
T H E I R M A III C O N T R O L A N D

C O M M U N I C A T I O N S Y S T E M

I A N S E A N S C H O F I E L D

B . Sc . C o m p u t e r Sc i ence , U n i v e r s i t y of L e t h b r i d g e , 2 0 0 0

A Thesis
Submit ted to the School of Gradua te Studies

of the University of Lethbridge
in Part ial Fulfilment of the
Requirements of the Degree

M A S T E R O F S C I E N C E

Department of Physics
LETHBRIDGE, ALBERTA, CANADA

© Ian Sean Schofield, 2005

iii

A b s t r a c t

The IRMA III infrared radiometer is a passive atmospheric water vapor detector designed for

use with interferometric submillimeter arrays as a method of phase correction. The IRMA

III instrument employs a distributed, multi-tasking software control system permitting pre­

cise fine-grained control at remote locations over a low-bandwidth network connection.

IRMA's software is divided among three processors tasked with performing three primary

functions: command interpretation, data collection and motor control of IRMA's Alt-Az

mount. IRMA's hardware control and communication functionality is based on compact,

low cost, energy efficient Rabbit 2000 microcontroller modules, selected to meet IRMA's

limited space and power requirements. IRMA accepts scripts defined in a custom, high

level control language as its method of control, which the operator can write or dynamically

generated by a separate GUI front-end program.

iv

A c k n o w l e d g e m e n t s

This thesis builds upon the work of many people, starting with Dr. David Naylor and
Graeme Smith, who envisioned, built and tested the initial IRMA prototype. Much of
the theoretical base of this thesis stems from Graeme's work, to whom I am very grateful.
Thank you David for allowing me to be involved in the IRMA project from its infancy up
to the present, as IRMA is on verge of becomming a commercial product. The additional
following people have provided support in the development of the IRMA III software system:

Dr. Robin Phillips: for his efforts in reviewing my initial draft of this thesis, as well
as spearheading the effort to get IRMA built. Additional thanks for advice to problems
relating to Perl and Linux.

Greg Tompkins: for his help in building the hardware IRMA's software is dependent upon.
Additional thanks for your electronics related support - from building cabling to helping
diagnose problems. Greg's insights on good nutrition have been especially helpful.

Brad Gom: for his efforts in designing and building the initial IRMA III hardware.

Jacob Ellegood and Dan Clossen: for their work laying out the printed circuit boards
(PCBs) for IRMA III and Alt-Az. It should also be mentioned that Jacob wrote a portion
of the user interface code for IRMA II.

Amy Smith: for writing a graphical user interface for IRMA that works seamlessly with the
IRMA command processor.

Dr. Arvid Schultz: for his aid testing the Alt-Az to RA-DEC conversion routines, and his
regular visits to the lab.

Frank Klassen: for building custom components and precision machine work for IRMA.

Dr. Gary Davis, director of the Joint Astronomy Centre, Hawaii, for allowing site testing
of IRMA at the James Clerk Maxell Telescope (JCMT).

Special thanks must be given to my wife, Terilynn, whose support over the past two years
has been extraordinary.

The IRMA III project has received support from the Natural Sciences and Engineering Re­
search Council of Canada (NSERC), National Reserch Council Canada (NRC), the Alberta
Science and Research Authority (ASRA).

V

Contents

Abstract iii

Acknowledgements iv

List of Tables viii

List of Figures ix

1 The I R M A Concept 1
1.1 An Infrared Radiometer for Millimeter Astronomy 1

1.1.1 IRMA as a Method of Phase Correction 1
1.1.2 IRMA as an Opacity Detector 7

1.2 History of IRMA 7
1.2.1 IRMA I 7
1.2.2 IRMA II 8
1.2.3 IRMA III 9

2 I R M A Hardware 11
2.1 Overview 11
2.2 IRMA Master Controller 13

2.2.1 Rabbit 2000 Microcontroller Module 13
2.2.2 Rabbit 2000 Input /Output 18

2.3 IRMA MC Control 22
2.3.1 Shutter 23
2.3.2 Sun Shutter 24
2.3.3 Calibration Source 26
2.3.4 Stirling-Cycle Cooler 26
2.3.5 Alt-Az Controller 29
2.3.6 IR detector 30
2.3.7 Chopper Wheel 30

2.4 Delta Sigma Analog to Digital Converter 31
2.4.1 Delta Sigma Signal Processing 32

CONTENTS vi

2.4.2 Structure of the Delta Sigma ADC 35
2.4.3 Cirrus CS5534 Delta Sigma ADC Structure and Operation 37
2.4.4 Global Positioning System (GPS) Board 42
2.4.5 Notch and Bandpass Filters 43

2.5 IRMA Alt-Az Controller 44
2.5.1 Rabbit Semiconductor RCM2010 Controller Module 44
2.5.2 Motion Control 46

2.6 Conclusion 54

3 I R M A Software S t r u c t u r e 55
3.1 IRMA Software Architecture 55

3.1.1 IRMA's Languages of Implementation 59
3.2 IRMA multi-tasking Structure 62

3.2.1 Event Driven Programs 62
3.2.2 Multiprogramming and Real Time 63

3.3 MC and AAC Task Structure 66
3.4 Data Collection Interrupt Service Routine 72
3.5 Communication Packet Structure 74
3.6 IRMA Communication Protocols 79

3.6.1 IRMA Network Communication Handshaking Protocol 79
3.6.2 IRMA MC-AAC Serial Communications 83

3.7 IRMA Configuration and Data Files 88
3.7.1 IRMA CP Configuration 88
3.7.2 IRMA Configuration Files 92

3.8 IRMA CP Data File Structure 95
3.9 Conclusion 96

4 I R M A Software M o d u l e s 98
4.1 IRMAscript Language Interpreter 98

4.1.1 Computer Language Theory 101
4.2 Alt-Az Controller Software 112

4.2.1 Alt-Az Initialization 113
4.2.2 Alt-Az Offsets 115
4.2.3 Axis gearing and speed 117
4.2.4 Servo Motion Control 119

4.3 Conclusion 127

5 F u t u r e d i rec t ions for I R M A 128
5.1 Testing Campaigns 128

5.1.1 Mauna Kea, 2004 128
5.1.2 Gemini South 130

5.2 Polar Deployment of IRMA 131
5.2.1 Antarctica 131
5.2.2 The Arctic 133
5.2.3 Adapting IRMA to Polar Conditions 133

CONTENTS vii

5.2.4 Remote Communications 135
5.2.5 Migrating from 8-bit to 32-bit Embedded Computers 135
5.2.6 Porting Rabbit-based IRMA Software to the PC 139

5.3 Final Thoughts 141

A IRMAscript 143
A.l Overview 143
A.2 Language Structure and Features 144
A.3 IRMAscript Language Summary 146
A.4 IRMAscript Language Definition 151

A.4.1 List Manipulation 151
A.4.2 Utility Functions 152
A.4.3 Variable Manipulation 154
A.4.4 Delays 155
A.4.5 Flow Control 155
A.4.6 Input / Output Commands 158
A.4.7 System Commands 159

Bibliography 185

viii

List of Tables

2.1 Rabbit 2100 Core Module Specifications [50] 16
2.2 CS5534 AE ADC sampling resolutions, gain setting of 1 41
2.3 Rabbit 2010 Core Module Specifications 47
2.4 Maxim MAX5223 DAC serial command word format 50

3.1 Custom libraries used in IRMA MC and AAC 61
3.2 IRMA AAC command codes sent over MC AAC serial link 85
3.3 Perl modules used by the IRMA CP Software 91
3.4 IRMA CP source code tree 92

4.1 GPS command codes: string versus numeric representation I l l
4.2 Maxon motor parameters 118

A.2 CS5534 ADC gain settings in IRMAscript 171
A.3 CS5534 ADC sample resolution settings in IRMAscript 171
A.4 CS5534 ADC polarity settings in IRMAscript 172
A.5 ADC channel usage on the IRMA MC 173

ix

List of Figures

1.1 IRMA at Gemini South Observatory, September 2004 3
1.2 Atmospheric phase distortion of celestial signal. [57] 5

2.1 Cutaway view of IRMA in its Alt-Az mount. 1) Stirling cycle cooler 2)
Shutter 3) MCT detector 4) Black body and heater 5) Reflective chopper 6)
Input beam 7) Main board and IRMA master controller (hidden from view -
on reverse side of detector box) 8) Parabolic mirror 9) Power/communication
umbilical cable 10) Alt-Az controller 11) Cryo cooler controller 12) Power
supply [38] 12

2.2 Rabbit RCM2100 Core Module (front and reverse view) 15
2.3 Rabbit 2000 memory mapping between logical and physical address space[21]. 17
2.4 Rabbit 2000 Parallel Ports 19
2.5 IRMA Master Controller Digital I /O Pin Mapping. Pink boxes represent

input lines, blue boxes represent output lines, white boxes represent bidirec­
tional lines 23

2.6 IRMA Master Control hardware block diagram and pin mappings 25
2.7 IRMA vacuum vessel. Wiring for the cold finger temperature sensor and

the detector output is fed through the small tube pointing up. The getter is
located in the long elbow section to the right. The pinch off tube is connected
in the left hand flange 27

2.8 FFT diagram of an n-bit A/D conversion with sampling frequency Fs. Diagram[44]. 32
2.9 FFT diagram of an n-bit A/D conversion with sampling frequency kFs, over-

sampled by k times. Noise floor has been lowered due to oversampling. [44]. 33
2.10 Effect of the Delta-Sigma modulator changing the distribution of high-frequency

quantization quantization noise, or noise shaping[44] 34
2.11 Affect of a digital filter on quantization noise[44] 35
2.12 A first-order Delta-Sigma modulator[44] 36
2.13 CS5534 Delta Sigma ADC Timing Diagram[8] 38
2.14 CS5534 Delta Sigma ADC Register Layout.[8] 39
2.15 GlobalSat ER-101 GPS module 42
2.16 IRMA Alt-Az hardware block diagram with pin mappings 45

LIST OF FIGURES x

2.17 IRMA Alt-Az controller pin mapping. Blue boxes refer to output lines, pink
boxes refer to input lines, and white boxes represent bidirectional lines. . . 46

2.18 Maxim MAX5223 Serial 8-Bit DAC 3-Wire Interface Timing Diagram. The
SCLK signal can be modulated at a maximum rate of 25 MHz (40 ns). Data
should be placed on the DIN pin at least 20 ns before SCLK makes a low to
high transition, and be held for at least 20 ns[34] 49

2.19 US Digital LS7266R1 read cycle timing (in ns)[61] 53
2.20 US Digital LS7266R1 write cycle timing (in ns)[61] 53

3.1 IRMA control software software structure shows typically shows four major
software components (shown in red): the graphical user interface (GUI), com­
mand processor (CP), master controller (MC) and Alt-Az Controller (AAC). 56

3.2 IRMA master control software: task structure during scanning 67
3.3 IRMA Alt-Az controller: task structure of servo movement 69
3.4 IRMA Alt-Az controller: task structure of slew (stepped) movement 71
3.5 IRMA master controller: data collection ISR structure 72
3.6 Generic IRMA network communications packet. A: Number of bytes in data

payload (D). B: Packet number of the current packet group. C: Total number
of packets in the current packet group. D: Data payload. E: CRC (Cyclic
Redundancy Check) checksum 76

3.7 IRMA network communications command packet 77
3.8 IRMA network communications data packet 78
3.9 IRMA network communications handshaking sequence 79
3.10 IRMA network communications acknowledgment (ACK) packet 80
3.11 IRMA network communications function start packet 81
3.12 IRMA network communications data packet 82
3.13 IRMA network communications function complete packet 82
3.14 IRMA serial communications packet structure 83
3.15 IRMA serial communications packet string 84
3.16 IRMA serial communications protocol 86
3.17 IRMA serial communications packet: successful transaction 87
3.18 IRMA serial communications packet: failed transactions 87

