hence construct the two segments are both contained in α̃1, whilst leaving α2, . . . ,αm unchanged.

Also the construction of these two segments will remove the highest and lowest values from each

segment of α1 during the first and second iterations respectively. Note if during the first iteration

all singletons are chosen then we can just ignore the second iteration. Let us denote α′′ to be the

multisegment remaining from α following these two iterations, then

α
′′ = {[−e1 +1,−b1−1], [−e1 +2,−b1], . . . , [b1,e1−2], [b1 +1,e1−1]}tα2t·· ·tαm,

so let us denote the multisegment

α
′′
1 = {[−e1 +1,−b1−1], [−e1 +2,−b1], . . . , [b1,e1−2], [b1 +1,e1−1]} .

Thus α′′1 will be a simple multisegment, and naturally it also satisfies the symmetric property.

Thus the remaining multisegment α′′ = α′′1 tα2t ·· · tαm, where α′′1,α2, . . . ,αm are all simple

symmetric multisegments. So we can invoke a recursive argument, and conclude that at each pair of

iterations will form dual segments exclusively a single simple symmetric multisegment, and that the

remaining multisegment following the iterations will be a union of simple symmetric multisegments.

Further, the duals of the original multisegments α1, . . . ,αm will thus be computed independently,

since for all 1≤ i≤ m

α̃i =
{

∆
′(αi), ˜αi−∆′(αi)

}
=
{

∆
′(αi),∆

′(αi−∆
′(αi)), α̃

′′
i

}
=
{
[−bi,ei], [−ei,bi], α̃

′′
i

}
.

Therefore α̃ = α̃1t·· ·t α̃m.
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Corollary 4.2.28. Let α be any symmetric multisegment which is formed by taking the union of two

simple symmetric multisegments α1 and α2. Then

α̃ = α̃1t α̃2.

To begin our study of the partial ordering relation for Langlands parameters of Arthur type, we

will first study the case in which α is formed by the union of two simple symmetric multisegments.

Proposition 4.2.29. If α is a multisegment formed by the union of two simple symmetric multiseg-

ments α1 and α2, then we can verify:

1. The dual of α will also be formed by the union of two simple symmetric multisegments.

2. nα̃ = Lα1 +Lα2 .

3. Lα̃ = max{nα1 ,nα2}.

4. cα = 1.

5. Sα = max{Sα1 ,Sα2}= max{nα1 +Lα1−1,nα2 +Lα2−1}.

Proof. 1. Corollary 4.2.28 states that α̃= α̃1t α̃2, and by Proposition 4.2.7 both α̃1 and α̃2 will

also be simple. Following the proof of Corollary 4.2.28, both α̃1 and α̃2 will be symmetric.

Thus the dual of α will be formed by the union of two simple symmetric multisegments α̃1

and α̃2.

2. Firstly, α̃ = α̃1t α̃2 by Corollary 4.2.28, thus nα̃ = nα̃1
+nα̃2

. Note α1 and α2 are both simple

thus by Proposition 4.2.7 nα̃1
= Lα1 and nα̃2

= Lα2 , so nα̃ = Lα1 +Lα2 .

3. α̃ = α̃1 t α̃2 by Corollary 4.2.28, therefore the segment of maximum length either results

from α̃1 or α̃2. Hence

Lα̃ = max
{

Lα̃1
,Lα̃2

}
= max{nα1 ,nα2} ,

by Proposition 4.2.7.
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4. Let us assume that e is the maximum value of α then by symmetry −e will be the minimum

value, thus there are three possible cases:

(a) e and −e are only contained in α1.

(b) e and −e are only contained in α2.

(c) e and −e are contained in both α1 and α2.

Since both α1 and α2 are simple then cα1 and cα2 are equal to one by Proposition 4.2.7. Hence

the three cases correspond to:

(a) ∪∆∈α2∆⊆ ∪∆∈α1∆.

(b) ∪∆∈α1∆⊆ ∪∆∈α2∆.

(c) ∪∆∈α2∆ = ∪∆∈α1∆.

Now ∪∆∈α1tα2∆ = ∪∆∈α∆, so the three cases become:

(a) ∪∆∈α1∆ = ∪∆∈α∆.

(b) ∪∆∈α2∆ = ∪∆∈α∆.

(c) ∪∆∈α1∆ = ∪∆∈α2∆ = ∪∆∈α∆.

Hence all three cases will thus result in cα = 1, since cα1 = 1 and cα2 = 1.

5. Following 4) we have three different cases for the maximum and minimum values:

(a) ∪∆∈α2∆⊆ ∪∆∈α1∆, so Sα2 < Sα1 .

(b) ∪∆∈α1∆⊆ ∪∆∈α2∆, so Sα1 < Sα2 .

(c) ∪∆∈α2∆ = ∪∆∈α1∆, so Sα2 = Sα1 .

We also know that this corresponds to:

(a) ∪∆∈α1∆ = ∪∆∈α∆.

(b) ∪∆∈α2∆ = ∪∆∈α∆.

(c) ∪∆∈α1∆ = ∪∆∈α2∆ = ∪∆∈α∆.

Hence,
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(a) Sα1 = Sα.

(b) Sα2 = Sα.

(c) Sα1 = Sα2 = Sα.

Therefore,

Sα = max{Sα1 ,Sα2}= max{nα1 +Lα1−1,nα2 +Lα2−1} ,

by Proposition 4.2.7.

Proposition 4.2.30. Let α be a symmetric multisegment then the dual multisegment α̃ will also be

symmetric.

Proof. Let e be the maximum value of the multisegment α. Then the Mœglin-Waldspurger algo-

rithm will construct a segment ending in e and starting with b≤ e from a list of preceding segments

L = {∆b, . . . ,∆e} .

Following this the remaining multisegment is given by α−∆′(α). By Theorem 3.1.8, we can also

use the alternate Mœglin-Waldspurger algorithm on α, and by symmetry the alternate algorithm

should construct the segment [−e,−b], so let −L denote the list of proceeding segments chosen,

−L = {∆−e, . . . ,∆−b}= {−∆e, . . . ,−∆b} .

If L and−L are distinct then when the alternate algorithm is used on α−∆′(α) it constructs [−e,−b],

and α−∆′(α)−∆′′(α) will thus be symmetric, since the end is removed from each ∆i and the start

is removed from each −∆i.

Alternatively, if L and −L are not distinct, then we can consider two cases. The first is when L

and −L share a singleton ∆. If this is the case then by Lemma 4.2.16 the segments in L after ∆ and

before ∆ in −L must all be singletons. This implies that there exists a string of singletons from −e

to e, which must be given by both −L and L. Thus the segment generated will be symmetric, and

the removal of the segments to create α−∆′(α) will thus result in a symmetric multisegment.
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Instead let us assume that the shared segment ∆ = [b′,e′] is not a singleton. Then by Proposi-

tion 3.1.9, the segments before ∆ in L will have length greater than or equal to ∆ and after ∆ will

have length less than or equal to ∆. Likewise, the segments before ∆ in −L will have length less

than or equal to ∆ and after ∆ will have length greater than or equal to ∆. Thus the segments before

∆ in L must have the same length as ∆, otherwise we would have a contradiction since there exists a

string of segments given in−L have length less than or equal to ∆ and satisfy the preceding property.

In addition this also implies that the segments after ∆ in −L must have the same length as ∆. This

implies that there exists a string of minimal length preceding segments, which must be given by

both −L and L. Following an iteration of the Mœglin-Waldspurger algorithm followed by another

of the alternate Mœglin-Waldspurger algorithm, we therefore have computed the two segments [b,e]

and [−e,−b] which are symmetric, and the remaining multisegment α−∆′(α)−∆′′(α) will also be

symmetric.

Therefore, given any symmetric multisegment then following either one or two iterations of the

algorithm ∆′(α) and −∆′(α) will be added to the dual, and the remaining multisegment will also be

symmetric. Thus by a recursive argument the dual of α will be symmetric.

We can extend this study further by studying any multisegment which is formed by the union of

m simple symmetric multisegments for m≥ 2. Unsurprisingly the results for the higher dimensional

simply follow from our study of the case when m = 2.

