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Abstract

In this thesis we describe Xia’s results from [13] giving a solution to a general optimal

transport problem. The transport problem was first proposed by Monge in the 1780’s

as an earth-moving problem, where the goal is to move one or more piles of soil to one

or more destination points, so as to minimize the cost involved. This cost may depend

on factors such as the distances involved, the weight of the piles, the time needed,

and so on. A standard example to consider is the case with two source points and one

destination or sink point in R2. In this setting, Xia shows that a “Y- shaped” path can

be less expensive than a “V-shaped path”. More abstractly, Xia has shown that any

Radon probability measure can be transported to another Radon probability measure

through a general optimal transport path, which is given by a vector measure. Xia

also defines a new distance function dα on the space of probability measures and shows

that this function metrizes the weak* topology of measures.

iv



Contents

Contents v

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Generalization of the Basic Problem . . . . . . . . . . . . . . . . . . . . 4
1.3 Transport Maps and Transference Plans . . . . . . . . . . . . . . . . . 6

2 Background 10
2.1 Graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Kirchoff’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Measure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Optimal paths related to transport problems 22
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Transport Paths Between Measures . . . . . . . . . . . . . . . . . . . . 23
3.3 Transportation of General Measures . . . . . . . . . . . . . . . . . . . 42
3.4 A New Distance dα on the Space of Probability Measures . . . . . . . . 47

Bibliography 57

v



List of Tables

3.1 α and corresponding θ1 +θ2 . . . . . . . . . . . . . . . . . . . . . . . . 30

vi



List of Figures

1.1 “V” shaped path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 “Y” shaped path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 “T” shaped path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Another possible path . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Directed Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Current Flow example ( [8]) . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Voltage flow example ( [8]) . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Transportation from two initial positions to one final destination . . . . 24
3.2 Possible paths from two sources to two sinks . . . . . . . . . . . . . . . 25
3.3 Graph G with one cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Graph G′ with no cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Graph T with cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Graph from Figure 3.5 with one cycle removed . . . . . . . . . . . . . . 36
3.7 Graph from Figure 3.6 with remaining cycle removed . . . . . . . . . . 37

vii



Chapter 1

Introduction to Transport
Problems

1.1 Introduction

In this chapter we will introduce several basic transportation problems, including

the Monge and the Kantorovich optimal transport problems. The aim of the optimal

transportation problem is to find an optimal way to transport one or more given

objects with some weight or volume, from one or several places to another place or

places while preserving the weight or volume of the objects and minimizing some

cost function. The optimal transportation problem was first introduced by French

mathematician Gaspard Monge in 1781, in his famous paper “Memoire sur la theorie

des deblais et des remblais” [6]. In this paper he introduced the theory of “clearings

and fillings”, where he tried to find the best possible way to transport a given amount

of soil to fill up holes so that the total transportation cost is minimized. According to

Monge the volume of the soil to be transported from the first location, must occupy

the same volume in the hole after the transfer. He called the process of moving soil

from the first location “clearing” and pouring the soil in the hole “filling”.

A simplified model of optimization can be found from a nicely described story

about Lego pieces by Zemel in [15]. His model is a structure made of Lego blocks,

which a child wants to move from one place to another for storage. The goal then is to

move the pieces of the structure from one place to another, with minimal effort. This

Lego model shows how we can consider Monge’s problem as an optimization question
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1.1. INTRODUCTION

in three-dimensional space, and also as a transportation problem.

To model a simple version of these situations from Monge or Zemel, we will start

with two sources and one destination. We think of these as points of two or three

dimensional space, so that we can draw graphs of them. Suppose we are shipping two

items from two nearby cities x1 and x2 to a city y, where the distance from x1 to y is

the same as the distance from x2 to y, the mass or volume to be shipped from each

of the cities x1 and x2 is the same, and the amount received in the city y is the same

total amount as is shipped. To find the best possible route from x1 and x2 to y, we

can imagine several possible paths to move the source objects to the destination. As a

first attempt, we can move the items directly from each of x1 and x2 to y, transporting

the items separately, creating a V -shaped path as illustrated in Figure 1.1.

x1 x2

y

Figure 1.1: “V” shaped path
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Another possible path occurs if we bring the items together at a point x3 equidis-

tant from x1 and x2, and put the items in a truck at location x3 and then transport

them together to the destination y. In this way, it might be cheaper to transport the

items in a Y-shaped path as shown in Figure 1.2, rather than a V-shaped path. The

T - shaped path shown in Figure 1.3 is a special case of this. Another possible path is

shown in Figure 1.4.

x1 x2

x3

y

Figure 1.2: “Y” shaped path

Transport problems occur in many different fields, such as probability theory,

economics and optimization ( [1], [7], [3]). Many phenomena can be modelled in this

way, such as circulatory systems in trees or animals, river chanel networks and postal

delivery systems.

3



1.2. GENERALIZATION OF THE BASIC PROBLEM

x1 x2x3

y

Figure 1.3: “T” shaped path

1.2 Generalization of the Basic Problem

There are several ways the basic problems described in the previous section can

be generalized.

As we have seen above in Monge’s Transport problem there can be several ways to

move the soil from the initial location(s) to the final destination. Consider two spaces

X ⊆R3 and Y ⊆R3 as the initial and final destinations in the Y-shaped model shown

in Figure 1.2. We can think of the model in Figure 1.1 as a directed graph, with two

edges e1 from x1 to y and e2 from x2 to y. Similarly in the graph in Figure 1.3, we

can consider the set X consisting of three vertices x1,x2 and x3, with three edges e1, e2

and e3 connecting the vertices. The objects being moved have some mass or weight or

volume, and there is some carrying cost to transport them, which needs to be defined

on X×Y . Let µ and ν be functions on the power sets of X and Y respectively, with µ(P)

4



1.2. GENERALIZATION OF THE BASIC PROBLEM

x1 x2

y

Figure 1.4: Another possible path

and ν(Q) denoting the mass of subsets P of X and Q of Y respectively. We also denote

by c : X ×Y → R∪{∞} the cost function to be considered. We assume that c takes

non-negative but possibly infinite values. A map that minimizes the total transport

cost from the source(s) to the destination is called an optimal map. In [6], Monge

considered the Euclidean distance as the cost function; that is he used c(x,y) = |x−y|

in R3.

Let us now consider Zemel’s Lego model from [15], with the structure X to be

moved and the storage container Y as subsets of three dimensional space, so X ⊆ R3

and Y ⊆R3. More generally, let X and Y be metric spaces. A metric space (X ,d) is a

space X with metric function d from X×X to R, such that for any x,y,z ∈ X ,

1. d(x,y)≥ 0 and d(x,y) = 0 if and only if x = y.

5



1.3. TRANSPORT MAPS AND TRANSFERENCE PLANS

2. d(x,y) = d(y,x).

3. d(x,y)≤ d(x,z)+d(z,y).

Suppose the structure X is made up on n Lego pieces, modelled by n points in

three-space, xi(ai,bi,ci), for 1 ≤ i ≤ n, and a point Y (ao,b0,c0) as the position of

the container. The distance from a Lego piece at location (ai,bi,ci) to the container

location Y (a0,b0,c0) can be defined as d =(xi,Y )=
√
(ai−a0)2 +(bi−b0)2 +(ci− c0)2.

The structure of the Lego model has some mass or weight and we want to preserve

that mass as we move the structure from one location to other.

There is usually a cost associated with moving the given items. This cost can

depend on the distance between the points or objects, the weights to be moved, or

other factors such as time or method of transportation. Suppose our aim is to move

the Lego structure of n pieces to the container in the shortest possible time. In this

case our cost function will be measured in units of time. Let us assume that it takes t

seconds to move something from X to Y . If we can move the whole structure at once,

the move will then take only t seconds. But if we move the items in two separate

batches, with a return trip of our transportation vehicle needed in between, the time

factor would be 3t instead. In general, if we use m batches to transfer all the items,

we get a cost function c : X ×Y −→ R∪{∞} with c(x,y) = (2m− 1)t. Of course, it

would be more efficient if we can transfer all the items at once.

1.3 Transport Maps and Transference Plans

The work presented in this section is modelled on that of Zemel in [15]. In our

model of transport problems, we consider sets X and Y corresponding to the source and

destination locations respectively. We will now assume throughout that these sets are

compact, convex subsets of a Euclidean space Rm, with the usual Euclidean distance

metric. We want to consider functions T : X −→ Y which represent the transport of

objects. In addition to minimizing the cost of the transport, as given by some cost

6



1.3. TRANSPORT MAPS AND TRANSFERENCE PLANS

function c : X ×Y −→ R∪{∞}, we need a function which measures the mass of the

objects being moved. Let µ be a function from the power set of X to R, where µ(P)

is the measure or mass assigned to P for any set P⊆ X . Similarly, ν : P(Y )−→ R will

assign a mass ν(Q) to any subset Q of Y . Specific technical properties of these measure

functions will be described in Chapter 2. The condition that the transport function

T preserves mass can now be expressed by requiring µ(T−1(D)) = ν(D) for any subset

D of Y . A function T : X −→Y which satisfies this condition will be called a transport

map from X to Y . Zemel in [15] called ν a push-forward of µ by T , indicating this by

ν = T #µ.

Setting D = Y in the requirement that µ(T−1(D)) = ν(D) gives the special case

that µ(X) = ν(Y ) as a condition that any transport map must meet. We can allow the

measure functions µ and ν to take on an infinite value ∞ as well, but we assume that

µ(X) is always finite. The measure functions µ and ν can also be normalized, so that

their values are restricted to the unit interval from 0 to 1. In this case, the Monge

problem stated in [15] can be formulated as the search for a transport map T : X −→Y

that minimizes I(T ) =
∫

X c(x,T (x))dµ(X) over all maps T that satisfy ν = T #µ.

Consider a transport map T : X → Y which maps each x ∈ X to some T (x) ∈ Y .