4.1 Block diagram of a typical compiler. IRMA's language interpreter skips scope
and type checking since all variables are global and typeless 102

4.2 Directed graph of a NFA that accepts the language (aba)* 105
4.3 Initialization sequence of the elevation axis. Initialization, also called homing,

follows the rotation sequence illustrated by the four arrows labeled a through
d. Homing begins with a CCW rotation (a), a high-precision search for the
CCW limit (b), a CW rotation to the CW limit (c), concluding with a high-
precision search for the CW limit (d). The azimuth axis homing procedure
follows the same sequence of events. The range of rotation on the azimuth
axis, however, is slightly greater than 360 degrees 115

LIST OF FIGURES xi

4.4 Azimuth axis rotation examples with an offset (here defined as 135 degrees).
The blue arrow (a) shows a rotation to 0 degrees. The black arrow (b) shows
a rotation to 180 degrees. The red arrow (c) shows a rotation to 270 degree,
which wraps across the physical rotation limit. Since the destination lies 45
degrees beyond the physical limit, the AAC would rotate the axis in the CW
direction, shown as by the green arrow (d) 116

4.5 Displacement and velocity paths, generated by IRMA's servo motion control
software. This path describes a 36.3 degree (826 ticks) rotation at 20 ticks
per second 120

4.6 Displacement curve generation. Each region of curve: the acceleration, cruse
and deceleration phases, has a unique equation for calculating displacement D.122

4.7 Motor speed oscillation due to poorly chosen or untuned P, I and D constants.
The thick line represents the actual axis displacement from 0 to 826 encoder
units (ticks). The thin S-shaped displacement curve represents the theoretical
path that the PID servo loop attempts to track, represented by the thick line.
The error signal is shown as the thin line oscillating about the X-axis. . . . 124

4.8 PID algorithm block diagram[64] 126

5.1 First set of simultaneous data taken by dual IRMA units at the Smithsonian
Millimeter Array, Mauna Kea, Hawaii, June 15, 2004. This 4.5 hour data
collection ran from 14:00 to 18:30 HST 130

5.2 Concordia Station, Dome C, Antarctica. The AASTINO remote observatory
appears in the foreground as a green igloo[3] 132

5.3 Tri-M TMZ104 PC/104 single board computer, powered by a 667 MHz Trans­
meta Crusoe 5500 CPU 136

5.4 RTD CML16686GX333HR PC/104 single board computer, featuring an on­
board Ethernet controller. The computer is powered by a 333 MHz National
Semiconductor Geode CPU 138

1

Chapter 1

The I R M A Concept

1.1 An Infrared Radiometer for Millimeter Astronomy

IRMA is an infrared radiometer designed to measure passively 20 micron water

vapor rotational absorption lines, which indicate the amount of precipitable water vapor

(PWV) in the atmosphere. IRMA has two primary applications: as a solution for phase

correction in submillimeter interferometry, and as an sky opacity monitor for use in infrared

astronomy.

1.1.1 I R M A as a M e t h o d of P h a s e C o r r e c t i o n

Long wavelength electromagnetic radiation emitted by celestial objects remains

nearly untouched as it travels through space on its journey to the Earth. Only in its final

moments, as it passes through the lower regions of the Earth's atmosphere, is the radiation

significantly degraded. At submillimeter wavelengths, the principal source of opacity is due

to atmospheric water vapor. High-energy, short-wavelength radiation such as gamma rays,

1.1. AN INFRARED RADIOMETER FOR MILLIMETER ASTRONOMY 2

X-rays and ultraviolet light are effectively blocked out, along with significant portions of the

infrared and submillimeter wavelengths. Only visible light passes through the atmosphere

relatively unhindered. The submillimeter spectral window, a band of wavelengths occupying

the region between infrared light and microwaves (0.1 mm to 1 mm), contains regions

(or windows) that are only partially filtered out by the presence of water vapor in the

Earth's atmosphere. Submillimeter astronomy aims to exploit these transparent and semi-

transparent windows that appear at submillimeter wavelengths.

The submillimeter band is of interest to astronomers for two reasons: the relatively

long wavelength of submillimeter radiation allows it to penetrate gas and dust, permitting

observations to be made of objects inside nebulae such as the Orion nebula, which are be­

lieved to be stellar nurseries where stars are born. Second, observations at submillimeter

wavelengths can be used to observe distant objects whose light has been red-shifted (or

stretched in wavelength) into the submillimeter band, permitting astronomers to view ob­

jects that appeared in the earliest epoch of the universe. The wavelength lengthening of

light from distant objects is a consequence of the fact, first observed by Edwin Hubble in

1929, that distant objects are receding from the earth at increasing rates, now understood

as the expansion of the universe.

The only way to observe objects in the submillimeter spectral window is to get

above the bulk of the Earth's atmosphere responsible for rendering these bands opaque.

This can be accomplished by placing observatories in orbit, such as the Hubble Space

Telescope (HST), in an aircraft, such as NASA's SOFIA (Stratospheric Observatory For

Infrared Astronomy), or at high altitude ground locations, such as at Mauna Kea, Hawaii

1.1. AN INFRARED RADIOMETER FOR MILLIMETER ASTRONOMY 3

(4200 m), or the Atacama Desert, Chile (5000 m). Spaceborne observatories enjoy the

advantage of being able to observe at all wavelengths, but are limited to mirror diameters

no larger than approximately 3.5 m, the maximum diameter of payload that can be carried

on board a rocket. Furthermore, at roughly 22,000 dollars per kilogram[17], the cost of

launching a large payload into space is very expensive. Given the advances in astronomical

technology, ground-based observatories are an attractive alternative, that can approach the

performance of its space-based counterparts.

Figure 1.1: IRMA at Gemini South Observatory, September 2004.

Submillimeter ground-based observatories can be configured as interferometric ar­

rays in order to synthesize a massive receiving antenna whose diameter equals the length

of the maximum baseline of the array. The maximum baseline is the distance between the

two farthest-separated antennas in the array.

1.1. AN INFRARED RADIOMETER FOR MILLIMETER ASTRONOMY 4

The minimum spatial resolving power of a telescope is found in any standard optics

text. For a telescope of circular aperture, the diffraction limit, expressed in radians, is:

where A is the wavelength being observed and d is the diameter of the telescope [4].

Increasing the length of the baseline effectively increases the diameter of the an­

tenna, which increases the array's spatial resolution; the minimum angle separating two

objects that can be individually resolved.

The Atacama Large Millimeter Array (ALMA) project, an interferometric sub­

millimeter telescope array consisting of 64 antennas, each 12 m in diameter, will allow

reconfigurable baselines ranging from 150 m to 18 km. ALMA promises to resolve ob­

jects at 10 milliarcsecond resolution; ten times better than the Hubble Space Telescope[41].

Situated on a 5000 m high plateau in the Chilean Andes, the ALMA site is one of the

driest regions on Earth. Atmospheric water vapor exists in low enough quantities to make

submillimeter wavelength observation feasible, although not low enough to have negligible

effect on the incoming celestial signal. In order for an interferometric array to achieve its

maximum spatial resolution (approaching its diffraction limit), the distorting effects of the

Earth's atmosphere must be overcome.

Water vapor found in the Earth's troposphere (0 - 14 km) is present in sufficient

amounts to slow down the incoming wavefront of the celestial signal. The water vapor,

measured in millimeters of precipitable water vapor (PWV), contributes a delay factor of 6

to the optical path[29]. The distribution of water vapor is neither spatially nor temporally

0,
1.22A

d (1.1)

1.1. AN INFRARED RADIOMETER FOR MILLIMETER ASTRONOMY 5

actual direction of source
•

instantaneous apparent angle
of astronomical source

interferometer baseline length
b

Figure 1.2: Atmospheric phase distortion of celestial signal. [57].

homogeneous inside the column of atmosphere projected from the antenna's receiving dish.

Thus, it is probable that each receiving antenna will be subject to a different amount of

instantaneous PWV. Since the presence of PWV slows down the incoming signal, each

receiving antenna detects the wavefront at different times, rather than simultaneously, as

desired.

The effect of atmospheric phase distortion is illustrated in figure 1.2, which shows

an interferometric array with two antennas. The antenna pair observes the same object,

whose wavefront appears planar in the upper atmosphere. The wavefront above the left hand

antenna passes through a region of water vapor, which adds excess optical path length (d)

to the incoming signal. Interferometry requires the precise measurement of the time the

1.1. AN INFRARED RADIOMETER FOR MILLIMETER ASTRONOMY 6

wavefront was received at each antenna. The apparent direction of the observed object

is perpendicular to the planar wavefront. A slight phase error manifests itself as a slight

change in the immediate apparent angle of the astronomical source's direction, diminishing

the interferometer's ability to spatially resolve astronomical objects.

Spectral emission measurements above Mauna Kea using high resolution Fourier

transform spectroscopy show that virtually all of the atmospheric opacity in the 20 micron

near-infrared band is caused by the rotational transition of water vapor molecules[41]. Water

vapor molecules, which rotate at quantized rates, change their rotational rate absorbing or

emitting photons. IRMA observes a number of transitions due soley to water vapor in

the 20 micron (15 THz) band No other atmospheric molecule exhibits transitions at this

wavelength, making it an ideal indicator of water vapor content.

By using a single bandpass filter with a cutoff of 20.5 microns, the 20 micron

band can be isolated and measured by a detector, thus determining the column abundance

of PWV in the antenna's line-of-sight, and ultimately the amount of excess optical path

length at submillimeter wavelengths. By continually measuring PWV levels above each

antenna in the interferometric array, and subtracting the amount of excess path length

from the antenna's data (sampled at synchronized intervals), the phase error contained

in the antenna's data set can be compensated, thus enabling the interferometric array to

operate at its full potential. This is the basic operational theory behind the IRMA water

vapor detector.

1.2. HISTORY OF IRMA 7

1.1.2 I R M A as an O p a c i t y D e t e c t o r

The infrared spectral window appears in the region between visible light (700 nm)

and the submillimeter (100 microns). The infrared window has varying degrees of opaque­

ness depending upon the amount of atmospheric water vapor content. When used in con­

junction with an infrared telescope, IRMA can serve as an effective monitor of atmospheric

water vapor abundance.

1.2 History of IRMA

IRMA was originally envisioned as an alternative solution to the problem of phase

correction in submillimeter interferometry. One of several solutions to phase correction

involves measuring the strength of the water vapor molecule's transitions at 183 GHz. The

strength of the 183 GHz signal is proportional to the column abundance of water vapor

above the receiver antenna. This system, however, requires the use of a high-frequency

heterodyne receiver, which besides being costly and complex, is an emitter of RF noise in

the telescope receiver cabin.

1.2.1 I R M A I

Proof of concept tests were performed in December, 1999 at Mauna Kea, Hawaii

using a prototype IRMA device, IRMA I[57]. The first generation IRMA consisted of a

wet cryostat containing the infrared detector, a tipper mirror driven by a stepper motor,

and an off-axis parabolic mirror. The tipper mirror allowed 180 degrees rotation about

the elevation (or altitude) axis, permitting the operator to perform skydips between the

1.2. HISTORY OF IRMA 8

horizon and zenith, as well as point to nadir, where the calibration target (a cold bucket,

filled with liquid nitrogen) was located. Control and data collection were performed by

laptop computer running a MS-DOS based control application. The cryostat and cold

bucket required a liquid nitrogen refill roughly every 4 hours.