Proposition 4.2.31. If α be any multisegment which is formed by taking the union of m simple

symmetric multisegments α1, . . .αm, then we can verify:

1. The dual of α will also be formed by taking the union of m simple symmetric multisegments.

2. nα̃ = Lα1 + · · ·+Lαm .

3. Lα̃ = max{nα1 , . . . ,nαm}.

4. cα = 1.

5. Sα = max{Sα1 , . . . ,Sαm}= max{nα1 +Lα1−1, . . . ,nαm +Lαm−1}.
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Proof. 1. Proposition 4.2.27 states that α̃ = α̃1t·· ·t α̃2, and by Proposition 4.2.7, α̃1, . . . , α̃m

will also be simple. Following the proof of Proposition 4.2.27, α̃1, . . . , α̃m will all be sym-

metric. Thus the dual of α will be formed by the union of m simple symmetric multisegments.

2. Firstly, α̃ = α̃1t ·· · t α̃m by Proposition 4.2.27, thus nα̃ = nα̃1
+ · · ·+nα̃m

. Note α1, . . . ,αm

are all simple thus by Proposition 4.2.7 nα̃1
= Lα1 , . . . ,nα̃m

= Lαm , so nα̃ = Lα1 + · · ·+Lαm .

3. α̃ = α̃1 t ·· · t α̃m by Proposition 4.2.27, therefore the segment of maximum length either

results from one of α̃1, . . . , α̃m. Hence

Lα̃ = max
{

Lα̃1
, . . . ,Lα̃m

}
= max{nα1 , . . . ,nαm} ,

by Proposition 4.2.7.

4. Let us assume that e is the maximum value of α then by symmetry −e will be the minimum

value, and hence both−e and e must be contained inside at least one αi. So let us assume that

−e and e are contained inside α j, then

∪∆∈α j ∆ = (−e,−e+1, . . . ,e−1,e)⊆ ∪∆∈α∆,

since α j is simple. We also know that by assumption−e and e are the minimum and maximum

values respectively contained inside of α, which implies that (−e,−e+1, . . . ,e−1,e) is thus

the maximal subset of ∪∆∈α∆. Therefore

∪∆∈α j ∆ = (−e,−e+1, . . . ,e−1,e) = ∪∆∈α∆,

so cα = 1 since cα j = 1 by Proposition 4.2.7.

5. We already know that there exists a maximum value of α e and−e will be the minimum value,

by Proposition 4.2.7 each cαi = 1, 4) states cα = 1. Thus following 4) there exists at least one

α j containing both −e, e and it is such that

∪∆∈α j ∆ = (−e,−e+1, . . . ,e−1,e) = ∪∆∈α∆.
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Therefore, Sα = Sα j for all such j. Recall that each

∪∆∈αi∆⊆ ∪∆∈α∆,

thus Sαi ≤ Sα for all 1≤ i≤ m. Therefore,

Sα = max{Sα1 , . . . ,Sαm}= max{nα1 +Lα1−1, . . . ,nαm +Lαm−1} ,

by Proposition 4.2.7.

We will now present a couple of lemmas involving the Mœglin-Waldspurger algorithm and

symmetric simple sub-multisegments which will then be used in the proof that the partial ordering

relation is satisfied for all Langlands parameters of Arthur type.

Lemma 4.2.32. Let α be an arbitrary multisegment containing a sub-multisegment α1 of the form

α1 = {[−e,b], [−e+1,b+1], . . . , [−b−1,e−1], [−b,e]} .

If α1 contains both of the shortest segments containing the minimum and maximum values, −e and

e, of the multisegment α then it will not be possible to generate [b,e] or a segment containing b, . . . ,e

from any sub-multisegment other than α1.

Proof. Firstly, by Remark 4.2.24 when generating a segment for the dual we generate a sub-

multisegment γ which forms an irreducible ladder multisegment. Thus γ must be such that it satisfies

nγ +nγ̃− cγ = Sγ,

by Lemma 4.2.19. Now Sγ ≤ Sα = 2e+1, since γ is a sub-multisegment of α. Also γ is irreducible

so cγ = 1, and the segment created contains b, . . . ,e so nγ ≥ e− b+ 1. By assumption, e is the

maximum value and the shortest segment ending in e has length e− (−b)+1 since α is both simple

and symmetric, so Lγ ≥ e+ b+ 1 by Proposition 3.1.9 which implies nγ̃ ≥ Lγ ≥ e+ b+ 1 from

Lemma 4.2.2. Using these values then we find that

Sγ = nγ +nγ̃− cγ ≥ (e−b+1)+(e+b+1)−1 = 2e+1.
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Therefore Sγ = 2e+ 1, and nγ,nγ̃,Lγ must all be minimal. Therefore by Proposition 3.1.9, every

segment in γ must be of the minimal length e+b+1, and there must exist e−b+1 segments covering

the values from [−e,e], so the only possible formation for γ is the sub-multisegment α1.

Lemma 4.2.33. Let α be an arbitrary multisegment containing a sub-multisegment α1 of the form

α1 = {[−e,b], [−e+1,b+1], . . . , [−b−1,e−1], [−b,e]}=
{

∆
b,∆b+1, . . . ,∆e−1,∆e

}
.

If α1 contains both of the shortest segments containing the minimum and maximum values, −e and

e, of the multisegment α then removing copies of α1 will induce an endoscopic decomposition, that

is,

α = α1t (α−α1) and α̃ = α̃1t ˜(α−α1).

Proof. Firstly, it follows directly that α will be equal to the union of α1 and (α−α1). So what re-

mains is to show that the union of α̃1 and ˜(α−α1) will be equal to α̃ when the Mœglin-Waldspurger

algorithm is used. To show this we can use Corollary 3.2.12 which allows us to use the initial fixed

set of preceding relations when carrying out the algorithm. The first segment constructed by the

Mœglin-Waldspurger is [b,e] using all of the ends values of the segments contained in α1. Note for

any subsequent segment that ends in e constructed by the algorithm, the segments chosen cannot be

from α1 by Proposition 3.1.12. Thus any segment which is constructed and ending in e must be

constructed from the original segments.

If we now study the remaining integers in the segment [−b,e], then for all −b ≤ i ≤ e− 1 we

know that i must end segments in the dual since there are no segments in α which initially precede

[−b,e]. Let us assume that we have the first iteration for which an integer j originally contained in

the segment ∆k from α1 for some b≤ k≤ e−1 such that j is chosen in a prior iteration to j+1 from

∆k+1. Without loss of generality let us assume this happens when constructing segments with end

value i = l then the segment ∆k has already been chosen in e− l iterations prior to this before being

chosen as ∆ j by the algorithm. Note e− l iterations is the maximum possible number of iterations

than any segment can have been chosen in prior to this current iteration by Proposition 3.1.12. Now

in order for ∆ j+1 to end in j+1 at this current iteration and initially precede then it must also have

been chosen in exactly e− l iterations prior to this. Similarly it follows that all segments chosen
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before ∆ j during this current iteration

∆ j+1, . . . ,∆i,

must also have been chosen in exactly e− l previous iterations. This results in the original segment

∆ corresponding to ∆i ending, and the base value of ∆ must be equal to the base value of ∆e, since it

is chosen before the segment corresponding to ∆e (which now also ends in i) and ∆e was initially the

shortest segment containing e by assumption. Therefore ∆i is equal to the segment corresponding

to ∆e at this current iteration, and by Proposition 3.1.9, ∆i and ∆ j being the same length implies

all segment chosen in between them by the algorithm must have the same length. Therefore the

segments ∆m for j + 1 ≤ m ≤ i will be equal to the segments from α1 at this iteration, so we can

instead choose these segments from α1. The list of shortest segments preceding ∆ j will then be

formed segments in α1 since they are of minimal length, and there cannot exist a segment preceding

that corresponding to ∆b, since it did not originally precede. Hence for all−b≤ i≤ e−1 the segment

[i− (e−b), i] will be constructed exclusively from integers contained in α1.

Therefore for all integers in ∆e the preceding segments which are chosen will be contained in

the sub-multisegment α1, and hence the dual of α1 is chosen independently, so

α̃ = α̃1t ˜(α−α1).

Hence α = α1t (α−α1) will form an endoscopic decomposition.

Remark 4.2.34. Lemma 4.2.33 generalises the results from Proposition 4.2.27.

