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Abstract

The term “Google” has become a verb for most of us. Search engines, however, have

certain limitations. For example ask it for the impact of the current global financial crisis

in different parts of the world, and you can expect to sift through thousands of results for

the answer. This motivates the research in complex question answering where the purpose

is to create summaries of large volumes of information as answers to complex questions,

rather than simply offering a listing of sources. Unlike simple questions, complex questions

cannot be answered easily as they often require inferencing and synthesizing information

from multiple documents. Hence, this task is accomplished by the query-focused multi-

document summarization systems. In this thesis we apply different supervised learning

techniques to confront the complex question answering problem. To run our experiments,

we consider the DUC-2007 main task.

A huge amount of labeled data is a prerequisite for supervised training. It is expensive

and time consuming when humans perform the labeling task manually. Automatic label-

ing can be a good remedy to this problem. We employ five different automatic annotation

techniques to build extracts from human abstracts using ROUGE, Basic Element (BE) over-

lap, syntactic similarity measure, semantic similarity measure and Extended String Subse-

quence Kernel (ESSK). The representative supervised methods we use are Support Vector

Machines (SVM), Conditional Random Fields (CRF), Hidden Markov Models (HMM) and

Maximum Entropy (MaxEnt). We annotate DUC-2006 data and use them to train our sys-

tems, whereas 25 topics of DUC-2007 data set are used as test data. The evaluation results

reveal the impact of automatic labeling methods on the performance of the supervised ap-

proaches to complex question answering. We also experiment with two ensemble-based

approaches that show promising results for this problem domain.
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Chapter 1

Introduction

1.1 Motivation

As a result of the availability of all kind of information in the Web, we live in an easier

world now. We do not bother to stay day after day in the library; rather a couple of hours

of Web surfing does the job for us. The vast increase in both the amount of online data and

the demand for access to different types of information have led researchers to a renewed

interest in a broad range of Information Retrieval (IR) related areas such as question an-

swering, topic detection and tracking, summarization, multimedia retrieval, chemical and

biological informatics, text structuring and text mining. Automated Question Answering

(QA) (Strzalkowski and Harabagiu, 2008) is the ability of a machine to answer questions,

simple or complex, which are posed in ordinary human language. This is perhaps the most

exciting technological development of the past six or seven years.

Traditional document retrieval systems cannot satisfy the end-users to have more direct

access into relevant documents. So, Question Answering (QA) has received immense atten-

tion from the information retrieval, information extraction, machine learning, and natural

language processing communities. The main goal of QA systems is to retrieve relevant an-

swers to natural language questions from a collection of documents rather than employing

keyword matching techniques to extract documents having keywords similar to a query.

A well known QA system is the Korean Naver’s Knowledge iN search1, who were the

pioneers in the community. This tool allows users to ask almost any question and get an-

swers from other users. Naver’s Knowledge iN now has roughly 10 times more entries than

Wikipedia. It is used by millions of Korean web users on any given day. Some people say

1http://kin.naver.com/
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Koreans are not addicted to the internet but to Naver (Chali, Joty, and Hasan, 2009). As

of January 2008 the Knowledge Search database included more than 80 million pages of

user-generated information. Another popular answer service is Yahoo! Answers2 which

is a community-driven knowledge market website launched by Yahoo!. It allows users to

both submit questions to be answered and answer questions from other users. People vote

on the best answer. The site gives members the chance to earn points as a way to encourage

participation and is based on the Naver model. As of December 2009, Yahoo! Answers

had 200 million users worldwide and more than 1 billion answers3. Google had a QA sys-

tem4 based on paid editors which was launched in April 2002 and fully closed in December

2006. The main limitation of these QA systems is that each relies on human expertise to

help provide the answers. Our goal is to automate this process so that computers can do

the same as those professional information analysts to give answers in response to the more

complex questions that may include human language difficulties. This thesis is a small step

towards such an ambitious goal.

QA research attempts to deal with a wide range of question types including: fact, list,

definition, how, why, hypothetical, semantically-constrained, and cross-lingual questions.

Some questions, which we call simple questions, are easier to answer. For example, the

question: “Who is the president of Bangladesh?” asks for a person’s name. This type of

question (i.e. factoid) requires small snippets of text as the answer. Again, the question:

“Which countries has Pope John Paul II visited?” is a sample of a list question asking only

for a list of small snippets of text.

As a tool for finding documents on the web, search engines are proven to be adequate.

Although there is no limitation in the expressiveness of the user in terms of query formu-

2http://answers.yahoo.com/
3http://yanswersblog.com/index.php/archives/2009/12/14/yahoo-answers-hits-200-million-visitors-

worldwide/
4http://answers.google.com/
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lation, certain limitations exist in what the search engine does with the query. Complex

questions often seek multiple different types of information simultaneously and do not pre-

suppose that one single answer can meet all of its information needs. For example, with a

factoid question like: “What is the magnitude of the earthquake in Haiti?”, it can be safely

assumed that the submitter of the question is looking for a number. However, with complex

questions like: “How is Haiti affected by the earthquake?”, the wider focus of this ques-

tion suggests that the submitter may not have a single or well-defined information need

and therefore may be amenable to receiving additional supporting information that is rele-

vant to some (as yet) undefined informational goal (Harabagiu, Lacatusu, and Hickl, 2006).

Complex question answering tasks require multi-document summarization through an ag-

gregated search, or a faceted search, that represents an information need which cannot be

answered by a single document. For example, if we look for the comparison of the average

number of years between marriage and first birth for women in the USA, Asia, and Europe,

the answer is likely contained in multiple documents. Multi-document summarization is

useful for this type of query and there is currently no tool on the market that is designed to

meet this kind of information need.

Over the past few years, complex questions have been the focus of much attention

in both the automatic Question Answering (QA) and Multi Document Summarization

(MDS) communities. Typically, current complex QA evaluation systems including the

2004 AQUAINT Relationship QA Pilot5, the 2005 Text Retrieval Conference (TREC) Re-

lationship QA Task6, and the TREC definition7 return unstructured lists of candidate an-

swers in response to a complex question. However, MDS evaluations (including the 2005,

2006 and 2007 Document Understanding Conference (DUC)8) have tasked systems with

5http://trec.nist.gov/data/qa/add QAresources/README.relationship.txt
6http://trec.nist.gov/data/qa/2005 qadata/qa.05.guidelines.html
7http://trec.nist.gov/overview.html
8http://duc.nist.gov/
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returning paragraph-length answers to complex questions that are responsive, relevant, and

coherent.

In this thesis, we focus on a query-based extractive approach of summarization where

a subset of the sentences from the original documents are chosen. The Document Under-

standing Conference (DUC) has been conducted by the National Institute of Standards and

Technology (NIST) since 2001. Its goal is to further progress in automatic text summariza-

tion and enable researchers to participate in large-scale experiments in both the develop-

ment and evaluation of summarization systems. DUC produces a series of summarization

evaluations. The DUC-2007 main task was the same as the DUC 2006 task and modeled

real-world complex question answering, in which a question cannot be answered by simply

stating a name, date, quantity, etc. Given a topic and a set of 25 relevant documents, the

task was to synthesize a fluent, well-organized 250-word summary of the documents that

answers the question(s) in the topic statement. Successful performance on the task bene-

fited from a combination of IR and NLP capabilities, including passage retrieval, compres-

sion, and generation of fluent text. In this thesis, we use the DUC-2007 main task to run

our experiments.

The research in multi-document summarization domain that applies unsupervised learn-

ing techniques such as Expectation Maximization (EM) and K-means work on unlabeled

data (Joty, 2008), where labeled data is a prerequisite for supervised systems. It is well

known that supervised learning techniques often outperform unsupervised learning in terms

of accuracy. That motivates us to use the supervised learning methodologies such as

Support Vector Machines (SVM) (Cortes and Vapnik, 1995), Conditional Random Fields

(CRF) (Lafferty, McCallum, and Pereira, 2001), Hidden Markov Models (HMM) (Conroy

and O’Leary, 2001), Maximum Entropy (MaxEnt) (Ferrier, 2001) and ensemble methods

(Dietterich, 2000) to combat the complex question answering problem.

4



1.2 Important Terms

Through out this thesis, we frequently refer to some important terms. We briefly introduce

them here.

Abstract Summary: Human generated summary.

Extract Summary: Summary created by picking verbatim sentences from the original

document that are mostly similar to the abstract summary.

Annotation/Labeling: The process of selecting important sentences from the original

source document i.e. creation of extract summary.

Labeled Data: Original document sentences labeled with +1 meaning important enough

for summary inclusion and −1, if opposite.

Training: To learn about important facts from the labeled data, accomplished by the su-

pervised systems.

Testing: To predict labels for the previously unseen data set.

Balanced/Unbalanced Data: Balanced data contains an equal proportion of positive (sum-

mary) and negative (non-summary) sentences, whereas unbalanced data is comprised of an

uneven proportion of positive and negative sentences.

Ensemble: Combined model of different classifiers intended to improve overall perfor-

mance.

1.3 Overview of the Thesis

The block diagram in Figure 1.1 depicts the basic architecture of this thesis. The task of an-

swering complex questions using a supervised methodology subsumes three major phases:

Annotation/Labeling, Training and Testing. Given the original document sentences and

their abstract summary, we produce the labeled data set through annotation. This phase in-

5



Figure 1.1: Supervised Approach

cludes the application of different textual similarity measurement techniques that compares

the abstract summary sentences with the document sentences. The most similar sentences

are labeled as positive (summary) and the less similar ones as negative (non-summary). In

the second phase, supervised systems are trained with this large amount of labeled data.

Finally, an unseen data set is presented before the learned model that predicts the labels in

order to produce system generated extract summaries.

1.4 Research Questions

The better performance shown by supervised learning techniques over unsupervised ap-

proaches in terms of accuracy gives us a greater anticipation of applying these methods

in the field of multi-document text summarization. The main goal of multi-document text

summarization is to produce a single text as a compressed version of a set of documents

with a minimum loss of relevant information. The research questions that we address in

6



this thesis are:

1. Given a set of documents and their abstract summary, how to generate the extract

summary? That is, from the document sentences how to find that a sentence is a good

candidate to be extracted?

2. Given a set of labeled data that is a set of documents and their extract summary, how

to learn the relationship between them and use this in order to predict the summary

of an unseen data set?

3. Do automatic annotation techniques have any impact on supervised complex ques-

tion answering?

4. How does the balanced or unbalanced labeled data affect the performance of super-

vised systems to complex question answering?

5. Do ensemble methods perform well in this problem domain?

1.5 Contributions

This thesis contributes to the complex question answering task in the following ways:

Automatic Annotation We measure the similarity between the given abstract summary

sentences and the original document sentences. Then we find the most similar sentences

from the original document collection as the extract summary for a given topic. Thus we

prepare five different types of labeled data to feed the supervised systems. We apply five

different techniques to accomplish this: ROUGE similarity measure (Lin, 2004), Basic El-

ement (BE) overlap (Hovy et al., 2006), syntactic similarity measure (Moschitti and Basili,

7



2006), semantic similarity measure (Moschitti et al., 2007), and Extended String Subse-

quence Kernel (ESSK) (Hirao et al., 2003).

Supervised Formulation We formulate the complex question answering problem in terms

of supervised approaches. The representative supervised methods we use are Support Vec-

tor Machines (SVM), Conditional Random Fields (CRF), Hidden Markov Models (HMM),

and Maximum Entropy (MaxEnt).

Impact of Automatic Annotation Techniques For the training of supervised systems,

we use the five different types of labeled data. To show their impact, we extensively in-

vestigate the performance of the four classifiers to label unseen sentences as summary or

non-summary sentence.

Balanced/Unbalanced Labeled Data During automatic annotation, we prepare a bal-

anced labeled data set by treating 50% of sentences as extract summary sentences and the

rest as non-summary sentences. The unbalanced labeled data set is made with only 30%

of sentences as the summary sentences. We evaluate the performance of the supervised

classifiers based on the use of balanced or unbalanced data during training.

Ensemble Methods We build two ensemble-based supervised systems and experiment

their effectiveness to answer complex questions.

1.6 Thesis Outline

We give a chapter-by-chapter outline of the remainder of this thesis in this section.

8



Chapter 2 We give a detailed description of currently available summarization tech-

niques. We then present our approach for the complex question answering task.

Chapter 3 We provide a general review of works performed previously in the automatic

annotation area. Then we present an in-depth discussion of the five automatic annotation

techniques used in this work.

Chapter 4 We take a closer look at the supervised approaches that were successfully

used in different applications before and then we describe the theoretical aspects of them

thoroughly.

Chapter 5 We discuss different summary evaluation techniques in this chapter.

Chapter 6 All the implementation related issues are discussed in detail.

Chapter 7 We present the experimental results and analyze them thoroughly.

Chapter 8 We conclude the thesis by identifying some future directions of our research.

1.7 Published Work

Some of the material presented in this thesis has been previously published. Chapter 3

to Chapter 7 expands on the materials published in (Chali, Hasan, and Joty, 2009b; Chali,

Hasan, and Joty, 2009a; Chali, Hasan, and Joty, 2009c) and (Chali, Joty, and Hasan, 2009).

9



Chapter 2

Automatic Text Summarization

2.1 Introduction

In recent years, a great amount of attention has grown in both Question Answering (QA)

and Multi-document Summarization (MDS) communities to deal with the query relevant

summarization research (Carbonell et al., 2000). The synergy between text summarization

and question answering systems worked as a catalyst behind this. Summarization is a pro-

cess of condensing multiple source texts into one shorter version in response to complex

questions, while Question Answering provides a means for focus in query-oriented sum-

marization. Thus the boundaries between QA and MDS research communities are now be-

ginning to blur. As complex questions cannot be answered using the same techniques that

have successfully been applied to the answering of “factoid” questions, multi-document

summarization techniques are applied to accomplish this task. Thus we focus more on the

summarization aspects. The Information Retrieval phase for Question Answering falls out-

side the scope of this work. We assume the given set of documents as relevant for the given

questions.

Text summarization is a good way to condense a large amount of information into a con-

cise form by selecting the most important information and discarding redundant informa-

tion. According to Mani (2001), automatic text summarization takes a partially-structured

source text from multiple texts written about the same topic, extracts information content

from it, and presents the most important content to the user in a manner sensitive to the

user’s needs. Although search engines do a remarkable job in searching through a heap

of information, they have certain limitations. For example, if we ask for the impact of the

current global financial crisis in different parts of the world, we can expect to sift through
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thousands of results for the answer. The process of getting a desired answer to a complex

question would speed up considerably when the summary of the given documents is also

available. The technology of automatic summarization is critical in dealing with this kind

of problems. In this chapter, we discuss different types and techniques of automatic text

summarization and then we describe the approach we follow.

2.2 Types

The automatic text summarization task can be categorized into the following types:

1. Generic vs. Query-Oriented

2. Abstractive vs. Extractive

3. Single vs. Multi-Document

2.2.1 Generic vs. Query-Oriented

Generic summaries provide users with the overall sense of the document. A generic sum-

mary must contain the core information present in the document. Document understand-

ing plays a key role here. Hence, most of the summaries created by the human beings

are generic summaries. One of the most notable approaches to generic summarization has

been introduced by Carbonell and Goldstein (1998) based on Maximal Marginal Relevance

(MMR) that uses the vector-space model of text retrieval.

In recent years, attention has shifted from generic summarization toward query-based

summarization. While a generic summary includes information which is central to the

source documents, a query-oriented summary should formulate an answer to the query

(Goldstein et al., 1999).
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2.2.2 Abstractive vs. Extractive

An extract summary consists of sentences extracted from the document while an abstract

summary may employ words and phrases that do not appear in the original document (Mani

and Maybury, 1999). Abstract based summarization, as done by humans, involves reading

and understanding an article, web site, document, etc. and then selecting the key points.

