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Abstract

When we solve a system of nonlinear equations or nonlinear least-squares problem by New-

ton’s method or one of its many variants, the most computationally expensive operations

per iteration are the evaluation of the Jacobian and solving the associated linear system.

Many real-life problems are sparse and if we know the sparsity structure of the Jacobian

in advance, great computational saving can be achieved. We revisit heuristic algorithms

and sparse data structures used to determine sparse Jacobian matrices [20]. We provide a

new implementation of data structures and heuristics and analyze the performance of our

implementation. We provide experimental evidence of the superiority of our bucket heap

data structure in terms of locality of reference to data access. Additionally, an efficient im-

plementation of a branch-and-bound type exact coloring algorithm with new tie-breaking

strategies is provided. The results are supported by extensive numerical experiments with

benchmarking instances from the literature.
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Chapter 1

Introduction

Mathematical derivatives are required often in simulation, problems in optimization and

differential equations. Solving a system of nonlinear equations or nonlinear least-squares

problem by Newton’s method or one of its many variants require the evaluation of its Jaco-

bian matrix and solving the associated linear system at each iterative step. There is an ever

increasing demand for solving larger and more complex problems with the advent of faster

computers and sophisticated software. Fortunately, many real-life problems are sparse or

otherwise structured. Evaluating the analytic derivative of a large and complex problem by

hand is complicated and highly error-prone. Finite-difference (FD) scheme is an alternative

to hand-coded derivatives to approximate the Jacobian. Automatic or algorithmic differ-

entiation (AD) can be a method of choice. Using this method derivative quantities can be

evaluated with an accuracy up to machine precision. It does not incur truncation error. In

both methods, great computational saving can be achieved if the sparsity structure of the

Jacobian is known a priori or can be computed easily and does not change from iteration to

iteration.

There are two main ways one can benefit from sparsity in evaluating derivatives. First, if

we know the identically zero entries of the Jacobian matrix that can be vanished then we

do not need store them explicitly in a data structure. Secondly, we can speed up the cal-

culation of sparse data by avoiding operations involving known zeros. As sparse matrix

algorithms are different than their dense counterpart, distinct and more complex techniques

are required for sparse matrix algorithms. A number of factors like memory traffic and the

1



1.1. OUR CONTRIBUTIONS

size and organization of fast cache memory, number of floating point operations, etc affect

computational complexity of sparse matrix operations. Faster cache memory is not some

time large enough to hold the input data entirely when we deal with large scale problems.

When we access data during the execution of an algorithm, access pattern of data is impor-

tant. The term “locality of reference” is significant here. It is estimated by the principle

of data locality that “recently accessed data (temporal) and nearby data (spatial) are likely

to be accessed in the near future” [5]. Fewer cache misses occur due to better reference

locality of data.

The purpose of this thesis is to extend the software tool DSJM (Determine Sparse Jacobian

Matrices) [20] and new functionality that can be used to compress and determine sparse

Jacobian matrices from its sparsity pattern using FD or AD. The current implementation

provides a collection of stand-alone column ordering and grouping algorithms. This de-

sign exploits the recently proposed unifying framework “pattern graph” [20] and employs

cache-friendly array-based sparse data structure. We discuss the motivation of our work

and provide the problem background in the next chapter. It is easier to understand about the

motivation when we talk about the problem background a little bit in detail.

1.1 Our Contributions

Our contributions in this thesis are pointed below.

1. Thorough study on the data structures used in DSJM and existing heuristic ordering

and partitioning algorithms of DSJM.

2. Implementation of ordering and partitioning algorithms of DSJM using Fibonacci

heap data structure and performance comparison with bucket heap data structure.

3. Cache analysis of bucket heap and Fibonacci heap-based implementations on two test

instances with the help of our cache simulator.

4. Performance profiling for DSJM and ColPack[17].

2



1.2. THESIS ORGANIZATION

5. Implementation of a branch-and-bound type exact graph coloring algorithm using

efficient data structures used in DSJM.

6. Implementation of existing and new tie-breaking strategies in exact graph coloring

algorithm.

7. Numerical experiments to show the efficiency of the new implementation.

8. Incorporation of our exact graph coloring implementation to the Combined coloring

Method (CM) of Hossain et al. [24].

Parts of the work of this thesis,

• has appeared in ICMS: International Congress on Mathematical Software 2016 and

appeared in Mathematical Software-ICMS 2016, Springer International Publishing

[20].

• will be presented in a session on topic “Recent Progress in Numerical Methods and

Scientific Computing” in AMMCS-2017 International Conference: Applied Mathe-

matics, Modeling and Computational Science Conference, Waterloo, Ontario, from

August 20-25, 2017.

1.2 Thesis Organization

There are a total of 5 chapters in this thesis. Chapter 1 is the introductory chapter where

we introduce the problem and significance of solving the problem in general. We also

discuss our contribution and thesis organization in this chapter.

Chapter 2 includes problem background and preliminaries of this thesis. We start this

chapter with some definitions then discuss the direct determination problem and discuss

how matrix partitioning facilitates in evaluating large and sparse Jacobian. Seed matrix

calculation is essential in matrix partitioning and as seed matrix formulation is a graph

3



1.2. THESIS ORGANIZATION

coloring problem so we discuss some graph theoretic concepts necessary for understanding

the thesis afterward.

In Chapter 3, we discuss the heuristic ordering and partitioning algorithms of software

toolkit DSJM. A thorough study of the algorithms is done in this chapter. Description of

data structures used in DSJM is given Especially a detailed study is done on bucket data

structure used in DSJM. To help understand the main idea we show the uses of bucket

data structure and demonstrate how the buckets change in every step of the ordering and

partitioning algorithms. We implement the algorithms of DSJM using Fibonacci heap data

structure keeping all other things same. A comparison is done between Fibonacci heap-

based implementation and the existing implementation. We also compare the cache misses

of these two implementations during operations. Finally, we do performance profiling of

DSJM and ColPack.

Chapter 4 includes a brief discussion on an exact branch-and-bound type graph coloring

algorithm followed by a detailed description of the implementation of the algorithm using

efficient data structures. Using a small test instance we give an example, how the branch-

and-bound type exact graph coloring algorithm works. We implement four tie-breaking

mechanisms for column selection which is a critical step in the algorithm. We do some nu-

merical experiments on our implementations. We compare our implementation with Trick’s

[27] implementation. A comparison between the tie-breaking strategies is also given. Fi-

nally, we incorporate our exact graph coloring implementation to the Combined coloring

Method (CM) of Hossain et al.

We give the concluding remarks and future work directions in the final Chapter 5

4



Chapter 2

Background and Preliminaries

We discuss the problem background and preliminaries necessary for this thesis in this chap-

ter. Our problem is the determination of sparse Jacobian matrices. To become familiar with

the problem we first discuss sparse matrix, Jacobian matrix then for describing the problem

background we discuss determination of sparse Jacobian matrix. Then we explain matrix

partitioning and why we partition columns of a matrix for determination of sparse Jacobian

matrix. Finally, some graph related concept are given because matrix partitioning can be

formulated as vertex coloring problem.

2.1 Sparse Matrix

A matrix is called sparse matrix if we can take computational advantages to the knowl-

edge of its many zero entries. Structure plot of a sparse matrix is given in Figure 2.1. The

sparse matrix shown in the figure is a small test matrix with 39 rows, 39 columns, and 85

non-zero entries. The matrix has total 39 × 39 = 1521 entries. 94% of the entries of this

matrix are zeros. We say that sparsity of the matrix is 94%

5



2.2. JACOBIAN MATRIX

Figure 2.1: Structure plot of sparse matrix bcspwr01 (Dimensions: 39 × 39, 85 non-zero

entires). Source [2]

2.2 Jacobian Matrix

The Jacobian matrix of a vector-valued function is the matrix of first-order partial

derivatives of the vector valued function. Suppose we are given continuously differentiable

mapping of a vector-valued function F : Rn → R
m. Input of the function is vector x ∈ R

n

and output vector is F(x) ∈ R
m. Let F = ( f1, f2, · · · , fm)

T then Jacobian J of F is given by

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f1

∂x1

∂ f1

∂x2
· · · ∂ f1

∂xn
∂ f2

∂x1

∂ f2

∂x2
· · · ∂ f2

∂xn
...

...
. . .

...

∂ fm

∂x1

∂ fm

∂x2
· · · ∂ fm

∂xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.1)

6



2.4. MATRIX PARTITIONING AND SEED MATRIX COMPUTATION

We discuss in the next section why it is important to calculate Jacobian of vector-valued

non linear function.

2.3 Direct Determination

For solving problems in nonlinear optimization and differential equations using numer-

ical methods, evaluation of mathematical derivatives are often required. We consider the

problem of determining the Jacobian matrix F ′(x) of a once continuously differentiable

mapping F : Rn → R
m at a given point x ∈ R

n. Using differences, the product of the Jaco-

bian matrix with a vector s may be approximated as

∂F(x+ ts)
∂t

∣∣∣∣
t=0

= F ′(x)s ≈ As =
1

ε
[F(x+ εs)−F(x)]≡ b (2.2)

with one extra function evaluation of F at (x+ εs). Here we assume that F(x) has already

been computed and ε > 0 is a small increment. Algorithmic (or automatic) Differentiation

(AD) [23] forward mode gives b = F ′(x)s accurate up to the machine round-off, at a cost

which is a small multiple of the cost of one function evaluation. The Jacobian matrix

determination problem (JMDP) can be stated based on matrix-vector products as follows

Obtain vectors s j ∈R
n, j = 1, · · · , p such that the product b j = As j, j = 1, · · · , p

or B = AS determine the matrix A uniquely.

2.4 Matrix Partitioning and Seed Matrix Computation

Suppose we do not have any sparsity information. Let be s the Cartesian basis vectors

ei, i = 1, · · · ,n in (2.1). Then we can obtain A with n products As. Here we need extra n

function evaluations or in case of AD, n forward mode calculations.

Columns j and l of matrix A are structurally orthogonal, i.e., no two rows have non-zero

entries in the same row position which can be written as A(:, j) ⊥ A(:, l) if there does not

exist any index i such that ai j �= 0 and ail �= 0. If they are not structurally orthogonal, they

7



2.4. MATRIX PARTITIONING AND SEED MATRIX COMPUTATION

are written as A(:, j) �⊥ A(:, l). If A(:, j) ⊥ A(:, l) then we need only one extra function

evaluation

F ′
j +F ′

l = A(:, j)+A(:, l) =
1

ε
[F(x+ ε(e j + el))−F(x)] (2.3)

So the non-zero unknowns in columns j and l are determined from product b = As, s =

e j + el directly. Curtis, Powell, and Reid [7] noted that sparsity of the Jacobian matrix

can be exploited by partitioning the columns into structurally orthogonal column groups.

We call this the CPR method. Thus, if the columns are partitioned into p structurally

orthogonal groups, then Jacobian matrix is directly determined from the row-compressed

matrix B = AS

So our goal is, from a known sparsity pattern of a sparse matrix, to partition its columns into

the smallest number of structurally orthogonal groups such that the non-zero entries can be

determined directly. One significant step in the above B = AS calculation is seed matrix S

calculation. We can partition the columns of the matrix as well as rows of the matrix. In

the illustration below we consider column partition and how to formulate seed matrix from

structurally orthogonal column groups. Let us consider the Matrix in Figure 2.2

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a12 a13 a14 0 0 0

0 a22 0 0 a25 0 0

0 0 a33 0 0 a36 0

0 0 0 a44 0 0 a47

a51 0 0 0 a55 0 0

a61 0 0 0 0 a66 0

a71 0 0 0 0 0 a77

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 2.2: Matrix A
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An approximate seed matrix is

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0

1 0 0

0 1 0

0 0 1

0 0 1

0 0 1

1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We do not discuss here how we got the partitions and formulated the seed matrix S. Dis-

cussions about partitioning are given in details in the next chapters. We only point out that,

each column of seed matrix S corresponds to a group of structurally orthogonal columns.

The product of the sparse matrix and seed matrix is AS

AS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a12 a13 a14

a22 0 a25

0 a33 a36

a47 0 a44

0 a51 a55

0 a61 a66

a77 a71 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Using Forward Difference (FD) the non-zero entries in columns 2 and 7 can be approxi-

mated as

1

ε
(F(x+ ε(e2 + e7))−F(x))T ≈ (ã12 ã22 ã47 ã77)

Here ε > 0 is a small increment (step-size) and (.̃) indicates that the non-zero entry is an
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approximation to the true value. Matrix A can be approximated using three extra function

evaluation of form F(x+ εs) by setting s to e2 + e7, e1 + e3, and e4 + e5 + e6 in addition

to evaluating F at x. But if we did not partition the columns we would need seven extra

function evaluation of form F(x+ εs) for each column in addition to evaluating F at x. In

this example we use a very small test matrix having only seven columns and showed that we

could directly determine Jacobian of matrix A using three extra function evaluation instead

of seven. Matrix partitioning and seed matrix computation reduce the number of function

evaluations. Our goal is now to reduce the number of structurally orthogonal groups so that

we can efficiently determine sparse Jacobian matrices. Coleman and Moré [6] showed that

the problem of finding minimum column partitioning consistent with direct determination

is equivalent to a vertex coloring problem of an associated graph and that the problem is

NP-Hard. So the seed matrix computation of an associated graph G(A) is a vertex coloring

problem. In the next section, we will discuss some necessary graph concepts.

2.5 Graph Concepts

We can represent a graph G with pair (V,E) where V is the set of vertices and E is

the set of edges of graph G. Suppose we have two vertices u,v such that u,v ∈ V . These

two vertices are adjacent if and only if {u,v} ∈ E. The neighborhood N(v) is the set of

all neighbors u of vertex v such that u �= v and {u,v} ∈ E. The degree of a vertex can be

defined as d(v) = |N(v)|.