When results from the IRMA I experiments showed that the IRMA accurately

tracked the 183 GHz data, work began on a second generation IRMA, which would feature

improved hardware and software. Hardware improvements included new filters that had

a better spectral match to the band of interest, a more sensitive IR detector with lower

signal to noise, and an improved ADC with higher dynamic range[6]. The basic mechanical

design, however, remained the same, including the need for frequent liquid nitrogen refills.

The original MS-DOS control software was rewritten for the GNU/Linux operating system

by this author, and was designed as a common gateway interface (CGI) application, allowing

the operator to control the instrument over the WWW using a web browser. IRMA II was

the University of Lethbridge Astronomical Instrumentation Group's (AIG) first networked

instrument; one in the line of many that followed.

1.2.2 I R M A II

IRMA II operated from December 2000 to March 2001, collecting PWV abun­

dance data. The goal of IRMA II was to compare atmospheric transmission measurements

performed with IRMA with measurements performed by existing water vapor detection

systems, namely the James Clerk Maxwell Telescope (JCMT) SCUBA bolometer camera,

the Caltech Submillimeter Observatory (CSO) 225 GHz and 350 micron radiometers, and

the JCMT 183 GHz water vapor meter radiometer[37].

1.2. HISTORY OF IRMA 9

Tau (T), or optical depth, is a measure of atmospheric transmission at some spec­

tral band of interest. Conversely, r can be described as the fraction of radiation absorbed

per unit traveled, which is the definition to opacity. Opacity is an indicator of atmospheric

water vapor content as both are directly related; an increase in opacity (or lower transmis­

sion) is a result of an increase in atmospheric water vapor.

Analysis comparing SCUBA and IRMA atmospheric transmission (or r) values

showed strong correlation at the 850 and 450 micron bands[5]. Comparisons with the CSO

Tau opacity monitors showed a similar, although slightly weaker correlation (particularly

with the 350 micron data). The positive results from IRMA II showed that IRMA was

a reliable means of measuring PWV. The data collected by IRMA II contributed to the

development of the ULTRAM radiative transfer model[6].

1.2.3 I R M A III

In the summer of 2001, work began on a third generation IRMA unit, which

promised substantial improvements: an autonomous, steerable water vapor radiometer that

did not require liquid cryogen refilling. IRMA III would be remotely controllable by an

operator over a network link, and be capable of pointing to an altitude-azimuth (Alt-Az)

coordinate in the sky. Finally, IRMA III would use a custom command control language,

allowing the operator maximum flexibility of control over the instrument.

It was hoped IRMA III could be deployed at the ALMA site in Chile. The de­

mands of operating at a remote site without electrical power or a persistent, high-bandwidth

network connection made it necessary that IRMA be a self-contained, compact unit that

consumed little power. These restrictions led to the adoption of the Rabbit Semiconductor

1.2. HISTORY OF IRMA 10

Rabbit 2000 embedded microcontroller as IRMA's control computer. IRMA was to be a

true embedded system distributed between three processors, both of which were required to

be multi-tasking and provide real time performance, meaning the system needed to respond

to external interrupts in a known period of time.

A project manager for IRMA was hired in 2003 to solve some of IRMA's outstand­

ing mechanical problems, the most important being a stable vacuum for IRMA's cooled IR

detector. Concerted effort was poured into IRMA's development, so by June of 2004, IRMA

III was ready for initial field tests. In February 2005, IRMA III was deployed at the Gemini

South observatory at Cerro Pachon, Chile for a second round of field testing. At the time

of writing, IRMA is still operational at the Gemini site.

IRMA III is being upgraded with a new motherboard and master control com­

puter. The discussion on IRMA III contained in this thesis, however, will consider the

original IRMA III model that was tested in Hawaii and Chile. This thesis will discuss

the structure of the IRMA III control software, the communication mechanisms binding

IRMA's software modules one to another, IRMA's command control language, and IRMA's

hardware/software interface. Appendix A describing the IRMAscript language in detail is

provided as a reference guide for operating the IRMA III device.

11

Chapter 2

I R M A Hardware

2.1 Overview

An overview of IRMA's hardware, starting with the detector box and the Alt-

Az mount, will provide a background to understanding the roles and operations of the

IRMA master controller (MC) and IRMA altitude-azimuth mount controller (AAC). IRMA

consists of a 38 cm x 22 cm x 18.5 cm aluminum box mounted on an Alt-Az fork mount, as

depicted in figure 2.1. The Alt-Az mount allows IRMA to rotate approximately 170 degrees

of rotation about its azimuth axis, and approximately 185 degrees about its altitude axis.

The shoebox-sized IRMA unit contains a 117 mm diameter aperture, behind which is a

motorized sliding shutter. The shutter serves as a calibration source as well as waterproof

the IRMA unit when it is not observing, as it makes a tight seal when it is in closed position.

A 13 micron thick mylar window protects the instrument against dust during observing.

Inside the unit, light reflects off a 10 cm diameter f/1 90 degrees off-axis parabolic

2.1. OVERVIEW 12

Figure 2.1: Cutaway view of IRMA in its Alt-Az mount. 1) Stirling cycle cooler 2) Shutter
3) MCT detector 4) Black body and heater 5) Reflective chopper 6) Input beam 7) Main
board and IRMA master controller (hidden from view - on reverse side of detector box) 8)
Parabolic mirror 9) Power/communication umbilical cable 10) Alt-Az controller 11) Cryo
cooler controller 12) Power supply [38]

mirror, focusing on a 1 mm square Mercury-Cadmium-Telluride (MCT) infrared (IR) de­

tector. The IR detector is cooled to 70 K by means of a Stirling-cycle cryo-cooler. A

stainless steel vacuum vessel (p ^ 10~ 4 mbar) encloses the cryo-cooler's cold finger and

IR detector. The IR detector is attached to the tip of the cold finger with a mechanical

clamp. The incoming optical beam passes through a 5-blade reflective chopper wheel before

reaching the IR detector. The chopper wheel blades modulate the signal at 450 Hz. This

frequency was chosen as a result of spectral analysis tests, which showed that the IRMA

system had lowest overall noise at this frequency. A unique notch, located on the chopper

2.2. IRMA MASTER CONTROLLER 13

wheel's circumference, ensures samples are triggered on the same blade, thus eliminating

uncertainties associated with blade to blade emittance/reflectance variations [38].

Given IRMA's compact size in comparison to the amount of required internal

hardware, little space remains for a control computer, which made it necessary to use a

miniature microcontroller module in both the MC and the AAC. The MC uses a Rabbit

Semiconductor RCM2100 microcontroller module. The RCM2100, pictured in figure 2.2, is

an 89 mm x 51 mm printed circuit board containing an 8-bit microprocessor, memory, digital

and serial I /O, and an Ethernet-based network interface controller. This microcontroller

is responsible for interpreting commands from the command processor (CP), with which it

commands and queries IRMA's hardware components.

2.2 IRMA Master Controller

2.2 .1 R a b b i t 2 0 0 0 M i c r o c o n t r o l l e r M o d u l e

The MC and AAC control computers are based on the Rabbit 2000 8-bit micropro­

cessor. The Rabbit 2000 processor and its related products are produced by Rabbit Semi­

conductor, Inc., a fabless semiconductor company which specializes in high-performance,

low cost 8-bit microprocessors and development kits. Rabbit 2000 (and its more power­

ful sister processor, the Rabbit 3000) processors are generally sold as small single board

computers known as core modules, and are promoted as rapid development solutions for

connecting systems and devices to the Internet. Typical applications include point-of-

sale systems, automated utilities meter reading, and traffic monitoring[22]. Internet web

searches on Google, however, show that IRMA may be the only publicized application of

2.2. IRMA MASTER CONTROLLER 14

Rabbit microcontrollers in astronomical instrumentation control.

Introduced to the market in 1999, the Rabbit 2000 is based on the venerable Zilog

Z-80/Z-180 architecture. Consequently, the Rabbit 2000 shares a similar register layout,

memory addressing modes and machine instructions with the Zilog processor. The two

architectures are so similar, it is possible to execute Zilog assembly code on the Rabbit

2000. The primary difference between the two processors is that the Rabbit 2000's register

layout is optimized for 16-bit arithmetic and memory manipulation, unlike the original Z-

80 architecture. This feature makes the Rabbit 2000 more compatible with C language

compilers, which are typically biased towards 16-bit (or higher) arithmetic and memory

access. Ultimately, a processor architecture that is more in step with the target compiler's

capabilities will generate more efficient machine language programs.

The RCM2100 core module in its maximum outfitted configuration features a 22

MHz Rabbit 2000 8-bit microprocessor, 512 KB of static random access memory (RAM),

512 KB of non-volatile flash memory, 40 lines of TTL compatible digital I /O (DIO) lines,

eight of which serve as 4 serial communication channels, and a lOBase-T 10 Mbit/s Ethernet

controller. A comprehensive listing of the RCM2100's capabilities is shown in table 2.1.

Rabbit 2000 M e m o r y Structure

Memory is a scarce resource in embedded computers, primarily due to their small

data size (8-bit) and consequently small memory address space. Although the Rabbit's

software development environment, Dynamic C, largely insulates the programmer from the

intricacies of Rabbit memory management, it is worthwhile to examine how memory is

2.2. IRMA MASTER CONTROLLER 15

Figure 2.2: Rabbit RCM2100 Core Module (front and reverse view).

organized and handled. At the very least, this knowledge is helpful in understanding and

diagnosing runtime memory errors, which are typically difficult to resolve on any platform.

Flash memory is used to permanently store the IRMA MC executable code and

related static data, such as constants, tables and files. Volatile SRAM holds the executing

program and its associated variables. Rabbit 2000 program size is limited by the amount

of available flash memory. The maximum amount of flash RAM supported on Rabbit

processors is 512 KB. Although 512 KB (roughly equivalent to 25,000 to 50,000 C-language

statements) does not sound like a great deal of memory, it is more than adequate for running

serious control and data acquisition programs, because the Rabbit's C language compiler,

Dynamic C, produces lean and efficient executable code. SRAM and flash RAM together

add up to 1024 KB, and is addressable using 20-bit address space referred to as physical

memory[55].

The Rabbit 2000, being an 8-bit microprocessor, operates within a 16-bit address

space derived from a larger 20-bit physical memory pool. Addressing space is kept small

in order to keep Rabbit executable files small and code execution fast. The Rabbit does

2.2. IRMA MASTER CONTROLLER 16

Feature RCM2100
Microprocessor 22 MHz Rabbit 2000
Memory: Flash 512 KB

Memory: SRAM 512 KB
Networking lOBase-T Ethernet + RJ-45

Serial 4 channels, max 115 kbps (async)
DIO 40 TTL lines

Real Time Clock yes
Timers Five 8-bit times, one 10-bit timer

Connectors Two 2x20 pin, 2mm IDC headers
Power 5V + / - 0.25V, 140 mA

Dimensions 89mm x 51mm x 22mm

Table 2.1: Rabbit 2100 Core Module Specifications [50]

not have 32-bit wide registers. As a result, performing 32-bit arithmetic requires more

processor cycles than performing internally-supported 16-bit calculations. Since the Rabbit

2000 cannot access 20-bit physical memory addresses, it uses a segmented memory scheme,

whereby its built-in memory management unit (MMU) maps the 20-bit physical address

space to the smaller 16-bit logical address space. The Rabbit 2000's memory structure,

showing the mapping relationship between logical and physical memory, is shown in figure

2.3.

Memory addresses from 0 to 2 1 6 comprise root memory, while addresses above this

boundary up to 2 2 0 comprises extended memory. Root memory can be manipulated directly

using C-language assignment statements, but extended memory can only be accessed using

Dynamic C's extended memory routines such as xalloc, xmem2root, and root2xmem.