Existing research has tried to emulate the human approach to the task with little success

as several complicated factors such as word sense and grammatical structure have to be

taken into consideration. The abstract summary that has all the characteristics of a good

summary is the ultimate goal of automatic text summarization.

On the other hand, extract summarization is simpler than abstract summarization since

the process involves assigning scores to the original sentences using some method and

then picking the top-ranked sentences for the summary. Although this kind of summary

may not be necessarily smooth or fluent, extractive summarization is currently a general

practice among the automatic text summarization researchers for its simplicity.

2.2.3 Single vs. Multi-Document

The process of summarizing one document is termed as single document summarization

whereas in multi-document summarization, multiple documents related to one main topic

are used as sources. Single document summarization is useful in many situations such as

summarizing e-mails, news articles or creating abstract of scientific research papers. Cur-

rently, multi-document summarization is of greater interest since the amount of information

present in the web is becoming huge. For example, we can obtain the news about a single

event from different sources in order to create the summary that provides multiple perspec-

tives at the same time. Although the major challenges of multi-document summarization
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such as completeness, readability, and conciseness are yet to be fulfilled, some web-based

systems are already utilizing the potential of this technology. The Newsblaster1 system au-

tomatically collects, clusters, categorizes, and summarizes news from several sites on the

web, and helps users find the news of their greatest interest.

2.3 Techniques

The automatic text summarization area has gone through several changes with the devel-

opment of techniques and requirements since the year 1950. Typically, we can divide the

summarization approaches into the following categories:

1. Knowledge-based Methods

2. Classical Methods

3. Modern Methods

2.3.1 Knowledge-based Methods

It is always desirable to emulate the process of summarization as humans do it. To accom-

plish the summarization task automatically the machine needs to understand the source

texts, pick out the important points and generate sentences from these points. The whole

approach relies on both natural language understanding and generation. These methods

are termed as knowledge-based methods (Ferrier, 2001). Although the model seems obvi-

ous, the major stages of it may subsume several substages. For instance in the language

understanding phase, a process may exist for building individual sentence representations,

followed by one for integrating these into a larger text representation, perhaps followed by
1http://newsblaster.cs.columbia.edu/
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a further process for modifying the global text representation. This type of summarization

is pretty hard for the machine to perform because they have to characterize a source text as

a whole, capture its important content, where content is a matter both of information and its

expression, and importance is a matter of what is essential as well as what is salient. Hence,

other methods have also been investigated in order to produce automatic summaries.

2.3.2 Classical Methods

The methods that started the automatic text summarization research can be termed as the

classical methods. Being motivated by the need to deal with the information overload

problem, one of the first to perform such research was Luhn (1958). He realized the im-

practicality of trying to summarize more than one genre with one particular method and so,

he chose to concentrate on texts in the scientific domain, where producing abstracts (writ-

ten by humans) is a common practice. Luhn used simple statistical techniques to determine

the most significant sentences of a document. These sentences were then extracted from

the text and printed out together so that they became the summary, or more precisely the

extract. Hence, the task became one of extraction and problematic issues fundamental to

deep approaches such as natural language understanding and generation were reduced.

Methods to find features of the input text have been developed since Luhn’s work. Ed-

mundson (1969) weighted sentences based on four different methods: cue phrase, keyword

(i.e., term frequency based), location, and title. He then evaluated each program by com-

paring against manually created extracts. He used a corpus based model, dividing the set of

articles into a training and a test set. Edmundson found that the combination of cue-title-

location features was the best, with location being the best individual feature and keywords

the worst. These early ground-breaking systems acted as the pioneers to the modern sum-

marization systems.
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2.3.3 Modern Methods

The field of automatic text summarization has received immense attention from the re-

searchers in the recent years. The vast increase of information in the web has acted as a

fuel for this. Automatic summarization plays a central role in information retrieval. As the

summarization tasks have changed, the methods to accomplish these have also kept pace.

Below we discuss the most notable modern methods of automatic summarization.

Graph-based Recently, the graph-based methods, such as LexRank (Erkan and Radev,

2004) and TextRank (Mihalcea and Tarau, 2004), are applied successfully to generic, multi-

document summarization. Erkan and Radev (2004) used the concept of graph-based cen-

trality to rank a set of sentences for producing generic multi-document summaries. A sim-

ilarity graph is produced for the sentences in the document collection. In the graph each

node represents a sentence. An edge between two nodes measures the cosine similarity be-

tween the respective pair of sentences. The degree of a given node is an indication of how

important the sentence is. A topic-sensitive LexRank is proposed in (Otterbacher, Erkan,

and Radev, 2005). In this method, a sentence is mapped to a vector in which each element

represents the occurrence frequency (TF*IDF) of a word. However, the major limitation

of the TF*IDF approach is that it only retains the frequency of the words and does not

take into account the sequence, syntactic and semantic structure, thus cannot distinguish

between “The hero killed the villain” and “The villain killed the hero”.

Latent Semantic Analysis (LSA) Latent Semantic Analysis (LSA) (Deerwester et al.,

1990) is a fully automatic statistical technique to extract and infer relations of expected

contextual usage of words in passages of discourse. The first step towards the application of

LSA is to represent a document as a document-term matrix A, such that each row of matrix

stands for a unique word present in the document and each column stands for a sentence.
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Each entry Ai j represents the frequency of term i in document j. Gong and Liu (2001) have

proposed a scheme for automatic text summarization using LSA. Their approach classifies

the document into different topics and picks the dominant sentence from each dominant

topic sequentially until the summary length is reached.

Lexical Chain A lexical chain is a sequence of related words in the text, spanning short

(adjacent words or sentences) or long distances (entire text). A chain is independent of the

grammatical structure of the text and in effect it is a list of words that captures a portion

of the cohesive structure of the text. Computing the lexical chains in a document is one

technique that can be used to identify the central theme of a document. This in turn leads

to the identification of the key section(s) of the document which can then be used for

summarization purposes. The summarization systems based on lexical chain first extract

the nouns, compound nouns and named entities as candidate words (Li et al., 2007), (Kolla,

2004). The systems rank sentences using a formula that involves a) the lexical chain,

b) keywords from query and c) named entities. For example, (Li et al., 2007) uses the

following formula:

Score = αP(chain)+βP(query)+ γP(nameentity)

where P(chain) is the sum of the scores of the chains whose words come from the candi-

date sentence, P(query) is the sum of the co-occurrences of key words in a topic and the

sentence, and P(nameentity) is the number of name entities existing in both the topic and

the sentence. The three coefficients α, β and γ are set empirically. Then the top ranked

sentences are selected to form the summary.

QA System Typically, in a summarization system that is based on a question answering

system (Molla and Wan, 2006), the topic sentences are converted to a sequence of questions
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as the underlined QA system is designed to answer only simple (i.e. factoid, list) questions.

The QA system normalizes and classifies the questions, and finds the candidate answers

along with the sentences in which the answers appeared. Instead of extracting the exact

terms as answers, the systems extract the sentences for each of the questions in the topic to

form the summary.

Machine Learning Techniques Machine Learning (ML) is concerned with the design

and development of algorithms and techniques that allow computers to learn. The major

focus of machine learning research is to extract information from data automatically, by

computational and statistical methods. The major challenge in summarization lies in dis-

tinguishing the more informative parts of a document from the less informative ones. In the

1990s, with the advent of machine learning techniques in NLP, a series of seminal publica-

tions appeared that employed statistical techniques to produce document extracts for single

document summarization.

While initially most systems assumed feature independence and relied on naive-Bayes

methods, others have focused on the choice of appropriate features and on learning al-

gorithms that make no independence assumptions. Other significant approaches involved

hidden Markov models and log-linear models to improve extractive summarization (Das

and Martins, 2007). Single document summarization systems using Support Vector Ma-

chines (SVMs) demonstrated good performance for both Japanese (Hirao et al., 2002a)

and English documents (Hirao et al., 2002b). Hirao et al. (2003) showed the effectiveness

of their multiple document summarization system employing SVMs for sentence extrac-

tion. Conroy and O’Leary (2001) used two kinds of states, where one kind corresponds to

the summary states and the other corresponds to non-summary states. The motivation of

applying CRF in text summarization came from observations on how humans summarize a

document by posing the problem as a sequence labeling problem (Shen et al., 2007). The
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statistical technique such as Maximum Entropy (MaxEnt) works in a way that assumes

nothing about the information of which it has no prior knowledge (Ferrier, 2001). Joty

(2008) experimented with both empirical and unsupervised machine learning approaches

(K-means and Expectation Maximization (EM) algorithms) to summarize texts.

2.4 Our Approach

In this thesis, we focus our research on query-oriented, extractive, multi-document summa-

rization in order to combat the complex question answering problem such as the one defined

in the DUC-2007 main task. We apply supervised machine learning techniques: Support

Vector Machines (SVM), Hidden Markov Models (HMM), Conditional Random Fields

(CRF), and Maximum Entropy (MaxEnt) to perform the task of automatic summarization.

As supervised systems rely on learning from a vast amount of labeled data, we automati-

cally annotate DUC-2006 data using five text similarity measurement techniques: ROUGE

similarity measure (Lin, 2004), Basic Element (BE) overlap (Hovy et al., 2006), syntactic

similarity measure (Moschitti and Basili, 2006), semantic similarity measure (Moschitti

et al., 2007), and Extended String Subsequence Kernel (ESSK) (Hirao et al., 2003). We

also experiment with supervised ensemble-based approaches that combine the individual

decisions of the classifiers. In supervised learning, the classifier is typically trained on data

pairs defined by feature vectors and corresponding class labels. Besides using different

query-related features, we incorporate some important features from the classical methods

of summarization.
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2.5 Summary

We discussed different types and approaches to automatic text summarization in this chap-

ter. Next chapter will present details on the automatic annotation techniques that we used

to generate huge amount of labeled data required for supervised training.
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Chapter 3

Automatic Annotation Techniques

3.1 Introduction

Annotated corpora are essential for most branches of computational linguistics, including

automatic text summarization. Within computational linguistics, annotated corpora are

normally considered as a gold standard, and are used to train machine learning algorithms

and evaluate the performance of automatic summarization methods (Orasan, 2005). So, for

supervised learning techniques, a huge amount of annotated or labeled data is required as

a precondition. The decision as to whether a sentence is important enough to be annotated

can be made either by humans or by programs. When humans are employed in the process,

producing such a large labeled corpora becomes time consuming and expensive. There

comes the necessity of using automatic methods to align sentences with the intention to

build extracts from abstracts.

Annotation has been employed in automatic summarization since the late 1960s when

Edmundson used one in the evaluation process. In order to produce the annotated corpus,

Edmundson asked humans to identify the important sentences in each text from a collection

of 200 scientific documents (Edmundson, 1969). Given that identification of important sen-

tences is very subjective and difficult, Kupiec, Pedersen, and Chen (1995) took advantage

of human produced abstracts, and asked annotators to align sentences from the document

with sentences from there. In the automatic annotation area, Banko et al. (1999) proposed

a method based on sentence similarity using a bag-of-words (BOW) representation. For

each sentence in the given abstract, the corresponding source sentence is determined by

combining the similarity score and heuristic rules. Marcu (1999) treated a sentence as a set

of units that correspond to clauses and defines similarity between units based on BOW rep-
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resentation. Jing and McKeown (1999) proposed a bigram-based similarity approach using

the Hidden Markov Model. Barzilay (2003) combines edit distance and context informa-

tion around sentences for annotation. However, as these methods are strongly influenced by

word order, disagreement between source and abstract summary sentences leads to failure.

Toutanova et al. (2007) used the ROUGE1 (Lin, 2004) toolkit to produce labeled data au-

tomatically. The “head-modifier-relation” triples, typically considered as Basic Elements

(BE), can help deciding whether any two units match or not considerably more easily than

with longer units (Hovy, Lin, and Zhou, 2005).

Approaches in Recognizing Textual Entailment, Sentence Alignment and Question An-

swering use syntactic and/or semantic information in order to measure the similarity be-

tween two textual units. Corresponding sentences can be parsed into syntactic trees using a

syntactic parser. The similarity between the two trees can be calculated using the tree kernel

(Collins and Duffy, 2001). Shallow semantic representations could prevent the sparseness

of deep structural approaches and overcome the weakness of BOW models (Moschitti et

al., 2007).

Hirao et al. (2004) represented the sentences using Dependency Tree Path (DTP) to

incorporate syntactic information. They applied String Subsequence Kernel (SSK) to mea-

sure the similarity between the DTPs of two sentences and introduced Extended String

Subsequence Kernel (ESSK) considering all possible senses to each word for building ex-

tracts from abstracts. Their method was effective. However, the fact that they did not

disambiguate word senses cannot be disregarded.

The textual similarity measurement techniques of ROUGE similarity measure, Basic

Element (BE) overlap, syntactic similarity measure, semantic similarity measure and Ex-

tended String Subsequence Kernel (ESSK) are reimplemented in this research to do sen-

1It is widely used for automatic summarization evaluation to measure the summary quality by counting
overlapping units between the candidate summary and the reference summary.
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tence annotation and explained in more detail in the later sections.

3.2 ROUGE Similarity Measures

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is an automatic tool to deter-

mine the quality of a summary by comparing it to reference summaries using a collection

of measures (Lin, 2004). The measures count the number of overlapping units such as

n-gram, word-sequences, and word-pairs between the extract and the abstract summaries.

The ROUGE measures considered are: ROUGE-N (N=1,2,3,4), ROUGE-L, ROUGE-W

and ROUGE-S.

ROUGE-N is n-gram recall between a candidate summary and a set of reference sum-

maries which is computed as follows:

ROUGE-N =
∑S∈Re f erenceSummaries ∑gramn∈S Countmatch (gramn)

∑S∈Re f erenceSummaries ∑gramn∈S Count (gramn)

where, n is the length of n− grams and Countmatch (gramn) is the maximum number of

n-grams co-occurring in a candidate summary and a set of reference summaries. In case

of multiple abstracts, pairwise summary-level ROUGE-N between a candidate summary

s and every reference ri, in the reference set is computed. Final ROUGE-N score is then

obtained by taking the maximum of the summary-level ROUGE-N scores:

ROUGE-Nmulti = argmaxi (ROUGE-N(ri,s))

The ROUGE-L (Longest Common Subsequence-LCS) score between two summary

sentences r of length m and s of length n (assuming r is a reference summary sentence and
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s is a peer summary sentence) can be computed as follows (Lin, 2004):

Rlcs =
LCS(r,s)

m

Plcs =
LCS(r,s)

n

Flcs =
PlcsRlcs

αRlcs +(1−α)Plcs

where P is the precision, R is recall and F-measure combines precision and recall into a

single measure. ROUGE-W (Weighted Longest Common Subsequence-WLCS) provides

an improvement to the basic LCS method of computation by using the function f (n) to

credit the sentences having the consecutive matches of words. WLCS can be calculated as

follows:

Rwlcs = f−1
(

WLCS(X ,Y )
f (m)

)
Pwlcs = f−1

(
WLCS(X ,Y )

f (n)

)
Fwlcs =

PwlcsRwlcs

αRwlcs +(1−α)Pwlcs

The ROUGE-S (Skip bi-gram) score between the candidate summary sentence S of

length m and the reference summary sentence R of length n can be computed as follows:
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Rskip2 =
SKIP2(S,R)

C(m,2)

Pskip2 =
SKIP2(S,R)

C(n,2)

Flcs =
Pskip2Rskip2

αRskip2 +(1−α)Pskip2

where, SKIP2(S,Q) is the number of skip bi-gram (any pair of words in their sentence

order, allowing for arbitrary gaps) matches between S and R, and α is a constant that

determines the importance of precision and recall. C is the combination function. ROUGE-

S is extended with the addition of unigram as counting unit which is called ROUGE-SU

(Lin, 2004).

