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A b s t r a c t 

The IRMA III infrared radiometer is a passive atmospheric water vapor detector designed for 

use with interferometric submillimeter arrays as a method of phase correction. The IRMA 

III instrument employs a distributed, multi-tasking software control system permitting pre­

cise fine-grained control at remote locations over a low-bandwidth network connection. 

IRMA's software is divided among three processors tasked with performing three primary 

functions: command interpretation, data collection and motor control of IRMA's Alt-Az 

mount. IRMA's hardware control and communication functionality is based on compact, 

low cost, energy efficient Rabbit 2000 microcontroller modules, selected to meet IRMA's 

limited space and power requirements. IRMA accepts scripts defined in a custom, high 

level control language as its method of control, which the operator can write or dynamically 

generated by a separate GUI front-end program. 
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Chapter 1 

The I R M A Concept 

1.1 An Infrared Radiometer for Millimeter Astronomy 

IRMA is an infrared radiometer designed to measure passively 20 micron water 

vapor rotational absorption lines, which indicate the amount of precipitable water vapor 

(PWV) in the atmosphere. IRMA has two primary applications: as a solution for phase 

correction in submillimeter interferometry, and as an sky opacity monitor for use in infrared 

astronomy. 

1.1.1 I R M A as a M e t h o d of P h a s e C o r r e c t i o n 

Long wavelength electromagnetic radiation emitted by celestial objects remains 

nearly untouched as it travels through space on its journey to the Earth. Only in its final 

moments, as it passes through the lower regions of the Earth's atmosphere, is the radiation 

significantly degraded. At submillimeter wavelengths, the principal source of opacity is due 

to atmospheric water vapor. High-energy, short-wavelength radiation such as gamma rays, 
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X-rays and ultraviolet light are effectively blocked out, along with significant portions of the 

infrared and submillimeter wavelengths. Only visible light passes through the atmosphere 

relatively unhindered. The submillimeter spectral window, a band of wavelengths occupying 

the region between infrared light and microwaves (0.1 mm to 1 mm), contains regions 

(or windows) that are only partially filtered out by the presence of water vapor in the 

Earth's atmosphere. Submillimeter astronomy aims to exploit these transparent and semi-

transparent windows that appear at submillimeter wavelengths. 

The submillimeter band is of interest to astronomers for two reasons: the relatively 

long wavelength of submillimeter radiation allows it to penetrate gas and dust, permitting 

observations to be made of objects inside nebulae such as the Orion nebula, which are be­

lieved to be stellar nurseries where stars are born. Second, observations at submillimeter 

wavelengths can be used to observe distant objects whose light has been red-shifted (or 

stretched in wavelength) into the submillimeter band, permitting astronomers to view ob­

jects that appeared in the earliest epoch of the universe. The wavelength lengthening of 

light from distant objects is a consequence of the fact, first observed by Edwin Hubble in 

1929, that distant objects are receding from the earth at increasing rates, now understood 

as the expansion of the universe. 

The only way to observe objects in the submillimeter spectral window is to get 

above the bulk of the Earth's atmosphere responsible for rendering these bands opaque. 

This can be accomplished by placing observatories in orbit, such as the Hubble Space 

Telescope (HST), in an aircraft, such as NASA's SOFIA (Stratospheric Observatory For 

Infrared Astronomy), or at high altitude ground locations, such as at Mauna Kea, Hawaii 
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(4200 m), or the Atacama Desert, Chile (5000 m). Spaceborne observatories enjoy the 

advantage of being able to observe at all wavelengths, but are limited to mirror diameters 

no larger than approximately 3.5 m, the maximum diameter of payload that can be carried 

on board a rocket. Furthermore, at roughly 22,000 dollars per kilogram[17], the cost of 

launching a large payload into space is very expensive. Given the advances in astronomical 

technology, ground-based observatories are an attractive alternative, that can approach the 

performance of its space-based counterparts. 

Figure 1.1: IRMA at Gemini South Observatory, September 2004. 

Submillimeter ground-based observatories can be configured as interferometric ar­

rays in order to synthesize a massive receiving antenna whose diameter equals the length 

of the maximum baseline of the array. The maximum baseline is the distance between the 

two farthest-separated antennas in the array. 
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The minimum spatial resolving power of a telescope is found in any standard optics 

text. For a telescope of circular aperture, the diffraction limit, expressed in radians, is: 

where A is the wavelength being observed and d is the diameter of the telescope [4]. 

Increasing the length of the baseline effectively increases the diameter of the an­

tenna, which increases the array's spatial resolution; the minimum angle separating two 

objects that can be individually resolved. 

The Atacama Large Millimeter Array (ALMA) project, an interferometric sub­

millimeter telescope array consisting of 64 antennas, each 12 m in diameter, will allow 

reconfigurable baselines ranging from 150 m to 18 km. ALMA promises to resolve ob­

jects at 10 milliarcsecond resolution; ten times better than the Hubble Space Telescope[41]. 

Situated on a 5000 m high plateau in the Chilean Andes, the ALMA site is one of the 

driest regions on Earth. Atmospheric water vapor exists in low enough quantities to make 

submillimeter wavelength observation feasible, although not low enough to have negligible 

effect on the incoming celestial signal. In order for an interferometric array to achieve its 

maximum spatial resolution (approaching its diffraction limit), the distorting effects of the 

Earth's atmosphere must be overcome. 

Water vapor found in the Earth's troposphere (0 - 14 km) is present in sufficient 

amounts to slow down the incoming wavefront of the celestial signal. The water vapor, 

measured in millimeters of precipitable water vapor (PWV), contributes a delay factor of 6 

to the optical path[29]. The distribution of water vapor is neither spatially nor temporally 

0, 
1.22A 

d (1.1) 
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actual direction of source 
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instantaneous apparent angle 
of astronomical source 

interferometer baseline length 
b 

Figure 1.2: Atmospheric phase distortion of celestial signal. [57]. 

homogeneous inside the column of atmosphere projected from the antenna's receiving dish. 

Thus, it is probable that each receiving antenna will be subject to a different amount of 

instantaneous PWV. Since the presence of PWV slows down the incoming signal, each 

receiving antenna detects the wavefront at different times, rather than simultaneously, as 

desired. 

The effect of atmospheric phase distortion is illustrated in figure 1.2, which shows 

an interferometric array with two antennas. The antenna pair observes the same object, 

whose wavefront appears planar in the upper atmosphere. The wavefront above the left hand 

antenna passes through a region of water vapor, which adds excess optical path length (d) 

to the incoming signal. Interferometry requires the precise measurement of the time the 
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wavefront was received at each antenna. The apparent direction of the observed object 

is perpendicular to the planar wavefront. A slight phase error manifests itself as a slight 

change in the immediate apparent angle of the astronomical source's direction, diminishing 

the interferometer's ability to spatially resolve astronomical objects. 

Spectral emission measurements above Mauna Kea using high resolution Fourier 

transform spectroscopy show that virtually all of the atmospheric opacity in the 20 micron 

near-infrared band is caused by the rotational transition of water vapor molecules[41]. Water 

vapor molecules, which rotate at quantized rates, change their rotational rate absorbing or 

emitting photons. IRMA observes a number of transitions due soley to water vapor in 

the 20 micron ( 15 THz) band No other atmospheric molecule exhibits transitions at this 

wavelength, making it an ideal indicator of water vapor content. 

By using a single bandpass filter with a cutoff of 20.5 microns, the 20 micron 

band can be isolated and measured by a detector, thus determining the column abundance 

of PWV in the antenna's line-of-sight, and ultimately the amount of excess optical path 

length at submillimeter wavelengths. By continually measuring PWV levels above each 

antenna in the interferometric array, and subtracting the amount of excess path length 

from the antenna's data (sampled at synchronized intervals), the phase error contained 

in the antenna's data set can be compensated, thus enabling the interferometric array to 

operate at its full potential. This is the basic operational theory behind the IRMA water 

vapor detector. 
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1.1.2 I R M A as an O p a c i t y D e t e c t o r 

The infrared spectral window appears in the region between visible light (700 nm) 

and the submillimeter (100 microns). The infrared window has varying degrees of opaque­

ness depending upon the amount of atmospheric water vapor content. When used in con­

junction with an infrared telescope, IRMA can serve as an effective monitor of atmospheric 

water vapor abundance. 

1.2 History of IRMA 

IRMA was originally envisioned as an alternative solution to the problem of phase 

correction in submillimeter interferometry. One of several solutions to phase correction 

involves measuring the strength of the water vapor molecule's transitions at 183 GHz. The 

strength of the 183 GHz signal is proportional to the column abundance of water vapor 

above the receiver antenna. This system, however, requires the use of a high-frequency 

heterodyne receiver, which besides being costly and complex, is an emitter of RF noise in 

the telescope receiver cabin. 

1.2.1 I R M A I 

Proof of concept tests were performed in December, 1999 at Mauna Kea, Hawaii 

using a prototype IRMA device, IRMA I[57]. The first generation IRMA consisted of a 

wet cryostat containing the infrared detector, a tipper mirror driven by a stepper motor, 

and an off-axis parabolic mirror. The tipper mirror allowed 180 degrees rotation about 

the elevation (or altitude) axis, permitting the operator to perform skydips between the 
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horizon and zenith, as well as point to nadir, where the calibration target (a cold bucket, 

filled with liquid nitrogen) was located. Control and data collection were performed by 

laptop computer running a MS-DOS based control application. The cryostat and cold 

bucket required a liquid nitrogen refill roughly every 4 hours. 

When results from the IRMA I experiments showed that the IRMA accurately 

tracked the 183 GHz data, work began on a second generation IRMA, which would feature 

improved hardware and software. Hardware improvements included new filters that had 

a better spectral match to the band of interest, a more sensitive IR detector with lower 

signal to noise, and an improved ADC with higher dynamic range[6]. The basic mechanical 

design, however, remained the same, including the need for frequent liquid nitrogen refills. 

The original MS-DOS control software was rewritten for the GNU/Linux operating system 

by this author, and was designed as a common gateway interface (CGI) application, allowing 

the operator to control the instrument over the WWW using a web browser. IRMA II was 

the University of Lethbridge Astronomical Instrumentation Group's (AIG) first networked 

instrument; one in the line of many that followed. 

1.2.2 I R M A II 

IRMA II operated from December 2000 to March 2001, collecting PWV abun­

dance data. The goal of IRMA II was to compare atmospheric transmission measurements 

performed with IRMA with measurements performed by existing water vapor detection 

systems, namely the James Clerk Maxwell Telescope (JCMT) SCUBA bolometer camera, 

the Caltech Submillimeter Observatory (CSO) 225 GHz and 350 micron radiometers, and 

the JCMT 183 GHz water vapor meter radiometer[37]. 
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Tau (T), or optical depth, is a measure of atmospheric transmission at some spec­

tral band of interest. Conversely, r can be described as the fraction of radiation absorbed 

per unit traveled, which is the definition to opacity. Opacity is an indicator of atmospheric 

water vapor content as both are directly related; an increase in opacity (or lower transmis­

sion) is a result of an increase in atmospheric water vapor. 

Analysis comparing SCUBA and IRMA atmospheric transmission (or r ) values 

showed strong correlation at the 850 and 450 micron bands[5]. Comparisons with the CSO 

Tau opacity monitors showed a similar, although slightly weaker correlation (particularly 

with the 350 micron data). The positive results from IRMA II showed that IRMA was 

a reliable means of measuring PWV. The data collected by IRMA II contributed to the 

development of the ULTRAM radiative transfer model[6]. 

1.2.3 I R M A III 

In the summer of 2001, work began on a third generation IRMA unit, which 

promised substantial improvements: an autonomous, steerable water vapor radiometer that 

did not require liquid cryogen refilling. IRMA III would be remotely controllable by an 

operator over a network link, and be capable of pointing to an altitude-azimuth (Alt-Az) 

coordinate in the sky. Finally, IRMA III would use a custom command control language, 

allowing the operator maximum flexibility of control over the instrument. 

It was hoped IRMA III could be deployed at the ALMA site in Chile. The de­

mands of operating at a remote site without electrical power or a persistent, high-bandwidth 

network connection made it necessary that IRMA be a self-contained, compact unit that 

consumed little power. These restrictions led to the adoption of the Rabbit Semiconductor 
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Rabbit 2000 embedded microcontroller as IRMA's control computer. IRMA was to be a 

true embedded system distributed between three processors, both of which were required to 

be multi-tasking and provide real time performance, meaning the system needed to respond 

to external interrupts in a known period of time. 

A project manager for IRMA was hired in 2003 to solve some of IRMA's outstand­

ing mechanical problems, the most important being a stable vacuum for IRMA's cooled IR 

detector. Concerted effort was poured into IRMA's development, so by June of 2004, IRMA 

III was ready for initial field tests. In February 2005, IRMA III was deployed at the Gemini 

South observatory at Cerro Pachon, Chile for a second round of field testing. At the time 

of writing, IRMA is still operational at the Gemini site. 

IRMA III is being upgraded with a new motherboard and master control com­

puter. The discussion on IRMA III contained in this thesis, however, will consider the 

original IRMA III model that was tested in Hawaii and Chile. This thesis will discuss 

the structure of the IRMA III control software, the communication mechanisms binding 

IRMA's software modules one to another, IRMA's command control language, and IRMA's 

hardware/software interface. Appendix A describing the IRMAscript language in detail is 

provided as a reference guide for operating the IRMA III device. 
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Chapter 2 

I R M A Hardware 

2.1 Overview 

An overview of IRMA's hardware, starting with the detector box and the Alt-

Az mount, will provide a background to understanding the roles and operations of the 

IRMA master controller (MC) and IRMA altitude-azimuth mount controller (AAC). IRMA 

consists of a 38 cm x 22 cm x 18.5 cm aluminum box mounted on an Alt-Az fork mount, as 

depicted in figure 2.1. The Alt-Az mount allows IRMA to rotate approximately 170 degrees 

of rotation about its azimuth axis, and approximately 185 degrees about its altitude axis. 

The shoebox-sized IRMA unit contains a 117 mm diameter aperture, behind which is a 

motorized sliding shutter. The shutter serves as a calibration source as well as waterproof 

the IRMA unit when it is not observing, as it makes a tight seal when it is in closed position. 

A 13 micron thick mylar window protects the instrument against dust during observing. 

Inside the unit, light reflects off a 10 cm diameter f/1 90 degrees off-axis parabolic 
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Figure 2.1: Cutaway view of IRMA in its Alt-Az mount. 1) Stirling cycle cooler 2) Shutter 
3) MCT detector 4) Black body and heater 5) Reflective chopper 6) Input beam 7) Main 
board and IRMA master controller (hidden from view - on reverse side of detector box) 8) 
Parabolic mirror 9) Power/communication umbilical cable 10) Alt-Az controller 11) Cryo 
cooler controller 12) Power supply [38] 

mirror, focusing on a 1 mm square Mercury-Cadmium-Telluride (MCT) infrared (IR) de­

tector. The IR detector is cooled to 70 K by means of a Stirling-cycle cryo-cooler. A 

stainless steel vacuum vessel (p ^ 10~ 4 mbar) encloses the cryo-cooler's cold finger and 

IR detector. The IR detector is attached to the tip of the cold finger with a mechanical 

clamp. The incoming optical beam passes through a 5-blade reflective chopper wheel before 

reaching the IR detector. The chopper wheel blades modulate the signal at 450 Hz. This 

frequency was chosen as a result of spectral analysis tests, which showed that the IRMA 

system had lowest overall noise at this frequency. A unique notch, located on the chopper 
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wheel's circumference, ensures samples are triggered on the same blade, thus eliminating 

uncertainties associated with blade to blade emittance/reflectance variations [38]. 

Given IRMA's compact size in comparison to the amount of required internal 

hardware, little space remains for a control computer, which made it necessary to use a 

miniature microcontroller module in both the MC and the AAC. The MC uses a Rabbit 

Semiconductor RCM2100 microcontroller module. The RCM2100, pictured in figure 2.2, is 

an 89 mm x 51 mm printed circuit board containing an 8-bit microprocessor, memory, digital 

and serial I /O, and an Ethernet-based network interface controller. This microcontroller 

is responsible for interpreting commands from the command processor (CP), with which it 

commands and queries IRMA's hardware components. 

2.2 IRMA Master Controller 

2.2 .1 R a b b i t 2 0 0 0 M i c r o c o n t r o l l e r M o d u l e 

The MC and AAC control computers are based on the Rabbit 2000 8-bit micropro­

cessor. The Rabbit 2000 processor and its related products are produced by Rabbit Semi­

conductor, Inc., a fabless semiconductor company which specializes in high-performance, 

low cost 8-bit microprocessors and development kits. Rabbit 2000 (and its more power­

ful sister processor, the Rabbit 3000) processors are generally sold as small single board 

computers known as core modules, and are promoted as rapid development solutions for 

connecting systems and devices to the Internet. Typical applications include point-of-

sale systems, automated utilities meter reading, and traffic monitoring[22]. Internet web 

searches on Google, however, show that IRMA may be the only publicized application of 
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Rabbit microcontrollers in astronomical instrumentation control. 

Introduced to the market in 1999, the Rabbit 2000 is based on the venerable Zilog 

Z-80/Z-180 architecture. Consequently, the Rabbit 2000 shares a similar register layout, 

memory addressing modes and machine instructions with the Zilog processor. The two 

architectures are so similar, it is possible to execute Zilog assembly code on the Rabbit 

2000. The primary difference between the two processors is that the Rabbit 2000's register 

layout is optimized for 16-bit arithmetic and memory manipulation, unlike the original Z-

80 architecture. This feature makes the Rabbit 2000 more compatible with C language 

compilers, which are typically biased towards 16-bit (or higher) arithmetic and memory 

access. Ultimately, a processor architecture that is more in step with the target compiler's 

capabilities will generate more efficient machine language programs. 

The RCM2100 core module in its maximum outfitted configuration features a 22 

MHz Rabbit 2000 8-bit microprocessor, 512 KB of static random access memory (RAM), 

512 KB of non-volatile flash memory, 40 lines of TTL compatible digital I /O (DIO) lines, 

eight of which serve as 4 serial communication channels, and a lOBase-T 10 Mbit/s Ethernet 

controller. A comprehensive listing of the RCM2100's capabilities is shown in table 2.1. 

Rabbit 2000 M e m o r y Structure 

Memory is a scarce resource in embedded computers, primarily due to their small 

data size (8-bit) and consequently small memory address space. Although the Rabbit's 

software development environment, Dynamic C, largely insulates the programmer from the 

intricacies of Rabbit memory management, it is worthwhile to examine how memory is 
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Figure 2.2: Rabbit RCM2100 Core Module (front and reverse view). 

organized and handled. At the very least, this knowledge is helpful in understanding and 

diagnosing runtime memory errors, which are typically difficult to resolve on any platform. 

Flash memory is used to permanently store the IRMA MC executable code and 

related static data, such as constants, tables and files. Volatile SRAM holds the executing 

program and its associated variables. Rabbit 2000 program size is limited by the amount 

of available flash memory. The maximum amount of flash RAM supported on Rabbit 

processors is 512 KB. Although 512 KB (roughly equivalent to 25,000 to 50,000 C-language 

statements) does not sound like a great deal of memory, it is more than adequate for running 

serious control and data acquisition programs, because the Rabbit's C language compiler, 

Dynamic C, produces lean and efficient executable code. SRAM and flash RAM together 

add up to 1024 KB, and is addressable using 20-bit address space referred to as physical 

memory[55]. 

The Rabbit 2000, being an 8-bit microprocessor, operates within a 16-bit address 

space derived from a larger 20-bit physical memory pool. Addressing space is kept small 

in order to keep Rabbit executable files small and code execution fast. The Rabbit does 
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Feature RCM2100 
Microprocessor 22 MHz Rabbit 2000 
Memory: Flash 512 KB 

Memory: SRAM 512 KB 
Networking lOBase-T Ethernet + RJ-45 

Serial 4 channels, max 115 kbps (async) 
DIO 40 TTL lines 

Real Time Clock yes 
Timers Five 8-bit times, one 10-bit timer 

Connectors Two 2x20 pin, 2mm IDC headers 
Power 5V + / - 0.25V, 140 mA 

Dimensions 89mm x 51mm x 22mm 

Table 2.1: Rabbit 2100 Core Module Specifications [50] 

not have 32-bit wide registers. As a result, performing 32-bit arithmetic requires more 

processor cycles than performing internally-supported 16-bit calculations. Since the Rabbit 

2000 cannot access 20-bit physical memory addresses, it uses a segmented memory scheme, 

whereby its built-in memory management unit (MMU) maps the 20-bit physical address 

space to the smaller 16-bit logical address space. The Rabbit 2000's memory structure, 

showing the mapping relationship between logical and physical memory, is shown in figure 

2.3. 

Memory addresses from 0 to 2 1 6 comprise root memory, while addresses above this 

boundary up to 2 2 0 comprises extended memory. Root memory can be manipulated directly 

using C-language assignment statements, but extended memory can only be accessed using 

Dynamic C's extended memory routines such as xalloc, xmem2root, and root2xmem. 

Within root memory (or logical address space) are four segments: the base seg­

ment, data segment, stack segment and extended memory segment. The base segment can 
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unused 

unused 

Logical Address 
Space 

0x00000 
Physical Address 

Space 

Figure 2.3: Rabbit 2000 memory mapping between logical and physical address space[21]. 

be used for storing speed-critical or short-length functions, interrupt service routines (if 

any), and the Rabbit BIOS (Basic Input /Output System). It is typically 24 KB in size, 

and is mapped to flash memory where executable code is stored when running the Rabbit 

in non-debug mode. 

Above the base segment is the data segment, which is mapped to SRAM. It is 

used for storing run-time variables, and extends to address 53,238 (D000 in hexadecimal). 

The size of the root and data segments can be adjusted, but together they cannot exceed 

52 KB. Global variables as well as pure assembly language functions are placed in these 

segments. 

Above the data segment is a 4 KB region called the stack segment. Positioned 

between addresses D000 (hex) and E000 (hex), the stack segment contains the Rabbit 
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system stack, and is mapped to SRAM. The system stack is used for storing variables local 

to a function that exist only for the duration of the function call. They are declared using 

the auto directive. Dynamic C by default treats all local variables as auto. One consequence 

the Rabbit developer should be aware of is that all the local (auto) variables contained in 

a function cannot exceed 4 KB (4096 bytes) of memory storage. 

The extended memory segment sits between address E000 (hex) and 10000 (hex). 

This 8 KB region is used to execute extended code as well as act as scratch memory space 

for routines that manipulate extended memory. For the most part, memory management 

is transparent to the software developer, as the Dynamic C compiler and memory handling 

libraries take care physical/logical memory mapping. The developer sees only a flat 20-bit 

address space [21]. 

2.2 .2 R a b b i t 2 0 0 0 I n p u t / O u t p u t 

Parallel Ports 

The Rabbit 2000, like other embedded microcontrollers, excel at providing copious 

amounts of I /O, since their primary application is hardware control. Five 8-bit wide parallel 

ports are featured on all Rabbit 2000 processors, making available a maximum of 40 TTL-

compatible (0 to 5 V) DIO lines. Since the Rabbit maps some of these lines for multiple 

uses, such as Ethernet or the Rabbit slave port, the total available DIO lines will decrease 

depending on which RCM2100 functions the programmer wishes to use. 

Each of the Rabbit 2000's parallel ports have particular characteristics in terms of 
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Bit 7 Bit 6 BitS Bit 4 Bit 3 Bit 2 Bi t l BitO 

PA 
PA7 PA6 PA5 PA4 PA3 PA2 PA1 PAO 

PA All pins must be set collectively as input or output 

PB 
PB7 | PB6 PB5 | PB4 | PB3 PB2 | PB1 | PBO 

PB out in 

PC 
PC7 PC6 PC5 PC4 PC3 PC2 PCI PCO 

PC in out in out in out in out PC 
serial A (debug) serial B serial C serial D 

PD 
PD7 PD6 PD5 PD4 PD3 PD2 PD1 PDO 

PD in/out in/out in/out in/out in/out in/out in/out in/out PD 
Ethernet 

in/out in/out in/out in/out 

PE 
PE7 PE6 PE5 PE4 PE3 PE2 PE1 PEO 

PE in/out in/out in/out in/out in/out in/out in/out in/out PE 
Ethernet int IB int OB Ethernet int 1A int OA 

Figure 2.4: Rabbit 2000 Parallel Ports. 

their flexibility in setting the data direction of their I /O pins, their potential shared usage, 

and if applicable, their electrical characteristics. As shown in figure 2.4, only ports D and E 

allow data direction to be set at the pin level, while port B and C have fixed data direction 

assignments. Four serial channels are mapped to parallel port B, where each serial channel 

maps to a pair of DIO lines (one for transmit, the other for receive). When Ethernet is 

enabled, six DIO lines (four in parallel port D and two in port E) are reserved. Serial port A 

is assigned to carry the Rabbit-PC debug channel. This channel is used to upload software 

into the Rabbit, or to receive feedback from printf statements embedded in the executable 

when the Rabbit is run in debug or diagnostic mode. Parallel port E contains two lines 

dedicated to Ethernet, as well as four external interrupt lines. The Rabbit 2000 parallel 

port data direction registers, PDDDR and PEDDR, control whether a parallel port pin is 

set in read or write mode. 
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The Rabbit 2000 has two external interrupt channels, each of which is mapped 

to two pins, permitting up to four external interrupt lines to be connected. Two unique 

priority interrupts are assigned to each interrupt channel. Rabbit 2000 processors shipped 

before January 2002 contain a bug in their interrupt pulse edge detection circuitry, which 

in certain situations could cause spurious interrupts. The manufacturer's recommended 

workaround[20] halves the number of usable interrupt lines. Although this was a serious 

design issue early on in IRMA Ill 's design, all current IRMAs use the newer, bug-free Rabbit 

2000 processors. The older Rabbit processors can be identified by the version code IQ2T. 

Ethernet 

Rabbit 2000 processors do not support networking internally, as they do not con­

tain Ethernet control circuitry. Selected Rabbit 2000 based controller modules, however, 

do support networking through an external network interface controller chip. Controller 

modules, such as the RCM2100 used in the IRMA MC, use the RealTek 8019 network 

interface controller (NIC). All network-capable processor modules have an RJ-45 socket 

allowing connection to a local area network using a standard Cat-5 (EIA/TIA-568) network 

cable. Rabbit networking is powered by the Rabbit processor, causing it to be considerably 

slower than networking performed on a desktop computer. This is due to the fact that the 

rate at which the microprocessor can process network packets is limited by its clock speed 

and data width. The Rabbit can at best transmit 270 KB/s on a traffic-free network, one 

quarter the rate at which PC hardware can process network traffic[54]. Rabbit networking 

is a major component of Dynamic C, supporting high-level server protocols such as HTTP, 

Telnet and F T P in addition to TCP and UDP sockets. Being a software matter, Rabbit 
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networking using Dynamic C is beyond the scope of this discussion. Fortunately, Rabbit 

Semiconductor has provided extensive tutorial[45] and reference documentation[65][47][48], 

as well as program examples [46] relating to Rabbit network programming. 

Rabbit 2000 Peculiarities 

One cannot expect modern PC performance from 8-bit microcontroller modules 

such as the Rabbit RCM2100, nor does it have features deemed standard in conventional 

32-bit computers. Many of these features, such as protected memory, file systems or preemp­

tive multitasking using priority round-robin scheduling, are features of the host operating 

system, not the hardware. The Rabbit software development kit, Dynamic C, provides li­

braries which provide rudimentary network services, disk-less file system and multitasking. 

A real-time multitasking kernel, MicroC/OS-II [27], is provided for implementing preemp­

tive real-time multitasking. 

The Dynamic C's lack of double precision arithmetic functions makes it more 

difficult for the Rabbit to do precision arithmetic. Since the Rabbit only supports single-

precision floating point numbers, round off error can creep into Rabbit-based arithmetic 

routines rapidly. With IRMA, nearly all floating point arithmetic tasks, such as altitude-

azimuth to right ascension-declination coordinate conversion, have been offloaded onto the 

PC-based CP in order to preserve arithmetic precision, increase speed of program execution, 

and take advantage of higher level languages (like Perl) and external libraries that require 

less developer effort. 
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2.3 IRMA MC Control 

The IRMA MC forms the hub of the IRMA control and data acquisition system. 

The MC is tasked with controlling each of the electronic devices interfaced to it. Control 

tasks include turning a unit on or off, commanding it to do some task (either by setting 

a logic level or sending an explicit command with parameters), monitoring its status, and 

responding to external interrupts. Communication with IRMA's hardware components is 

performed through digital I /O lines or 2-wire serial channels. A block diagram showing the 

MC's hardware interfacing appears in figure 2.6. 