Within root memory (or logical address space) are four segments: the base seg­

ment, data segment, stack segment and extended memory segment. The base segment can

2.2. IRMA MASTER CONTROLLER 17

unused

unused

Logical Address
Space

0x00000
Physical Address

Space

Figure 2.3: Rabbit 2000 memory mapping between logical and physical address space[21].

be used for storing speed-critical or short-length functions, interrupt service routines (if

any), and the Rabbit BIOS (Basic Input /Output System). It is typically 24 KB in size,

and is mapped to flash memory where executable code is stored when running the Rabbit

in non-debug mode.

Above the base segment is the data segment, which is mapped to SRAM. It is

used for storing run-time variables, and extends to address 53,238 (D000 in hexadecimal).

The size of the root and data segments can be adjusted, but together they cannot exceed

52 KB. Global variables as well as pure assembly language functions are placed in these

segments.

Above the data segment is a 4 KB region called the stack segment. Positioned

between addresses D000 (hex) and E000 (hex), the stack segment contains the Rabbit

2.2. IRMA MASTER CONTROLLER 18

system stack, and is mapped to SRAM. The system stack is used for storing variables local

to a function that exist only for the duration of the function call. They are declared using

the auto directive. Dynamic C by default treats all local variables as auto. One consequence

the Rabbit developer should be aware of is that all the local (auto) variables contained in

a function cannot exceed 4 KB (4096 bytes) of memory storage.

The extended memory segment sits between address E000 (hex) and 10000 (hex).

This 8 KB region is used to execute extended code as well as act as scratch memory space

for routines that manipulate extended memory. For the most part, memory management

is transparent to the software developer, as the Dynamic C compiler and memory handling

libraries take care physical/logical memory mapping. The developer sees only a flat 20-bit

address space [21].

2.2 .2 R a b b i t 2 0 0 0 I n p u t / O u t p u t

Parallel Ports

The Rabbit 2000, like other embedded microcontrollers, excel at providing copious

amounts of I /O, since their primary application is hardware control. Five 8-bit wide parallel

ports are featured on all Rabbit 2000 processors, making available a maximum of 40 TTL-

compatible (0 to 5 V) DIO lines. Since the Rabbit maps some of these lines for multiple

uses, such as Ethernet or the Rabbit slave port, the total available DIO lines will decrease

depending on which RCM2100 functions the programmer wishes to use.

Each of the Rabbit 2000's parallel ports have particular characteristics in terms of

2.2. IRMA MASTER CONTROLLER 19

Bit 7 Bit 6 BitS Bit 4 Bit 3 Bit 2 Bi t l BitO

PA
PA7 PA6 PA5 PA4 PA3 PA2 PA1 PAO

PA All pins must be set collectively as input or output

PB
PB7 | PB6 PB5 | PB4 | PB3 PB2 | PB1 | PBO

PB out in

PC
PC7 PC6 PC5 PC4 PC3 PC2 PCI PCO

PC in out in out in out in out PC
serial A (debug) serial B serial C serial D

PD
PD7 PD6 PD5 PD4 PD3 PD2 PD1 PDO

PD in/out in/out in/out in/out in/out in/out in/out in/out PD
Ethernet

in/out in/out in/out in/out

PE
PE7 PE6 PE5 PE4 PE3 PE2 PE1 PEO

PE in/out in/out in/out in/out in/out in/out in/out in/out PE
Ethernet int IB int OB Ethernet int 1A int OA

Figure 2.4: Rabbit 2000 Parallel Ports.

their flexibility in setting the data direction of their I /O pins, their potential shared usage,

and if applicable, their electrical characteristics. As shown in figure 2.4, only ports D and E

allow data direction to be set at the pin level, while port B and C have fixed data direction

assignments. Four serial channels are mapped to parallel port B, where each serial channel

maps to a pair of DIO lines (one for transmit, the other for receive). When Ethernet is

enabled, six DIO lines (four in parallel port D and two in port E) are reserved. Serial port A

is assigned to carry the Rabbit-PC debug channel. This channel is used to upload software

into the Rabbit, or to receive feedback from printf statements embedded in the executable

when the Rabbit is run in debug or diagnostic mode. Parallel port E contains two lines

dedicated to Ethernet, as well as four external interrupt lines. The Rabbit 2000 parallel

port data direction registers, PDDDR and PEDDR, control whether a parallel port pin is

set in read or write mode.

2.2. IRMA MASTER CONTROLLER 20

The Rabbit 2000 has two external interrupt channels, each of which is mapped

to two pins, permitting up to four external interrupt lines to be connected. Two unique

priority interrupts are assigned to each interrupt channel. Rabbit 2000 processors shipped

before January 2002 contain a bug in their interrupt pulse edge detection circuitry, which

in certain situations could cause spurious interrupts. The manufacturer's recommended

workaround[20] halves the number of usable interrupt lines. Although this was a serious

design issue early on in IRMA Ill 's design, all current IRMAs use the newer, bug-free Rabbit

2000 processors. The older Rabbit processors can be identified by the version code IQ2T.

Ethernet

Rabbit 2000 processors do not support networking internally, as they do not con­

tain Ethernet control circuitry. Selected Rabbit 2000 based controller modules, however,

do support networking through an external network interface controller chip. Controller

modules, such as the RCM2100 used in the IRMA MC, use the RealTek 8019 network

interface controller (NIC). All network-capable processor modules have an RJ-45 socket

allowing connection to a local area network using a standard Cat-5 (EIA/TIA-568) network

cable. Rabbit networking is powered by the Rabbit processor, causing it to be considerably

slower than networking performed on a desktop computer. This is due to the fact that the

rate at which the microprocessor can process network packets is limited by its clock speed

and data width. The Rabbit can at best transmit 270 KB/s on a traffic-free network, one

quarter the rate at which PC hardware can process network traffic[54]. Rabbit networking

is a major component of Dynamic C, supporting high-level server protocols such as HTTP,

Telnet and F T P in addition to TCP and UDP sockets. Being a software matter, Rabbit

2.2. IRMA MASTER CONTROLLER 21

networking using Dynamic C is beyond the scope of this discussion. Fortunately, Rabbit

Semiconductor has provided extensive tutorial[45] and reference documentation[65][47][48],

as well as program examples [46] relating to Rabbit network programming.

Rabbit 2000 Peculiarities

One cannot expect modern PC performance from 8-bit microcontroller modules

such as the Rabbit RCM2100, nor does it have features deemed standard in conventional

32-bit computers. Many of these features, such as protected memory, file systems or preemp­

tive multitasking using priority round-robin scheduling, are features of the host operating

system, not the hardware. The Rabbit software development kit, Dynamic C, provides li­

braries which provide rudimentary network services, disk-less file system and multitasking.

A real-time multitasking kernel, MicroC/OS-II [27], is provided for implementing preemp­

tive real-time multitasking.

The Dynamic C's lack of double precision arithmetic functions makes it more

difficult for the Rabbit to do precision arithmetic. Since the Rabbit only supports single-

precision floating point numbers, round off error can creep into Rabbit-based arithmetic

routines rapidly. With IRMA, nearly all floating point arithmetic tasks, such as altitude-

azimuth to right ascension-declination coordinate conversion, have been offloaded onto the

PC-based CP in order to preserve arithmetic precision, increase speed of program execution,

and take advantage of higher level languages (like Perl) and external libraries that require

less developer effort.

2.3. IRMA MC CONTROL 22

2.3 IRMA MC Control

The IRMA MC forms the hub of the IRMA control and data acquisition system.

The MC is tasked with controlling each of the electronic devices interfaced to it. Control

tasks include turning a unit on or off, commanding it to do some task (either by setting

a logic level or sending an explicit command with parameters), monitoring its status, and

responding to external interrupts. Communication with IRMA's hardware components is

performed through digital I /O lines or 2-wire serial channels. A block diagram showing the

MC's hardware interfacing appears in figure 2.6.

The digital I /O and serial port mappings on the IRMA MC, appearing in figure

2.5, show that roughly two thirds of IRMA's I /O is devoted to output (blue boxes), while

one third is devoted to input (pink boxes). Colored boxes outlining one or more boxes depict

DIO lines reserved for specific functions. Parallel port C maps four sets of read and write

lines to four serial channels. The red box spanning lines 4 through 7 on parallel port D,

along with lines 6 and 2 on parallel port E are reserved for Ethernet communications when

networking is enabled. Enabling additional hardware functionality on the Rabbit consumes

even more DIO lines - an important consideration when planning hardware interfacing at

the outset of a project. The Rabbit slave port driver demonstrates how using extra features

rapidly consumes DIO resources. Inclusion of this driver into the IRMA III design was

dropped when it was realized the slave driver would require 14 DIO lines. In addition

to the lines lost to Ethernet, less than 10 DIO lines on the RCM2100 would remain for

interfacing peripheral hardware. This was the factor that led to the decision to use the

2.3. IRMA MC CONTROL 23

relatively slow 2-wire serial connection linking the master and Alt-Az controllers.

Figure 2.5: IRMA Master Controller Digital I /O Pin Mapping. Pink boxes represent input
lines, blue boxes represent output lines, white boxes represent bidirectional lines.

2.3.1 Shut ter

The shutter, which also serves as a calibration source, consists of a 130 x 137 x 17

mm hollow aluminum block mounted in a track, driven by a lead screw. At opposite ends of

the track are two slotted optical switches[60], both of which are mapped to two DIO lines.

When the optical beam is open, a logic value of 0 is returned. When the beam is closed,

a value of 1 is returned. Metal tabs that actuate the opto switches are placed at opposite

sides of the shutter. The IRMA MC software polls these lines and returns the values to the

2.3. IRMA MC CONTROL 24

IRMA CP, which it uses to determine when shutter movement has completed.

DIO lines PB2 and PB3 (parallel port B, bits 2 and 3), are mapped respectively

to the shutter-closed and shutter-open opto switches. The fact that both opto switches are

open (both reading high) when the shutter is not in the open or closed position provides

shutter status: these two bits, when shifted into bit positions 0 and 1, can be interpreted

as status codes:

Code State
1 open
2 closed
3 moving (or jammed)

The shutter is commanded to open by clearing bit 3 of parallel port D. The shutter

closes by setting bit 3. There is no way to set speed or stop the shutter once it has been set

in motion. Digital logic in the central electronics stops shutter motion automatically once

one of the opto sensors has been interrupted. Shutter software traps for the case that the

motor may not automatically turn off once it reaches its destination position by reversing

the current shutter direction if the shutter does not finish moving in some predetermined

time. The default timeout is 40 seconds. This is an attempt to minimize damage if the

shutter jams.

2.3 .2 S u n S h u t t e r

The parabolic mirror inside the IRMA unit collects and focuses light at the de­

tector. If the unit is pointed directly at the sun, the focused sunlight is intense enough to

ANALOG CHANNELS
(channel number: channel name)

4: BB L I D TEMP 1"
5: BB L I D T E M P 2-

6: MIRROR B A S E T E M P -
7: ADC TEMP -

8: B A S E COMPARTMENT T E M P -
9: PUMP TEMP -

10: S H U T T E R MOTOR TEMP -
11: P R E - A M P TEMP -

M U L T I P L E X E D
T E M P E R A T U R E C H A N N E L S

3: ATMOS P R E S S U R E -

2: ATMOS H U M I D I T Y -

1: MCT S I G N A L -

CH4

CH3

CH2

CHI

5534AS ADC

SDI

SCLK

S00

ANALOG
MUX

BLACK BODY
SHUTTER ASSEMBLY

SUN
S H U T T E R

t T,

NOTCH F I L E R

JA5.
HUX 1

HUX 2

MUX 3

PAH

PAl

_EBLi

EEZ

PE4,

PIW

PR? •

P B 3 .

_PJ£i
JMLi
pm.