We assume each individual document sentence as the extract summary and calculated

its ROUGE similarity scores with the corresponding abstract summaries. Thus an average

ROUGE score is assigned to each sentence in the document. We choose the top N sentences

based on ROUGE scores to have the label +1 (summary sentences) and the rest to have the

label −1 (non-summary sentences).

3.3 Basic Element (BE) Overlap Measure

According to Hovy et al. (2006), Basic Elements (BEs) are defined as:

• the head of a major syntactic constituent (noun, verb, adjective or adverbial phrases),

expressed as a single item, or

• a relation between a head-BE and a single dependent, expressed as a triple:

(head|modifier|relation).
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With BE represented as a head-modifier-relation triple, one can quite easily decide

whether any two units match or not considerably more easily than with longer units.

We use the syntactic parser Minipar2 to produce a parse tree. Then a set of “cutting

rules” are employed to extract only the valid BEs from the tree. We extract BEs for the

sentences in the document collection using BE package 1.0 distributed by ISI3. Once we

obtain the BEs for a sentence, we compute the Likelihood Ratio (LR) for each BE (Hovy,

Lin, and Zhou, 2005). The LR score of each BE is an information theoretic measure that

represents the relative importance in the BE list from the document set that contains all

the sentences to be aligned. Sorting the BEs according to their LR scores produces a

BE-ranked list. Our goal is to find similarity between document sentences and reference

summary sentences. The ranked list of BEs in this way contains important BEs at the top

which may or may not be relevant to the abstract summary sentences. We filter those BEs

by checking whether they contain any word that matches an abstract sentence word or

a related word (i.e. synonyms, hypernyms, hyponyms and gloss words which are found

using Wordnet (Fellbaum, 1998)). For each abstract sentence, we assign a score to every

document sentence as the sum of its filtered BE scores divided by the number of BEs in

the sentence. Thus, every abstract sentence contributes to the BE score of each document

sentence and we select the top N number of sentences based on average BE scores to have

the label +1 (summary) and rest to have the label −1 (non-summary).

3.4 Syntactic Similarity Measure

Word dependencies having an important role in finding similarity between two texts can

be discovered using a syntactic parser. Syntactic parsing is analyzing a sentence using the

2Available at http://www.cs.ualberta.ca/ lindek/minipar.htm
3BE website:http://www.isi.edu/ cyl/BE
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grammar rules. One method to tag word dependencies is by using the Charniak parser4.

Pasca and Harabagiu (2001) demonstrated that with the syntactic form one can see which

words depend on other words. There should be a similarity between the words that are

dependent in the reference summary sentence and the dependency between words of the

document sentence. Syntactic feature is used successfully in question answering earlier

(Zhang and Lee, 2003; Moschitti et al., 2007; Moschitti and Basili, 2006).

In order to calculate the syntactic similarity between the abstract sentence and the docu-

ment sentence, we first parse the corresponding sentences into syntactic trees using a parser

like Charniak (1999). Then we calculate the similarity between the two trees using the tree

kernel (Collins and Duffy, 2001). We convert each parenthetic representation generated by

the Charniak parser into its corresponding tree and give the trees as input to the tree kernel

functions for measuring the syntactic similarity. The tree kernel of two syntactic trees T1

and T2 is actually the inner product of v(T1) and v(T2):

T K(T1,T2) = v(T1).v(T2) (3.1)

We define the indicator function Ii(n) to be 1 if the sub-tree i is seen rooted at node n

and 0 otherwise. It follows:

vi(T1) = ∑
n1∈N1

Ii(n1)

vi(T2) = ∑
n2∈N2

Ii(n2)

4available at ftp://ftp.cs.brown.edu/pub/nlparser/
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where, N1 and N2 are the set of nodes in T1 and T2 respectively. So, we can derive:

T K(T1,T2) = v(T1).v(T2)

= ∑
i

vi(T1)vi(T2)

= ∑
n1∈N1

∑
n2∈N2

∑
i

Ii(n1)Ii(n2)

= ∑
n1∈N1

∑
n2∈N2

C(n1,n2) (3.2)

where, we define C(n1,n2) = ∑i Ii(n1)Ii(n2). The TK (tree kernel) function gives the

similarity score between the abstract sentence and the document sentence based on the

syntactic structure. Each abstract sentence contributes a score to the document sentences

and the top N number of sentences are selected to be annotated as +1 and the rest as −1

based on the average of similarity scores.

3.5 Semantic Similarity Measure

Shallow semantic representations, bearing a more compact information, can prevent the

sparseness of deep structural approaches and the weakness of BOW models (Moschitti

et al., 2007). Initiatives such as PropBank (PB) (Kingsbury and Palmer, 2002) made it

possible to design accurate automatic Semantic Role Labeling (SRL) systems (Hacioglu et

al., 2003). So, attempting an application of SRL to automatic annotation seems natural, as

similarity of an abstract sentence with a document sentence relies on a deep understanding

of the semantics of both. For example, let us consider the PB annotation:

[ARG0 all] [TARGET use]

[ARG1 the french franc]
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[ARG2 as their currency]

Such annotation can be used to design a shallow semantic representation that can be

matched against other semantically similar sentences, e.g.

[ARG0 the Vatican] [TARGET uses]

[ARG1 the Italian lira]

[ARG2 as their currency]

To experiment with semantic structures, we parse the corresponding sentences seman-

tically using a Semantic Role Labeling (SRL) system like ASSERT5. ASSERT is an au-

tomatic statistical semantic role tagger, that can annotate naturally occurring text with se-

mantic arguments. When presented with a sentence, it performs a full syntactic analysis

of the sentence, automatically identifies all the verb predicates in that sentence, extracts

features for all constituents in the parse tree relative to the predicate, and identifies and

tags the constituents with the appropriate semantic arguments. We represent the annotated

sentences using tree structures called semantic trees (ST). In the semantic tree, arguments

are replaced with the most important word, often referred to as the semantic head. We look

for noun, then verb, then adjective, then adverb to find the semantic head in the argument.

As in tree kernels (Section 3.4), common substructures cannot be composed by a node

with only some of its children as an effective ST representation would require, Moschitti

et al. (2007) solved this problem by designing the Shallow Semantic Tree Kernel (SSTK)

which allows to match portions of a ST. The SSTK changes the ST by adding SLOT nodes,

which provides a fixed number of slots, possibly filled with null arguments that encode all

possible predicate arguments. The slot nodes are used in such a way that the adopted TK

function can generate fragments containing one or more children. These changes generate

a new C which, when substituted (in place of the original C) in Eq. 3.2, gives the new
5available at http://cemantix.org/assert
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SSTK function that yields the similarity score between an abstract sentence and a docu-

ment sentence based on semantic structure. Thus, each document sentence gets a semantic

similarity score corresponding to each abstract sentence and then the top N number of sen-

tences are selected to be labeled as +1 and the rest as −1 on the basis of average similarity

scores.

3.6 Extended String Subsequence Kernel (ESSK)

The ESSK, a similarity measure is a simple extension of the Word Sequence Kernel (WSK)

(Cancedda et al., 2003) and String Subsequence Kernel (SSK) (Lodhi et al., 2002). WSK

receives two sequences of words as input and maps each of them into a high-dimensional

vector space. WSK’s value is just the inner product of the two vectors. But, WSK disre-

gards synonyms, hyponyms, and hypernyms. On the otherhand, SSK measures the similar-

ity between two sequences of “alphabets”. In ESSK, each “alphabet” in SSK is replaced by

a disjunction of an “alphabet” and its alternative (Hirao et al., 2003). Here, each word in a

sentence is considered an “alphabet”, and the alternative is its disambiguated sense that we

find using the WSD (Word Sense Disambiguation) System of Chali and Joty (2007). The

use of word sense yields flexible matching even when paraphrasing is used for summary

sentences (Hirao et al., 2004).

We calculate the similarity score Sim(Ti,U j) using ESSK where Ti denotes abstract

sentence and U j stands for document sentence. Formally, ESSK is defined as follows (Hirao

et al., 2004):

Kesk(T,U) =
d

∑
m=1

∑
ti∈T

∑
u j∈U

Km(ti,u j)
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Km(ti,u j) =

 val(ti,u j) if m = 1

K
′
m−1(ti,u j) · val(ti,u j)

Here, K
′
m(ti,u j) is defined below. ti and u j are nodes of T and U , respectively. Each

node includes a word and its disambiguated sense6 (Chali and Joty, 2007). The function

val(t,u) returns the number of attributes common to the given nodes t and u.

K
′
m(ti,u j) =

 0 if j = 1

λK
′
m(ti,u j−1)+K

′′
m(ti,u j−1)

Here λ is the decay parameter for the number of skipped words. K
′′
m(ti,u j) is defined

as:

K
′′
m(ti,u j) =

 0 if i = 1

λK
′′
m(ti−1,u j)+Km(ti−1,u j)

Finally, the similarity measure is defined after normalization as below:

simesk(T,U) =
Kesk(T,U)√

Kesk(T,T )Kesk(U,U)

Indeed, this is the similarity score we assigned to each document sentence for each

abstract sentence and in the end, the top N number of sentences are selected to be annotated

6We use a dictionary based disambiguation approach assuming one sense per discourse. We use WordNet
(Fellbaum, 1998) to accomplish this.
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as +1 and the rest as −1 based on average similarity scores.

3.7 Summary

In this chapter, we discussed the necessity of automatic annotation to produce large amount

of labeled data. Then, we described five automatic annotation techniques that are used in

this research. Next chapter will focus on the supervised approaches that we used to solve

the complex question answering problem.
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Chapter 4

Supervised Learning Approaches

4.1 Introduction

Supervised classifiers are typically trained on data pairs, defined by feature vectors and

corresponding class labels. On the other hand, unsupervised approaches rely on heuristic

rules that are pretty difficult to generalize (Shen et al., 2007). Supervised extractive sum-

marization can often be regarded as a two-class classification problem that treats summary

sentences as positive samples and non-summary sentences as negative samples. Given the

features of a sentence, a machine-learning based classification model can judge how likely

the sentence is important to be in the summary (Wong, Wu, and Li, 2008).

The Hidden Markov Model (HMM) requires a careful feature selection to achieve high

accuracy (Kudo and Matsumoto, 2001) while bearing fewer assumptions of independence

(Conroy and O’Leary, 2001). HMMs had been successfully applied to many data labeling

tasks such as POS tagging (Kupiec, 1992), shallow parsing (Pla, Molina, and Prieto, 2000)

and speech recognition (Rabiner and Juang, 1993). Conroy and O’Leary (2001) used the

HMM method denoting two kinds of states, where one kind corresponds to the summary

states and the other corresponds to the non-summary states. Given a new cluster of docu-

ments, they calculated the probability of a sentence to be in a summary state. Finally, the

trained model was used to select the most likely summary sentences.

The statistical technique Maximum Entropy (MaxEnt) works in a way assuming noth-

ing about the information of which it has no prior knowledge (Ferrier, 2001). Models based

on maximum entropy are well suited to the sentence extraction task along with providing

competitive results on a variety of language tasks (Berger, Pietra, and Pietra, 1996). Ferrier

(2001) applied the MaxEnt technique to text summarization and found that the maximum
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entropy classifier produces better results than the naive Bayes technique.

Conditional Random Fields (CRF) tend to carry out the summarization task in a dis-

criminative manner (Shen et al., 2007). The motivation of applying CRF in text summa-

rization came from observations on how humans summarize a document by posing the

problem as a sequence labeling problem. Shen et al. (2007) showed the effectiveness of

CRF by applying it to a generic single-document extraction task.

On the other hand, Support Vector Machines (SVM) take a strategy that maximizes

the margin between critical samples and the separating hyperplane for efficient classifica-

tion (Vapnik, 1998). By introducing the Kernel function, SVMs handle non-linear feature

spaces, and carry out the training considering combinations of more than one feature. In the

field of natural language processing, SVMs are applied to text categorization and syntactic

dependency structure analysis, and are reported to have achieved higher accuracy than pre-

vious approaches (Joachims, 1998). Single document summarization systems using SVMs

demonstrated good performance for both Japanese (Hirao et al., 2002a) and English doc-

uments (Hirao et al., 2002b). Hirao et al. (2003) showed effectiveness of their multiple

document summarization system employing SVMs for sentence extraction.

At present, one of the most active research areas in supervised learning is the methods

for constructing good ensemble of classifiers which needs the sub-classifiers to differentiate

greatly (Qi and Huang, 2007). Ensemble techniques are in the focus of the researchers over

the years as different methods for constructing good ensembles are developed (Dietterich,

2000). There have been many studies on the idea of creating multiple models on the train-

ing data and combining the predictions of each model. Several ensemble approaches have

been successfully applied to text classification tasks, such as boosting, Error-Correcting

Output Codes (ECOC), hierarchical mixture model and automated survey coding (Fre-

und and Schapire, 1995; Dietterich and Bakiri, 1995; Toutanova et al., 2001). Alternative

approaches such as stacking and earlier metaclassifier approaches (Bennett, Dumais, and
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Horvitz, 2002) do not partition the data, but rather combine classifiers each of which at-

tempts to classify all data over the entire category space. With the same learning algorithm,

different classifiers can be generated by manipulating the training set, manipulating the

input features, manipulating the output targets or injecting randomness in the learning al-

gorithm (Dietterich, 2000). Ensemble approaches such as a stacking method was proposed

by Wolpert (1992) and Meta Decision Trees was proposed by Todorovski and Dzeroski

(2000). Yan et al. (2003) constructed SVM ensembles for rare class predictions in scene

classification building individual training sets by combining a subset of negative data with

all the positive data, and aggregate the output value of each classifier. Hoi and Lyu (2004)

provided an algorithm called group-based relevance feedback with SVM ensemble success-

fully. A SVM ensemble based on majority voting mechanism was proposed in 2004 to do

a classification experiment on the Hepatitis and Ionosphere data set of the UCI benchmark

database that found the error rate lowered 10% averagely compared to a single classifier

(Wei and Zhang, 2004). Nguyen et al. (2005) used a boosting based support vector ensem-

ble to achieve good performance in summarizing text from a Vietnamese corpus. Rare class

text categorization was successfully performed with SVM ensemble by Silva and Ribeiro

(2006) where the learning strategy uses the separating margin as differentiating factor on

positive classifications. SVM ensembles were also effectively applied in remote sensing

classification (Qi and Huang, 2007).

We employ these supervised approaches to combat the complex question answering

problem. Next sections give a detailed description of these approaches.

4.2 Hidden Markov Models (HMM)

HMMs are a form of generative model, that assign a joint probability p(x,y) to pairs of

observation and label sequences, x and y respectively (Wallach, 2002). Each observation
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sequence (here, sentence sequence)is considered to have been generated by a sequence of

state transitions, beginning in some start state and ending when some predesignated final

state is reached. At each state an element of the observation sequence is stochastically

generated, before moving to the next state. For any observation sequence, the sequence

of states that best accounts for that observation sequence is essentially hidden from an

observer and can only be viewed through the set of stochastic processes that generate an

observation sequence. The principle of identifying the most state sequence that best ac-

counts for an observation sequence forms the foundation underlying the use of finite-state

models for labeling sequential data.

Formally, an HMM is fully defined by

• A finite set of states S.

• A finite output alphabet X .

• A conditional distribution P
(

s
′|s
)

representing the probability of moving from state

s to state s
′
, where s,s

′ ∈ S

• An observation probability distribution P(x|s) representing the probability of emit-

ting observation x when in state s, where x ∈ X and s ∈ S.