If {x} has a positive mass, then this mass has to be moved entirely to T (x). The

Kantorovich problem in [5] is basically a relaxation of the Monge model, in which we

allow the mass to be split up. That is, we could move the mass to be moved from

one source point in X to several points in Y . Zemel in [15] construct a probability

measure πx ∈ P(Y ), for any x ∈ X , which describes how the mass of x is distributed

in Y. Formally, we consider a measure π on the product space X ×Y with marginal

distributions µ on X and ν on Y , that is

π(A×Y ) = µ(A) ∀A⊆ X measurable. (1.1)

7



1.3. TRANSPORT MAPS AND TRANSFERENCE PLANS

and

π(X×B) = ν(B) ∀B⊆ Y measurable. (1.2)

The relation (1.1) means that the mass π(A×B) transported into B equals the

mass of A. The relation (1.2) means that the mass transported into B, π(X ×B),

equals the mass of B. If π satisfies these two requirements, it is called a transference

plan.

Transference plans are a generalization of transport plans, since every transport

plan in fact induces a transference plan. For example, if ν is the push-forward of µ by

T , we can define a transference plan π = (id×T )#µ by

π(A×B) = µ({x ∈ A : T (x) ∈ B}) = µ(A∩T−1(B)). (1.3)

This means that π gives measure zero to subsets of X ×Y that are disjoint to the

set {(x,T (x)) : x ∈ X}. More precisely, the equation (1.3) can be written as

dπ(x,y) = dµ(x)1{y = T (x)},

where 1{.} is the indicator function. Equivalently, for any continuous and bounded

function φ : X −→ R, ∫
X×Y

φ dπ =
∫

X
φ(x,T (x)) dµ(x)

Therefore a transport map T always induces a transference plan π.

We shall denote the set of transference plans from (X ,µ) to (Y,ν) by

∏ (µ,ν) def
= {π ∈ P(X×Y ) : ∀A π(A×Y ) = µ(A) and ∀B π(X×B) = ν(B)},

where, A⊆ X and B⊆Y run over all measurable sets. The Kantorovich problem is to

8



1.3. TRANSPORT MAPS AND TRANSFERENCE PLANS

find a minimizer for

inf
π∈∏ (µ,ν)

∫
X×Y

c(x,y) dπ(x,y). (1.4)

The Kantorovich problem is then a relaxation of the Monge problem as any transfer-

ence map induces a transference plan that allocates I the same value where I(T ) =∫
X c(x,T (x))dµ(X) over all maps T that satisfy ν = T #µ.

After introducing some preliminary notation and results in Chapter 2, in Chapter

3 we consider a space whose elements will actually be measure functions rather than

points in Rm, with a metric defined on the space based on the distribution distance be-

tween measures. Then a transport path between two elements will be a path between

two atomic measures and is just a weighted directed graph which follows Kirchoff’s

law at each interior vertex. In general, a transport path between two arbitrary mea-

sures, is a vector measure given by a limit of some weighted directed graphs. The cost

on each transport path is a suitably modified weighted mass of the vector measure.

Then we describe Xia’s ( [13]) proof of an Existence Theorem which guarantees the

existence of an optimal transport path.

In Chapter 3, we also describe Xia’s work from [13] on a new distance function on

the space of probability measures on a fixed convex set. Such a distance function is

different from any of the Wasserstein distances but still metrizes the weak* topology

on the space of probability measures. In the last section of Chapter 3, we describe

Xia’s proof that the space of probability measures with this new distance function

becomes a length space.

9



Chapter 2

Background

In this chapter we review some preliminaries required to describe Xia’s result in Chap-

ter 3. These include graph theory as a way to model our transport paths, weighted

directed graphs to model the weights or other costs associated with transport paths,

Kirchoff’s laws to describe the balance of weights coming into or out of vertices in

graphs, and some basic background from measure theory.

2.1 Graph theory

As we saw in Chapter 1, we can draw pictures to represents the paths traced out

in moving our source mass to the end location. One way to formalize these drawings

is by graph theory. A graph consists of a set of points called vertices, along with a

set of ordered pairs called edges that connect vertices. For more background in graph

theory, see [9].

Definition 2.1. A graph is a structure G = (V,E), where V is a set of objects called

vertices and E is set of unordered pairs of vertices, whose elements are called the edges

of the graph. A graph is said to be directed if any pair (u,v) is not considered the

same as the pair (v,u), but is otherwise called undirected.

Example 2.2. The graph G = (V,E) in Figure 2.1 is an undirected graph with five

vertices, lebelled v1 through v5, and five edges, lebelled e1 to e5.

A graph with no edges (i.e. if E is empty) is called an empty graph. A graph

10



2.1. GRAPH THEORY

v2

v1

v5

v3 v4v4

e1

e2

e4e5

e3

Figure 2.1: Graph

which has no vertices (i.e. if both V and E are empty) is called a null graph. A graph

is called trivial if it has only one vertex.

Two edges in a graph are said to be parallel if they have the same vertices. An

edge of the form (v,v) is called a loop. A graph with no parallel edges or loops is

called a simple graph. Two edges are adjacent if they are of the form (u,v) and (v,w)

for some vertices u, v and w.

The degree of a vertex v, written as d(v), is the number of edges with v as an

end vertex. A vertex with degree 1 is called a pendant vertex. An edge that has a

pendant vertex as an end vertex is a pendant edge. A vertex with degree 0 is called

an isolated vertex, for instance v3 in Figure 2.1. The maximum degree of the vertices

in the graph G is denoted by ∆(G). The minimum degree of the vertices in the graph

G is denoted by δ(G). The graph G shown in Figure 2.1 has maximum degree 4 and

minimum degree 0.

Definition 2.3. For a graph G = (V,E), a walk is defined as a sequence of alternating

vertices and edges of the form v0e1,v1e2,v2e3, ,ekvk for some k≥ 0, where each edge ei

is defined as ei = (vi−1,vi). The length of this walk is k.

11



2.1. GRAPH THEORY

A closed walk is a walk whose first vertex is the same as the last. An open walk is

a walk whose first vertex and last vertex are distinct; that is, it is a walk which ends

on a different vertex from the one where it starts.

Definition 2.4. A trail is a walk where there are no repeated edges. A trail between

two vertices u and v is called a u− v trail.

Definition 2.5. A path is a trail in which all vertices (except perhaps the first and

last ones) are distinct. A path between two vertices u and v is called a u−v path. An

open path is a path in which the first and last vertices are distinct. If the first and

last vertices are the same, a path is called a cycle.

Example 2.6. The walk v2,e7,v5,e6,v4,e3,v3 in Figure 2.1 is a path and the walk

v2,e7,v5,e6,v4,e3,ve,e2,v2 is a cycle.

A walk starting at u and ending at v is called a u− v walk. Vertices u and v are

said to be connected if there is a u− v walk in the graph. If u and v are connected

and v and w are connected, then u and w are connected; if there is a u− v walk and

there is a v−w walk, then there is also a u−w walk. A graph is connected if all the

vertices are connected to each other. A trivial graph is assumed to be connected.

The graph in Figure 2.1 is not connected.

Definition 2.7. A tree is an undirected graph with no cycles in it. In other words,

in a tree any two vertices are connected by exactly one path. A tree is called a rooted

tree if one vertex has been designated the root, in which case the edges have a natural

orientation, towards or away from the root.

Definition 2.8. A directed graph or digraph is a graph G = (V,E) in which each edge

has a direction.

As shown in Figure 2.2, edges (v,u) in a digraph are indicated by an arrow showing

direction, with an arrowhead at the end vertex v. The direction of an edge (u,v) is

12



2.2. KIRCHOFF’S LAW

Figure 2.2: Directed Graph

opposite to the direction of the edge (v,u). In the edge (u,v), vertex u is called the

initial vertex and v the terminal vertex of the edge. We also say that the edge (u,v)

is incident out of u and incident into v.

For any two vertices u and v, we say that v is an ancestor of u and u is an descendant

of v, if there exists a list of vertices v1 = v,v2, ...vh−1,vh = u such that each (vi,vi+1) is

a directed edge in E(G) for i = 1, ...,h−1. If (v,u) is a directed edge in E(G), then v

is a parent of u and u is a child of v.

Definition 2.9. A directed graph with a weight attached to each edge is called a

weighted directed graph.

We will use weighted directed graphs to model transport paths, with weights on

edges corresponding to the mass to be moved along that edge from one place to

another.

2.2 Kirchoff’s law

In 1845 German physicist Gustav Kirchoff described laws dealing with the conser-

vation of current and energy within electrical circuits. In this section we describe two

of Kirchoff’s laws, the Current Law and the Voltage Law, and show how they may

be used to describe the balancing of weights in a weighted directed graph, to use in

13



2.2. KIRCHOFF’S LAW

Figure 2.3: Current Flow example ( [8])

our transport path models. Material in this section follows the presentation of circuit

analysis in Paul’s book [8].

Kirchoff’s Current Law (KCL)

Kirchoff’s Current Law, KCL for short, as described in [8] states that “the total

current or charge entering a junction or node is exactly equal to the charge leaving

the node as it has no other place to go except to leave, as no charge is lost within

the node”. In other words the algebraic sum of all the currents entering and leaving a

node must be equal to zero, where incoming currents are seen as positive and outgoing

currents as negative. In our context, the currents coming in and out will represent

the masses moving, and we can think of KCL as a statement of conservation of mass.

In Figure 2.3, which is described in [8], the three currents I1, I2 and I3 entering the

node are balanced by the two currents I4 and I5 leaving the node. Then we describe

this by the equation I1 + I2 + I3− I4− I5 = 0.

Kirchoff’s Voltage Law (KVL)

Kirchoff’s Voltage Law, KVL for short, as described in [8] states that“in any closed

loop network, the total voltage around the loop is equal to the sum of all the voltage

14



2.3. MEASURE THEORY

Figure 2.4: Voltage flow example ( [8])

drops within the same loop” which is also equal to zero. In other words the algebraic

sum of all voltages within the loop must be equal to zero. Then we describe this by

the equation VAB +VBC +VCD +VDA = 0. This idea by Kirchoff also express a kind of

law of conservation of mass.