The digital I /O and serial port mappings on the IRMA MC, appearing in figure 

2.5, show that roughly two thirds of IRMA's I /O is devoted to output (blue boxes), while 

one third is devoted to input (pink boxes). Colored boxes outlining one or more boxes depict 

DIO lines reserved for specific functions. Parallel port C maps four sets of read and write 

lines to four serial channels. The red box spanning lines 4 through 7 on parallel port D, 

along with lines 6 and 2 on parallel port E are reserved for Ethernet communications when 

networking is enabled. Enabling additional hardware functionality on the Rabbit consumes 

even more DIO lines - an important consideration when planning hardware interfacing at 

the outset of a project. The Rabbit slave port driver demonstrates how using extra features 

rapidly consumes DIO resources. Inclusion of this driver into the IRMA III design was 

dropped when it was realized the slave driver would require 14 DIO lines. In addition 

to the lines lost to Ethernet, less than 10 DIO lines on the RCM2100 would remain for 

interfacing peripheral hardware. This was the factor that led to the decision to use the 
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relatively slow 2-wire serial connection linking the master and Alt-Az controllers. 

Figure 2.5: IRMA Master Controller Digital I /O Pin Mapping. Pink boxes represent input 
lines, blue boxes represent output lines, white boxes represent bidirectional lines. 

2.3.1 Shut ter 

The shutter, which also serves as a calibration source, consists of a 130 x 137 x 17 

mm hollow aluminum block mounted in a track, driven by a lead screw. At opposite ends of 

the track are two slotted optical switches[60], both of which are mapped to two DIO lines. 

When the optical beam is open, a logic value of 0 is returned. When the beam is closed, 

a value of 1 is returned. Metal tabs that actuate the opto switches are placed at opposite 

sides of the shutter. The IRMA MC software polls these lines and returns the values to the 
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IRMA CP, which it uses to determine when shutter movement has completed. 

DIO lines PB2 and PB3 (parallel port B, bits 2 and 3), are mapped respectively 

to the shutter-closed and shutter-open opto switches. The fact that both opto switches are 

open (both reading high) when the shutter is not in the open or closed position provides 

shutter status: these two bits, when shifted into bit positions 0 and 1, can be interpreted 

as status codes: 

Code State 
1 open 
2 closed 
3 moving (or jammed) 

The shutter is commanded to open by clearing bit 3 of parallel port D. The shutter 

closes by setting bit 3. There is no way to set speed or stop the shutter once it has been set 

in motion. Digital logic in the central electronics stops shutter motion automatically once 

one of the opto sensors has been interrupted. Shutter software traps for the case that the 

motor may not automatically turn off once it reaches its destination position by reversing 

the current shutter direction if the shutter does not finish moving in some predetermined 

time. The default timeout is 40 seconds. This is an attempt to minimize damage if the 

shutter jams. 

2.3 .2 S u n S h u t t e r 

The parabolic mirror inside the IRMA unit collects and focuses light at the de­

tector. If the unit is pointed directly at the sun, the focused sunlight is intense enough to 
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burn a hole in the filter covering the detector. This has occurred twice in the past with 

earlier models of IRMA. To prevent this from happening, a solenoid-operated shutter inde­

pendent of software, sweeps into place whenever a bright light body, such as the sun, comes 

within 15 degrees of the detector's field of view. A small hole, on-axis to IRMA's field of 

view, contains a photocell that detects bright light sources. The sun shutter can also be 

controlled via software to open or close, and is mapped to line 0 on parallel port A. Setting 

this line opens the sun shutter, while clearing it causes the sun shutter to close. Manual 

sun shutter control is useful for certain diagnostic tests and provides additional protection 

during testing and commissioning phases. 

2.3 .3 C a l i b r a t i o n S o u r c e 

A calibration source, attached to the underside of the shutter, is used to calibrate 

IRMA's IR detector. It consists of a carbon-black epoxy enamel textured coating deposited 

on a thin, metallic film heater. The coating has a high emissivity at infrared wavelengths. 

The blackbody can be heated by passing an electrical current through the film. Current is 

turned on or off by setting or clearing bit 2 of parallel port D. When the shutter is closed 

(where it covers the optical aperture) the blackbody is in position for taking calibration 

measurements. 

2.3 .4 S t i r l i n g - C y c l e C o o l e r 

A Hymatic NAX025-001 Stirling-cycle cryo cooler is responsible for cooling IRMA's 

IR detector to 70 K. The cylindrically-shaped unit is equipped with a vacuum chamber. 

The vacuum is required by the cryo cooler to reach cryogenic temperatures. The IR detec-
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tor is attached to the tip of the cold finger, which is the only part of the cryo cooler which 

achieves cryogenic temperatures. 

Figure 2.7: IRMA vacuum vessel. Wiring for the cold finger temperature sensor and the 
detector output is fed through the small tube pointing up. The getter is located in the long 
elbow section to the right. The pinch off tube is connected in the left hand flange. 

The vacuum chamber surrounding the cold finger is evacuated to l x l O - 4 mbar. 

This vacuum, which is designed to last for roughly five years, must have a leak rate no 

greater than l x l O - 1 5 mbar c m - 2 s - 1 in order to allow the cryo cooler to operate at its 

target temperature. The chamber, shown in figure 2.7, is a T-shaped vessel with two arms 

on either side and an anti-reflective-coated ZnSe window. IR radiation enters the vacuum 

vessel through this window, illuminating the IR detector directly behind it. The two arms 

act as access points to the chamber. One arm connects to the vacuum pinch off tube, a 
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copper tube which connects to a turbo-pump during evacuation. While attached to the 

pump, the tube is pinched off using a precision crimping tool, which cold-welds the copper 

tubing, creating a permanent vacuum seal. The vacuum chamber is e-beam welded to 

the cooler body. The other arm contains a SAES ST172/HI/16-10/300C getter, a device 

designed to absorb gas molecules that naturally outgas from the vacuum vessel walls. The 

getter is activated by passing an 4 amps of electrical current through it for 5 minutes, 

heating it to 900 C[43]. 

The Hymatic Stirling-cycle cryo cooler controller unit accepts high-level commands 

encoded in ASCII strings over its RS-232 serial port (female DB-9 connector), which allows 

for interfacing to external computer hardware. IRMA communicates with the cryo cooler 

controller over serial port B, which is mapped to parallel port C, lines 7 and 6 (PC7 and 

PC6). PC6 is the serial transmission (TX) line, while PC7 is the serial receive (RX) line. 

It should be noted that for all of the Rabbit's serial lines on parallel port C, the odd lines 

(7, 5, 3, 1) are TX lines, while the even lines (6, 4, 2, 0) are RX lines. 

IRMA command packets are translated into appropriate Hymatic serial strings 

and sent to the controller in order to control the cryo-cooler's behavior. Likewise, data 

from the cryo-cooler, such as cooler temperature, is extracted from the Hymatic serial data 

strings and encoded into IRMA data packets. The cryo-cooler serial communication channel 

operates at 4800 bits per second, 8 data bits, 1 stop bit, no parity (8N1). Rabbit/Cryo-

cooler control is encapsulated in the custom-written hymatic. l ib Dynamic C library. 

Commanding the cryo-cooler to go to a target temperature is straight forward: 

one sets the cooler's set point to some temperature in degrees Kelvin, then sets the cooler 
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into auto mode. The cryo-cooler then begins the process of cooling down at a set rate, 

based on a factory-set internal profile, until it reaches target temperature. The cryo-cooler 

will maintain its set point until instructed otherwise. Turning off the cryo-cooler involves 

setting it to manual mode, then setting it to stopped mode. It is not desirable to cut power 

to the cooler during operation, as this may damage the piston that oscillates inside the cold 

finger. 

2.3 .5 A l t - A z Contro l l er 

The Alt-Az controller (AAC) is a custom-built electronics board based around a 

Rabbit Semiconductor RCM2010[49] controller module. The AAC acts as a slave on behalf 

of the MC, as it does not perform actions or generate data on its own. It only acts when 

commanded by the MC by means of a 19.2 kbps 2-wire serial channel, mapped to both 

Rabbit's serial port D (lines 0 and 1 on parallel port C). 

The AAC is responsible for moving the Alt-Az mount to specified elevation and 

azimuth coordinates, thus it concerns itself completely with motion control and communi­

cating with the MC. Alt-Az control is offloaded onto a separate processor because the MC 

lacks the DIO line capacity required to serve all hardware control functions. Additionally, 

the MC is already burdened with handling network communication, data acquisition, and 

device control duties. Details on the MC-AAC serial communications protocol is contained 

section 3.6.2. 
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2.3 .6 I R d e t e c t o r 

Infrared radiation is detected and converted to measurable voltages by a MCT 

photoconductive detector, manufactured by Kolmar Technologies. The detector is sensitive 

to wavelengths from 5 to 20 microns. A 19 micron highpass filter placed in front of the 

IR detector filters out wavelengths less than 19 microns, resulting in a narrow 2 micron 

( 50 c m - 1 ) wavelength band of radiation reaching the detector. The detector changes 

its resistance as a function of the radiation falling upon it. This change is sensed as a 

voltage, which is fed to the ADC. The signal voltage is a measure of flux (in watts) from 

20 micron emissions reaching the detector, and is proportional to the strength of the 20 

micron absorption line. A radiative transfer model developed by Ian Chapman during his 

thesis work at the University of Lethbridge, called ULTRAM (University of Lethbridge 

Transmission and Radiance Atmospheric Model) is used to convert the line strength into 

millimeters of PWV[5]. 

2 .3 .7 C h o p p e r W h e e l 

A 5-blade reflective chopper wheel modulates the incoming optical beam at roughly 

450 Hz. A notch on the perimeter of the wheel is used as a sample trigger point to force 

A/D sampling on the same blade, eliminating signal variation due to dirt and imperfections 

on each of the chopper wheel blades [38]. The chopper wheel's rotation rate determines 

the A/D sampling rate, as the chop notch signal is mapped to the IRMA MC's external 

interrupt line. When the MC detects a low to high transition on its interrupt line, it calls 

its data collection interrupt service routine, implemented almost entirely in assembly code. 
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The chopper wheel is enabled and disabled by setting or clearing bit 3 on parallel port E. 

Chopper wheel speed is user selectable by setting bits 6 and 7 on parallel port A. 

Because only two bits are available for speed settings, four distinct speeds can be selected. 

The speed setting is fed into a serial DAC, which presents a corresponding voltage level 

to the chopper wheel's motor control module. This function has been deprecated in future 

versions of IRMA III. For all IRMA models, the chopper wheel's default rotational speed 

is 5400 rpm. 

2.4 Delta Sigma Analog to Digital Converter 

The heart of the IRMA data acquisition system is a Cirrus Logic CS5543[8] 4-

channel 24-bit delta sigma (AS) analog to digital converter (ADC). The IR signal, at­

mospheric pressure, relative humidity and eight temperature channels are sampled by the 

ADC. Given that the ADC has only four input channels, the eight temperature channels 

are selected via an 8-channel analog multiplexer (MUX), permitting the 4 channel ADC to 

accept eleven signal sources. The Maxim MAX4638 8-to-l analog MUX is mapped to DIO 

lines 4, 5 and 6 on parallel port A. Line 6 is the most significant bit (MSB) and line 4 is 

the least significant bit (LSB) of this 3-bit sequence. Placing binary values 0 through 7 on 

these three lines selects one of the MUX's eight channels. 

Unlike other ADC designs, the AE ADC contains a relatively simple 1-bit analog 

A/D sampling module combined with sophisticated digital signal processing circuitry. One 

of the benefits of the A S is that it is primarily a digital device, making it inexpensive to 

produce, as well as being linear across its input voltage range, as it has only two analog 
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inputs. ADCs are capable of performing very high resolution A/D conversions despite only 

being able to sample at 1-bit resolution because they use of massive oversampling, noise 

shaping and digital filtering to achieve near 24-bit sample resolution [24]. 

2.4 .1 D e l t a S i g m a S igna l P r o c e s s i n g 

Power 

Signal amplitude 

SNR = 6.02N + 1.76dB for an N-bit ADC 

Quantization Noise 

Average noise floor (flat) 

Fs/2 Fs 

Figure 2.8: FFT diagram of an n-bit A/D conversion with sampling frequency Fs. 
Diagram [44]. 

Oversampling can be visualized by taking the Fourier transform (FT) of the signal 

and plotting its power versus frequency. As shown in the figure 2.8, the input signal contains 

a single frequency, which appears as a single frequency bin. Noise, however, is distributed 

evenly across the signal bandwidth from 0 Hz to half the sampling frequency, defining the 

signal's noise floor. 

Oversampling (figure 2.9) involves sampling the input signal at rates higher than 

twice the Nyquist frequency. In essence, oversampling uses signal averaging to reduce 

quantization error that manifests itself as noise in the signal by repeatedly sampling the 
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Figure 2.9: F F T diagram of an n-bit A/D conversion with sampling frequency kFs, over-
sampled by k times. Noise floor has been lowered due to oversampling. [44]. 

signal and calculating the average signal value. Signal averaging improves the signal to 

noise (SNR) by the square root of the number of samples [33]. For example, if a signal is 

sampled 100 times, the average signal remains the same, while the noise, assumed to be 

random, is reduced by a factor of y/100, or 10[12]. 

which implies that a 1-bit A/D conversion has an SNR equal to 7.78 dB. Clearly, a higher 

SNR can be achieved by increasing N, the number of sampled bits of precision. This is 

not possible with A S A/D converters, as they only contain a 1-bit converter. Increasing 

the oversampling rate on a 1-bit ADC by a factor of 4 increases the SNR by 6 dB, which 

corresponds to a single bit increase in sample resolution. Quadrupling the oversampling 

rate for each additional bit of precision can lead to excessively high oversampling rates: to 

achieve a 24-bit resolution sample, 4 2 3 times oversampling would be required. 

The SNR of a sample obtained from an N-bit A S ADC is shown to be[24]: 

SNR = 6.02JV + 1.76dB (2.1) 
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Figure 2.10: Effect of the Delta-Sigma modulator changing the distribution of high-
frequency quantization quantization noise, or noise shaping[44]. 

The A S modulator deals with the limitation of oversampling as a means to increase 

resolution by pushing high-frequency noise beyond the frequency range of interest (figure 

2.10), resulting in the attenuation of 9 dB of quantization noise for every factor of 2 increase 

in the oversampling ratio. It is now feasible to achieve a high SNR (low quantization noise) 

with a moderate oversampling rate. The A S ADCs integrator is responsible for this effect, 

called noise shaping. Again, the total quantization noise has not dropped, but rather its 

distribution along the bandwidth has been changed. 

One or more sine filters are used to filter out the remaining quantization noise. By 

filtering out frequencies beyond the band of interest (figure 2.11), the low frequency bands 

are relatively noise-free, enjoying a superior SNR. A time decimation filter placed after the 

low-pass filters are used to reduce the data rate of the output data stream [24]. 
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Figure 2.11: Affect of a digital filter on quantization noise[44]. 

2.4 .2 S t r u c t u r e of t h e D e l t a S i g m a A D C 

A first-order AE modulator is a simple A/D converter design consisting of a dif­

ference amplifier, an integrator, a comparator (1-bit ADC) and a 1-bit DAC, as shown in 

figure 2.12. An input signal X\ feeds into the difference amp, which outputs the difference 

in volts between the analog output of the modulator and the input signal. This is the delta 

portion of the delta sigma modulator. The delta output X2 is fed into an integrator, the 

sigma, which calculates a rolling average of the input signal. The sigma output X3 is then 

sampled with a comparator, which acts as a 1-bit ADC. If the sigma signal is greater than 

ground, the comparator outputs a 1 (full scale voltage), otherwise it outputs a 0 (ground). 

The resulting bit stream from the comparator X4 is split: one half goes to the digital filter 

section of the AE modulator, the other half is fed back into the difference amp after passing 

through a 1-bit DAC. The DAC output X$ is full scale voltage if the input is greater than 

ground, or 0 volts otherwise. 

The bit stream of Is and Os emerging from the comparator, when averaged over N 
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samples, gives a value indicating the proportion of ones to zeros. The density of ones in the 

output bit stream indicates the proportion of the input voltage to full scale. For example, 

if the average of the output bit stream from the A S modulator read 0.5, 50 percent of 

the bits in the bitstream are ones, indicating that the ADC input voltage is close to 50 % 

of full scale. The higher the number of samples included in the average, the greater the 

accuracy of the A/D sample value. Consequently, high resolution A/D conversions taken 

with a AE ADC require a high degree of averaging, resulting in a high latency between 

taking the sample and producing the result. It is the issue of latency which makes AE 

ADCs unsuitable for sampling rapidly changing, high frequency sources. 

Signal Input ^ 

Difference Integrator ^ I 
Amplifier Comparator 

) ^ /vmax I (1-bit ADC) 

To Digital 
Filter 

1-bit DAC 

Vmaxl 

ovl 
+Vmaxr 

-Vmax 
+Vmax 

-Vmax L 

x 4 :n 
[." 

0 
Vmax 

OV 

n n n n 

' Modulator 
Clock 

Figure 2.12: A first-order Delta-Sigma modulator[44] 
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2.4 .3 Cirrus C S 5 5 3 4 D e l t a S i g m a A D C S t r u c t u r e a n d O p e r a t i o n 

The CS5534 is a serial controlled device, yet it does not use one of the Rabbit's 

serial channels. Rather, it uses a clocked 3-wire serial interface where each line is mapped to 

a discrete DIO line. Serial data must be explicitly modulated on its DIO lines by the Rabbit. 

When the CS5534 is enabled by holding its chip select (CS) pin low, serial commands are 

fed into its serial data in (SDI) line, which is mapped to Rabbit DIO output line 0 on 

parallel port B. Data from the CS5534 is received on DIO input line 1 on parallel port A. 

The CS5534's serial clock input (SCLK) must must transition from low to high in order 

make the AE accept a bit of data. 

For example, if one were to input the hexadecimal number A (decimal 10) into 

the CS5534, one would input the bit pattern 1010 one bit at a time into SDI, strobing the 

SCLK pin (low to high) between each bit. Likewise, when reading data from the CS5534, 

one would set the SCLK line, read the SDO line, then clear the SCLK line. The strobing 

sequence must be repeated for each bit being read or written. The CS5534's read and write 

cycles are shown in figure 2.13. 

The data conversion cycle begins with a command requesting an A/D conversion. 

The request is sent in the form of a serial stream of hi-low bits sent over the ADC's SDI 

line. Once the stream has been received, the ADC clears the SDO line, which is normally 

high, and does not set it again until the signal integration period is complete. This period 

ranges from 1.5 ms to 538 ms, depending on the ADC channel's word rate configuration. 

When the SDO line transitions from low to high at the end of the integration period, it 

alerts the Rabbit 2000 controller that the sample is ready to read. To read the sample, 
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Figure 2.13: CS5534 Delta Sigma ADC Timing Diagram[8]. 

the SCLK must be strobed 8 times (low followed by high), after which 32 data bits can be 

strobed out. The readout data appears on the SDO line. The resulting sample is contained 

in the most significant 24 bits of the 32 bit word. The remaining 8 bits are discarded. 

The maximum communication rate with the CS5534 is limited by the maximum 

signaling rate of the SCLK. The minimum time span between signal transitions on the 

SCLK line is 250 ns (4 MHz). Given that the Rabbit's maximum signaling rate using 
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Figure 2.14: CS5534 Delta Sigma ADC Register Layout.[8] 

highly optimized assembly language I /O routines is 1 MHz, there is no chance of the Rabbit 

controller overrunning the CS5534[8]. 

Configuration and operation of the CS5534 A S ADC is performed through its 

relatively complex register set, as shown in figure 2.14. The CS5534 write-only command 

register is 8 bits wide, and accepts 8-bit command strings via its three wire serial interface. 

The data register, also read-only, is 32-bits wide, and holds A/D conversions. The remainder 

of the CS5534's register set are configuration registers. The most significant of these are its 

four channel setup registers (CSR) that store settings associated with each input channel: 

namely sample resolution, gain and polarity. Samples can be represented in either signed or 
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unsigned 32-bit integers by respectively configuring polarity to either bipolar or unipolar. 

Signed bipolar values have a range of ± 2 2 3 , while unsigned unipolar values range from 0 to 

The CSR gain setting effectively amplifies the values produced from the ADC by 

compressing the ADC input span, and is useful when sampling low-amplitude input signals. 

It is defined in equation 2.2 as: 

where n can be defined as 1, 2, 4, 8, 16, 32 or 64, and a is defined as 1 for unipolar 

conversions, or 2 for bipolar conversions. All A/D channels on IRMA are sampled with a 

gain of 1 and a 2.5 V input span. The 2.5 V high reference voltage is supplied to the ADC 

by a Maxim MAX6126_25[35] high-precision, low noise voltage reference. The low reference 

voltage is ground. The MAX reference voltage chip is used to provide the ADC with an 

extremely clean (noise free) and accurate reference voltage that is stable over temperature 

(3 parts per million per degree C deviation) and time (20 parts per million deviation per 

1000 hours). 

Word rate is the most tangible setting associated with an A/D channel. It is also 

often the most confusing. Word rate is not a measure of the integration period or the 

sampling rate, but rather a means of describing the A/D sampling resolution. Elapsed time 

of conversion (in seconds) can be calculated using the following word rate equations [7] using 

the word rates listed in table 2.2, 

2 2 4 - l . 

InputSpanv = 
(VREFm - VREFLO) (2.2) 

n x a 

(2.3) 
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W ^ 7592 x(M^ / r eJ (2.4) 

Equation 2.3 is used for all word rate modes excluding the lowest resolution mode, 

word rate = 3840, which uses equation 2.4. MCLKfreq refers to the 4.9 MHz clock signal 

required to drive the AE electronics. Typically this involves connecting a 4.9 MHz crystal 

to pins 11 and 12 on the CS5534 chip. OWR refers to the output word rate. These two 

different calculation methods stem from the fact that the CS5534 uses different filters for 

the low-resolution 3840 word rate compared to the other word rates. 

Word rate Integration (ms) Noise-free bits 
3840 1.5 13 
1920 3.6 16 
960 5.7 17 
480 9.9 17 
240 18.2 18 
120 35 21 
60 69 21 
30 136 22 
15 269 22 
7.5 538 23 

Table 2.2: CS5534 AE ADC sampling resolutions, gain setting of 1. 

The CS5534ADC. LIB library encapsulates a collection of C functions handling con­

figuration and data acquisition of the CS5534 using the Rabbit RCM2100. 
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2.4 .4 Global Pos i t i on ing S y s t e m ( G P S ) B o a r d 

IRMA obtains accurate time and positional information from a GlobalSat DK-

ER101[51] GPS receiver, pictured in figure 2.15. A compact credit card sized device 9 mm 

thick, the GPS board continuously emits a formatted serial string every second over its 

4800 bps serial port. The serial stream does not conform to RS-232 voltage levels, requiring 

that the output signal be boosted with an RS232 transceiver chip, a Maxim MAX233. The 

RS-232 standard defines logic 1 and logic 0 signals be differentiated by a minimum of +3.0 

V and -3.0 V, or a maximum of +15.0V and -15.0 V respectively. The IRMA MC is 

Figure 2.15: GlobalSat ER-101 GPS module. 

interfaced to the GPS via serial port C, which is mapped to DIO lines 3 and 2 on parallel 

port C. The serial TX line to serial C is not connected to the GPS in order to ensure that 
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no spurious serial data reaches the GPS serial input, particularly during system power-up, 

which can potentially lock up the GPS serial data output stream. Logic levels on Rabbit 

2000 DIO lines fluctuate then the MC software is uploaded into the MC's flash memory. 

Every second, the DK-ER101 GPS board emits a burst of ASCII data conforming 

to the NMEA standard. NMEA, which stands for the National Marine Electronics As­

sociation, established the NMEA 0183[15] standard in the early 1980s, which defines how 

GPS data are structured in a serial data stream. The IRMA MC, when queried for the 

current GPS time, or commanded to synchronize its on-board real time clock (RTC), will 

eavesdrop on the input serial line (serial port C) until a string terminated with a carriage 

return-linefeed (CR-LF) is encountered. Once date-time information is extracted from the 

raw NMEA string, the IRMA MC increments the current time by one second and waits for 

the next GPS time marker, upon which it immediately sets its RTC. 

The GPS board requires an external antenna in order to receive GPS signals. A 

compact antenna is attached to the outside of the IRMA receiver compartment. The GPS 

board is sensitive to signal quality, which when degraded, will emit in the serial stream a 

flag which indicates the current data are invalid. At the same time, the GPS will substitute 

the current time date calculated by its own RTC. 

2.4 .5 N o t c h a n d B a n d p a s s F i l ters 

A 60 notch filter is used to remove 60 Hz power line noise from the IR signal. This 

frequency is switched to 50 Hz for deployment at sites where mains operates at 50 Hz. A 

455 Hz bandpass filter can be enabled to reject all frequencies above and below the 455 

Hz chopper wheel frequency. The 60 Hz notch filter is mapped line 5 on parallel port E, 
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and the 455 Hz bandpass filter mapped line 7 on parallel port E. Both filters are enabled 

by setting their respective lines, while disabling the filters requires clearing their respective 

lines. 

2.5 IRMA Alt-Az Controller 

The Alt-Az controller (AAC) is responsible for pointing the Alt-Az mount that 

holds the IRMA unit. As such, a master-slave relationship exists between the MC and AAC 

because the AAC does not initiate any actions or produce any data unless commanded to do 

so by the MC. Command packets sent over the 19.2 kbit/s serial connection between the MC 

and AAC instruct the AAC to move the axes to a specified azimuth and elevation, return 

system status, or return the current X and Y axis positions. The AAC software allows for 

position queries while an Alt-Az movement is taking place. Motor control consumes the 

majority of DIO lines on the AAC Rabbit. As shown in the pin map shown in figure 2.17, 

all lines except for the MC-AAC serial communication channel are DIO lines. 

2.5 .1 R a b b i t S e m i c o n d u c t o r R C M 2 0 1 0 Contro l l er M o d u l e 

The RCM2010 controller module is the control computer that handles motion 

control and communication for the AAC. Based on the Rabbit 2000 CPU, the RCM2010 

has less memory than the MC's RCM2100 controller module and lacks an Ethernet controller 

chip. It is, however, smaller than the MC's RCM2100 core module. Specifications of the 
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Figure 2.17: IRMA Alt-Az controller pin mapping. Blue boxes refer to output lines, pink 
boxes refer to input lines, and white boxes represent bidirectional lines. 

RCM2010 are listed in table 2.3. 

2.5.2 M o t i o n Contro l 

Maxon Motor Controllers 

Alt-Az articulation is powered by two Maxon EC167129 low-noise 50W brushless 

DC motors, each coupled with a Maxon 1QEC50V[36] digital motor control unit. Motor 

speed is controlled by applying a DC voltage to the speed input of each Maxon motor 

controller. A Maxim 5223 8-bit 2-channel serial DAC allows the IRMA AAC software to 

adjust the speed of both axes with 256 levels of voltage control. The motor controller is 
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Feature RCM2010 
Microprocessor 25.8 MHz Rabbit 2000 
Memory: Flash 256 KB 

Memory: SRAM 128 KB 
Serial 4 channels, max 115 kbps (async) 
DIO 40 TTL lines 

Real Time Clock yes 
Timers Five 8-bit times, one 10-bit timer 

Connectors Two 2x20 pin, 2mm IDC headers 
Power 5V + / - 0.25V, 130 mA 

Dimensions 58 x 48mm x 14mm 

Table 2.3: Rabbit 2010 Core Module Specifications. 

configured to accept 0 to 2.5 V input voltage, which drives the motors from 500 to 12,500 

RPM respectively. AAC software limits motor speed to 8000 RPM, which is the maximum 

rotational speed that the gear box should be driven, as stated by the manufacturer. Axis 

rotation is geared down substantially by a 1621:1 azimuth gear head and 1621:1 altitude 

gear head. An additional 8:1 gear reduction is provided by belts connecting the motors 

to their respective axes. During development it was found that without applied voltage, 

the Maxon motors still rotated. Therefore, a braking system was required to hold the axes 

stationary when not being rotated. Braking is applied by setting bits 4 and 5 (for altitude 

and azimuth respectively) on parallel port A. 

Azimuth and altitude motor controller enable lines are mapped to output lines 7 

and 6 on parallel port B. Motor controllers are enabled by setting these lines, while clearing 

these lines disables the controllers. Azimuth and altitude motor direction is controlled by 

DIO output lines 7 and 6 respectively on parallel port A. Setting either of these two lines sets 

the corresponding axis into clockwise (CW) rotation, while clearing puts the corresponding 
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axis into counterclockwise (CCW) rotation. 

The azimuth axis is capable of rotating aproximately 370 degrees. The altitude 

axis can rotate approximately 198 degrees. To prevent rotation beyond these limits and 

prevent the cabling connecting the articulating parts from being damaged, optical limit 

switches, similar to the ones used in the blackbody shutter, are found at the maximum 

CCW and CW rotational limits. Optical sensors automatically disable the motors and set 

one of the two limit lines when they are interrupted by a metal tab attached to the rotating 

housing. Limit detection is independent of software in order to eliminate the risk of runaway 

axis movement damaging the mount if the software were to fail. Altitude CW and CCW 

limits are respectively mapped to input DIO lines 2 and 0 on parallel port B. Azimuth CW 

and CCW limits are respectively mapped to input DIO lines 1 and 3 on parallel port B. 

When a limit line is set, a limit has been encountered, while when a limit line is clear, the 

axis angle is within safe rotational limits. 