• An initial state distribution P(s) ,s ∈ S.

A HMM may be represented as a directed graph G with nodes St and Xt representing

the state of the HMM (or label) at time t and the observation at time t, respectively. This

structure is shown in Figure 4.1 (Wallach, 2002).

This representation of a HMM clearly highlights the conditional independence relations

within a HMM. Specifically, the probability of the state at time t depends only on the state

at time t−1. Similarly, the observation generated at time t only depends on the state of the

model at time t.
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Figure 4.1: HMM structure

The conditional independence relations, combined with the probability chain rule, may

be used to factorize the joint distribution over a state sequence s and observation sequence

x into the product of a set of conditional probabilities:

p(s,x) = p(s1) p(x1|s1)
n

∏
t=2

p(st |st−1) p(xt |st) (4.1)

Finding the optimal state sequence given the observation sequence and the model is

most efficiently performed using a dynamic programming technique known as Viterbi

alignment (Rabiner, 1989).

4.3 Maximum Entropy (MaxEnt)

The maximum entropy approach is a novel method for the task of sentence extraction. The

main principle of the MaxEnt method is to model all that is known and assume nothing

about that which is unknown. In other words, given a collection of facts, the model must be
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consistent with all the facts, but otherwise act as uniformly as possible (Berger, Pietra, and

Pietra, 1996). One advantage of this form of statistical inference is that we only constrain

the model of our data by the information that we do know about the task, i.e. we do not

assume anything about information of which we have no knowledge. Another advantage is

that the information we use to constrain the model is in no way restricted so we can encode

whatever linguistic information we want via the features. However, a disadvantage of this

approach is that, although the maximum entropy approach may make good predictions, we

cannot interpret the individual elements that cause the behavior of the system as a large

number of features tend to be used in the approach and hence the output cannot be used to

interpret all of these separately (Ferrier, 2001).

MaxEnt models can be termed as multinomial logistic regression if they are to classify

the observations into more than two classes (Jurafsky and Martin, 2008). However, in this

research, we used the MaxEnt model to classify the sentences into two classes: summary or

non-summary. The parametric form for the maximum entropy model is as follows (Nigam,

Lafferty, and McCallum, 1999):

P(c|s) =
1

Z (s)
exp

(
∑

i
λi fi

)
(4.2)

Z (s) = ∑
c

exp

(
∑

i
λi fi

)
(4.3)

Here, c is the class label and s is the item we are interested in labeling that is the

sentences here. Z is the normalization factor that is just used to make the exponential into a

true probability. Each fi is a feature with the associated weight λi which can be determined

by numerical optimization techniques in absence of a closed form solution.
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Figure 4.2: CRF model structure

4.4 Conditional Random Fields (CRF)

To reap the benefits of using a conditional probabilistic framework for labeling sequen-

tial data and simultaneously overcome the label bias problem, Lafferty, McCallum, and

Pereira (2001) introduced CRFs. So, CRFs are conditional probabilistic sequence models,

however, rather than being directed graphical models, CRFs are undirected graphical mod-

els (Wallach, 2002). This allows the specification of a single joint probability distribution

over the entire label sequence given the observation sequence, rather than defining per-state

distributions over the next states given the current state. The conditional nature of the distri-

bution over label sequences allows CRFs to model real-world data in which the conditional

probability of a label sequence can depend on non-independent, interacting features of the

observation sequence. In addition to this, the exponential nature of the distribution chosen

by Lafferty, McCallum, and Pereira (2001) enables features of different states to be traded

off against each other, weighting some states in a sequence as being more important than

others.

Figure 4.2 shows the linear chain model structure of CRF (Wallach, 2002).

CRF allows the specification of a single joint probability distribution over the entire
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label sequence given the observation sequence, rather than defining per-state distributions

over the next states given the current state. Given an observation sequence (sentence se-

quence here) X = (x1, · · · ,xT ) and the corresponding state sequence Y = (y1, · · · ,yT ), the

probability of Y conditioned on X defined in CRFs, P(Y |X), is as follows:

1
ZX

exp

(
∑
i,k

λk fk (yi−1,yi,X)+∑
i,l

µlgl (yi,X)

)
(4.4)

where ZX is the normalization constant that makes the probability of all state sequences

sum to one; fk (yi−1,yi,X) is an arbitrary feature function over the entire observation se-

quence and the states at positions i and i−1 while gl (yi,X) is a feature function of state at

position i and the observation sequence; λk and µl are the weights learned for the feature

functions fk and gl , reflecting the confidence of the feature functions (Shen et al., 2007).

4.5 Support Vector Machines (SVM)

SVM is a powerful methodology for solving machine learning problems introduced by Vap-

nik (Cortes and Vapnik, 1995) based on the Structural Risk Minimization principle. In the

classification problem, the SVM classifier typically follows from the solution to a quadratic

problem. SVM finds the separating hyperplane that has maximum margin between the two

classes in case of binary classification. Separating the examples with a maximum margin

hyperplane is motivated by the results from statistical learning theory, which states that

a learning algorithm, to achieve good generalization, should minimize both the empirical

error and also the “capacity” of the functions that the learning algorithm implements.

Figure 4.3 shows the conceptual structure of SVM. Training samples each of which
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Figure 4.3: Support Vector Machines

belongs either to positive or negative class can be denoted by:

(x1,y1) , . . . ,(xu,yu) , x j ∈ Rn, y j ∈ {+1,−1}

Here, x j is a feature vector of the j-th sample represented by an n dimensional vector;

y j is its class label. u is the number of the given training samples. SVM separates positive

and negative examples by a hyperplane defined by:

w · x+b = 0, w ∈ Rn,b ∈ R (4.5)

where “·” stands for the inner product. In general, a hyperplane is not unique (Cortes

and Vapnik, 1995). The SVM determines the optimal hyperplane by maximizing the mar-

gin. The margin is the distance between negative examples and positive examples; the
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distance between w · x+b = 1 and w · x+b =−1.

From Figure 4.3, we clearly see that the SVM on the left will generalize far better than

that of the right as it has a optimally maximized margin between two classes of samples.

The examples on w ·x+b =±1 are called the Support Vectors which represent both positive

or negative examples. The hyperplane must satisfy the following constraints:

yi (w · x j +b)−1≥ 0

Hence, the size of the margin is 2/||w||. In order to maximize the margin, we assume

the following objective function:

Minimizew,bJ (w) =
1
2
||w||2 (4.6)

s.t. y j (w · x j +b)−1≥ 0

By solving a quadratic programming problem, the decision function f (x) = sgn(g(x))

is derived, where

g(x) =
u

∑
i=1

λiyixi · x+b (4.7)

When examples are not linearly separable, the SVM algorithm allows for the use of

slack variables
(
ξ j
)

for all x j to allow classification errors and the possibility to map ex-

amples to a (high-dimensional) feature space. These ξ j give a misclassification error and
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should satisfy the following inequalities (Kudo and Matsumoto, 2001):

yi (w · x j +b)− (1−ξ j)≥ 0

Hence, we assume the following objective function to maximize the margin:

Minimizew,b,ξ J (w,ξ) =
1
2
||w||2 +C

u

∑
j=1

ξ j (4.8)

s.t. y j (w · x j +b)− (1−ξ j)≥ 0

Here, ||w||/2 indicates the size of the margin, ∑
u
j=1 ξ j indicates the penalty for misclas-

sification, and C is the cost parameter that determines the trade-off for these two arguments.

The decision function depends only on support vectors (λi 6= 0). Training examples, except

for support vectors (λi = 0), have no influence on the decision function.

SVMs can handle non-linear decision surfaces with kernel function K (xi · x). Therefore,

the decision function can be rewritten as follows:

g(x) =
u

∑
i=1

λiyiK (xi,x)+b (4.9)

In this research, we use polynomial kernel functions, which have been found to be very

effective in the study of other tasks in natural language processing (Joachims, 1998; Kudo

and Matsumoto, 2001):
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K (x,y) = (x · y+1)d (4.10)

4.6 Ensemble Methods

Ensemble methods are learning algorithms that construct a set of classifiers and then clas-

sify new data points by taking a (weighted) vote of their predictions (Dietterich, 2000). The

main strategy is to improve the overall performance by correcting mistakes of one classifier

using the accurate output of others. Thus, ensembles are often much more accurate than the

individual base models that make them up. Ensemble learning consists of two problems;

ensemble generation: how does one generate the base models? and ensemble integration:

how does one integrate the base models predictions to improve performance? Ensemble

generation can be characterized as being homogeneous if each base learning model uses

the same learning algorithm or heterogeneous if the base models can be built from a range

of learning algorithms (Rooney et al., 2004). Many methods for constructing ensembles

have been developed over the years which consider Bayesian voting, manipulation of the

training examples, input features and output targets, injecting randomness and so on. The

most general purpose homogeneous ensemble methods are Bagging, AdaBoost algorithm

and Cross-Validation Committees (CVC) (Dietterich, 2000). Ensemble methods are suc-

cessfully applied in text classification tasks (Silva and Ribeiro, 2006).

In this research, we use the Cross-Validation Committees (Parmanto, Munro, and Doyle,

1996) approach of constructing an homogeneous ensemble to inject differences into several

SVM classifiers. We apply the supervised learning techniques: Support Vector Machines
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(SVM), Hidden Markov Models (HMM), Conditional Random Fields (CRF), and Max-

Ent (Maximum Entropy) to get individual predictions and then combine them to form a

heterogeneous ensemble.

4.6.1 Homogeneous Ensemble

Ensemble generation for homogeneous learning is generally addressed by using different

samples of the training data for each base model keeping the learning algorithm stable

(Rooney et al., 2004). We use the CVC approach to make four different SVM classifiers.

Cross-Validation Committees (CVC) This is a training set sampling method where the

strategy is to construct the training sets by leaving out disjoint subsets of the training data

(Dietterich, 2000). For instance, the training set can be randomly divided into 4 disjoint

subsets. Then 4 overlapping training sets can be built by dropping out a different one of

these 4 subsets. As the same type of procedure is employed to construct training sets for 4-

fold cross validation, so ensembles constructed in this manner is termed as cross-validation

committees (Parmanto, Munro, and Doyle, 1996). An important issue in the CVC is the

degree of data overlap between the replicates that is the different training subsets. The

degree of overlap essentially depends on the number of replicates and the size of a removed

fraction from the original sample.

1. Divide whole training data set D into v−fractions d1, . . . ,dv
2. Leave one fraction dk and train classifier ck with the rest of the data (D−dk)
3. Build a committee from the classifiers using a simple averaging procedure.

Algorithm 1: Cross-Validation Committees (CVC) Method

The fraction of data overlap determines the trade-off between the individual classifier

performance and error correlation between the classifiers. Lower correlation is often ob-
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vious if the classifiers are trained with less overlapped data. The typical algorithm of the

CVC approach (Parmanto, Munro, and Doyle, 1996) is presented in Algorithm 1.

4.6.2 Heterogeneous Ensemble

Heterogeneous ensemble is formed using the same training data set on different learning

methods. We combine the individual decisions of the four classifiers: Support Vector Ma-

chines (SVM), Hidden Markov Models (HMM), Conditional Random Fields (CRF), and

MaxEnt (Maximum Entropy) by taking a weighted voting and then the combined decision

values are used to classify the unseen data set.

4.7 Summary

In this chapter, we discussed the theories of supervised machine learning techniques that

we apply for the complex question answering task. In the next chapter, we will describe

different evaluation techniques that can be used to judge all the systems.
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Chapter 5

Evaluation Techniques

5.1 Introduction

In any natural language processing task, without systematic evaluation it is impossible to

assess the quality of an NLP system and compare performance against other systems. Many

NLP tasks such as parsing, named entity recognition, chunking and semantic role labeling

etc. can be automatically evaluated using standard precision and recall measures. However,

the evaluation of a summary is a very difficult task as there is no unique gold standard. For

example, in automatic summarization there can be multiple possible summaries of the same

source documents. Again, it is always hard to tell what makes a summary a good summary

since this fact largely depends on who is the summarizer. For a summary to be a good

summary, it must be comparable to an already defined good summary. In this chapter, we

discuss the widely available summary evaluation techniques.

5.2 Manual Evaluation

In early 1960s, the evaluation of summaries was mainly done by humans (Edmundson,

1969). Methods for evaluating text summarization can be broadly classified into two cate-

gories (Jones and Galliers, 1996).

5.2.1 Intrinsic Methods

In intrinsic evaluation, humans judge the summarization quality based on the analyses of

the summaries directly. This type of evaluation might involve user judgment of fluency of
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summary coverage or similarity to an “ideal” summary. Measures of fluency can address

language complexity, redundancy, coherence, preservation of different structured environ-

ments such as lists or tables, grammatical features etc.

User Evaluation

In DUC-2007, NIST manually evaluated the linguistic features of each submitted summary

using a set of quality questions1. According to them, linguistic quality questions are tar-

geted to assess how readable and fluent the summaries are, and they measure qualities of

the summary that do not involve comparison with a model (human generated) summary or

given topic. These questions require a certain readability property to be assessed on a five-

point scale from “1” to “5”, where “5” indicates that the summary is good with the respect

to the quality under question, “1” indicates that the summary is bad with respect to the

quality stated in the question, and “2” to “4” show the gradation in between. The quality

of the summary is assessed only with respect to the property that is described in the spe-

cific category. The information content and responsiveness of the summary are measured

separately in the “responsiveness” part of the evaluation.

Grammaticality The summary should have no datelines, system-internal formatting,

capitalization errors or obviously ungrammatical sentences (e.g., fragments, missing com-

ponents) that make the text difficult to read.

Non-redundancy There should be no unnecessary repetition in the summary. Unneces-

sary repetition might take the form of whole sentences that are repeated, or repeated facts,

or the repeated use of a noun or noun phrase (e.g., “Morris Dees”) when a pronoun (“he”)

1http://www-nlpir.nist.gov/projects/duc/duc2007/quality-questions.txt
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would suffice.

Referential clarity It should be easy to identify who or what the pronouns and noun

phrases in the summary are referring to. If a person or other entity is mentioned, it should

be clear what their role in the story is. So, a reference would be unclear if an entity is

referenced but its identity or relation to the story remains unclear.

Focus The summary should have a focus. Sentences should only contain information that

is related to the rest of the summary.

Structure and Coherence The summary should be well-structured and well-organized.

The summary should not just be a heap of related information, but should build from sen-

tence to sentence to a coherent body of information about a topic.

Responsiveness This is measured primarily in terms of the amount of information present

in the summary that actually helps to satisfy the information need expressed in the topic

statement. The linguistic quality of the summary might play only an indirect role in this

judgment, insofar as poor linguistic quality interferes with the expression of information

and reduces the amount of information that is conveyed.

Pyramid Evaluation

The pyramid method is another manual evaluation technique for summarization evaluation

and it was developed by Columbia University2 in an attempt to address a key problem

in summarization, namely the fact that different humans choose different content when

writing summaries. The pyramid method addresses the problem by using multiple human

2http://www1.cs.columbia.edu/ becky/DUC2006/2006-pyramid-guidelines.html
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summaries to create a gold-standard and by exploiting the frequency of information in the

human summaries in order to assign importance to different facts. The pyramid approach

tailors the evaluation to observed distributions of content over a pool of human summaries,

rather than to human judgments of summaries. This method involves semantic matching

of content units to which differential weights are assigned based on their frequency in a

corpus of summaries that can lead to more stable, more informative scores, and hence to a

meaningful content evaluation.