2.5.1 Column Intersection Graph

We can associate a graph with a matrix. Suppose we have matrix A. We can construct

a graph G = (V,E). In this graph G each column i of the matrix is a vertex vi of the graph

where i = 1,2, . . . ,n. If two columns i and j have at least one nonzero elements in the same

row then those two vertices are connected with an edge i.e {vi,v j} ∈ E. Graph G(A) is

called the column intersection graph associated with matrix A

10
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We display the column intersection graph G(A) from matrix A of Figure 2.2 in Figure 2.3

v1 v2 v3

v4

v5 v6

v7

Figure 2.3: Column intersection graph G(A) of matrix A

2.5.2 Graph Coloring and Coloring Methods

We have already stated that seed matrix computation in an associated graph is a vertex

coloring problem. Let us discuss vertex coloring problem of a graph. The vertex coloring

of a graph is assigning each vertex a color in such a way that no two adjacent vertices get

the same color. Given a graph G = (V,E) we call it p− colorable if there is a mapping

φ : V → {1, · · · , p} such that φ(u) �= φ(v) when {u,v} ∈ E. It means we have a function

φ which assigns every vertex of graph G(A) a color between 1 to p such that no adjacent

vertices get the same color. The minimum value of p is denoted by chromatic number

χ(G) of graph G. Given any graph G, to determine whether it is p− colorable or not is

NP-Complete [15].

Now we will look into graph coloring methods. In this thesis, we discuss two types of

graph coloring approaches. Heuristic and exact approaches. Heuristic algorithms for graph

coloring problem can be categorized into greedy constructive algorithms and meta-heuristic

methods [26]. Heuristic approaches are very fast but can be very sensitive as well. The

sensitivity depends on input parameter like input ordering. It has been observed that scan-
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ning vertices in a specific order during coloring operation may lead to fewer colors/groups

[20]. Software DSJM implements some grouping algorithms, sequential grouping (SEQ),

Saturation-Degree Grouping (SD), Recursive Largest-First Grouping (RLF) and ordering

algorithms Largest-First Ordering (LFO), Smallest-Last Ordering (SLO), and Incidence-

Degree Ordering (IDO). Detailed Discussion about these grouping and ordering algorithms

is given in Chapter 3.

Besides heuristics approaches we implement Brélaz’s DSATUR based exact graph col-

oring algorithm [3] in DSJM. Detail discussion about exact implementation is given in

Chapter 4

2.6 Forward Difference Approximation Algorithm

In Section 2.4 we have demonstrated, how non-zero entries of a column can be approx-

imated if we have partitioning information. Suppose we have the grouping/partitioning

information of structurally orthogonal groups. FD-SPJMS algorithm can be used to obtain

an approximation to the nonzero entries of the directional derivative F ′(x)S(:,k) ≡ B(:,k)

for F ∈ R
n → R

n corresponding to structurally orthogonal group k

FD-SPJMS(gptr,gcolind,k,η,B)

1 w ←FD-SPJD(F,x,η,gptr,golind,k)

2 for ind ← gptr(k) to gptr(k+1)−1

3 j ← gcolind(ind)

4 for each i for which F ′(i, j) �= 0

5 B(i,k)← w(i)
η( j)

FD-SPJD is a user-defined function. It computes the difference F(x+η)−F(x). Here η

is an array which is initialized to zero and contains the finite difference increments ε( j)

corresponding to columns j in structurally orthogonal group k :
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2.6. FORWARD DIFFERENCE APPROXIMATION ALGORITHM

1 for ind ← gptr(k) to gptr(k+1)−1

2 j ← gcolind(ind)

3 η( j)← ε( j)

If we have the grouping information, we can efficiently find the entries of the array η to

calculate the difference F(x+η)−F(x) from which we get FD approximation in lines 2-5

of FD-SPJMS algorithm. Our concern is now how can we reduce the number of structurally

orthogonal groups.
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Chapter 3

Heuristic Approaches to Partitioning
Algorithms

In this chapter we discuss the heuristic partitioning and ordering algorithms of DSJM. In

DSJM [20] there are two kinds of partitioning algorithms. In the first kind, the columns are

scanned in Smallest-Last, Largest-First or Incidence-Degree order and then colored sequen-

tially with minimum available color. The second kind dynamically partitions the columns,

i.e., column ordering and partitioning is done simultaneously. They are Saturation-Degree

partitioning [3] and Recursive Largest-First partitioning [25].

In this chapter, we describe the data structures needed for the implementation first, then

we discuss the algorithms and give some examples to show step by step how the algorithms

work. The examples of the ordering and partitioning algorithms are given using matrix A of

Figure 2.2 which has 7 rows, 7 columns, and 15 non-zero entries. Here we introduce some

basic notations that are useful to understand the algorithms we discuss in this chapter.

The sparsity pattern of a matrix A ∈ R
m×n is denoted

• S(A) = {(i, j)|ai j �= 0}

The sparsity pattern S(A) of matrix A is one of the inputs in all ordering and partitioning

algorithms of DSJM. Here ai j is an entry of the matrix which is in row i and column j.

Golub and Van Loan’s [19] colon notation is used to denote submatrices. Column j of

matrix a is denoted by A(:, j), similarly row i is denoted by A(i, :). If J = {1,2, · · · ,n} is

the set of columns of matrix A, then neighbors of column j in the submatrix induced by

columns of J , can be defined as
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• NJ (A(:, j)) = {A(:, l), l ∈ J |l �= j,A(:, j) �⊥ A(:, l)}

In other words, neighbors of column j are all the columns l ∈ J which are structurally

dependent on j. The degree of column j is the number of neighbors of A(:, j) which is

denoted by

• dJ (A(:, j)) = |NJ (A(:, j))|

Simplified notations like NJ ( j) or dJ ( j) are used here. The maximum and minimum degree

are defined as

• ΔJ = max{dJ ( j)| j ∈ J }, δJ = min{dJ ( j)| j ∈ J }

3.1 Data Structures

Let us discuss the data structures used to store the sparse matrices. We do not need

to store all the values of a sparse matrix. Only non-zero entries are necessary for our

calculations. We have to store the non-zero entries in such a way such that it exploits the

sparsity as well as it is possible to associate the graph from the data structure.

3.1.1 Compressed Sparse Row(CSR) Data Structure

Compressed Sparse Row (CSR) is a popular data structure through which we can store

the sparse row vectors contiguously. We can implement CSR using three arrays: rowptr,

colind and value. In colind array we store the column index of each non-zero element and

value of that element is stored in value array. rowptr points the column indices. value is a

double array of size nnz, where nnz is the number of non-zero entries of the matrix. colind

and rowptr are integer arrays. The size of colind is nnz and the size of rowptr is m+ 1,

where m indicates the number of rows of the matrix. rowptr(i) is the column index of first

non-zero entry of row i. Suppose rowptr(1) is 1. So its column index is colind(rowptr(1)).

We can also access all non-zero entries of a row using CSR data structure. If rowptr(1) is 1

and rowptr(2) is 4 then we have rowptr(2) − rowptr(1) = 4 − 1 = 3 non-zero entries in
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row 1. We get the column indices and values of the non-zero entries of row 1 form colind

and value arrays. We can access elements of row i as

colind(rowptr(i)) to colind(rowptr(i+1)−1)

If our matrix has m rows and nnz non-zero entries then for CSR we need 2nnz+m+1

memory locations.

3.1.2 Compressed Sparse Column(CSC) Data Structure

We also use Compressed Sparse Column (CSC) data structure. It is similar to CSR but

the three arrays are col ptr, rowind and value. col ptr points the row indices. col ptr( j) is

the row index of first nonzero element of column j. rowind and col ptr are integer arrays.

The size of rowind is nnz and the size of col ptr is n+ 1, where n indicates the number of

columns of the matrix. We can access elements of col j as

rowind(col ptr( j)) to rowind(col ptr( j+1)−1)

Sparse matrices in Harwell-Boeing collection [12] are given in CSC. CSparse [9] and the

MATLAB� computing environment [18] use CSC representation for sparse matrices and

the associated operations.

If our matrix has n columns and nnz non-zero entries then for CSC we need nnz+n+1

memory locations.

In our implementation, we use both CSR and CSC data structures. So in total, we need

3nnz+m+n+2 memory locations.

3.1.3 An Example How CSR and CSC are Used to Find the Neighbors of a Column

We already mentioned how a column intersection graph is associated with a matrix.

Using CSR and CSC we can easily perform graph operations without explicitly constructing

the graph. Using CSC we get the non-zero entry of any specific column and from their

row index and CSR we can find if there are any non-zero entries in that row which are
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the neighbors of that columns. The set of neighbors l of any column j is computed as

l = colind(ind j) where ind j = rowptr(i) : rowptr(i+ 1)− 1, i = rowind(indi), indi =

col ptr( j) : col ptr( j + 1)− 1. A simple and a little more elaborated example will make

it easier to understand. Below, the non-zero entries of matrix A in Figure 2.2 is given then

colind, rowptr arrays of CSR and rowind, col ptr arrays of CSC are given in Figure 3.1 and

in Figure 3.2.

In value array the entries are shown in row majored order. In Figure 3.1 the first three

a12

value

2 3 4 2 4 3 6

colind

1 4 6 8 10 12 14

rowptr

a13 a14 a22 a33 a36 a44 a47 a51 a55 a61 a66 a71 a77a25

4 7 1 5 1 6 1 7

16

Figure 3.1: CSR data structure of matrix A

a12

value

5 6 7 1 2 1 3

rowind

1 4 6 8 10 12 14

colptr

a13 a14 a22 a33 a36 a44 a47 a51 a55 a61 a66 a71 a77a25

1 4 2 5 3 6 4 7

16

Figure 3.2: CSC data structure of matrix A

entries with gray boxes are the non-zero entries of first row, the two entries with white

colored box are of second row and so on. In Figure 3.2 only entries of first column are

highlighted with gray box. Let us find l ∈ NJ (3) i.e neighbors of column 3 using CSR and

CSC data structures. First we will compute rowind(indi) from CSC. rowind(indi) is the set

of row indices of non-zero entries of column 3. Here indi= col ptr( j) : col ptr( j+1)−1=

col ptr(3) : col ptr(3+1)−1 = 6 : 7 . So rowind(6 : 7) = {1,3}. Now we know the row

indices of non-zero entries of column 3. So if we can find the other nonzero entries in
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these two rows then we will be able to find the column indices of those rows which are

the neighbors of column 3. With the help of CSR data structure we will find that. The

set of neighbors is l = colind(ind j) , For i = 1 , ind j = rowptr(i) : rowptr(i+ 1)− 1 =

rowptr(1) : rowptr(1+ 1)− 1 = 1 : 3. Here colind(1 : 3) = {2,3,4}. So column 2 and

4 are neighbors of column 3. Again for i = 3 , ind j = rowptr(i) : rowptr(i+ 1)− 1 =

rowptr(3) : rowptr(3+1)−1 = 6 : 7. Here colind(6 : 7) = {3,6}. so column 6 is another

neighbor of column 3. These CSR and CSC are the backbones of our computation. We

do not need to construct a graph explicitly. We can compute the degree of each column

because we know how to access the neighbors of each column using CSC and CSR. The

matrix elements of CSR and CSC data structure are placed in contiguous locations in the

computer memory which ensures maximum spatial locality [29] which results in better

cache memory utilization.

3.1.4 Bucket Data Structure and Tagging Scheme

Besides CSR and CSC, most frequently used sparse matrix operations in the implemen-

tation of algorithms are

1. an efficient tagging scheme for tagging processed and unprocessed columns.

2. a bucket data structure [14] to efficiently find a column with the minimal/maximal

degree.

The bucket data structure we use for implementing the algorithms is very efficient. With

the help of this data structure, we build min/max priority queues. We call those bucket

heaps. This data structure stores and holds the columns based on their degrees in some

induced subgraph. The columns of the same degree are stored in same degree list. When

the algorithms process the columns, the degrees of the columns may change, in those cases,

we update the degrees of those columns and change their degree lists. When we implement

bucket data structure, we do not use pointers. Instead, we use three arrays named HEAD,

PREV IOUS and NEXT . The size of HEAD is maxdeg, where maxdeg is the maximum
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degree of the associated graph. The size of PREV IOUS and NEXT is n+1. So the overall

storage requirement is maxdeg+2n+2. Array HEAD holds the indices of the first column

of each degree list. Suppose HEAD(2) = 4. It means the first column of degree list 2 is col-

umn 4. The degree lists of the bucket are based on column degree, incidence degree or sat-

uration degree. When the algorithms perform ordering or partitioning the degree/incidence

degree/saturation degree of column(s), change and degree list of column(s) are updated ac-

cordingly. The array HEAD keep track of the first column of each degree list. NEXT and

PREV IOUS arrays are used to keep track of next and previous column of each column in

its degree list. Suppose NEXT (4) = 6. It means column 6 is the next column of column 4.

PREV IOUS array also works in the same way. If for any column j, NEXT ( j) = 0 it means

it is the last column of its degree list. If for any column j PREV IOUS( j) = 0 it means it is

the first column of its degree list. Index of HEAD starts from 0 but indices of NEXT and

PREV IOUS start from 1.

Two important operations in bucket heap are ADD and DELET E. The purpose of these

operations is to add a column or delete a column from the bucket. Suppose in a step of an

ordering algorithm a column with the minimum degree is selected. The column gets deleted

from the bucket and stored in the ordered list. Here DELET E is used. As the column is

deleted from the unordered list of columns, so the degrees of its neighbors are decreased by

1. So we delete them from their current degree list d and add them to degree list d−1. The

ADD and DELET E column operations are showed in Figure 3.3.