RCM 2100
MASTER

SUN S H U T T E R
SDI

SCLK

S00

S | T X
g (RX

& | R X

GPS TIMEHARK

| | R X

AAC RESET

SUN S H U T T E R R E A D

BANDPASS FILT 455HZ
NOTCH FILT 60HZ

SHUT OC LATCH RESET

BB HEATER CHOP ENAB

BB SHUTTER CHOP SPD1

SHUTTER LIM1 CHOP SPD2

SHUTTER L1M2

BB MOTOR OVRCURNT

POWER HON 5V

POWER HON 24V

CHOP
ON/OFF

SI INTnAUPFdfnnfibnaT) I 1
H l l N H A ^ q ^ « _

: ' T T _ ^ J

Pr.4

RS232
DRIVER
RS232

DRIVER

COOLER
CONTROLLER

GPS

4 reh

DIFFERENTIAL TTL
DRIVER

FCO
^ PCI TO SLAVE (RCM 2010)

<C=>
POUER: 3 LINES

ETHERNET: 4 LINES

pal.

PB7

iEiliflfltional)
HE1

IRMA 3 POWER

DAC

NETWORK LIKE (4 LINES)

SERIAL LINE

INTERRUPT LINE

TTL LOGIC LINE

IRMA3 BLOCK DIAGRAM
F E B R U A R Y 1, 2005
I A N S C H O F I E L D
U N I V E R S I T Y O F L E T H B R I D G E

2.3. IRMA MC CONTROL 26

burn a hole in the filter covering the detector. This has occurred twice in the past with

earlier models of IRMA. To prevent this from happening, a solenoid-operated shutter inde­

pendent of software, sweeps into place whenever a bright light body, such as the sun, comes

within 15 degrees of the detector's field of view. A small hole, on-axis to IRMA's field of

view, contains a photocell that detects bright light sources. The sun shutter can also be

controlled via software to open or close, and is mapped to line 0 on parallel port A. Setting

this line opens the sun shutter, while clearing it causes the sun shutter to close. Manual

sun shutter control is useful for certain diagnostic tests and provides additional protection

during testing and commissioning phases.

2.3 .3 C a l i b r a t i o n S o u r c e

A calibration source, attached to the underside of the shutter, is used to calibrate

IRMA's IR detector. It consists of a carbon-black epoxy enamel textured coating deposited

on a thin, metallic film heater. The coating has a high emissivity at infrared wavelengths.

The blackbody can be heated by passing an electrical current through the film. Current is

turned on or off by setting or clearing bit 2 of parallel port D. When the shutter is closed

(where it covers the optical aperture) the blackbody is in position for taking calibration

measurements.

2.3 .4 S t i r l i n g - C y c l e C o o l e r

A Hymatic NAX025-001 Stirling-cycle cryo cooler is responsible for cooling IRMA's

IR detector to 70 K. The cylindrically-shaped unit is equipped with a vacuum chamber.

The vacuum is required by the cryo cooler to reach cryogenic temperatures. The IR detec-

2.3. IRMA MC CONTROL 27

tor is attached to the tip of the cold finger, which is the only part of the cryo cooler which

achieves cryogenic temperatures.

Figure 2.7: IRMA vacuum vessel. Wiring for the cold finger temperature sensor and the
detector output is fed through the small tube pointing up. The getter is located in the long
elbow section to the right. The pinch off tube is connected in the left hand flange.

The vacuum chamber surrounding the cold finger is evacuated to l x l O - 4 mbar.

This vacuum, which is designed to last for roughly five years, must have a leak rate no

greater than l x l O - 1 5 mbar c m - 2 s - 1 in order to allow the cryo cooler to operate at its

target temperature. The chamber, shown in figure 2.7, is a T-shaped vessel with two arms

on either side and an anti-reflective-coated ZnSe window. IR radiation enters the vacuum

vessel through this window, illuminating the IR detector directly behind it. The two arms

act as access points to the chamber. One arm connects to the vacuum pinch off tube, a

2.3. IRMA MC CONTROL 28

copper tube which connects to a turbo-pump during evacuation. While attached to the

pump, the tube is pinched off using a precision crimping tool, which cold-welds the copper

tubing, creating a permanent vacuum seal. The vacuum chamber is e-beam welded to

the cooler body. The other arm contains a SAES ST172/HI/16-10/300C getter, a device

designed to absorb gas molecules that naturally outgas from the vacuum vessel walls. The

getter is activated by passing an 4 amps of electrical current through it for 5 minutes,

heating it to 900 C[43].

The Hymatic Stirling-cycle cryo cooler controller unit accepts high-level commands

encoded in ASCII strings over its RS-232 serial port (female DB-9 connector), which allows

for interfacing to external computer hardware. IRMA communicates with the cryo cooler

controller over serial port B, which is mapped to parallel port C, lines 7 and 6 (PC7 and

PC6). PC6 is the serial transmission (TX) line, while PC7 is the serial receive (RX) line.

It should be noted that for all of the Rabbit's serial lines on parallel port C, the odd lines

(7, 5, 3, 1) are TX lines, while the even lines (6, 4, 2, 0) are RX lines.

IRMA command packets are translated into appropriate Hymatic serial strings

and sent to the controller in order to control the cryo-cooler's behavior. Likewise, data

from the cryo-cooler, such as cooler temperature, is extracted from the Hymatic serial data

strings and encoded into IRMA data packets. The cryo-cooler serial communication channel

operates at 4800 bits per second, 8 data bits, 1 stop bit, no parity (8N1). Rabbit/Cryo-

cooler control is encapsulated in the custom-written hymatic. l ib Dynamic C library.

Commanding the cryo-cooler to go to a target temperature is straight forward:

one sets the cooler's set point to some temperature in degrees Kelvin, then sets the cooler

2.3. IRMA MC CONTROL 29

into auto mode. The cryo-cooler then begins the process of cooling down at a set rate,

based on a factory-set internal profile, until it reaches target temperature. The cryo-cooler

will maintain its set point until instructed otherwise. Turning off the cryo-cooler involves

setting it to manual mode, then setting it to stopped mode. It is not desirable to cut power

to the cooler during operation, as this may damage the piston that oscillates inside the cold

finger.

2.3 .5 A l t - A z Contro l l er

The Alt-Az controller (AAC) is a custom-built electronics board based around a

Rabbit Semiconductor RCM2010[49] controller module. The AAC acts as a slave on behalf

of the MC, as it does not perform actions or generate data on its own. It only acts when

commanded by the MC by means of a 19.2 kbps 2-wire serial channel, mapped to both

Rabbit's serial port D (lines 0 and 1 on parallel port C).

The AAC is responsible for moving the Alt-Az mount to specified elevation and

azimuth coordinates, thus it concerns itself completely with motion control and communi­

cating with the MC. Alt-Az control is offloaded onto a separate processor because the MC

lacks the DIO line capacity required to serve all hardware control functions. Additionally,

the MC is already burdened with handling network communication, data acquisition, and

device control duties. Details on the MC-AAC serial communications protocol is contained

section 3.6.2.

2.3. IRMA MC CONTROL 30

2.3 .6 I R d e t e c t o r

Infrared radiation is detected and converted to measurable voltages by a MCT

photoconductive detector, manufactured by Kolmar Technologies. The detector is sensitive

to wavelengths from 5 to 20 microns. A 19 micron highpass filter placed in front of the

IR detector filters out wavelengths less than 19 microns, resulting in a narrow 2 micron

(50 c m - 1) wavelength band of radiation reaching the detector. The detector changes

its resistance as a function of the radiation falling upon it. This change is sensed as a

voltage, which is fed to the ADC. The signal voltage is a measure of flux (in watts) from

20 micron emissions reaching the detector, and is proportional to the strength of the 20

micron absorption line. A radiative transfer model developed by Ian Chapman during his

thesis work at the University of Lethbridge, called ULTRAM (University of Lethbridge

Transmission and Radiance Atmospheric Model) is used to convert the line strength into

millimeters of PWV[5].

2 .3 .7 C h o p p e r W h e e l

A 5-blade reflective chopper wheel modulates the incoming optical beam at roughly

450 Hz. A notch on the perimeter of the wheel is used as a sample trigger point to force

A/D sampling on the same blade, eliminating signal variation due to dirt and imperfections

on each of the chopper wheel blades [38]. The chopper wheel's rotation rate determines

the A/D sampling rate, as the chop notch signal is mapped to the IRMA MC's external

interrupt line. When the MC detects a low to high transition on its interrupt line, it calls

its data collection interrupt service routine, implemented almost entirely in assembly code.

2.4. DELTA SIGMA ANALOG TO DIGITAL CONVERTER 31

The chopper wheel is enabled and disabled by setting or clearing bit 3 on parallel port E.

Chopper wheel speed is user selectable by setting bits 6 and 7 on parallel port A.

Because only two bits are available for speed settings, four distinct speeds can be selected.

The speed setting is fed into a serial DAC, which presents a corresponding voltage level

to the chopper wheel's motor control module. This function has been deprecated in future

versions of IRMA III. For all IRMA models, the chopper wheel's default rotational speed

is 5400 rpm.

2.4 Delta Sigma Analog to Digital Converter

The heart of the IRMA data acquisition system is a Cirrus Logic CS5543[8] 4-

channel 24-bit delta sigma (AS) analog to digital converter (ADC). The IR signal, at­

mospheric pressure, relative humidity and eight temperature channels are sampled by the

ADC. Given that the ADC has only four input channels, the eight temperature channels

are selected via an 8-channel analog multiplexer (MUX), permitting the 4 channel ADC to

accept eleven signal sources. The Maxim MAX4638 8-to-l analog MUX is mapped to DIO

lines 4, 5 and 6 on parallel port A. Line 6 is the most significant bit (MSB) and line 4 is

the least significant bit (LSB) of this 3-bit sequence. Placing binary values 0 through 7 on

these three lines selects one of the MUX's eight channels.

Unlike other ADC designs, the AE ADC contains a relatively simple 1-bit analog

A/D sampling module combined with sophisticated digital signal processing circuitry. One

of the benefits of the A S is that it is primarily a digital device, making it inexpensive to

produce, as well as being linear across its input voltage range, as it has only two analog

2.4. DELTA SIGMA ANALOG TO DIGITAL CONVERTER 32

inputs. ADCs are capable of performing very high resolution A/D conversions despite only

being able to sample at 1-bit resolution because they use of massive oversampling, noise

shaping and digital filtering to achieve near 24-bit sample resolution [24].

2.4 .1 D e l t a S i g m a S igna l P r o c e s s i n g

Power

Signal amplitude

SNR = 6.02N + 1.76dB for an N-bit ADC

Quantization Noise

Average noise floor (flat)

Fs/2 Fs

Figure 2.8: FFT diagram of an n-bit A/D conversion with sampling frequency Fs.
Diagram [44].

Oversampling can be visualized by taking the Fourier transform (FT) of the signal

and plotting its power versus frequency. As shown in the figure 2.8, the input signal contains

a single frequency, which appears as a single frequency bin. Noise, however, is distributed

evenly across the signal bandwidth from 0 Hz to half the sampling frequency, defining the

signal's noise floor.

Oversampling (figure 2.9) involves sampling the input signal at rates higher than

twice the Nyquist frequency. In essence, oversampling uses signal averaging to reduce

quantization error that manifests itself as noise in the signal by repeatedly sampling the

2.4. DELTA SIGMA ANALOG TO DIGITAL CONVERTER 33

Signal amplitude

Power
Quantization Noise

1riirlHrlTrir1rltn|- Average noise floor

kFs/2 kFs

Figure 2.9: F F T diagram of an n-bit A/D conversion with sampling frequency kFs, over-
sampled by k times. Noise floor has been lowered due to oversampling. [44].

signal and calculating the average signal value. Signal averaging improves the signal to

noise (SNR) by the square root of the number of samples [33]. For example, if a signal is

sampled 100 times, the average signal remains the same, while the noise, assumed to be

random, is reduced by a factor of y/100, or 10[12].

which implies that a 1-bit A/D conversion has an SNR equal to 7.78 dB. Clearly, a higher

SNR can be achieved by increasing N, the number of sampled bits of precision. This is

not possible with A S A/D converters, as they only contain a 1-bit converter. Increasing

the oversampling rate on a 1-bit ADC by a factor of 4 increases the SNR by 6 dB, which

corresponds to a single bit increase in sample resolution. Quadrupling the oversampling

rate for each additional bit of precision can lead to excessively high oversampling rates: to

achieve a 24-bit resolution sample, 4 2 3 times oversampling would be required.