Maxim MAX5223 Serial 8-Bit DAC 

Axis motor speed is controlled with an 8-bit 2-channel Maxim 5223 [34] serial digital 

to analog converter (DAC). The 5223 has a 3-wire serial communications interface involving 

a chip select line (CS), a serial clock line (SCLK) and a data input line (DIN). Voltage is 

individually adjustable on each of the 5223's two analog outputs, A and B. Voltage can be 

set between 0 V to full scale (the input reference voltage) in 256 equal steps. Analog output 

channel A is mapped to the azimuth motor controller, while analog output B is mapped to 

the elevation motor controller. 
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Figure 2.18: Maxim MAX5223 Serial 8-Bit DAC 3-Wire Interface Timing Diagram. The 
SCLK signal can be modulated at a maximum rate of 25 MHz (40 ns). Data should be 
placed on the DIN pin at least 20 ns before SCLK makes a low to high transition, and be 
held for at least 20 ns[34]. 

Commanding the 5223 involves clearing the CS line, writing a 16-bit word into the 

5223's internal shift register, and setting the CS line, which refreshes (changes) the analog 

outputs. This sequence is shown in the 5223's timing diagram in figure 2.18. The SCLK line 

controls the process of writing data to the 5223. Data bits are read into the shift register 

on the rising edge of each SCLK pulse. All the communication lines are mapped to Rabbit 

parallel port A: CS (active low) is assigned to line 1, SCLK to line 2 and DIN to line 3. 

The command word, as seen in table 2.4, is divided into 2 parts: the leading byte, 

or control byte, contains 8 configurable bits, where setting bits 7 (LA) and 6 (LB) loads a 

new value into DAC register A and B respectively with the value contained in the trailing 

data byte. The data byte can contain an unsigned 8-bit value that defines the proportion of 

output voltage to the DAC's reference voltage. Table 2.4 shows an example command word 

needed to output 1 V on DAC output, based on a 2.5 V reference voltage (the reference 

used to drive the Alt-Az axes). The proportion of full scale voltage corresponding to 1 V 
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can be converted to an 8-bit value using equation 2.5. 

DACinput = ^ 2 5 5 (2.5) 
Vref 

This value, which works out to decimal 102, appears in the data field of the DAC command 

word. Bit field DO is the LSB, while bit field UB1 is the MSB. Bits are transmitted from 

right to left, starting with UB1 and ending with DO. Functionality of the 5223 on the 

Rabbit RCM2010 (AAC) is contained in the custom-written Dynamic C library oe3.1ib. 

Data Byte Control Byte 
DO Dl D2 D3 D4 D5 D5 D7 LA LB UB4 SA SB UB3 UB2 UB1 
0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 

Table 2.4: Maxim MAX5223 DAC serial command word format. 

Optical Encoder 

Axis positions are measured via two US Digital[62] E6M optical encoders and one 

US Digital LS7266R1[61] encoder to microprocessor interface chip. The two optical encoders 

each employ 2096-line per revolution optical encoder wheels. When operating in quadrature 

mode, the LS7266R1 interpolates the raw encoder signals (sine and cosine outputs) to obtain 

8192 lines of resolution per revolution, or 2 arc seconds per encoder step[54]. Quadrature 

mode is based on the optical encoder generating sine and cosine signals (each generating 

one cycle per tick), whereby the decoder chip counts the zero crossings of both the signals. 

Given that the crossings occur at 90, 180, 270 and 0 degrees, four counts per tick can be 

detected. The LS7266R1 detects and counts ticks from the encoders (in either mode), where 

the count is relative to a fixed mark. 
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The LS7266 optical encoder chip interfaces to the AC Rabbit over 12 DIO lines. 

Data to and from the 7266 is carried over an 8-bit bidirectional data bus, mapped to pins 7 

through 0 on parallel port D. Port D is bidirectional, thus software must set the appropriate 

data direction depending on whether data are being written or read. Disregarding the chip 

select line, which is permanently tied high, there are four lines used for controlling the 

LS7266: the control/data, read, write and X/Y axis select. Read and write (LS7266 pins 

16 and 14 respectively) are active low, and are used for enabling reading or writing to the 

chip. The control/data line (LS7266 pin 13) selects whether data registers (low) or control 

registers (high) are selected. Similarly, the X/Y axis line (LS7266 pin 13) selects whether 

the X axis counter (low) or Y axis counter (high) is selected. 

The filter clock (LS7266 pin 2) must be fed with a frequency between 10 KHz 

and 35 MHz to operate in quadrature mode. Additionally, analog inputs A and B for each 

axis channel must be fed with corresponding A and B signals from the respective optical 

encoders. The A /B inputs for both axes are enabled by setting the A/B input enable lines 

(LS7266 pins 18 and 1) high. These lines are permanently tied high on the AAC main 

board. The filter clock is fed with a 10 MHz signal. A clock signal is not required if the 

LS7266R1 is operated in non-quadrature mode, which provides 2048 lines of resolution per 

rotation. 

Each optical encoder has a unique index mark on their encoder wheels. An index 

strobe signal is emitted from each optical encoder when the index mark is encoded. The 

index strobe from the X and Y axes are fed into pins 19 and 1 respectively. The LS7266Rl's 

24 bit counter can either be reset or set with a preset value when strobed with the index 
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signal. The index mark is provided as fiducial marker, but the IRMA Alt-Az uses the optical 

limits on both axes as references instead. 

The LS7266Rl's register structure provides some insight on how the chip is con­

trolled. All commands involve communication over the 8-bit data bus to either the control 

registers: RLD, CMR, IOR, IDR and FLAG, or the data registers: 3-byte preset register and 

3-byte output latch. The write-only 3-byte preset register is selected when the control/data 

line is low. The write only control registers (RLD, CMR, IOR and IDR) are selected by 

setting line control/data line and placing a 2-bit binary value on data bits 6 and 5. Codes 

00, 01, 10 and 11 select RLD, CMR, IOR and IDR respectively for writing. The X-axis 

status FLAG register is selected by clearing the read line (and setting write), clearing the 

X/Y axis select line, and setting the ctrl /data line. The Y-axis status FLAG register is 

performed similarly, except the X/Y axis select line is set. Reading a byte from the 8-bit 

data bus will return the contents of the FLAG register. The 3-byte output latch is selected 

by clearing the read line (and setting the write line), and clearing the control/data line. 

Detailed instructions on register selection using the control lines is found in the LS7266R1 

data sheet's chip access table[61]. 

Reading or writing a byte is performed by strobing the read or write line, both of 

which are active low. When the read or write line performs a low to high voltage transition, 

a read or write byte transfer occurs. Given that the counter output is 3 bytes wide, the 

data must be read out a single byte at a time, the LSB being read first. An internal byte 

pointer is automatically incremented after a read is performed. The byte pointer is reset by 

setting bit 1 of the RLD register, and must be performed after reading the counter. This 
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is the most common command sent by the AAC to the LS7766R1. Reading axis position, 

another common function, involves commanding the LS7266R1 to transfer the contents of 

the 24-bit counter to the 3-byte output latch. This is performed by setting bit 4 in the 

RLD configuration register. The LS7266Rl's functionality is encapsulated in the Dynamic 

C library oe3 . l i b , which wraps many of complex sequences needed to control the optical 

encoder chip in easy-to-use functions. 
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2.6 Conclusion 

The details surrounding IRMA's hardware interfacing are complex, in particular, 

IRMA's digital I /O and serial connections, which are critical to IRMA's operation. The 

chop interrupt line is perhaps the most important, for without it, IRMA's ability to col­

lect data would come to a halt. This was the cause of failure in one of the IRMA units 

undergoing testing at the Smithsonian Submillimeter Array on Mauna Kea in the fall of 

2004. Equally critical is IRMA's internal Ethernet communication lines, which failed (for 

yet to be determined reasons) during testing at the Gemini South observatory in Chile, in 

February 2005. The challenge to the programmer interfacing these devices to a controller is 

to write software to deal with potential hardware failures gracefully, and provide feedback 

to the operator when a hardware failure has occurred. 
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Chapter 3 

I R M A Software Structure 

This chapter will discuss the structure of the IRMA software, as opposed to the 

function of the IRMA software, which is touched upon in chapter 4. This discussion will 

look at the relationships among the CP, MC and AAC, the multi-tasking task structure of 

each of the programs, the communication structures and protocols used, and the structure 

of the input and output files consumed and produced. 

3.1 IRMA Software Architecture 

IRMA's software structure can be described as distributed, modular, multi-tasking 

and real-time. It is distributed such that its functions are divided among three programs 

hosted on three separate computers, all of which communicate asynchronously with one 

another. It is modular by the fact that its programs are structured using top-down refine­

ment, where the overall problem is subdivided into smaller pieces called functions. Finally, 

IRMA software is multi-tasking in that it performs certain tasks in parallel through the use 
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of a real-time multi-tasking kernel (RTK), MicroC/OS-II[27], running in the background. 

Certain actions performed by the MC and AAC software are designed to happen at spe­

cific intervals, always occurring in a timely, predictable manner regardless of the workload 

the system might be under. This is the definition of a hard real time system[27], which 

the MicroC/OS-II RTK provides. As such, the MC and AAC can be considered real-time 

software. 
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Figure 3.1: IRMA control software software structure shows typically shows four major 
software components (shown in red): the graphical user interface (GUI), command processor 
(CP), master controller (MC) and Alt-Az Controller (AAC). 

The top level view of the IRMA control software, appearing in figure 3.1, shows 
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each of the independently executing software entities outlined in red. Working clockwise 

from the top left hand corner of the diagram, the modules include the optional IRMA 

graphical user interface (GUI), the command processor (CP), the master controller software 

(MC), and the Alt-Az controller (AAC), shown in the lower right corner. The iBoot power 

watchdog unit, outlined in black, is an networked power controller that cycles main power 

to the IRMA MC/AAC if IRMA fails to transmit a heartbeat network packet to the iBoot 

within some prescribed period of time. The user has the option of running IRMA's GUI 

on the CP or on a remote machine. If the operator chooses to run IRMA without a GUI, 

he or she can simply log into the CP via SSH and run the irmaExec interpreter from the 

command line. 

The operator is provided with two means to control IRMA: via the command 

line, where the irmaExec. p i interpreter is called directly, or by using the GUI interface. 

The GUI does not execute on the operator's computer, but rather on the CP machine. 

Figure 3.1 shows the GUI running in parallel with the IRMA script interpreter. However, 

running the GUI is optional; IRMA can be operated via the command line alone. Under 

X, the UNIX/Linux graphic display server, the IRMA GUI is transmitted (or exported) 

to the operator's machine. This method of graphics display performs well where a high-

bandwidth network connection is in place, such as in a LAN setting. In situations where 

network bandwidth is limited, using the IRMA GUI should be avoided because the program 

responsiveness drops dramatically, making the program almost impossible to use. 

Each software entity executes on its own hardware. The CP and GUI run on a PC 

running Linux, and are written in Perl and Tk. Tk is a platform-independent GUI toolkit, 
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which can be called from Perl programs. Both Perl and Tk are available for Windows and for 

nearly every UNIX (or UNIX-derived) operating system. Besides Linux, the IRMAscript 

interpreter has been successfully tested on a Macintosh system running OS 10.2.8. The 

MC runs on the RCM2100 microcontroller module attached to the IRMA motherboard, 

and the AAC executes on the RCM 2010 microcontroller module attached to the Alt-Az 

motherboard. The CP software exists as a Perl executable called i rmaExec.pl . The MC 

and AAC software exist as bootable software images that reside in their respective Rabbit 

microcontroller flash memories. 

An Ethernet local area network (LAN) forms the communication link between 

the CP and MC, as well as between the operator and the CP (or GUI). Network links 

are depicted as light blue lines in the diagram. A serial link, drawn in green, connects 

the MC to the AAC. Communication among the CP, MC and AAC is asynchronous. No 

module knows when the other will initiate a communication with the other. What is 

certain, however, is who initiates the conversation. A master-slave hierarchy exists among 

the modules. The GUI communicates with the CP via OS system calls. The GUI and the 

CP can be considered to be a single entity in the context of this discussion, thus it serves 

as the source of all commands to the MC and the AAC. 

The CP always initiates communication with the MC and AAC, as prescribed by 

the currently executing IRMAscript. The MC addresses the AAC only when requested by 

the CP. Data always flows back to the CP. Data originating on the AAC is passed back to 

the CP via the MC, while data originating on the MC is passed back to the CP directly. 

Consequently, commands which query the AAC have longer latency times than queries to 

http://irmaExec.pl
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the MC. This is because AAC-bound commands must make two hops to their destination, 

in addition to the fact that the MC-AAC serial communications link is slower than the 

Ethernet link connecting the MC and CP. Alt-Az status commands, such as ALTAZ READ 

POSITION, typically require 100 ms to execute. 

The software that drives the MC and Alt-Az is constructed out of multiple real­

time tasks. The CP software runs within a single task except when it is in data collection 

mode, where it forks a separate task dedicated to receiving scan telemetry from the MC. 

Tasks are independent software frames of reference which run in parallel with one another. 

They can be thought of as mini-programs which execute independently, without affecting 

one another. Tasks are time-multiplexed with the CPU in order to create the illusion that 

each task is being simultaneously executed. In reality, each task is alloted a short period 

of exclusive access to the CPU. With the IRMA MC and AAC software, all tasks are not 

equally served, but rather, are serviced according to their priority, and whether they are 

waiting on an event to happen in another process. The black and green arrows appearing the 

MC and AAC represent DIO and serial connections respectively. The arrows do not depict 

individual lines, but rather, generalized data connections, and their directions. Double 

sided arrows show bidirectional data channels, while single sided arrows show unidirectional 

channels. A comprehensive description of IRMA's DIO and serial connections is found in 

chapter 2 dealing with IRMA's hardware. 

3.1 .1 I R M A ' s L a n g u a g e s of I m p l e m e n t a t i o n 

As previously mentioned, the IRMA software is designed using a modular, top-

down refinement methodology. This is markedly different from object-oriented ( 0 0 ) design, 
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which requires an 0 0 language like C + + or Java, whereby the overall problem is decom­

posed using 0 0 design techniques such as encapsulation, inheritance, and polymorphism. 

Encapsulation associates data with the functions that manipulate them into structures 

called objects, and is a form of data hiding. Inheritance promotes software re-usability by 

allowing new objects (or classes in their non-instantiated form) to be formed from exist­

ing objects in addition to new code. Polymorphism enables objects to accept a variety of 

data input as opposed to writing separate functions for every expected type of input, as is 

required by C[l l ] . 

Dynamic C, the proprietary C compiler produced by Z-World allows the software 

designer to further organize his or her program's structure using custom libraries in addition 

to functions. Libraries allow the designer to group similar functions into separate files, in 

order to prevent the main program file from becoming a long unmanageable list of functions. 

Dynamic C's inclusion mechanism differs from standard ANSI C in that header files (dot 

.h files) are replaced by dot .lib files, and the #use directive is used in place of of # inc lude 

directive. 

Libraries specific to each of IRMA's peripheral hardware components were devel­

oped. They appear as solid boxes inside each of the software boxes, as shown in figure 3.1. 

Additional libraries were developed to handle specific problems, such as CRC checksum 

calculations. Additional libraries, in particular libraries for MicroC/OS, TCP/IP , and GPS 

data string parsing are provided with the Dynamic C development software. The list of 

custom libraries appear in table 3.1. 
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Library Target 
OE3.LIB US Digital LS7266 R l Optical Encoder Controller 
DAC. LIB Maxim MAX5223 2-channel 8-bit serial DAC 
HYMATIC2.LIB Hymatic Cryocooler 
CRC.LIB CCIT-CRC (16-bit CRC algorithm) 
CS5534ADC.LIB Cirrus CS5534 Delta Sigma ADC 

Table 3.1: Custom libraries used in IRMA MC and AAC. 

The difficulty with this approach is that it is easy to get lost in the sea of functions 

and lose sight of the whole, even when libraries are included. It is not always easy to see 

the data relations among the logical divisions within the software, nor is it possible to easily 

distinguish library functions from functions local to the given program file. This is one area 

where the object-oriented approach would be advantageous. For example, when a request 

to perform a scan is received by the MC's network communication module, it must pass 

the scan parameters, called a job, to the software module responsible for performing data 

collection. The process to get the job from the network communications module to the data 

collection module involves a long chain of function calls. In addition, there is the tendency 

for the number of constant definitions and global variables to mushroom. Global variables 

are the primary means to pass data between software tasks in the IRMA software. 

The command processor software, responsible for interpreting IRMAscript source 

code files into IRMA network command packets, is written in Perl, a popular cross-platform 

programming language that is feature-rich, easy to write, and easy to extend. Being an 

interpreted language, Perl is a capable rapid development tool, as no compilation and linking 

is required. Considerable computational overhead is brought to bear on the processor when 

executing a Perl-based application, especially those that call a large number of Perl modules 
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(which is the case with the command processor software). Executing the CP software on a 

333 MHz PC requires 10 -15 seconds for the Perl interpreter to compile the CP software into 

Perl byte-code. Even though Perl is an interpreted language, like other modern interpreted 

languages the source code is initially compiled into a simpler, machine-code-like statements 

called bytecodes, which can be efficiently and quickly interpreted by a virtual machine. The 

virtual machine (VM) permits the language to be platform independent. Java also uses a 

VM to execute bytecode. 

Perl is resource hungry in terms of memory and CPU cycles, making it unsuitable 

for hosting on an embedded processor such as the Rabbit. The reasons for choosing Perl over 

other compiled languages is twofold. First, it offers powerful regular expression processing 

capabilities, and second, several people in the IRMA research group have experience with 

Perl programming. A Regular expression is a language description mechanism allowing the 

precise definition of patterns of symbols (a string) by means of another string, defined by a 

set of syntax rules [2]. Regular expression matching, or pattern matching, is is the technique 

used to convert IRMAscript statements into equivalent 3-tuple command codes, which the 

MC understands. 

3.2 IRMA multi-tasking Structure 

3 .2 .1 E v e n t D r i v e n P r o g r a m s 

The flow of control within the IRMA MC and AAC software is event driven. Event 

driven programs can be visualized as a big loop, where the program blocks (or waits) at the 

top of the loop, waiting for input. When input arrives, the program determines what has 
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to be done from the message, performs the appropriate actions, and returns to the top of 

the loop to wait for a new request. This describes the general operation of a generic event-

driven program, which includes most GUI-based user-driven programs [42]. Rather than 

user input, such as mouse clicks or key presses, IRMA responds to binary command packets 

arriving over the network. In essence, this description accurately describes the control flow 

of IRMA's MC and AAC software. 

3 .2 .2 M u l t i p r o g r a m m i n g a n d R e a l T i m e 

Parallel execution of tasks (multi-tasking, or multiprogramming) combined with 

real-time performance (adherence to deadlines) is required by IRMA's control software. For 

example, when the Alt-Az mount performs a servo-controlled movement concurrently with 

the serial communications task that continuously monitors the serial port for commands, 

the motion control task relies on a timing task to update servo loop calculations every 100 

ms. Moreover, the servo loop must be updated exactly at this rate in order for the servo 

control algorithm to function correctly. The ability to meet deadlines in a timely manner 

within a multi-tasking environment is the defining attribute of real-time programming[27]. 

All modern operating systems attempt to achieve some sense of real-time perfor­

mance. The Linux 2.0 kernel uses two separate scheduling schemes for non-real-time and 

soft-real-time performance. Hard real-time systems guarantee that critical tasks will com­

plete on time, and delays have fixed bounds. MicroC/OS-II fits into this category. Soft 

real-time systems, such as Windows NT or the Linux kernel, give critical tasks priority over 

tasks of lesser importance, but do not guarantee that operations will complete within fixed 

deadlines, nor do delays have fixed bounds. This is because real-time systems must know in 
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advance the durations specific operations (such as I /O), and this is impossible to do with 

systems that use virtual (disk-based) memory or secondary storage [56]. 

The Linux 2.0 kernel uses scheduling classes: time-sharing scheduling to share 

the CPU among many tasks (or processes) equitably, where real-time performance is not 

important, and soft real-time scheduling to implement near-real-time performance, which 

is necessary for applications such as 3-D graphics or video. The time sharing algorithm 

uses a prioritized credit based algorithm, where each process in the ready-queue (a queue 

within the scheduler that contains a list of ready-to-run processes) is assigned a number of 

scheduling credits, which effectively defines its priority. The scheduler selects the task with 

the highest number of credits from the ready queue and runs it for a predetermined time, 

called a time quantum. In Linux, the time quantum is implemented by decrementing the 

task's credits upon every CPU clock tick. When the running task's credits are exhausted 

to zero, the scheduler suspends the running task, and runs the next highest priority task. 

The act of preempting a task and selecting another task to run is called a context switch. 

In most operating systems, context switches occur when the running task blocks on I /O, 

which often involves waiting for a key press or data block transfer to complete, or when the 

task has run its course within its time quantum, and is preempted by the scheduler. 

The Linux real-time scheduler operates similarly in that it always selects the task 

with highest priority from a circular task queue, or in the case of multiple equal priority 

tasks, selects the task that first entered the queue, called first-in-first-out (FIFO) scheduling. 

Again, the processes are alloted a time quantum in which they have full access to the CPU. 

When the time quantum is up, the scheduler suspends the running task, and selects the 
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next task appearing in the circular ready queue, without regard to task priority. This type 

of scheduling is called Round-Robin, and guarantees that each process gets ^ units of the 

available CPU time, where n is the number of processes in the circular ready queue [56]. 

MicroC/OS-II uses a priority-based scheduler. No time quantum is assigned to 

tasks. Rather, the scheduler switches tasks when the running task blocks on an event, such 

as a timer, semaphore or mutex, or when a previously-suspended higher-priority task is 

ready to run. A semaphore [56] is a synchronization and communication mechanism that is 

often used to restrict access to a resource shared by two or more processes, thus preventing 

multiple processes from simultaneously using a single resource. Fundamentally, semaphores 

are special variables that can be atomically set (i.e., the process of modifying the semaphore 

cannot be interrupted until completed) to one of two states: wait or signal. When a process 

wants to use a shared resource, such as the serial port, it accesses semaphore using the 

wait operation. If the resource is not being used by another process, the semaphore is 

decremented, and the process proceeds to use the resource. When the process has finished 

using the resource, it increments the semaphore, signaling to the other processes that the 

resource is again available. If the semaphore is decremented to 0, the resource is made 

unavailable. Any process that reads the semaphore is suspended by the OS and waits 

until the semaphore is incremented by the process using the shared resource. The depth of 

the semaphore determines how many processes can concurrently access the resource. For 

example, a semaphore of depth 3 can allow up to three processes to share the resource, 

while a semaphore with a depth of 1, also known as a binary semaphore or mutex, only 

allows a single process to access the resource. In IRMA, the MC-AAC serial communication 
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channel and the CP-MC network communication link are protected by mutexes, since these 

channels can only accommodate a single user at a time. 

Round-robin real-time scheduling is not supported by MicroC/OS-II because every 

task is required to have its own priority level, and round-robin scheduling requires that all 

participating tasks have equal priority. Furthermore, the MicroC/OS-II kernel does not 

support task preemption by means of a time quantum [27]. Dynamic C does provide a time 

slicing function, but it is not compatible with MicroC/OS-II. 

Instead, the software developer must explicitly design the multi-tasking structure 

of each of the tasks by strategically assigning task priorities and placing blocking mecha­

nisms within each task in order to put tasks into the ready queue, and make them eligible 

for scheduling. Blocking mechanisms include millisecond sleeps, waiting (or pending) on 

inter-process communication (IPC) structures such as event flags (similar to UNIX signals or 

Windows messages), or waiting on shared resources to become available using inter-process 

synchronization objects such as mutexes or semaphores[27]. 

3.3 MC and AAC Task Structure 

The multi-tasking structure of IRMA's MicroC/OS-II based programs (the MC 

and AAC) are based on having the high-priority tasks perform their tasks in short bursts, 

then sleep for a defined interval or wait on an event, in order to open up slack time in which 

the lower-priority tasks can execute. When the lower level task completes its activities, it 

will sleep for a prescribed period or block on an event, allowing the next lower-priority task 

to execute. The order of execution continues down the priority hierarchy until all the tasks 
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have completed. 

Task priority is assigned according to the degree to which a task can tolerate 

being preempted. In priority-based preemptive multi-tasking, tasks can preempt other 

tasks having lower priorities than themselves. For example, a task having a priority of 10 

can preempt low priority tasks with priority levels greater than 10. However, this same 

task can in turn be preempted by higher priority tasks having priority levels less than 10. 

The key is to establish which tasks can be preempted and for how long, giving the most 

critical task that cannot tolerate preemption the highest priority. All tasks are subject to 

preemption if an ISR is present. This should not pose a problem, since an ISR by nature 

(should) execute and exit as quickly as possible. 
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Figure 3.2: IRMA master control software: task structure during scanning. 

The MC software's task structure, appearing in figure 3.2 contains two primary 
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tasks that are constantly running: the iBoot power supply watchdog task, and the dispatcher 

task. The iBoot task has the highest priority of any task running on the MC. The task 

broadcasts a UDP packet every 10 seconds, which is picked up the iBoot device, a power 

supply containing an embedded processor and network interface. The iBoot is configured 

to expect status packets at a predetermined interval. If the next expected packet fails to 

arrive within the interval, the iBoot assumes the device (the IRMA MC) has experienced 

software failure, and proceeds to cycle the power to the MC motherboard, forcing a hard 

reset. This is a critical activity that must neither be delayed nor preempted for an extended 

period of time, which explains the rationale for making this a high priority activity. 

The dispatcher task is the most active task within the MC, and is primarily con­

cerned with receiving commands from the CP. Since the majority of commands are classed 

as short-duration, meaning they take less than a second to execute, they are allowed to 

execute within the dispatcher task. Long duration commands such as scans, however, must 

be executed outside the context of the dispatcher task, because the dispatcher must return 

to its primary duty of listening for incoming commands. When a scan is requested, the 

dispatcher task forks the scan task (shown as a solid arrow in figure 3.2), then returns to 

wait for incoming commands. This allows short duration tasks to run concurrently with 

the long duration task. 

The scan task is responsible for constructing data packets and sending them to the 

CP. It also initiates the data collection process, driven by the data collection ISR and the 

450 Hz chopper wheel notch interrupt signal. The scan task starts the metronome task, and 

enables the ISR to trigger on the external interrupt. The metronome, whose priority is just 
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below the priority of the iBoot task, but greater than the scan task, counts the data points 

collected by the ISR, fetches the current Alt-Az coordinate from the AAC for each data 

point, and signals the scan task (by means of an event flag) to construct and transmit the 

data packet when 19 points are collected. Once the scan task has successfully transmitted 

the data packet, it returns to wait on the data transmit event flag, shown as a dotted arrow 

in figure 3.2. When data collection is terminated, the scan task and metronome task are 

both instructed to terminate themselves. 
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Figure 3.3: IRMA Alt-Az controller: task structure of servo movement. 

The AAC's task structure, appearing in figure 3.3, parallels the MC's structure. 

Its serial communication task, analogous to the MC's dispatcher task, waits for commands 

from the MC. Most commands are short-duration, allowing them to be executed within the 

communication task. Axis movement tasks are classed as long-duration, thus they must be 

run in parallel in their own task(s) concurrently with the serial communication task. The 
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serial communication task signals the job task by means of an event flag to wake up and 

dispatch the axis movement task(s). The job task starts the single axis move task if a single 

axis has been specified, or the dual axis move task if both axes have been requested to move. 

Either movement task starts the metronome task, the highest priority task in the AAC, to 

control servo loop timing. A proportional-integration-derivative (PID) servo tracking loop 

is used by the servo move task to move the axis from the initial to the destination angle. 

The move task refers to either the single or dual axis move task in this discussion. The 

axis move task waits on a 10 Hz servo tick event flag, emitted by the metronome task, 

which signals the move task to update the servo loop calculations. Once the movement has 

completed, the move task signals the job task (using a flag event) that the axis rotation has 

completed. After this, the metronome and move axis task suspend themselves. The priority 

levels of tasks in the AAC software place highest priority on the metronome task, followed 

by the axis move task (single or dual), serial communications task, and the job task. 

It was necessary to introduce a second mode of axis movement to handle extremely 

slow movement, that is, movement slower than that achievable when driving the axis motors 

at their minimum RPM rates. Slews have the ability to perform periodic steps over a long 

period of time, thus lengthen the time to rotate from the initial to destination angle. The 

serial communication task signals the job task to wake up and start the appropriate axes 

control tasks. Each axis movement is controlled in its own task: one exists for altitude 

movement, and another for azimuth. Both axis tasks can be run concurrently, which requires 

that they each have unique priority levels. Since both tasks cannot have the same priority, 



3.3. MC AND AAC TASK STRUCTURE 71 

MC/AAC Serial 
Comm Task 

Flag: do job 1 

. I 

Job Task 
Long duration 
task dispatcher 

Figure 3.4: IRMA Alt-Az controller: task structure of slew (stepped) movement. 

the slew elevation task has a slightly higher priority than the azimuth slew task. Given 

that skydip operations, which involve slewing the altitude axis, are performed more often 

than azimuth movements, preference was given to elevation movements. Slew tasks and the 

servo move tasks have priority levels that place them below the metronome task priority, 

but above every other AAC task. 

Once one or both slew tasks have been started, the job task waits for flag events 

from the slew task(s). When the flag signal(s) are received, indicating either or both move­

ments are complete and the respective slew control tasks are suspended, the job task returns 

to listen for new commands from the serial communications task. This process is shown in 

figure 3.4. 