ADD( j,d)
1 PREV IOUS( j)← 0

2 NEXT ( j)← HEAD(d)
3 if HEAD(d)> 0

4 PREV IOUS(HEAD(d))← j
5 HEAD(d)← j

Figure 3.3: Bucket heap ADD operation
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DELETE( j,d)
1 if PREV IOUS( j) = 0

2 HEAD(d)← NEXT ( j)
3 else
4 NEXT (PREV IOUS( j))← NEXT ( j)
5 if NEXT ( j)> 0

6 PREV IOUS(NEXT ( j))← PREV IOUS( j)

Figure 3.4: Bucket heap DELETE operation

With the help of bucket data structure, we discuss the ordering and partitioning algo-

rithms and describe the steps of the algorithms with examples in the next section. We

try to keep the examples as simple as possible. We perform the ordering and partitioning

algorithms on the matrix shown in Figure 2.2

3.2 Algorithms

3.2.1 Sequential Partitioning (SEQ)

This algorithm is a variant of CPR partitioning. The columns are initially ordered in

Largest-First, Smallest-Last or Incidence-Degree basis then the columns are assigned to the

minimum group number. The SEQ algorithm is shown in Figure 3.5 below.

SEQ(S(A),group,ngroup,order)
1 ngroup ← 0

2 J ←{1,2, . . . ,n}
3 for k ← 1 to n
4 j ← order(k)
5 let cm =min{c|c ∈ {1, . . . ,ngroup+1} �= group(l), l ∈ NJ ( j)}
6 group( j)← cm
7 if cm > ngroup
8 ngroup ← ngroup+1

Figure 3.5: Sequential Partitioning algorithm

The inputs of SEQ algorithm are the sparsity pattern of matrix A, an array named group
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with all its elements initialized to the number of columns n and an array of scanning order

called order. In line 5 of Figure 3.5 set NJ ( j) represents the set of neighbors of column

j and those cannot be grouped with column j. In the same line cm represent the least-

numbered structurally orthogonal group to which column j can be included. On the termi-

nation of the algorithm the group of any column j can be found in group( j) and ngroup

holds the total number of structurally orthogonal groups in the resulting partition.

In SEQ algorithm in lines 1 and 2 initialization takes constant time. It takes O(n) steps.

In line 5 the algorithm looks for the neighbors to find cm, the minimum numbered available

color. In our implementation to find the neighbors for each non-zero entries of the selected

column we look for the non-zero entries in the same row. So in total each row is searched

ρ2
i times where ρi is the number of nonzero elements in the row i. If we have m rows,

sequential coloring will take O(
m
∑

i=1
ρ2

i ) operations

3.2.2 Smallest-Last Ordering (SLO)

Suppose we have ordered a set of vertices V ′ = {vn,vn−1, . . . ,vi+1} of graph G(A). The

algorithm chooses the i-th vertex u to place it in ordered set of vertices from unordered set

of vertices such that deg(u) is minimum in G[V\V ′]. The SLO algorithm is shown in Figure

3.6.

SLO(S(A),order)
1 slindex ← n
2 J ←{1,2, . . . ,n}
3 while J �= Ø

4 let i ∈ J be such that dJ (l) is minimum

5 order(slindex)← l
6 slindex ← slindex−1

7 J ← J \ {l}

Figure 3.6: Smallest-Last Ordering algorithm

The input of the SLO algorithm is the sparsity pattern of matrix A. This algorithm gives
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the array order when it terminates. The kth position for k = 1, . . . ,n in smallest-last order

is the column with index order(k).

3.2.3 SLO step by step

In SLO the degree list is based on the degrees of columns in G[V\V ′] where V is the

set of all vertices and V ′ is the set of ordered vertices. Initially V ′ is empty. We construct

a bucket and put the columns in different degree lists based on their degrees in V . For

constructing the bucket we need the degree of each column, and we have an array ndeg

which contains the degrees of all columns. Initially, the bucket looks like as follows.

3 3 3 3 2 2 2ndeg

0 0 7HEAD

0 1 2 3 0 5 6NEXT

2 3 4 0 6 7 0PREV IOUS

HEAD(2) 7 6 5

HEAD(3) 4 3 2 14

Figure 3.7: Bucket of matrix A after initialization in SLO

From the ndeg array we see that degree of column 1, 2, 3 and 4 is 3 and degree of

column 5, 6 and 7 is 2. Initially, we construct two degree lists. The right part of Figure

1.3 shows the two lists and the columns under those lists. HEAD(2) is 7. It means the first

column of this degree list 2 is 7. Similarly the first column of HEAD(3) is 4. NEXT and

PREV IOUS arrays hold the next and previous columns of each column. NEXT (3) is 2 and

PREV IOUS(3) is 4. From the degree list 3, we see that next and previous of column 3 are

column 2 and 4.

Now in the first iteration, the algorithm chooses the column with the minimum degree.

Line 4 of Figure 3.6 does this. It is column 7. In line 5 the algorithm puts this column

in ordered list then in line 7 deletes this column from unordered list. As this column gets

deleted from unordered list, degrees of all of its neighbors are also updated. The neighbors

of column 7 are column 1 and 4. So their degrees are updated, and they get removed from

22



3.2. ALGORITHMS

their current degree list and inserted into a new degree list. After the first iteration, the

bucket looks like this.

0 0 0 0 0 0 7order

0 0 1HEAD

4 0 2 6 0 5 0NEXT

0 3 0 1 6 4 0PREV IOUS

HEAD(2) 1 4 6

HEAD(3) 3 2

5

3

Figure 3.8: Bucket after first iteration in SLO

After the bucket construction, the ndeg array is not needed. So in the next iterations,

we show the order array instead of ndeg. order array is a list that stores the columns in

smallest last order.

In the next iteration, column 1 is chosen, and the bucket looks like as follows

0 0 0 0 0 1 7order

0 6 4HEAD

0 0 2 0 0 5 0NEXT

0 3 0 0 6 0 0PREV IOUS

HEAD(2) 4

HEAD(3) 3 2

HEAD(1) 6 5

3

Figure 3.9: Bucket after second iteration in SLO

In the third iteration, column 6 is chosen and the bucket looks like as follows

0 0 0 0 6 1 7order

0 5 3HEAD

0 0 4 0 0 0 0NEXT

0 0 0 3 0 0 0PREV IOUS

HEAD(2) 3

HEAD(3) 2

4

HEAD(1) 5

2

Figure 3.10: Bucket after third iteration in SLO

In the fourth iteration, column 5 is chosen and the bucket looks like as follows

23



3.2. ALGORITHMS

0 0 0 5 6 1 7order

0 0 2HEAD

0 3 4 0 0 0 0NEXT

0 0 2 3 0 0 0PREV IOUS

HEAD(2) 2 3 4

0

Figure 3.11: Bucket after fourth iteration in SLO

In the fifth iteration, column 2 is chosen and the bucket looks like as follows

0 0 2 5 6 1 7order

4 0 0HEAD

0 0 0 3 0 0 0NEXT

0 0 4 0 0 0 0PREV IOUS

HEAD(1) 4 3

Figure 3.12: Bucket after fifth iteration in SLO

In the sixth iteration column 4 is chosen, and in the subsequent iteration, there is only

one column left. That is column 3. After putting the last column in ordered list line 3

of Figure 3.6 becomes false, and the algorithm terminates. Figure of bucket after sixth

iteration and the final ordered list is shown bellow

0 4 2 5 6 1 7order

3 0 0HEAD

0 0 0 0 0 0 0NEXT

0 0 0 0 0 0 0PREV IOUS

HEAD(0) 3

0

3 4 2 5 6 1 7order

Figure 3.13: Bucket after sixth and final iterations in SLO

In SLO algorithm in lines 1 and 2 initialization takes constant time. It takes O(n)
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steps. In line 4 the column with the minimum degree is selected. It is a constant time

operation. Lines 5 and 6 are also constant time operations. In line 7 the selected column

with the minimum degree gets deleted from the graph. The largest computational cost in

this algorithm is to delete the column with the minimum degree. Deleting a column means

the algorithm updates the degrees of all of its adjacent columns. For updating the degrees of

the adjacent columns in every iteration, one nonzero element of the column is selected then

the algorithm looks for every non-zero entries in the same row. So each row is searched ρ2
i

times where ρi is the number of nonzero elements in the row i. If we have m rows, deleting

column and updating their neighbors will take O(
m
∑

i=1
ρ2

i ) operations.

3.2.4 Incidence-Degree Ordering (IDO)

Suppose we have a ordered set of vertices V ′ = {v1,v2, . . . ,vi−1} of graph G(A). The

algorithm chooses the i-th vertex u to place it in ordered set of vertices from the unordered

set of vertices such that deg(u) is maximum in G[V ′]. If there are more than one vertex with

the maximum degree then the vertex with the largest degree in G[V\V ′] is chosen to break

the tie. The IDO algorithm is given in Figure 3.14.

IDO(S(A),order)
1 idindex ← 1

2 J ←{1,2, . . . ,n}
3 U ← J
4 O ← Ø

5 while U �= Ø

6 M ←{l ∈ U | dO(l) is maximum}
7 let j ∈ M be such that dU( j)+dO( j) is maximum

8 order(idindex)← j
9 idindex ← idindex+1

10 O ← O ∪{ j}
11 U ← U \ { j}

Figure 3.14: Incidence-Degree Ordering algorithm

The input of the IDO algorithm is the sparsity pattern of matrix A. This algorithm gives
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the array order when it terminates. The kth position for k = 1, . . . ,n in incidence-degree

order is the column with index order(k).

3.2.5 IDO step by step

In IDO the degree list is based on incidence degree of unordered columns in the sub-

graph induced by ordered viertices of graph G[V ′]. Here V ′ is the set of ordered vertices.

We call this incidence degree of vertices. Initially V ′ is empty. Incidence degree of all

unordered columns is 0, so the algorithm inserts all columns in degree list 0. For ordering,

the degree of columns in induced subgraph G[V\V ′] is needed. We store degree of columns

in G[V\V ′] in array ideg. At the beginning V ′ is empty so ideg is as same as ndeg. Initially,

the bucket looks like as follows.

3 3 3 3 2 2 2ideg

4HEAD

7 1 2 3 0 5 6NEXT

2 3 4 0 6 7 1PREV IOUS

HEAD(0) 4 3 2 1

7 6 5

Figure 3.15: Bucket of matrix A after initialization in IDO

After initialization at line 6 of Figure 3.14, it will look for all column with highest

incidence degree. At the beginning, the highest incidence degree is 0. To break the tie,

it will choose column with the maximum degree in induced subgraph in line 7. Column

4 is chosen. It is then stored in the array order. In line 10 the selected column is added

to the graph of ordered columns, and in line 11 it is removed from the graph of unordered

columns. In the implementation, we do the same thing but in a little bit different way. We do

not construct a graph of ordered columns explicitly rather the degree lists of the neighbors

of the selected column are updated. Here column 4 is selected. Column 4 is deleted from

the bucket and is stored in ordered list of columns. The neighbors of column 4 are 2, 3 and

7. Initially, they were in degree list 0. After selecting column 4, they get removed from
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degree list 0 and inserted into a higher degree list 1. This is how we change the dO( j) for

any column j. So now dO(2) = dO(3) = dO(7) = 1 and dO(1) = dO(5) = dO(6) = 0.

As we removed column 4, the degrees of its neighbors are also updated in the array ideg.

3 2 2 3 2 2 1ideg

1HEAD

6 0 2 0 0 5 3NEXT

0 3 7 0 6 1 0PREV IOUS

HEAD(1) 7 3 2

1 6 5

7

HEAD(0)

4 0 0 0 0 0 0order

Figure 3.16: Bucket after first iteration in IDO

After the first iteration, the maximum incidence degree is 1. So all columns from degree

list 1 are selected. From the selected columns, the column with the maximum degree in the

graph of unordered columns is chosen which is column 3. Column 3 is added to ordered

list, and incidence degrees of its neighbors are also increased. Neighbors of column 3 in

the unordered graph are 2 and 6. So they get moved to higher degree lists.

4 3 0 0 0 0 0order

1HEAD

5 0 0 0 0 7 0NEXT

0 0 0 0 1 0 6PREV IOUS

HEAD(2) 2

6 7

6

HEAD(1)

2

1 5HEAD(0)

3 1 2 3 2 1 1ideg

Figure 3.17: Bucket after second iteration in IDO

Maximum incidence degree is now 2, and we have only one column in this degree list.

So column 2 is chosen and stored in ordered list.
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4 3 2 0 0 0 0order

1HEAD

0 0 0 0 6 7 0NEXT

0 0 0 0 0 5 6PREV IOUS

5 65 HEAD(1)

1HEAD(0)

7

3 1 2 3 1 1 1ideg

Figure 3.18: Bucket after third iteration in IDO

Now maximum incidence degree is 1 and column 5, 6 and 7 are selected. Degrees of

column 5,6 and 7 in induced subgraph are also same. So the first column is chosen from

degree list, i.e., column 5.

4 3 2 5 0 0 0order

0HEAD

6 0 0 0 0 7 0NEXT

0 0 0 0 0 1 6PREV IOUS

1 6

1

HEAD(1)

2 1 2 3 1 1 1ideg

7

Figure 3.19: Bucket after fourth iteration in IDO

From maximum degree list column 1, 6 and 7 are selected. Column 1 has the maximum

degree in the induced subgraph, so it is chosen.

4 3 2 5 1 0 0order

0HEAD

0 0 0 0 0 0 6NEXT

0 0 0 0 0 7 0PREV IOUS

7 6

0

HEAD(1)

7

2 1 2 3 1 0 0ideg

Figure 3.20: Bucket after fifth iteration in IDO

In iteration 6, column 7 is chosen from maximum degree list 2, and in the final iteration

the only column left 6 is chosen and stored in order.
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4 3 2 5 1 7 0order

0HEAD

0 0 0 0 0 0 6NEXT

0 0 0 0 0 7 0PREV IOUS

7 6

0

HEAD(2)

7

4 3 2 5 1 7 6order

2 1 2 3 1 0 0ideg

Figure 3.21: Bucket after sixth and final iterations in IDO

Like SLO line 11 of IDO algorithm involves with largest computational cost. In this

step selected column gets deleted from the unordered list of vertices and incidence degrees

of all of its adjacent columns are updated. The computational cost is exactly same as updat-

ing degrees of adjacent columns of selected smallest degree column in SLO. So IDO also

requires O(
m
∑

i=1
ρ2

i ) operations.