This law means that if we start at any point in a loop, and continue in the same

direction along the loop until we return back to the starting point, and record all the

voltage drops, we should get a sum of zero. It is important here to maintain the same

direction either clockwise or counter-clockwise. We will use Kirchoff’s Laws to model

preservation of mass in our transport paths.

2.3 Measure Theory

In this section we define measure functions, and give some examples, as well as a

distance function between measures. Results in this section are taken from [2] and [12].

We begin by introducing some notation. We denote the extended set of real numbers

by R= R∪{∞}.

Definition 2.10. ( [4]) Let X be a set. Then a σ-algebra Σ is a nonempty collection

of subsets of X which satisfies the following properties:

15



2.3. MEASURE THEORY

1. X is in Σ.

2. If Y is in Σ, then complement of Y is also in Σ.

3. If (Yn)n≥1 is a sequence of elements of Σ, then the union
⋃

Yn of the Yn is in Σ.

Definition 2.11. Let X be a set and Σ a σ-algebra over X. A function µ from Σ to the

extended real number line is called a measure if it satisfies the following properties:

1. Non-negativity: µ(E)≥ 0, for all E in Σ .

2. Null empty set: µ(φ) = 0.

3. Countable additivity (or σ-additivity): For all countable collections {Ei}i∈N of

pairwise disjoint sets in Σ,

µ
(⋃

i∈N
Ei

)
= ∑

i∈N
µ(Ei).

If only the second and third conditions of the definition of measure above are met,

and µ takes on at most one of the values ± ∞, then µ is called a signed measure. The

pair (X ,Σ) is called a measurable space, and the members of Σ are called measurable

sets.

If (X ,ΣX) and (Y,ΣY ) are two measurable spaces, then a function f : X −→ Y

is called measurable if for every Y-measurable set B ∈ ΣY , the inverse image is X-

measurable i.e. f (−1)(B) ∈ ΣX for every B ∈ ΣY .

Definition 2.12. The family of Borel sets on a topological space is the smallest family

that contains all the open sets and is closed under the operations of countable union,

countable intersection, and relative complement.

Next we define a probability space (Ω,F ,P) consisting of three parts.
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2.3. MEASURE THEORY

Definition 2.13. ( [10]) In probability theory, the set of all possible outcomes or

results of an experiment or random trial is called a sample space. A sample space is

usually denoted by S, Ω, or U .

Definition 2.14. A subset of the sample space of a probability space is called an

event. In other words, a set of outcomes of an experiment of a probability space is

called an event.

Definition 2.15. A function P is said to be a probablity measure on a probability

space or the collection S of events if

1. P(A)≥ 0, for every event A.

2. P(S) = 1.

3. If {Ai : i∈ I} is a countable pairwise disjoint collection of events then P(∪i∈IAi) =

∑i∈I P(Ai).

Definition 2.16. A probability space consists of three parts:

1. A sample space, Ω , which is the set of all possible outcomes.

2. A set of events F , where each event is a set containing zero or more outcomes.

3. The assignment of probabilities to the events; that is, a function P from events

to probabilities.

Definition 2.17. Let (X ,Σ) be a measurable space. Let x ∈ X and A ⊂ X be any

(measurable) set. Then the Dirac Measure δx is the measure function δx : Σ −→ R

defined by

δx(A) =


0 if x /∈ A

1 if x ∈ A.
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2.3. MEASURE THEORY

Note that the Dirac measure is a probability measure. In Chapter 3, we shall

use the Dirac measures as building blocks for other measures, and produce transport

paths on Dirac measures which we can then extend to other kinds of measures.

Definition 2.18. Given a metric space (X ,d), a metric outer measure is an outer

measure µ defined on the subsets of X such that

µ(A∪B) = µ(A)+µ(B)

for every pair of positively separated subsets A and B of X .

Definition 2.19. Let (X ,d) be a metric space. The diameter of a set A⊆ X , denoted

by diam A, is defined by

diam A := sup{d(x,y)|x,y ∈ A}, with diam φ := 0.

Let U be any subset of X , and δ > 0 a real number. Define

Hn
δ
(U) = inf

{
∞

∑
i=1

(diam Ui)
n :

∞⋃
i=1

Ui ⊇U, diam Ui < δ

}
,

where the infimum is over all countable covers of U by sets Ui⊂ X satisfying diam Ui <

δ.

As δ gets larger, more collection of sets can be accumulated in Hn
δ
(U), which makes

the infimum smaller. The values Hn
δ
(U) are monotone decreasing in δ, so the limit

limδ→0 Hd
δ
(U) can be infinite. Let

Hn(U) := sup
δ>0

Hn
δ
(U) = lim

δ→0
Hn

δ
(U).

Then Hn(U) is a metric outer measure, called the n-dimensional Hausdorff measure

of U .
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2.3. MEASURE THEORY

Definition 2.20. Let µ be a measure on the σ-algebra of Borel sets of a Hausdorff

topological space X. The measure µ is called inner regular or tight if for any Borel set

B, µ (B) is the supremum of µ(K) over all compact subsets K of B. i.e.

µ(B) = sup{µ(K) : K ⊂ B,K compact}.

The measure µ is called locally finite if every point of X has a neighborhood U for

which µ(U) is finite. (If µ is locally finite, then it follows that µ is finite on compact

sets.) The measure µ is called a Radon measure if it is inner regular and locally finite.

Definition 2.21. A Radon measure a on X is atomic if a is a finite sum of Dirac

measures with positive multiplicities. That is

a =
k

∑
i=1

aiδxi,

for some integer k≥ 1 and some points xi ∈ X , ai > 0 for each i = 1, . . . ,k. For such

a Radon measure a, we denote by ∧ = Σk
i=1ai the total mass of a.

For any Λ > 0, let

AΛ(X)⊂MΛ(X)

be the space of all atomic measures on X of equal total mass Λ.

Here we recall the definition of weak convergence for Radon measures.

Definition 2.22. Let µ and µ1,µ2, ...,µk be measures on Rn. We say that the sequence

µk converges weakly to µ,written as µk→ µ, if for each compactly supported continuous

function f : Rn→ R,

lim
k→∞

∫
Rn

f (x)dµk =
∫
Rn

f (x)dµ.

Definition 2.23. A Polish space is a separable completely metrizable topological

space.
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2.3. MEASURE THEORY

Definition 2.24. ( [10]) Consider a real-valued function f : X→ R where an arbitrary

set X is the domain of f . Then the support of f , denoted by spt( f ), is defined by

spt( f ) = {x ∈ X : f (x) 6= 0}.

Definition 2.25. ( [11]) Consider X be a measurable space. The set of all R+-valued

measures on X is a cone Meas(X), algebraic operations being defined in the usual

“pointwise”way (e.g. (µ+ν)(U) = µ(U)+ν(U)) and norm given by ||µ||Meas(X) = µ(X),

where R+ is the set of non-negative real numbers and Meas(X) is the set of all bounded

measures over the measurable space X .

At the end of Chapter 3, we will discuss metric distances defined between proba-

bility measures, and introduce both the standard Wasserstein distance and Xia’s new

distance function.

Divergence Theorem

In vector calculus, the Divergence Theorem, also known as Gauss’s Theorem, can

be stated as follows. Let R be a simple solid region and S be the boundary surface of R

with positive orientation. Let ~F be a vector field whose components have continuous

first order partial derivatives. Then the Divergence Theorem states the equality

∫∫
S
~F ·d~S =

∫∫∫
F

div ~F dR.

This equation relates the flow or flux of a vector field through a surface to the behavior

of the vector field inside the surface.

In his theory of clearings and fillings of soil, Monge ( [6]) assumed that the total

volume of the soil used to fill the hole must equal the total volume of soil taken out

of the source locations. The Divergence Theorem captures this assumption in a more

technical setting. We can consider the soil taken our from the source(s) as outward
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flux and the soil moved into the hole or destination location as inward flux. The

Divergence Theorem then says that the outward flux of a vector field through a closed

surface is equal to the volume integral of the divergence over the region inside the

surface; that is the sum of all sources minus the sum of all sinks gives the net flow

out of a region.

2.4 Notation

Throughout the remainder of this thesis, we will use the following notation, taken

from Xia in ( [13]).

• X : a compact convex subset of a Euclidean space Rm.

• µ+: a probability Radon measure on X as the initial measure.

• µ−: a probability Radon measure on X as the target measure.

• Path(µ+,µ−) :the space of all transport paths from µ+ to µ−.

• MΛ(X) : the space of Radon vector measure m-tuples µ = (µ1, . . . ,µm) on X .

• M m(X) : the space of Radon vector measures µ = µ1,µ2, ...,µm on X .

• ‖ µ ‖: the total variational measure of any vector measure µ ∈M m(X).

• W : the Wasserstein 1-distance on MΛ(X).

• H m(X): m-dimensional Hausdorff measure on X .
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Chapter 3

Optimal paths related to transport
problems

In this chapter we will give a detailed exposition of the work of Q. Xia in [13] on

optimal mass transport problems. In this paper, Xia has defined a particular cost

function for which we can prove that there is an optimal-cost solution for certain

kinds of transport paths.

3.1 Introduction

The transport problem described in earlier chapters deals with moving weighted

objects from one location to another. We have generalized this to use measure func-

tions on a set X as indicators of the mass to be moved, so that we now think of the

transport problem as the problem of how to optimally move or transform one measure

into another. Thus in [13] Xia formally stated the transport problem as follows.

Problem 3.1. ( [13]) Let X be a compact subset of Rm for some natural number m.

Given two arbitrary probability measure µ+ and µ− on X , we want to find an optimal

path to transport µ+ to µ−. This path will be a weighted directed graph.

Xia identifies the solution to this problem as consisting of two steps, as follows:

1. Identifying a class of transport paths which we can ensure contains some optimal

paths.

2. Identifying a reasonable cost function on such paths that allows some paths
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3.2. TRANSPORT PATHS BETWEEN MEASURES

to overlap in a cost-efficient way. This overlap efficiency is a way to model the

difference between a V-shaped and a Y-shaped path, in the setting of two source

points and one sink point.

Now we introduce some notation and terminology to be used in this chapter.