A pyramid is a model predicting the distribution of information content in summaries,

as reflected in the summaries humans write. The pyramid model explicitly represents the

overlapping content in a set of model human summaries, and indicates the frequency that

models express each content unit. The resulting pyramid is used to evaluate the quality

of information content in a new, distinct summary (a peer). For each topic, a weighted

inventory of Summary Content Units (SCUs) i.e. a pyramid is created. The pyramid is

reliable, predictive and diagnostic, and it constitutes a resource for investigating alternate

realizations of the same meaning. An SCU is similar to a collection of paraphrases in that

it groups together words and phrases from distinct summaries into a single set, based on

shared content. The words selected from one summary to go into an SCU are referred to

as a contributor of the SCU. The annotator must assign a label to the SCU that expresses

the shared content. The label is a concise English sentence that states what the annotator

views as the meaning of the content unit. Coincidentally, the SCU will have a weight

corresponding to the number of model summaries that express the designated content. The

SCU weight is automatically computed, based the number of summaries that contribute

to it, so the annotator is not responsible for assigning weights. In DUC-2007 main task,

modified pyramid scores are used that are very closely related to the original pyramid score,

which equals the sum of the weights of the Summary Content Units (SCUs) that a peer

summary matches, normalized by the weight of an ideally informative summary consisting
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of the same number of contributors as the peer. However, the normalization factor for the

modified score is the ideal weight of a summary which has the same number of contributors

as the average of the model summaries in the associated pyramid.

5.2.2 Extrinsic Methods

If we determine the effect of summarization on some other task, that is termed as extrinsic

evaluation. The usefulness of a summary can be examined with respect to some information

needs such as finding documents from a large collection, routing documents, producing

an effective report or presentation using a summary etc. It is also possible to judge the

impact of a summarizer on the system in which it is embedded, for example, in a question

answering system. The amount of work required to post-edit a summary output to make it

more readable can be thought of as another measure to evaluate it.

5.3 Automatic Evaluation

Although manual evaluations provide essential feedback on the quality of system output,

they are costly and time consuming to run. During system development, evaluations must

be performed quickly and frequently and is thus impractical to elicit human judgments for

development purposes. Due to this, researchers seek methods for automatically evaluat-

ing system output without any human input. The main challenge of automatic evaluation

methods is the unavailability of an “ideal” summary for a direct comparison with system

generated summary. The human summaries may be supplied by someone but there is no

guarantee of these being perfect summaries since they might have considerable disadvan-

tages. Hence, the judgment of a summary becomes increasingly difficult.
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ROUGE ROUGE, which stands for “Recall-Oriented Understudy for Gisting Evalua-

tion” (Lin, 2004), is an automatic summary evaluation toolkit that is widely accepted now-

a-days. ROUGE is a collection of measures that determines the quality of a summary by

comparing it to reference summaries created by humans. The measures count the number

of overlapping units such as n-gram, word-sequences, and word-pairs between the system-

generated summary to be evaluated and the ideal summaries created by humans. ROUGE

measures considered in the evaluation are: ROUGE-N (N=1,2,3,4), ROUGE-L, ROUGE-

W and ROUGE-S. We discuss the ROUGE similarity measures in section 3.2.

5.4 Our Approach

We evaluate all the system generated summaries with respect to the given abstract sum-

maries by both manual and automatic evaluation methods. For manual evaluation, we

follow the intrinsic approach and do both user and Pyramid evaluation according to the

DUC-2007 guidelines.

5.5 Summary

In this chapter, we discuss the different summary evaluation techniques. Next chapter will

focus on the implementation related issues in details.
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Chapter 6

Implementation Details

6.1 Introduction

The complex question answering problem is a general one. One instance of it was the

problem defined in the DUC-2007 main task. In this thesis, we consider this task to run

our experiments. We accomplish the task by applying different supervised learning tech-

niques. As supervised learning requires a huge amount of data in the training stage, we

apply ROUGE similarity measure (Lin, 2004), Basic Element (BE) overlap (Hovy et al.,

2006), syntactic similarity measure (Moschitti and Basili, 2006), semantic similarity mea-

sure (Moschitti et al., 2007), and Extended String Subsequence Kernel (ESSK) (Hirao et

al., 2003) (discussed in Chapter 3) to automatically label the corpora of sentences and pro-

duce sufficient data for training. We feed these 5 types of labeled data into the learners of

each of the supervised approaches: Support Vector Machines (SVM), Conditional Random

Fields (CRF), Hidden Markov Models (HMM), and Maximum Entropy (MaxEnt). Then

we extensively investigate the performance of the classifiers to label unseen sentences as

summary or non-summary sentence. We also experiment with homogeneous and heteroge-

neous ensembles for the same task. This chapter discusses all the implementation issues.

6.2 Task Definition

Over the past three years, complex questions have been the focus of much attention in both

the automatic Question Answering (QA) and Multi Document Summarization (MDS) com-

munities. While most current complex QA evaluations (including the 2004 AQUAINT Re-
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lationship QA Pilot1, the 2005 Text Retrieval Conference (TREC) Relationship QA Task2,

and the TREC definition3) require systems to return unstructured lists of candidate answers

in response to a complex question, recent MDS evaluations (including the 2005, 2006 and

2007 Document Understanding Conferences (DUC)4) have tasked systems with returning

paragraph-length answers to complex questions that are responsive, relevant, and coherent.

The DUC conference series is run by the National Institute of Standards and Technology

(NIST) to further progress in summarization and enable researchers to participate in large-

scale experiments.

The problem definition at DUC-2007 (now TAC5) was: “Given a complex question

(topic description) and a collection of relevant documents, the task is to synthesize a fluent,

well-organized 250-word summary of the documents that answers the question(s) in the

topic”.

For example, given the topic description (from DUC-2007):

<topic>

<num>D0703A</num>

<title> steps toward introduction

of the Euro </title>

<narr>

Describe steps taken and worldwide

reaction prior to the introduction

of the Euro on January 1, 1999.

Include predictions and expectations

1http://trec.nist.gov/data/qa/add QAresources/README.relationship.txt
2http://trec.nist.gov/data/qa/2005 qadata/qa.05.guidelines.html
3http://trec.nist.gov/overview.html
4http://duc.nist.gov/
5http://www.nist.gov/tac/
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reported in the press.

</narr>

</topic>

and a collection of relevant documents, the task of the summarizer is to build a summary

that answers the question(s) in the topic description. We consider this task and apply all

four supervised approaches to generate topic-oriented 250-word extract summaries.

6.3 Corpus

The DUC-2006 and DUC-2007 document sets came from the AQUAINT corpus, which

is comprised of newswire articles from the Associated Press and New York Times (1998-

2000) and Xinhua News Agency (1996-2000). We use the DUC-2006 data to train all

the systems and then produce extract summaries for the 25 topics of the DUC-2007 data

according to the task description.

6.4 Data Processing

We clean up the raw data and extract information about the topics by deleting all the unnec-

essary tags. The sentences of each given document are tokenized by placing one sentence in

each line. We do this to label the sentences (by +1 or -1 meaning summary or non-summary

sentence) individually. We use OAK system (Sekine, 2002) for this purpose.
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6.5 Feature Extraction

We represent each sentence of a document as a vector of feature-values. We divide the

features into two major categories: the features which declare the importance of a sentence

in a document and the features which measure the similarity between each sentence and the

user query (Chali, Joty, and Hasan, 2009; Chali and Joty, 2008; Edmundson, 1969; Sekine

and Nobata, 2001).

Importance Measures

Position of Sentences We give the score 1 to those sentences found within the first and

the last 3 sentences of a document and assign score 0 to the rest, as the early and late

sentences are considered important intuitively.

Length of Sentences If a sentence is longer, we can heuristically claim that it has a better

chance of inclusion in the summary. We give the score 1 to a longer sentence and assign

the score 0 otherwise. In this thesis, we considered a sentence as long if it has more than

11 words.

Title Match If we find a match such as exact word overlap, synonym overlap and hy-

ponym overlap between the title and a sentence, we give it the score 1, otherwise 0.

Named Entity The score 1 is given to a sentence, which contains a certain Named Entity

class among: PERSON, LOCATION, ORGANIZATION, GPE (Geo-Political Entity), FA-

CILITY, DATE, MONEY, PERCENT, TIME. We use OAK System (Sekine, 2002), from

New York University for Named Entity recognition.
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Cue Word Match The probable relevance of a sentence is affected by the presence of

pragmatic words such as “significant”, “impossible”, “in conclusion”, “finally” etc. We

use a cue word list of 228 words. We give the score 1 to a sentence having any of the cue

words and 0 otherwise.

Query-related Features

n-gram Overlap This is the recall between the query and the candidate sentence where

n stands for the length of the n-gram(n = 1,2,3,4).

LCS Given two sequences S1 and S2, the longest common subsequence (LCS) of S1 and S2 is

a common subsequence with maximum length.

WLCS Weighted Longest Common Subsequence (WLCS) improves the basic LCS method

to remember the length of consecutive matches encountered so far (Lin, 2004). We com-

pute the WLCS-based F-measure between a query and a sentence.

Skip-Bigram Skip-bigram measures the overlap of skip-bigrams between a candidate

sentence and a query sentence. Skip-bigram counts all in-order matching word pairs while

LCS only counts one longest common subsequence.

Exact-word Overlap This is a measure that counts the number of words matching ex-

actly between the candidate sentence and the query sentence.

Synonym Overlap This is the overlap between the list of synonyms of the important

words extracted from the candidate sentence and the query related words. We use WordNet

(Fellbaum, 1998) database for this purpose.
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Hypernym/Hyponym Overlap It is the overlap between the list of hypernyms and hy-

ponyms (up to level 2 in WordNet) of the nouns extracted from the sentence and the query

related words.

Gloss Overlap Our systems extract the glossary entry for the proper nouns from Word-

Net. Gloss overlap is the overlap between the list of important words that are extracted

from the glossary definition of the nouns in the candidate sentence and the query related

words.

Syntactic Feature The syntactic similarity between the query and the sentence is calcu-

lated after parsing them into syntactic trees using a parser such as (Charniak, 1999) and

finding the similarity between the two trees using the tree kernel (Collins and Duffy, 2001).

Basic Element (BE) Overlap We extract BEs (Discussed in Section 3.3) for the sen-

tences in the document collection. Then we filter those BEs by checking whether they

contain any word which is a query word or a query related word and get the BE overlap

score (Hovy, Lin, and Zhou, 2005).

6.6 Experimental Setup

6.6.1 Training and Testing Data Preparation

We use the five automatic annotation methods to label each sentence of the 50 document

sets of DUC-2006 to produce five different versions of training data for feeding the SVM,

HMM, CRF and MaxEnt learners. We choose the top 30% sentences (based on the scores

assigned by an annotation scheme) of a document set to have the label +1 and the rest to
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have −1. Unlabeled sentences of 25 document sets of DUC-2007 data are used for the

testing purpose.

In another experiment, to check whether a balanced set of training data improves the

performance of the supervised systems or not, we obtain a training data set by annotating

(using only ROUGE similarity measures(Lin, 2004)) 50% sentences of each document set

as positive and the rest as negative. The ensemble experiments are also performed using

this balanced set of training data.

Typically, the training data includes a collection of sentences where each sentence is

represented as a combination of a feature vector and corresponding class label (+1 or −1).

On the other hand, testing data is comprised of a set of sentences that are represented as

feature vectors. The organization of training and testing data depends on the input format

of the package that is used for a particular supervised system.

6.6.2 Package Settings

SVM

We use the second order polynomial kernel for the ROUGE and ESSK labeled training sets.

For the BE, syntactic and semantic labeled training sets, the third order polynomial kernel

is used. The third order polynomial kernel is also used when we do experiments with the

balanced training data. The use of each kernel is based on the accuracy we achieved during

training.

To allow some flexibility in separating the classes, SVM models have a cost parameter,

C, that controls the trade off between allowing training errors and forcing rigid margins.

It creates a soft margin that permits some misclassifications. Increasing the value of C in-

creases the cost of misclassifying points and forces the creation of a more accurate model
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that may not generalize well. We apply 3-fold cross validation with randomized local-grid

search (Hsu, Chang, and Lin, 2008) for estimating the value of the trade off parameter C.

Intuitively, we try the value of C in 2i, where i ∈ {−5,−4, · · · ,4,5} and set C as the best

performed value of 0.125 for the second order polynomial kernel. We keep the default value

for the third order polynomial kernel. We use the SV Mlight (Joachims, 1999) package6 for

training and testing in this work. SV Mlight is an implementation of Support Vector Machine

(Cortes and Vapnik, 1995) for the problems of pattern recognition, regression, and learning

a ranking function. The optimization algorithms used here have scalable memory require-

ments and can handle problems with many thousands of support vectors efficiently. This

software also provides methods for assessing the generalization performance efficiently. It

includes two efficient estimation methods for both error rate and precision/recall. SV Mlight

consists of a learning module and a classification module. The learning module takes an

input file containing the feature values with corresponding labels and produces a model

file. The classification module is used to apply the learned model to new examples.

HMM

We apply Maximum Likelihood Estimation7 (MLE) technique by frequency counts with

add-one smoothing8 to estimate the three HMM parameters: initial state probabilities, tran-

sition probabilities and emission probabilities. We use Dr. Dekang Lin’s HMM package9 to

generate the most probable label sequence given the model parameters and the observation

6http://svmlight.joachims.org/
7The idea behind maximum likelihood parameter estimation is to determine the parameters that maximize

the probability (likelihood) of the sample data. From a statistical point of view, the method of maximum
likelihood is considered to be more robust (with some exceptions) and yields estimators with good statistical
properties.

8This method merely adds one to each count to modify the maximum likelihood estimates for computing
the probabilities, focusing on the events that are incorrectly assumed to have zero probability.

9http://www.cs.ualberta.ca/˜lindek/hmm.htm
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sequence (unlabeled DUC-2007 test data).

CRF

We use MALLET-0.4 NLP toolkit10 (McCallum, 2002) to implement the CRF. We for-

mulate our problem in terms of MALLET’s SimpleTagger11 class, which is a command

line interface to the MALLET CRF class. We modify the SimpleTagger class in order to

include the provision for producing corresponding posterior probabilities of the predicted

labels which are used later for ranking sentences.

MaxEnt

We build the MaxEnt system using Dr. Dekang Lin’s MaxEnt package12. To define the

exponential prior of the λ values13 in MaxEnt models, an extra parameter α is used in the

package during training. We keep the value of α as default.

10MALLET is a Java-based package for statistical natural language processing, document classification,
clustering, topic modeling, information extraction, and other machine learning applications to text. MALLET
includes sophisticated tools for document classification, efficient routines for converting text to “features”,
a wide variety of algorithms (including Nave Bayes, Maximum Entropy, and Decision Trees), and code
for evaluating classifier performance using several commonly used metrics. In addition to classification,
MALLET includes tools for sequence tagging for applications such as named-entity extraction from text.
Algorithms include Hidden Markov Models, Maximum Entropy Markov Models, and Conditional Random
Fields. These methods are implemented in an extensible system for finite state transducers.