Theorem 4.2.35. Let α be a multisegment formed by the taking the union of m simple symmetric

multisegments. If β is a multisegment such that α≤ β and α̃≤ β̃, then α = β.

Proof. Firstly, let α be a multisegment formed by the taking the union of m simple symmetric mul-

tisegments, and let us assume that there exists a multisegment β such that α≤ β and α̃≤ β̃. Then by

assumption α̃≤ β̃ so rα̃,i, j ≤ r
β̃,i, j for all i, j, where the rank rα̃,i, j denotes the number of appearances

of the sequence i, . . . , j in the segments of α̃. In other words, rα̃,i, j is the number of segments [k, l]

contained in α̃ such that k≤ i and j≤ l as discussed in the Rank Triangle Construction algorithm

in Section 2.3. There will exist a maximum value of the multisegment denoted by e then −e will be

the minimum value. So when the Mœglin-Waldspurger algorithm is taken on α then it will choose
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the segment containing e which is shortest and denoted ∆e. The segment ∆e will be part of a simple

symmetric multisegment α1 which forms α, and the algorithm will hence generate a segment [b,e]

from this simple symmetric multisegment

α1 = {[−e,b], . . . , [−b,e]}.

The segment ∆e = [−b,e] will be the shortest segment containing e in α and by Lemma 4.2.32, the

formation of the multisegment α1 results in it being the only possible contributing factor to rα̃,b,e,

hence rα̃,b,e simply denotes the number of copies of α1 in α.

If we study rα̃,b,e and r
β̃,b,e, then we know that r

β̃,b,e must be at least rα̃,b,e. In order, to have

rα̃,b,e < r
β̃,b,e, then Lemma 4.2.32 also implies that this would require us to create shorter segments

containing e. However to do this in the formation of β, we would be required to use either union

intersection or conjunction. We can immediately rule out the use of conjunction, since this only

creates a longer segment. If we now look at union intersection, then the shorter segment which is

created will be formed by those values which are repeated by the two segments that the action is

taken on. So e must appear in both in order to be in the shorter segment, however if e appears in both

then the union intersection will be equal to the shorter segment. Consequently, it is not possible to

generate a shorter segment containing e in α.

Therefore rα̃,b,e = r
β̃,b,e and as demonstrated in Lemma 4.2.32 α1 is the only possible sub-

multisegment which can generate [b,e]. Additionally, it will not be possible to perform any actions

on any of the other segments in α1, because any operation on the segments in α1 would change

them, and could no longer be used to form [b,e]. Thus each copy of α1 (α could include multiple

copies) will also be sub-multisegments used to form β since it is the only possible sub-multisegment

which contributes to r
β̃,b,e. We can now use Lemma 4.2.33 to find

α = α1t (α−α1) and β = α1t (β−α1)

will form endoscopic decompositions. The multisegment that remains (α−α1) following the re-

moval will also be a union of simple symmetric multisegments, thus we can use a recursive argu-

ment on the maximum value e and shortest segment containing it ∆e until we reach the case in which
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the multisegment is formed by a single symmetric multisegment or is empty. If we reach the case

the multisegment is formed by a single symmetric multisegment, then we can use Lemma 4.2.8 to

show that this should also remain fixed. Therefore, since all m simple symmetric multisegments in

α will be used as sub-multisegments in the formation of β then α = β.

Therefore we have proved that the partial ordering relation will be satisfied for ABV-packets for

orbits of Arthur type. The following corollary proves the significant conjecture: ABV-packets for

orbits of Arthur type in GLn are singletons, which was first proposed by Cunningham et al. [4] .

Corollary 4.2.36. ABV-packets for orbits of Arthur type are singletons and consequently, ABV-

packets for orbits of Arthur type are A-packets.

4.2.3 Further Families of Multisegments

In the previous subsection, we proved that the partial ordering relation will be satisfied for the

family of multisegments of Arthur type, that is, those multisegments which are unions of simple

symmetric multisegments. We now seek to broaden this family of multisegments. In Section 4.2.1,

we inferred that the partial ordering relation would hold for a single ladder multisegment (Theo-

rem 4.2.23) following the argument for a single simple multisegment (Theorem 4.2.9). One may

therefore expect that the partial ordering relation will hold for a multisegment which is formed by

the union of symmetric ladder multisegments. Especially since, each of the ladder multisegments

can be considered as a sub-multisegment αi which forms an endoscopic decomposition of α, and

individually each will satisfy the partial ordering relation by Theorem 4.2.23. However as the next

example will demonstrate there are a number of extra subtleties to consider for these cases.

Example 4.2.37. Let us consider the multisegment given by

α = {[−3,1], [−2,0], [−1,3], [0,2]} ,

then α can be partitioned into ladder multisegments α1 = {[−3,1], [−1,3]} and α2 = {[−2,0], [0,2]},

which form an endoscopic decomposition. However the partial ordering relation will not be satisfied
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since there exists the following five exceptions to the rule:

β1 = {[−3,3], [−2,0], [−1,1], [0,2]} , β2 = {[−3,1], [−2,2], [−1,3], [0]} ,

β3 = {[−3,1], [−2,3], [−1,0], [0,2]} , β4 = {[−3,2], [−2,0], [−1,2], [0,1]} ,

β5 = {[−3,2], [−2,3], [−1,0], [0,1]} .

Therefore there exists a couple of different structures in which the partial ordering relation ultimately

fails. Firstly, we can see in β1 and β2 that through either the union or intersection actions it is possible

to generate a new segment which fits into one of the two already established ladder multisegments.

Alternatively, there can exist more complex cases in which some segments remain fixed and new

segments are created as shown by β3 and β4. Further still β5 shows that it can be possible to generate

a completely distinct set of segments that will still form two ladder multisegments.

That being said, there are a couple of cases which directly follow from the proof of Theo-

rem 4.2.35.

Theorem 4.2.38. Let α1 be a simple symmetric multisegment, α2 a symmetric ladder multisegment,

and α = α1tα2. Let the maximum value eα1 of α1 be greater than or equal to the maximum value

of α2, and if it is equal then segment in α1 containing eα1 is of shorter length than the segment

containing eα1 in α2. If β is a multisegment such that α≤ β and α̃≤ β̃, then α = β.

Proof. Firstly, let α be the union of α1, a simple symmetric multisegment, and α2, a symmetric

ladder multisegment. Let us also impose the conditions that the maximum value eα1 of α1 be greater

than or equal to the maximum value of α2, and if it is equal then segment in α1 containing eα1 is of

shorter length than the segment containing eα1 in α2. Let us assume that there exists a multisegment

β such that α ≤ β and α̃ ≤ β̃. Then by assumption α̃ ≤ β̃ so rα̃,i, j ≤ r
β̃,i, j for all i, j, where the

rank rα̃,i, j denotes the number of appearances of the sequence i, . . . , j in the segments of α̃. In other

words, rα̃,i, j is the number of segments [k, l] contained in α̃ such that k ≤ i and j ≤ l as discussed

in the Rank Triangle Construction algorithm in Section 2.3. There will exist a maximum value

of the multisegment denoted by eα1 then −eα1 will be the minimum value. So when the Mœglin-

Waldspurger algorithm is taken on α then it will choose the segment containing eα1 which is shortest
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and denoted ∆eα1
. The segment ∆eα1

will be part of a simple symmetric multisegment α1 which

forms α, and the algorithm will hence generate a segment [bα1 ,eα1 ] from this simple symmetric

multisegment

α1 = {[−eα1 ,bα1 ], . . . , [−bα1 ,eα1 ]}.

The segment ∆eα1
= [−bα1 ,eα1 ] will be the shortest segment containing eα1 in α and following

Lemma 4.2.32, the formation of the multisegment α1 results in it being the only possible contribut-

ing factor to rα̃,bα1 ,eα1
, hence rα̃,bα1 ,eα1

simply denotes the number of copies of α1 in α.