• {x1,x2, ...,xk} is the set of initial points (the sources) in Rm for the transport.

• {y1,y2, ...,yl} is the set of final points (the sinks or destinations) for the

transport.

• a is the atomic measure on X determined by the sources, as defined below.

• b is the atomic measure on X determined by the sinks, as defined below.

• For an edge e in a transport path T , e+ denotes the end vertex of e.

• For an edge e in a transport path T , e− denotes the start vertex of e.

3.2 Transport Paths Between Measures

Definition 3.2. ( [13]) Suppose we are given the following information for a transport

problem: A set {x1,x2, . . . ,xk} of source points and a set {y1,y2, . . . ,yl} of sink points

in Rm, along with for each xi a weight ai to be moved from it, for 1 ≤ i ≤ k, and for

each y j for 1 ≤ j ≤ l a weight b j to be moved into it. Given the constraints of the

transport problem, we will assume that the sums of the weights ai are equal to the

sums of the weights b j, and call this equal sum ∧.

We can use this given information to construct two atomic measures a and b on

X , as follows. Recall that an atomic measure is a weighted sum of Radon measures

δx for points x. Then we set

a =
k

∑
i=1

aiδxi and b =
l

∑
j=1

b jδy j .
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3.2. TRANSPORT PATHS BETWEEN MEASURES

These measures are atomic measures, and can be represented by the vectors a =

(a1, . . . ,ak) and b = (b1, . . . ,b j) respectively.

Conversely, suppose we are given two atomic measures a = ∑
k
i=1 aiδxi and b =

∑
l
j=1 b jδy j , with a1 + · · ·ak = b1 + · · ·bl = ∧. Then we can use the xi for 1 ≤ i ≤ k as

source points, with each xi having a total weight ai coming out of it; and similarly

the sink points y j for 1≤ j ≤ l each have total weight b j coming in. Thus, each given

source-sink-weights scenario induces a pair of atomic measures, and vice versa.

Given such information, we now show how to construct a family of transport paths

T from the source to the sink points. The vertex set of T will consist of the union

of the sink and the source sets, along with one or more new points to be added as

internal vertices. How many vertices we add, and where exactly they are added, will

determine a unique transport path. For example, Figure 3.1 shows a graph for the

x1 x2

v

y

m2

m1

m3 = m1 +m2

Figure 3.1: Transportation from two initial positions to one final destination

scenario with two source points and one sink point in R2, and one new internal vertex
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3.2. TRANSPORT PATHS BETWEEN MEASURES

v, which results in a Y-shaped path; the lengths of the two edges leading into v, and

the angle between these edges, will depend on the location of v, and hence so will the

cost.

x1

y1

x2

y2

m1 = m3 m2 = m4

x1

y1

x2

y2

v1

v2

m1

m2

m1 +m2 = m3 +m4

m3

m4

x1 x2

y1 y2

v1

v2

m1

m2

|m1−m3|

m3

m4

Figure 3.2: Possible paths from two sources to two sinks

Figure 3.2 shows some possible choices of new vertices for the case with two sources

and two sinks. In general, the goal is to add some internal vertices so as to minimize

the overall cost of the transport. Figure 3.1 also shows weights on the edges, which

are determined by the values ai and b j as above. In Figure 3.1, each of the source

points has exactly one edge coming out of it, and so the entire weight ai out of vertex

xi is used on the edge from xi to v; and similarly for the sink point. In general, we

define a weight function w : E(T )→ (0,∞), which assigns a weight to each directed

edge in the graph. To maintain the weight balance, we must ensure that as we add

new internal vertices v, we always have
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3.2. TRANSPORT PATHS BETWEEN MEASURES

∑
e∈E(T )
e−=v

w(e) = ∑
e∈E(T )
e+=v

w(e). (3.1)

The space of all possible transport paths between two given measures a and b will

be denoted by Path(a,b). For a given total weight ∧, the set of all the transport paths

between two atomic measures on X of equal total mass ∧ will be denoted by

GΛ(X) =
⋃

(a,b)∈AΛ(X)×AΛ(X)

Path(a,b).

Each transport path T ∈ Path (a,b), regarded as a weighted directed graph, also

determines a vector measure on X , by

T = ∑
e∈E(T )

w(e)[[e]], (3.2)

where [[e]] = length(e) e, and e is the unit directional vector of the edge e considered

as a vector in Rm. Equation 3.2 means that we can think of the path T as both a

graph and a collection of edges which are vectors in Rm, each carrying a weight as well

as a length.

Once again, the Divergence Theorem lets us simplify the balance of mass condition

on a path T by

div(T ) = a−b, (3.3)

in the sense of distribution. Therefore

Path(a,b) =

{
T = ∑

e∈E(T )
w(e)[[e]] ∈M m(X) : div(T ) = a−b

}
.

Next we consider the cost of the transport. Xia’s method allows for the overlapping

of some parts of the transport path, for instance a Y -shaped path instead of a V-
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shape from two sources to one sink, so that total cost can be minimized. He uses a

parameter α to represent the magnitude of any such savings in the overall cost. We

assume 0 ≤ α ≤ 1. The smaller the value of α, the more efficient the transport is.

Our cost function will depend on the value of α, the length of the vector edges in the

graph T and the weights assigned to the edges, as shown in the next Definition.

Definition 3.3. ( [13]) The Hα Cost function on GΛ(X) is defined by

Hα(T ) = ∑
e∈E(T )

w(e)α length(e),

for any transport path T = ∑e∈E(T )w(e)[[e]] ∈ GΛ(X).

An optimal transport path T with respect to this cost function will be one that

minimizes Hα(T ), over all paths in Path(a,b). Such a minimizer is called an α-optimal

or simply an optimal transport path from a to b.

Note that when α = 0, the new cost function Hα(T ) simply gives the sum of the

length of all the vectors in the graph T . When α = 1, we have Hα(T ) =‖ T ‖ (X),

where ‖ T ‖ denotes the total variational measure of T . Moreover, Xia notes that in

the case α = 1, the edges in the graph T are straight lines.

We shall show later (see Proposition 3.7) that in the case of two source points and

one sink points, Xia’s method allows the addition of at most one internal vertex. Thus

our transport graph will have either a V -shape (no internal vertices) or a Y -shape,

with one new internal vertex. In the next example, expanded from Xia, we consider

this particular setting with one vertex added.

Example 3.2.1. The following example is based on Xia ( [13]). In this example, we

consider a situation where we have two source points x1 and x2, and one sink point y,

and we want to move items of weights m1 and m2 from the sources to the sink. Xia’s

method appears to be be based on the concept of the Fermat point of a triangle, a

point inside the triangle which minimizes the sum of the distances from that point
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each of the three vertices. In our situation, we want to make a Y -shaped path as

shown in Figure 3.1 by adding one new interior vertex v to the graph. Our graph

will thus have vertex set V (T ) = {x1,x2,y1,v}, and edges as shown in Figure 3.1. We

also assign the weight mi to the edge from vertex xi to v, for i = 1,2, and the balance

equation for internal vertices then requires that the weight m3 from v to y must equal

m1 +m2.

The problem then is to find optimal positions for the new interior vertices, specif-

ically to locate the vertex v in our Y -shaped example. An optimal positioning for v

depends on the weights mi and their relative proportions, the length of the straight-

line edges and the cost savings factor α. We shall describe the process of positioning

v in terms of the angles between the three edges labelled by m1, m2 and m3 in Figure

3.1. Thinking of these edges as vectors in Rm, we will use the unit vectors n1, n2 and

n3 respectively.

Here ni =
v−x1
|v−xi| is the unit vector from xi to v, for i = 1,2, and similarly n3 is the

unit vector from v to y1. We will use k1 and k2 to represent the fractions of total

weight from each vertex, so ki =
mi

m1+m2
for i = 1,2 and of course k1 + k2 = 1. We will

let θi be the angle between ni and −n3, for i = 1,2 which makes the angle between n1

and n2 equal to θ1 +θ2. Then we have the following balance formula (see [13]):

mα
1 n1 +mα

2 n2 = mα
3 n3 (3.4)

Taking dot products between the equation (3.4) and n1, n2 and n3 respectively, we

have the following equations:

mα
1 +mα

2 cos(θ1 +θ2) = mα
3 cosθ1, (3.5)

mα
1 cos(θ1 +θ2)+mα

2 = mα
3 cosθ2, (3.6)

mα
1 cos(θ1)+mα

2 cos(θ2) = mα
3 . (3.7)
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Multiplying equation (3.5) by mα
1 and equation (3.6) by mα

2 , we get respectively

m2α
1 +mα

1 mα
2 cos(θ1 +θ2) = mα

1 mα
3 cosθ1, (3.8)

mα
1 mα

2 cos(θ1 +θ2)+m2α
2 = mα

2 mα
3 cosθ2. (3.9)

By adding equation (3.8) and equation (3.9) we get

m2α
1 +m2α

2 +2mα
1 mα

2 cos(θ1 +θ2) = mα
3 (m

α
1 cosθ1 +mα

2 cosθ2)

= mα
3 mα

3

= m2α
3 .

Then the above formula implies that the angles satisfy

cos(θ1 +θ2) =
m2α

3 −m2α
1 −m2α

2
2mα

1 mα
2

=

(
m3

m1+m2

)2α

−
(

m1
m1+m2

)2α

−
(

m2
m1+m2

)2 α

2
(

m1
m1+m2

)α ( m2
m1+m2

)α

=
1− k2α

1 − k2α
2

2kα
1 kα

2
.

Substituting the value of cos(θ1 +θ2) in equation (3.5) we get

cosθ1 =
k2α

1 +1− k2α
2

2kα
1

.

Similarly from equation (3.6) we get

cosθ2 =
k2α

2 +1− k2α
1

2kα
2

.