: lag: EL slew done Elevation 
Slew Task 

Flag: AZ slew done 

Azimuth 
Slew Task 

< STOP ) 

>( STOP ) 
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3.4 Data Collection Interrupt Service Routine 

The MC's data collection ISR runs independently of the MC tasks, running in a 

level of software separate from that of the MicroC/OS-II tasks. Its behavior is determined 

by the chopper wheel, which generates a 90 Hz notch interrupt signal. The notch interrupt 

invokes the ISR, while the sampling parameters of the Cirrus CS5534 A S ADC, in partic­

ular, the ADC word rate, determines the rate of data collection. The duration of the ISR 

is determined by the duration of all the combined machine instructions making up the ISR 

code. 

Sipelkitagrattort 

310 LIS 
Get time stamp, send 
command to sample 

signal 

310 LIS 
Read sampled signal, 

send command to sample 
temperature / pressure / 
relative humidity (TPH) 

70 LIS' 
Read 

sampled 
TPH 

Figure 3.5: IRMA master controller: data collection ISR structure. 

Figure 3.5 shows the ISR's sequence of events (not drawn to scale). The ISR is 

broken up into phases to prevent blocking on the relatively long A S integration periods, 

shown in gray. The CS5534 is configured to sample the IR signal at 23 noise free bits 

of resolution, the highest sampling resolution available on the A S ADC. The resulting 

integration time required by the A S is 538 ms. In contrast, around 380 /xs is required to 

instruct the A S to start the A/D conversion and read the resulting sample. During the 
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integration periods, the MC does not halt execution, but continues normal operation. 

Point A in figure 3.5 shows the beginning of the data collection cycle, when the 

external interrupt and chop interrupt enable are both enabled. The time lag between 

enabling the external interrupt and entering the ISR is shown in the pink region of the 

graph, and is dependent upon the rotational period of the chopper wheel, ranging between 

0 and 11 /xs. Point B in figure 3.5 marks the beginning of phase 1 of the ISR, where 

the command to start the high-resolution A/D conversion of the IR signal is strobed into 

the AE. This phase begins by disabling the external interrupt (on the Rabbit) and notch 

interrupt enable gate. Next, the sample command is written to the ADC, and a time stamp 

is generated for this particular sample. Phase 1 concludes by re-enabling the external 

interrupt line and exits the ISR. The notch interrupt enable line is left disabled. Phase 1, 

which appears as the green region in the graph, requires 310 /is of execution time. 

Point C in figure 3.5 marks the end of the A/D conversion, and the beginning of 

phase 2. This phase is triggered not by the chop interrupt, but by a signal transition on 

the AE's serial data out (SDO) line, which occurs when the A/D conversion has completed 

integration. Shown in blue, phase 2 begins by disabling the external interrupt, followed 

by strobing out a 32-bit word containing the 24-bit data word. Immediately following 

this, a command to sample one of ten temperature-pressure-humidity (TPH) channels is 

strobed into the A S . During data collection, IR signal sampling is interleaved with sampling 

through the TPH channels in round-robin fashion. Phase 2 concludes by re-enabling external 

interrupts, but not the notch interrupt enable line, then exits the ISR. Total execution time 

for phase 2 is 310 /is. 



3.5. COMMUNICATION PACKET STRUCTURE 74 

Point D in figure 3.5 marks the end of TPH sample integration, and the beginning 

of phase 3 (shown in yellow), where the TPH sample is read from the ADC. The ADC's 

end-of-conversion signal, represented by a logic transition on its SDO line, triggers the third 

and final entry into the ISR. Upon entry, the external interrupt line is disabled, and 32 bits 

containing the 24-bit sample word is strobed out of the ADC. The index variable for the 

ISR's internal circular shared memory buffer, which stores the entire 19-sample data set, 

is updated. After this, the ISR exits, leaving external interrupts and the notch interrupt 

enable gate disabled. Both will be re-enabled by the metronome task when it wakes up. 70 

Us of CPU time is consumed by phase 3. 

In total, only 690 fis of time is spent executing ISR code compared to the duration 

of the entire data collection cycle of 583,690 [is. No more than 310 /is is spent in the ISR 

at any one time. This impressive performance can be attributed to the fact that the data 

collection ISR is written almost entirely in Rabbit 2000 assembly code. 

3.5 Communication Packet Structure 

The IRMA CP communicates with the MC by means of binary-formatted data 

packets, sent over a TCP (Transport Control Protocol) network connection. TCP is a 

connection-based protocol, analogous to a telephone system, which establishes a circuit 

between the two parties. TCP guarantees that the data transmitted reaches its destination 

(which may involve retransmission, if necessary), and that data is received in the order that 

was sent. As such, the TCP protocol is considered a reliable protocol. 

T C P is more computationally expensive than the less reliable but more efficient 
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UDP, which broadcasts a simple packet containing the recipient's address and the data. 

The recipient may or may not receive the packet, which gets routed from host to host as it 

makes its way across the (inter)network to its destination. As such, its operation is similar 

to how letters are delivered by the postal system. TCP was chosen as the network protocol 

on which to base IRMA network communication because it was anticipated that IRMA's 

network infrastructure may be unreliable, subject to crosstalk, electrical noise and marginal 

cables or interconnects. This assumption proved to be correct during tests at the Gemini 

South observatory at Cerro Pachon, Chile, when an IRMA unit began to experience network 

communication failures. 

IRMA network communication packets are structured binary data carried in TCP 

packets. The MC and CP software is responsible for constructing and dissecting IRMA net­

work communication packets. The MC and CP's underlying Dynamic C networking library 

handles T C P / I P network transactions. CP-MC network communication uses binary pack­

ets rather than ASCII strings, since binary-formatted packets require less effort to parse 

than strings. Being that they only contain numeric codes, and all the codes have fixed 

lengths, a simple compact algorithm is capable of decomposing and parsing the packets. 

The MC is only an 8-bit microprocessor having limited memory resources, thus the devel­

oper must be mindful of efficiency. A generic network communications packet, pictured 

in figure 3.6, contains three primary items: a header, body, and a checksum. This packet 

structure is common to all network-based communications performed between the CP and 

MC, regardless of their function. 
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A B C D E 

Header Data Payload CRC 

Figure 3.6: Generic IRMA network communications packet. A: Number of bytes in data 
payload (D). B: Packet number of the current packet group. C: Total number of packets in 
the current packet group. D: Data payload. E: CRC (Cyclic Redundancy Check) checksum. 

IRMA network packets are aligned to 4-byte longword boundaries, making the 

4-byte (32-bit) integer the the smallest data division within the packet. Headers contain 

three fields. The first field indicates the number of bytes (not 4-byte longwords) in the 

data payload. Field two indicates the identity of a packet within a block of packets, called a 

packet group. This labeling is necessary if a single data set is spanned across multiple IRMA 

network packets. Field three indicates the total number of packets within the current packet 

group. The fourth field contains the content of the packet. It contains its own structure 

depending on its type. An IRMA network packet contains at least one data item. The fifth 

field is the Cyclic Redundancy Check (CRC) checksum packet, used by the packet recipient 

to test the integrity of the packet. A CRC is a hash function which calculates a checksum 

word from a large block of binary data, which is appended to the end of a data packet to 

be transmitted. The recipient can easily recalculate the CRC value from the received data 

packet in order to detect transmission errors. 

The 12-byte header and 4-byte CRC checksum act as a wrapper around the IRMA 

network communications packet, enabling the packet recipient to determine the size of the 

packet, identify the packet's position within a data block spanned across multiple packets, 

and verify that the packet contains no transmission errors. Reading packets is relatively 
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easy for the packet recipient: it must read 12 bytes, from which it can determine the number 

of successive bytes it must read from the socket. Once the recipient has read this number 

of bytes, it can assume it has read the entire packet, and proceed to calculate the CRC 

value over the entire packet excluding the final 4 bytes that contain the packet's embedded 

CRC. The recipient can be confident that the packet contains no communications errors if 

the packet's embedded checksum matches the recipient-calculated checksum. 

A B C D E F Go Gi ... G n 
H 

Header Data Payload CRC 

Figure 3.7: IRMA network communications command packet. 

The command packet, pictured in figure 3.7, is one of the most common type 

of communications packet. The command packet is divided into 4 primary fields. The 

first field (D) contains the command code. The next two fields (E and F) contain the 

command modifiers associated with the given command code. IRMAscript commands are 

structured as a three-tuple: [command] [modifierl] [modifier2] in order to organize 

IRMA's functionality into families of commands. Zero to fifteen parameters (fields Go -

Gn) can be associated with a command. The number of parameters associated with a 

particular command is fixed, thus the recipient (the IRMA MC) knows in advance how 

many parameters to expect and read from the network socket. 

Data values being passed to or from the MC are represented as 32-bit integers. 
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Where floating point values must be passed, scaling is used to temporarily represent the 

floating point value as an integer. Pre-established scaling factors have been hard-coded into 

the CP and MC software for each data item requiring floating point - integer conversion. 

A B C D 

LU F 0 Fi ... F n 
G 

Header Data Payload CRC 

Figure 3.8: IRMA network communications data packet. 

Data packets are sent by the MC to the CP when the given command is capable 

of producing data. Data-generating commands include status requests, such as current Alt-

Az position, or scan requests, which produce scan data packets. The data packet, shown 

in figure 3.8, consists of a packet type flag (D), the number of data points (E), and the 

data values (Fn - F n ) . The packet type field is populated with value 3000, indicating that 

this packet is of type DATA.FIELD. A data payload produced by a scan contains 114 

data points, or 19 6-tuples, each of which represents an IR signal sample along with its 

time stamp, current mount altitude and azimuth position, and an environmental reading 

(temperature-pressure-humidity). In total, this constitutes a 456 byte data payload. 
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3.6 IRMA Communication Protocols 

3.6 .1 I R M A N e t w o r k C o m m u n i c a t i o n H a n d s h a k i n g P r o t o c o l 

Figure 3.9: IRMA network communications handshaking sequence. 

Network transactions between the CP and MC are conducted using a simple hand­

shaking protocol closely based on the protocol used with the Herschel/SPIRE Test Facility 

Fourier Transform Spectrometer (TFTS)[53]. The TFTS packet communication protocol 

follows the European Space Agency (ESA) Packet Telecommand Standardfl]. This protocol 

is used for communication among electronic ground support equipment, and is similar to 

the protocol used by ESA to communicate with spacecraft. Prior to IRMA III, the author 

was involved in designing the control software for the TFTS, which was built to test the 
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SPIRE imaging Fourier transform spectrometer. SPIRE (Spectral and Photometric Imag­

ing REceiver) is one of three instruments to be launched in 2007 as part of the European 

Space Agency's Herschel mission. The instrument will allow for high resolution imaging 

spectroscopy and photometry in the far infrared electromagnetic spectrum[26]. 

The IRMA protocol, pictured in figure 3.9 involves three steps or four steps if 

data (telemetry) is returned. After the command is received, the MC responds by sending 

an acknowledgment packet, a packet indicating the requested activity is has begun, a data 

packet (if applicable), and finally a packet indicating the requested activity has concluded. 

The MC responds with an acknowledgment (ACK) packet whenever it receives a 

command packet. The ack packet, shown in figure 3.10, consists of a single 4-byte field (D) 

containing a code indicating whether the command was successfully received or not. 

A B c D E 

Header Data CRC 
Payload 

Figure 3.10: IRMA network communications acknowledgment (ACK) packet. 

The ack code contains the value 1000 (ACK_SUCCESS) if the command packet 

was received without error, while a value of 1001 (ACK_FAILURE) indicates the packet 

contained an error, such as an invalid command code, or a data corruption detected by 

calculating its checksum. The function start packet (figure 3.11) consists of three 4-byte 

integer fields: an identification (ID) field (field Do), a duration field (field D\), and a field 
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indicating whether a data packet is about to follow this packet (field D2). 

A B c D 0 Di D 2 
E 

Header Data CRC 
Payload 

Figure 3.11: IRMA network communications function start packet. 

The ID field contains the code F U N C T I O N J 3 T A R T , which has the value 2000. 

This code indicates the commencement of the requested function. The duration field can 

contain one of two codes: D U R A T I O N - S H O R T , which is equal to 2010, or D U R A ­

T I O N - L O N G , which is equal to 2011. This code tells the CP the general duration of a 

given command. At the current stage of IRMA development, most commands are catego­

rized as short duration, including functions that would be considered long. This is because 

long duration functions are run in parallel in their own task. As far as the CP is concerned, 

it only needs to know that the command it sent was received and executed. This field 

may be reassigned for different usage in later versions of IRMA. The data present field, 

when set to value 2020 ( D A T A . P R E S E N T ) , indicates that a data packet will follow this 

packet. When this field is set to 2021 (DATA _ N O T - P R E S E N T ) , no data packet should 

be expected to follow. 

The data packet consists of two header fields and up to 114 4-byte values. The first 
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A B C D E F 0 Fi ... F n 
G 

Header Data Payload CRC 

Figure 3.12: IRMA network communications data packet. 

field (D) contains the value 3000, which represents the DATA-FIELD code. The second 

field (E) contains the number of data values to follow. Fields Fn through Fn constitute the 

data fields. 

A B c D E 

Header Data CRC 
Payload 

Figure 3.13: IRMA network communications function complete packet. 

The function complete packet, appearing in figure 3.13 (field D), consists of a single 

4-byte field that can contain one of two codes: F U N C T I O N - C O M P L E T E .SUCCESS 

(value 4000), signifying that the function completed without any errors, or F U N C T I O N 

. C O M P L E T E - F A I L U R E (value 4001), signifying that the function experienced errors 

during execution. 
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3.6 .2 I R M A M C - A A C Serial C o m m u n i c a t i o n s 

Originally, it was planned that the communication protocol would be used for all 

communication among IRMA's three processors: the CP, MC and AAC. A high speed, 115 

kbit/s 2-wire serial link was planned to link the MC to the AAC, since the AAC does not 

have a network interface. After extensive testing and debugging, it was found that the serial 

link was not acceptably reliable, being subject to communication lock-ups. The solution, 

as suggested on Rabbit Semiconductor's technical support bulletin board[23], was to drop 

the baud rate of the serial channel down to 19.2 kbit/s. This translates into roughly 2000 

characters per second. Due to the considerably lowered bandwidth between the MC and 

AAC, the communication protocol had to be significantly simplified. The basis of the MC-

AAC serial protocol is the msCommPacketType data structure, shown in figure 3.14: a 

fixed-size, 6-field data frame consisting of a command field, four data fields, and a CRC 

checksum field. 

Command 
Data Field A 
Data Field B 
Data Field C 
Data Field D 

CRC 

Figure 3.14: IRMA serial communications packet structure. 

Serial packets differ from their network counterparts in that they are not transmit-
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ted as binary data. Rather, serial packets are converted to ASCII character strings, and are 

encapsulated with a header and footer character. An example of a serial communications 

packet string appears in figure 3.15. 

STX CMD Field A Field B Field C '. Field D '. CRC ETX 

Figure 3.15: IRMA serial communications packet string. 

The header character is the ASCII S T X character (integer value 1). It is a non-

printable character that is part of the base 7-bit ASCII character set. It is used to indicate 

to the recipient that a serial data stream immediately follows this character. The C M D 

command field tells the AAC what kind of function is being requested. These codes are part 

of a special AAC command set that is mapped to the IRMA Alt-AZ commands. Rather 

than a 3-tuple, AAC commands consist a single integer code. Table 3.2 lists each of the 

Alt-Az serial command codes and their aliases. The final character, an ASCII E T X code 

(integer value 2) is used to represent the end of a serial data transmission. By encapsulating 

a serial data stream with these two characters, the data reader can easily detect when a 

string starts and ends. 

Serial transactions with the AAC are kept as simple as possible. The 24 byte 

serial communications packet is converted to ASCII characters for transmission, but for 

this discussion, the packet will be discussed in its binary form. The host initiating the 

transaction (which is always the MC), sends the serial communications packet to the AAC. 

The AAC receives the packet, converts it from ASCII to binary, and performs the function. 
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Once complete, the AAC responds with the same packet, this time with data fields populated 

if applicable. 

Code Alias 
1 ALTAZ.READ_CURRENT_POSITION 
2 ALTAZJVIOVETO 
3 ALTAZ.HALT 
5 ALTAZJPING 
6 ALTAZ-SET-ALT .OFFSET 
7 ALTAZ_SET_AZ_OFFSET 
8 ALTAZ.SET-RTC 
9 ALTAZ-SLEW-STATUS 
10 ALTAZ-MOVE.AXIS 
11 ALTAZJNIT 
12 ALTAZJNIT.AXES 
13 ALTAZJNIT.SERVO-ELEV 
14 ALTAZJNIT-SERVOJ\.ZIM 
15 ALTAZJNIT-MOTOR 
16 ALTAZ.SLEWTO 
17 ALTAZ_RD_POSLOG_RANGE 
18 ALTAZ-RD.POSLOG-DATA 
19 ALTAZJNIT.POSLOG 
20 ALTAZ.POSLOG-STATE 
21 ALTAZ.REBOOT 

Table 3.2: IRMA AAC command codes sent over MC AAC serial link. 

When the MC sends the serial packet, it populates the command code field with 

a serial command code. Function parameters, where necessary, are passed via data fields 1 

through 4. A checksum is calculated over the entire packet excluding the last 4 bytes, and 

is stored in the last 4-byte field. The packet is converted into a serial ASCII string, where 

colons are used as field delimiters. The string is wrapped with S T X and E T X characters 
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and transmitted over the 19.2 kbit/s serial link. 

(MC) 
Command 

Response 
/ d a t a 

MC * 

Figure 3.16: IRMA serial communications protocol. 

The AAC has a real-time task devoted to monitoring serial data traffic. When it 

reads a S T X character, it proceeds to read up to 80 characters or when at E T X character 

is encountered. A complete ASCII-serialized data packet populated with the full scale 

unsigned 32-bit integers along with 5 colon delimiters works out to 59 bytes. If the serialized 

packet was received without error, the AAC will respond with a the same packet, where the 

command packet is populated with the M S C O M M _ S U C C E S S code (integer value 101). 

Data is returned in the four data slots, and a checksum value is calculated and placed in 

slot 6. 

A 5-second timeout is applied to every serial communications transaction. If the 

full serialized packet is not received within a 5 second period, the receiver assumes that the 

packet is lost, and responds with an error acknowledgment, shown in figure 3.18, where the 

command field is populated with the MSCOMM_FAILURE code (integer value 101), and 

each of the four data fields are populated with the M S C O M M _ E R R _ T I M E O U T code 
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MSCOMM_SUCCESS 
Data Field A 
Data Field B 
Data Field C 
Data Field D 

CRC 

Figure 3.17: IRMA serial communications packet: successful transaction. 

(integer value 77,777,777). If the reader calculates a checksum different from the embedded 

checksum, an error packet with data fields populated with M S C O M M _ E R R _ C R C (inte­

ger value 66,666,666) is returned. Finally, if the incoming packet does not terminate within 

80 characters (that is, no E T X character is detected before the 80th read character), an 

error packet with the data fields set to code M S C O M M _ E R R _ B U F _ O V E R R U N (inte­

ger value 55,555,555) is returned. These error code values were chosen as they are outside 

the scope of expected values returned by the AAC's optical encoder chip. 

MSCOMM FAILURE 
MSCOMM_ERR TIMEOUT 

MSCOMM_ERR_TIMEOUT 

MSCOMM.ERR TIMEOUT 

MSCOMM_ERR_TIMEOUT 

CRC 

MSCOMM FAILURE 
MSCOMM_ERR CRC 
MSCOMM_ERR_CRC 
MSCOMM ERR CRC 
MSCOMM_ERR_CRC 

CRC 

MSCOMM FAILURE 
MSCOMM_ERR BUFOVERRUN 

MSCOMM_ERR_BUF_OVERRUN 

MSCOMM.ERR BUF.OVERRUN 

MSCOMM_ERR_BUF_OVERRUN 

CRC 

Figure 3.18: IRMA serial communications packet: failed transactions. 
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3.7 IRMA Configuration and Data Files 

This, the final section on the chapter on IRMA's software structure, is concerned 

with the configuration files required by the CP, MC and AAC, the data files produced 

during scans, and the setup requirements for the CP software. 

3 .7 .1 I R M A C P Conf igura t ion 

The IRMA CP software, unlike the MC and AAC software, runs within the context 

of an operating system and the Perl language interpreter. The CP software's ability to run 

is dependent on whether the Perl language is installed, if all the necessary Perl modules 

(libraries) are installed, and if all the configuration files, IRMA scripts and helper files are 

in the correct relative paths. 

Compil ing a Rabbit 2000 Boot Image 

When setting up the IRMA system for the first time, the latest MC and AAC 

software should be loaded into their respective Rabbit controller's flash memory. The Rabbit 

Field Utility (RFU) program, bundled with the Dynamic C development software, is a small 

Windows-based program that loads Rabbit boot images (files having the .b in extension) 

into flash memory. Images are created within Dynamic C by performing a target-less 

compilation of the given Rabbit source code. First, the target board type must be defined 

by selecting Define target configuration from the Options menu. MC software must be 

compiled for the 22MHz RCM2100, CPU revision 1Q5T. AAC software must be compiled for 

the 25MHz RCM2010, CPU revision 1Q2T. Second, the line #def ine R2K_VERJ[Q5T must be 
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present in the constant definition block of the MC source code. If a revision IQ3T processor 

is present on the RCM2100, the definition should be changed to #def ine R2K_VER_TQ3T. If a 

revision IQ2T module is being used, it is critical that the definition be changed to #def ine 

R2K.VER.IQ2T. The IQ2T definition selects an alternate compilation of the MC software 

that calls special work-around functions involved in setting up the data collection ISR. 

More details on this issue is found in the footnote below 1. Third, the T C P / I P configuration 

information must be defined via the following constant definitions: -PRIMARY.STATIC J P , 

-PRIMARY_NETMASK, MYJMAMESERVER, and MY.GATEWAY. Next, the compiler 

must be configured to target boot images for flash memory by selecting Compiler from the 

Options menu, then click on the radio button titled Code and Bios in Flash. The last step 

is to compile the boot image by selecting Compile with defined target configuration from 

Compile to .bin file, in the Compile menu. Include debug code/RST 28 instructions, found 

in the Compile menu, should not be selected. Complete instructions on using the Dynamic 

C development environment can be found in the Dynamic C User's manual[65]. 

Preparing the Target Platform for the I R M A C P Software 

The CP software is primarily designed to operate on UNIX or UNIX-like operating 

systems, such as Linux. First, Perl version 5.8.x should be present in order to ensure all 
1If a new RCM2010 processor module is present in the Alt-Az unit, the chip will likely be revision IQ5T, 

which requires that the AAC software be compiled for revision IQ5T. At the time of writing, no operational 
IRMA unit uses an RCM2100 microcontroller whose chip revision number is less than IQ3T. 
Chip versions is of particular importance to the MC software becuase it uses external interrupts, and version 
IQ2T of the Rabbit 2000 processor contains a bug in its interrupt detection circuitry. More information 
on this problem can be found in Z-World's technical note TN201: Rabbit 2000 Microprocessor Interrupt 
problem, www.zworld.com/documentation/docs/refs/TN301/TN301.pdf. Again, this bug does not affect 
any currently operational IRMA MC board, as all the legacy (IQ2T) RCM2100 boards have been retired 
or discarded. This issue, however, is significant, because if a IQ2T board were installed, the ISR would not 
work without some modification. 

http://www.zworld.com/documentation/docs/refs/TN301/TN301.pdf
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the necessary Perl modules will compile. One can determine the version of Perl installed on 

one's system with the command p e r l —vers ion . Version 5.8.1 is found on the in-house 

IRMA CP platform. Next, a compiler, preferably the GNU C compiler, should be present. 

The Perl modules were compiled using gcc version 3.3.2 and 3.3.3. GNU Fortran is also 

necessary in order to build some of the Perl modules. The TCL/TK software suite should 

also be installed, as it supports the GUI libraries used by the IRMA GUI software. 

Once the languages are installed, the SLALIB positional astronomy library, fol­

lowed by PGPLOT graphics subroutine library, should be installed. Next, the Perl modules 

should be installed. Table 3.3 contains a list of modules necessary to run the CP soft­

ware. These modules can be installed downloading them individually from www.cpan.org 

and installing them manually (consult README file contained in each module archive), or 

by performing an automated network based installation. Issuing the command (with root 

privileges) p e r l -MCPAN - e s h e l l from a shell starts the network installation environment. 

Modules can be installed by typing i n s t a l l <module name>, where the module name is 

found in the module column. The modules should be installed in the order they are listed in 

the table. The directory I R M A d a t a must be created. It will contain scan data collected 

by the MC. It should be owned by user i r m a u s e r and belong to group users . Naturally, 

a user account for i r m a u s e r will have to be created beforehand. 

The next step is to place the IRMA CP software archive somewhere on the host 

system. The easiest method is to obtain the source tree from alpha.physics.uleth.ca via 

CVS using the command cvs checkout IRMA. To retrieve a source tree via CVS from the 

http://www.cpan.org
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M o d u l e Desc r ip t ion 
Bundle::CPAN Perl module network installer helper utilities 
Time:: Piece Object Oriented time objects 
Time::ParseDate Module for parsing both relative and absolute dates 
Tk GUI toolkit for Perl (Perl/Tk) based on TK 8.0 
Astro:: SLA Perl interface to SLAlib positional astronomy library 
Astro:: Constants Physical constants for use in astronomy 
DateTime Date and time module useful for converting dates 
DateTime::Locale Localization support for DateTime.pm (above) 
DateTime::Format::Strptime Parse and format strp and strf time patterns 
Tk::Date Date/time widget for perl /Tk 
Spreadsheet::ParseExcel Extract information from an Excel spreadsheet 
IPC::ShareLite Light-weight interface to shared memory 
Math::Round Perl extension for rounding numbers 
GD Interface to Gd Graphics Library 
Compress ::Bzip2 Interface to the bzip2 compression library 
PerlIO::gzip Perl gzip/gunzip compression utilities 

Table 3.3: Perl modules used by the IRMA CP Software. 

source file server, alpha.physics.uleth.ca, the user must have the CVSROOT and CVS-RSH 

environment variables set. These can be set inside the user's shell initialization file. For 

example, the following lines are found in the author's .tcshrc configuration file: 

setenv CVSROOT 11:ext:ianQ142.66.41.12:/files/projects/IRMA/Software/cvsroot" 

setenv CVS-RSH "ssh" 

The CP source code root directory structure appears in table 3.4. 

The IRMA GUI-based control programs are located in the root of the IRMA 

CP source tree: IRMA.pl, and viewirma.pl. IRMA.pl is the main GUI control pro­

gram to drive IRMA. viewirma.pl is a utility to view archived IRMA data files. To run 

IRMA from the command line, change the current directory to IRMA/HelperProgs/ and 

issue the command: ./irmaExec.pi <UNIT_NUMBER> <SCRIPT_NAME> IRMAscript.xls, 

http://IRMA.pl
http://viewirma.pl
http://IRMA.pl
http://viewirma.pl
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Directory Description 
auto Contains the CCIT16-CRC shared library (custom Perl module) 
Config Contains configuration files, IRMAscript command listing (Excel file) 
HelperProgs IRMA CP executables stored here (irmaExec.pl) 
IRMA IRMA CP Perl modules stored here 
SCRIPTS Contains scripts defining IRMA's operation 

Table 3.4: IRMA CP source code tree. 

where U N I T - N U M B E R corresponds to the box number of the unit, and S C R I P T - N A M E 

refers to the name of the script (contained in the SCRIPT directory) to be executed. Each 

IRMA unit, or box, has an identification number that is used to address individual IRMA 

units in multiple unit deployment situations. 

3 .7 .2 I R M A C o n f i g u r a t i o n Fi les 

Each IRMA unit (box) has a unique configuration file, stored in the /IRMA/Conf ig 

directory. The configuration file shown below provides the CP with the IP address and data 

port of the master controller, and supplies the gear reduction ratios, servo parameters and 

detector calibration constants to the MC. 

************************************************** 
2004-01-01T00:00:00 
IPaddress 128.171.116.72 
Data_port 10072 
Cooler TR282 
Board 1 
# Dummy calibration data for this time period 
CalibrateLow 77_7.74e6 
CalibrateHigh 319_6.82e6 
************************************************** 
2004-08-09T15:00:00 
# Unit returned from Hawaii 
IPaddress 142.66.41.40 
ElevGearReduction 128 

http://irmaExec.pl
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AzimGearReduction 128 
BeltReduction 8 
MinMotorRPM 500 
MaxMotorRPM 25000 
MaxGearRPM 8000 
elev.kProp 10.0 
elev_klnteg 1.0 
elev_kDeriv 1.0 
azim.kProp 1.0 
azim_klnteg 1.0 
azim_kDeriv 1.0 
************************************************** 

The file is broken into parameter blocks, which are delimited by lines of repeating 

asterisks. A time stamp appears at the head of the block, which establishes the date/time 

when the immediately following parameters took effect. The parameters within a block 

include all lines following the time stamp, up to but not including the next block delimiter 

line. A parameter line consists of a label followed by a value, and is terminated with a 

carriage return. A whitespace separates the label from the value. Comments can be included 

in the configuration file by typing a pound sign " # " (or octothorp) at the beginning of the 

line. 