If we study rα̃,bα1 ,eα1
and r

β̃,bα1 ,eα1
, then we know that r

β̃,bα1 ,eα1
must be at least rα̃,bα1 ,eα1

. In order,

to have rα̃,bα1 ,eα1
< r

β̃,bα1 ,eα1
, then Lemma 4.2.32 also implies that this would require us to create

shorter segments containing eα1 . However to do this in the formation of β, we would be required to

use either union intersection or conjunction. We can immediately rule out the use of conjunction,

since this only creates a longer segment. If we now look at union intersection, then the shorter

segment which is created will be formed by those values which are repeated by the two segments

that the action is taken on. So eα1 must appear in both in order to be in the shorter segment, however

if eα1 appears in both then the union intersection will be equal to the shorter segment. Consequently,

it is not possible to generate a shorter segment containing eα1 in α.

Therefore rα̃,bα1 ,eα1
= r

β̃,bα1 ,eα1
and as demonstrated in Lemma 4.2.32 α1 is the only possible

sub-multisegment which can generate [b,e]. Additionally, it will not be possible to perform any

actions on any of the other segments in α1, because any operation on the segments in α1 would

change them, and could no longer be used to form [b,e]. Thus each copy of α1 (α could include

multiple copies) will also be sub-multisegments used to form β since it is the only possible sub-

multisegment which contributes to r
β̃,bα1 ,eα1

. We can now use Lemma 4.2.33 to find

α = α1t (α−α1) and β = α1t (β−α1)

will form endoscopic decompositions. The multisegment that remains (α−α1) following the re-

moval will be a symmetric ladder multisegment, thus we can invoke Theorem 4.2.23 to show that

this should also remain fixed. Therefore, since both sub-multisegments α1 and α2 must remain fixed

in α then α = β.
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Following on from this we can present a more generalised version of the theorem.

Theorem 4.2.39. Let α1,α2, . . . ,αm−1 be a simple symmetric multisegments, αm a symmetric ladder

multisegment, and

α = α1tα2t·· ·tαm.

Let the respective maximum values eα1 , . . . ,eαm−1 of α1, . . . ,αm−1 be greater than or equal to the

maximum value of αm. When the maximum value of eαi is equal to eαm then the segment in αi

containing eαi must be of shorter length than the segment containing eαi in αm. If β is a multisegment

such that α≤ β and α̃≤ β̃, then α = β.

Proof. This proof follows directly from the proof of Theorem 4.2.38. However, we instead need

to recursively fix each of the simple symmetric multisegments α1,α2, . . . ,αm−1, as demonstrated in

the proof of Theorem 4.2.35 using Lemma 4.2.32 and Lemma 4.2.33.

However, these theorems will not generally be satisfied following the removal of conditions on

the maximum values and shortest segment, as will be demonstrated in the following example.

Example 4.2.40. Let α1 be a simple symmetric multisegment and α2 be a symmetric ladder multi-

segment. If we ignore the assumptions and set

α1 = {[−1,0], [0,1]} and α1 = {[−2,0], [0,2]} ,

then

α̃1tα2 = {[−2], [−1,0], [−1,0], [0,1], [0,1], [2]} .

If we now set

β = {[−2,0], [−1,1], [0,2], [0]} ,

then β is self-dual, so α≤ β and α̃≤ β̃, but α 6= β. Thus we have a counter example.

Therefore it has become increasingly difficult to now define further families of multisegments

for which the partial ordering relation will always be satisfied for.
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4.3 Constructing Counter Examples to the Partial Ordering Relation

Up unto this point in Chapter 4, we have attempted to describe different families of multiseg-

ments for which the partial ordering relation will always be satisfied. Throughout this section we

will instead study the opposite of the question, that is, we will search for the families of multiseg-

ment for which the partial ordering relation will not be satisfied. To do this we will fix the top row

of a rank triangle and then seek to study all of the counter examples which can then be formed. A

key factor that we can use in this categorisation is the relationship between counter examples and

endoscopic decompositions.

Proposition 4.3.1. Let α be any multisegment and α1, . . .αm be sub-multisegments of α which form

an endoscopic decomposition such that α̃ = α̃1 t ·· · t α̃m. If any of the sub-multisegments αi are

such that there exists a βi for which αi ≤ βi and α̃i ≤ β̃i but αi 6= βi, then there also exists β for

which α≤ β and α̃≤ β̃ but α 6= β.

Proof. For this proof we will invoke the idea used in Chapter 3 that the Mœglin-Waldspurger algo-

rithm can be carried out by maximum flows in a network. Let α be any multisegment and α1, . . .αm

be sub-multisegments of α which forms an endoscopic decomposition such that α̃ = α̃1t ·· ·t α̃m.

Let us assume that there exists at least one sub-multisegments αi for which there is a βi such that

αi ≤ βi and α̃i ≤ β̃i. Then by construction the maximum flow on at least one of the iterative steps for

both the original network and the dual of αi must increase following the creation of βi. If we now

impose the same actions that creates βi on the whole multisegment. Then the new multisegment

generated will contain each of the subgraphs associated to the α j’s for j 6= i and βi. Since we know

that sum of the flow associated to each of the subgraphs at each iterative step is greater than or equal

to the flow at the same step for α, and at at least one iterative step the flow is actually greater than.

Then this guarantees that following the addition of extra edges into the network in β that the flow

at each iterative step is greater than or equal, and at at least one iterative step the flow is actually

greater, since the addition of extra edges can only increase the flow. Hence α ≤ β. Likewise, the

same will be true for the networks associated to both α̃ and β̃. Hence α≤ β and α̃≤ β̃ but α 6= β.
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One may expect us now to be able to simply study the smaller examples and then be able to cate-

gorise all possible counter examples from these cases. However, it is possible to have an endoscopic

decomposition α = α1∪α2 such that α1 and α2 satisfy the partial ordering relation individually but

α does not. This will be demonstrated in the following example:

Example 4.3.2. Let

α = {[−2], [−1], [−1], [0], [0,1]} .

Then set

α1 = {[−2], [−1], [0]} and α2 = {[−1], [0,1]} ,

then α1 is simple and α2 is a ladder multisegment, so each will individually satisfy the partial order-

ing relation. However, if we take the conjunction action on the segments [−2], [−1] and [−1], [0] in

α, then we form

β = {[−2,−1], [−1,0], [0,1]} ,

which is such that α≤ β, α̃≤ β̃ but α 6= β.

We therefore want to classify the smallest sub-multisegments for which the partial ordering

relation is not satisfied.

Definition 4.3.3. Let α be a multisegment. We say α is an indecomposable counter example if α

does not satisfy the partial ordering relation, and there does not exist a sub-multisegment α1 of α

which also does not satisfy the partial ordering relation and is such that

α̃ = α̃1t ˜(α−α1).

Our goal for this section will be to provide some first steps toward the classification of all inde-

composable counter examples based upon number of eigenspaces (the length of the quiver). Follow-

ing this we can then invoke Proposition 4.3.1 to construct counter examples of the partial ordering

relation.
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4.3.1 Type A3 Quivers

Let us consider the first non-trivial case in which we have 3 eigenspaces and hence a type A3

quiver. We seek to find all indecomposable counter examples for length 3 quivers. Let α be the

multisegment associated to a length 3 quiver, the the rank triangle associated to α will be of the

form:

r−1,−1 r0,0 r1,1

r−1,0 r0,1

r−1,1

.

We will assume that the values of the top row increase from outside to in to avoid considering a

large amount of cases for which there is no interaction between outside elements. There also exists

a dual rank triangle

r̃−1,−1 r̃0,0 r̃1,1

r̃−1,0 r̃0,1

r̃−1,1

,

which by construction will have an identical top row since the multiplicity of elements must

remain the same. Recall that the partial ordering of a multisegment can be expressed in terms of

ranks in the rank triangle by Corollary 2.5.7. Therefore, we can individually look at the cases in

which the values on the rank triangle associated to α̃ can be increased by actions taken on α to look

at how counter examples can arise in this dimension.

Firstly, if we want to increase the value r̃−1,1 then in β we need to create an extra set of singletons

[−1], [0], [1], since these elements are the only possible way of forming [−1,1] in β̃. Note [−1] and

[1] must already be present in α since they are unable to be generated by any action on segments.