3.2.6 Saturation-Degree Partitioning (SDPartition)

Suppose we have ordered and colored a set of vertices V ′ = {v1,v2, . . . ,vi−1} of graph

G(A). The algorithm chooses the i-th vertex u to place it in ordered and colored set of

vertices from the unordered set of vertices such that kdeg(u) is maximum in G[V ′]. Here

kdeg(u) stands for chromatic degree of vertex u. Chromatic degree of u is the number

of different color(s) in neighborhood of u. If there are more than one vertices with the

maximum degree then the vertex with the largest degree in G[V\V ′] is chosen to break the

tie. The SDPartition algorithm is given in Figure 3.22

In SDPartion the column with maximum kdeg is chosen. If there are two or more than

such columns then column j is chosen that has the largest degree in the subgraph induced

by unordered columns. From the color group C the minimum available color cm is chosen

and assigned such that j is structurally orthogonal with columns in that color group.
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SDPARTITION(S(A),group,ngroup)
1 ngroup ← 0

2 J ←{1,2, . . . ,n}
3 U ← J
4 P ← Ø

5 while U �= Ø

6 M ←{l ∈ U | kdP (l) is maximum}
7 let j ∈ M be such that kdP ( j)+dU( j) is maximum

8 let cm =min{c|c ∈ {1, . . . ,ngroup+1} �= group(l), l ∈ NJ ( j)}
9 group( j)← cm

10 if cm > ngroup
11 ngroup ← ngroup+1

12 P ← P ∪{ j}
13 U ← U \ { j}

Figure 3.22: Saturation-Degree Partitioning algorithm

3.2.7 SDPartition step by step

In SDPartition the degree list is based on chromatic degrees of uncolored columns in

colored graph G[V ′] where V ′ is the set of colored vertices. We call this saturation degree

of vertices. Initially V ′ is empty. Saturation degree of all columns is 0, so the algorithm in

Figure 3.22 inserts all columns in degree list 0. For choosing the column for coloring, the

degree of columns in induced subgraph G[V\V ′] is needed. We store degree of columns in

G[V\V ′] in array ideg. At the beginning V ′ is empty so ideg is as same as ndeg. Unlike

the previous SLO and IDO algorithms SDPartition algorithm colors one column in each

iteration. The colors of the columns are stored in the color array. Initially, the bucket looks

like as follows.

3 3 3 3 2 2 2ideg

4HEAD

7 1 2 3 0 5 6NEXT

2 3 4 0 6 7 1PREV IOUS

HEAD(0) 4 3 2 1

7 6 5

Figure 3.23: Bucket of matrix A after initialization in SDPartition
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After initialization at line 5 of the SDPartition algorithm in Figure 3.22, it looks for all

columns with highest saturation degree. In the beginning, the highest saturation degree is

0. To break the tie, it will choose column with the maximum degree in induced subgraph

in line 6. Column 4 is chosen. The algorithm then looks for the minimum color available

for column 4. The minimum available color is 1 so this color stored in the array color at

index 4. In line 9 the selected column is added to the graph of colored columns, and in line

10 it is removed from the graph of uncolored columns. In the implementation, we do the

same thing but in a little bit different way. We do not construct a graph of colored columns

explicitly rather the degree lists of the neighbors of the selected column are increased.

Saturation degrees of all neighbors are not increased. If the color of the selected column

is new for its neighbors, then their saturation degrees are updates. In the algorithm the

chromatic/saturation degree of the any column j is denoted by kdP ( j) (lines 6 and 7). At

first column 4 is selected. The neighbors of column 4 are 2, 3 and 7. Initially, they are in

degree list 0. After selecting column 4, it is colored using color 1 and is removed from the

bucket. As none of column 2,3 and 7 have any other neighbor with color 1 in the colored

graph, they get removed from degree list 0 and inserted into a higher degree list 1. This

is how we change the kdP ( j) for any column j. Now kdP (2) = kdP (3) = kdP (7) = 1 and

kdP (1) = kdP (5) = kdP (6) = 0.

As we remove column 4 from the bucket that means it is removed from the uncolored

set of columns, the degrees in the induced subgraph of its neighbors are also updated in the

array ideg.

3 2 2 3 2 2 1ideg

1HEAD

6 0 2 0 0 5 3NEXT

0 3 7 0 6 1 0PREV IOUS

HEAD(1) 7 3 2

1 6 5

7

HEAD(0)

0 0 0 1 0 0 0color

Figure 3.24: Bucket after first iteration in SDPartition
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After the first iteration, the maximum saturation is 1. So all columns from degree list 1

are selected. Then the column with the maximum degree in the unordered graph is chosen

that is column 3. Column 3 is then colored with color 2 as its neighbor column 4 was

already colored with 1 so color 1 is not available. Saturation degrees of its neighbors are

also increased. Neighbors of column 3 in the unordered graph are 2 and 6. For both column

2 and 6, a neighbor with color 2 is new. So they get moved to higher degree lists.

0 0 2 1 0 0 0color

1HEAD

5 0 0 0 0 7 0NEXT

0 0 0 0 1 0 6PREV IOUS

HEAD(2) 2

6 7

6

HEAD(1)

2

1 5HEAD(0)

3 1 2 3 2 1 1ideg

Figure 3.25: Bucket after second iteration in SDPartition

Maximum saturation degree is now 2 and we have only one column in this degree list.

So column 2 is chosen and colored with minimum available color 3.

3 1 2 3 1 1 1ideg

1HEAD

0 0 0 0 6 7 0NEXT

0 0 0 0 0 5 6PREV IOUS

5 65 HEAD(1)

1HEAD(0)

7

0 3 2 1 0 0 0color

Figure 3.26: Bucket after third iteration in SDPartition

Now maximum saturation degree is 1 and column 5, 6 and 7 are selected. Their degrees

in induced subgraph are also same. So the first column is chosen and colored from degree

list i.e column 5.

32



3.2. ALGORITHMS

0 3 2 1 1 0 0color

0HEAD

6 0 0 0 0 7 0NEXT

0 0 0 0 0 1 6PREV IOUS

1 6

1

HEAD(1)

2 1 2 3 1 1 1ideg

7

Figure 3.27: Bucket after fourth iteration in SDPartition

From maximum degree list column 1, 6 and 7 are selected. Column 1 has the maximum

degree in induced subgraph so it is chosen.

4 3 2 5 1 0 0color

0HEAD

0 0 0 0 0 0 0NEXT

0 0 0 0 0 0 0PREV IOUS

7

6

HEAD(2)

7

2 1 2 3 1 0 0ideg

6HEAD(1)

Figure 3.28: Bucket after fifth iteration in SDPartition

In iteration 6, column 7 is chosen from maximum degree list 2 and in final iteration the

only column left 6 is chosen and its color is stored in color

2 3 2 1 1 0 3color

0HEAD

0 0 0 0 0 0 0NEXT

0 0 0 0 0 0 0PREV IOUS

6

6

HEAD(1)

2 1 2 3 1 0 0ideg

2 3 2 1 1 1 3color

Figure 3.29: Bucket after sixth and final iterations in SDPartition

Two operations incur largest computational cost in SDPartition. In line 8 minimum

available color cm is selected. For selecting the minimum color of a column, the algorithms

33



3.2. ALGORITHMS

looks for all its adjacent columns. So for each non-zero entries in that column, the algo-

rithm looks for non-zero entries in each row. So to find minimum color for a column i total
m
∑

ai j �=0
i=1

ρi operations required. To color all columns total number of required operations is

n
∑
j=1

m
∑

ai j �=0
i=1

ρi =
m
∑

i=1
ρ2

i .

Another critical operation in SDPartition is deleting the selected column and updating its

adjacent columns’ chromatic degrees. In SLO and IDO degrees/incidence degrees of the

adjacent columns are updated, but in SDPartition, we increase saturation degrees of the

adjacent columns if the color of the selected column is a new color for its neighbors in the

uncolored set of columns. Previously what we did was, for selected column j we checked

all j′ ∈ ad j( j). For each column in j′ we checked all j′′ ∈ ad j( j′). If any column of set j′′

has color as same as the color of column j then saturation degree of j′ was not increased.

This operation is an expensive operation. Later we modified this operation and used bit-

set to perform the same thing. Now updating the saturation degree by checking bitset is a

constant time operation. So deleting the selected column and updating its neighbors’ satu-

ration degrees take the same number of operations we do to delete column and update its

adjacents’ degrees in SLO and IDO. So overall the running time of SDPartition is O(
m
∑

i=1
ρ2

i )

3.2.8 Recursive Largest-First Partitioning (RLFPartition)

RLFPartition algorithm partitions the vertex set V into V1,V2, . . . ,Vp independent sets.

The independent sets are structurally orthogonal column partition, i.e., each independent

set is a set of vertices in which there are no edges between the member vertices. The

RLFPartition algorithm is given in Figure 3.30

Here U is the set of indices of column that are not grouped yet. A column is chosen

l ∈ U such that dU(l) is maximum. Then the columns in U are partitioned in three sets:

I which represents structurally orthogonal set we are currently constructing, F is the set

of columns that are neighbors of l which are inadmissible to I and X is the set of columns

of U that are not in F . Initially the algorithm includes l in I and neighbors of l in U i.e
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RLFPARTITION(S(A),group)
1 U ←{1,2, . . . ,n}
2 gnum ← 0

3 I ← Ø

4 while U �= Ø

5 let l ∈ U be such that dU(l) is maximum

6 U ← U \ {l}
7 F ← NU(l)
8 X ← U \ {F }
9 I ← I ∪{l}

10 while X �= Ø

11 let j ∈ X be such that dF ( j) is maximum

12 I ← I ∪{ j}
13 U ← U \ { j}
14 F ← F ∪NX ( j)
15 X ← X \ (NX ( j)∪{ j})
16 gnum ← gnum+1

17 for j ∈ I
18 group( j)← gnum
19 I ← Ø

Figure 3.30: Recursive Largest-First Partitioning algorithm

NU(l) are included in F . Then the algorithm recursively selects a column j from X that

has maximum degree in F .

3.2.9 RLFPartition step by step

RLFPartition constructs structurally orthogonal group until all columns are included in a

group. In line 1 of RLFPartition algorithm in Figure 3.30, U is initialized. This U is the set

of indices of columns that are not grouped yet. Initially, all columns are in this set. Based on

this set we construct our bucket priority queue. Initially, we construct this priority queue

bucket based on the degrees of the columns. In line 5 of Figure 3.30 a column with the

maximum degree is picked. The algorithm picks that column from the highest degree list

of priority queue. This is the first column of a structurally orthogonal column group. The

algorithm will try to add as many columns as possible to this group. In lines 7 and 8,
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all neighbors of selected column are chosen and put into a forbidden set F because all of

these columns are not structurally orthogonal columns with the selected column for sure.

Next target of the algorithm is to add columns in the structurally orthogonal set I . For

that, a set X is constructed which is U\F . From this set a column is chosen which has

the maximum degree in forbidden set F . To perform this operation we do not construct a

bucket for the forbidden set explicitly instead we form a bucket u queue that contains all

the columns in X and their degree lists differ based on their degrees in forbidden set F .

The algorithm recursively takes columns from u queue and adds them to the structurally

orthogonal group until u queue is empty. Initially the priority queue and u queue bucket

looks like as follows. As there is no column in the forbidden set, so all the columns are in

degree list 0 of u queue. The buckets are shown in Figure 3.31

3 3 3 3 2 2 2ndeg

0 0 7HEAD

0 1 2 3 0 5 6NEXT

2 3 4 0 6 7 0PREV IOUS

HEAD(2) 7 6 5

HEAD(3) 4 3 2 14

priority queue

7HEAD

0 1 2 3 4 5 6NEXT

2 3 4 5 6 7 0PREV IOUS

HEAD(0) 7 6 5

u queue

4 3 2 1

Figure 3.31: priority queue and u queue buckets after initialization in RLFPartition

At first column from priority queue with maximum degree is chosen and added to

a new structurally orthogonal group 1. The chosen column is 4. All of the neighbors

of column 4 are now in forbidden set. They are column 2,3 and 7. So X = U\F =

{1,2,3,4,5,6,7}\{2,3,4,7} = {1,5,6}. Here forbidden set F = {2,3,4,7}. Degree of

column 1, 5 and 6 in this F is 1 so all these columns are in degree list 1 of u queue.
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0 7 3HEAD

0 6 2 0 0 5 0NEXT

0 3 0 0 6 2 0PREV IOUS

HEAD(2)

7

6

HEAD(3)

3 2

11

priority queue

HEAD

6 0 0 0 0 5 0NEXT

0 0 0 0 6 1 0PREV IOUS

HEAD(1) 1 6 5

u queue

HEAD(2)

5

0 1

Figure 3.32: Buckets after first iteration in RLFPartition

The algorithm will recursively add columns from this u queue until it is empty. As the

the selected column 4 get removed from the priority queue their neighbors degree lists also

get changed.

u queue is not empty. So in the next step from u queue column with maximum degree

will be chosen. It is column 1. After adding column 1 and its neighbors to forbidden set F ,

u queue becomes empty. So the algorithm is done with adding all structurally orthogonal

columns to group 1. They are column 4 and 1. We color both of these columns with color

1 and store the color value in their indices of array color. All the forbidden columns in

F are moved to U. So F = φ and degree of columns of X in F is zero. So u queue is

reinitialized. As the the selected grouped columns get removed from the priority queue

their neighbors’ degree lists also get changed.
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7 6 3HEAD

0 0 2 0 0 5 0NEXT

0 3 0 0 6 0 0PREV IOUS

HEAD(1) 6 5

HEAD(2) 3 2

priority queue

7HEAD

0 0 2 0 3 5 6NEXT

0 3 5 0 6 7 0PREV IOUS

HEAD(0) 7 6 5

u queue

3 2

HEAD(0) 7

u queue

Empty 1 0 0 1 0 0 0color

Figure 3.33: Buckets after second iteration in RLFPartition

In the next iteration a new group 2 is created. A column is chosen with maximum degree

from priority queue. It is column 3. This column is added to the new group 2 and using

the similar process the algorithm updates the degree list of u queue.