11http://mallet.cs.umass.edu/index.php/
12http://www.cs.ualberta.ca/˜lindek/downloads.htm
13λ is the associated weight for each feature, which is learned by the MaxEnt model using numerical

optimization techniques.
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Ensemble Experiments

Homogeneous Ensemble To build a homogeneous ensemble, we generate 4 different

SVM models in the following way. We divide the training data set (DUC-2006 data) into 4

equal-sized groups. According to the Cross-Validation Committees (CVC) algorithm (Par-

manto, Munro, and Doyle, 1996) (discussed in Section 4.6.1), each time we keep 25%

of the data aside and use the remaining 75% data for training. Next, we present the test

data (DUC-2007 data) before each of the generated SVM models which produces individ-

ual predictions (decision scores along with a label +1 or −1) to those unseen data. The

decision scores are the normalized distance from the separating hyperplane14 to each sam-

ple. Then, we create the SVM ensemble by combining the predictions by simple weighted

averaging. We increment a particular classifier’s decision value by 1 (giving more weight)

if it predicts a sentence as positive and decrement by 1 (imposing penalty), if the case is

opposite. The resulting prediction values are used later for ranking the sentences. During

training steps, we use the third-order polynomial kernel for the SVM keeping the default

value of the trade-off parameter C. We perform the training experiments in WestGrid15,

which operates a high performance computing (HPC) collaboration and visualization in-

frastructure across western Canada. We use the Cortex cluster which is comprised of some

shared-memory computers for large serial jobs or demanding parallel jobs.

Heterogeneous Ensemble Differences among the classifiers can be realized by using

separate training samples with the same learning method (Qi and Huang, 2007). We ex-

periment with an ensemble method that uses the same training set on different learning

methods. Thus, we consider it as a heterogeneous ensemble that joins the above four clas-

sifiers (SVM, HMM, CRF and MaxEnt) which are somehow different in accomplishing
14A Support Vector Machine (SVM) performs classification by constructing an N-dimensional hyperplane

that optimally separates the data into two categories.
15http://westgrid.ca/
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the classification task. We combine the individual decisions of the classifiers by taking a

weighted voting. Then, the combined decision values are used to label the unseen data set.

We impose a positive weight (ranging from 1 to 5 depending on the individual classifier’s

performance, more weight if it is declared positive by a better performer) to each positively

classified sentence. We take no action for the negatively classified sentences so that they

can fall back during ranking.

6.6.3 Sentence Ranking

Extract summary generation can be thought of as searching for important sentences in the

documents, which can be dealt with as a two-class problem. However, the proportion

of important sentences in training data will differ from that in test data. The number of

important sentences in a document is determined by a summarization rate or word limit

which is given at run-time. In the Multi-Document Summarization task at DUC-2007, the

word limit was 250 words. A simple solution to this problem is to rank sentences in a

document, then select the top N sentences.

In SVM systems, we use g(x), the normalized distance from the hyperplane to each

sample point, x to rank the sentences. Then, we choose N sentences until the summary

length (250 words for DUC-2007) is reached. For HMM systems, we use Maximal Marginal

Relevance (MMR) based method to rank the sentences (Carbonell, Geng, and Goldstein,

1997). According to MMR, we choose a sentence for inclusion in summary such that it

is maximally similar to the document and dissimilar to the already-selected sentences. In

CRF systems, we generate posterior probabilities corresponding to each predicted label in

the label sequence to measure the confidence of each sentence for summary inclusion. Sim-

ilarly, for MaxEnt, the corresponding probability values of the predicted labels are used to

rank the sentences.
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6.7 Summary

In this chapter, we presented the implementation issues related to the systems that we used

for the complex question answering task. Next chapter will show the results of all the

experiments followed by relevant discussions.
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Chapter 7

Results and Analyses

7.1 Introduction

In DUC-2007, each topic and its document cluster were given to 4 different NIST assessors,

including the developer of the topic. The assessor created a 250-word summary of the

document cluster that satisfies the information need expressed in the topic statement. These

multiple “reference summaries” are used in the evaluation of our summary content. In

this chapter, we present the automatic evaluation and manual evaluation results of all our

systems.

7.2 Automatic Evaluation Results

We evaluate the system generated summaries using the automatic evaluation toolkit ROUGE

(Lin, 2004) which has been widely adopted by DUC (Now TAC1). The available ROUGE

measures are: ROUGE-N (N=1,2,3,4), ROUGE-L, ROUGE-W and ROUGE-S. ROUGE

parameters were set as that of DUC-2007 evaluation setup.

Precision (P) and Recall (R) are the widely used evaluation measures computed based

on the number of units (i.e. sentences, words, etc) common to both system-generated

and reference summaries. F-measure, another important measure in NLP, combines pre-

cision and recall into a single measure of overall performance. We consider these widely

used evaluation measures Precision (P), Recall (R) and F-measure for our evaluation task.

We report the three widely adopted ROUGE metrics in the results: ROUGE-1 (unigram),

ROUGE-2 (bigram) and ROUGE-SU (skip bi-gram) because these have never been shown

1http://www.nist.gov/tac/
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to not correlate with the human judgement. All the ROUGE measures are calculated by

running ROUGE-1.5.5 with stemming but no removal of stopwords.

ROUGE run-time parameters:

ROUGE-1.5.5.pl -2 -1 -u -r 1000 -t 0 -n 4 -w 1.2 -m -l 250 -a

We show 95% confidence interval of the evaluation metric, ROUGE-SU for all systems

to report significance for doing meaningful comparison. We use the ROUGE tool for this

purpose. ROUGE uses a randomized method named bootstrap resampling to compute the

confidence interval. Bootstrap resampling has a long tradition in the field of statistics (Efron

and Tibshirani, 1994). The assumption here is that, estimating the confidence interval from

a large number of test sets with n test samples drawn from a set of n test samples with

replacement is as good as estimating the confidence interval for the test sets of size n from

a large number of test sets with n test samples drawn from an infinite set of test samples.

The benefit of this assumption is that we only need to consider n samples. We use 1000

sampling points in the bootstrap resampling.

7.2.1 Impact of Automatic Annotation Techniques

The main goal of this research is to study the impact of different automatic annotation tech-

niques on the performance of the supervised approaches to the complex question answering

task. To accomplish this, we generated summaries for 25 topics of DUC-2007 data by each

of our four supervised systems: SVM, HMM, CRF and MaxEnt with each system trained

using five different automatic labeling methods.

Table 7.1 to Table 7.4 show the ROUGE F-measures for SVM, HMM, CRF and MaxEnt

systems, respectively. In the first column, ROUGE, BE, Synt (Syntactic), Sem (Semantic)

and ESSK stand for the annotation scheme used. We highlight the top F-scores in each
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table to indicate significance at a glance.

Annotation ROUGE-1 ROUGE-2 ROUGE-SU

ROUGE 0.3838 0.0780 0.1432
BE 0.3855 0.0890 0.1470
Synt 0.3755 0.0757 0.1363
Sem 0.3905 0.0867 0.1475
ESSK 0.3738 0.0758 0.1358

Table 7.1: ROUGE F-measures for SVM

Annotation ROUGE-1 ROUGE-2 ROUGE-SU

ROUGE 0.3940 0.0916 0.1509
BE 0.3684 0.0879 0.1377
Synt 0.3689 0.0863 0.1378
Sem 0.3387 0.0797 0.1207
ESSK 0.3959 0.0931 0.1517

Table 7.2: ROUGE F-measures for HMM

Annotation ROUGE-1 ROUGE-2 ROUGE-SU

ROUGE 0.3748 0.0776 0.1346
BE 0.3619 0.0611 0.1241
Synt 0.3631 0.0688 0.1265
Sem 0.3743 0.0777 0.1332
ESSK 0.3813 0.0746 0.1385

Table 7.3: ROUGE F-measures for CRF

In Table 7.1, we can see that the ESSK labeled SVM system is having the poorest

ROUGE-1 score whereas the Sem labeled system performs best. The other annotation

methods’ impact is almost similar here in terms of ROUGE-1. Analyzing ROUGE-2

scores, we find that the BE performs the best for SVM, on the other hand, Sem achieves
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Annotation ROUGE-1 ROUGE-2 ROUGE-SU

ROUGE 0.3938 0.0871 0.1490
BE 0.3739 0.0703 0.1320
Synt 0.3942 0.0838 0.1502
Sem 0.3876 0.0834 0.1454
ESSK 0.4006 0.0923 0.1554

Table 7.4: ROUGE F-measures for MaxEnt

top ROUGE-SU score. As for two measures Sem annotation is performing the best, we can

typically conclude that Sem annotation is the most suitable method for the SVM system.

Similarly, analyzing Table 7.2 yields the fact that ESSK works best for HMM and Sem

labeling does worst for all ROUGE scores. Synt and BE labeled HMMs perform almost

similar whereas ROUGE labeled system is pretty close to that of ESSK.

In Table 7.3, we see that the CRF performs best with the ESSK annotated data in terms

of ROUGE -1 and ROUGE-SU scores and Sem has the highest ROUGE-2 score. But BE

and Synt labeling work bad for CRF whereas the ROUGE labeling performs close to ESSK.

From this table, we can typically conclude that ESSK annotation is the best method for the

CRF system.

From Table 7.4, we find that ESSK works best for MaxEnt and BE labeling is the worst

for all ROUGE scores. We can also see that ROUGE, Synt and Sem labeled MaxEnt systems

perform almost similar.

So, after analyzing the results of Table 7.1 we can come to a conclusion that SVM

system performs best if training data uses semantic annotation scheme. Similarly, analysis

on Tables 7.2 to 7.4 reveals that ESSK works best for HMM, CRF and MaxEnt systems.

Figure 7.1 shows the ROUGE F-measures for SVM, HMM, CRF and MaxEnt sys-

tems. The X-axis containing ROUGE, BE, Synt (Syntactic), Sem (Semantic), and ESSK

stands for the annotation scheme used. The Y-axis shows the ROUGE-1 scores at the top,
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ROUGE-2 scores at the bottom and ROUGE-SU scores in the middle. The supervised

systems are distinguished by the line style used in the figure.

Figure 7.1: ROUGE F-scores for different supervised systems

For a direct comparison, in Table 7.5 we show average ROUGE F-Scores of one base-

line system and four supervised approaches in terms of their best suited annotation method

used. The baseline system generates summaries by returning all the leading sentences (up

to 250 words) in the 〈T EXT 〉 field of the most recent document(s). Table 7.5 shows that

all the supervised systems typically outperform the baseline system with their best annota-

tion method applied and the MaxEnt system performs best with SVM, HMM and CRF to

follow.

From another angle of analysis, if we average all the corresponding ROUGE F - scores

of the SVM, HMM, CRF and MaxEnt systems, we can clearly show the general impact of

different annotation techniques on all the supervised approaches cumulatively in Table 7.6.

Here, we find ESSK as the most effective annotation strategy. From Table 7.6, we can also

infer that ROUGE is somewhat respectable as labeling method whereas BE, Syntactic and
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Semantic techniques perform almost similar for the task of labeling.

System ROUGE-1 ROUGE-2 ROUGE-SU

Baseline 0.3347 0.0640 0.1127
SVM(Sem) 0.3905 0.0867 0.1475
HMM(ESSK) 0.3959 0.0931 0.1517
CRF(ESSK) 0.3813 0.0746 0.1385
MaxEnt(ESSK) 0.4006 0.0923 0.1554

Table 7.5: F-measures of supervised systems (Comparison)

Annotation ROUGE-1 ROUGE-2 ROUGE-SU

ROUGE 0.3866 0.0835 0.1444
BE 0.3724 0.0770 0.1352
Syntactic 0.3754 0.0787 0.1377
Semantic 0.3728 0.0819 0.1367
ESSK 0.3879 0.0840 0.1454

Table 7.6: General impact of annotation techniques

In Tables 7.7 to 7.10, we show the 95% confidence intervals of the F-measures for

ROUGE - SU for SVM, HMM, CRF and MaxEnt systems respectively to meaningfully

compare the impact of annotation methods.

Annotation ROUGE-SU

ROUGE 0.130792 - 0.158095
BE 0.131675 - 0.162274
Synt 0.123773 - 0.151050
Sem 0.137251 - 0.158756
ESSK 0.121636 - 0.152182

Table 7.7: 95% confidence intervals for SVM

Analyzing the confidence intervals from Table 7.7 to Table 7.10, it is obvious that Sem
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Annotation ROUGE-SU

ROUGE 0.136643 - 0.163567
BE 0.117484 - 0.154962
Synt 0.117578 - 0.154498
Sem 0.097598 - 0.142473
ESSK 0.138965 - 0.163144

Table 7.8: 95% confidence intervals for HMM

Annotation ROUGE-SU

ROUGE 0.123273 - 0.146486
BE 0.113709 - 0.135212
Synt 0.116490 - 0.137028
Sem 0.120812 - 0.144681
ESSK 0.126372 - 0.150955

Table 7.9: 95% confidence intervals for CRF

Annotation ROUGE-SU

ROUGE 0.136783 - 0.161889
BE 0.119786 - 0.143856
Synt 0.136549 - 0.162500
Sem 0.132788 - 0.158256
ESSK 0.142045 - 0.167066

Table 7.10: 95% confidence intervals for MaxEnt
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annotation is performing better than other methods for SVM system and ESSK is having

the best scores for HMM, CRF and MaxEnt systems.

7.2.2 Balanced/Unbalanced Training Data

We perform another experiment by feeding a balanced set of training data (annotating 50%

sentences as positive and the rest as negative by ROUGE similarity measure) into the learn-

ers of the supervised systems. Tables 7.11 to 7.13 present the ROUGE-F score compar-

isons of the supervised systems in terms of balanced and unbalanced (30% positive sam-

ples) training data. Analyses on these tables show that supervised systems perform well to

confront the complex question answering task if they are trained on a data set where posi-

tive samples are in less numbers. This is because we always pick up a very small number

of sentences to be included in the target summary.

Positive Samples ROUGE-1 ROUGE-2 ROUGE-SU

30% 0.3838 0.0780 0.1432
50% 0.3708 0.0672 0.1328

Table 7.11: SVM comparisons based on balanced/unbalanced training data

Positive Samples ROUGE-1 ROUGE-2 ROUGE-SU

30% 0.3940 0.0916 0.1509
50% 0.3945 0.0898 0.1499

Table 7.12: HMM comparisons based on balanced/unbalanced training data
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Positive Samples ROUGE-1 ROUGE-2 ROUGE-SU

30% 0.3748 0.0776 0.1346
50% 0.3725 0.0742 0.1329

Table 7.13: CRF comparisons based on balanced/unbalanced training data

7.2.3 Ensemble Experiments

For our ensemble experiments, we use the balanced training data set. We use the ROUGE

similarity measure-based labeling data here. We performed this experiment early in this

research, so we chose the balanced training data and ROUGE based labeling data since

they were only available at that time.

Homogeneous Ensemble

We employ a SVM-based ensemble approach using the CVC algorithm. In Table 7.14, we

present the ROUGE scores of the SVM ensemble system in terms of Precision, Recall and

F-scores. Similarly, Table 7.15 shows the ROUGE scores of the single SVM system. The

F-scores for the single SVM system, the baseline system and the SVM ensemble system are

shown in Table 7.16. The single SVM system is trained on the full data set of DUC-2006.

The approach of the baseline system is to select the lead sentences (up to 250 words) from

a document set for each topic. Table 7.16 clearly suggests that the SVM ensemble system

outperforms the baseline system with a high margin for all of the ROUGE measures. It also

outperforms the single SVM system by a meaningful margin.

Figure 7.2 shows a clear view of how the SVM-based homogeneous ensemble performs

better than the single SVM system and the baseline system.

In table 7.17, We report 95% confidence intervals of the F-measures for the single
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Measures ROUGE-1 ROUGE-2 ROUGE-SU

Precision 0.4081 0.0860 0.1621
Recall 0.3705 0.0781 0.1334
F-score 0.3883 0.0819 0.1463

Table 7.14: ROUGE measures for SVM ensemble

Measures ROUGE-1 ROUGE-2 ROUGE-SU

Precision 0.3902 0.0707 0.1477
Recall 0.3534 0.0641 0.1209
F-score 0.3708 0.0672 0.1329

Table 7.15: ROUGE measures for single SVM

Systems ROUGE-1 ROUGE-2 ROUGE-SU

Base 0.3347 0.0649 0.1127
Single 0.3708 0.0672 0.1329
Ensemble 0.3883 0.0819 0.1463

Table 7.16: Homogeneous ensemble comparison
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Figure 7.2: SVM-based ensemble beating single SVM

SVM system, the baseline system and the SVM ensemble system to show significance for

meaningful comparison. We can see from table 7.17 that the ensemble system performs

better than the single SVM and the baseline system.