What remains is to generate [0] to match with the copies of [−1] and [1], since it must not already

be present in α otherwise this would not be an additional copy of the singleton. The only possibility

for this is taking union intersection on [−1,0] and [0,1], so {[−1,0], [−1], [0,1], [1]} ∈ α, α̃ in order

to increase r̃−1,1.
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4.3. CONSTRUCTING COUNTER EXAMPLES

Instead if we now look to increase r̃0,1 then there are two possible segments which contribute to

this value [−1,1] and [0,1]. We have already discussed the way to create [−1,1], thus we now need

to consider creating [0,1]. There are three possibilities for this:

1. [0], [1] : [1] must already be present in α, and recall [0] must be generated using union inter-

section on [−1,0] and [0,1] which would result in decreasing r̃−1,0.

2. [−1,0], [1]: [1] must already be present in α, and [−1,0] must be generated using conjunction

on [−1] and [0] which would result in decreasing r̃−1,1.

3. [−1,0], [0,1]: this can be generated by one of two ways either [0,1] is present and conjunction

is taken on [−1] and [0], or, either [−1,0] is present and conjunction is taken on [0] and [1].

Therefore 3. is the only possible case to generate a new copy of [0,1]. Note the dual formation

([−1,0] and conjunction taken on [0] and [1]) will increase r̃−1,0.

However, these conditions are necessary rather than sufficient, since for the top row (3 3 3) there

exists

α = {[−1], [−1,0], [−1,1], [0], [1], [1]} ,

which satisfies the partial ordering conditions for all possible β. However, α1 = {[−1,0], [0], [1]} is

contained inside α and α̃1 = {[−1], [0], [0,1]} is also contained in α̃. This results from the fact that

α̃ 6= α̃1t ˜(α−α1).

Definition 4.3.4. Let α be a multisegment. We say that α1t ·· ·tαm forms a complete endoscopic

decomposition of α if the following conditions are satiesfied:

1. α̃ = α̃1t·· ·t α̃m.

2. For each αi there does not exist an endoscopic decomposition

αi = αi1 t·· ·tαin and α̃i = α̃i1 t·· ·t α̃in

such that n≥ 2.

For the length 3 case, we can present a greedy algorithm for constructing the complete endo-

scopic decomposition with Cα components given by:
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Algorithm : Complete Endoscopic Decomposition for a Type A3 Quiver Given a quiver of length

3 and associated multisegment α, then to construct the maximal endoscopic decomposition we spit

the multisegment up by partitioning into sub-multisegments in the following order:

1. {[−1], [0], [1]},

2. {[0], [1]},

3. {[−1,0], [0,1]},

4. {[−1,0], [1]},

5. {[1]},

6. {[−1], [0,1]},

7. {[0,1]},

8. {[−1], [0]},

9. {[0]},

10. {[−1,0]},

11. {[−1]},

12. {[−1,1]}

Proposition 4.3.5. The Algorithm : Complete Endoscopic Decomposition for a Type A3 Quiver

will always construct a complete endoscopic decomposition.

Proof. Firstly, let us carry out the Mœglin-Waldspurger algorithm using the fixed preceding rela-

tions by Corollary 3.2.12. 1. follows by Lemma 4.2.32 and Lemma 4.2.33, and 2. as an immediate

consequence, since [0] is the shortest segment preceding [1] and since there no longer exists a com-

plete copy of singletons there can be no preceding segments. The next one is slightly counterintuitive

since one may expect both 4. and 5. to be chosen first since [1] is shorter than [0,1]. However, if

we consider each copy of [−1,0] then the only segments which it precedes are [1] and [0,1]. If [1] is

chosen with [−1,0] by the algorithm, then on a subsequent iteration [−1,0] can only be formed from

the −1 in [−1,0] if there exists a 0 from [0,1]. Similarly, [0,1] can only be formed from the 1 in

[0,1] if there exists a 0 from [−1,0], otherwise it would simply be a singleton [1]. Therefore we can

simply partition each copy of {[−1,0], [0,1]}, since the remaining [1]’s will still form the singletons

or be available to be matched with [−1,0]’s. Therefore 3. will form an endoscopic decomposition

and should be chosen next. [1] will still be the shortest possible segment so is chosen next then either

there exists [−1,0] which precedes or doesn’t so it forms a singleton. Similarly, [0,1] will still be

the shortest possible segment so chosen next then either there exists [−1] which precedes or doesn’t

so it forms a singletons. Only segment which will precede [0] is [−1] therefore 8. is next. 9., 10.,

11., and 12. will finally follow as there are no preceding segments in each case thus must simply

generate singletons.
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Therefore we can combine this with our study of the various counter examples to obtain:

Theorem 4.3.6. Given any length 3 quiver with associated multisegment α then α does not satisfy

the partial ordering relation if any of the following sub-multisegments are part of the complete

endoscopic decomposition:

1. α1 = {[−1,0], [−1], [0,1], [1]}, that is, 3., 5., 11. all appear in the complete endoscopic de-

composition;

2. α2 = {[−1,0], [0], [1]}, that is, 2., 10. both appear in the complete endoscopic decomposition;

3. α3 = {[−1], [0], [0,1]}, that is, 7., 8. both appear in the complete endoscopic decomposition.

Proof. The proof follows from the argument above regarding the fact that following actions on

these sub-multisegments values of the rank triangles will increase, and hence if the individual sub-

multisegments appear in the complete endoscopic decomposition then their union will also be an

endoscopic decomposition. So it follows by Proposition 4.3.1 that α will not follow the partial

ordering condition in any of these cases.

One could conjecture that the method outlined in Theorem 4.3.6 is the only possible ways to

generate counter examples for length 3 quivers, however we have found this extremely hard to prove.

4.3.2 Higher Length Quivers

The eloquence of the case in which the quivers are of length 3 is however not reflected in the

study as we increase the length of the quiver. This follows from the fact that it becomes increas-

ingly difficult to define an explicit method for calculating a complete endoscopic decomposition.

Further, the possible actions which can be taken grow exponentially and completely categorising

them becomes a much more intricate process. We will instead use a numerical based argument for

each length of the quiver and number of segments n to study the number of indecomposable counter

examples. See Appendix A for a Python code implementation for finding the number of indecom-

posable counter examples. The following table of values is a snapshot of the results obtained whilst

running the code for four weeks. The number of indecomposable counter examples remains stable
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for the lengths three and four for up to twenty segments. For quivers of length six finding the num-

ber of indecomposable counter examples becomes computational unfeasible, since the case when

the number of segments considered was eight required over three days to complete.

Table 4.1: Number of Indecomposable Counter Examples for up to n Segments for each Length.

Length of Quiver

3 4 5 6

N
um

be
r

of
Se

gm
en

ts
,n

3 2 14 56 168

4 3 33 197 837

5 3 43 378 2325

6 3 56 646 5303

7 3 60 891 10082

8 3 60 1131 17583

9 3 60 1316

10 3 60 1420

11 3 60 1450

12 3 60 1462

13 3 60 1462

14 3 60 1462

15 3 60 1462

Note there has to be more than 2 segments to create an indecomposable counter example. This

follows from Proposition 2.5.4 that the multisegment only changes if the two segments that the

action is taken on precede one another, and that either 1 segment or 2 segments in which one is

contained inside the other will be created thus there will be preceding relations following the action.

Hence we begin our study with at least 3 segments in the multisegment and have the following

proposition:

Proposition 4.3.7. Any indecomposable counter example will not include the full segment, that is,

the segment [b,e] such that b is the minimum and e is the maximum value for the length of the quiver.
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Proof. Let us first assume that the full segment is contained in an indecomposable counter example.

Note there are no possible segments contained in this decomposition which can precede the full

segment. Proposition 2.5.4 states that no action can be taken on the full segment. Similarly, if we

use the network theoretic approach then the vertices associated to the full segment will construct a

disconnected subnetwork, since there are no preceding relations even after any actions. Therefore

we have a contradiction since there will exist an indecomposable counter example which excludes

the full segment and hence we didn’t originally have an indecomposable counter example.

An immediate consequence is that this will also be true for the dual of the full segment.

Corollary 4.3.8. Any indecomposable counter example will not include the string of consecutive

singletons from the minimum value to the maximum.

For the lengths 3, 4 and 5 of quivers, the number of indecomposable counter examples appears

to converge at some n. This leads us to establish some conjectures and a number of corollaries which

would follow from these conjectures.

Conjecture 4.3.9. In any indecomposable counter example the maximum number of times the same

segment can appear in the counter example is the length of the quiver minus 2.