Now we can use these various equations for the angles in Figure 3.1 to consider some

29



3.2. TRANSPORT PATHS BETWEEN MEASURES

specific cases for the weights and their proportions. First, the equation above for

cos(θ1 + θ2) shows exactly how the angles being determined by the position of v

depend on the values of α and the proportions ki. For example, in the case α = 1
2 , we

have

cos(θ1 +θ2) =
1− k2α

1 − k2α
2

2kα
1 kα

2

=
1− k

2( 1
2)

1 − k
2( 1

2)
2

2k
1
2
1 k

1
2
2

=
1− k1− k2

2k
( 1

2)
1 k

( 1
2)

2

=
1− k1− (1− k1)

2k
1
2
1 k

1
2
2

= 0,

so that θ1 +θ2 = 90o. Similar calculations show the value of θ for other values of α,

as shown in Table 3.1.

Table 3.1: α and corresponding θ1 +θ2

α θ1 +θ2

0 120o

1
2 90o

1 0o

We see here that the larger α is, the smaller the centre angle at v is, and the

steeper the vectors n1 and n2.

Another special case occurs if the weights m1 and m2 to be moved from each of

the two vertices are equal. In this situation, clearly k1 = k2, and we get cos(θ1+θ2) =

22α−1−1. From this we have that θ1 +θ2 = arccos(22α−1−1).

Example 3.2.2. ( [13]) Figure 3.2 illustrates several graphs possible in the scenario
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where we have two source points x1 and x2, and two sink points y1 and y2, with

weights satisfying m1 +m2 = m3 +m4 as shown in the Figure. Three optimal trans-

port paths are shown, one with no internal vertices added and two with two internal

vertices added. These paths depend on the positions of the source and sink points,

the distances involved, and the ratio of the various weights.

We have now shown Xia’s method to create a transport path T , a weighted directed

graph, between atomic measures a and b. However, the transport path graph created

here is not always a directed tree, because there could be some loops or cycles in it.

The next Proposition shows that we can however always modify the graph T into a

directed tree T̃ from a to b, with cost no greater than Hα.

Proposition 3.4. ( [13]) For any T ∈ Path(a,b), there exists a T̃ ∈ Path(a,b) which

contains no cycles and for which Hα(T̃ )≤ Hα(T ).

Proof. Suppose that O is some cycle, that is a list of edges, in the graph T . For each

edge e in O, there is a weight on the edge in the graph T , to be denoted by w(e). We

will define a new mass on edges by

m(e) =
α length (e)

w(e)1−α

Without loss of generality, we pick an orientation for the cycle O, and use this

orientation to form two sets corresponding to a partition of the set of all edges of O

into the set of edges with the same orientation as O and the set of those with opposite

orientation. Recall that [[e]] = length(e) e is the vector in m-space determined by the

edge e in the graph. We let

O1 = ∑{[[e]] : edge e of O has the same orientation as O} and
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O2 = ∑{[[e]] : edge e of O has the opposite direction to O}.

Note that one of O1 or O2 could be empty, and as they both each have the same

start and end vertices but with opposite orientation, equation (3.3) guarantees that

the weights balance and so div(O1) = div(O2). By reversing the orientation on O if

necessary, we may assume that

∑
e∈O1

m(e)≤ ∑
e∈O2

m(e).

We use these two sets to construct a new graph T ′ from T , as follows. Assuming

as above that the vector set O2 has the larger sum of m(e) values, we take w0 =

min{w(e) : e ∈ O2}. Now we go through the edges in the loop, and add w0 units of

weight to each of the edges in O1, and remove w0 units from each edge in O2. Note

that we have maintained the weight balance at each of the internal vertices. After

this addition and subtraction of weights, at least one edge in O2 will now have weight

of zero. We then remove any such zero-weight edges from the graph, resulting in the

new graph T ′. Xia has denoted this process by T ′ = T +w0(O1−O2). Note that if

α = 0, then all the edges m(e) are zero, so either partition set can be used, and we

adjust edge weights by the minimum edge weight.

This process will be illustrated below in Examples 3.2.3 and 3.2.4. Note that T ′

now has one loop removed, but may still have more loops; if so, we repeat this process

as necessary. We finish the proof of the Proposition by showing that at any stage in

this process, Hα(T ′)≤ Hα(T ).

To see this, we consider the function on [0,w] defined by

f (λ) := Hα(T +λ(O1−O2))−Hα(T )

= ∑
e∈O1

length (e)[(w(e)+λ)α−w(e)α]+ ∑
e∈O2

length (e)[(w(e)−λ)α−w(e)α].
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Here,

f (0) = ∑
e∈O1

length(e)[(w(e)+λ)α−w(e)α]+ ∑
e∈O2

length(e)[(w(e)−λ)α−w(e)α]

= ∑
e∈O1

length(e)[(w(e)+0)α−w(e)α]+ ∑
e∈O2

length(e)[(w(e)−0)α−w(e)α]

= ∑
e∈O1

length(e)[(w(e))α−w(e)α]+ ∑
e∈O2

length(e)[(w(e))α−w(e)α]

= ∑
e∈O1

length(e)[0]+ ∑
e∈O2

length(e)[0]

= 0.

One can easily compute the derivative of f ,

f ′(λ) = ∑
e∈O1

length (e)[α(w(e)+λ)α−1]+ ∑
e∈O2

length (e)[α(w(e)−λ)α−1].

Therefore,

f ′(0) = ∑
e∈O1

length(e)[α(w(e)+0)α−1]− ∑
e∈O2

length(e)[α(w(e)−0)α−1]

= ∑
e∈O1

length(e)[α(w(e))α−1]− ∑
e∈O2

length(e)[α(w(e))α−1]

= ∑
e∈O1

length(e)α
(w(e))1−α

− ∑
e∈O2

length(e)α
(w(e))1−α

= ∑
e∈O1

m(e)− ∑
e∈O2

m(e).

Since ∑e∈O1 m(e)≤ ∑e∈O2 m(e), we have that

f ′(0) = ∑
e∈O1

m(e)− ∑
e∈O2

m(e)≤ 0.
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We shall now compute the second derivative of f ,

f ′′(λ) = ∑
e∈O1

length (e)α(α−1)[(w(e)+λ)α−2]

+ ∑
e∈L2

length (e)α(α−1)[(w(e)−λ)α−1].

Then, since α≤ 1, we always have

f ′′(λ)≤ 0, f ′(λ)≤ f ′(0)≤ 0,

from which we obtain f (λ)≤ f (0) = 0. Thus,

f (w) = Hα(T +w(O1−O2))−Hα(T )

= Hα(T ′)−Hα(T ).

Therefore, Hα(T ′)≤ Hα(T ) as f (w)≤ 0.

Example 3.2.3. Let us consider the graph G shown in the Figure 3.3, situated as a

vector measure in R2, with vertices x1(−4,4), x2(0,4), x3(4,4), v1(−2,2), v2(2,2) and

y(0,0). Here, we are shipping items from x1, x2 and x3 with weights 3, 7 and 4 units

respectively to the sink y, and two new interior vertices v1 and v2 have been added.

All the weights w(e) on each edge are given in Figure 3.3. A cycle O = x2v2yv1x2 is

present in this graph which has two partition sets O1 containing the edges x2v2 and

v2y, and O2 containing the edges x2v1 and v1y.

Let us consider α = 1
2 . The length of each edge in this graph is 2.8284 approx-

imately. By Proposition 3.4 we have m(x2v1) = 0.8000, m(x2v2) = 0.5060, m(v1y) =

0.5060 and m(v2y) = 0.3771. Then we have

∑
e∈O1

m(e) = m(x2v2)+m(v2y) = 0.8831
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x1 x2

v1 v2

x3

y

3 5

42

5

9

Figure 3.3: Graph G with one cycle

and

∑
e∈O2

m(e) = m(x2v1)+m(v1y) = 1.3060.

Clearly, ∑e∈O1 m(e)≤∑e∈O2 m(e), and w0 =min{w(e) : e∈O2}=min{2,5}= 2. To

form the new graph G′, we therefore need to add two units of weight to each of the

O1 edges, and remove two units of weight from each of the O2 edges. As in Figure 3.4

then, the weights in our loop become 7, 10, 0 and 3. Since the edge x2v1 now has no

mass on it, it can be removed from the graph, resulting in the new graph G′ with no

cycles.

x1 x2

v1 v2

x3

y

3 7

4

3

11

Figure 3.4: Graph G′ with no cycle

Example 3.2.4. Consider the graph T shown in Figure 3.5, where we are shipping

items from three sources x1, x2 and x3 to one sink point y, and two interior points v1
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and v2 have been added, with weights as shown. This graph has three loops (ignoring

direction). We look first at the loop O = x2x3yv2x2, and show how to remove one edge

from the graph to remove this loop. We partition O into two sets, one with edges x2x3

and x3y, and the other with edges x2v2 and v2y. Let us consider the case α = 1, so

that each m(e) is simply the length of e as a vector. The minimum weight of an edge

in the partition set with larger m sum is then 6, so we increase the weights by 6 units

on each of x2v2 and v2y, and decrease by 6 on each of x2x3 and x3y. Removing the

edge that is left with weight zero then results in the graph T ′ shown in Figure 3.6.

x1 x2

v1 v2 x3

y

3

2

2

1

1

6

8

Figure 3.5: Graph T with cycles

x1 x2

v1 v2 x3

y

3

2

2

7

7
2

Figure 3.6: Graph from Figure 3.5 with one cycle removed
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Starting with the graph in Figure 3.6, we can again consider two orientations on

the remaining loop. We set L1 to be the path x1x2v2y, and L2 to be the path from x1

to v1 to y. We get ∑e∈L1 m(e) = ∑e∈L1 length(e) = 2.5+3.54 = 6.04 and ∑e∈L2 m(e) =

∑e∈L2 length(e) = 5+3.54+2.5 = 11.04. Hence, ∑e∈L1 m(e)≤ ∑e∈L2 m(e). Then again

applying w1 = min{w(e) : e ∈ L1}= {3,7,7}= 3 the formula T ′′ = T ′+w1(L1−L2) =

T ′+3(L1−L2) we get the new cycle-free transport path shown in Figure 3.7.

x1 x2

v1 v2 x3

y

5

5

4

4
2

Figure 3.7: Graph from Figure 3.6 with remaining cycle removed

From the above proposition, we may restrict our transport paths to the class of

directed trees. For directed trees, we have the following minor but useful lemma.