The SNR of a sample obtained from an N-bit A S ADC is shown to be[24]:

SNR = 6.02JV + 1.76dB (2.1)

2.4. DELTA SIGMA ANALOG TO DIGITAL CONVERTER 34

Signal amplitude

Power

The integrator serves
as a highpass filter to
the quantization noise

ml ml
kFs/2 kFs

Figure 2.10: Effect of the Delta-Sigma modulator changing the distribution of high-
frequency quantization quantization noise, or noise shaping[44].

The A S modulator deals with the limitation of oversampling as a means to increase

resolution by pushing high-frequency noise beyond the frequency range of interest (figure

2.10), resulting in the attenuation of 9 dB of quantization noise for every factor of 2 increase

in the oversampling ratio. It is now feasible to achieve a high SNR (low quantization noise)

with a moderate oversampling rate. The A S ADCs integrator is responsible for this effect,

called noise shaping. Again, the total quantization noise has not dropped, but rather its

distribution along the bandwidth has been changed.

One or more sine filters are used to filter out the remaining quantization noise. By

filtering out frequencies beyond the band of interest (figure 2.11), the low frequency bands

are relatively noise-free, enjoying a superior SNR. A time decimation filter placed after the

low-pass filters are used to reduce the data rate of the output data stream [24].

2.4. DELTA SIGMA ANALOG TO DIGITAL CONVERTER 35

Power

Signal amplitude
; Digital filter
| response

kFs/2 kFs

Figure 2.11: Affect of a digital filter on quantization noise[44].

2.4 .2 S t r u c t u r e of t h e D e l t a S i g m a A D C

A first-order AE modulator is a simple A/D converter design consisting of a dif­

ference amplifier, an integrator, a comparator (1-bit ADC) and a 1-bit DAC, as shown in

figure 2.12. An input signal X\ feeds into the difference amp, which outputs the difference

in volts between the analog output of the modulator and the input signal. This is the delta

portion of the delta sigma modulator. The delta output X2 is fed into an integrator, the

sigma, which calculates a rolling average of the input signal. The sigma output X3 is then

sampled with a comparator, which acts as a 1-bit ADC. If the sigma signal is greater than

ground, the comparator outputs a 1 (full scale voltage), otherwise it outputs a 0 (ground).

The resulting bit stream from the comparator X4 is split: one half goes to the digital filter

section of the AE modulator, the other half is fed back into the difference amp after passing

through a 1-bit DAC. The DAC output X$ is full scale voltage if the input is greater than

ground, or 0 volts otherwise.

The bit stream of Is and Os emerging from the comparator, when averaged over N

2.4. DELTA SIGMA ANALOG TO DIGITAL CONVERTER 36

samples, gives a value indicating the proportion of ones to zeros. The density of ones in the

output bit stream indicates the proportion of the input voltage to full scale. For example,

if the average of the output bit stream from the A S modulator read 0.5, 50 percent of

the bits in the bitstream are ones, indicating that the ADC input voltage is close to 50 %

of full scale. The higher the number of samples included in the average, the greater the

accuracy of the A/D sample value. Consequently, high resolution A/D conversions taken

with a AE ADC require a high degree of averaging, resulting in a high latency between

taking the sample and producing the result. It is the issue of latency which makes AE

ADCs unsuitable for sampling rapidly changing, high frequency sources.

Signal Input ^

Difference Integrator ^ I
Amplifier Comparator

) ^ /vmax I (1-bit ADC)

To Digital
Filter

1-bit DAC

Vmaxl

ovl
+Vmaxr

-Vmax
+Vmax

-Vmax L

x 4 :n
[."

0
Vmax

OV

n n n n

' Modulator
Clock

Figure 2.12: A first-order Delta-Sigma modulator[44]

2.4. DELTA SIGMA ANALOG TO DIGITAL CONVERTER 37

2.4 .3 Cirrus C S 5 5 3 4 D e l t a S i g m a A D C S t r u c t u r e a n d O p e r a t i o n

The CS5534 is a serial controlled device, yet it does not use one of the Rabbit's

serial channels. Rather, it uses a clocked 3-wire serial interface where each line is mapped to

a discrete DIO line. Serial data must be explicitly modulated on its DIO lines by the Rabbit.

When the CS5534 is enabled by holding its chip select (CS) pin low, serial commands are

fed into its serial data in (SDI) line, which is mapped to Rabbit DIO output line 0 on

parallel port B. Data from the CS5534 is received on DIO input line 1 on parallel port A.

The CS5534's serial clock input (SCLK) must must transition from low to high in order

make the AE accept a bit of data.

For example, if one were to input the hexadecimal number A (decimal 10) into

the CS5534, one would input the bit pattern 1010 one bit at a time into SDI, strobing the

SCLK pin (low to high) between each bit. Likewise, when reading data from the CS5534,

one would set the SCLK line, read the SDO line, then clear the SCLK line. The strobing

sequence must be repeated for each bit being read or written. The CS5534's read and write

cycles are shown in figure 2.13.

The data conversion cycle begins with a command requesting an A/D conversion.

The request is sent in the form of a serial stream of hi-low bits sent over the ADC's SDI

line. Once the stream has been received, the ADC clears the SDO line, which is normally

high, and does not set it again until the signal integration period is complete. This period

ranges from 1.5 ms to 538 ms, depending on the ADC channel's word rate configuration.

When the SDO line transitions from low to high at the end of the integration period, it

alerts the Rabbit 2000 controller that the sample is ready to read. To read the sample,

2.4. DELTA SIGMA ANALOG TO DIGITAL CONVERTER 38

cs ~~_

SCLK

SDI

CS "Y
SCLK

SDI

SDO

CS ~^y_

jimR^mnjumnjumj|jTRjiiuuuwLnj

Command Time
8 SCLKs

Data Time 32 SCLKs

r

Write Cycle

r

j w i m j i R r i m n m n j ^ l j ^ ^ ^ j i m m j ^
j p o o a x x x j

Command Time
6 SCLKs t

Data Time 32 SCLKs
Read Cycle

t
SCLK

Command Time
8 SCLKs

SDO ¥
£ MCLK/OWR £
^ Clock Cycles 4 ^

8 SCLKs Cbar SDO Ffcg IHTITITIIHII
Data Conversion Cycle Data Time 32 SCLKs

' td Is the time it takes the ADC to perform a conversion.

Figure 2.13: CS5534 Delta Sigma ADC Timing Diagram[8].

the SCLK must be strobed 8 times (low followed by high), after which 32 data bits can be

strobed out. The readout data appears on the SDO line. The resulting sample is contained

in the most significant 24 bits of the 32 bit word. The remaining 8 bits are discarded.

The maximum communication rate with the CS5534 is limited by the maximum

signaling rate of the SCLK. The minimum time span between signal transitions on the

SCLK line is 250 ns (4 MHz). Given that the Rabbit's maximum signaling rate using

2.4. DELTA SIGMA ANALOG TO DIGITAL CONVERTER 39

Offset Registers (4 x 32) Gain Registers (4 x 32)

Offset 1 (1 x 32)

Offset 2 (1 x 32)

Offsets (1 x32)

Offset 4 (1 x32)

Gain 1 (1 x 32)

Gain 2 (1 x 32)

Gain 3 (1 x 32)

Gain 4 (1 x 32)

I
Configuration Register (1 x 32)

Power Save Select
Reset System
Input Short
Guard Signal
Voltage Reference Select
Output Latch
Output Latch Select
Offset/Gain Select
Filter Rate Select

Channel Setup
Registers (4 x 32)

Setup 1
(1 x 16)

Setup 2
(1 x 16)

Setup 3
(1 x 16)

Setup 4
(1 x 16)

Conversion Data
Register (1 x 32)

Setup 5
(1 x 16)

Setup 6
(1 x 16)

Setup 7
(1 x 16)

Setup 8
(1 x 16)

/ \

Channel Select
Gain
Word Rate
Unipolar/Bipolar
Output Latch
Delay Time
Open Circuit Detect
Offset/Gain Pointer

Data (1 x 32)

Serial
Interface

Command
Register (1 x 8)

CS
SDI
SDO
SCLK

Figure 2.14: CS5534 Delta Sigma ADC Register Layout.[8]

highly optimized assembly language I /O routines is 1 MHz, there is no chance of the Rabbit

controller overrunning the CS5534[8].

Configuration and operation of the CS5534 A S ADC is performed through its

relatively complex register set, as shown in figure 2.14. The CS5534 write-only command

register is 8 bits wide, and accepts 8-bit command strings via its three wire serial interface.

The data register, also read-only, is 32-bits wide, and holds A/D conversions. The remainder

of the CS5534's register set are configuration registers. The most significant of these are its

four channel setup registers (CSR) that store settings associated with each input channel:

namely sample resolution, gain and polarity. Samples can be represented in either signed or

2.4. DELTA SIGMA ANALOG TO DIGITAL CONVERTER 40

unsigned 32-bit integers by respectively configuring polarity to either bipolar or unipolar.

Signed bipolar values have a range of ± 2 2 3 , while unsigned unipolar values range from 0 to

The CSR gain setting effectively amplifies the values produced from the ADC by

compressing the ADC input span, and is useful when sampling low-amplitude input signals.

It is defined in equation 2.2 as:

where n can be defined as 1, 2, 4, 8, 16, 32 or 64, and a is defined as 1 for unipolar

conversions, or 2 for bipolar conversions. All A/D channels on IRMA are sampled with a

gain of 1 and a 2.5 V input span. The 2.5 V high reference voltage is supplied to the ADC

by a Maxim MAX6126_25[35] high-precision, low noise voltage reference. The low reference

voltage is ground. The MAX reference voltage chip is used to provide the ADC with an

extremely clean (noise free) and accurate reference voltage that is stable over temperature

(3 parts per million per degree C deviation) and time (20 parts per million deviation per

1000 hours).

Word rate is the most tangible setting associated with an A/D channel. It is also

often the most confusing. Word rate is not a measure of the integration period or the

sampling rate, but rather a means of describing the A/D sampling resolution. Elapsed time

of conversion (in seconds) can be calculated using the following word rate equations [7] using

the word rates listed in table 2.2,

2 2 4 - l .

InputSpanv =
(VREFm - VREFLO) (2.2)

n x a

(2.3)

2.4. DELTA SIGMA ANALOG TO DIGITAL CONVERTER 41

W ^ 7592 x(M^ / r eJ (2.4)

Equation 2.3 is used for all word rate modes excluding the lowest resolution mode,

word rate = 3840, which uses equation 2.4. MCLKfreq refers to the 4.9 MHz clock signal

required to drive the AE electronics. Typically this involves connecting a 4.9 MHz crystal

to pins 11 and 12 on the CS5534 chip. OWR refers to the output word rate. These two

different calculation methods stem from the fact that the CS5534 uses different filters for

the low-resolution 3840 word rate compared to the other word rates.

Word rate Integration (ms) Noise-free bits
3840 1.5 13
1920 3.6 16
960 5.7 17
480 9.9 17
240 18.2 18
120 35 21
60 69 21
30 136 22
15 269 22
7.5 538 23

Table 2.2: CS5534 AE ADC sampling resolutions, gain setting of 1.