This is based on the empirical data of the individual lists of indecomposable counter example

for the 3, 4 and 5 length quivers.

Conjecture 4.3.10. There exists a value n for which the number of indecomposable counter example

converges.

A proof of this conjecture would be a significant result since it would allow us to be able to

categorise every counter example to the partial ordering condition.

Corollary to Conjecture 4.3.11. There exists a maximal size of an indecomposable counter exam-

ple for each length of quiver.

This would follow from conjecture that there must exist a smallest value n for which every

endoscopic counter example is formed.

Corollary to Conjecture 4.3.12. There is a finite number of indecomposable counter example for

each length of quiver.
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This would follow from conjecture that the number of endoscopic counter examples converges.

Corollary to Conjecture 4.3.13. Every counter example for a given length of quiver must therefore

arise from one of the indecomposable counter example.

If there was to exist a counter example which did not arise from an indecomposable counter ex-

ample then by definition this would also be an indecomposable counter example, so would contradict

the fact that it converges.

We present a heuristic argument to justify the Conjecture 4.3.10. If we fix the length of quiver

d then there exists a maximum of d elements in any segment. Similarly, there exists a finite number

of possible segments and hence preceding relations. By Proposition 2.5.4, the multisegment only

changes when actions are taken on preceding segments, therefore given that there exists a finite

number of possible preceding relations then there is also a finite number of actions. Further the

network description is highly structured given that the vertices associated to i can only send flow to

vertices i−1 and receive flow from i+1. Thus the process of increasing flow through the network

at at least one iterative stage is very intricate, since it is very easy to decrease the flow given that

the actions create a longer segment at each stage. In addition to this, we can define a number of

different bounds for the maximum flows based on the number of elements, and edges between the

vertices associated to two consecutive integers. Individual segments will also provide bounds on the

flow. For example, any segment containing the maximum value can only get longer, therefore for

each such segment ∆ = [b,eα] then the furthest the flow from any vertex associated to an integer of

∆ can go is d− eα + b. Thus we will be able to bound r̃(i,eα) for all i, and by symmetry we will be

able to do the same for the minimum value. Therefore given this highly structured network then it

is very feasible to believe that every value could therefore be bounded and hence it be shown that

convergence for n will naturally follow using this network theoretic approach.
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Chapter 5 : Future Work

This thesis studied the Open Orbit Conjecture 2.4.7 for specific families of Langlands parameters,

mainly those of Arthur type. It also provided a way to generate multisegments which violate the

partial ordering relation through endoscopic decomposition. To continue this study, the areas which

require further exploration are:

1. The Open Orbit Conjecture 2.4.7 remains an open problem, since we found no counter

examples throughout our study.

2. Refine the definition of ladder multisegments further to find new families of Langlands pa-

rameters which can be described using numerical invariants.

3. Study whether there exists a maximal size indecomposable counter example for a given length

of quiver.

4. Determine whether there exists a finite number of indecomposable counter examples which

will derive every possible violation of the partial ordering relation for a given length of quiver.

5. Discover if there exists an explicit method for generating the maximal endoscopic decompo-

sition of Cα components for every length of quiver.
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Société Mathématique de France, 1989.

[3] E. T. BELL, Exponential Polynomials, Annals of Mathematics, 35 (1934), pp. 258–277.

[4] C. CUNNINGHAM, A. FIORI, AND N. KITT, Appearance of the Kashiwara-Saito Singularity
in the Representation Theory of p-adic GL16, arXiv preprint arXiv:2103.04538, (2021).

[5] C. CUNNINGHAM, A. FIORI, A. MOUSSAOUI, J. MRACEK, AND B. XU, Arthur Packets for
p-adic Groups by Way of Microlocal Vanishing Cycles of Perverse Sheaves, with Examples,
no. 1353, Memoirs of the American Mathematical Soc., 2022.

[6] H. DERKSEN AND J. WEYMAN, An Introduction to Quiver Representations, vol. 184 of Grad-
uate Studies in Mathematics, American Mathematical Soc., 2017.
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Appendix A : Python Codes

The following python code implements a method to find the dual using the Mœglin-Waldspurger
and the Network Computation of the Dual for the example found in Section 3.3 [to run through any
arbitrary example update the element of V ]. The functions which are used to implement the initial
code follow the output.

import numpy as np
import math
#Initial Element of V
A = np.array ([[0,0], [1,0], [0,0],[0,1]])
B = np.array ([[1,0,0,0], [0,1,0,0], [0,0,1,0],[0,0,0,0]])
C = np.array ([[1,0,0,0], [0,1,0,0], [0,0,0,0],[0,0,0,1]])
D = np.array ([[1,0,0,0], [0,0,1,0]])
mat=(A,B,C,D)

#Converts the Element of V into the Rank Triangle
RT=MatrixtoRT(mat)

#Computes the Multisegment Triangle from the Rank Triangle
B=RTtoMT(RT)
B1=RTtoMT(RT)
print(’Multisegment Triangle’, B)

#Computes Dual Multisegment via Moeglin-Waldspurger
A=MW(B)
print(’Dual Multisegment’,A)
Q=MStoMT(A)
print(’Dual Multisegment Triangle’,Q)
P=MTtoRT(Q)
print(’Dual Rank Triangle’,P)

#Create Dual Rank Triangle using Max Flows through Network
DT=[]
for x in range(0, len(B1)):

ds=[]
for y in range(0, len(B1[x])):

C=Graph(B1, y+1, y+1+x)
g = Graphs(C)
max=g.ford_fulkerson()
ds.append(max)

DT.append(ds)
print(’Dual Rank Triangle via Network’,DT)

#Converts to Multisegment Triangle
print(’Dual Multisegment Triangle via Network’,RTtoMT(DT))
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The output for the code is as follows:

Rank Triangle [[2, 4, 4, 4, 2], [2, 3, 3, 2], [1, 2, 1], [1, 1], [0]]
Multisegment Triangle [[0, 0, 0, 0, 0], [1, 1, 1, 1], [0, 0, 0], [1, 1], [0]]
Dual Multisegment [[5, 4, 3, 2], [5, 4], [4, 3, 2, 1], [4, 3], [3, 2], [2, 1]]
Dual Multisegment Triangle [[0, 0, 0, 0, 0], [1, 1, 1, 1], [0, 0, 0], [1, 1], [0

]]
Dual Rank Triangle [[2, 4, 4, 4, 2], [2, 3, 3, 2], [1, 2, 1], [1, 1], [0]]
Dual Rank Triangle via Network [[2, 4, 4, 4, 2], [2, 3, 3, 2], [1, 2, 1], [1, 1]

, [0]]
Dual Multisegment Triangle via Network [[0, 0, 0, 0, 0], [1, 1, 1, 1], [0, 0, 0]

, [1, 1], [0]]

Unsurprisingly, the output mirrors the values found in the example in Section 3.3.

#Function 1: Converts the Element of V to the Rank Triangle as demonstrated in
Section 3.3

def MatrixtoRT(Q):
L=len(Q)
RT=[]
R=[]
for n in range(0,L):

R.append(len(Q[n][0]))
R.append(len(Q[L-1]))
RT.append(R)
for n in range(0,L):

R=[]
for m in range(0,L-n):

M=mat[m]
for r in range(1,n+1):

M=np.dot (mat[m+r],M)
R.append(np.linalg.matrix_rank(M))

RT.append(R)
return(RT)

#Function 2: Converts Rank to Multisegment Triangle using Proposition 2.3.3.
def RTtoMT(A):

L=len(A)
MT=[]
for n in range(0,L):

R=A[n]
MTR=[]
for m in range(0,L-n):

if n==L-1:
M= R[m]

else :
if m==0:

S=A[n+1]
M= R[m]-S[m]

elif m==L-n-1:
S=A[n+1]
M= R[m]-S[m-1]

else :
S=A[n+1]
T=A[n+2]
M=R[m]-S[m]-S[m-1]+T[m-1]

MTR.append(M)
MT.append(MTR)

return MT
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#Function 3: Computes the Moeglin-Waldspurger Alg. on Multisegment Triangle
found in Section 3.1

def MW(A):
Dual=[]
L=len(A)
m=L-1
while m>-1:

q=0
while q<m+1 :

for n in range(0,m+1):
R=A[n]
if R[m-n]>0:

D=[m+1]
O=[[m,n]]
b=m-n
m1=m-1
p=-1
while p<m1:

for n1 in range (0, m1 +1):
R=A[n1]
if (R[m1 - n1]>0 and b>m1-n1 and b<=m1+1):

O.append([m1,n1])
D.append(m1+1)
b=m1-n1
m1=m1-1
p=-1
break

else:
p=p+1

Dual.append(D)
I=len(O)
for n in range(0,I):

M=O[n][0]
N=O[n][1]
R=A[N]
R[M-N]=R[M-N]-1
A[N]=R
if N>0:

S=A[N-1]
S[M-N]=S[M-N]+1
A[N-1]=S

q=0
break

else:
q=q+1

m=m-1
return Dual
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#Function 4: Converts Multisegments to Multisegment Triangle
def MStoMT(M):

S=[]
for x in M:

S.append(max(x))
Max=max(S)
S=[]
for x in M:

S.append(min(x))
Min=min(S)
MT=[]
for x in range(0, Max-Min+1):

mt=[]
for y in range(0, Max-Min-x+1):

mt.append(0)
MT.append(mt)

for x in M:
b=min(x)
e=max(x)
MT[e-b][b-1]=MT[e-b][b-1]+1

return MT

#Function 5: Constructs the Network constructed in Subsection 3.2.1
def Graph(A,b,e):

S=[]
V=[]
L=len(A)
q=1
for n in range(0,L):

for m in range(0,n+1):
R=A[m]
M=R[L-n-1]
for x in range(M):

S.append([L-n,L+m-n,q])
q+=1

for x in range(L):
for y in S:

if y[0] <= L-x <= y[1]:
V.append([L-x,y[0],y[1],y[2]])

LV=len(V)
F=np.zeros((2*LV+2,2*LV+2))
for x in range(1, LV+1):

for y in range(1, LV+1):
if x != y and V[x-1][0] -1 == V[y-1][0] and V[x-1][1]>V[y-1][1] and

V[x-1][2]>V[y-1][2]:
F[x+LV,y]=1

F[x,x+LV]=1
for x in range(1, LV+1):

if V[x-1][0]==e:
F[0,x]=1

for x in range(1, LV+1):
if V[x-1][0]==b:

F[x+LV,2*LV+1]=1
return F
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#Function 6: Creates Multisegments using the Rank Triangle Construction Alg.
def MTtoRT(MT):

L=len(MT)
RT=[]
for x in range(0,L):

rt=[]
for y in range(0,L-x):

rt.append(0)
RT.append(rt)

for x in range(0,L):
for y in range(0,L-x):

n=MT[x][y]
for X in range(0,x+1):

for Y in range(y,x+y-X+1):
RT[X][Y]=RT[X][Y]+n

return(RT)

# Function 7: Computes the Ford-Fulkerson Algorithm outlined in Subsection 3.2.2
class Graphs:

def __init__(self , graph):
self.graph = graph
self. ROW = len(graph)

# Using BFS as a searching algorithm
def searching_algo_BFS(self , s, t, parent):

visited = [False] * (self.ROW)
queue = []
queue.append(s)
visited[s] = True
while queue:

u = queue.pop(0)
for ind, val in enumerate(self.graph[u]):

if visited[ind] == False and val > 0:
queue.append(ind)
visited[ind] = True
parent[ind] = u

return True if visited[t] else False
# Applying Ford-Fulkerson algorithm
def ford_fulkerson(self):

sink=self.ROW -1
source=0
parent = [-1] * (self.ROW)
max_flow = 0
while self.searching_algo_BFS(source , sink , parent):

path_flow = float("Inf")
s = sink
while(s != source):

path_flow = min(path_flow , self.graph[parent[s]][s])
s = parent[s]

# Adding the path flows
max_flow += path_flow
# Updating the residual values of edges
v = sink
while(v != source):

u = parent[v]
self.graph[u][v] -= path_flow
self.graph[v][u] += path_flow
v = parent[v]

return max_flow
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The following functions can be used to computational verify that the partial ordering relation
will be satisfied in both Theorem 4.2.35 and Theorem 4.2.38 for each multisegment A. Function
8 generates all of the possible multisegments which can be generated by the actions described in
Proposition 2.5.2, and then Function 9 checks to see if Ã≤ B̃ is satisfied. Finally, Code 10 outputs
a .txt file containing any counter examples cases in which Ã≤ B̃ and A 6= B.

# Function 8: Finds all Rank Triangles formed by actions such that A <= B
import itertools
def all_multisegments(A):

AllRT=[[A[0]]]
for x in range(1,len(A)):

AllRTs=[]
for y in AllRT:

Numbers=[]
for z in range(0,len(A)-x):

Numbers.append(list(range(0,min(y[x-1][z],y[x-1][z+1])+1)))
for element in itertools.product(*Numbers):

if (all( int(A[x][v]) <= int(element[v]) for v in range(0,len(
element)))):

Status=True
if x==1:

AllRTs.append([*y, list(element)])
Status=False

for t in range(0,len(element)):
if int(y[x-1][t]) + int(y[x-1][t+1]) > int(element[t

])+int(y[x-2
][t+1]):

Status=False
if Status==True:

AllRTs.append([*y, list(element)])
AllRT=list(AllRTs)

return AllRT

# Function 9: Checks if Dual A <= Dual B
def DualAlesseqDualB(DualA ,DualB):

count1=0
count2=0
for x in range(0, len(DualA)):

for y in range(0,len(DualA[x])):
if DualA[x][y]<=DualB[x][y]:

count1=count1 +1
count2=count2+1

if count1 == count2:
print(’Dual(A)<=Dual(B)’)
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# Code 10: For any multisegment A condition A <= B and Dual A <= Dual B implies
A=B is checked.

Output = open("OutputManySimple.txt", "w")
AllDRT2s=all_multisegments2(RT1)
for pi in AllDRT2s:

RT2=list(pi)
P2=RTtoMT(RT2)
Dual2=MW(P2)
Num2=len(Dual2)
DMT2=MStoMT(Dual2)
DRT2=MTtoRT(DMT2)
if DualAlesseqDualB(DRT1 , DRT2)==True:

if RT1 != RT2:
Output.write(’Counter Number:’+’Iteration:’+’n1’+str(n1)+’a1’

+str(a1)+’\n’+str(Num1)+’,’ +str(Num2)+’\n’+str(RT1)
+’\n’+str(RT2)+’\n’+str(DRT1)+’\n’+str(DRT2)+’\n\n’)

Output.flush()
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We want to check the partial ordering relation for different families of multisegments for which
we will require individual codes to construct them. In each of the following cases Code 10, which
checks the partial ordering relation, will be inserted where labelled. The first case we considered
was those multisegments generated by combining multiple simple symmetric multisegments given
in Code 11a, and then we considered a random symmetric multisegment given in Code 11b.

# Code 11a: Rigorously Constructs all Multisegments of Arthur Type.
maxnumseg=10
maxlenseg=5
MaxNumberSym=5
N=[1]
for Number in range(2,MaxNumberSym+1):

N=[*[1]*(Number-1),1]
while N[len(N)-1]<maxnumseg:

while len(set(N)) > 1:
Status=False
for z in range(0, len(N)-1):

if N[z]<N[z+1] and Status==False:
N[z]=N[z]+1
Status = True
break

A=[*[1]*(Number-1),1]
while A[len(A)-1]<maxlenseg:

Ni=[]
Ai=[]
Li=[]
s=0
for x in range(Number):

if (N[x] % 2) == 0:
l1=2*A[x]

else:
l1=2*A[x]-1

s=max(N[x]+l1, s)
Ni.append(N[x])
Ai.append(A[x])
Li.append(l1)

M=[]
for x in range(Number):

si=int(s)
s1=int((si-Ni[x]-Li[x])/2)
for y in range(Ni[x]):

S=[]
for z in range(s1+1,s1+1+Li[x]):

S.append(z)
s1=s1+1
M.append(S)