Lemma 3.5. Suppose 0 < Λ <+∞ and T = ∑e∈E(T )w(e)[[e]] ∈ Path(a,b) is a directed

tree with a,b,∈ AΛ as before. Then for any edge e ∈ E(T ), we have

0 < w(e)≤ Λ.

Moreover,

Hα(T )
Λα

≥ H1(T )
Λ

.

Proof. It is clear from the definition that w(e)≤ Λ, so that
w(e)

Λ
≤ 1. As α ∈ [0,1] we
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obtain (
w(e)

Λ

)α

≥ w(e)
Λ

.

Hence,

Hα(T )
Λα

= ∑
e∈E(T )

(
w(e)

Λ

)α

length(e)

≥ ∑
e∈E(T )

w(e)
Λ

length(e)

=
H1(T )

Λ
.

As we use Xia’s result for transport paths for atomic measures to build paths for

more general measures in the next Section, the following Proposition will allow us to

scale paths as necessary.

Proposition 3.6. For any T = ∑e∈E(T )w(e)[[e]] ∈ Path(a,b) and any positive number

r > 0,

rT := ∑
e∈E(T )

(rw(e))[[e]]

is a transport path from ra to rb ∈ ArΛ(X), and

Hα(rT ) = rαHα(T ).

In particular,

T
Λ
∈ Path

( a
Λ
,

b
Λ

)
with Hα(T ) = Λ

αHα(
T
Λ
).
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Proof. Note that

rT = r ∑
e∈E(T )

w(e)[[e]]

= ∑
e∈E(T )

(rw(e))[[e]]

is a transport path from ra to rb ∈ ArΛ(X), and

Hα(rT ) = ∑
e∈E(T )

(rw(e))α[[e]]

= rα
∑

e∈E(T )
(w(e))α[[e]]

= rαHα(T ).

Clearly,
T
Λ
∈ Path

( a
Λ
,

b
Λ

)
and

Λ
αHα(

T
Λ
) = Λ

α
∑

e∈E(T )

(w(e)
Λ

)α

[[e]]

= ∑
e∈E(T )

(w(e))α[[e]]

= Hα(T ).

Proposition 3.7. (Xia [14], Prop. 1.2) Let G be a transport path from a to b which

contains no cycles. Then the number of vertices in G of degree three or more must be

≤ k+ l−2.

Proof. It is well known in graph theory (see [9]) that the sum of the degrees of the

vertices in a connected graph is twice the number of edges, and the Euler characteristic

χG = |V (G)|− |E(G)|.

Combining these two facts lets us write
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3.2. TRANSPORT PATHS BETWEEN MEASURES

∑
v∈G

deg(v) = 2(# of vertices in G)−2χG (3.10)

Now we denote the number of vertices by ∑v∈V (G) 1 and split the set of vertices

into those of degree 1,2 and ≥ 3. This gives

∑ v∈V (G)
deg(v)=1

deg(V )+∑ v∈V (G)
deg(v)=2

deg(V )+∑ v∈V (G)
deg(v)≥3

deg(V )

= 2∑ v∈V (G)
deg(v)=1

1+2∑ v∈V (G)
deg(v)=2

1+2∑ v∈V (G)
deg(v)≥3

1−2χG.

=⇒ ∑ v∈V (G)
deg(v)=2

deg(V )+∑ v∈V (G)
deg(v)≥3

deg(V )

= ∑ v∈V (G)
deg(v)=1

1+2∑ v∈V (G)
deg(v)=2

1+2∑ v∈V (G)
deg(v)≥3

1−2χG.

=⇒ ∑ v∈V (G)
deg(v)≥3

deg(v) = ∑ v∈V (G)
deg(v)=1

1+2∑ v∈V (G)
deg(v)≥3

1−2χG,

since∑ v∈V (G)
deg(v)=2

deg(V ) = 2∑ v∈V (G)
deg(v)=2

1

=⇒ ∑ v∈V (G)
deg(v)=1

1−2χG = ∑ v∈V (G)
deg(v)≥3

deg(v)−2∑ v∈V (G)
deg(v)≥3

1

=⇒ ∑ v∈V (G)
deg(v)=1

1−2χG = ∑ v∈V (G)
deg(v)≥3

[deg(v)−2]
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It follows from this that

(# vertices o f degree ≥ 3) ≤ ∑
v∈V (G)

deg(v)≥3

[deg(v)−2]

= ∑
v∈V (G)

deg(v)=1

1−2χG

≤ ∑
v∈V (G)

deg(v)=1

1−2 since χG ≥ 1

= (# vertices o f degree = 1)−2

≤ k+ l−2,

where the last step follows from the fact that any new internal vertices added in

our process have degree at least 2.

This Proposition gives a maximum for the number of new interior vertices that can

be added, and so helps determine the possible shapes of transport paths. As noted

above, given two sources and one sink we can add at most one internal vertex, so

we get either a V- or Y-shaped graph. For two sources and two sinks, the maximum

k+ l− 2 = 2, so at most two new vertices can be added, with the shapes shown in

Figure 3.2. For three sources and one sink, we have a maximum of two new vertices

as shown in Figure 3.3.

Besides giving us information like this about possible scenarios for specific cases,

Proposition 3.7 also shows that for a given source-sink combination, the number of

new internal vertices which can be added is finite. This means that in the case of two

atomic measures, we have a finite collection of possible transport paths to consider,

and can always find one with optimal cost.
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3.3 Transportation of General Measures

In the previous section we presented Xia’s method for constructing a transport

path between two atomic measures, along with some examples. Now we show how

that method can be extended to produce transport paths for other measures, such as

Radon measures. We recall from Definition 2.20 that a Radon measure is a measure

which is both inner regular and locally finite. The key fact we use is that any Radon

measure measure on our space X can be approximated by atomic measures, in the

sense that the Radon measure can be expressed as a limit, in the weak* topology, of

a sequence of atomic measures. We thus get a sequence of transport paths, and can

consider the limit of this sequence under the vector measure.

Dyadic Approximation of Radon measures

In this section we will show how any Radon measure can be approximated by a

particular sequence of atomic measures. We start with an arbitrary Radon measure

µ, which is defined on a set X ⊆ Rm. We can always find a cube Q in Rm such that

X ⊆ Q ⊆ Rm. Suppose that this cube Q has centre point c and edge length l. Our

sequence of atomic measures will be determined by a sequence of subdivisions of Q,

known as dyadic subdivisions. The notation is complex, but essentially we subdivide

Q into a sequence of sub-cubes, by halving the edge length each time.

To start, we let Q0 = {Q}. Now for Q1, we want to form a set of sub-cubes of

Q, by dividing each edge of Q in half. In dimension d, this results in 2d sub-cubes,

and it is easiest to index these by d-tuples with integer coordinates starting at 0. For

example, in two-dimensional space, we divide the original cube Q into four sub-cubes,

which we can label by coordinates (0,0),(0,1),(1,0) and (1,1,).

Next, for Q2, we partition each of the 2d sub-cubes in Q1, again by halving each

side. In two dimensions, this would result in 16 sub-cubes in Q2, each with edge length

l/4; these 16 can be labelled by (i, j) where i and j are integers between 0 and 3.
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With this example in mind, we can now introduce our notation. We define Q0 =

{Q}, and then for i ≥ 1 we set Qi to be the set of the sub-cubes of length l/2i that

make up Q, indexed by m-tuples with coordinates which are integers between 0 and

2i. Formally,

Qi = {Qh
i : h ∈ Zm∩ [0,2i)m}. (3.11)

Note here that each Qi consists of a set of sub-cubes of edge length l/2i. For each

such sub-cube Qh
i , we will denote the centre point of the cube by ch

i . We also take the

weight mh
i = µ(Qh

i ). Now we use this information to form atomic measures, based on

the points ch
i and weights mh

i . For each i≥ 0 we set

Ri(µ) = ∑
h∈Zm∩[0,2i)m

mh
i δch

i
∈ AΛ(X).

In this way, the original Radon measure induces a sequence {Ri(µ) : i ≥ 0} of

atomic measures. The key result now is that this sequence converges weakly to µ, in

the sense of measure convergence. We can thus consider the sequence {Ri(µ) : i≥ 0} to

be an approximation of µ by atomic measures. This is called the dyadic approximation

of µ.

Definition 3.8. Let µ+,µ− ∈MΛ(X) be any two Radon measures on X with equal

total mass Λ. We say a vector measure T0 ∈MΛ(X) is a transport path from µ+

to µ− if there exist two sequences {ai}, {bi} of atomic measures in AΛ(X) with a

corresponding sequence of transport Paths Ti ∈ Path(ai,bi) such that

ai ⇀ µ+,bi ⇀ µ− and Ti ⇀ T0,

where the measures converge as Radon measures and the Ti converge to T0 as vector

measures.
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The sequence of triples {ai,bi,Ti} is called an approximating graph sequence for

T0. Note that for any such T0, we have div(T0) = µ+−µ−, in the sense of distributions.

Let

Path(µ+,µ−)⊂MΛ(X)

be the space of all transport paths from µ+ to µ−.

For the cost function to be used, we set the parameter α ∈ [0,1], and for any

T0 ∈ Path(µ+,µ−) we define the Hα cost of T0 to be

Hα(T0) := inf lim inf
i−→∞

Hα(Ti),

where the infimum is taken over the set of all possible approximating graph sequences

{ai,bi,Ti} of T0.

When µ+ and µ− are atomic, these new definitions for transport path and Hα cost

functions reduce to the previous definitions in the last section.

Using scaling as needed, we can assume that both measures µ+ and µ− have total

weight Λ = µ+(X) = µ−(X) = 1, making them both probability measures. For any

probability measure µ ∈M1(X), we will now use the dyadic approximation Ai(µ) of µ

to construct a transport path of finite Hα cost from µ to the Dirac measure δc,where

c is the center of the cube Q containing X with edge length l. We have the following

result.