Systems ROUGE-1 ROUGE-2 ROUGE-SU
Baseline 0.326680 - 0.342330 0.060870 - 0.068840 0.108470 - 0.116720
Single 0.355833 - 0.386524 0.057032 - 0.078794 0.121819 - 0.144470
Ensemble 0.370439 - 0.406841 0.068727 - 0.094480 0.133385 - 0.159090

Table 7.17: 95% confidence intervals for different systems
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Systems ROUGE-1 ROUGE-2 ROUGE-SU

Baseline 0.3347 0.0649 0.1127
Ensemble 0.3950 0.0885 0.1530
HMM 0.3945 0.0898 0.1499
MaxEnt 0.3938 0.0871 0.1490
CRF 0.3725 0.0742 0.1329
SVM 0.3708 0.0672 0.1328

Table 7.18: Heterogeneous ensemble comparison

Heterogeneous Ensemble

We experiment with an ensemble based approach combining the individual decisions of the

four classifiers: SVM, CRF, HMM and MaxEnt. Table 7.18 shows the ROUGE F-measures

for SVM, HMM, CRF, MaxEnt, ensemble and the baseline system.

Table 7.18 clearly suggests that the most of the supervised systems outperform the

baseline system by a high margin and the ensemble system is typically the best performer.

This is because the individual classifier decisions are combined together to judge the sen-

tence labels correctly. Comparison of the four supervised methods individually reveals that

HMM is performing the best and MaxEnt, CRF and SVM are the next in the performance

ranking, respectively. The reason for this is that HMM treats the task as a sequence label-

ing problem and the scores are improved further as we use the MMR method for sentence

ranking, which has proven to be an effective way of reducing the redundancy. We can also

understand that the MaxEnt method performs better than SVM, concluding that high-order

kernels may not be suited well for the problem domain.

Figure 7.3 portrays the comparison of all the supervised systems. We find that the

heterogeneous ensemble outperforms its individual counterparts, and HMM and MaxEnt

perform close to it.

In table 7.19, We show the 95% confidence intervals of the F-measures of ROUGE-1
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Figure 7.3: Comparison of supervised systems
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and ROUGE-SU for the baseline system and our supervised systems.

Systems ROUGE-1 ROUGE-SU
Baseline 0.3266 - 0.3423 0.1084 - 0.1167
Ensemble 0.3739 - 0.4127 0.1386 - 0.1663
HMM 0.3745 - 0.4107 0.1363 - 0.1613
MaxEnt 0.3763 - 0.4109 0.1367 - 0.1618
CRF 0.3553 - 0.3892 0.1205 - 0.1457
SVM 0.3558 - 0.3865 0.1217 - 0.1444

Table 7.19: 95% confidence intervals

If we analyze table 7.19, we find that all the supervised systems perform significantly

better than the baseline system. On the other hand, for the ensemble system, HMM, and

MaxEnt, we get a high overlap in terms of all the ROUGE measures.

7.3 Manual Evaluation Results

For a sample of 46 summaries2 drawn from the generated summaries of our different sys-

tems, we conduct an extensive manual evaluation in order to analyze the effectiveness of

our approaches. The manual evaluation is comprised of a Pyramid-based evaluation of

contents and a user evaluation to obtain the assessment of linguistic quality and overall

responsiveness.

7.3.1 User Evaluation

Two university graduate students judged the summaries for linguistic quality and overall

responsiveness according to the DUC-2007 evaluation guidelines3. The given score is an

2Randomly, we choose 2 summaries for each of these systems.
3http://www-nlpir.nist.gov/projects/duc/duc2007/quality-questions.txt
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integer between 1 (very poor) and 5 (very good) and is guided by consideration of the fol-

lowing factors: 1. Grammaticality, 2. Non-redundancy, 3. Referential clarity, 4. Focus, and

5. Structure and Coherence. They also assigned a content responsiveness score to each of

the automatic summaries. The content score is an integer between 1 (very poor) and 5 (very

good) and is based on the amount of information in the summary that helps to satisfy the

information need expressed in the topic narrative. Tables 7.20 to 7.24 present the average

linguistic quality and overall responsive scores of all our systems. The same baseline sys-

tem scores are given for meaningful comparison. Analysis on these tables indicates that the

user evaluation results are not that much consistent with the automatic evaluation results.

Since we conducted the user evaluation on a small set of sample summaries, we restrict

ourselves to infer anything from these results.

Systems Linguistic Quality Overall Responsiveness
Baseline 4.24 1.80
ROUGE 4.40 3.00
BE 3.90 4.00
Synt 4.20 3.00
Sem 4.10 3.00
ESSK 4.40 4.00

Table 7.20: Linguistic quality and responsive scores for SVM

Systems Linguistic Quality Overall Responsiveness
Baseline 4.24 1.80
ROUGE 4.50 4.00
BE 4.20 3.50
Synt 3.70 3.00
Sem 4.40 4.00
ESSK 4.70 4.00

Table 7.21: Linguistic quality and responsive scores for CRF
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Systems Linguistic Quality Overall Responsiveness
Baseline 4.24 1.80
ROUGE 4.30 3.50
BE 4.40 3.50
Synt 4.50 3.50
Sem 4.00 3.00
ESSK 4.10 3.50

Table 7.22: Linguistic quality and responsive scores for HMM

Systems Linguistic Quality Overall Responsiveness
Baseline 4.24 1.80
ROUGE 4.40 3.50
BE 4.30 3.50
Synt 4.10 3.00
Sem 4.40 3.50
ESSK 4.20 3.50

Table 7.23: Linguistic quality and responsive scores for MaxEnt

Systems Linguistic Quality Overall Responsiveness
Baseline 4.24 1.80
Single SVM 4.10 3.00
Homogeneous 3.90 3.00
Heterogeneous 4.50 3.00

Table 7.24: Linguistic quality and responsive scores for ensemble systems
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7.3.2 Pyramid Evaluation

In the DUC 2007 main task, 23 topics were selected for the optional community-based

pyramid evaluation. Volunteers from 16 different sites created pyramids and annotated the

peer summaries for the DUC main task using the given guidelines4. Eight sites among

them created the pyramids. We used these pyramids to annotate our peer summaries to

compute the modified pyramid scores5. We used the DUCView.jar6 annotation tool for

this purpose. Tables 7.25 to 7.29 show the modified pyramid scores of all our systems.

A baseline system score is also reported. The peer summaries of the baseline system are

generated by returning all the leading sentences (up to 250 words) in the 〈T EXT 〉 field

of the most recent document(s). Again, we do not conclude anything from the pyramid

evaluation results since the evaluation was limited to a small set of peer summaries.

Systems Modified Pyramid Scores
Baseline 0.13874
ROUGE 0.43415
BE 0.44255
Synt 0.45675
Sem 0.47500
ESSK 0.43670

Table 7.25: Modified pyramid scores for SVM systems

4http://www1.cs.columbia.edu/ becky/DUC2006/2006-pyramid-guidelines.html
5This equals the sum of the weights of the Summary Content Units (SCUs) that a peer summary matches,

normalized by the weight of an ideally informative summary consisting of the same number of contributors
as the peer.

6http://www1.cs.columbia.edu/ ani/DUC2005/Tool.html
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Systems Modified Pyramid Scores
Baseline 0.13874
ROUGE 0.43530
BE 0.51075
Synt 0.37500
Sem 0.41190
ESSK 0.47505

Table 7.26: Modified pyramid scores for CRF systems

Systems Modified Pyramid Scores
Baseline 0.13874
ROUGE 0.39915
BE 0.37500
Synt 0.48215
Sem 0.45270
ESSK 0.41825

Table 7.27: Modified pyramid scores for HMM systems

Systems Modified Pyramid Scores
Baseline 0.13874
ROUGE 0.60665
BE 0.55675
Synt 0.50840
Sem 0.55995
ESSK 0.34740

Table 7.28: Modified pyramid scores for MaxEnt systems

Systems Modified Pyramid Scores
Baseline 0.13874
Single SVM 0.35270
Homogeneous 0.34845
Heterogeneous 0.53000

Table 7.29: Modified pyramid scores for ensemble systems
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7.4 Summary

In this chapter, we showed the automatic evaluation results and detailed analyses of all

the experiments. We found that, based on the annotation scheme used, performance of

the supervised systems varied. Typically, we concluded that Semantic annotation works

well for the SVM system and ESSK does best for the HMM, CRF and MaxEnt systems.

From another experiment, we inferred that systems trained with an unbalanced data set

where positive samples are less in proportion often outperforms the systems that are trained

with a balanced data set. Our ensemble experiments showed that both homogeneous and

heterogeneous ensembles are performing better than their individual counterparts. We also

showed the manual evaluation results with the intention to give meaningful comparisons,

but we could not infer anything from these results due to a small sample size. In the coming

chapter, we will conclude the thesis by providing some future directions of this research.
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Chapter 8

Conclusions and Future Directions

8.1 Main Findings

Our main concern in this thesis is to address the issue of answering complex questions by

using an extractive multi-document summarization approach in a supervised framework.

We have investigated the broad spectrum of automatic text summarization. Then, we focus

on applying different automatic annotation techniques and supervised methods to confront

the problem. The following is a summary of the core findings and contributions of our

work:

1. We solved the automatic annotation problem by applying five different sentence sim-

ilarity measurement techniques: ROUGE similarity measure, Basic Element (BE)

overlap, syntactic similarity measure, semantic similarity measure, and Extended

String Subsequence Kernel (ESSK). In this manner we generated five different ver-

sions of labeled data that were used for training the supervised systems.

2. We formulated the complex question answering problem in terms of four different

supervised machine learning techniques: Support Vector Machines (SVM), Hidden

Markov Models (HMM), Conditional Random Fields (CRF), and Maximum Entropy

(MaxEnt).

3. We conducted an extensive experimental analysis to show the impact of five auto-

matic annotation methods on the performance of the four chosen supervised ma-

chine learning techniques. We evaluated our systems automatically using ROUGE

and reported the significance of our results through 95% confidence intervals. Exper-

imental results showed that Sem annotation is the best for SVM whereas ESSK works

83



well for HMM, CRF and MaxEnt systems. We also presented the manual evaluation

results to compare our systems meaningfully.

4. We also assessed system performance by feeding balanced and unbalanced data dur-

ing the learning phase. From this experiment we inferred that systems trained with an

unbalanced data set where positive samples are less in proportion often outperforms

the systems that are trained with a balanced data set.

5. We experimented with two supervised ensemble based approaches as well. The ho-

mogeneous ensemble was made with four different SVM classifiers whereas the het-

erogeneous ensemble combined the decisions of the four classifiers: SVM, CRF,

HMM, and MaxEnt. Our experiments showed that both homogeneous and heteroge-

neous ensembles are performing better than their single counterpart.

8.2 Future Research Directions

In this thesis, we preferred the automatic annotation strategy over the manual annotation

in order to generate a huge amount of labeled data. To improve the overall performance

of all of our supervised systems, we think that it is necessary to be more accurate while

generating the labeled data. If we can train our systems better, they will perform better

while classifying the unseen data set. Therefore, we plan to work on finding more sophis-

ticated approaches to effective automatic labeling so that we can experiment on different

supervised methods. We will also evaluate our systems by providing manually annotated

data during training.

We also plan to decompose the complex questions into several simple questions before

measuring the similarity between the document sentence and the query sentence. This will

certainly serve to create more limited trees and subsequences which might increase the
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precision. Thus, we expect that by decomposing complex questions into the sets of sub-

questions, the quality of answers returned by the system will improve and better coverage

for the question as a whole will be achieved.

Integer Linear Programming (ILP) has recently attracted much attention in the NLP

community. Most of these approaches use ILP to model problems in a more global manner.

Capturing the global properties of a problem can improve the accuracy of a model as it

is able to represent the long-range dependencies of the problem. So, we will apply ILP

approaches in order to see how it works to answer complex questions.
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Topic

<topic>
<num> D0701A </num>
<title> Southern Poverty Law Center </title>
<narr>
Describe the activities of Morris Dees and the Southern Poverty Law Center.
</narr>
</topic>

Human Produced Summaries
1.

Morris Dees was co-founder of the Southern Poverty Law Center (SPLC)
in 1971 and has served as its Chief Trial Counsel and Executive Director.
The SPLC participates in tracking down hate groups and publicizing their
activities in its Intelligence Report, teaching tolerance and bringing
lawsuits against discriminatory practices and hate groups. As early as
1973 the SPLC won a federal case which forced funeral homes throughout
the U.S. to provide equal services to blacks and whites. In 1991 it
started a classroom program "Teaching Tolerance" which features books,
videos, posters and a magazine that goes to more than 400,000 teachers.
It also funded a civil rights litigation program in Georgia to provide
free legal assistance to poor people. The SPLC’s most outstanding
successes, however, have been in its civil lawsuits against hate groups.
Dees and the SPLC have fought to break the organizations by legal action
resulting in severe financial penalties. Described as "wielding the civil
lawsuit like a Buck Knife, carving financial assets out of hate group
leaders," the technique has been most impressive: 1987-$7 million against
the United Klans of America in Mobile, Alabama; 1989-$1 million against
Klan groups in Forsyth County, Georgia; 1990-$9 million against the White
Aryan Resistance in Portland, Oregon; and 1998-$20 million against
The Christian Knights of the Ku Klux Klan in Charleston, South Carolina.
But despite these judgments the Ku Klux Klan and White Aryan Resistance
have survived.

2.

Morris Dees is a co-founder and leader of the Southern Poverty Law
Center, located in Montgomery, Alabama. It was founded to battle racial
bias and has expanded its efforts by tracking hate crimes and the
increasing spread of racist organizations across the US. "Teaching
Tolerance" is a major program of the Center. Under that program, a
magazine promoting interracial and intercultural understanding goes
to more than 400,000 teachers. Other publications of the Center include
the magazine "Intelligence Report" and pamphlets "Ten Ways to Fight Hate"
and "Fighting Hate at School". Dees has determined that the civil courts
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are an effective forum in which to attack and destroy hate groups.
He has used the civil lawsuit like a "Buck Knife, carving financial
assets out of hate group leaders". Some skeptics thought that Dees sought
out victims of hate groups to profit from their tragedy. However, Dees
does not charge the groups and the Center estimates that it collects
only 2% on successful judgments. Dees has a perfect record in the
major lawsuits he has prosecuted. Successful judgments include one
for $21.5M against a South Carolina branch of the Ku Klux Klan for
burning the Macedonia Baptist Church. Others include $6.3M against
Aryan Nation’s leader Richard Butler and $7M against a Klan group
that killed a black man in Mobile, Alabama. The Center operates
mostly on contributions that in the late 1990s have increased to
around $100 Million annually.

3.