When irmaExec.pl is executed, either through the IRMA.pl GUI, or via the com­

mand line, it reads in the box file specified by the box number command line parame­

ter, accepting parameter fields whose time stamp is closest to the current time/date. For 

example, if irmaExec.pl were executed on some date in 2004, it would accept the IP 

address values from the command block dated 2004-08-09T15:00:00, rather than from 

2004-01-01T00:00:00, which is chronologically 8 months earlier (approximately). Since 

the parameters Data_port, Cooler, Board, CalibrateLow, and CalibrateHigh do not ap­

pear in the more recent parameter block, these values are accepted. 

http://irmaExec.pl
http://IRMA.pl
http://irmaExec.pl
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The following list parameters can be defined in a CP configuration file. If param­

eters are not defined, default dummy parameters are assigned in their place. 

Data-Port 

The T C P / I P socket port that is used by the MC to send scan data to. 

Antenna 
The identification number of the antenna that the given IRMA unit is associated 
with. This parameter is not always used. 
ElevGear Reduct ion 
The gear reduction ratio of the gear box driving the elevation axis. 

AzimGear Reduct ion 

The gear reduction ratio of the gear box driving the azimuth axis. 

Bel tReduct ion 
The gear reduction ratio caused by the drive belt. The total gear reduction ratio 
of a given gear is the sum of its gear box reduction ratio and the belt reduction 
ratio. 
M a x M o t o r R P M 
This is the vendor-specified maximum motor rotational rate, generated when 
full scale voltage is applied to the motor controller unit. 
M i n M o t o r R P M 
This is the vendor-specified minimum motor rotational rate, generated when 
zero volts is applied to the motor controller unit. 

M a x G e a r R P M 
The maximum recommended rotational rate of the gear head (not the motor). 
This value is provided by the motor vendor. 

elev_kProp, elev_klnteg, elev_kDeriv 
Servo constants for the elevation axis motor. The three constants refer to the 
proportional, integration and derivative constants (PID), which must be deter­
mined by the user by tuning the servo algorithm. 

azim_kProp, azim_klnteg, azim_kDeriv 
Servo constants for the azimuth axis motor. The three constants refer to the 
proportional, integration and derivative (PID) constants, which must be deter­
mined by the user by tuning the servo algorithm. 

Location 
This refers to the name of the site where this given IRMA unit is located. 

Cooler 

The model number of the cryo cooler associated with this given IRMA unit 

Board 
An ID number which identifies the IRMA motherboard associated with this 
given IRMA unit. 
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CalibrateLow 
This is the ADC count when the IR channel measures the unpowered shutter 
blackbody calibration source (cold). Calibration of the calibration target in hot 
and cold states (powered and unpowered) relates the IR measurement with a 
temperature reading from the same target. 

CalibrateHigh 
This is the ADC count when the IR channel measures the powered-up (hot) 
shutter calibration source. See the description of CalibrateLow for calibration 
details. 

3.8 IRMA CP Data File Structure 

When a scan is requested, the CP software forks a child process that reads scan 

data packets from the MC. The CP software opens a file in the /IRMAdata directory, and 

writes ASCII text to this file as data packets arrive. A typical data record appears as a 

space-delimited string, terminated with a carriage return. One data record corresponds 

to a single A/D sample. The example below shows a sample on channel 1 (the IR signal 

channel), taken March 28th, 2005 at 3:00 AM. The azimuth and altitude position of the 

mount have not been initialized. 

1 7680596 2005-03-28T03:00:21.803 3962.9004 3953.8477 
A B C D E 

Field A contains the channel number of the given sample. Channel numbers range 

from 1 through 11 inclusive. ADC channel usage is listed in table A.5. The raw A/D 

sample, given in ADC units out of the maximum full scale value, appears in field B. An ISO-

formatted date/t ime stamp appears in field C. Field D contains current azimuth position, 

followed by current altitude position in field E. Azimuth and altitude positions are given in 
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degrees. When the Alt-Az mount has not been initialized, the default altitude and azimuth 

positions are 90,000 optical encoder units. This translates into 3955.07 degrees if one divides 

90,000 by 8192/360 (or approximately 22.75), the number of optical encoder units in one 

degree. 

The IRMA MC software automatically organizes scan data files into data directo­

ries unique to the IRMA unit that produced the data. For example, scans from box 2 will go 

into directory /IRMAdata/IRMA-2/year. The directory named <year> is the 4 digit year 

in which the data file was colleced. Data are additionally organized into directories labeled 

with the date the data were taken. Finally, data files are truncated on the hour, so a single 

data file will span no longer than one hour. Data collected over a long period, say 12 hours, 

30 minutes, will be spanned across 13 files, the last file containing only a half-hour's worth 

of data. 

3.9 Conclusion 

This chapter has shown that the IRMA software is not a single executable entity 

- it is distributed across three separate hardware hosts in order to share the computa­

tional load. Given IRMA's distributed nature, robust communication protocols are used on 

IRMA's two primary communication channels: the CP-MC network link and the MC-AAC 

serial communication channel. Each of IRMA's software modules are structured to support 

multi-tasking through the use of the Micrium MicroC/OS-II real time kernel, which provides 

priority-based preemptive multitasking and real-time performance. The heart of the IRMA 

data collection system is the MC's data collection interrupt service routine, implemented 
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in assembly language in order to achieve maximum execution speed. Much of complexity 

of the IRMA software is due to its distributed multi-tasking nature, while the software 

routines responsible for controlling hardware and collecting data are generally quite simple. 

IRMA's complex structure, however, provides a solid foundation for the system allowing 

flexible control and extensibility. 
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Chapter 4 

I R M A Software Modules 

The previous chapter focused on the structure of IRMA's software components. 

This involved examining the relationships among IRMA's software components and the 

inner structure of the MC and AAC. This chapter will examine the algorithms powering 

some of the significant mechanisms within the IRMA software components, as well as some of 

the theory behind these algorithms. These mechanisms include the IRMA CP's IRMAscript 

language interpreter and the AAC's motion-control routines. 

4.1 IRMAscript Language Interpreter 

The Command Processor software, i rmaExec.pl , is essentially a translator pro­

gram, converting human-readable IRMAscript language into machine-readable binary pack­

ets that can be efficiently transmitted over the network and easily decoded. IrmaExec is 

also an interpreter, because it controls the behavior of the program, specifically in flow 

control (looping and branching). A comprehensive description of IRMAscript's syntax is 

http://irmaExec.pl
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found in appendix A. 

When IRMA software development was just beginning, it was anticipated that 

IRMA would need a highly flexible, fine-grained control mechanism considerably more pow­

erful that that used for IRMA I or II. Previously, IRMA I's user interface consisted of a 

simple graphical user interface (GUI), and IRMA IPs GUI relied on web page forms. It 

seemed logical that a custom language would serve IRMA's requirements. The IRMAscript 

control language grew out of these efforts. 

In hindsight, a more elegant and powerful solution would have been to control 

IRMA using Perl, with the IRMA specific commands encapsulated in a custom-written Perl 

module. This would not be particularly difficult, given that the IRMAscript interpreter is 

written in Perl. Perl modules function as libraries that extend the functionality of the Perl 

language. Perhaps in a future version of IRMA, IRMAscript will be replaced with a driver 

library. However, some complex instrumentation systems do use custom scripting languages 

for control. 

It must be emphasized, however, that IRMAscript is an ad-hoc implementation 

of an interpreted computer language. It is reminiscent of early pseudo-code interpreters, 

which translated assembly language-like mnemonic commands into their equivalent machine 

language statements[32]. IRMAscript's grammar is limited by the interpreter's crude design, 

which is driven entirely by regular expression pattern matching. The language, however, 

is adequate for performing the tasks required by IRMA, i.e., perform repetitive sequences 

of hardware control commands while certain conditions are held, write data to files, and 

perform simple arithmetic and logic operations. 
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Interpreters and compilers must translate instructions from one form to another. 

While interpreters perform the actions specified by the statements in the source code as they 

are encountered, compilers function entirely as language translators, generating machine 

language instructions, which can be executed by the target computer directly at some later 

time. Compilers, along with interpreters, share similar internal mechanisms. A typical 

compiler contains a scanner, a parser, scope checker and code generator[16]. The scanner, 

parser and scope checker make up the front end of the compiler, while the code generator 

(the part that outputs the CPU-executable machine instructions) constitutes the back end 

of the compiler. IrmaExec contains minimal implementations of all four functions. A 

typical compiler/interpreter will contain well-defined modules or classes handling each of 

these functions. 

Scanners are responsible for recognizing the tokens, or strings, that make up a 

language statement. This involves reading the input file (the source code), throwing away 

the white space, and determining whether the tokens are literal values (numbers), named 

variables or constants, or reserved words, that is, the recognized commands of the language. 

Parsers are tasked with determining if an input command string, consisting of a 

sequence of tokens, conforms to the syntax of the language. This is the most complex phase 

of compilation, and in many compiler designs, it is the parser that drives the compiling 

process. Typically, the parser fetches tokens (words) from the scanner until it can assemble 

a valid language sentence, or statement, according to a fixed set of production rules (a 

grammar) and a rule-lookup mechanism (an automata). Automata are similar in form to 

state machines. There are many algorithms, some more involved than others, that are 



4.1. IRMASCRIPT LANGUAGE INTERPRETER 101 

designed to recognize whether strings belong to a language. The IRMAscript interpreter 

uses a simple language recognition machine, called a finite automata, along with a simple 

set of production rules to parse IRMAscript statements. 

Scope checking and type checking are generally combined in a compiler. Since 

IRMAscript does not consider data type, and all variables are considered global, that is, 

visible throughout the program, this stage is not included in the interpreter. 

Code generation takes a verified language statement and translates it into lower-

level machine-readable codes that can be accepted by the target processor. Compilers 

generate an executable file out of the machine codes, or opcodes, while interpreters execute 

these statements on the target machine. IrmaExec generates machine-executable codes, 

contained in discrete binary packets, which it sends over the network to the IRMA mas­

ter controller. Where the IRMAscript statement does not command an IRMA hardware 

component, such as a variable assignment or flow control, the interpreter will execute the 

statement directly within the context of the irmaExec process, which in turn is being exe­

cuted by the Perl virtual machine. 

4 .1 .1 C o m p u t e r L a n g u a g e T h e o r y 

IRMAscript is a language, albeit a small, trivial one. From first principles, lan­

guages consist of a set of strings, which are in turn made up of finite sequences of symbols. 

Symbols can be any kind of character, such as binary numbers, or text characters. A string 

containing zero characters is known as the empty string e. The finite set of symbols that 

constitute a language is called an alphabet E. For example, the alphabet E = {a,b,c,..z} 
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Parse tree 
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Figure 4.1: Block diagram of a typical compiler. IRMA's language interpreter skips scope 
and type checking since all variables are global and typeless. 

can generate the language L containing the strings {car, cat, bad, map}. Languages that 

contain zero strings are refered to as the empty set 0. The question remains: how can a 

finite language made up of a finite set of strings be represented? 

Languages can be defined inductively using the union U, concatenation, and Kleene 

closure * set operations. Parenthesis are used to denote precedence. Union is sometimes 

expressed with the vertical bar symbol |, which denotes alternatives. Concatenation is 

analogous to the logical a n d operation. A Kleene closure is a set operation that defines a 

set of strings that can be generated by concatenating zero (the empty string) or more strings 

from another set of strings. Regular expressions (RE) can be written using set operations, 

parenthesis and alphabet symbols to describe languages or words in the language. The 

following list of rules defines a regular expression [30]: 
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1. The empty set 0 and each member of alphabet E are REs. 

2. If symbols a and (3 of alphabet E are RE's, then (a/3) is an RE. This amounts to 

concatenation (the a n d operation). 

3. If symbols a and 0 of alphabet E are RE's, then (a U (3) is a RE. This amounts to 

union (the or operation). 

4. If symbol a is a regular expression, then a is an RE. 

5. Nothing else is a RE. 

For example, the RE (a\b)*c describes the set of all strings concluded by a single 

symbol c. Furthermore, if E = {a, b}, then the set of all strings of length 2 can be de­

scribed by the RE (a\b)(a\b). The fact that regular expressions can describe patterns of 

symbols makes them particularly useful in identifying words, or lexemes, that make up a 

language statement. Regular expressions, however, cannot describe nested constructs[30] 

of unspecified depth, such as found in a complex mathematical expressions. Thus, regular 

expressions can only describe regular languages. The IRMAscript language interpreter uses 

regular expressions to identify (or accept) IRMAscript statements, so IRMAscript can be 

considered a regular language. As such, IRMAscript does not permit nesting of expressions: 

only one, or in some cases two, expressions are permitted per statement, such as in the case 

of the whi le statement. 

Regular expressions can describe strings of a language, but they cannot recognize 

if a string belongs to a given language. A language recognition device following the steps 

described in an algorithm must be used instead. Finite automata can be used to model 
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the algorithm driving language recognition devices. In essence, finite automata are models 

of minimal computers possessing no memory. Additionally, any regular language can be 

recognized by a finite automata[30]. 

A finite automata (FA) can be visualized as a black box that can be in one of n 

discrete states depending on the input fed into the black box, by means of a metaphorical 

input tape. On the tape are printed input symbols that are part of some language. The 

black box has a reading head, which is analogous to the head on a tape recorder. When the 

read head passes over a character on the tape, the internal state of the black box changes 

to a new state, depending upon the character read and the previous state of the box. The 

read head can move forwards or backwards along the tape. Initially, the black box is in the 

start state. A string is accepted when the black box, reading the tape from left to right, 

reads a character that puts it into a final state. 

Formally, a FA consists of the 5-tuple M = {E, S, S, s, F}, where E alphabet of 

symbols, 5 is a finite set of states, 6 is a transition function (rules that define when the FA 

moves from state to state), a single start state s, and a set of final accepting states F. The 

transition function S can be described in a table, showing how the given state and input 

symbol maps to a specific output state. Directed graphs, in the form of a state diagram, are 

commonly used to describe the transition function. FA's come in two forms: deterministic 

finite automatae (DFA) and non-deterministic finite automatae (NFA). While the state of 

a DFA is completely determined by its input and its current state, a NFA has the ability 

to choose one or more possible paths (as indicated in its diagram) after reading its input. 

Regardless of the type of FA used, for every NFA there exists an equivalent DFA. Therefore, 
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NFAs are convenient to use for diagramming purposes, as they are simpler to draw, as they 

have fewer state transitions. For example, the NFA that accepts the string L = aba appears 

in figure 4.2. 

Figure 4.2: Directed graph of a NFA that accepts the language (aba)* 

Directed graphs are constructed from a series of nodes and arrows, where each 

node represents a NFA state, and each arrow is labeled with an input symbol. The node 

labeled go has an arrow pointing to it, which indicates it is the start state. After reading 

its input tape, the NFA can choose to go to state q\ if the input was an a, or go to state 

<?4 if the input was a b. Final state, 93 appears as a double circle. The graph shows that 

any number of aba character sequences, which includes zero sequences as indicated by the 

e symbol, are accepted by the NFA. Any other input sequence results in the NFA entering 

an error state, meaning the input was identified as not belonging to the given language. 

A NFA or DFA can be easily expressed in a programming language, as it is nothing 

more than a state machine. The NFA described in figure 4.2 can be expressed with the 

following C code: 

a 

e 
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state = qO; 
while(ch = getc(FILE) != EOF) 
{ 

if(ch == 'a') 
{ 

switch(state) 
{ 
case qO: 

state = qi; break; 
case ql: 

state = q4; break; 
case q2: 

state = q3; break; 
case q3: 

state = ql; break; 
case q4: 

state = q4; break; 
} 

> 
else if(ch == 'b') 
{ 

switch(state) 
{ 
case qO: 

state = q4; break; 
case ql: 

state = q2; break; 
case q2: 

state = q4; break; 
case q3: 

state = q4; break; 
case q4: 

state = q4; break; 
} 

} 
> 

i f ( s t a t e == q3) 
p r i n t f ( " s t r i n g a c c e p t e d \ n " ) ; 

e l s e i f ( s t a t e == q4) 
p r i n t f ( " s t r i n g not a c c e p t e d \ n " ) ; 

The IRMAscript interpreter is written in Perl, a popular systems programming 
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language that has powerful regular expression pattern matching tools. The algorithm to 

match the string aba can be expressed in Perl simply as: 

while(<FILE>) 
•C 

$statement = $_; 
i f ($s tatement =" /aba/ ) 
{ 

p r i n t " s t r i n g accepted\n"; 
> 
e l s e 
•C 

p r i n t " s t r i n g not a ccep ted \n" ; 
} 

> 

IRMAscript syntax is extremely simple in order to avoid nested statements, which 

would require a recursive parser. The general structure for hardware commands follows the 

pattern of one command and two command modifiers: 

[Command] [Modifier field 1] [Modifier field 2] 

followed by n parameters, depending on the command issued. All other IRMAscript com­

mands, such as flow control commands, delays, and console I /O, may use one or no modifiers, 

according to their function. In order to make the language easily readable, a three-tuple 

syntax is used to divide the commands into families, where each family consists of sub­

commands that perform specific fine-grained functionality relating to that family. For ex­

ample, the functions dealing with the Master Controller's real time clock are encompassed 

in the RTC command family. 

Inside the interpreter, the input source code file is opened, and each line is read 

individually, split into tokens along the whitespace contained in the statement, and entered 
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RTC READ DATE.TIME 
RTC READ EPOCH.TIME 
RTC SET ARBITRARY .TIME 
RTC SET DATE-TIME 

into an associative array structure, which operates like a hash table. A line is identified 

as a string of text terminated with a carriage return character (ASCII decimal code 10). 

Line numbers, generated by the interpreter, formulate the hash key. This mechanism allows 

convenient access to individual IRMAscript statements by simply passing a line number to 

the associative array, which are often referred to in Perl terminology as a hash table. 

Once the entire script has been read into the program code hash table, the inter­

preter executes a program by iterating through the range of line numbers and their associ­

ated IRMAscript statement, starting at line zero. Iterative loops ( repea t n. . endloop) as 

well as conditional loops (do. . while) require a mechanism to permit jumping back to the 

top of the loop. Upon entering loop for the first time, an array indexed with the current 

loop nesting depth is given the line number of the statement immediately following the loop 

head only after its index is incremented. This is the target address that the interpreter 

uses to jump to the top of the loop when it encounters the bottom of the loop. The loop 

nesting index allows the interpreter to keep track of which loop head address it should use, 

according to which loop is active. Iterative loops also use an array (indexed to the current 

loop nesting) to store the loop iteration count. This variable is initialized to the r epea t 

parameter and is decremented on each pass through the loop. The interpreter exits the loop 

when the iteration variable is decremented to zero, then decrements the loop nesting array. 
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10 repeat 3 / / outer loop head 
11 repeat 2 / / inner loop head 
12 pr int "some_str ing ,W 
13 endloop 
14 endloop 

In the preceding example, the interpreter will repeat the inner loop three times, 

as defined in the outer loop. The loop nesting index before entering the loop structures 

is zero. Upon entering the outer loop, the loop nesting index is incremented to 1. Upon 

entering the inner loop, the loop nesting is incremented to 2. Entering a loop increments 

this index, while exiting a loop decrements it. Values stored in the array at a particular 

index value are therefore unique according to the current loop nesting level. The loop 

iteration index is used the same way: entering a loop increments its index, while exiting 

a loop decrements the index. Below is a snippet of the actual code that controls the 

r e p e a t . . endloop construction. 

i f ($s tatement [0] =~ /"REPEAT/) 
{ 

# dereference argument 1 
i f ( de f ined($var iab les{$s ta tement [ l ] } ) ) 
{ 

$statement [1] = $variables{$statement [ 1 ] } ; 
> 

i f ($ s ta tement [1 ] == 0) 
{ 

$loopNesting++; 
$ i t e r a t i o n s [$loopNesting] = 0; 
$pc = moveToEndOfBlockO ; 
$pc++; 

> 
else 
{ 

$ i terat ions [$ loopNest ing] = $statement [ 1 ] ; 
$loopBase[$loopNesting] = $pc+l; 
$loopNesting++; 
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$pc++; 
> 
$tokenMatch = 1 ; 
last SWITCH; 

> 

if($statement[0] =~ /"ENDLOOP/) 
{ 

if(SloopNesting > 0) 
•C 

$iterations [$loopNesting-l] — ; 

if($iterations [$loopNesting-l] < 1 ) 
•C 

$pc++; 
$loopNesting—; 

> 
else 
•c 

$pc = $loopBase[$loopNesting-l] ; 
> 

} 
$tokenMatch = 1 ; 
last SWITCH; 

} 

IRMA hardware command functions must be converted from the three-string 

human-readable format to the numeric three-digit command code embedded in network 

command packets. The IRMAscript hardware command set is stored separately from the 

interpreter in an Excel spreadsheet file in tabular format, which to allows for easy modifica­

tion. One of the first tasks performed by irmaExec upon start-up is to read the command 

set spreadsheet and extract the three digit code based on a simple algorithm. IrmaExec 

uses the S p r e a d s h e e t : : P a r s e E x c e l Perl module to parse the Excel spreadsheet. The com­

mand, modifierl and modifier2 codes are generated by sequential counters that increment 

when data contained in the corresponding command, modifierl and modifier2 spreadsheet 
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columns show transitions. Once calculated, the three-digit code is entered into the com-

m a n d C o d e H a s h hash table, using the command and two modifier strings as keys. 

For example, the gps family of commands, as shown in table 4.1 appear as the 

second block of related commands in the command set spreadsheet, thus their command 

code equals 2. GPS commands that handle reading data are identified by their first mod­

ifier field equaling 1, while serial port control commands are identified by the number 2. 

Each individual reading or serial function is uniquely identified by means of modifier field 

2. The goal of this naming scheme is to uniquely identify each hardware control command. 

When modifying the command set spreadsheet, new entries must be added to the bottom 

of the block of commands for some given command family, in order to prevent changing 

the numbering scheme. A list of command strings and their corresponding codes can be 

generated within irmaExec by uncommenting the print statement immediately following the 

label C M D S E T _ P R I N T . Command codes are hard-coded in the MC software running on 

the Rabbit. 

S t r i n g N u m e r i c 
C M D M O D I M O D 2 C M D M O D I M O D 2 
GPS READ DATE-TIME 2 1 1 
GPS READ EPOCH-TIME 2 1 2 
GPS READ LAT.LON 2 1 

CO
 

GPS SERIAL OPEN 2 2 1 
GPS SERIAL CLOSE 2 2 2 

Table 4.1: GPS command codes: string versus numeric representation. 

The IRMAscript interpreter makes extensive use of Perl language features, in par-
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ticular, hash tables and regular expression pattern matching. Further specialized function­

ality, such as parsing spreadsheets or calculating CCIT-16 CRC checksums, is implemented 

via Perl modules. The interpreter is initialized via configuration files, which includes its 

own command set, as contained in an Excel spreadsheet file. The overall structure of the 

IRMAscript interpreter can be summarized in the following pseudocode: 

i n i t i a l i z e command code hash t a b l e 

open i r m a s c r i p t f i l e ( read) 
do 

read l i n e from f i l e 
s p l i t l i n e i n t o f i e l d s , put i n t o a r r ay 
put a r r a y in source code hash t a b l e wi th key = l i n e count 
increment l i n e count 

u n t i l r each EOF 

i n i t i a l i z e program counter "pc" t o 0 

do 
ge t s t a t emen t from source code hash t a b l e u s ing key = pc 
p a t t e r n match s ta tement on command, mod i f i e r l and modif ie r2 
look up command code us ing keys command, modi and mod2 
make command packet 
send command packet t o MC accord ing t o network comm p r o t o c o l 

whi le pc < t o t a l l i n e s in program 

This concludes a general overview of the structure and theory behind the IRMAscript 

interpreter. A complete description of the IRMAscript language is found in appendix A. 

4.2 Alt-Az Controller Software 

The altitude-azimuth (Alt-Az) mount is capable of pointing the IRMA MC unit 

to any Alt-Az coordinate in the sky with 1 encoder unit precision; roughly 1/22 of a degree. 

This is derived from the fact that a the optical encoder contains 8192 ticks per a 360 degree 
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revolution: one encoder tick equals 360/8192, or roughly 1/22 degrees. The elevation axis 

has 198 degrees of rotation, which allows it to slew (or rotate) from one horizon to another. 

The azimuth axis, meanwhile, is capable of rotating roughly 365 degrees. The AAC operates 

internally on the local (or horizon) coordinate system, using encoder units as its basis of 

angular measurement. Celestial objects, however, are located in terms of right ascension 

(RA) and declination (Dec). 

The equatorial coordinate system is used to locate celestial objects on the celestial 

sphere, an imaginary spherical shell that surrounds the Earth. Just as one locates an object 

on the earth's surface using 2 coordinates, latitude for the Y-axis and longitude for the X-

axis, one locates celestial objects on the surface of the celestial sphere using declination 

(DEC) for the Y-axis and right ascension (RA) for the X-axis[13]. Coordinate conversion 

is done outside the IRMA system, although early on in IRMA development, a RA-DEC 

Alt-Az conversion library was created and tested for inclusion in the IRMA MC software. 

4 .2 .1 A l t - A z In i t ia l i za t ion 

Prior to using the Alt-Az mount, physical elevation and azimuth reference points, 

or fiducial markers, must be determined through a process called homing the axes. The 

homing process involves a sequence of steps, as shown in the a l t a z _ i n i t . irma script. 

Initially, the LS7266R1 optical encoder chip (OE) must be reset, and its elevation and 

azimuth counters set to 10,000. 

Axis initialization process, which is known as homing, involves determining the 

location of both the clockwise (CW) and counterclockwise (CCW) rotational limits of the 

elevation and azimuth axes. The homing procedure for the elevation axis follows the se-
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quence illustrated in figure 4.3. Initialization begins with the elevation axis rotating in the 

CCW direction until it encounters and overshoots the CCW limit, shown as the black arrow 

starting at point a. The AAC backs out of the limit, as shown by the red arrow, until it 

reaches the threshold of the CCW limit. The AAC makes note of this position, and rotates 

the elevation axis in the CW direction, as indicated by the blue arrow starting at point c. 

When the CW limit is encountered and overshot, the AAC halts the axis, backs up slowly in 

the CCW direction, as shown by the green arrow, until the elevation axis is on the threshold 

of the CW limit. The AAC takes note of the position, calculates the rotational range (in 

optical encoder ticks) from difference between the two limits, then initializes the elevation 

axis position counter to 10,000. 

Position 10,000 is the starting position from which all rotational movements are 

made, and represents 0 optical encoder ticks from the CW limit. An offset value of 10,000 

was chosen to prevent the OE counter from wrapping to 16,777,216 when it reverses direction 

and rotates below the 0 angle mark. This will occur when the axis is near the 0 angle 

threshold. The OE control chip contains a 24-bit counter which produces unsigned binary 

coded decimal (BCD) values. CCW rotation causes the OE counter to increment, while 

CW rotation causes the OE counter to decrement. IRMA reports the elevation and azimuth 

positions with the offset subtracted from the raw OE counter values. The elevation axis 

has approximately 198 degrees of free rotation, allowing the IRMA unit to slew 180 degrees 

from horizon to horizon. 

The homing sequence on the azimuth axis is largely identical to that described 
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CCW»"£ 
Limit 

< CW 
Limit 

Figure 4.3: Initialization sequence of the elevation axis. Initialization, also called homing, 
follows the rotation sequence illustrated by the four arrows labeled a through d. Homing 
begins with a CCW rotation (a), a high-precision search for the CCW limit (b), a CW 
rotation to the CW limit (c), concluding with a high-precision search for the CW limit (d). 
The azimuth axis homing procedure follows the same sequence of events. The range of 
rotation on the azimuth axis, however, is slightly greater than 360 degrees. 

for the elevation axis. The only difference is the azimuth axis' ability to rotate a full 360 

degrees. The degrees of rotation between the CW and CCW limits is slightly greater than 

360 degrees, due to the design of the optical limits mechanism. 

4.2 .2 A l t - A z Offsets 

Internally, IRMA considers 0 degrees elevation and 0 degrees azimuth as the 

counter clockwise physical limits of both axes, which are defined by their respective opto 

switches. The elevation opto limit roughly corresponds to the physical horizon. When 

IRMA is pointing at its default elevation home position (optical encoder reading 0), its 

field of view dips slightly below the horizon. With azimuth, however, there is no physical 
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correspondence between azimuth home position and true north. As a consequence, IRMA 

requires the use of elevation and azimuth offsets, which must be applied to the encoder 

readings when planning axis moves. 

Optical encoder counter readings form the benchmark that IRMA measures its 

position against. For example, 90 degrees on the elevation axis is located directly above 

the IRMA unit (zenith). IRMA Alt-Az movements are specified in terms of degrees (in 

degrees, minutes, seconds) above the horizon, not in degrees relative to its current position, 

or distance. IRMA interprets movement destinations in the same way. The benefit of using 

absolute angles is that it simplifies the use of offset angles. 