Proposition 3.9. ( [13]). Let α ∈ (1− 1
m ,1]. For any µ ∈ M1(X), there exists a

transport path T ∈ Path(µ,δc) such that

Hα(T0)≤
1

21−m(1−α)−1

√
ml
2

.

Proof. Let {Ri(µ)} be the dyadic approximation of µ. For each i ≥ 0 and h ∈ Zm ∩

[0,2i)m, each cube Qh
i of level i corresponds to 2m cubes

{
Q2mh+h′

i+1 : h′= 0,1,2, ...,2m−1
}
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of level i+1 by dyadic subdivision. Then we can construct a transport path

T h
i :=

2m−1

∑
h′=0

m2mh+h′
i+1 [[(c2mh+h′

i+1 ,ch
i )]] ∈ Path

(
mh

i δch
i
,

2m−1

∑
h′=0

m2mh+h′
i+1 δc2mh+h′

i+1

)
,

which is a directed tree from the center ch
i of Qh

i to the centers c2mh+h′
i+1 of 2m cubes{

Q2mh+h′
i+1 : h′ = 0,1,2, ...,2m−1

}
with suitable weights. Now, for each n≥ 0, set

Tn =
n

∑
i=0

∑
h∈Zm∩[0,2i)m

T h
i ∈ Path (R0(µ),Rn+1(µ)).

Then

Mα(Tn) =
n

∑
i=0

∑
h∈Zm∩[0,2i)m

2m−1

∑
h′=0

(m2mh+h′
i+1 )α length(c2mh+h′

i+1 ,ch
i )

=
n

∑
i=0

∑
h∈Zm∩[0,2i)m

2m−1

∑
h′=0

(m2mh+h′
i+1 )α

√
ml

2i+2

≤
n

∑
i=0

∑
h∈Zm∩[0,2i)m

2m−1

∑
h′=0

(
1

2m(i+1)

)α√ml
2i+2

=
n

∑
i=0

∑
h∈Zm∩[0,2i)m

2m−1

∑
h′=0

2−mα(i+1)2−(i+1)
√

ml
2

=
n

∑
i=0

∑
h∈Zm∩[0,2i)m

2m2−mα(i+1)2−(i+1)
√

ml
2

=
n

∑
i=0

2im2m2−mα(i+1)2−(i+1)
√

ml
2

=
n

∑
i=0

(2i+1)m(1−α)−1
√

ml
2

≤ 1
21−m(1−α)−1

√
ml
2

, (for α > 1− 1
m
)

where the inequality in the third line of the above equation follows from the fact that
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the function

fi(x1,x2, ...,x2m(i+1)) = ∑
h∈zm∩[0,2i)m

2m−1

∑
h′=0

(x2mh+h′)
α

√
md

2i+2

achieves its maximum at the point ( 1
2m(i+1) ,

1
2m(i+1) , ...,

1
2m(i+1) ).

Since ‖ Tn ‖ (X) = H1(Tn)≤ Hα(Tn) has bounded total variation, by the compact-

ness of vector measures, {Tn} sub-converges weakly to a vector measure T0 with

Hα(T0) = inf lim inf
i−→∞

Hα(Gi)≤ liminfHα(Gi)≤
1

21−m(1−α)−1

√
md
2

.

Thus T0 ∈ Path (µ,δc) has finite Hα cost.

The following Existence Theorem now gives us the solution to Problem 3.1 for

Radon measures.

Theorem 3.10. (Xia’s Existence theorem [13]) Given two Radon measures µ+,µ− ∈

MΛ(X) on X ⊂ Rm and α ∈ (1− 1
m ,1], there exists an optimal transport path T with

least Hα cost among all transport paths in the family Path (µ+,µ−). Moreover

Hα(T )≤ Λα

21−m(1−α)−1

√
ml
2

.

Proof. Let {Pi} be an Hα minimizing sequence in Path (µ+,µ−). For each Pi, there

exists a transport path Ti ∈ Path(ai,bi) such that

Hα(Ti)≤ Hα(Pi)+
1
2i .

From Proposition 3.4, we may assume that the graph Ti have no cycles in them.

Let W be the Wasserstein 1-distance on M1(X), a metric which results in the weak*

topology on M1(X). Then the transport path Ti from ai to bi also satisfies
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W (ai,µ+)+W (bi,µ−)<
1
2i .

From this we get that the Ti satisfy ‖ Ti ‖ (X) = H1(Ti). Now Lemma 3.5 shows

that

Hα(Ti)

Λα
≥ H1(Ti)

Λ
,

which means that H1(Ti)≤ Λ1−αHα(Ti). Finally, this shows that

‖ Ti ‖ (X) = H1(Ti)≤ Λ
1−αHα(Ti)≤ (Hα(Ti)+

1
2i )Λ

1−α.

These equations show that the Ti are uniformly bounded. Compactness of vector

measures then means that the Ti sequence converges to a vector measure T which gives

a path from µ+ to µ−. This T is optimal as a transport path, because of the lower semi-

continuity of H. Finally, by Proposition 3.9, T satisfies Hα(T )≤ Λα

21−m(1−α)−1

√
md
2 .

3.4 A New Distance dα on the Space of Probability Measures

In [13], Xia also defines a new function giving a distance between two measures

from MΛ(X), this time based on the cost function Hα discussed in the previous Section.

The Wasserstein distance was introduced by Russian mathematician Leonid Wasser-

stein in 1969. The Wasserstein distance between two measures µ and ν depends on

the paired mappings from µ to ν, and the distance function on the points of X . Also,

we note that for p = 1, this Wasserstin distance is often called the “earth mover dis-

tance,” as it corresponds to the Monge’s basic model of moving piles of earth from

one place to another, with a minimal transport based on the distance between points

and a given cost function c.

Definition 3.11. ( [?]) Let (X ,d) be a Polish metric space and p ∈ (0,+∞) ( usually

p ≥ 1). For any two probability measures µ,ν on the probability space P(X), the
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Wasserstein distance of order p between µ and ν is defined by

Wp(µ,ν) :=
(

min
γ∈M

∫
X×X
| x− y |p dγ(x,y)

)min(1,
1
p
)

.

Here the set M of all couplings µ and ν denotes the collection of all measures on X×X

with marginals µ and ν on the first and second factors respectively.

Definition 3.12. (Xia, [13]) Let α be the cost parameter of a transport scheme, with

α ∈ (1−1/m,1]. For any two Radon measures µ+and µ−in MΛ(X), we set

dα(µ+,µ−) := min{Hα(T ) : T ∈ Path(µ+,µ−)}.

From Xia’s Existence Theorem, optimal paths minimizing the Hα cost exist, and

this function is well-defined. In this section, we show that the function dα is indeed

a distance function, that is, that it satisfies the following properties for any Radon

measures µ1, µ2 and µ3:

(i) dα(µ1,µ2)≥ 0.

(ii) dα(µ1,µ2) = 0 iff µ1 = µ2.

(iii) dα(µ1,µ2) = dα(µ2,µ1).

(iv) dα(µ1,µ3)≤ dα(µ1,µ2)+dα(µ2,µ3).

We will also present Xia’s proof that this distance function is a natural one, in

that it metrizes the weak* topology on MΛ(X).

Xia ( [13]) notes that this distance function is different from the Wasserstein dis-

tance. In general, the Wasserstein distance measure results in V-shaped paths for

optimal transport graphs from two sources to one sink, while Xia’s cost function Hα

and the resulting metric dα correspond to Y-shaped paths.
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We first show that because of the scaling feature from Proposition 3.6, we may

without loss of generality assume in our proof that the total weight Λ = 1. To see

this, we note that

T
Λ
∈ Path

(µ+

Λ
,
µ−

Λ

)
with Hα(T ) = Λ

αHα

(T
Λ

)
.

Hence,

dα(µ+,µ−) = min{Hα(T ) : T ∈ Path(µ+,µ−)}

= min
{

Λ
αHα

(T
Λ

)
: T ∈ Path

(µ+

Λ
,
µ−

Λ

)}
= Λ

α min
{

Hα

(T
Λ

)
: T ∈ Path

(µ+

Λ
,
µ−

Λ

)}
= Λ

α dα

(µ+

Λ
,
µ−

Λ

)
.

Therefore for any Λ > 0 and any µ+, µ− ∈MΛ(X),

dα(µ+,µ−) = Λ
αdα

(
µ+

Λ
,
µ−

Λ

)
,

and thus we may assume that Λ = 1.

The following Lemma is another preliminary step in the proof that dα is a distance

function.

Lemma 3.13. (Xia, [13]) Let µ∈M1(X), and suppose that {ai},{bi}⊂A1(X) are two

sequences of atomic probability measures on X . If ai ⇀ µ and bi ⇀ µ, then dα(ai,bi)→

0.

Proof. Let ε > 0. Since α ∈ (1− 1
m
,1] we have m(1−α)−1 < 0. Then there exists a

natural number n large enough so that

nm(1−α)−1 1
21−m(1−α)−1

√
md
2

<
ε

3
.
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For any small number β > 0, we can find a partition Qn = {Qh
n : h ∈ Zm∩ [0,n)m} of Q

consisting of cubes of edge length between [(1−β)d
n ,(1+β)d

n ] such that for all i, the

finite set spt(ai)∪ spt(bi) doesn’t intersect the boundary of those cubes, where spt(ai)

is the support of the measure ai. For each h, let ch
n be the center of Qh

n , ph
i = ai(Qh

n)

and qh
i = bi(Qh

n). Since ai−bi ⇀ 0, we have ph
i −qh

i = (ai−bi)(χ(interior ofQh
n))−→ 0

as i−→ ∞ for all h. Let

pi = ∑
h∈zm∩[0,n)m

ph
i δch

n
and qi = ∑

h∈zm∩[0,n)m

qh
i δch

n
.

By Proposition 3.9, there exists an Sh
i ∈ Path (aibQh

n
, ph

i δch
n
) with

Mα(Sh
i )≤

(ph
i )

α

21−m(1−α)−1

√
md

2n
.