6 2HEAD

0 5 0 0 0 7 0NEXT

0 0 0 0 2 0 6PREV IOUS
HEAD(0)

HEAD(1)

6 7

2

priority queue

HEAD

0 0 0 0 0 0 0NEXT

0 0 0 0 0 0 0PREV IOUS

HEAD(1) 5

u queue

7 5

5

HEAD(0) 7

Figure 3.34: Buckets after third iteration in RLFPartition

As u queue is not empty column 5 is chosen from its maximum degree list.
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2HEAD

0 6 0 0 0 7 0NEXT

0 0 0 0 0 2 6PREV IOUS

priority queue

HEAD

0 0 0 0 0 0 0NEXT

0 0 0 0 0 0 0PREV IOUS

u queue

7

HEAD(0) 7

HEAD(0) 2 6 7

Figure 3.35: Buckets after fourth iteration in RLFPartition

u queue is not still empty. Column 7 is selected from it. After that u queue gets empty.

So we have three columns in structurally orthogonal group 2. So color 2 is assigned as

column 3, 5 and 7’s color in array color. All ungrouped columns from forbidden set then

moved to U and u queue is also reinitialized.

2HEAD

0 6 0 0 0 0 0NEXT

0 0 0 0 0 2 0PREV IOUS

HEAD(1) 2 6

priority queue

6HEAD

0 0 0 0 0 2 0NEXT

0 6 0 0 0 0 0PREV IOUS

HEAD(0) 6 2

u queue

u queue

Empty 1 0 2 1 2 0 2color

Figure 3.36: Buckets after fifth iteration in RLFPartition

In the next step a new group 3 is formed and column 2 is selected from prority queue
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and in the following iteration column 6 is chosen from u queue which is the last column to

process. Both column 2 and 6 gets color 3.

6HEAD

0 0 0 0 0 0 0NEXT

0 0 0 0 0 0 0PREV IOUS

HEAD(1) 6

priority queue

6HEAD

0 0 0 0 0 0 0NEXT

0 6 0 0 0 0 0PREV IOUS

HEAD(0) 6

u queue

u queue

Empty 1 3 2 1 2 3 2color

priority queue

Empty

Figure 3.37: Buckets after sixth and final iterations in RLFPartition

The operations in lines 10-15 of algorithm in Figure 3.30 is quite similar to SLO. A

column with maximum degree is selected and the algorithms looks for its neighbors in line

11 and do other constant time operation in lines 12-15. We can say that this portion (lines

10-15) requires O(
m
∑

i=1
ρ2

i ) operations and the algorithm repeats these operations gnum times.

gnum is the no. of colors. So overall the running time of RLFPartition is proportional to

no. of colors × O(
m
∑

i=1
ρ2

i ).

3.3 Comparison Between Bucket Heap and Fibonacci Heap

Numerical experiments on selected test instances [16] has been done to compare or-

dering and partitioning clock time of bucket heap and Fibonacci heap implementations. In

Table 3.1 the clock time of the ordering algorithms (SLO and IDO) is compared for bucket

heap and Fibonacci heap implementations. The experiments were performed using a PC

with 3.4 GHz Intel Xeon CPU, 8 GB RAM, 32 KB L1, 256 KB L2 and 8 MB L3 cache
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running Linux.

In Table 3.1 m,n and nnz denote the number of rows, columns and non-zero entries re-

spectively in test matrix. SLO(BH) and SLO(FH) denote clock time of Smallest-Last or-

der using bucket heap and Fibonacci heap. IDO(BH) and IDO(FH) denote clock time of

Incidence-Degree order using bucket heap and Fibonacci heap. In most of the cases, bucket

heap implementation is faster than the Fibonacci heap implementation. In SLO between

these two implementations BH is up to 4.3 times faster but in IDO the difference in running

time is more pronounced (BH is up to 10 times faster). For each test file each test was run

five times and the each clock time shown in the table is the average time in seconds of 5

test runs.

Table 3.1: Clock time comparison of the Bucket heap and Fibonacci heap in ordering algo-

rithms

Matrix Name m n nnz SLO (BH) SLO(FH) IDO(BH) IDO(FH)
af23560 23560 23560 484256 0.022 0.028 0.024 0.112

cage11 39082 39082 559722 0.044 0.054 0.046 0.278

cage12 130228 130228 2032536 0.186 0.234 0.186 1.154

e30r2000 9661 9661 306356 0.02 0.016 0.02 0.078

e40r0100 17281 17281 553956 0.036 0.036 0.038 0.136

lhr10 10672 10672 232633 0.018 0.014 0.018 0.054

lhr14 14270 14270 307858 0.02 0.022 0.026 0.074

lhr34 35152 35152 764014 0.05 0.056 0.066 0.176

lhr71c 70304 70304 1528092 0.098 0.12 0.128 0.352

lpcrea 3516 7248 18168 0.002 0.006 0.004 0.028

lpcreb 9648 77137 260785 0.188 0.186 0.212 2.142

lpcred 8926 73948 246614 0.188 0.186 0.216 2.122

lpdfl001 6071 12230 35632 0.006 0.008 0.004 0.04

lpken11 14694 21349 49058 0.004 0.012 0.006 0.048

lpken13 28632 42659 97246 0.01 0.024 0.014 0.124

lpken18 105127 154699 358171 0.072 0.16 0.108 0.874

lpmarosr7 3136 9408 144848 0.01 0.012 0.018 0.07

lppds10 16558 49932 107605 0.006 0.026 0.012 0.082

lppds20 33874 108175 232647 0.02 0.07 0.03 0.194

lpstocfor3 16675 23541 76473 0.004 0.01 0.002 0.02

In Table 3.2 the clock time of the partitioning algorithms (SDPartition and RLFParti-

tion) is compared between bucket heap and Fibonacci heap-based implementations. Like
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IDO, in SDPartition the difference in running time between two heap implementations is

more pronounced. Bucket heap is faster in RLFPartition as well.

Table 3.2: Clock time comparison of Bucket heap and Fibonacci heap in partitioning algo-

rithms

Matrix Name m n nnz
SDPartition

(BH)
SDPartition

(FH)
RLFPartition

(BH)
RLFPartition

(FH)
af23560 23560 23560 484256 0.034 0.206 0.64 0.852

cage11 39082 39082 559722 0.064 0.37 0.964 1.436

cage12 130228 130228 2032536 0.272 1.584 4.618 7.788

e30r2000 9661 9661 306356 0.032 0.128 0.712 0.782

e40r0100 17281 17281 553956 0.054 0.232 1.33 1.45

lhr10 10672 10672 232633 0.028 0.1 0.124 0.222

lhr14 14270 14270 307858 0.036 0.126 0.172 0.306

lhr34 35152 35152 764014 0.092 0.314 0.43 0.832

lhr71c 70304 70304 1528092 0.18 0.628 0.882 1.932

lpcrea 3516 7248 18168 0.008 0.044 0.094 0.148

lpcreb 9648 77137 260785 0.358 3.932 14.156 25.292

lpcred 8926 73948 246614 0.366 4.038 13.984 24.988

lpdfl001 6071 12230 35632 0.008 0.056 0.06 0.136

lpken11 14694 21349 49058 0.01 0.08 0.04 0.176

lpken13 28632 42659 97246 0.022 0.226 0.114 0.508

lpken18 105127 154699 358171 0.174 1.51 1.106 6.23

lpmarosr7 3136 9408 144848 0.02 0.116 0.686 0.726

lppds10 16558 49932 107605 0.012 0.12 0.06 0.288

lppds20 33874 108175 232647 0.04 0.288 0.154 0.828

lpstocfor3 16675 23541 76473 0.002 0.034 0.012 0.05

3.3.1 The Basics of Cache Memory

Our next task is to do cache analysis on the bucket and Fibonacci heap-based implemen-

tations. Let us discuss the basics of cache memory first. In computer memory hierarchy

the faster, smaller, and more expensive cache memory is placed at the top and slower and

cheaper main memory is placed at the bottom [33]. Cache is situated between the processor

and main memory. Cache store data from main memory that are recently referenced. When

a reference is satisfied by the cache it is called a cache hit, if not satisfied it is called a

cache miss. Besides cache hits and misses, cache evictions occur when cache removes old

and relatively unused data from it. A cache miss can make the processor wait for hundreds

to thousands of cycles [22]. Due to the smaller size of faster cache memories, we cannot

42



3.3. COMPARISON BETWEEN BUCKET HEAP AND FIBONACCI HEAP

store all our data in cache memory so cash misses are obvious but locality of reference (we

discussed this in Chapter 1) can be advantageous.

A good program is designed in such a way that it exhibits good locality (temporal and

spatial). If we design our program with good locality it will certainly run faster than the

programs with poor locality.

3.3.2 Cache Analysis of Bucket and Fibonacci Heap

To find why bucket data structure is faster than other implementations we analyzed the

cache operations of the algorithms implemented using Bucket data structure and compared

with the Fibonacci heap-based data structure. Cache-friendly data structure of bucket heap

makes it faster than the other heap implementation.

The cache complexity Q(n;Z,L) of an algorithm is the number of cash misses it occurs

[13]. Here Z is the size of the function, and L is the line length of the ideal cache. By

clearing Z and L from the context cache complexity is denoted simply as Q(n). We take

two matrices from The University of Florida Sparse Matrix collection[10].

To analyze the cache performance of our implementations we use a cache simulator that

was developed as a part of a course project. We developed the simulator with the help of

Valgrind framework [28]. The simulator takes Valgrind memory traces as input, then from

the traces, it calculates the number of cache hits, misses, and evictions. The memory traces

we get from Valgrind look like as follows:

I 0040d7d4, 8

M 0421c7f0, 4

L 04f6b868, 8

S 7ff0005c8, 8

The memory traces from Valgrind starts with “I”, “M”, “L”, and “S” followed by 64-bit

hexadecimal memory address field and size field. “I”, “M”, “L”, and “S” denote instruction

load, data modify, data load, and data store respectively. Each load/store causes at most one
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cache miss. Data modify is a load followed by a store to the same address, it causes two hits,

or a miss and hit with a possible eviction. In the input of the simulator, we provide memory

trace file we get from Valgrind. We also provide number of set index bits(s), number of

lines per set(E) and number of block bits(b) of our cache as inputs. From the number of set

index bits and block bits we calculate a number of sets and block size of the cache. The

simulator provides the number of cache hits, misses, and eviction as output. The simulator

works for any arbitrary cache size. By passing s, E and b we set the size of the cache and

the hits, misses, and evictions are calculated based on this cache size.

We calculate cache hits, misses, and evictions for ordering and partitioning algorithms

using bucket heap and Fibonacci heap data structures with the help of our simulator. The

test environment is same as mentioned in Section 3.3. The PC we use to perform our exper-

iments has an L1 cache of 32 KB. Number of set index bits(s), number of lines per set(E)

and number of block bits(b) of our cache are 6, 8, and 6 from which we set size (26×8×26)

of the cache to 32 KB. If we look at the cache misses in Table 3.3 and Table 3.4 then we

see that in bucket data structure the number of cache misses is much less than the other.

Table 3.3: Matrix name: west0067, m = 67, n = 67, nnz = 294

Hits Misses Evictions
BH FH BH FH BH FH

SLO 186730 191584 653 729 156 221

IDO 186731 236167 645 852 148 340

SDPartition 187521 250646 661 911 162 399

RLFPartition 210116 273297 658 818 162 306
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Table 3.4: Matrix name: eris1176, m = 1176, n = 1176, nnz = 9864

Hits Misses Evictions
BH FH BH FH BH FH

SLO 14605021 14718890 51887 68973 51375 68461

IDO 14625756 17297517 54564 130683 54052 130171

SDPartition 14890594 18412789 71567 157269 71055 156757

RLFPartition 63143315 71284068 319190 703209 318678 702697

3.4 Performance Profile for DSJM and ColPack

We do some numerical experiments on selected test instances [16]. In this section, we

provide and discuss the results from the numerical experiments. We compare the perfor-

mance of DSJM and ColPack [17] in terms of

• Number of structurally orthogonal groups in the partition

• Clock time for selected algorithms

The test environment is same as described in Chapter Section 3.3. In Table 3.5 we display

the partitioning results of DSJM and ColPack software. We have already stated the denota-

tion of m, n and nnz in the previous section (3.3). In both of these two software number of

ordering and partitioning algorithms are being implemented and here we show the best par-

titioning results produced by the two software. In 8 test cases, we get different partitioning

results. Out of 8 DSJM yields better partitioning on 7 of them.