Figure 4.4: Azimuth axis rotation examples with an offset (here defined as 135 degrees). 
The blue arrow (a) shows a rotation to 0 degrees. The black arrow (b) shows a rotation 
to 180 degrees. The red arrow (c) shows a rotation to 270 degree, which wraps across the 
physical rotation limit. Since the destination lies 45 degrees beyond the physical limit, the 
AAC would rotate the axis in the CW direction, shown as by the green arrow (d). 

180° 

a (angle 0) 

physical 
rotation limit 
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Offset angles are added to both elevation and azimuth OE readings. Movements 

relative to the offset angle are illustrated in figure 4.4. If one were to move 180 degrees (the 

black arrow labeled b) and the offset angle were 135 degrees (the blue arrow), the resulting 

destination angle would be 180 + 135 — 315 degrees. In the case of elevation angles, it 

is possible to obtain negative angles if the axis dips below the angle of offset. This does 

not occur with angle measurements on the azimuth axis because it is capable of rotating a 

full 360 degrees. It is possible to request azimuth angles that wrap across the optical limit. 

The red line (labeled c) shows the path of rotation resulting from a request to rotate to 

270 degrees, given a starting angle of 180 degrees, and a 135 degree offset. The solution is 

to subtract 360 from all destination angles greater than 360 and take the absolute value, 

which in this case is 45 degrees. 

destdeg = \(destAngledeg + offsetdeg) - 360d e s | (4.1) 

The path of rotation taken by the axis appears as the green arrow d, which rotates in the 

CW direction (towards physical angle 0) in order to avoid the 360 degree physical limit. 

4 .2 .3 A x i s g e a r i n g a n d s p e e d 

The axis rotation speed is determined by the input voltage value into the voltage 

controller and the gear reduction ratio for a given axis. Additionally, each gearbox has 

a maximum recommended rotation rate, which is fixed at 8000 RPM. The relationship 

between input voltage and motor rotation speed is linear, and can be determined from the 

manufacturer's motor and gear specifications. The parameters in question are shown in 

table 4.2. 
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M o t o r A t t r i b u t e Value 
Elevation Gear Reduction Ratio 1621:1 
Azimuth Gear Reduction Ratio 3027:1 
Belt Gear Reduction Ratio 8:1 
Maximum Motor Speed (2.5V) 12,500 RPM 
Minimum Motor Speed (OV) 500 RPM 
Maximum Recommended Motor Speed 8000 RPM 

Table 4.2: Maxon motor parameters. 

The minimum and maximum motor speeds provide the slope of the linear equation 

defining the relationship between input voltage and output axis speed, shown in equation 

4.2. The full scale voltage is 2.5 V. An offset of 500 RPM defines the Y-intercept of the 

equation. Voltages are in volts, and all speeds are defined in RPMs. 

[MaxMotSpdrev. - MinMotSpdxsiL) 
\ min min J axisSpdigL = [ FullscaleVoltage ' InPutV°tta9ev+MinMotSpd£2L 

(4.2) 

Equation 4.2 gives the output axis speed in RPMs without considering the effect 

of the gear reductions due to the gear head and drive belt. Also, the output motor speed 

must be truncated at 8000 RPM. For example, an input voltage of 1.25 V (half of full scale) 

translates into: 

( (12.50(1 rev -BOO rev ) \ 
A 1.25y + 500xs3L 

UXlSOUUrev. — n „ n (4.3) 
y min 3027 x 8 v ' 

Since the output motor speed (in RPM) is less than 8000, the value is legal, allowing us 

apply the gear reduction by dividing the motor rotational speed by the product of the 

gear reduction ratios, resulting in a net rotational speed of 0.27 RPM, or 3.72 minutes per 

revolution. 
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It is useful to know the net rotational speed of the axis in terms of ticks per second 

along the DAC value required to generate this speed. Ticks per second is calculated by: 

(net Motor Spd ££M.) . , 
\ min J ticks 

axisSyducks = — t£2L- (4.4) 
s nil s 

min 

Optical encoder ticks per second is the unit of speed used by the IRMA AAC. There are 8192 

ticks per revolution (360 degrees). Each tick is equivalent to 2.63 arcminutes, as calculated 

by ( 8 i 9 2 t

d . e g

f c ) 60 arcminutes. To determine the net motor speed in terms of an input digital to 

analog (DAC) value (range: 0 - 255), simply substitute FullscaleVoltage with 255, which 

is the full scale 8-bit DAC value. This effectively changes the slope of the linear equation 

defining this relationship. 

4 .2 .4 S e r v o M o t i o n C o n t r o l 

The elevation and azimuth axes require fine motor control in order to perform point 

to point moves that are accurate within one encoder unit. Motor speed must be controlled 

as to gently accelerate and decelerate the motors, thus avoid damaging the gear heads with 

sudden starts and stops. A trapezoidal-shaped velocity versus time profile will produce this 

kind of motion (see figure 4.5), and can be easily generated using basic kinematic equations 

for constant acceleration. 

Servo-controlled motion control is generated by calculating a position versus time 

displacement profile, based on user-supplied speed and a constant acceleration value. The 

displacement profile generating function, known as update-mp-posi t ion, breaks the curve 

into three phases: the acceleration phase, cruise phase and deceleration phase. They can 

be clearly seen in the velocity versus time plot in figure 4.5. To generate this profile, the 



Figure 4.5: Displacement and velocity paths, generated by IRMA's servo motion control 
software. This path describes a 36.3 degree (826 ticks) rotation at 20 ticks per second. 
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AAC must calculate a unique displacement at a prescribed rate given a target speed and 

acceleration. Since deceleration has the same magnitude as acceleration, the position at 

which deceleration should begin can be calculated by subtracting the acceleration distance 

from the requested move distance. The remaining distance between the acceleration and 

deceleration phases is the cruise distance. 

When the AAC begins to perform a servo-controlled movement, it zeros a time 

counter, zeros the displacement variable, and enables a high-priority task that signals the 

servo movement every 50 ms to read its current position and calculate a theoretical posi­

tion along the displacement curve, based on the elapsed time relative to the start of the 

movement. At each tick increment in the servo movement, the displacement curve is in one 

of three states: acceleration, cruise and deceleration. Each state uses a unique algorithm to 

calculate its theoretical displacement from the start of the movement, given the current time. 

The displacement curve's state, which is initialized to the acceleration state, is promoted 

to the next state when the newly calculated displacement crosses the end of acceleration 

threshold, or the start of deceleration threshold. When a displacement is found to cross 

the end of deceleration threshold, the destination has been reached, and axis movement his 

halted by enabling the axis brake. 

Displacements for the theoretical displacement profile are generated using motion 

equations of constant acceleration, which are found in any first year college physics textbook. 

During the acceleration phase, displacement is calculated using equation 4.5, where D is 

in ticks, T is in seconds, and A, the user-defined constant acceleration value, is defined in 
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accel 

Accelerati on Cruise Deceleration 

D accel " elapsed 

decel 

D decel 

Figure 4.6: Displacement curve generation. Each region of curve: the acceleration, cruse 
and deceleration phases, has a unique equation for calculating displacement D. 

ticks 
seconds2' 

1 r 

DACC = ^(TelapsedY (4.5) 

The cruise phase is characterized by constant velocity. Displacement during this phase is 

calculated by equation 4.6. Velocity is measured in j j ^ g j -

DCRUISE — DACC + (y(Telapsed ~ TACC)) (4.6) 

Calculating displacement during the deceleration phase, defined in equation 4.7, is more 

complex as it must take into account times and displacements from the previous phases. 

Time T, velocity V and displacement D remain in the same units defined in the previous 
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phases. Equation 4.8 defining R (in seconds) and equation 4.9 defining Q (in ticks) represent 

intermediate steps in calculating D. 

D = Q + {\(-A)R2) (4.7) 

R = Teiapsed - TACC ~ ^CRUISE (4.8) 

Q — DACC + DcRUISE + {V(Telapsed ~ TACC ~ TCRUISE)) (4.9) 

The displacement profile must be tracked over time, whereby the axis in question 

reaches position s at time t, as dictated by the profile. The algorithm that performs the 

tracking, that is, conforms the physical behavior of the machine to the desired behavior is 

called its control law, or control algorithm[33]. 

Control systems, such as IRMA's AAC, are closed loop systems as they use feed­

back after applying input to the plant, which in this case is a voltage driving the motor 

controller. The difference between the desired result (the set point) and the feedback value 

(typically measured from a sensor) is the error signal, E. Control algorithms attempt to 

converge the error signal to zero. The degree to which this is done successfully is dependent 

upon the control algorithm being used, and the nature of the system being controlled. 

IRMA servo-based move command uses a proportional-integral-derivative (PID) 

servo loop as its control law. Proportional feedback control multiplies a gain constant Kp 

with the error signal: thus Kv is proportional to the magnitude of the error E. When the 

physical system deviates from the desired behavior a little, a small amount of correction 

is applied. When the physical system deviates by a more significant amount, however, 

much correction is applied. Depending on the amount of gain applied, this can result 

in overcompensation, or overshoot, which can cause the system to oscillate. Reducing 
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proportional gain can reduce overshoot and possible oscillation (called ringing), but it may 

introduce more steady state error. Using proportional control alone, it is difficult to balance 

the goals of reducing oscillation, decreasing convergence time, and reducing steady state 

error, because they typically compete with one another[63]. 

time (seconds) 

50 

Figure 4.7: Motor speed oscillation due to poorly chosen or untuned P, I and D constants. 
The thick line represents the actual axis displacement from 0 to 826 encoder units (ticks). 
The thin S-shaped displacement curve represents the theoretical path that the PID servo 
loop attempts to track, represented by the thick line. The error signal is shown as the thin 
line oscillating about the X-axis. 

Integration and derivative control terms are often included with the proportional 

term to achieve these control goals. Integration involves summing all the previous error 

terms and multiplying the result with a constant, Kj. The integral term is useful for 

increasing long-term accuracy by reducing error[33]. As Kj is increased, the rate at which 

the error converges to zero increases. The derivative control is focused on the rate of change 

in the error signal. The derivative gain constant, Kp, is multiplied with the the derivative of 
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the error signal, which is defined as the change in the error signal over time. The derivative 

term acts to predict future system behavior based on what happened in the past. If the 

error has changed slowly in the past, it will likely do so in the future. The derivative term 

gives the controller the ability to generate a strong response against sudden changes in 

the error signal[33]. Combining derivative with proportional control allows control of the 

system's transient response (rate of convergence and oscillation control) without affecting 

steady state tracking[63]. Combining the P, I and D constants together yields the following 

equation: 

Where E is the error, t is time and MV is the manipulated variable, that is, the value 

that is to be fed back into the physical system, or plant. A block diagram representing this 

expression appears in figure 4.8. 

In applying the PID control algorithm to IRMA's velocity tracking motion control 

source code, appearing in the following code snippet, the error signal (f E) is calculated as 

the difference between the theoretical position (f RelPosTH) along the displacement profile 

and the actual position (fRelPos) reported by the optical encoder (line 1). Calculation of 

the proportional term occurs in line 3. The integral term calculation (line 4) involves multi­

plying the integral constant with a running sum of each error value (f IntegSum) multiplied 

by the change in time, fDeltaTime. The time delta, which is set to 50 ms, determines the 

rate at which the PID servo loop checks its feedback and performs the necessary adjust­

ment to the system. Finally, the derivative term is calculated by the derivative constant 

multiplied by the change in error (fDeltaE) over the change in time, as shown in line 6. 

(4.10) 



4.2. ALT-AZ CONTROLLER SOFTWARE 126 

REFERENCE 
VALUE 

ERROR 

• f ^INTEGRAL • f ^INTEGRAL 

+ 
INTEGRATOR 

+ 

DERIVATOR 

'ROPORTIONAL 

dV 
dT 

FEEDBACK ADC 

DAC & 
DRIVER 

OUTPUT 

PLANT 

Figure 4.8: PID algorithm block diagram[64] 

Once the three terms are added together (fMV), the resulting value is scaled to an 8-bit 

value that can be fed into the DAC. A full view of IRMA's PID servo routine is found in 

the SingleAxisMoveTask function, which appears in the AAC source code. 

1 fE = fRelPosTH - fRelPos; 
2 fDeltaE = fE - fPrevE; 
3 fMVp = altazConstants.elev_kProp * fE; 
4 fMVi = altazConstants.elev_klnteg * flntegSum; 
5 fIntegSum = fIntegSum + ( fDeltaTime * fE ); 
6 fMVd = altazConstants.elev.kDeriv * (fDeltaE / fDeltaTime); 
7 fMV = fMVp + fMVi + fMVd; 
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4.3 Conclusion 

This chapter has examined the IRMAscript language interpreter and the regular 

expression pattern matching algorithm that powers language statement parsing. This chap­

ter has also examined the AAC software that controls the Alt-Az mount, focusing on the 

axis initialization process, how destination angles are calculated, and how trapezoidal ve­

locity curves are calculated and translated into axis movements, using a PID servo tracking 

algorithm. If IRMAscript is going to continue to be used in future IRMA models, the inter­

preter would benefit from a redesign, where the regular expression-based parsing algorithm 

would be replaced with a more sophisticated parser, such as a top-down recursive descent 

parser. Eliminating IRMAscript entirely, however, and using a Perl module encapsulating 

IRMA system control commands would be a preferred solution, because IRMA scripts could 

be defined in Perl, which is a popular and versatile language. 
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Chapter 5 

Future directions for I R M A 

5.1 Testing Campaigns 

5.1 .1 M a u n a K e a , 2 0 0 4 

IRMA III underwent initial field testing at the Smithsonian Submillimeter Array 

(SMA), Mauna Kea, Hawaii between May 24 and June 16, 2004. The testing campaign set 

out to demonstrate that multiple IRMA units could track PWV variations, and that its 

PWV measurements, when converted to phase variation measurements, could closely follow 

data from the Smithsonian Astrophysical Observatory (SAO) seeing monitor[43]. 

Figure 5.1 shows 4 and a half hours of data simultaneously collected by two IRMA 

units, each of which were attached to two SMA antennas separated 141 m apart. The black 

and red traces at the bottom of the figure show the spectral power (in watts) of the IR 

signal received by each antenna. The offset between the two signals is caused by using a 

common filter profile during data processing, and the lack of correct temperature sensor 
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calibration on one unit's blackbody. In reality, each IRMA unit's filter has its own unique 

profile, which needs to be applied to its own data set. The top trace shows the difference 

in spectral power measured between the two antennas. The two signals track each other 

closely, since the two antennas are pointed the planet Jupiter. A region of signal instability 

appears approximately 1500 seconds after the beginning of the observation session. For 

approximately 1500 seconds, one of the antennas pointed away from Jupiter, resulting in 

the unstable region where the signals do not correlate. Approximately 3000 seconds into 

the observation session, the unaligned antenna is pointed again at Jupiter. From this point 

onwards, the two signals show close correlation, as indicated by the top curve showing the 

difference in signal between the two antennas. Atmospheric turbulence appears as rapid 

fluctuation in the spectral power readings. 

This particular observation session commenced in the early afternoon, around 

14:00 local time (Hawaii standard time: HST). The spectral power data shows rapid fluctu­

ations in the first 8000 seconds (roughly 2 hours) of the observation, indicating atmospheric 

turbulence. The turbulence decreases as the observing session moves into the evening. This 

atmospheric behavior is indicative of Mauna Kea's well known temperature inversion layer, 

where a layer of cold, moist air is trapped at lower altitudes by an upper layer of hot, dry 

air. As the ambient temperature drops in the afternoon, this inversion layer breaks down, 

allowing the cold moist layer to bubble up over the summit, resulting in the atmospheric 

turbulence appearing in this data[43]. 
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IRMA ADC Output 

Figure 5.1: First set of simultaneous data taken by dual IRMA units at the Smithsonian 
Millimeter Array, Mauna Kea, Hawaii, June 15, 2004. This 4.5 hour data collection ran 
from 14:00 to 18:30 HST. 

5.1.2 G e m i n i S o u t h 

In February of 2005, two IRMA units were shipped to the Gemini South Observa­

tory, atop Cerro Pachon in the Chilean Andes. A concrete pad was prepared for one IRMA 

unit, situated a few tens of meters from the Gemini telescope dome. IRMA's software sys­

tems went through extensive debugging, with special emphasis on it's Alt-Az software. The 

IRMA hardware and software operated as expected up until the final day of testing, when 

Ethernet communication problems began to occur, manifesting itself in extremely slow net­

work transactions between the CP and MC. Pinging the MC from the CP showed packet 

losses ranging between 50 to 75 percent. The network communication problems appear to 
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have been solved after an alternate data/power umbilical cable was attached to the IRMA 

unit. The cause of this problem has yet to be determined. In the time that passed while 

IRMA lay idle, its vacuum had deteriorated, requiring its getter to be re-fired. The fragility 

of IRMA's hardware has been an ongoing problem. It is not unexpected, however, given 

that IRMA is still experimental. 

5.2 Polar Deployment of IRMA 

5.2 .1 A n t a r c t i c a 

Over the past decade, attention has been directed towards Antarctica as a possible 

site for future astronomical observatories. Antarctica is attractive to astronomers for its low 

atmospheric water vapor content and low ambient temperature, both of which contribute 

to exceptionally low infrared sky brightness. Studies by Nggyen in 1996 show that the at­

mospheric thermal emission, centered around 2.36 microns, is darker than any other known 

observatory site, and is comparable to conditions 27 km above sea level[39]. Additionally, 

extremely low wind speeds have been reported at the Antarctic high plateau, which allows 

for optimal seeing conditions [58]. Seeing is inversely related to the amount of atmospheric 

turbulence; low turbulence results in higher observable angular resolution[25]. 

Particular attention has been given to Dome C, high on the Antarctic plateau 

some 3200 m above sea level[58]. The site is at sufficient elevation to place it above the 

200-300 m band of turbulent atmosphere that extends from the Antarctic ice found at sea 

level. During the winter season, Dome C receives around 100-300 microns of precipitation, 

and has an average temperature of -60 C. Due to its extreme low temperatures and low 
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humidity, the atmosphere at Dome C has exceptionally low infrared darkness. In 2000, 

infrared brightness measurements of the wintertime atmosphere showed the site to be as 

much as 20 times darker than Mauna Kea in some regions of the 10 micron window. 

... X - 1 

Figure 5.2: Concordia Station, Dome C, Antarctica. The AASTINO remote observatory 
appears in the foreground as a green igloo[3]. 

Concordia station is a French/Italian research station located at Dome C. Un­

manned, automated site testing stations have been placed at Concordia in order to char­

acterize atmospheric conditions of the Antarctic high plateau. In 2003, an automated sta­

tion called AASTINO (Automated Astrophysical Site Testing International Observatory), 

was deployed. Roughly the size of a travel trailer, AASTINO is a portable, autonomous, 

remotely-operated cabin housing numerous pieces of instrumentation. It relies on solar 

power as well as two Sterling cycle engines for power, and is connected to the Internet via 

an Iridium satellite telephone [28]. IRMA will arrive in Antarctica between November 2005 

and January 2006, at the beginning of Antarctic summer. There it will spend a year on 

board AASTINO measuring water vapor content above Dome C. The IRMA detector box 

and Alt-Az mount will be mounted to the roof of AASTINO, while the command processor 
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PC will be housed inside the AASTINO cabin. 

5.2.2 T h e A r c t i c 

Characterization of the arctic environment for suitable astronomical observation 

sites is only in its infancy. Programs such as the European Southern Observatory's ESPAS[40] 

program (ESO Search of Potential Astronomical Sites) have been searching around the world 

for promising ground-based telescope sites. The arctic is an attractive region to locate ob­

servatories because it is more accessible than the Antarctic. Logistical infrastructure in 

the form of military and weather stations exist in northern Canada and Greenland. Like 

Antarctica, regions in the Arctic are extremely dry and cold. The Arctic winter is char­

acterized by extremely calm, cold conditions with very little cloud cover; ideal observing 

conditions. Barbeau Peak, a 2616 m summit located on Canada's Ellesmere Island, has 

been identified by ESPAS as a candidate observatory location. Barbeau Peak is situated in 

an Arctic desert, receiving 18 mm of precipitation annually each winter (November through 

April). It has been suggested that the annual average night-time precipitation at Barbeau 

Peak may be close to 0 mm, making it even drier than Cerro Paranal, Chile (2635 m), 

considered to be one of the best observation sites on Earth[25]. 

5.2 .3 A d a p t i n g I R M A t o Po lar C o n d i t i o n s 

Long-range plans for IRMA include possible deployment in the Canadian arctic. 

Design of a completely autonomous, cold weather hardened IRMA is already underway. 

Deploying IRMA in the polar regions presents several challenges, in particular, the effect of 

the extreme cold on IRMA's moving parts. IRMA's chopper wheel axis bearing lubricant 
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becomes viscous at low temperature, which required that the chop wheel bearing be repacked 

with a new lubricant. The flex cable, which carries power and communication lines from the 

Alt-Az base to the IRMA detector box, becomes stiff when subjected to -80 C temperatures. 

Teflon-coated wires gathered into a bundle are being considered as a solution, as there is 

no suitable supplier for short lengths of Teflon flex cables. 

Many conventional integrated electronic devices, such as single board computers, 

are not tested to function to specifications at temperatures lower than 0 C, although they 

may correctly operate at low temperature. At issue is the possibility that these devices 

may contain temperature sensitive components, in particular, certain types of capacitors, 

which will fail at sub-zero temperatures. Extended temperature range devices are verified 

to operate at temperatures as low as -40 C. The IRMA MC and AAC control computers 

are rated extended temperature operation. IRMA, however, must be able to survive tem­

peratures as low as -90 C, the minimum expected temperature that could be experienced 

at Antarctica. Therefore, it has been necessary to perform environmental testing on the 

IRMA units destined for Antarctica. In the spring of 2005, the AIG research group acquired 

a large (292 1) environmental chamber[10] capable of reaching -86 C for low temperature 

testing of the IRMA MC and the Alt-Az mount.. 

Semiconductor electronics, such as the Rabbit mircocontroller modules, have been 

proved to operate normally under cold (-80 C) conditions in the freezer. Components 

containing electrolytic capacitors, such as the power supply and Maxon motor controllers 

have failed, as their capacitance drops with respect to temperature. The power supply for 

the cold temperature IRMA has been relocated to inside the AASTINO cabin (where it will 
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be within the operational temperature range of electrolytic capacitors). The electrolytic 

capacitors in the Maxon motor controllers have been replaced with tantalum capacitors, 

which can tolerate lower temperatures. 

5.2 .4 R e m o t e C o m m u n i c a t i o n s 

The other challenge facing IRMA is its remote communication link. Tests have 

been performed using an Iridium satellite telephone to establish a serial P P P (point to point) 

connection between IRMA and a host computer at the University of Lethbridge. This link 

carries T C P / I P traffic, permitting a user to connect to IRMA as if it were another host 

on the Internet. Tests to dial into IRMA from a remote computer as well as from IRMA 

using the Iridium telephone have been successful. It is anticipated that IRMA operators 

will dial into IRMA to perform configuration or housekeeping tasks. For the majority 

of communication uplinks, IRMA will automatically dial out over the Iridium network and 

connect to a U of L based computer to transmit its science and housekeeping data. Network 

bandwidth is greater and less costly when dialing into Iridium's Internet service from an 

Iridium telephone, rather than directly dialing into a remote Iridium telephone. This is the 

method AASTINO uses to transmit its data to its operation center at the University of 

New South Wales (UNSW), in Sydney. 

5.2 .5 M i g r a t i n g f rom 8-bit t o 32-bi t E m b e d d e d C o m p u t e r s 

For true autonomous operation, IRMA will need to possess a greater degree of 

reliability and flexibility. This requires that operators have the option to log into IRMA 

regardless of IRMA's condition in order to manage the system, reconfigure (perhaps even re-
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compile the IRMA source), and reset the IRMA software. The autonomous, remote version 

of IRMA is based around PC-104 small form factor computer hardware instead of Rabbit 

microcontrollers. Roughly 3.5 by 3.75 inches square, PC-104 computers are true IBM PC 

compatible computers capable of running desktop operating systems. The remote version 

of IRMA will run RedHat 9 (kernel version 2.4.20), permitting the IRMA master control 

software to be developed using conventional development tools and languages: ANSI C, 

using the GNU C / C + + compiler. All the PC-104 hardware selected for IRMA is all rated 

for extended temperature (-40 C to 85 C) range. 

Tri-M TMZ104 PC-104 Single Board Computer 

Figure 5.3: Tri-M TMZ104 PC/104 single board computer, powered by a 667 MHz Trans­
meta Crusoe 5500 CPU. 

Based on a 667 MHz Transmeta Crusoe 5500 microprocessor, the Tri-M TMZ104 
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features 272 MB of SRAM, 1 USB 1.1 port, 2 RS-232 serial ports, 1 parallel port, 1 EIDE 

channel (supporting 1 master and 1 slave device) 1 keyboard port, 1 PS/2 mouse port, and 

a PC-104 16-bit expansion bus for connecting additional PC-104 modules. The TMZ104 

is certified for operation at temperatures between -40 C to 85 C. Power consumption on 

the TMZ105 varies with the CPU workload. The CPU is configured to dynamically switch 

between 33 and 533 MHz, resulting in power consumption ranging between 1.8 and 1.93 W. 

The TMZ104 is manufactured by Tri-M Engineering[14]. 

Diamond Sys tems Emerald M M - D I O Serial /Digital IO Module 

The Diamond Systems Emerald MM-DIO [9] is a 48 channel DIO card that also 

includes 4 RS-232 serial ports. The board uses the PC/104 form factor and interfaces to 

the TMZ104 via the 16-bit PC-104 bus. It is temperature rated for operation between -40 

C to 85 C. Serial speeds up to 115 kbps are supported. All 48 DIO lines are bidirectional. 

Power consumption is set at 100 mA. 

Aaeon P C M 3 6 6 0 10-BaseT Ethernet Module 

The Aaeon PCM3660[18] is a 16-bit, 10 Mbit/s Ethernet module, based on the Re-

alTek 8019 network interface chip (NIC). The 8019 is based on the Novel NE2000-compatible 

network interface chip. To use this network card under Linux, the system must be man­

ually configured to load ne .o module, as this (as well as any other PC-104 card) is not 

plug-and-play, but rather, based on older-style ISA technology. The PCM3660 is not rated 

for extended temperature operation; it is designed to operate in temperatures between -15 

C to 70 C. The PCM3660 consumes 400 mA. 
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R T D CML16686GX333HR P C / 1 0 4 C P U Module 

Figure 5.4: RTD CML16686GX333HR PC/104 single boaxd computer, featuring an on­
board Ethernet controller. The computer is powered by a 333 MHz National Semiconductor 
Geode CPU. 

Although the Tri-M TMZ104 CPU module is exceptional in its low power usage, 

it does not have on-board networking, which means that an additional PC/104 add-on 

network module must be added, adding to the bulk of the embedded computer. The RTD 

CML16686GX333HR[52] CPU module requires 6.3 W of power, but features a 10/100 

Base-T Ethernet controller, as well as many of the features offered on the Tri-M module. 

The CPU is a National Semiconductor Geode GX-1 Intel-compatible processor clocked at 

333 MHz; roughly half the speed as the Tri-M's Transmeta Crusoe processor. This CPU 

module is being considered as a replacement for the Tri-M board, because it along with the 

Diamond MM-DIO board can both fit in IRMA's electronics compartment. 
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M-Systems Disk-On-Chip 2000 Technology 

A 576 MB M-Systems MD2203-D576[31] Disk-On-Chip 2000 (DOC) serves as the 

hard drive for the PC/104 version of IRMA. Having no moving parts makes the DOC 

highly desirable in a hostile (wet and cold) environments. The DOC is rated for operation 

at temperatures as low as -40 C. The main difficulty with using DOC storage is that it, 

being based on NAND-gate flash memory technology, can only tolerate between 100,000 

and 1 million erase cycles. NOR-based flash memory, the most common type of non­

volatile RAM used, can handle only a tenth of that - between 10,000 and 100,000 erase 

cycles[59] per memory cell. Fortunately, the DOC device driver supplied with the chip 

uses wear-leveling to spread read/write operations across the memory cell array. Despite 

this precaution, the number of erase cycles remains fixed, thus requiring judicious use of 

memory. Swap memory, which uses a section of the hard disk to store the state of suspended 

(swapped-out) processes, will be disabled, in order to reduce the amount of disk read/write 

activity. Consequently, IRMA's operating system will be configured to have a small memory 

footprint. This implies the use of a small, minimal kernel, using only necessary features. 

Linux is scalable, and should easily fit within the 272 MB memory space. 

5.2 .6 P o r t i n g R a b b i t - b a s e d I R M A Software t o t h e P C 

The IRMA control software (excluding the Alt-Az software) is currently being 

ported over to the PC platform, which has required some significant structural changes. The 

CP software, along with the IRMA GUI (if required) will be hosted on the MC computer 

along with the MC software, eliminating the CP computer. Both programs will run in 
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separate processes (tasks), and communicate with each other over a local socket, which 

unlike the Ethernet link, is 100 percent reliable. The AAC will remain on the Alt-Az 

unit due to limited number of wires that can be contained in the flex cable. The Alt-Az 

controller is interfaced to 26 DIO lines '(shown in figure 2.16) that handle motor control 

and position feedback. There is provision for a third computer, hosted on on a Rabbit 

RCM2200 microcontroller module, to monitor the solar power kit. The solar controller 

(SC) will communicate with the MC via a local Ethernet LAN using the IRMA network 

packet protocol and packet structure. No IRMA system planned for deployment requires a 

solar power unit or a Rabbit SC module. 