The CS5534ADC. LIB library encapsulates a collection of C functions handling con­

figuration and data acquisition of the CS5534 using the Rabbit RCM2100.

2.4. DELTA SIGMA ANALOG TO DIGITAL CONVERTER 42

2.4 .4 Global Pos i t i on ing S y s t e m (G P S) B o a r d

IRMA obtains accurate time and positional information from a GlobalSat DK-

ER101[51] GPS receiver, pictured in figure 2.15. A compact credit card sized device 9 mm

thick, the GPS board continuously emits a formatted serial string every second over its

4800 bps serial port. The serial stream does not conform to RS-232 voltage levels, requiring

that the output signal be boosted with an RS232 transceiver chip, a Maxim MAX233. The

RS-232 standard defines logic 1 and logic 0 signals be differentiated by a minimum of +3.0

V and -3.0 V, or a maximum of +15.0V and -15.0 V respectively. The IRMA MC is

Figure 2.15: GlobalSat ER-101 GPS module.

interfaced to the GPS via serial port C, which is mapped to DIO lines 3 and 2 on parallel

port C. The serial TX line to serial C is not connected to the GPS in order to ensure that

2.4. DELTA SIGMA ANALOG TO DIGITAL CONVERTER 43

no spurious serial data reaches the GPS serial input, particularly during system power-up,

which can potentially lock up the GPS serial data output stream. Logic levels on Rabbit

2000 DIO lines fluctuate then the MC software is uploaded into the MC's flash memory.

Every second, the DK-ER101 GPS board emits a burst of ASCII data conforming

to the NMEA standard. NMEA, which stands for the National Marine Electronics As­

sociation, established the NMEA 0183[15] standard in the early 1980s, which defines how

GPS data are structured in a serial data stream. The IRMA MC, when queried for the

current GPS time, or commanded to synchronize its on-board real time clock (RTC), will

eavesdrop on the input serial line (serial port C) until a string terminated with a carriage

return-linefeed (CR-LF) is encountered. Once date-time information is extracted from the

raw NMEA string, the IRMA MC increments the current time by one second and waits for

the next GPS time marker, upon which it immediately sets its RTC.

The GPS board requires an external antenna in order to receive GPS signals. A

compact antenna is attached to the outside of the IRMA receiver compartment. The GPS

board is sensitive to signal quality, which when degraded, will emit in the serial stream a

flag which indicates the current data are invalid. At the same time, the GPS will substitute

the current time date calculated by its own RTC.

2.4 .5 N o t c h a n d B a n d p a s s F i l ters

A 60 notch filter is used to remove 60 Hz power line noise from the IR signal. This

frequency is switched to 50 Hz for deployment at sites where mains operates at 50 Hz. A

455 Hz bandpass filter can be enabled to reject all frequencies above and below the 455

Hz chopper wheel frequency. The 60 Hz notch filter is mapped line 5 on parallel port E,

2.5. IRMA ALT-AZ CONTROLLER 44

and the 455 Hz bandpass filter mapped line 7 on parallel port E. Both filters are enabled

by setting their respective lines, while disabling the filters requires clearing their respective

lines.

2.5 IRMA Alt-Az Controller

The Alt-Az controller (AAC) is responsible for pointing the Alt-Az mount that

holds the IRMA unit. As such, a master-slave relationship exists between the MC and AAC

because the AAC does not initiate any actions or produce any data unless commanded to do

so by the MC. Command packets sent over the 19.2 kbit/s serial connection between the MC

and AAC instruct the AAC to move the axes to a specified azimuth and elevation, return

system status, or return the current X and Y axis positions. The AAC software allows for

position queries while an Alt-Az movement is taking place. Motor control consumes the

majority of DIO lines on the AAC Rabbit. As shown in the pin map shown in figure 2.17,

all lines except for the MC-AAC serial communication channel are DIO lines.

2.5 .1 R a b b i t S e m i c o n d u c t o r R C M 2 0 1 0 Contro l l er M o d u l e

The RCM2010 controller module is the control computer that handles motion

control and communication for the AAC. Based on the Rabbit 2000 CPU, the RCM2010

has less memory than the MC's RCM2100 controller module and lacks an Ethernet controller

chip. It is, however, smaller than the MC's RCM2100 core module. Specifications of the

•sSuiddeui urd tireiS'eip 5 p o j q 9JBA\pjeij zy-^ry yi/iHI :9VZ sxnSi^

SER D
DIFFERENTIAL TTL

INTERCONNECT
BETWEEN RS232 DRIVERS

3

T 3 T 3 T
J D 33 3D O S
= 1 —' \ I C O

3 SER D
> > > >
N r N

S S S S

LS7266R1 CTRL

m j2 E ^ r r 3 3 o

LS7266R1 DATA CHANNEL

AXIS LIMITS

MOTOR SPD >

H I r— n
Z 7̂ C/>

22 22 > S
— 7* 7* I— r—

n i . n n

M ^

" i n r u

ik a a ik ik ik a

—' = J J D 3 3 in

X o
- < —I t/1 ^3

aJ VDD
X AXIS

00
ro

y AXIS §3

0 3 0 t» >

k i k i
_,

ik ik ik

' x

z =n :z
m j>

_
o QN

X
m CO X

s -<

CD < >
z o r-a o —i

> >
\3

r i
O CO o
F—i n oo

a z <
O C3 r->
jj \3 Ln

m «=:
-n ro

i k i k

3 : >
o r -

3 r5 ?

|5
O r

Z C J

2.5. IRMA ALT-AZ CONTROLLER 46

Figure 2.17: IRMA Alt-Az controller pin mapping. Blue boxes refer to output lines, pink
boxes refer to input lines, and white boxes represent bidirectional lines.

RCM2010 are listed in table 2.3.

2.5.2 M o t i o n Contro l

Maxon Motor Controllers

Alt-Az articulation is powered by two Maxon EC167129 low-noise 50W brushless

DC motors, each coupled with a Maxon 1QEC50V[36] digital motor control unit. Motor

speed is controlled by applying a DC voltage to the speed input of each Maxon motor

controller. A Maxim 5223 8-bit 2-channel serial DAC allows the IRMA AAC software to

adjust the speed of both axes with 256 levels of voltage control. The motor controller is

2.5. IRMA ALT-AZ CONTROLLER 47

Feature RCM2010
Microprocessor 25.8 MHz Rabbit 2000
Memory: Flash 256 KB

Memory: SRAM 128 KB
Serial 4 channels, max 115 kbps (async)
DIO 40 TTL lines

Real Time Clock yes
Timers Five 8-bit times, one 10-bit timer

Connectors Two 2x20 pin, 2mm IDC headers
Power 5V + / - 0.25V, 130 mA

Dimensions 58 x 48mm x 14mm

Table 2.3: Rabbit 2010 Core Module Specifications.

configured to accept 0 to 2.5 V input voltage, which drives the motors from 500 to 12,500

RPM respectively. AAC software limits motor speed to 8000 RPM, which is the maximum

rotational speed that the gear box should be driven, as stated by the manufacturer. Axis

rotation is geared down substantially by a 1621:1 azimuth gear head and 1621:1 altitude

gear head. An additional 8:1 gear reduction is provided by belts connecting the motors

to their respective axes. During development it was found that without applied voltage,

the Maxon motors still rotated. Therefore, a braking system was required to hold the axes

stationary when not being rotated. Braking is applied by setting bits 4 and 5 (for altitude

and azimuth respectively) on parallel port A.

Azimuth and altitude motor controller enable lines are mapped to output lines 7

and 6 on parallel port B. Motor controllers are enabled by setting these lines, while clearing

these lines disables the controllers. Azimuth and altitude motor direction is controlled by

DIO output lines 7 and 6 respectively on parallel port A. Setting either of these two lines sets

the corresponding axis into clockwise (CW) rotation, while clearing puts the corresponding

2.5. IRMA ALT-AZ CONTROLLER 48

axis into counterclockwise (CCW) rotation.

The azimuth axis is capable of rotating aproximately 370 degrees. The altitude

axis can rotate approximately 198 degrees. To prevent rotation beyond these limits and

prevent the cabling connecting the articulating parts from being damaged, optical limit

switches, similar to the ones used in the blackbody shutter, are found at the maximum

CCW and CW rotational limits. Optical sensors automatically disable the motors and set

one of the two limit lines when they are interrupted by a metal tab attached to the rotating

housing. Limit detection is independent of software in order to eliminate the risk of runaway

axis movement damaging the mount if the software were to fail. Altitude CW and CCW

limits are respectively mapped to input DIO lines 2 and 0 on parallel port B. Azimuth CW

and CCW limits are respectively mapped to input DIO lines 1 and 3 on parallel port B.

When a limit line is set, a limit has been encountered, while when a limit line is clear, the

axis angle is within safe rotational limits.

Maxim MAX5223 Serial 8-Bit DAC

Axis motor speed is controlled with an 8-bit 2-channel Maxim 5223 [34] serial digital

to analog converter (DAC). The 5223 has a 3-wire serial communications interface involving

a chip select line (CS), a serial clock line (SCLK) and a data input line (DIN). Voltage is

individually adjustable on each of the 5223's two analog outputs, A and B. Voltage can be

set between 0 V to full scale (the input reference voltage) in 256 equal steps. Analog output

channel A is mapped to the azimuth motor controller, while analog output B is mapped to

the elevation motor controller.

2.5. IRMA ALT-AZ CONTROLLER 49

cs

SCLK

DIN 1̂
INSTRUCTION

EXECUTED

OPTIONAL

nxrocxixmxxmooa
UB1 UB2 UB3 SB SA UB4 LB LA

(CONTROL BYTE)

D7 D6 D5 D4 D3 D2 D1 DO

(DATA BYTE)

Figure 2.18: Maxim MAX5223 Serial 8-Bit DAC 3-Wire Interface Timing Diagram. The
SCLK signal can be modulated at a maximum rate of 25 MHz (40 ns). Data should be
placed on the DIN pin at least 20 ns before SCLK makes a low to high transition, and be
held for at least 20 ns[34].

Commanding the 5223 involves clearing the CS line, writing a 16-bit word into the

5223's internal shift register, and setting the CS line, which refreshes (changes) the analog

outputs. This sequence is shown in the 5223's timing diagram in figure 2.18. The SCLK line

controls the process of writing data to the 5223. Data bits are read into the shift register

on the rising edge of each SCLK pulse. All the communication lines are mapped to Rabbit

parallel port A: CS (active low) is assigned to line 1, SCLK to line 2 and DIN to line 3.

The command word, as seen in table 2.4, is divided into 2 parts: the leading byte,

or control byte, contains 8 configurable bits, where setting bits 7 (LA) and 6 (LB) loads a

new value into DAC register A and B respectively with the value contained in the trailing

data byte. The data byte can contain an unsigned 8-bit value that defines the proportion of

output voltage to the DAC's reference voltage. Table 2.4 shows an example command word

needed to output 1 V on DAC output, based on a 2.5 V reference voltage (the reference

used to drive the Alt-Az axes). The proportion of full scale voltage corresponding to 1 V

2.5. IRMA ALT-AZ CONTROLLER 50

can be converted to an 8-bit value using equation 2.5.

DACinput = ^ 2 5 5 (2.5)
Vref

This value, which works out to decimal 102, appears in the data field of the DAC command

word. Bit field DO is the LSB, while bit field UB1 is the MSB. Bits are transmitted from

right to left, starting with UB1 and ending with DO. Functionality of the 5223 on the

Rabbit RCM2010 (AAC) is contained in the custom-written Dynamic C library oe3.1ib.