The Southern Poverty Law Center, a non-profit organization in
Montgomery, Alabama, was founded in the 1970s to help minorities
litigate against civil rights abuses. Located in the same block as
Dexter Avenue Baptist Church, which was once pastored by the Reverend
Martin Luther King Jr., the center has effectively established programs
and implemented actions over the last three decades towards fulfilling its
mission. A core initiative for the center is a classroom program started
in 1991 called "Teaching Tolerance," that involves more than 400,000
teachers and includes materials promoting "interracial and intercultural
understanding". The SPLC also funds a three-year, $100,000 civil rights
litigation program in Georgia designed to stem federal cutbacks in
programs that provide free legal assistance to poor people in civil
actions. Additionally, the center produces the Intelligence Report,
a magazine that tracks hate groups and covers right-wing extremists.
The law center’s co-founder and chief trial counsel, Morris Dees,
has successfully handled civil rights cases for more than 30 years--
in 1973 his federal lawsuit had the practical effect of forcing funeral
homes to provide equal services to blacks and whites. As a white lawyer,
Dees has been instrumental in crusading against racial intolerance by
using lawsuits to destroy the finances of hate groups. Since 1979 he has
won a series of six, countrywide civil rights suits against the Ku Klux
Klan and other Neo-Nazi groups accused of criminal activity. In every
case,Dees secured multi-million dollar judgments against the convicted
defendants to effectively put them out of business.

4.

The Southern Poverty Law Center is a nonprofit research group based
in Montgomery, Alabama that battles racial bias. It tracks US hate
crimes and the spread of racist organizations. It covers right-wing
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extremists in its magazine Intelligence Report. Through its Teaching
Tolerance program it provides materials to teachers to promote
interracial and intercultural understanding. It freely distributes
booklets on combating hate to schools, mayors, police chiefs, and other
interested groups and citizens. It advises city leaders faced with
hate crimes. Morris Dees co-founded the SPLC in 1971 and is its
chief trial counsel and executive director, following Julian Bond.
Dees and the SPLC seek to destroy hate groups through multi-million
dollar civil suits that go after assets of groups and their leaders.
In six lawsuits based on hate crimes or civil rights abuses, they have
never lost. They successfully sued the Ku Klux Klan and the related
Invisible Empire Klan, United Klan of America, and Christian Knights
of the KKK; the White Aryan Resistance; and the Aryan Nations and its
founder Richard Butler. The SPLC influenced funeral homes to provide
equal services to blacks and whites, tried to discourage the sale
and distribution of the racist book The Turner Diaries, and protected
Vietnamese fishermen from Klan intimidation. The SPLC devotes much
effort to raising the funds needed to help minorities litigate against
civil rights abuses. It charges its clients nothing. Nearly all money
from settlements goes to the victims, with less than 2 percent going
to the SPLC.

HMM Generated Summary (ESSK labeled)

Morris Dees , the co-founder of the Southern Poverty Law Center in
Montgomery , Ala. , and one of the attorneys for the plaintiffs , said
he intended to enforce the judgment , taking everything the Aryan Nations
owns , including its trademark name . The Southern Poverty Law Center ,
which was founded in the 1970s to battle racial bias , won major legal
fights against the Ku Klux Klan and other white supremacist groups .
Lawyer Morris Dees , the co-founder of the Southern Poverty Law Center
who is representing Victoria Keenan and Victoria Keenan ’s son , Jason ,
introduced letters , photographs and depositions to contradict the men ’s
testimony . The notice was the first indication that the lawsuit , brought by
the Southern Poverty Law Center , may drive the group out of Idaho.
’’ I have been asked if I would continue to host the yearly National
Congress and my answer was , of course , an astounding YES ! ’’ wrote
August B. Kreis III , Web master for the Aryan Nations and a Posse
Comitatus leader in Pennsylvania . In his suit here , Dees , a founder
of the Southern Poverty Law Center , seeks unspecified damages on behalf
of a woman and her son , both white , who were attacked by guards near
the compound in July 1998 . I directed him to Julian Bond , who was
then president of the Southern Poverty Law Center . But the book
did n’t begin , nor will it end with the King trial , as a report by
the Montgomery , Ala.-based Southern Poverty Law Center demonstrates.
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MaxEnt Generated Summary (ESSK labeled)

The notice was the first indication that the lawsuit , brought by
the Southern Poverty Law Center , may drive the group out of Idaho.
’’ I have been asked if I would continue to host the yearly National
Congress and my answer was , of course , an astounding YES ! ’’ wrote
August B. Kreis III , Web master for the Aryan Nations and a Posse
Comitatus leader in Pennsylvania . Morris Dees , the co-founder of
the Southern Poverty Law Center in Montgomery , Ala. , and one of the
attorneys for the plaintiffs , said he intended to enforce the judgment ,
taking everything the Aryan Nations owns , including its trademark name .
Randall Lee Rojas identified the reporter as Trish O’Kane , who writes
for Intelligence Report , a magazine of the Southern Poverty Law Center ,
a civil rights group in Montgomery , Ala. Morris Dees , co-founder
of the Southern Poverty Law Center in Montgomery , Ala. , represented
the Keenans and has said Keenans intends to take everything the Aryan
Nations owns to pay the judgment , including the sect ’s name .
Since co-founding the Southern Poverty Law Center in 1971 , Dees
has wielded the civil lawsuit like a buck knife , carving financial
assets out of hate group leaders who inspire followers to beat ,
burn and kill . The Southern Poverty Law Center represented the
predominantly black Macedonia Baptist Church in Clarendon County ,
which won a $ 21.5 million judgment against the Christian Knights
and Klan members after the church was burned four years ago .

CRF Generated Summary (ESSK labeled)

He is convinced the best weapons to combat organized hate are a
finely honed legal complaint and a fully loaded bank account .
Butler moved to northern Idaho from California in 1973 , and began
holding an annual event called the Aryan Nations Congress in 1981 .
O’Connor actions were so jaw-droppingly over , it was hard not to
admire their raw loopiness , though they overshadowed O’Connor ’s
talent and undermined record sales . Lawyers for two of Rojas ’
co-defendants , Ritch Bryant and Jessica Colwell , sought the
material as evidence that their clients had no hand in the
Nov. 25 , 1995 , beating death of a black man , Milton Walker
Jr. A ‘‘ who ’s who of the hate movement ’’ visited the place
over the years , including William Pierce , author of a book
about a race war called The Turner Diaries that allegedly inspired
Oklahoma City bomber Timothy McVeigh ; former Texas Klan leader
Louis Beam ; and Tom Metzger of the White Aryan Resistance , who
lost his house and possessions to a SPLC lawsuit . In Birmingham ,
at a recent ceremony at the 16th Street Church commemorating the
victims of the bombing , police officers stood guard outside .
But the civil rights organization still spends most of its money
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on programs to help poor people . ‘‘ I respect myself for being
the age that I was and having this passion and integrity that I
did have , ’’ she says . But the group persisted . Quickly , he
changes the subject . In short , chicks rule .

SVM Generated Summary (ESSK labeled)

But the book did n’t begin , nor will it end with the King trial ,
as a report by the Montgomery , Ala.-based Southern Poverty Law
Center demonstrates . He said Gilliam also told the informant someone
should kill the FBI sniper who killed the wife of white supremacist
Randy weaver during an 11-day standoff in 1992 at Ruby Ridge , Idaho ,
along with civil rights lawyer Morris Dees of the Montgomery-based
Southern Poverty Law Center . Randall Lee Rojas identified the reporter
as Trish O’Kane , who writes for Intelligence Report , a magazine of
the Southern Poverty Law Center , a civil rights group in Montgomery ,
Ala. Morris Dees , the chief trial counsel of the Southern Poverty
Law Center and a member of the original team of lawyers that handled
the case , said , ‘‘ Although the case was not binding , because it
never reached the Supreme Court , it served notice to funeral homes ,
and even cemeteries and other businesses , that if they practiced
discrimination against blacks they could be violating federal law .
’’ But the larger purpose of the lawsuit was to bankrupt the Aryan
Nations compound , limit Butler ’s ability to spread a gospel of
racial hate and persuade the jury to ‘‘ return a verdict that will
be heard all over this nation , ’’ a lawyer for the Keenans , Dees
said in closing arguments . Six distributors of skinhead music are
donating proceeds from the sale of CDs with titles like Morris Dees
for You , ’’ and ’’ Holocaust 2000 . ’’

Ensemble Generated Summaries (ROUGE labeled)
1. Heterogeneous

Morris Dees , the chief trial counsel of the Southern Poverty Law
Center and a member of the original team of lawyers that handled
the case , said , ‘‘ Although the case was not binding , because
it never reached the Supreme Court , it served notice to funeral
homes , and even cemeteries and other businesses , that if they
practiced discrimination against blacks they could be violating
federal law . ’’ Lawyers from the Southern Poverty Law Center ,
a civil rights organization in Montgomery , Ala. , advanced his
case in federal court , charging that the Escude Funeral Home
and Hixson Brothers Funeral Home in Avoyelles Parish either
refused to deal with blacks or offered ‘‘ distinctly inferior
services ’’ for the same prices that they charged whites . The
SPLC , headed by Morris Dees in Alabama , is known for having
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used civil law to break the back of the Ku Klux Klan . Morris Dees ,
the civil rights lawyer who led the plaintiffs ’ legal team ,
has said he expected the judgment to bring a quick end to the
Aryan Nations and its racist , anti-Semitic message . As a law
student in 1977 Ku Klux Klan skipped classes for a week to watch
Bill Baxley , who was the Alabama attorney general , successfully
prosecute the Klan leader Robert Chambliss for murder in the
bombing . Butler ’s lawyer , Edgar Steele , argued throughout
the six-day trial that however offensive jurors might find the
views of Butler , Richard Girnt Butler should not be held
responsible for the actions of a group of drunken young men .

2. Homogeneous

Morris Dees , the civil rights lawyer who led the plaintiffs ’
legal team , has said he expected the judgment to bring a quick
end to the Aryan Nations and its racist , anti-Semitic message .
That is no more reasonable than trying to distinguish the ‘ good ’
Jews from the bad ones _ or , as some of our thicker-skulled
‘ good ol’ boys ’ still insist on trying , separating the ‘ good
niggers ’ from the rest of their race . ’’ Morris Dees , the chief
trial counsel of the Law Center , said he is surprised by what
appears to be the increasing frequency and viciousness of such
attacks . Crime Continues to Decline Violent crime in the
United States dropped last year to its lowest level since the
government began its annual national crime survey 26 years
ago . From his compound , which is valued at about $ 200,000
and has a sign out front that reads Morris Dees only , ’’
Butler mails his literature , recruits followers and plays
host to the annual Aryan World Congress , a skinhead symposium
that often draws more than 100 acolytes . Clinton said more
time is also needed to find a diplomatic solution to what has
been a growing confrontation between the United States and
Russia and China , staunch opponents to a U.S. missile
defense . So in the current issue of The Source , O’Connor
pumps ‘‘ Order in the Court , ’’ O’Connor ’s first CD in five
years , and gives a shout-out to the late Biggie Smalls .

100



Appendix-B
Reference Cue Words and Stop Words

101



Cue Words

102



indeed further as well
as this either neither
not only but also the reason is
as well as also moreover
what is more as a matter of fact furthermore
in addition besides to tell you the truth
in fact actually amazingly
to say nothing of too let alone
much less additionally nor
alternatively on the other hand not to mention
such as this time at this time
this also several years ago long ago
during eventually meanwhile
essentially enormously majority of the
absolutely necessary especially
specially after before
at least at most most
therefore this is that is
reasonable according to throughout
at this point along with previously
as particularly including
as an illustration for example like
in particular for one thing to illustrate
for instance notably by way of example
speaking about considering regarding
with regards to as for concerning
on the subject of the fact that similarly
in the same way by the same token in a like manner
equally likewise namely
specifically thus I mean
put another way in other words but
by way of contrast while on the other hand
however yet whereas
though in contrast when in fact
conversely still even more
above all more importantly but even so
nevertheless even though admittedly
nonetheless despite notwithstanding
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albeit although in spite of
regardless granted be that as it may
either way whichever happens in either event
in any case at any rate in either case
whatever happens all the same in any event
rather instead for the reason that
being that in view of inasmuch as
because seeing that owing to
due to in that since
forasmuch as for this reason on condition
provided that in case in the event that
as long as so long as unless
given that granting providing that
even if only if as a result
consequently hence in consequence
so that accordingly as a consequence
so much that for the purpose of in the hope that
for fear that with this intention to the end that
in order to lest with this in mind
in order that so as to under those circumstances
then in that case if not
that being the case if so otherwise
initially to start with first of all
to begin with at first for a start
secondly subsequently previously
next afterwards to conclude
as a final point at last in the end
finally lastly to change the topic
incidentally by the way to get back to the point
to resume anyhow anyway
at any rate to return to the subject as was previously stated
in summary all in all to make a long story short
as I have said to sum up overall
as has been mentioned to summarize to be brief
briefly given these points in all
on the whole as has been noted hence
in conclusion in a word to put it briefly
in sum altogether in short
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Stop Words
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reuters ap jan feb mar apr
may jun jul aug sep oct
nov dec tech news index mon
tue wed thu fri sat ’s
a a’s able about above according
accordingly across actually after afterwards again
against ain’t all allow allows almost
alone along already also although always
am amid among amongst an and
another any anybody anyhow anyone anything
anyway anyways anywhere apart appear appreciate
appropriate are aren’t around as aside
ask asking associated at available away
awfully b be became because become
becomes becoming been before beforehand behind
being believe below beside besides best
better between beyond both brief but
by c c’mon c’s came can
can’t cannot cant cause causes certain
certainly changes clearly co com come
comes concerning consequently consider considering contain
containing contains corresponding could couldn’t course
currently d definitely described despite did
didn’t different do does doesn’t doing
don’t done down downwards during e
each edu eg e.g. eight either
else elsewhere enough entirely especially et
etc etc. even ever every everybody
everyone everything everywhere ex exactly example
except f far few fifth five
followed following follows for former formerly
forth four from further furthermore g
get gets getting given gives go
goes going gone got gotten greetings
h had hadn’t happens hardly has
hasn’t have haven’t having he he’s
hello help hence her here here’s
hereafter hereby herein hereupon hers herself
hi him himself his hither hopefully
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how howbeit however i i’d i’ll
i’m i’ve ie i.e. if ignored
immediate in inasmuch inc indeed indicate
indicated indicates inner insofar instead into
inward is isn’t it it’d it’ll
it’s its itself j just k
keep keeps kept know knows known
l lately later latter latterly least
less lest let let’s like liked
likely little look looking looks ltd
m mainly many may maybe me
mean meanwhile merely might more moreover
most mostly mr. ms. much must
my myself n namely nd near
nearly necessary need needs neither never
nevertheless new next nine no nobody
non none noone nor normally not
nothing novel now nowhere o obviously
of off often oh ok okay
old on once one ones only
onto or other others otherwise ought
our ours ourselves out outside over
overall own p particular particularly per
perhaps placed please plus possible presumably
probably provides q que quite qv
r rather rd re really reasonably
regarding regardless regards relatively respectively right
s said same saw say saying
says second secondly see seeing seem
seemed seeming seems seen self selves
sensible sent serious seriously seven several
shall she should shouldn’t since six
so some somebody somehow someone something
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sometime sometimes somewhat somewhere soon sorry
specified specify specifying still sub such
sup sure t t’s take taken
tell tends th than thank thanks
thanx that that’s thats the their
theirs them themselves then thence there
there’s thereafter thereby therefore therein theres
thereupon these they they’d they’ll they’re
they’ve think third this thorough thoroughly
those though three through throughout thru
thus to together too took toward
towards tried tries truly try trying
twice two u un under unfortunately
unless unlikely until unto up upon
us use used useful uses using
usually uucp v value various very
via viz vs w want wants
was wasn’t way we we’d we’ll
we’re we’ve welcome well went were
weren’t what what’s whatever when whence
whenever where where’s whereafter whereas whereby
wherein whereupon wherever whether which while
whither who who’s whoever whole whom
whose why will willing wish with
within without won’t wonder would would
wouldn’t x y yes yet you
you’d you’ll you’re you’ve your yours
yourself yourselves z zero
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