Since the CP software is written in Perl under the Linux OS, it should require very 

little modification when ported over to the PC/104 platform, which will be also running 

Linux. Virtually no modifications are required for the CP software. It can communicate 

with the MC software using the PC/104 host's IP address, or by using the network loopback 

address. This is important as it will help ensure the Rabbit and PC IRMA software are 

compatible with each other. That is, the same CP software can be used with both platforms. 

Porting the MC code, which was originally written in Dynamic C, will require 

more effort. The MicroC/OS-II tasks need to be translated over to UNIX-style processes. 

Hardware dependent system calls, such as DIO and serial communication, must be trans­

lated into the equivalent Linux system calls. Serial and digital I /O must be remapped from 

the Rabbit to the PC-104 hardware. The MC's data collection interrupt service routine 

(ISR) as defined on the Rabbit was anticipated to be rewritten as a Linux device driver. 

Fortunately, the Linux driver library for the Diamond MM-DIO board supports user-mode 
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interrupt functions, which are much simpler to implement (as they run in user memory 

space), and function in similar fashion to ISRs. 

Finally, the Rabbit to PC-104 software port presents the opportunity to restructure 

the IRMA software to reduce (or hide) complexity and enhance readability. It may be 

advantageous to implement IRMA's modules and libraries as objects, implying that the 

IRMA software be rewritten in C + + . One of the big problems identified in the current MC 

source code is the proliferation of globals, which is indicative of poor, or at least ad hoc 

design. Global variables and structures were used in the MC software as a means to pass 

data between tasks and hold system state. Under C or C + + , a wide range of inter-process 

communication (IPC) mechanisms are available to the developer. Rethinking the design of 

the MC software may be a worthwhile exercise. Due to the limited time window available 

to deliver the Antarctic and Thirty Meter Telescope (TMT) IRMA units, the MC software 

is being rewritten in C in order to simplify and speed up the porting process. 

5.3 Final Thoughts 

The IRMA control system is by far the most complex instrument control system 

designed by the Astronomical Instrumentation group. Its code base adds up to roughly 

25,000 lines spread across four autonomous software executables and three platforms: the 

PC-based command processor, the RCM2100-based master controller, the RCM2010-based 

Alt-Az controller, and the PC-based IRMA GUI front end written by Amy Smith. Use of 

a custom scripting language allows precise and flexible control of the IRMA instrument. 

The modules responsible for hardware control, namely the MC and AAC, are embedded 
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systems based on low-power, robust 8-bit microcontrollers containing no moving parts, 

making them well suited for use in hostile environments. Additionally, IRMA's hardware 

control modules deliver hard real-time performance by means a preemptive multitasking 

kernel. Future instrumentation designed by the University of Lethbridge's Astronomical 

Instrumentation Group will likely be influenced by IRMA for years to come. 
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Appendix A 

IRMAscript 

A. l Overview 

When the operating specifications of IRMA were being established, it was decided 

early on that IRMA should be controlled not by a set of pre-defined operation sequences, 

as had been the case with the earlier incarnations of IRMA, but rather with a command 

language in order to provide the operator with the greatest amount of operational flexibility. 

This approach to device control is not uncommon with advanced systems. The Unidex[19] 

family of motion control units used with the AIG's Mach-Zehnder FTS (MZFTS) and 

Herschel/SPIRE Test FTS provide proprietary scripting languages to control their multi-

axis motion controller. 

Although time consuming at first, using scripts to control instrumentation allows 

the operator to define complex sequences in a file that can be executed at will. IRMA takes 

this approach. There is a GUI interface to do simple interactive tasks, and an interpreter to 

drive complex command sequences. Ultimately, everything in IRMA is based around scripts 
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and its native command language, IRMAscript. Each button and menu choice is mapped 

to a specific script, or generates a script dynamically, in order to define the behavior of 

the requested button click or menu selection. The IRMAscript interpreter, i rmaExec.pl , 

is the primary interface between the operator and the IRMA instrument. All commands 

that IRMA responds to originate from this program. 

A.2 Language Structure and Features 

IRMAscript is an interpreted language. That is, the language syntax is not con­

verted into a primitive set of instruction codes before execution. Rather, each statement 

is extracted from its source file and tested for syntactic correctness and executed as they 

appear in the script. The process of interpretation results in programs executing slower 

than programs originally compiled into native machine code, due to the overhead of re­

peatedly converting human-readable computer language statements into machine-readable 

instructions (often re-interpreting the same statement over and over in the case of looped 

instructions). The IRMAScript language interpreter does not perform the actions defined 

in the IRMAscript statement, so speed of execution is not important - ease and flexibility 

of use, however, is. 

An IRMAscript statement is structured simply. For commands that directly con­

trol IRMA, a command statement consists of a command type, followed by two modifiers, 

and zero to fifteen arguments. The command type and its two modifiers define a unique 

command. The arguments are provided in order to pass information pertinent to the com­

mand to IRMA. Most command statements, with the exception of the Alt-Az moveto/slewto 

http://irmaExec.pl
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commands, have zero or one argument. In addition to IRMA commands, IRMAscript pro­

vides variables, data assignment, arithmetic, system commands (such as reading system 

time), looping mechanisms, lists, and flow control, and console I /O. They do not follow the 

same command structure described above. 

Whitespace is used to delimit, or separate, each of the elements (command type, 

modifiers and arguments) that make up an IRMAscript statement. Whitespace can consist 

of spaces or tabs. Each statement must terminate with a carriage return. Only one state­

ment can appear on one line, which precludes IRMAscript from being a free form language, 

such as C or C + + . IRMAscript is case-less. It does not matter whether IRMAscript state­

ments are written in upper or lower case letters. Within the interpreter, all statements are 

converted to uppercase. 

Variables in IRMAscript are typeless since Perl, the language that IRMAscript is 

implemented in, is itself typeless. Type is determined by the context of the statement. For 

example, one would not want to perform arithmetic operations on textual data, such as a 

t ime/date string. Doing so will generate a runtime error and cause the currently running 

IRMAscript to break execution. Variables can have any name, including reserved words, 

but must be prefixed by a dollar sign '$'. 

Numbers in IRMAscript, like in Perl, are real numbers. That is, they can be 

integer or floating point numbers, and be negative or positive. Literal numeric vales can 

be expressed as real numbers, just like in other languages. The only exception is that 

IRMAscript has no provision for scientific notation, nor can numbers be represented in 

different bases, such as hexadecimal or octal. Only base ten numbers are supported. 
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The range of numbers expressible in IRMAscript is based on the range of numbers 

expressible in Perl. In Perl, all numbers are represented internally as double precision 

floating point values. Thus, the range of numbers in IRMAscript is equal to the range of 

numbers expressible in double precision floating point numbers. The effective range of IEEE 

double precision floating point numbers is ± 1 0 3 0 8 - 2 5 . 

Comments in IRMAscript are specified by placing a leading pound sign at the 

beginning of the comment statement. For a block of text that needs to be commented, a 

pound sign must precede every line. There is no mechanism for multi-line comments such 

as /* ... */, as found in C, C + + or Java. 

A.3 IRMAscript Language Summary 

The following table lists all IRMA system commands addressable within the IR­

MAscript language. Non-system commands, such as flow control commands, are not listed. 

C o m m a n d Modif ier 1 Modif ier 2 A r g u m e n t s 

STARTPROG SOCKET OPEN 

ENDPROG SOCKET CLOSE 

CRYO STATE ON 

CRYO STATE OFF 

CRYO SET MANUAL.MODE 

CRYO SET A U T O C O D E 
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CRYO SET STOPPED_MODE 

CRYO SET SET_POINT tempKelvin 

CRYO READ C O M P ^ M P 

CRYO READ SET-POINT 

CRYO READ MODE 

CRYO READ CURR.TEMP 

CRYO READ OSC-FREQ 

CRYO SERIAL OPEN 

CRYO SERIAL CLOSE 

GPS READ DATE-TIME 

GPS READ EPOCH-TIME 

GPS READ LAT.LON 

GPS SERIAL OPEN 

GPS SERIAL CLOSE 

ADC INIT RESYNCH 

ADC INIT RESET 

ADC INIT RW.TEST 

ADC SET CSR chan,gain,wordRate,polarity 

ADC SET GAIN channel, gainValue 

ADC SET OFFSET channel, offset Value 

ADC SAMPLE N O J N T channel 
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ADC SAMPLE O N J N T channel 

ADC READ CSR channel 

ADC READ GAIN channel 

ADC READ OFFSET channel 

ADC READ CONFIG.REGISTER 

SHUTTER STATE OPEN 

SHUTTER STATE CLOSE 

SHUTTER READ LIMIT 

SHUTTER READ OVERCURRENT 

SHUTTER SET OC-RESET 

CHOP-MOTOR STATE ON 

CHOP-MOTOR STATE OFF 

CHOP-MOTOR STATE MEASURE-RPM.ON 

CHOP-MOTOR STATE MEASURE-RPM.OFF 

CHOP-MOTOR READ STATE 

CHOP-MOTOR READ RPM 

BB STATE ON 

BB STATE OFF 

BB READ STATE 

ALTAZ MOVE-TO DMS elD,elM,elS,azD,azM,azS,spd 

ALTAZ STATE POSLOG poslog_enable/poslog.disable 
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ALTAZ STATE HALT 

ALTAZ STATE REBOOT 

ALTAZ INIT PING 

ALTAZ INIT ALTAZ 

ALTAZ INIT AXES ELEVATION /AZIMUTH 

ALTAZ INIT SERVO 

ALTAZ INIT MOTOR 

ALTAZ SET ALT.OFFSET offset 

ALTAZ SET AZ.OFFSET offset 

ALTAZ READ POSITION 

ALTAZ READ TASK-STATUS 

ALTAZ READ ALT.OFFSET 

ALTAZ READ AZ.OFFSET 

ALTAZ READ POSLOG-RANGE 

ALTAZ READ POSLOG-DATA 

ALTAZ READ POSLOGJSTATE 

ALTAZ SERIAL OPEN 

ALTAZ SERIAL CLOSE 

ALTAZ SLEW_TO DMS elD,elM,elS,azD,azM,azS,spd 

RTC SET DATE-TIME 

RTC READ DATE-TIME 
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RTC SET ARBITRARY-TIME YYYY-MM-DDThh:mm:ss 

SCAN SIGNAL O N J N T 

SCAN SIGNAL STOP 

SCAN READ STATE 

IRMA STATE OFF 

IRMA READ UPTIME 

SUN-SENSOR READ STATE 

SUN-SENSOR READ SHUTTERJ3TATE 

SUN-SENSOR STATE SHUTTER-OPEN 

SUN-SENSOR STATE SHUTTER-CLOSE 

NOTCH-FILTER STATE 60HZJN 

NOTCH-FILTER STATE 60HZ.OUT 

NOTCH-FILTER STATE 120HZJN 

NOTCH-FILTER STATE 120HZ.OUT 

NOTCH-FILTER READ 60HZ 

NOTCH-FILTER READ 120HZ 

BANDPASS-FILTER STATE IN 

BANDPASS-FILTER STATE OUT 

BANDPASS-FILTER READ STATE 
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A.4 IRMAscript Language Definition 

A . 4 . 1 List M a n i p u l a t i o n 

INITIALIZATION 

Construct (initialize) a list with one or more elements. 

Example usage 

$angles = l i s t 90 130.65 142.32 153.88 157.28 159.88 159.93 
$fullname = l i s t $firstName $middleName SlastName 

L E N G T H 

Return the length of a list. 

Example usage 

$lstLen = l i s t l e n g t h $someList 

I N D E X 

Reference an element of a list, where the index ranges from 0 (the first element) to n. 

Example usage 

$x = substr ing $sourceString $index 
$x = substr ing SsourceString 3 

S U B S T R I N G 

Retrieve a substring from a colon delimited data record. In IRMA commands that return 

multiple data items, such as ALTAZ INIT PING, data is returned as a colon delimited string. 

This command splits the data string into its constituent data items and returns the desired 

datum, based on an index value. 

Example usage 

$x = substr ing $sourceString $index 
$x = substr ing $sourceString 3 
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A . 4 . 2 U t i l i t y F u n c t i o n s 

D E G 2 D M S 

Convert an Alt-Az coordinate expressed as floating point degrees into degree-minute-second 

(DMS) format. The Degrees, minutes and seconds must be variables because the deg2dms 

function places values in these variables. They are not input variables. 

Example usage 

deg2dms $angle $d $m $s 
deg2dms 63.52 $d $m $s 

S T A R T P R O G S O C K E T O P E N / E N D P R O G S O C K E T CLOSE 

Open and close a T C P / I P stream socket connection to the IRMA master controller. If a 

script contains instructions to execute on the IRMA master controller, a network socket 

must be established to the IRMA MC, as low-level IRMA system commands and data flow 

over this connection. If a script does not contain IRMA hardware control commands, it is 

not necessary to wrap a script with these statements. 

Example usage 

s t a r t p r o g socket open 
gps s e r i a l open 
$currTime = r t c read da te_t ime 
gps s e r i a l c l o s e 
endprog socket c l o s e 

L O C A L H O S T 

This command handles system functions performed by the host computer's operating sys­

tem. 

localhost log open 
Open the log file. A log file name must be created using the new log f i lename 
command before logging can commence. 
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localhost log close 
Close the log file. 

Example usage 

The example shown for the new command include examples of the local log 
commands. 

N E W 

The new family of functions creates new data items of various types, such as filenames and 

time stamps. 

new log filename 
Automatically generate and return a filename, and create a directory path for 
the new file. Filenames generated by this function follow the ISO time format: 

Y Y Y Y - M M - D D T H H m m S S . d a t 

and end with the . dat extension. File paths follow the structure: 

/ I R M A d a t a / I R M A _ < b o x N u m b e r > / Y Y Y Y / Y Y Y Y - M M - D D 

where /IRMAdata/ is a link (or filesystem shortcut) to some directory where 
IRMA data is stored, < b o x N u m b e r > is the IRMA unit's identifier number, 
Y Y Y Y is the year in which the data/log file was created, and Y Y Y Y - M M -
D D is a year-month-day time stamp. This directory format organizes data files 
chronologically according to the particular unit. 

new iso t imes tamp 
Create a time stamp string conforming to the ISO date-time format: 

Y Y Y Y - M M - D D T H H : m m : S S . s s s 

Where Y Y Y Y refers to year, M M to month (1-12), D D to day (1-31), H H to 
hour (0-23), m m to minute (0-59), SS to second (0-59), and sss to milliseconds 
(0-999). The symbols -, T, and : are delimitation symbols. 

Example usage 

$fi lename = new log f i lename 
l o c a l h o s t log open $filename 
r e p e a t 500 

$timestamp = new i s o timestamp 
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$ch4 = ADC SAMPLE NO.INT 4 
print "1,\s,4,\s,$ch4,\s,$timestamp,\s,0,\s,0,\n" 
wait 60 

endloop 
localhost log close 

A . 4 . 3 Var iab le M a n i p u l a t i o n 

A S S I G N 

Assign a value to a variable. The source of the assignment can be literal or another variable. 

Literal values can be numeric or string. Strings can be defined with or without enclosing 

double quotes. When quotes are used, it is permitted to include whitespace in the string. 

Example usage 

assign $temp 4 
assign SprevPos $currPos 
assgin $date Jan-15-2005 

assign $dateString "January 15, 2005 - 8:15 PM" 

I N C R / D E C R 

Increment or decrement a value contained in a variable. This operation does not work with 

literals, as literals cannot have values assigned to them. 
Example usage 

incr $cntr 
deer ScountDown 

E V A L 

Perform arithmetic operations and assign results to a variable. This command precedes 

a simple arithmetic statement involving two operands and one operator. The operations 

available are addition, subtraction, multiplication, division, modular division, and expo-
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nentiation. The operands can be literals or variables, but the result must be assigned to a 

variable. 

Example usage 

e v a l $x = $y + 3 
e v a l $ d i f f = $prev - $curr 
e v a l $we ight = $mass * 9.81 
e v a l $avg = $sum / $n 
e v a l $z = $count '/, 256 
e v a l $ s q r t = 9 " 0 . 5 

A . 4 . 4 D e l a y s 

W A I T 

Delay execution of the script by N seconds. N can be a real value, ranging from 0 to some 

arbitrary value. 

Example usage 

w a i t $pauseValue 
w a i t 30 

A . 4 . 5 F l o w C o n t r o l 

D O .. W H I L E 

While loops repeatedly execute a block of statements while some arbitrary condition is 

logically evaluated to be true. With d o .. while statements, the condition is tested at the 

end of the block, as opposed to the beginning of the block, which occurs in while loops. 

A d o .. while loop in IRMAscript opens with a d o statement, and closes with a while 

condition statement. Any number of IRMAscript statements, including other d o .. while 
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loops, can be included in this block. There is no limit to the number of do .. while loops 

that can be nested within one another. 

The condition can take two forms: a simple comparison involving two operands, or 

a compound conditional statement that logically ands or ors two comparisons. For example, 

a simple conditional statement takes the form $x < $y, while a compound conditional is 

structured $x < $y or $a = $b. 

Four kinds of comparison are available: less than <, greater than >, equality = and 

inequality ! =. Logical anding and orring can be specified in a compound conditional using 

the symbols and and or. Do not use the symbols && or || to perform logical evaluations. 

E x a m p l e usage 

# s imple c o n d i t i o n a l express ion 
do 

$x = cryo read curr_temp 
p r i n t " $ x , \ n " 
wai t 1 

whi le $x > 77 

# compound c o n d i t i o n a l express ion 
a s s i g n $opened 1 
a s s i g n Sclosed 2 
do 

wai t 2 
p r i n t " shu t t e r_moving , \n" 
$x = s h u t t e r read l i m i t 

whi le $x != $opened and $x != $closed 

R E P E A T .. E N D L O O P 

Repeat execution of a block of statements. This structure is equivalent to a for loop that 

increments from 0 to n. 

E x a m p l e usage 
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a s s i g n $cnt 0 
r e p e a t 5 

p r i n t " $ c n t , W 
endloop 

G O T O 

The most basic flow control mechanism is the goto statement. When the IRMAscript inter­

preter executes go to label statement, program control jumps to the IRMAscript statement 

immediately following the label labelName statement. Using gotos as a form of program 

flow control can lead to unstructured, unmanageable code. However, in the context of IR­

MAscript, whose scripts tend to be quite short (less than a printed page long), the issue 

of structured goto-less programming is not important. Given the relatively primitive flow 

control mechanisms available in IRMAscript, goto allows the programmer to develop so­

phisticated flow control within an IRMA script. With labels, the use of a colon after the 

label name is optional. 

E x a m p l e usage 

a s s i g n $x 4 
i f $x < 12 and $x > 0 

i f $x != 3 
i f $x < 5 

goto DONE 
endif 
goto FAILURE 

endif 
endif 

l a b e l DONE: 
p r i n t " s u c c e s s ! , \ n " 
goto EXIT 

l a b e l FAILURE: 
p r i n t " f a i l u r e ! 
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l a b e l EXIT: 

A . 4 . 6 I n p u t / O u t p u t C o m m a n d s 

P R I N T 

Feedback from an executing IRMAscript can be directed to the console (or shell) by means 

of the p r i n t command. The argument to the print command can be a literal or a variable. 

In its most simple form, p r i n t can accept bare literals, either text or numeric, which is 

inconsequential to IRMAscript, as it is a typeless language. If a string literal enclosed in 

double quotes is passed as the parameter, the user can format the output, mixing variables 

and literals together. The only stipulation is that each item in the string, whether literals 

or variables, must be separated by commas, and there must not be any whitespace between 

the quotes. The reason for the prohibition on whitespace is that the IRMAscript interpreter 

divides statements into their constituent parts (tokens) along whitespace divisions. Two 

special literals can be used within printf strings: The \ s symbol defines a single whitespace, 

while the \ n symbol defines a linefeed, and is often called a newline character. 

Output can be directed to an open log file by including the log modifier imme­

diately after the p r i n t command. The methods for defining the string format is identical 

to the standard p r i n t command. The l o c a l h o s t command has methods to open and 

close logfiles. Furthermore, the a s s ign command can be used to define strings that can be 

assembled using the p r i n t command. 

E x a m p l e usage 

p r i n t 345 
p r i n t Word 
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p r i n t " G r e e t i n g s ! , \ n " 
p r i n t $timestamp 
p r i n t " T i m e - D a t e : , \ s ) $ h o u r ) \ s , $ m i n u t e , \ s , $ s e c o n d , \ n " 
p r i n t log " $ c h A s , $ s a m p l e A s , $ t i m e s t a m p A s , $ a z , \ s , $ a l t , \ n " 

A . 4 . 7 S y s t e m C o m m a n d s 

The following group of commands are responsible for controlling and/or reading 

data from IRMA's hardware components, which includes the AAC. 

N O T C H - F I L T E R 

The notch-f i l te r s t a t e [filter] commands enable or disable the 60 Hz notch filter. The 

filter is enabled with the 60hz_in parameter, and disabled with the 60hz_out parameter. 

Reading 60 Hz notch filter state can be done with the notch-f i l ter r e a d 60hz command. 

A return value of 0 (zero) indicates that the filter is not enabled, while a return value of 1 

indicates that the filter is enabled. 

E x a m p l e usage 

n o t c h _ f i l t e r s t a t e 60hz_in 
n o t c h _ f i l t e r s t a t e 60hz_out 
$x = n o t c h _ f i l t e r read 60hz 

B A N D P A S S - F I L T E R 

The bandpass_f i l te r s t a t e [ in /ou t ] is used to enable or disable the 455 Hz bandpass filter, 

whose job is to filter out all frequencies above and below the 455 Hz chopper wheel frequency. 

The filter is enabled with the in parameter, and disabled with the out parameter. The state 

of the bandpass filter can be read with the bandpass- f i l t e r r e a d s t a t e command. A return 

value of 0 (zero) indicates that the filter is not enabled, while a return value of 1 indicates 
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that the filter is enabled. 

Example usage 

bandpass.filter state in 
bandpass_filter state out 
$x = bandpass.filter read state 

S H U T T E R 

The command shutter state [open/close] signals the shutter control circuitry to respec­

tively open or close the shutter. Once this command is issued, it cannot be aborted. The 

shutter will open or close until it has reached its destination position. Shutter condition 

during actuation can be read with the shutter read limit command. The following integer 

codes are returned: 3 - shutter is in the process of moving during shutter movement, 2 -

shutter is closed (covering the optical aperture), and 1 - shutter is in the open position 

(optical aperture is exposed). Shutter jams can be detected by looking for an increase in 

the amount of current going to the shutter motor. The shutter overcurrent bit is set when 

this condition occurs. Calling the shutter read overcurrent statement returns the value 

of the overcurrent bit: 1 when the overcurrent condition exists, and 0 when it does not. 

When the overcurrent condition bit has been set, it must be reset to zero by calling the 

shutter set oc_reset command. 

Example usage 

assign $moving 3 
assign $sClose 1 
assign SsOpen 2 

STARTPROG SOCKET OPEN 

############################## 
# set 40 second timeout period 
############################## 
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ScurrTime = rtc read epoch_time 
eval $timeout = $currTime + 40 

SHUTTER STATE Open 
do 

$x = shutter read limit 
print $x 
ScurrTime = rtc read epoch_time 
print "CURR.TIME:,\s,$currTime,\n" 

############################################################### 
# If shutter not opened within 40 seconds, assume that it 
# is either disconnected or jammed. Reverse shutter direction 
# and exit.. . 
############################################################### 
if $currTime > $timeout 

shutter state close 
goto DONE 

endif 

wait 2 
while $x != $s0pen 

label DONE 
ENDPROG SOCKET CLOSE 

B B 

The b b state [setting] command enables or disables the blackbody shutter heater. The 

heater is turned on by calling this command with the argument on, while off turns the 

blackbody heater off. The state of the heater can be read by calling the command b b read 

state. The return value 1 indicates that the blackbody heater is on, while a return value 

of 0 (zero) indicates that it is off. 

Example usage 

bb state on 
$x = bb read state 
if $x = 1 

print "bb.heater.is.on,\n" 
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endif 

bb state off 
$x = bb read state 
if $x = 0 

print "bb.heater.is.off,\n" 
endif 

C H O P - M O T O R 

The 450 Hz chop wheel is controlled and monitored by means of the chop_motor family 

of commands. The chop wheel is turned on or off by the chop_motor state setting 

command, where setting can be set to on or off. ^hop.motor read state reads the chop 

wheel status, returning the value 1 if the chop wheel motor is on, and 0 if it is off. 

To read the chop wheel's angular speed in revolutions per minute (RPM), IRMA 

must first be set in angular speed measurement mode. In this mode, IRMA counts the 

number of interrupt pulses from the chop wheel over a selected period of time. Conse­

quently, one cannot simultaneously perform a data collection scan and measure chop wheel 

angular speed. To perform a measurement, one turns the chop wheel on, then issues the 

command chop_motor s tate measure_rpm.on to put IRMA into angular speed mea­

surement mode. The next step is to wait for a period of time, using the wait seconds 

command. The longer the time spent in angular speed measurement mode, the more ac­

curate the average angular speed value will be. Wait periods ranging between 30 and 60 

seconds provide adequate results. After the wait period has passed, one takes IRMA out of 

measurement mode with the command chop_motor state measure jrpm_off, then reads 

the resulting value with the command chop .motor read rpm. 

Example usage 
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chop_motor state on 
wait 15 
chop_motor state measure_rpm_on 
wait 45 
chop_motor state measure_rpm_off 
wait 2 
$rpm = chop_motor read state 
print "Motor_state:,$rpm,\n" 
wait 3 
$rpm = chop_motor read rpm 
print "Motor.RPM:,$rpm,\n" 
chop_motor state off 

R T C 

The IRMA MC's Rabbit 2100 microcontroller module contains a real-time clock (RTC) 

chip, from which the Rabbit obtains date-time information. The RTC chip uses 1980 epoch 

time, whereby time is calculated as the number of elapsed seconds since midnight, January 

1, 1980. This is identical to how the Microsoft MS-DOS operating system calculates time, 

unlike UNIX or Linux, which uses the 1970 epoch as the basis for calculating time. 

Current time on the MC's RTC is read with the command rtc read date_time. 

Returned is a colon-delimited string containing the current date time: year : month : 

day : hour : minute : second. As an example, February 12, 2005, at 3:37:49 PM would 

be returned as 2005:2:12:15:37:49. Months range from 1 to 12, days range from 1 to 31, 

hours range from 0 to 23, and minutes and seconds range from 0 to 59. 

If the IRMA MC RTC is not set, date-time will default to the epoch time of 0, 

or January 1, 1980, 00:00:00. Date-time can be set in two ways: either by providing a 

user-defined date-time string, or by using the global positioning system (GPS) receiver's 

date-time, the former method being the most accurate. 

Current time in 1980 epoch format can be read using the rtc read epoch-t ime 
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command. This command is convenient for timing events within an IRMA script, as it 

returns a 32-bit unsigned integer number representing the current time as the number of 

elapsed seconds since midnight of January 1, 1980. 

User-defined date-time can be set using the the command rtc set arbitrary _time 

ISOtimeString. An ISO formatted date time string has the following format: YYYY-

MM-DDThh:mm:ss, where Y Y Y Y is a four-digit year, M M is month (1 - 12), D D is 

day-of-month (1-31), hh is hour (24-hour format), m m is minute, and ss is second. The 

punctuation contained in this format (the T and dashes -) must be left as shown. 

The second method of setting date-time, using the GPS receiver, requires that 

the serial channel to the GPS board be opened. Not doing so will result in the call to set 

the RTC to timeout and fail. Once the serial channel has been opened, the command rtc 

set date_time will read the current date time from the GPS receiver, convert it to 1980 

epoch format, and write it to the RTC. The GPS emits a time synchronization signal every 

second. Date-time is written to the RTC as soon as this time synch signal goes high. One 

concludes the RTC setting session by closing the serial channel to the GPS. 

Example usage 

# s e t t i n g t h e RTC us ing GPS da t e - t ime 
gps s e r i a l open 
r t c s e t da te_ t ime 
$x = r t c read da te_ t ime 
p r i n t "$X,YQ" 
$y • r t c r ead epoch_time 
p r i n t " $ y , \ n " 
gps s e r i a l c l o s e 

# s e t t i n g t h e RTC with a r b i t r a r y t ime s t r i n g 
r t c s e t a r b i t r a r y _ t i m e 2005-01-20T15:37:45 
wai t 3 
$x = r t c read da te_ t ime 
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print "$x,\n" 

G P S 

The GPS family of commands involves the reading of time-date and location information 

from the IRMA MC's GPS receiver board. The GPS is interfaced to the MC by means 

of a 4800 bps serial channel. Consequently, all commands to the GPS must be preceded 

by issuing the command to open the GPS serial channel: gps serial open. After the 

transaction with the GPS has been completed, the GPS serial channel should be closed 

using gps serial close. 

Date time is read from the GPS receiver using the command gps read date_time. 