M1=list(M)
Num1a=len(M)
M3=list(M)
P=MStoMT(M1)
Q=MStoMT(M3)
Dual1=MW(P)
Num1=len(Dual1)
RT1=MTtoRT(Q)
DMT1=MStoMT(Dual1)
DRT1=MTtoRT(DMT1)
# Code 10 goes here
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# Code 11b: Constructs a Random Symmetric Multisegment for values 1-7.
length=7
M=[]
for x in range(0,4):

l=np.random.randint(1,7)
start=np.random.randint(0,length-l)
if length +1 == 2*(start+1)+(l-1):

S=[]
for z in range(0,l):

S.append(start+1+z)
M.append(S)

else:
S1=[]
S2=[]
for z in range(0,l):

S1.append(start+1+z)
S2.append(length-start-z)

M.append(S1)
M.append(sorted(S2))

M1=list(M)
M3=list(M)
P=MStoMT(M1)
Q=MStoMT(M3)
Dual1=MW(P)
Num1=len(Dual1)
RT1=MTtoRT(Q)
DMT1=MStoMT(Dual1)
DRT1=MTtoRT(DMT1)
# Code 10 goes here

In order to the verify the theorems, we check that the output file remains empty. If a counterexample
exists then it will be printed as follows in the output file:

Counter:
RT1:[[3, 3, 5, 4, 5, 3, 3], [2, 3, 4, 4, 3, 2], [2, 2, 4, 2, 2], [1, 2, 2, 1],

[1, 0, 1], [0, 0], [0]]
RT2:[[3, 3, 5, 4, 5, 3, 3], [2, 3, 4, 4, 3, 2], [2, 2, 4, 3, 2], [1, 2, 2, 2],

[1, 0, 1], [0, 0], [0]]
DRT1:[[3, 3, 5, 4, 5, 3, 3], [1, 3, 3, 3, 3, 1], [1, 1, 2, 1, 1], [0, 1, 1, 0],

[0, 0, 0], [0, 0], [0]]
DRT2:[[3, 3, 5, 4, 5, 3, 3], [1, 3, 3, 3, 3, 1], [1, 1, 2, 1, 1], [0, 1, 1, 0],

[0, 0, 0], [0, 0], [0]]
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The following code is a slightly modified version of the Code 11a, which instead takes a given
top row of the triangle and separately outputs the rank triangles for α which satisfy and break the
boundary relation. This code is in support of the results found in Section 4.3.

# Code 12: Categorising the Partial Ordering Relation of Rank Triangles for a
given Top Row.

Output = open("OutputSatisfied.txt", "w")
Output2= open("OutputCounter.txt", "w")
Top=[3,5,5,3]
AllAd=all_admissible(Top)
Output.write(’Top Line:’+str(Top)+’\n’)
Output.flush()
Output2.write(’Top Line:’+str(Top)+’\n’)
Output2.flush()
for t in AllAd:

T=list(t)
t1=list(t)
t2=list(t)
BR=True
p=RTtoMT(t1)
q=RTtoMT(t2)
Dual1=MW(p)
RT1=MTtoRT(q)
DMT1=MStoMT(Dual1)
DRT1=MTtoRT(DMT1)
AllDRT2s=all_multisegments2(RT1)
for pi in AllDRT2s:

RT2=list(pi)
P2=RTtoMT(RT2)
RT2a=list(pi)
Dual2=MW(P2)
Num2=len(Dual2)
DMT2=MStoMT(Dual2)
DRT2=MTtoRT(DMT2)
if DualAlesseqDualB(DRT1 , DRT2)==True:

if RT1 != RT2:
BR=False

if BR==True:
Output.write(str(T)+str(DRT1)+’\n’)
Output.flush()

elif BR==False:
Output2.write(str(T)+str(DRT1)+’\n’)
Output2.flush()
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In Section 4.3.2, we seek to classify all maximal endoscopic decompositions for any dimen-
sion which contradict the partial ordering relation. To implement this we can construct all possible
multisegments for a given number of segments contained in it and check whether they are an en-
doscopic decomposition of a previous result using the following functions. Note this code already
implements Proposition 4.3.7 to improve computational efficiency, however the codes have also
been implemented without these conditions.

# Function 13: Constructs all Multisegments for a given number of Segments

# dim= Total number of elements in rank triangle; numseg= Number of segments;
Dim = Dimension of Space

def Construction(dim,numseg ,Dim):
Perms=[]
Nim=min(Dim-2,numseg)
for n0 in range(0,Nim+1):

Perms.append([n0])
for m in range(1, dim-1):

Perms1=[]
for n1 in Perms:

Nim=min(Dim-2,numseg-np.sum(n1))
for n2 in range(0,Nim+1):

N1=n1+[n2]
Perms1.append(N1)

Perms=deepcopy(Perms1)
Perms1=[]
for n1 in Perms:

if numseg-np.sum(n1)==0:
N1=n1+[0]
Perms1.append(N1)

Perms=deepcopy(Perms1)
return Perms

# Function 14: Takes a list and creates a Triangle Array
def gen_list_of_lists(original_list , new_structure):

assert len(original_list) == sum(new_structure), \
"The number of elements in the original list and desired structure don’t

match"
list_of_lists = [[original_list[i + sum(new_structure[:j])] for i in range(

new_structure[j])] \
for j in range(len(new_structure))]

return list_of_lists

# Function 15: Checks whether one Multisegment will form an Endoscopic
Decomposition of another

def Check(MT,prim):
check=True
for lis in range(0,len(prim)):

for el in range(0, len(prim[lis])):
W=MT[lis][el]- prim[lis][el]
if W <0:

check=False
return check
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# Function 16: Checks whether an Endoscopic Decomposition [A = (A-B) union B] is
such that [dual(A) = dual(A-B) union

dual(B)]
from copy import deepcopy
def Decomp(TM,prim):

check=True
MT1=list(TM)
prim1=list(prim)
W= deepcopy(MT1)
for lis in range(0,len(prim)):

for el in range(0, len(prim[lis])):
W[lis][el]=MT1[lis][el]- prim[lis][el]

DualPrim=MW(deepcopy(prim1))
DualMT=MW(deepcopy(MT1))
DualW=MW(W)
MTDualPrim=MStoMT(DualPrim)
MTDualMT=MStoMT(DualMT)
MTDualW=MStoMT(DualW)
for lis in range(0,len(MTDualPrim)):

for el in range(0, len(MTDualPrim[lis])):
if MTDualMT[lis][el] != MTDualPrim[lis][el] + MTDualW[lis][el]:

check=False
return check
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We can then use the following code (currently set for quiver representations of length 5) in order
to obtain the results in Table 4.1 and establish the corollaries found in Section 4.3.2.

# Code 17: Number of Indecomposable Counter Examples
RTForm = [5,4,3,2,1]
Output = open("Output5.txt", "w")
m=15
Primitives=[]
for N in range(3,20):

n=int(N)
Answer=Construction(15,n,5)
Possible=[]
for q1 in Answer:

if q1.count(0)<13:
q1=list(q1)
Q1 = gen_list_of_lists(original_list=q1, new_structure=RTForm)
Possible.append(Q1)

for tm in Possible:
t=MTtoRT(tm)
T=list(t)
t1=list(t)
t2=list(t)
BR=True
p=RTtoMT(t1)
q=RTtoMT(t2)
Dual1=MW(p)
RT1=MTtoRT(q)
DMT1=MStoMT(Dual1)
DRT1=MTtoRT(DMT1)
AllDRT2s=all_multisegments2(RT1)
for pi in AllDRT2s: #Checks for counter example

if BR==True:
RT2=list(pi)
P2=RTtoMT(RT2)
RT2a=list(pi)
Dual2=MW(P2)
Num2=len(Dual2)
DMT2=MStoMT(Dual2)
DRT2=MTtoRT(DMT2)
if DualAlesseqDualB(DRT1 , DRT2)==True:

if RT1 != RT2:
BR=False

if BR==False: #Check for previous examples contained in
if len(Primitives)!=0:

Checks=True
for x in Primitives:

TFChecks=Check(tm, x)
if Checks==True:

if TFChecks == True:
TFEndo=Decomp(tm,x)
if TFEndo==True:

Checks=False
if Checks==True:

Primitives.append(tm)
else:

Primitives.append(tm)
Output.write(str(n)+":"+str(len(Primitives))+ ’\n’ + str(Primitives) +’\n’)
Output.flush()
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