For the sequential (SEQ) partitioning and ordering implementations of DSJM and Col-

Pack, we compare the running time using performance ratio defined by Moré et al. [11]. If

total number of problems is np and total number of solvers is ns (in our case it is 2, DSJM

and ColPack) then for each problem p and solver s, tp,s can be defined as follows

tp,s = clock time required to solve problem p by solver s

Then performance ratio can be defined as
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Table 3.5: Partitioning results

Matrix Name m n nnz ColPack DSJM
af23560 23560 23560 484256 42 38
cage11 39082 39082 559722 64 54
cage12 130228 130228 2032536 67 56
e30r2000 9661 9661 306356 68 65
e40r0100 17281 17281 553956 66 66

lhr10 10672 10672 232633 63 63

lhr14 14270 14270 307858 63 63

lhr34 35152 35152 764014 63 63

lhr71c 70304 70304 1528092 63 63

lpcrea 3516 7248 18168 360 360

lpcreb 9648 77137 260785 845 844
lpcred 8926 73948 246614 808 808

lpdfl001 6071 12230 35632 228 228

lpfit2d 25 10524 129042 10500 10500

lpken11 14694 21349 49058 124 122
lpken13 28632 42659 97246 171 170
lpken18 105127 154699 358171 325 325

lpmarosr7 3136 9408 144848 70 76

lppds10 16558 49932 107605 96 96

lppds20 33874 108175 232647 96 96

lpstocfor3 16675 23541 76473 15 15

rp,s =
tp,s

min{tp,s | s ∈ {DSJM, ColPack}}

We calculate rp,DSJM and rp,ColPack for each problem from Table 3.5 . We do not only

compare the performance ratio of any specific problem for two solvers instead we would

like to assess the overall performance of the solvers. For that purpose we use

ρs(τ) = 1
np
(number o f problems on which rp,s ≤ τ)

By varying the speed up factor τ and by calculating their corresponding ρDSJM(τ) and

ρColPack(τ) we get the performance profile of the solvers.

The performance profile on benchmark instances for IDO + SEQ coloring time is shown in

Figure 3.38
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Figure 3.38: Performance profile for sequential partitioning with IDO

The performance profile on benchmark instances for SLO + SEQ coloring time is shown

in Figure 3.39
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Figure 3.39: Performance profile for sequential partitioning with SLO

The performance profile on benchmark instances for Largest-First Ordering(LFO) +
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SEQ coloring time is shown in Figure 3.40
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Figure 3.40: Performance profile for sequential partitioning with LFO

The clock time here is the combined time of ordering and sequential partitioning algo-

rithm for the problems in Table 3.5. From the figures, we see that DSJM is faster in all

cases compared to ColPack. If we use very large-scale problems to compare running time

of the two software, it is expected to be more pronounced.
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Chapter 4

Efficient Implementation of Exact
Graph Coloring Algorithms

In this chapter, we study exact graph coloring methods. There are few exact graph coloring

approaches available. Classical integer programming models can be one approach. For

example, Mehrotra and Trick proposed a Branch and Price algorithm [27] based on set

covering formulation. If S is the set of all independent sets and each independent set s ∈ S

is associate with a binary variable xs, which is 1 if and only if the vertices of set s gets the

same color. The model is given below.

min ∑
s∈S

xs, (4.1)

∑
s∈S:i∈S

xs ≥ 1 i ∈V, (4.2)

xs ∈ {0,1} s ∈ S. (4.3)

The objective function 4.1 minimizes the number of independent sets so the total number

of colors is minimized. The constraints of 4.2 state, each vertex must be in at least one

independent set. Here V is the set of all vertices. Constraints of 4.3 state, variable xs must

be binary.

Brélaz [3] proposed DSATUR algorithm based exact graph coloring algorithm by mod-

ifying Randal-Brown’s algorithm [4]. Brélaz’s algorithm had errors in two steps which

was corrected by Peemöller [30]. We consider Brélaz’s DSATUR based exact coloring ap-

proach as it has useful structures that can be exploited when formulated and implemented
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as a matrix coloring problem. This exact algorithm recursively divides a graph coloring

instance into series of subproblems. In each subproblem, the graph is partially colored.

While coloring the graph there is an upper bound (UB). Initially the UB can be the number

of columns because we may need at most this number of colors. If the graph is partially

colored and the number of colors used is already greater than UB then there is no need to

go forward. In another word, we can say that we prune the search tree. This pruning mech-

anism makes this algorithm a branch-and-bound algorithm. If at any point every vertex of

the graph is colored with k colors and k is less than UB then the UB is updated and set to k.

New subproblems are created recursively if the graph is partially colored and k <UB. When

a vertex is selected for coloring, each available color in k is assigned to that vertex and new

subproblem is formed for each available color assigned to that vertex. Another subproblem

is formed by assigning k+1 color to the selected vertex if the color is available and k+1 <

UB. A clique of the graph is first partially colored. The size of this clique is implicitly used

as lower bound (LB).

A clique is subgraph which is complete, i.e., every pair of vertices are connected by an

edge. We set LB to size of a clique because we need at least this number of colors. The

algorithm terminates when either there are no subproblems left or UB=LB.

Choosing a vertex for coloring is crucial and has a large effect on the algorithm. Based

on Brélaz’s DSATUR algorithm a vertex is chosen which has a maximum number of dif-

ferently colored neighbors. The reason behind choosing such kind of vertex is it reduces

the number of subproblems created at each branch because the vertex with maximum dif-

ferently colored neighbors has less available colors than other vertices.

A widely used enumeration exact coloring code first finds a maximal clique, assigns col-

ors to its vertices, and then performs a branch-and-bound type search with back-track [27].

The graph is represented by its adjacency matrix. In this chapter we give a branch-and-

bound type exact algorithm for finding a structurally orthogonal partition of the columns

of a sparse matrix A ∈ R
m×n. Our algorithm has a number of distinct features compared
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with the publicly available code [27]. First, in the matrix coloring problem, each row i for

i = 1,2, . . . ,m the columns { j|ai j �= 0} are mutually structurally dependent and therefore

defines a clique in graph-theoretic sense. Thus a maximal clique is obtained by identifying a

row with a maximum number of nonzero entries which is denoted by ρmax. Thus, our lower

bound calculation is straight forward. Second, in our computer implementation, we em-

ploy compressed sparse data structures to represent the sparsity pattern of the matrix. This

ensures that larger problem instances can be represented and handled. Additionally, we uti-

lize a bucket data structure to choose the next vertex to be colored [20]. We explore several

chromatic degree-based vertex selection approaches and alternative tie-breaking strategies.

Our exact coloring implementation can be used independently or as a subroutine to color a

small critical submatrix in a combined approach where the partial coloring is extended to

the entire matrix using heuristics[24].

4.1 The Algorithm

We have already generally described how DSATUR based branch-and-bound type exact

graph coloring algorithm works above. Now we describe the algorithm in detail. At first,

we find a clique to find the lower bound LB. In our case it is ρmax. Then the member

columns of ρmax are colored and they will not be recolored again. While coloring the

member columns of ρmax the saturation degrees of the adjacent columns are updated. After

coloring the clique the eaxctColor method is called to color rest of the uncolored columns.

Figure 4.1 shows the our exact graph coloring algorithm. Let us describe the algorithm in

detail.

1. Termination and backtracking conditions: The problem/subproblems of the al-

gorithm terminate based on the conditions in lines 1-4. There are three conditions.

If the current colorBoundary ≥UB then the current call terminates. It means the

colorBoundary is already greater or equal to the upper bound so we can terminate

and return from here without searching for new subproblems. Another termination
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condition is when order = N. It means there are no subproblems left. The last termi-

nation condition is UB=LB. When UB=LB we have already reached to the minimum

color, so we terminate and return.

2. Column selection: Column selection is one of the crucial things of this algorithm.

In lines 5-6 we select a column. In section 4.3, we will discuss in detail how we

select a column for coloring. But now for simplicity’s sake, let us assume a column

with maximum saturation degree gets selected. If there are more than one columns

of maximum saturation degree, then the column that appears first in the bucket is

selected. The handled tag is set to true for the selected column. This handled tag is

used when we update the saturation degrees of columns.

3. Coloring of selected column and subproblems formulation: Coloring the selected

column and other critical operations are done in lines 7-23. Each color from 1 to

colorBoundary is tested on the selected column jcol to see whether they are avail-

able for jcol or not. The minimum available color i is assigned to jcol in line 9. Then

the column gets deleted from the bucket because only uncolored vertices are kept in

the bucket. In lines 11-13 the maximum saturation is updated, and new color class is

created if the available color i is greater than the current maximum saturation degree.

Then a method name satDegInc is called. Using this method, we efficiently increase

the saturation degrees of the adjacent vertices of the colored column. We will describe

this method later. A new subproblem is then formed that recursively colors the un-

colored columns and returns the total colors required. We call this updatedColring.

If this updatedColring <UB then the UB is updated in line 17. The assigned color

is then removed from jcol, and is added back to the bucket. As jcol is moved from

colored set of vertices to uncolored set of vertices, the saturation degree of its neigh-

bors are needed to be updated. The satDegDec method in line 18 does this task. The

upper bound UB was updated in line 22 and if this UB< colorBoundary then the cur-

rent call terminates and returns the new updated UB. The operations in between lines
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8-23 are done for every available color for jcol. So, briefly we can say that, for each

available color, jcol is colored and then the rest of the uncolored columns are colored

recursively, and this is how the algorithm looks for new and improved coloring.

4. Another new subproblem formulation: From lines 24-36 another new subproblem

is formulated. colorBoundary indicates the number of colors in the current best

partial coloring. If colorBoundary+1<UB then colorBoundary+1 numbered color

is assigned to jcol . Then the rest of the uncolored columns are colored recursively.

The remaining operations done here are same as described above.

4.1.1 Updating Saturation Degree:

Saturation degree updating is an important task in our exact graph coloring algorithm.

We select a column for coloring from maximum saturation degree set which has a large

effect on the number of subproblems explored. With the help of CSR, CSC and bucket

data structure we can update the saturation degree quite efficiently. CSR and CSC are used

to look for the adjacent columns of a selected column and bucket data structure is used

to update the degree lists (in this case it is saturation degree) of the uncolored vertices.

In our exact coloring algorithm we both need to increase and decrease saturation degrees

of the columns. When a column is colored the saturation degrees of its adjacent columns

are required to be increased, and when a color is removed from a column, then saturation

degrees of its adjacent columns are needed to be decreased if applicable. In Figure 4.2 the

mechanism of increasing saturation degree is shown and in Figure 4.3 the mechanism of

decreasing saturation degree is shown.

1. Increasing saturation degree: Figure 4.2 shows the method for increasing saturation

degrees. When a column is selected and colored the adjacent columns are inspected.

If the colored column is a different colored neighbor for any adjacent column, then

the saturation degree of that column is increased. A two-dimensional array named
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EXACTCOLOR(order,colorBoundary)
1 if colorBoundary ≥UB or order = N
2 return colorBoundary
3 if UB = LB
4 return UB
5 jcol ← getColumn()
6 handled[ jcol]← true
7 for each color i from 1 to colorBoundary
8 if colorAvailable( jcol, i)
9 color[ jcol]← i

10 deleteColumn(head,next, previous,satDeg[ jcol], jcol)
11 if i > maximumSaturation
12 maximumSaturation ← maximumSaturation+1

13 createNewColorClass()
14 satDegInc( jcol,color[ jcol])
15 updatedColoring ← exactColor(order+1,colorBoundary)
16 if updatedColoring <UB
17 UB← updatedColoring
18 satDegDec( jcol,color[ jcol])
19 color[ jcol]← N
20 addColumn(head,next, previous,satDeg[ jcol], jcol)
21 if UB <= colorBoundary
22 handled[ jcol]← f alse
23 return UB
24 if colorBoundary+1 <UB
25 color[ jcol]← colorBoundary+1

26 deleteColumn(head,next, previous,satDeg[ jcol], jcol)
27 if colorBoundary+1 > maximumSaturation
28 maximumSaturation ← maximumSaturation+1

29 createNewColorClass()
30 satDegInc( jcol,color[ jcol])
31 updatedColoring ← exactColor(order+1,colorBoundary+1)
32 if updatedColoring <UB
33 UB← updatedColoring
34 satDegDec( jcol,color[ jcol])
35 color[ jcol]← N
36 addColumn(head,next, previous,satDeg[ jcol], jcol)
37 handled[ jcol]← f alse
38 return UB

Figure 4.1: DSATUR based exact graph coloring algorithm

54



4.1. THE ALGORITHM

colorTracker is used to check whether the colored column is a different colored

neighbor. It is quite same as the bitset utilized in the SDPartition algorithm. For each

color a row of size N is created in colorTracker. We call it creating a new color

class. It is done in Figure 4.1’s lines 13 and 29. Suppose colorTracker[4][5] = 0.

It means column 5 does not have any neighbor that is colored using a color no. 4.

So if a neighbor of column 5 is colored using a color no. 4 then column 5 has a

uniquely colored neighbor, so the saturation degree of column 4 is increased as well

as the value of colorTracker[4][5]. This colorTracker array helps us to update the

saturation degree of any column in constant time because for this we do not need to

look for the adjacent of adjacent columns of the colored column which is an expensive

operation. The inputs of this method are jcol and its colorNo. Efficient tagging

scheme is used to update saturation degrees. For example, we don’t need to update

saturation degree of jcol because it is already colored rather we look for its neighbors.

So tag[ jcol] is set to true in line 2. While looking for adjacent columns of jcol

what we do is take one non-zero element of jcol and traverse through other non-zero

elements in the same row. Once any nonzero element of any column is traversed,

that column is tagged and will not be considered in any next iterations. In line 6

we get colorTracker[colorNo][ j] and if it is 0 then we update the saturation degree

of column j. While updating saturation degree, all colored and uncolored columns

are considered but we update degree lists of the columns in the bucket which are

uncolored in lines 9-11. The reason we update saturation degree of all columns is, in

exact coloring algorithm we color a column and remove the color to construct new

subproblem. When color is removed from a column it i s added back to the bucket

based on its saturation degree. For this reason, we update saturation degrees of both

colored and uncolored columns. In line 12 the value of colorTracker[colorNo][ j]

is increased either the saturation degree of j is increased or not. In SDParitition we

only need the information about if a column j has colorNo colored neighbor or not to
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increase saturation degree but here we need the count of colorNo colored neighbors

of j because it is important when we decrease the saturation degree of a column.