The data returned is contained in a colon-delimited string: year : month : day : hour 

: minute : second. Epoch time, returned in 1980 epoch format, is read by calling gps 

read epoch_time. Latitude-longitude data is read with the command gps read lat Jon. 

Data is returned as a colon-delimited string: 

Example usage 

gps serial open 

# read date-time 
$dateTime = gps read date.time 
$year = substring $dateTime 0 
$mon = substring $dateTime 1 
$day = substring SdateTime 2 
$hour = substring SdateTime 3 
$min = substring $dateTime 4 
$sec = substring $dateTime 5 

# read epoch time 
$epochTime = gps read epoch_time 

# read IRMA's latitude & longitude 
SlatLon = gps read lat_lon 
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gps s e r i a l c l o s e 

I R M A 

This family of commands is used to perform system-level activities on the IRMA system 

as a whole. The statement irma state off forces the IRMA MC software to reboot. The 

statement irma read upt ime returns the number of elapsed seconds since the IRMA MC 

was powered up or last rebooted. The value returned by this command is represented in 

floaing-point seconds. 

Example usage 

# read IRMA MC uptime 
$uptime = irma read uptime 
p r i n t "UPTIME ,$uptime,\n" 

# Reboot MC 
irma s t a t e off 

# Wait f o r reboot t o f i n i s h 
wai t 10 

# Read uptime again 
Suptime = irma read uptime 
p r i n t "UPTIME, $uptime, \n" 

S U N . S E N S O R 

The solenoid-controlled shutter protecting the filter and IR detector can be controlled in 

software using the sun_sensor commands. The state of the sun shutter is read using 

sun_sensor read shutter-state. A return value of 0 indicates that the shutter is closed 

(covering the filter and detector), while a value of 1 indicates the shutter is open. A photo 

cell coupled with discrete logic automatically closes the sun shutter when IRMA's line of 

sight comes within ± 15 degrees of the sun (or any bright light source), is read using the 
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command sun_sensor read state. A return value of 1 indicates that the sun sensor is 

detecting a bright light source in its line of sight. A value of zero indicates the opposite. 

Example usage 

sun_sensor state shutter_open 

assign $shutterClosed "Sun shutter is closed" 
assign $shutterOpen "Sun shutter is open" 
assign $sunInView "Sun is within 10 degrees of view" 
assign $sunNotInView "Sun is not in view" 

$x = sun_sensor read shutter_state 
if $x = 0 

print "$shutterClosed,\n" 
endif 
if $x = 1 

print "$shutterOpen,\n" 
endif 

$x = sun_sensor read state 
if $x = 0 

print "$sunNotInView,\n" 
endif 
if $x = 1 

print "$sunInView,\n" 
endif 

sun_sensor state shutter_close 

CRYO 

The Stirling engine (cryo cooler) that cools the IR detector is controlled by the cryo family 

of commands. Before attempting to send commands to the cyro cooler, the serial com­

munication channel to the cooler must be opened with the command cryo serial open. 

Likewise, the channel is closed with the command cryo serial close, 

cryo read comp_amp 
Returns the compressor amplitude value as a floating point value. 
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cryo read set .point 
Returns the cryo cooler's set point temperature in degrees Kelvin. The return 
value is a floating point number. 

cryo read mode 
Returns an integer code representing the operational mode of the cryo cooler 
controller. 

cryo read curr_temp 
Returns the current temperature in degrees Kelvin of the cryo cooler's cold 
finger. The return value is a floating point number. 

cryo read osc_freq 
Returns the cryo cooler's oscillation frequency, which is the frequency of the 
piston inside the cold finger. The oscillation frequency is expressed in cycles per 
second (Hz). 

cryo set manual_mode 
This command sets the cryo cooler into manual mode, which powers the cryo 
cooler down. 

cryo set set .point temperature 
This command sets the desired temperature of the cryo cooler's cold finger. 
This command will successfully execute only when the cryo cooler is in man­
ual j n o d e . 

cryo set auto_mode 
The cryo cooler begins to cool when this command is received. Cooling is a 
gradual process, taking roughly 30 minutes according to the cryo cooler con­
troller's internal configuration settings. When target set point temperature is 
reached, the controller will maintain this temperature as long as it is in auto 
mode. 

Example usage 

# cryo_cooler_demo.irma 
####################### 

s t a r t p r o g socket open 
cryo s e r i a l open 

# de f ine t empera tu re s e t po in t 
a s s i g n $ s e t p o i n t 70 
cryo s e t s e t _ p o i n t $ s e t p o i n t 
$x = cryo read s e t _ p o i n t 
p r i n t "Set_poin t :$x , \n" 
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# start cooling cycle 
cryo set auto_mode 
$x = cryo read mode 
print "mode:,$x,\n" 

do 
$currTemp = cryo read curr_temp 
print "current_temperature:,$currTemp,\u" 
wait 10 

while $currTemp > $setpoint 

print "cryo_cooler_at target_temperature,\n" 

# keep cryo at target temperature for 10 hrs 
$endTime = rtc read epoch_time 
assign StenHours 36000 
eval $endTime = $endTime + $tenHours 
do 

wait 60 
$compAmp = cryo read comp_amp 
$currTemp = cryo read curr_temp 
$oscFreq - cryo read osc_freq 
ScurrTime = rtc read epoch_time 

while $currTime < $endTime 

# power down cryo cooler 
cooler set manual_mode 
$x = cooler read mode 
print "mode:,$x,\n" 

cryo serial close 
endprog socket close 

A D C 

Control of the Cirrus CS5534 Delta-Sigma ADC is handled by the adc family of commands. 

Before A/D conversions can be performed, the ADC must be first initialized using the 

resynch command, adc init resynch, then reset using the reset command, adc init 

resynch. The last step involves configuring each of the ADC's four channels with the 
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command: adc set csr arguments. The following list describes each of the CS5534 

IRMAscript functions in depth, 

adc init resynch 
Calling this command puts the ADC's serial port into a known state. When 
using the ADC for the first time, it is recommended that this command be called 
in order to ensure that the ADC will successfully accept serial commands. At 
low level, this command serially writes 15 bytes of the value OxFF, followed by 
1 single byte valued OxFE. 

adc init reset 
This command resets the ADC and sets its fundamental parameters. At low 
level, the reset command sets the RS bit in the CS5534's configuration register, 
which has the effect of forcing a system reset. 

adc set offset channel value 
Set offset command allows the user to configure each of the CS5534's four input 
channels' offset registers. Channels 1 through 4 can be specified, while the value 
field can accept offset values ranging between —2 2 3 and 2 2 4 . The offset value 
represents the fraction of the input span that must be applied to the output 
value of the ADC to shift it up or down. Offset values must be defined in ADC 
units. For example, an offset of 255 refers to a positive offset of 255 /2 2 4 of the 
A D C ' s input span. ADC channels configured for taking unipolar samples have 
an input span of 2 2 4 , while channels configured for bipolar mode have an input 
span of 2 2 3 [8]. The CS5534's default offset setting is 0. 

adc set gain channel value 
Similar to the set offset command, set gain allows the user to manually set a 
gain value, ranging from 64 to 2 - 2 4 , to channels 1 through 4. When a channel's 
gain register is set, the offset is subtracted from the A/D sample value, after 
which this result is multiplied with the the gain value. IRMA currently does not 
use custom gain settings. Instead, gain and offset are applied to the the data in 
post processing. The CS5534's default gain value is 1. 

adc read gain channel 
adc read offset channel 
These two commands read the current gain and offset values from the CS5534 
ADC. 

adc set csr channel gain word-rate polarity 
Each of the CS5534's four input channels can be configured in terms of signal 
gain, accuracy (word rate) and input span (polarity). Channel settings are 
stored in the CS5534's four channel setup registers (CSR). Gain as defined in the 
CSR is separate from the gain contained in the channel gain registers described 
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earlier. Gain values can be defined with the IRMAscript constants or their 
respective numeric values, as shown in table A.2. 

Gain Value 
CS5534.GAIN.1 1 
CS5534.GAIN.2 2 
CS5534.GAIN_4 4 
CS5534.GAIN.8 8 
CS5534.GAIN.16 16 
CS5534.GAIN.32 32 
CS5534.GAIN.64 64 

Table A.2: CS5534 ADC gain settings in IRMAscript. 

Resolution refers to the number of noise free bits contained in the A/D sample 
value. The longer the ADC integrates the analog signal, the greater the accu­
racy (or resolution) of the digitized sample. Table A.3 lists the different sample 
resolutions in terms of noise-free resolution bits, integration time (in millisec­
onds), and word-rate. Input span of digitization can be either unipolar, where 
A/D values contain values ranging from 0 to 2 2 4 - 1, or bipolar, which allow 
signed values ranging from —2 2 3 to 2 2 3 - 1 . Table A.4 lists constants and their 
respective numeric values can be applied to the polarity field. 

Resolut ion Bits Integration ms Word rate 
CS5534JIES.23 23 CS5534JNTEG.538 538 7 
CS5534_RES_22_SLOW 22 CS5534JNTEGJ269 269 15 
CS5534JIES.22.FAST 22 CS5534JNTEG.136 136 30 
CS5534JIES_21_SL0W 21 CS5534JNTEG.69 69 60 
CS5534.RES-21-FAST 21 CS5534JNTEG.35 35 120 
CS5534JIES.18 18 CS5534JNTEG.19 18.2 240 
CS5534JIES.17.SLOW 17 CS5534JNTEG.10 9.9 480 
CS5534JIES.17.FAST 17 CS5534JNTEG.6 5.7 960 
CS5534JIES.16 16 CS5534JNTEG.4 3.6 1920 
CS5534JIES-13 13 CS5534JNTEG.2 1.5 3840 

Table A.3: CS5534 ADC sample resolution settings in IRMAscript. 
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Polarity Value 
CS5534JJNIPOLAR I—

• 

CS5534.BIPOLAR 2 

Table A.4: CS5534 ADC polarity settings in IRMAscript. 

adc read csr channel 
The contents of each of the CSR channels can be read using this command. A 
colon-delimited string having the following format is returned: 

channel : gain : word-rate : polarity 

adc init rw. tes t 
Primarily used for troubleshooting and verification, the read-write test command 
tests the ADC to ensure that the IRMA software can communicate with it. An 
arbitrary value is written to one of the CS5534's offset registers, then that value 
is read back from the offset register. If the two values are identical, the test is 
deemed a success, and a value of 1 is returned. A failed read-write test returns 
a 0 (zero). This command should be followed with a ADC system reset in order 
to clear the dummy value in the offset register. 

adc sample sample-type channel 
This command initiates an A/D sample on a given ADC channel. The re­
turned value is given in ADC units, thus it must be interpreted according to 
the channel's polarity setting: bipolar or unipolar. Two types of samples can be 
taken: those synchronized to the 450 Hz chop wheel, specified with the on Jnt 
parameter, or samples not synchronized to the chop wheel, specified with the 
no_int parameter. When the on Jnt parameter is specified, the A/D sample 
commences when the chop wheel signal (mapped through the Rabbit interrupt 
channel) reports a logic level of 1. The channel parameter is mapped to 11 
separate channels, 8 of which are multiplexed into ADC channel 4. 

Example usage 

############### 
# adc_demo.irma 
############### 
startprog socket open 
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C h a n n e l Desc r ip t ion 
1 IR Signal 
2 Humidity 
3 Atmospheric Pressure 
4 Tempi: Blackbody Shutter 
5 Temp2: Blackbody Shutter 
6 Temp3: Mirror Base 
7 Temp4: ADC 
8 Temp5: Base Compartment 
9 Temp6: Pump 
10 Temp7: Shutter Motor 
11 Temp8: Pre-amp 

Table A.5: ADC channel usage on the IRMA MC. 

# initialize ADC 
adc init resynch 
adc init reset 

# perform read-write test 
$x = adc init rw.test 

if $x == 0 
goto ADCFAILURE 

endif 

# configure channel setup registers 
adc init reset 
adc set csr i 1 CS5534_INTEG_538 CS5534JJNIP0LAR 
adc set csr 2 8 CS5534_INTEG_4 CS5534_UNIP0LAR 
adc set csr 3 16 CS5534_INTEG_4 CS5534JJNIP0LAR 
adc set csr 4 1 CS5534_INTEG_4 CS5534.BIP0LAR 

# configure offset and gain on channel 1 
adc set offset 1 5000 
adc set gain 1 12 
Schloffset = adc read offset 1 
$chlgain = adc read gain 1 
print "$chloffset:,$chlgain,\n" 

# read back channel setup registers 
assign $ch 1 
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do 
$cs r = adc read c s r $ch 
$chan = s u b s t r i n g $ch 0 
Sgain = s u b s t r i n g $ch 1 
Swordrate = s u b s t r i n g $ch 2 
$po la r = s u b s t r i n g $ch 3 
p r i n t "CHAN : , \ s , $ c h a n , \ n " 
p r i n t "GAIN: , \ s , $ g a i n , \ n " 
p r i n t "WORDRATE : , \ s ,Sword ra t e , \ n " 
p r i n t "POLARITY : , \ s , S p o l a r , \ n " 
i n c r $ch 

whi le $ch < 5 

# read a l l t h e ADC channels 
a s s i g n $ch 1 
do 

Ssample = adc sample no_in t $ch 
p r i n t " $ c h , \ s , S s a m p l e , \ n " 
i n c r $ch 

whi le $ch < 12 

l a b e l ADCFAILURE: 
endprog socket c lo se 

S C A N 

The scanning process involves repeatedly sampling the IR signal and temperature / pressure 

/ humidity channels at some interval. Scanning differs from reading an ADC channel directly 

in that the A/D sampling process is contained separate real-time task, and uploads the data 

to a separate network port on the IRMA CP. This allows the MC to service other commands 

while the data collection process is executing, such as moving the Alt-Az mount, or querying 

the status of the cryo cooler. The Alt-Az serial communications channel must be opened 

before executing the scan command. Additionally, it is vital that the Alt-Az channel be 

left open for the duration of the scan. Closing the channel during a scan will lead to scan 

failure, which results in the scan terminating itself, 

scan read status 
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Returns the value 1 if a scan is currently executing on the MC, otherwise the 
value 0 is returned. 

scan signal on Jn t 
Forks the data collection process task, where the IR signal is sampled on the 
positive edge of the notch notch interrupt signal. Temperature, pressure and 
humidity channels are each sampled following one IR signal sample in a round-
robin fashion. 

scan signal no Jn t 
IR signal, temperature, pressure and humidity are sampled, but the IR signal 
A/D conversion is not synchronized to the notch interrupt. 

Example usage 

################ 
# scan_demo.irma 
################ 
s t a r t p r o g socket open 

# check i f a scan i s a l r eady running . 
# i f scan i s n ' t runn ing , scan read s t a t e 
# w i l l r e t u r n 0 
$x = scan read s t a t e 
i f $x == 1 

goto ENDOFSCRIPT 
endif 

# conf igure ADC 
adc i n i t resynch 
adc i n i t r e s e t 
adc s e t c s r 1 1 7 1 
adc s e t c s r 2 1 1920 1 
adc s e t c s r 3 1 1920 1 
adc s e t c s r 4 1 1920 1 

# open s e r i a l p o r t and *leave* i t open! 
a l t a z s e r i a l open 

# fork t h e scan t a s k 
scan s i g n a l on_in t 

l a b e l ENDOFSCRIPT: 
endprog socket c lo se 
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ALTAZ 

Movement and control of the altitude and azimuth axes is handled by the a l taz family 

of commands. Given that the AAC is connected to the MC over a serial communications 

link, the AAC-MC serial connection must be opened before any altaz command can be sent. 

Failing to open the serial port when sending AAC commands produces subtle errors that are 

hard to track down. In executing a sequence of commands within a single file, the error is 

more direct: the command string destined for the AAC will not get transmitted. However, 

the current implementation of IRMA is typically controlled via multiple single-command 

scripts that are generated on-the-fly by the IRMA GUI, whereby a single command is 

contained in its own script. This, results in the incomplete transmission of command strings, 

leaving the remaining characters in the serial buffer. The operator would observe that the 

IRMA MC sends the entire command string, yet the IRMA AAC only reads a portion of 

the string, hangs, then times out once the five second timeout period has expired. If the 

operator sends another command, the AAC receives a corrupted string, because it contains 

the new command plus the fragment characters left over from the last command. There are 

five subgroups of commands within the altaz command family: Alt-Az mount initialization 

commands, parameter setting commands, parameter/status reading commands, movement 

commands, and operation mode commands. Each of the altaz command groups will be 

examined in detail. 

Commands destined for the AAC are sent over the MC/AAC serial link using the 

serial packet communications protocol. This protocol is discussed in depth in section 3.6.2, 

and includes a discussion of error codes that result due to serial transmission errors, 

a l t az ser ial o p e n 
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altaz serial close 
These commands respectively open and close the serial channel from the MC to 
the AAC. 

altaz init altaz 
Once the Alt-Az serial channel has been opened, the first command that should 
be sent to the AAC is the init altaz command. This command has the effect 
of initializing the AAC's two-channel optical encoder chip that is responsible 
for digitizing axis encoder positions. Upon initializing the optical encoder chip, 
altitude and azimuth axis positions are set to 90,000 encoder units. There are 
8192 encoder units in one revolution. 

altaz init axes axis 
Upon using the AAC for the first time, or where re-initialization is required, the 
axes should be sent to their default positions. The init axes command performs 
a homing operation, whereby it determines the clockwise and counter-clockwise 
optical limits on both axes. When axis homing has completed, altitude and 
azimuth positions are set to position 0 (in encoder units). The axis parameter 
can be defined in three ways: altitude, elevation, or azimuth. 

altaz init motor 
The gearboxes and motor controllers used in the IRMA AAC differ from unit to 
unit. In order to deal with these variations, gear ratios, motor RPM values, and 
other configuration information unique to the given IRMA unit is contained in a 
configuration file. By issuing this command, the CP uploads motor configuration 
information, stored in the particular IRMA unit's configuration file, into the 
AAC. Without this information, the AAC cannot calculate motor speeds or 
slewing times. Therefore, it is vital that init motor be called before any axis 
movement is attempted. 

altaz init servo 
The AAC uses a servo loop, based on proportional-integration-derivative (PID) 
motion control algorithm, to control axis movement. PID servo control algo­
rithm has three constants, P , I and D, which are unique to each Alt-Az mount. 
The init servo command loads the PID constants for the altitude and azimuth 
axes into the AAC. If the servo-controlled movement move_to command is go­
ing to be used, servo parameters must be loaded into the AAC beforehand. The 
slew_to non-servo movement command does not require servo parameters to be 
set. The command init servo may be called while the AAC is idle (not moving) 
as many times as required, which is particularly helpful if the user is "tuning" 
the servo algorithm. 

altaz init ping 
The Alt-Az ping command is used to check if the AAC is on-line, ready to 
receive commands. If the AAC is alive and on-line, it returns a three-field, 
colon delimited string of the form: 
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987654321 : 123456789 : uptime 

If the AAC is not on-line or unresponsive, the three fields will contain the code 
999999999. The Upt ime field indicates the number of elapsed CPU ticks since 
the IRMA MC was booted. Each CPU tick is 1/64 seconds, therefore to convert 
this value to elapsed seconds, divide it by 64. Uptime can also be read using 
the command altaz read uptime. 

altaz set alt_offset offsetjvalue 
altaz set az_offset offset-value 
The set offset commands are provided in order to allow the user to define 
virtual fiducial points, thus avoid the necessity of physically orienting IRMA's 
fiducial (the axis limits) to external physical references, such as zenith for el­
evation, or north for azimuth. By providing an offset value defined in optical 
encoder units, IRMA's AAC calculates all axis moves relative to the offset po­
sition instead of the default physical limit. Axis offsets is the angle between the 
physical limit and the position where the physical reference is determined to be. 
The default offset value for both axes is zero. 

altaz s tate poslog action 
AAC position logging is controlled using this command. Three separate activ­
ities can be performed: log initialization, log enabling and log disabling. Upon 
AAC start-up, the position log is allocated, zero-filled, and its index pointer 
is pointed to the first element in the position log array. This action should 
be explicitly called before using the position log by using the log_clear con­
stant in the action parameter. One begins logging an axis movement by calling 
this command using the log.enable constant. Logging is stopped by using the 
log-disable constant. 

altaz s tate halt 

Stop movement immediately in both axis, 

altaz s tate reboot 
Perform a soft reset (or reboot) of the AAC software running on the Alt-Az 
controller. The master controller software is not affected. 
altaz move_to axis alt_d alt.m alts az-d azjm azs speed 
Servo-controlled movements, which track a theoretical velocity versus position 
profile, are performed using the move_to command. Three parameters must 
be provided: the axis to be moved, the destination angle, and the axis rota­
tion speed, specified in degrees per second. Options available for axis include: 
altitude, azimuth, and dualaxis. 

The destination angle is defined in degree-minute-second format, where altitude 
degrees, minutes and seconds occupy fields 4, 5 and 6 respectively (assuming 
field 1 refers to the "altaz" symbol). For single-axis movement, altitude or 
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azimuth destinations should be written to fields 4, 5 and 6, while fields 7, 8 and 
9 should be zero-filled. For dual-axis movements, altitude should occupy fields 
4, 5 and 6, and azimuth should occupy fields 7, 8 and 9. Field 10 is populated 
with the desired axis speed. In the case of dual-axis movement, the speed refers 
to the diagonal speed between the two moving axis, or rather, the speed required 
for both axes to meet at the final altitude/azimuth coordinate. 

Since this is a servo-controlled move command, movements are continuous, and 
are consequently limited to the speed options provided by the given Alt-Az 
mount's gearing. The slowest speed possible with this command occurs when 
the axis motor is driven at 0 volts, which corresponds to 500 motor RPM. The 
axis will rotate considerably slower than the minimum motor RPM, due to the 
motor's gear box and drive belt. Be aware that it is impossible to perform 
movements slower than the minimum motor RPM. For performing movements 
slower than the minimum achievable speed, there is the slew_to command. 

altaz slew_to dms axis alt-d altjm alts azJi azjm azs speed 
Usage of the slew_to command is identical to move_to. What differs is the 
range of speeds available, and the fact that movement is not servo controlled. 
When a speed less than the minimum achievable speed is selected, slew_to goes 
into stepping mode, where the given slew path is broken up into sub-degree, one 
encoder unit steps. The axis (or axes) rotate for the duration calculated from 
the slew path length and the requested speed. 

Mention should be made about the relationship between offset angles and axis 
moves. Offset angles for each axis are measured from the counterclockwise limit 
switch in the clockwise direction. The AAC rotates to the requested angle, 
to which is added the currently defined offset angle. The offset angle should 
be considered as zero degrees. Altitude angles less than the offset angle are 
reported as negative angles, while azimuth angles less than the offset wrap at 
360 degrees, because the azimuth axis has the ability to rotate a full 360 degrees. 

Full rotational movement allows for the possibility of destination angles that lie 
beyond the far (clockwise) limit. In such cases, the AAC rotates the azimuth 
axis in the opposite direction to the target angle lying beyond the far limit. 
In the case of low-speed, small-distance movements that result in destinations 
crossing the rotational limit, the AAC drives the axis to the destination angle 
in the opposite direction at high speed in order to eliminate the annoyance of 
slewing nearly 360 degrees as low speed. 

altaz read posit ion 
This command returns a three-value colon-delimited string containing altitude 
and azimuth value respectively. The third field contains scan status: 1 when a 
scan is executing, and 0 when no scan is running. 

altitude : azimuth : scanstatus 
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read posit ion is the most common query request to the AAC because during 
scans, the MC requests axis positions for each data point collected. 

altaz read task-status 
In order to remain responsive to incoming commands, the AAC executes axis 
movements separate from the main dispatcher task, read task s t a t u s allows 
external processes, such as an executing IRMA script, to check up on an ongoing 
AAC movement, and determine when the operation has completed. Task status 
is returned as one of three codes: code 0 indicates there is no axis movement 
task operating, while code 2 indicates a task is executing. Code 1 is returned 
when the AAC is dispatching a long-duration job to one of its available tasks. 
It is rare that this code would be encountered, and should be considered simply 
as a running task. 

altaz read alt .offset 
altaz read az-offset 
These two commands respectively return the currently denned altitude and az­
imuth offset values in optical encoder units. There are 8192 units per revolution. 

altaz read poslog_state 
The poslog commands are used primarily for Alt-Az servo tuning. They allow 
the user to collect axis motion data necessary for tuning the AAC's PID servo 
control loop. The read poslog_state command returns the current operation 
mode of the position log, the table in the AAC that is used to store servo and 
position data. Three states can be reported: code 1 indicates the position log 
is enabled. Code 0 indicates the position log is disabled. Code 2 is returned 
if the position log was not initialized during AAC start-up. This can happen 
if an extended memory allocation failure occurred on board the AAC Rabbit 
processor. 

altaz read poslog_range 
Calling this command returns the dimensions of the position log, a memory array 
aboard the AAC containing position and servo data. A four field colon-delimited 
string is returned: 

min array index : max array index : curr array index : NULL 

The range of data readable from the AAC's position log is found between the 
minimum array index and the current array index inclusive. Reading values 
beyond the maximum array index will result in a memory read error on the 
AAC. 

altaz read poslog_data index 
Given some index value, this command returns the position log entry at that 
index. A four field, colon-delimited array is returned: 
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DAC val : rel pos : theor pos : error val 

D A C val contains the 8-bit unsigned integer that is written to the AAC's DAC, 
which in turn controls axis speed. Rel pos refers to the actual position of the 
axis relative to its start position, and is given in optical encoder units. Theor 
pos is the calculated theoretical axis position, also given in optical encoder 
units. It is this theoretical displacement path that the PID servo must track. 
The last field, error val, contains the PID algorithm error value. All four data 
are necessary in the servo tuning process. 

Example usage 

################# 

# altaz_demo.irma 
################# 

startprog open socket 

altaz serial open 

assign $running 2 
# ping the AAC 
$status = altaz init ping 
print "ping.status: ,$status,\n" 
$a = substring 0 Sstatus 
$b = substring 1 Sstatus 
$c = substring 2 Sstatus 
if $a != 987654321 

if $b != 123456789 
if $c != 181818181 

goto DEAD.AAC 
endif 

endif 
endif 

# initialize motor, servo, then optical encoder chip 
altaz init motor 
altaz init servo 
altaz init altaz 

# find optical limits on elevation axis 
altaz init axes altitude 
wait 4 
do 
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$x = altaz read task.status 
print "$x,\n" 
wait 2 

while $x == $running 

wait 2 

# then on azimuth axis 
altaz init axes azimuth 
wait 4 
do 

$x = altaz read task_status 
print "$x,\n" 
wait 2 

while $x == $running 

# set elevation and azimuth offsets 
altaz set alt_offset 183 
altaz set az_offset 5234 
$a = altaz read alt_offset 
$b = altaz read az_offset 
print "offsets:,$a,$b,\n" 

# move elevation and azimuth axes to 5.5 degrees 
# at 3 degrees per second 
altaz move_to dms dualaxis 5 30 0 5 30 0 3 
do 

wait 2 
$status = altaz read task_status 
print "status:,$status,\u" 
$pos = altaz read position 
$altPos = substring 0 $pos 
$azPos = substring 1 $pos 
print "position:,$altPos,$azPos,\n" 

while $status == $running 

# move elevation axis to zenith Q 2 degrees per second 
altaz move.to dms altitude 90 0 0 0 0 0 2 
do 

wait 2 
$status = altaz read task_status 
$pos = altaz read position 
$altPos = substring 0 $pos 
print "elevation:,$altPos,\n" 
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while $status == $running 

# step azimuth 50 degrees Q 0.05 degrees/sec 
altaz slew.to azimuth 50 0 0 0 0 0 0.05 
do 

wait 2 
$status = altaz read task_status 
$pos = altaz read position 
$azPos = substring 1 $pos 
print "azimuth:,$azPos,\n" 

while $status == $running 

label DEAD.ALTAZ: 
# reboot the AAC 
altaz state reboot 
altaz serial close 

endprog close socket 

The following example demonstrates turning the servo by using the Alt-Az po­
sition log. This example program assumes that the elevation axis has been 
initialized, and that the motor and servo parameters have been loaded into the 
AAC. 

####################################### 
# servo_tuning_demo.irma 
# demonstrate tuning the elevation axis 
####################################### 

startprog socket open 

altaz serial open 

assign Srunning 2 
######################## 
# Start position capture 
######################## 

altaz state poslog poslog_clear 
altaz state poslog poslog log_enable 

altaz moveto dms altitude 90 0 0 0 0 0 4 
do 

wait 1 
Sstatus = altaz read task_status 
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altaz poslog disable 

####################################################### 
# playback position log values. These values could be 
# captured by redirecting terminal output to file 
####################################################### 
$tuneValues = altaz read poslog_range 
print $tuneValues \n 

$minlndex = substring $tuneValues 0 
Smaxlndex = substring $tuneValues 1 
$currlndex = substring $tuneValues 2 
print "min_index: ,$minlndex,\n" 
print "max_index:,$maxlndex,\n" 
print "curr_index:,$currIndex,\n" 

assign $cnt 0 
do 

$data = altaz read poslog_data $cnt 
print "$data,\n" 
incr $cnt 

while Sent < $currlndex 

altaz serial close 

endprog socket close 
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