Thus Si = ∑h∈zm∩[0,n)m Sh
i ∈ path(ai, pi) and

Mα(Si) ≤ ∑
h∈zm∩[0,n)m

Mα(Sh
i )

≤ ∑
h∈zm∩[0,n)m

(ph
i )

α (1)
21−m(1−α)−1

√
md

2n

≤ ∑
h∈zm∩[0,n)m

(
1

nm )α (1)α

21−m(1−α)−1

√
md

2n

≤ nm(
1

nm )α (1)α

21−m(1−α)−1

√
md

2n

<
ε

3
.

Similarly, we may find some S′i ∈ path(bi,qi) with Mα(S′i)<
ε

3 .

Finally, let Gi be the cone over pi− qi with vertex c, the center of Q. Then
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Gi ∈ path(pi,qi) and when i is large enough we have

Mα(Gi)≤ ∑
h∈zm∩[0,n)m

(|ph
i −qh

i |)α

√
md
2

<
ε

3
.

Therefore, we have Ti = Si +Gi + S′i ∈ path(ai,bi) with Mα(Ti) < ε when i is large

enough. Thus dα(ai,bi)−→ 0.

The next Lemma shows that the distance dα between two measures is always

greater than or equal to the 1-Wasserstein distance between them, another fact to be

used in our distance proof.

Lemma 3.14. For any µ+,µ− ∈M1(X), we have

W (µ+,µ−)≤ dα(µ+,µ−),

where W is the Wasserstein distance on M1(X).

Proof. By the definition of dα(µ+,µ−), there is a sequence Ti of cycle-free transport

graphs, built on an optimal sequence {ci,di,Ti} of transport paths from µ+ to µ−, such

that

lim
i→∞

Hα(Ti) = dα(µ+,µ−).

Lemma 3.5 shows that H1(Ti)≤Hα(Ti). The definition of the Wasserstein distance

also shows that W (ai,bi)≤ H1(Ti). Combining these gives us

W (ai,bi)≤ H1(Ti)≤ Hα(Ti).

Then as i−→ ∞, we have

W (µ+,µ−)≤ liminf
i→∞

W (ai,bi)≤ lim
i→∞

Hα(Ti) = dα(µ+,µ−).
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Corollary 3.15. (Xia, [13]) If dα(µi,µ)−→ 0, then µi ⇀ µ.

Proof. Lemma 3.14 shows that if dα(µi,µ)−→ 0 we also have W (µi,µ)−→ 0. It follows

from this that the sequence µi also converges to µ.

Theorem 3.16. (Xia, [13]) dα is a distance on M1(X).

Proof. We show that for any metrics µ1, µ2 and µ3 in M1(X), the four required distance

properties hold. The first three properties hold by the Definition of dα and Lemma

3.14, and it remains to show the fourth property. We assume that there are ai, bi,

ci and di which converge respectively to µ1, µ2, µ2 and µ3, with corresponding path

sequences Ti for dα(µ1,µ2) and Pi for dα(µ2,µ3). Since these last two sequences converge

as i−→ ∞, we may choose a large enough i ∈ Z such that

lim
i→∞

Hα(Ti)≤ dα(µ1,µ2)+
ε

3

and

lim
i→∞

Hα(Pi)≤ dα(µ2,µ3)+
ε

3
.

Then, as in the Proof of Lemma 3.13, we can also find a sequence of paths Ri from

bi to ci, and a large enough value of i to ensure that Hα(T − I)≤ ε

3 . Combining these

facts, we have a path sequence Ti +Ri +Pi and a large enough i to make

dα(µ1,µ3) ≤ liminfHα(Ti +Ri +Pi)

≤ dα(µ1,µ2)+dα(µ2,µ3)+ ε.

Therefore, dα(µ1,µ3)≤ dα(µ1,µ2)+dα(µ2,µ3), and dα is a distance on M1(X).
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The following Corollary shows an important feature of our transport graph se-

quences, that if each Ti is optimal for its path, then the limit path R is also optimal.

Corollary 3.17. (Xia, [13]) Let R be a transport path between metrics µ+ and µ−

with approximating sequences ai, bi and Ti. If each of the sequence paths Ti is optimal

as a path from ai to bi for each i≥ 1, then the path R is optimal from µ+ and µ−.

Proof. Suppose T is an optimal transport path in Path(µ+,µ−) and {a′i,b′i,Fi} is an

approximating graph sequence of T such that

lim
i→∞

Hα(Fi) = Mα(T ) = dα(µ+,µ−).

Then, by Lemma 3.13,

Hα(R) ≤ liminfi→∞ Hα(Ti)

= liminfi→∞ dα(ai,bi)

≤ liminfi→∞ dα(a′i,b
′
i)+dα(ai,a′i)+dα(bi,b′i)

≤ liminfi→∞ Hα(Fi) = dα(µ+,µ−).

It follows from the Definition of dα that dα(µ+,µ−)≤Mα(T ). Therefore, Mα(T ) =

dα(µ+,µ−) and T is also optimal.

Finally, we can show that Xia’s new dα distance metric, although different from the

Wasserstein distance, in fact induces the same topology on M1(X) as it does, namely

the weak* topology. We first show that atomic measures are dense in (M1(X),dα).

Lemma 3.18. For each µ∈M1(X), let {Rn(µ)} be the dyadic approximation of µ. Let

for some constant C =
√

ml/2
21−m(1−α)−1

and 0 < β = 21−m(1−α) < 1. Then,

dα(µ,Rn(µ))≤Cβ
n.
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Proof. Since we are assuming that Λ = 1, we can assume that our space X sits within

the cube [0,1]m in m-space. Setting Q0 = Q, we can form the dyadic representation

Qn = Qh
n : h ∈ Zm∩ [0,2n)m as above. As before we assume that the cubes have edge

length 1
2n and centers ch

n for the appropriate indices n and h.

Then we define the atomic measure Rn(µ) =∑h µ(Qh
n)δch

n
, and since dα is a distance,

we have

dα(µ,Rn(µ)) ≤ ∑
h

dα(µbQh
n,δch

n
).

By the Xia’s existence theorem, we have

∑
h

dα(µbQh
n,δch

n
)≤∑

h

µ(Qh
n)

α

21−m(1−α)−1

√
ml

2n+1 .

Hence,

dα(µ,Rn(µ)) ≤ ∑
h

µ(Qh
n)

α

21−m(1−α)−1

√
ml

2n+1

≤ ∑
h

(
1

2nm

)α

1
21−m(1−α)−1

√
ml

2n+1

=

√
ml

21−m(1−α)−1
2n[m(1−α)−1]−1 −→ 0 as n−→ ∞.

Corollary 3.19. (Xia, [13]) For any µ+, µ− ∈M1(X) , let {Rn(µ+)} and {Rn(µ−)}

be the dyadic approximation of µ+ and µ− respectively. Then

| dα(µ+,µ−)−dα(Rn(µ+),Rn(µ−)) | ≤ 2Cβ
n.
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Proof. We have from Lemma 3.18 that

dα(µ+,Rn(µ+))≤Cβ
n and dα(µ−,Rn(µ−))≤Cβ

n.

Then

dα(µ+,µ−) ≤ dα(µ+,Rn(µ+))+dα(Rn(µ+),Rn(µ−))+dα(µ−,Rn(µ−))

≤ Cβ
n +dα(Rn(µ+),Rn(µ−))+Cβ

n

= 2Cβ
n +dα(Rn(µ+),Rn(µ−)).

Hence,

| dα(µ+,µ−)−dα(Rn(µ+),Rn(µ−)) |

≤| 2Cβn +dα(Rn(µ+),Rn(µ−))−dα(Rn(µ+),Rn(µ−)) |

= 2Cβn

Theorem 3.20. (Xia, [13]) Xia’s distance metric dα metrizes the weak* topology of

M1(X).

Proof. We know from Lemma 3.14 that W (µ+,µ−) is bounded above by dα(µ+,µ−), so

to prove that W (µ+,µ−) converges to zero it suffices to show that dα(µ+,µ−) does too.

For i≥ 1, Lemma 3.18 lets us find an atomic probability measure ai with dα(ai,µi)≤ 1
2i ,

so that ai converges to µ, and a sequence bi of measures that converges to µ, such that

dα(bi,µ) converges to zero. Lemma 3.13 tells us that dα(ai,bi) then converges to zero
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too, and thus

dα(µi,µ) ≤ dα(µi,ai)+dα(ai,bi)+dα(bi,µ)

≤ 1
2i +dα(ai,bi)+

1
2i

=
1

2i−1 +dα(ai,bi)

−→ 0.

Conclusion

This chapter has focused on describing Xia’s process for finding optimal transprt

paths, with optimal paths over various possible paths, as well as explaining Xia’s

proofs from [13]. The idea of the optimal transport path first came from Monge in

1781, in the setting where the mass moved from any one source cannot be split up

in the transport to a sink; Kantorovish later relaxed this condition to allow for a

mass to be split and transported along multiple paths. In Chapter 3 we showed how

to find an optimal transport path between two probability measures and also set an

optimal cost function so that the total transportation cost is minimized. Then we

proved that there exists a cycle free path on a transportation problem and showed

some examples on this. First we discussed Xia’s method for Radon measures, and

then showed how to extend this to general measures using sequence approximations.

Then we proved Xia’s Existence Theorem [13] that there exists an optimal transport

path between two measures with minimum cost. Finally, the Wasserstein distance

function was introduced and showed that this is a distance function and metrizes the

weak* topology.

56



Bibliography

[1] Y. Brenier. Polar factorization and monotone rearrangement of vector-valued
functions. Comm. Pure Appl. Math., 4, 1991.

[2] Lawrence C. Evans and Ronald F. Gariepy. Measure Theory and Fine Properties
of Functions. CRC Press, 1991.

[3] N. Ghoussoub and A. Moameni. Symmetric monge-kantorovich problems and
polar decompositions of vector fields. Geom. Funct. Anal., 24, 2014.

[4] T. J. Jech. Set theory, 2nd ed. Berlin: Springer-Verlag, 1997.

[5] L. V. Kantorovich. On the translocation of masses. C.R. (Doklady) Acad. Sci.
URSS (N.S.), 37:199–201, 1942.
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