SATDEGINC( jcol,colorNo)
1 intializeTag()
2 tag[ jcol]← true
3 for all j ∈ ad j( jcol)
4 if tag[ j] = f alse
5 tag[ j]← true
6 colorCount ← colorTracker[colorNo][ j]
7 if colorCount = 0

8 satDeg[ j]← satDeg[ j]+1

9 if handled[ j] = f alse
10 deleteColumn(head,next, previous,satDeg[ j]−1, j)
11 addColumn(head,next, previous,satDeg[ j], j)
12 colorTracker[colorNo][ j]← colorTracker[colorNo][ j]+1

Figure 4.2: Update(Increase) saturation degree

2. Decreasing saturation degree: Figure 4.3 shows the method for decreasing sat-

uration degrees. When a color is removed from a column jcol its added back to

uncolored set of vertices which means the saturation degrees of its adjacent columns

are needed to be updated. If for any j ∈ ad j( jcol), jcol is the only colorNo col-

ored neighbor then we will get colorTracker[colorNo][ j] = 1. Removing colorNo

from jcol means there is no colorNo colored neighbor for j so the saturation de-

gree of j is decreased in line 8 and degree list of j is update in bucket in lines 9-11.

colorTracker[colorNo][ j] = 1 or not, either way the value of colorTracker[colorNo][ j]

is decreased in line 12 as now j has one less colorNo colored neighbor.

4.2 An Example

For a better understanding how the algorithm works a simple example is given below.

We choose a matrix of 20 rows and 30 columns with 60 non-zero entries. The Matrix B is

shown in Figure 4.4. We can associate a graph with this matrix. Each column of this matrix
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SATDEGDEC( jcol,colorNo)
1 intializeTag()
2 tag[ jcol]← true
3 for all j ∈ ad j( jcol)
4 if tag[ j] = f alse
5 tag[ j]← true
6 colorCount ← colorTracker[colorNo][ j]
7 if colorCount = 1

8 satDeg[ j]← satDeg[ j]−1

9 if handled[ j] = f alse
10 deleteColumn(head,next, previous,satDeg[ j]+1, j)
11 addColumn(head,next, previous,satDeg[ j], j)
12 colorTracker[colorNo][ j]← colorTracker[colorNo][ j]−1

Figure 4.3: Update(Decrease) saturation degree

is a vertex of the graph. If there are non-zero elements in the same row, then the vertices

are connected by edges. Suppose if we look at row 20 of column 1, 2 and 3 we see that

they have nonzero entries in the same row. So these three columns are connected by edges.

Figure 4.5 shows the column intersection graph G(B) of matrix B.

The first thing the algorithm does is to find a clique to determine a LB. In our imple-

mentation we use ρmax as LB. ρmax for matrix B is 3. So initially a clique of size three is

colored. In matrix B there are more than one clique of size 3. We find ρmax and the index of

any one the ρmax-clique at the time we compute the degrees of the columns. For matrix B

the vertices of clique initially colored are column 2, 19 and 20. These columns are colored

and will never be recolored. The saturation degrees of the adjacent columns are updated in

the mean time. After coloring the clique The exactColor(order,colorBoundary) method is

called. Now we discuss in detail with examples how this method works.

For matrix B, after coloring the clique the value of order and colorBoundary, are both

three because three columns are colored, and three colors were used to color the clique. So

exactColor(3,3) will be called. When the exactColor(order,colorBoundary) is called for

the first time, the upper bound UB is no. of columns, in this case, it is 30, and lower bound
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Figure 4.4: Matrix B

LB is 3. The LB will always be three, but UB will be updated. In Figure 4.6 the steps of the

operations are described. After exactColor(3,3) is being called a column with maximum

saturation degree gets selected in line 5 of algorithms of Figure 4.1. Column 30 is selected.

Now we have up to 29 options to color column 30. So for column 30 only it is possible to

create up to 29 new subproblems.

In lines 7-23 of the algorithm of Figure 4.1 new subproblems are formed depending

on available colors for the selected column between color 1 to colorBoundary. Color 1

is available for column 30 so color one is assigned to column 30 saturation degrees of its

neighbors are updated then a new subproblem is recursively created hence exactColor(4,3)

is called. Three columns of the cliques and one new column 30 has been colored, so the

value of order is four now. order tracks how many columns have been colored.

For each subproblem, possible branches are 29 now, but it does not expand all branches.
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Figure 4.5: Column intersection graph G(B) of matrix B

For example in exactColor(4,3) the selected column is 24. Here it is not possible to ex-

pand a branch by assigning color 1 to column 24 because one of its neighbors has already

been colored using color 1. So a new subproblem is formulated by recursively calling

exactColor(5,3). Figure 4.6 shows how a new subproblem is formed at each step after

assigning an available minimum color to the selected column.

If we look at exactColor(25,3) of Figure 4.6 we see that color four has been assigned

to the selected column 28. It is because neither color 1, 2 or 3 are available for 28. So

the algorithm checks if colorBoundary + 1 <UB (line 24). In this case, it is true. So

colorBoundary+ 1 = 4 numbered color is assigned to column 28. As the color assigned

is greater that the current colorBoundary, so it is updated and new colorBoundary is 4. In

exactColor(29,4) column 21 is selected and colored, and it is the last column to color. So

when exactColor(30,4) is called in line 1 of Figure 4.1 the order = N condition is true so
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exactColor(30, 4) = 4

exactColor(3, 3)

30 ← 1

exactColor(4, 3)

exactColor(5, 3)

24 ← 2

25 ← 1

exactColor(6, 3)

5 ← 3

exactColor(7, 3)

15 ← 1

exactColor(8, 3)

14 ← 2

exactColor(9, 3)

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

......
exactColor(15, 3)

17 ← 1

exactColor(16, 3)
· · ·

......
exactColor(25, 3)

28 ← 4
· · ·......

exactColor(29, 4)

21 ← 4

order colorBoundary

Column 30 is selected
and color 1 is assigned to it

UB = 30
LB = 3

UB = 4
LB = 3

· · ·

Figure 4.6: exactColor(order,colorBoundary) steps

the algorithm does not proceed instead it returns from here. So from the sequence shown

in Figure 4.6, we get that the graph can be colored using four colors. The coloring of the
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graph is shown in Figure 4.7. The mapping of numbers to their corresponding colors for

Figure 4.7 is given bellow.

1 ← red

2 ← blue

3 ← green and

4 ← yellow

Figure 4.7: Coloring of G(B) using 4 colors

As we have got a new coloring, we update the UB. UB is set to 4. Till now for every

subproblem, it was possible to form up to 29 branches or subproblems. But now as the UB

has been updated, so it is possible to form up to 3 subproblems only. At this stage, we are

not sure whether 4 is the optimal coloring for G(B) or not. The LB is 3, and we have not

explored many branches yet. So the algorithm will start to backtrack from this point with
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new UB, which has been set to 4. So the algorithm will backtrack and will try to explore

new branches by assigning either color 1, 2 or 3 if available.

Figure 4.8 shows the backtracking. The algorithm backtracks from exactColor(30,4)

and goes to exactColor(29,4). While backtracking the assigned color gets removed from

the selected column (lines 18-20 and 34-36 of Figure 4.1) as The UB has been changed and

now we explore new branches by assigning a new available color to any selected column.

When a color is removed from any column, it is added back to the bucket, and the saturation

degrees of its adjacent columns are also updated. In exactColor(29,4) it looks for if there

is any available color between 1-3 for column 28. There is no available color, so it will

continue to backtrack. At each step, the algorithm will look if it is possible to expand a new

branch. The algorithm will continue to backtrack until it reaches exactColor(15,3) because

it was not feasible to open any new branch in between. In exactColor(15,3) column 17 was

already colored using color 1 . Now we see that color 3 is also available for column 17.

So color 3 is assigned to column 17 a new subproblem is formed. Then in the next step

in exactColor(16,3), column 10 is selected, and color 1 is assigned to it. Branching is

continued until the algorithm reaches exactColor(26,3). In exactColor(26,3) column 21

is selected but neither color 1, 2 or 3 is available for column 21. So for this branching,

unfortunately, we do not get any feasible solution. There is no necessity to go forward, thus

the algorithm backtracks again.

Figure 4.9 show backtracking from exactColor(26,3) and new branching. The algo-

rithm backtracks and in each step check whether it is possible to open a new branch. As it is

not possible to open any branch, it continues to backtrack until it reaches exactColor(7,3).

A branch was already expanded by assigning color 1 to column 15. Now we see that

it is possible to assign color 3 to column 15. So a new subproblem is created. The al-

gorithm goes to exactColor(8,3). In exactColor(8,3) column 14 is selected and color

1 is assigned to it. The algorithm continues to create new subproblems and opens new

branches. In exactColor(29,3) column 18 gets color 3 which is the last column to process.
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......
exactColor(15, 3)

17 ← 1

exactColor(16, 3)
......

exactColor(25, 3)

28 ← 4

......
exactColor(29, 4)

21 ← 4

exactColor(30, 4) = 4

UB = 4
LB = 3

exactColor(16, 3)

10 ← 1

17 ← 3

exactColor(17, 3)
......

exactColor(25, 3)

9 ← 1

exactColor(26, 3)

return

Figure 4.8: Backtracking and branching after getting a feasible coloring

In brachColor(30,3) we do not have any more columns to color as order = no. of columns

, so it returns the total no. of colors 3. This coloring of 3 is our optimal coloring because

our LB is also 3. We do not need to explore any new branches.

What happens when we do not reach to LB? If we do not get any coloring that is equal to

LB, then we continue to explore new subproblems until none left. Then the lowest feasible

coloring we got in between is the optimal coloring. The optimal coloring of G(B) is shown

in Figure 4.10.

We have seen that we had many branching options at the beginning. For every search

problem, we could form up to 29 search trees. But by selecting the column with maximum

saturation degree, we narrow down our choices. A column with higher saturation degree

has less available colors, so many search trees are pruned. Then after getting a feasible

coloring of 4 colors, we updated the UB. This way many more search trees are pruned

because at the beginning we had color 1 to 29 as options but after updating the UB we had
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......

exactColor(15, 3)

17 ← 1

exactColor(16, 3)

UB = 4
LB = 3

exactColor(16, 3)

10 ← 1

17 ← 3

exactColor(17, 3)
......

exactColor(25, 3)

9 ← 1

exactColor(26, 3)

return

......

exactColor(7, 3)

15 ← 215 ← 1

exactColor(8, 3)

14 ← 1

exactColor(9, 3)

13 ← 2

exactColor(10, 3)
......

exactColor(29, 3)

18 ← 3

exactColor(30, 3) = 3

UB = 3
LB = 3

......

Figure 4.9: Backtracking and branching after getting an infeasible coloring

only color 1, 2 and 3 as options.

4.3 Column Selection and Tie-breaking Strategies

We already know the importance of selecting a column of highest saturation degree for

coloring. It prevents unnecessary branching. If we select a column for which we have

many choices to assign colors then the number branches will increase which affects the

performance of the algorithm. So selecting the column with highest saturation degree is

critical for the performance of the algorithm. Now, what happens if there are more than one

columns with highest saturation degree? In this section, we will discuss the tie-breaking

strategies when there are more than one columns with highest saturation degree.

64



4.3. TIE-BREAKING STRATEGIES

Figure 4.10: Optimal coloring of G(B) using 3 colors

4.3.1 Simple Tie-breaking Strategy

The tie breaking strategy used in the example of Section 4.2 is very simple. We only

select the column that is in the HEAD of highest saturation degree list. We also imple-

ment three more tie-breaking methods in DSJM. Two of them are from Segundo’s [31] and

Sewell’s [32]. The third is a new tie-breaking rule.

4.3.2 Sewell’s Rule

Sewell’s rule to break tie is to select the vertex from the set of maximum saturation de-

gree list which has the maximum number of common available colors in the neighborhood

of uncolored vertices. This tie-breaking strategy reduces the number of subproblems be-

cause to break tie a vertex is selected that has the maximum number of common available

colors in the neighborhood of uncolored vertices which reduces the number of available col-
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ors for the uncolored vertices. The number of available colors reduction means a reduction

in the number of subproblems. This tie-breaking rule is given in Figure 4.11

SELECTCOLUMNSEWELL()

1 max ← 0

2 column ← 0

3 for each vertex v ∈ maxSatDegree list

4 calculate U ← Feasible(u)∩Feasible(v)
5 where u ∈ N(v),u �= v and u not colored

6 if |U|> max
7 max ← |U|
8 column ← v
9 return column

Figure 4.11: Sewell’s tie-breaking strategy

4.3.3 Segundo’s PASS Rule

Segundo proposed another tie breaking strategy. This approach is computationally less

expensive than Sewell’s rule but has the same pruning effect. In Sewell’s rule, the vertices

in maximum saturation degree bucket look for common available colors among all of their

uncolored neighbors. But according to Segundo’s rule a vertex is selected similarly as

Sewell, but while calculating the common available colors, it does not look all the uncolored

neighbors instead it is restricted to the uncolored neighbors those are in the maximum

saturation degree list. Segundo named this strategy PASS rule. Segundo’s PASS rule is

given in Figure 4.12

4.3.4 A New Tie-breaking Strategy

We propose a new tie-breaking rule. It is slightly different than Sewell’s rule. The

vertices in maximum saturation degree list look for common available colors among all of

their uncolored neighbors of saturation degree at least 1. Our proposed tie-breaking rule is

shown in Figure 4.13
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SELECTCOLUMNPASS()

1 max ← 0

2 column ← 0

3 for each vertex v ∈ maxSatDegree list

4 calculate U ← Feasible(u)∩Feasible(v)
5 where u ∈ N(v), u ∈ maxSatDegre bucket, u �= v and u not colored

6 if |U|> max
7 max ← |U|
8 column ← v
9 return column

Figure 4.12: Segundo’s tie-breaking strategy

SELECTCOLUMNNEW()

1 max ← 0

2 column ← 0

3 for each vertex v ∈ maxSatDegre bucket

4 calculate U ← Feasible(u)∩Feasible(v)
5 where u ∈ N(v), satDeg(u)≥1, u �= v and u not colored

6 if |U|> max
7 max ← |U|
8 column ← v
9 return column

Figure 4.13: A new tie-breaking strategy

Sewell’s rule helps to minimize subproblems by reducing available colors at deeper lev-

els of the search tree. On the other hand, PASS rule reduces the number of available color

to the vertices which already have the least number of available colors. We propose a new

tie-breaking strategy that follows a middle ground. With this new tie-breaking strategy we

try to achieve the optimal solution by exploring fewer subproblems with the same compu-

tational speed like others.

We implement all the above-mentioned tie-breaking strategies for selecting column when

there are more than one columns with maximum saturation degree. The first one is simplest

but requires more subproblems to get a feasible coloring. The Sewell’s rule, PASS rule,
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and our new implementation require fewer subproblems to get the same feasible coloring

in most of the cases.

4.4 Numerical Experiments

In this section, we provide results from numerical experiments on some test instances.

The data set for the experiments is obtained from The Matrix Market [1] and University

of Florida Sparse Matrix Collection [10]. Healy and Ju [21] described a heap-based ex-

act coloring algorithm but here we mainly compare our implementation with widely used

Trick’s implementation [27]. We do two types of experiments here. The purpose of the

first experiment is to compare Trick’s implementation of DSATUR based exact algorithm

with our implementation. Here we call our implementation New Exact. In the second ex-

periment, we display how the number of subproblems varies to get feasible colorings using

different tie-breaking rules. As we have implemented all the tie breaking strategies in our

implementation Trick’s implementation is not consider in the second experiment. Let us

discuss the first experiment first.

There are some differences between Trick’s implementation and our implementation.

For representing a graph, Trick used adjacency matrix, but we use efficient CSR and CSC

data structures to associate column intersection graph with a matrix. In Trick’s implemen-

tation n2 space is needed to represent a graph. In our case it is 3nnz+m+n+2. Suppose

we are given a matrix of 130228 row and columns and 2032536 non-zero entries. Trick

needs 130228× 130228 = 16959331984 memory locations to represent the graphs. We

need 3× 2032536+ 130228+ 130228+ 2 = 6358066 memory locations to get the asso-

ciated graph. For updating saturation degree Trick uses adjacency matrix as well. In our

implementation, we use efficient bucket data structure for updating saturation degrees of

the columns. Besides these, in our implementation, we do not search the maximal clique to

determine the LB instead in our implementation ρmax is the LB. These differences make our

exact graph coloring algorithm more efficient than Trick’s implementation. The description
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of the test matrices is given in Table 4.1. The name of the matrices, the number of rows,

Table 4.1: Data set with lower bound

Name m n nnz LB
Trick New Exact

bcsstk20 485 485 1810 11 11

bcsstm07 420 420 3836 26 26

dwt221 221 221 925 12 12

dwt878 878 878 4136 10 10

dwt918 918 918 4151 13 13

flower41 121 129 386 5 5

flower71 463 393 1178 5 5

flower81 625 513 1538 5 5

GL6D9 340 545 4349 17 28

gre512 512 512 2192 5 5

jagmesh1 936 936 3600 7 7

jagmesh5 1180 1180 4465 7 5

lnsp511 511 511 2796 11 11

lpireactor 318 808 2591 78 66

lunda 147 147 1298 21 21

mesh2e1 306 306 1162 10 10

mk9b1 378 36 756 4 2

n3c5b5 210 252 1260 6 6

n3c5b6 120 210 840 7 7

n4c5b10 120 630 1320 11 11

nos3 960 960 8402 18 18

nos5 468 468 2820 23 23

nos6 675 675 1965 5 5

plat1919 1919 1919 17159 19 19

poisson2D 367 367 2417 9 9

robot24c1mat5 404 302 15118 99 91

sherman1 1000 1000 2375 7 7

sphere3 258 258 1026 7 7

steam1 240 240 3762 21 21

west0655 655 655 2854 12 12

columns, and the number of non-zero entries are given. The LB we find in Trick’s and in

our implementation is also given in the table. To find the LB Trick uses an independent

routine that searches for a maximal clique and terminates after a fixed number of iterations.
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Although finding LB is straight forward in our implementation but in most of the cases LB

we get from our implementation is same as Trick’s. Only in 4 cases (jagmesh5, lpireactor,

mk9b1, robot24c1mat5) our LB is smaller than Trick’s and in one case (GL6D9) our LB

is greater than Trick’s. The test environment for the numerical experiments is same as de-

scribed in Chapter 3, Section 3.3. We have divided the test results into three tables. The

tables give us information about coloring, time and subproblems of Trick and New Exact

implementations. All the clock time in the following tables are given in seconds. We see

that New Exact is faster in most of the cases in terms of

• Number of subproblems explored per unit time

• Clock time, when the number of subproblems explored is identical.

In Table 4.2 we show the results of the test instances for which we get optimal coloring for

both Trick and New Exact within the one-hour duration.

Table 4.2: Test results-1

Name Trick New Exact
Colors Time Subproblems Colors Time Subproblems

bcsstm07 11 0.01 475 11 0 475

dwt221 12 0 210 12 0 210

dwt918 13 0.08 906 13 0.26 115457

flower41 5 0 4837 5 0 127

flower81 5 0.02 1249 5 0 554

gre512 5 0.52 110710 5 0.02 6414

jagmesh5 7 0.1 1174 7 0 1174

lpireactor 78 0.02 731 78 0 90

lunda 21 0 127 21 0 127

mesh2e1 10 0.01 297 10 0 297

mk9b1 7 0 1399 7 0 209

n4c5b10 11 0.05 897 11 0 886

nos3 18 0.2 943 18 0 943

nos6 5 0.03 671 5 0 671

robot24c1mat5 102 0.6 204 102 0.02 356

west0655 12 0.04 644 12 0 644
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In Table 4.3 we show the results for the test instances for which New Exact gives optimal

coloring within the one-hour duration, but Trick does not or vice versa. Only for one test

case Trick gives optimal coloring but New Exact does not but for the rest of the test instances

New Exact finds optimal coloring but Trick cannot. In this table the number of colors with

asterisk (*) symbols mean we did not find any optimal coloring of the problems within the

one-hour duration.

Table 4.3: Test results-2

Name Trick New Exact
Colors Time Subproblems Colors Time Subproblems

dwt878 12* - 5.29E+08 10 0 869

jagmesh1 9* - 4.23E+08 8 10.04 6.17E+06

lnsp511 12* - 8.23E+08 11 0 501

n3c5b6 7 0.6 412233 9* - 3.56E+09

nos5 25* - 9.11E+08 23 0.01 978

poisson2D 10* - 1.18E+09 9 0 362

sherman1 8* - 5.02E+08 7 0.03 1945

Table 4.4 displays the test results for which both Trick and New Exact cannot find

optimal coloring within one hour. In the incomplete tests, we can find some interesting

results as well. In some cases New Exact gets better coloring than Trick. If we look at the

number of subproblems explored by Trick and New Exact, for most of the cases, we see

that number of subproblems explored in New Exact is way more than Trick.

Table 4.4: Test results-3

Name Trick New Exact
Colors Subproblems Colors Subproblems

bcsstm07 30* 1.02E+09 28* 1.14E+09

GL6D9 30* 7.72E+08 29* 3.52E+08

n3c5b5 10* 1.39E+09 10* 3.46E+09

plat1919 24* 2.24E+08 23* 9.82E+08

sphere3 9* 1.26E+09 9* 2.65E+09

steam1 23* 1.56E+09 22* 1.27E+09

In our second experiment, we take some matrices from Table 4.1 and show how the
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number of subproblems varies to get feasible colorings for test instances when we use dif-

ferent tie-breaking mechanisms. We implemented four tie-breaking mechanisms described

in Section 4.3 in New Exact. We only do not show the optimal/minimum coloring, and

their corresponding required subproblems. We show all feasible coloring and the subprob-

lems required to get the feasible coloring or the lowest coloring if we do not get optimal

coloring within an hour in Table 4.5 . The number of subproblems is lesser than the simple

tie-breaking strategy when we use other three tie-breaking strategies. In some cases, we do

not get optimal coloring within an hour using simple tie-breaking strategy but get optimal

coloring using the other(s). For any test problem if the entries of a row are filled with (-) it

indicates we do not get any specific feasible coloring with that specific tie-breaking strat-

egy. Suppose for bcsstm07, the first row of Segundo is empty. It means we do not get any

coloring of 30 using Segundo but we get coloring of 30 using other tie-breaking strategies.

If the smallest feasible color has (*) sign with it, it indicates we do not get optimal coloring

within the one-hour duration.
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Table 4.5: Comparison between different tie-breaking strategies of New Exact

Name Simple Sewell Segundo New
Colors Time Subproblems Colors Time Subproblems Colors Time Subproblems Colors Time Subproblems

bcsstm07

30 0 395 30 0 395 - - - - - -

29 0.03 16105 29* 5.7 7.11E+05 29 0 395 29* 0.01 395

28* 57.61 1.62E+07 - - - 28* 0 481 - - -

dwt878 10 0 869 10 0 869 10 0 869 10 0 869

flower41 5 0 161 5 0 172 5 0 282 5 0 127

flower71 5 0 439 5 0 402 5 0 485 5 0 400

jagmesh1
9 0 983 9* 0.04 932 9* 0.02 968 9* 0.04 963

8 10.04 6.17E+06 - - - - - - - - -

jagmesh5 7 0 1174 7 0.11 1174 7 0.02 1174 7 0.12 1174

lnsp511
12 0 501 12 0 501 - - - 12 0 501

11 0 1005 11 0 920 11 0 501 11 0 595

lunda
- - - - - - 22 0 127 - - -

21 0 127 21 0 127 21 0 243 21 0 127

mk9b1 7 0 414 7 0 209 7 0 197 7 0 209

n3c5b5

12 0 247 12 0 247 - - - 12 0 247

11 0 301 11 0 289 11 0 247 11 0 344

10* 14.22 1.36E+07 10* 7.11 1.59E+06 10* 0 2104 10* 2.74 667379

n3c5b6

- - - - - - - - - 13 0 204

- - - 12 0 204 12 0 204 12 0 245

11 0 204 11 0 253 11 0 1347 11 0 323

10 0 6738 10 1.55 398017 10 0.17 69813 10 3.12 809260

9* 1225.99 1.22E+09 9* 432.45 9.88E+07 9* 3217.28 1.34E+09 9* 16.28 3.74E+06

nos3

20 0 943 - - - - - - - - -

19 0.01 2406 19 0.01 943 - - - - - -

18 0.01 3266 18 0.2 1844 18 0 943 18 0.01 943

nos5
24* 6.2 2.37E+06 24* 0 446 24* 0 446 24* 0.01 446

- - - - - - 23 0.01 978 - - -

plat1919
24 0.01 1901 - - - 24 0.01 1901 24* 0.03 1901

23* 0.02 3359 - - - 23* 0.03 3871 - - -

sphere3

- - - 11 0 338 11 0 252 - - -

10 0 252 10 0.06 23568 10 0 1197 10 0 252

9* 0.88 702048 9* 0.6 176461 9* 6.6 2.69E+06 9* 9.49 2.46E+06

steam1

- - - 24* 0.03 7813 24* 0 220 24 0 0.01

23 0 220 - - - - - - 23* 0.01 537

22* 4.16 1.91E+06 - - - - - - - - -
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Chapter 5

Conclusion and Future Works

In this thesis, we have provided a detailed study on the efficient data structures of DSJM

software. The heuristic ordering and partitioning algorithms used in DSJM give the best

coloring with quickest possible time compared to other existing implementations. We show

the efficiency of DSJM and the advantages of using cache-friendly data structures using sev-

eral numerical experiments and by comparing DSJM with another existing software toolkit.

There are a lot of scopes to extend DSJM toolkit, but without the proper understanding of

the data structures and implementations, it would be difficult for anyone. Step by step ex-

amples of how buckets change in the ordering and partitioning algorithms can be a useful

material to study for future researchers.

With the help of a clear understanding of the implementation of DSJM, we extended

DSJM by implementing an exact graph partitioning algorithm. The exact partitioning algo-

rithm can find optimal coloring for small instances quite quickly, and we have shown that

in many cases where the other existing implementation cannot find optimal coloring but our

implementation can provide optimal coloring within a reasonable amount of time. We also

implemented four tie-breaking strategies for selecting a column in every step and showed

selecting a column strategically can reduce the number of subproblems in getting feasible

solutions. The exact coloring algorithms still do not find optimal coloring in a reasonable

amount of time for large test instances. We are trying to find a solution. A combined method

proposed by Hossain et al. [24] uses exact coloring algorithm to color a critical submatrix

of a large matrix. This combined method does not guarantee to give optimal coloring but
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gives promising coloring than the heuristic approaches. Our exact coloring implementation

is incorporated in the combined coloring algorithm.

5.1 Future Works

At present the column partitioning in DSJM is done using one-sided compression (row

compression). It can be extended to enable two-sided compression.

Heuristic approaches work very fast for large instances, but optimal partitioning is not

guaranteed. On the other hand, the exact approach provides optimal coloring but is not

practical for large instances. Combined approach can be a good direction for finding op-

timal coloring for large instances. At present, the combined approach does not guarantee

optimal coloring. Further research can be done on combined approach.

The real world problems are getting larger every day. To deal with the very large in-

stances, parallel implementation on shared memory multi-processor system is an interesting

research direction. We gave a try to implement some ordering and partitioning algorithms of

DJSM using OpenMP (Open Multi-Processing) Application Programming Interface (API)

[8]. We found it difficult to parallelize graph operations using existing data structures.

Further study on parallel implementation can be a good and exciting research direction.
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