Data Byte Control Byte
DO Dl D2 D3 D4 D5 D5 D7 LA LB UB4 SA SB UB3 UB2 UB1
0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0

Table 2.4: Maxim MAX5223 DAC serial command word format.

Optical Encoder

Axis positions are measured via two US Digital[62] E6M optical encoders and one

US Digital LS7266R1[61] encoder to microprocessor interface chip. The two optical encoders

each employ 2096-line per revolution optical encoder wheels. When operating in quadrature

mode, the LS7266R1 interpolates the raw encoder signals (sine and cosine outputs) to obtain

8192 lines of resolution per revolution, or 2 arc seconds per encoder step[54]. Quadrature

mode is based on the optical encoder generating sine and cosine signals (each generating

one cycle per tick), whereby the decoder chip counts the zero crossings of both the signals.

Given that the crossings occur at 90, 180, 270 and 0 degrees, four counts per tick can be

detected. The LS7266R1 detects and counts ticks from the encoders (in either mode), where

the count is relative to a fixed mark.

2.5. IRMA ALT-AZ CONTROLLER 51

The LS7266 optical encoder chip interfaces to the AC Rabbit over 12 DIO lines.

Data to and from the 7266 is carried over an 8-bit bidirectional data bus, mapped to pins 7

through 0 on parallel port D. Port D is bidirectional, thus software must set the appropriate

data direction depending on whether data are being written or read. Disregarding the chip

select line, which is permanently tied high, there are four lines used for controlling the

LS7266: the control/data, read, write and X/Y axis select. Read and write (LS7266 pins

16 and 14 respectively) are active low, and are used for enabling reading or writing to the

chip. The control/data line (LS7266 pin 13) selects whether data registers (low) or control

registers (high) are selected. Similarly, the X/Y axis line (LS7266 pin 13) selects whether

the X axis counter (low) or Y axis counter (high) is selected.

The filter clock (LS7266 pin 2) must be fed with a frequency between 10 KHz

and 35 MHz to operate in quadrature mode. Additionally, analog inputs A and B for each

axis channel must be fed with corresponding A and B signals from the respective optical

encoders. The A /B inputs for both axes are enabled by setting the A/B input enable lines

(LS7266 pins 18 and 1) high. These lines are permanently tied high on the AAC main

board. The filter clock is fed with a 10 MHz signal. A clock signal is not required if the

LS7266R1 is operated in non-quadrature mode, which provides 2048 lines of resolution per

rotation.

Each optical encoder has a unique index mark on their encoder wheels. An index

strobe signal is emitted from each optical encoder when the index mark is encoded. The

index strobe from the X and Y axes are fed into pins 19 and 1 respectively. The LS7266Rl's

24 bit counter can either be reset or set with a preset value when strobed with the index

2.5. IRMA ALT-AZ CONTROLLER 52

signal. The index mark is provided as fiducial marker, but the IRMA Alt-Az uses the optical

limits on both axes as references instead.

The LS7266Rl's register structure provides some insight on how the chip is con­

trolled. All commands involve communication over the 8-bit data bus to either the control

registers: RLD, CMR, IOR, IDR and FLAG, or the data registers: 3-byte preset register and

3-byte output latch. The write-only 3-byte preset register is selected when the control/data

line is low. The write only control registers (RLD, CMR, IOR and IDR) are selected by

setting line control/data line and placing a 2-bit binary value on data bits 6 and 5. Codes

00, 01, 10 and 11 select RLD, CMR, IOR and IDR respectively for writing. The X-axis

status FLAG register is selected by clearing the read line (and setting write), clearing the

X/Y axis select line, and setting the ctrl /data line. The Y-axis status FLAG register is

performed similarly, except the X/Y axis select line is set. Reading a byte from the 8-bit

data bus will return the contents of the FLAG register. The 3-byte output latch is selected

by clearing the read line (and setting the write line), and clearing the control/data line.

Detailed instructions on register selection using the control lines is found in the LS7266R1

data sheet's chip access table[61].

Reading or writing a byte is performed by strobing the read or write line, both of

which are active low. When the read or write line performs a low to high voltage transition,

a read or write byte transfer occurs. Given that the counter output is 3 bytes wide, the

data must be read out a single byte at a time, the LSB being read first. An internal byte

pointer is automatically incremented after a read is performed. The byte pointer is reset by

setting bit 1 of the RLD register, and must be performed after reading the counter. This

2.5. IRMA ALT-AZ CONTROLLER 53

is the most common command sent by the AAC to the LS7766R1. Reading axis position,

another common function, involves commanding the LS7266R1 to transfer the contents of

the 24-bit counter to the 3-byte output latch. This is performed by setting bit 4 in the

RLD configuration register. The LS7266Rl's functionality is encapsulated in the Dynamic

C library oe3 . l i b , which wraps many of complex sequences needed to control the optical

encoder chip in easy-to-use functions.

50 50
RD .

CS

c/b

X/Y

DB

• 50 1 * - 0

\> 50 > »— 10 —H

X X X
\> 50 > «— 10 —1

X X X
< 50 >| U-S25—^

X

X

/ / / / / / / / / / / / : mmuimum *™>°™ mrm
Figure 2.19: US Digital LS7266R1 read cycle timing (in ns)[61].

WR

CS

30

30

60

H — 30 —• • - 1 0 - *
c/b X X X

y- 30 —• «-10-<i
X/Y X X X

^f— 30 —• « - 1 0 - 1
DB / / / / / / / / / X INPUT DATA X / / / / / / / / X X X X X X / X INPUTDATA

X

X

Figure 2.20: US Digital LS7266R1 write cycle timing (in ns)[61].

2.6. CONCLUSION 54

2.6 Conclusion

The details surrounding IRMA's hardware interfacing are complex, in particular,

IRMA's digital I /O and serial connections, which are critical to IRMA's operation. The

chop interrupt line is perhaps the most important, for without it, IRMA's ability to col­

lect data would come to a halt. This was the cause of failure in one of the IRMA units

undergoing testing at the Smithsonian Submillimeter Array on Mauna Kea in the fall of

2004. Equally critical is IRMA's internal Ethernet communication lines, which failed (for

yet to be determined reasons) during testing at the Gemini South observatory in Chile, in

February 2005. The challenge to the programmer interfacing these devices to a controller is

to write software to deal with potential hardware failures gracefully, and provide feedback

to the operator when a hardware failure has occurred.

55

Chapter 3

I R M A Software Structure

This chapter will discuss the structure of the IRMA software, as opposed to the

function of the IRMA software, which is touched upon in chapter 4. This discussion will

look at the relationships among the CP, MC and AAC, the multi-tasking task structure of

each of the programs, the communication structures and protocols used, and the structure

of the input and output files consumed and produced.

3.1 IRMA Software Architecture

IRMA's software structure can be described as distributed, modular, multi-tasking

and real-time. It is distributed such that its functions are divided among three programs

hosted on three separate computers, all of which communicate asynchronously with one

another. It is modular by the fact that its programs are structured using top-down refine­

ment, where the overall problem is subdivided into smaller pieces called functions. Finally,

IRMA software is multi-tasking in that it performs certain tasks in parallel through the use

3.1. IRMA SOFTWARE ARCHITECTURE 56

of a real-time multi-tasking kernel (RTK), MicroC/OS-II[27], running in the background.

Certain actions performed by the MC and AAC software are designed to happen at spe­

cific intervals, always occurring in a timely, predictable manner regardless of the workload

the system might be under. This is the definition of a hard real time system[27], which

the MicroC/OS-II RTK provides. As such, the MC and AAC can be considered real-time

software.

' " " " !

1 IRMA [
1 Graphical (

J User | . Interface i
. (optional) |

!
IRMA Operator's

Computer

IRMAscript
Interpreter

IRMA
script

IRMA Command
Processor Software

hyroat>c2.lib

AS ADC Cryo-cooler

f
AS ADC Cryo-cooler

1

IRMA ! IRMA !
GPS Blackbody/

Controller i
GPS Shutter

Snftwawi ' l t

Tasks 1 Tasks 1

Chopper Sun
Wheel Shutter

_ j 1 . IRMA Master Control Software

Alt-Az Controller
Software Tasks

oe3.lib , dac.lib

Optical
Encoder Ctrl DAC

,

Optical
Encoders

Motor
Controllers

IRMA Alt-Az Control Software

Figure 3.1: IRMA control software software structure shows typically shows four major
software components (shown in red): the graphical user interface (GUI), command processor
(CP), master controller (MC) and Alt-Az Controller (AAC).

The top level view of the IRMA control software, appearing in figure 3.1, shows

3.1. IRMA SOFTWARE ARCHITECTURE 57

each of the independently executing software entities outlined in red. Working clockwise

from the top left hand corner of the diagram, the modules include the optional IRMA

graphical user interface (GUI), the command processor (CP), the master controller software

(MC), and the Alt-Az controller (AAC), shown in the lower right corner. The iBoot power

watchdog unit, outlined in black, is an networked power controller that cycles main power

to the IRMA MC/AAC if IRMA fails to transmit a heartbeat network packet to the iBoot

within some prescribed period of time. The user has the option of running IRMA's GUI

on the CP or on a remote machine. If the operator chooses to run IRMA without a GUI,

he or she can simply log into the CP via SSH and run the irmaExec interpreter from the

command line.

The operator is provided with two means to control IRMA: via the command

line, where the irmaExec. p i interpreter is called directly, or by using the GUI interface.

The GUI does not execute on the operator's computer, but rather on the CP machine.

Figure 3.1 shows the GUI running in parallel with the IRMA script interpreter. However,

running the GUI is optional; IRMA can be operated via the command line alone. Under

X, the UNIX/Linux graphic display server, the IRMA GUI is transmitted (or exported)

to the operator's machine. This method of graphics display performs well where a high-

bandwidth network connection is in place, such as in a LAN setting. In situations where

network bandwidth is limited, using the IRMA GUI should be avoided because the program

responsiveness drops dramatically, making the program almost impossible to use.

Each software entity executes on its own hardware. The CP and GUI run on a PC

running Linux, and are written in Perl and Tk. Tk is a platform-independent GUI toolkit,

3.1. IRMA SOFTWARE ARCHITECTURE 58

which can be called from Perl programs. Both Perl and Tk are available for Windows and for

nearly every UNIX (or UNIX-derived) operating system. Besides Linux, the IRMAscript

interpreter has been successfully tested on a Macintosh system running OS 10.2.8. The

MC runs on the RCM2100 microcontroller module attached to the IRMA motherboard,

and the AAC executes on the RCM 2010 microcontroller module attached to the Alt-Az

motherboard. The CP software exists as a Perl executable called i rmaExec.pl . The MC

and AAC software exist as bootable software images that reside in their respective Rabbit

microcontroller flash memories.

An Ethernet local area network (LAN) forms the communication link between

the CP and MC, as well as between the operator and the CP (or GUI). Network links

are depicted as light blue lines in the diagram. A serial link, drawn in green, connects

the MC to the AAC. Communication among the CP, MC and AAC is asynchronous. No

module knows when the other will initiate a communication with the other. What is

certain, however, is who initiates the conversation. A master-slave hierarchy exists among

the modules. The GUI communicates with the CP via OS system calls. The GUI and the

CP can be considered to be a single entity in the context of this discussion, thus it serves

as the source of all commands to the MC and the AAC.

The CP always initiates communication with the MC and AAC, as prescribed by

the currently executing IRMAscript. The MC addresses the AAC only when requested by

the CP. Data always flows back to the CP. Data originating on the AAC is passed back to

the CP via the MC, while data originating on the MC is passed back to the CP directly.

Consequently, commands which query the AAC have longer latency times than queries to

http://irmaExec.pl

3.1. IRMA SOFTWARE ARCHITECTURE 59

the MC. This is because AAC-bound commands must make two hops to their destination,

in addition to the fact that the MC-AAC serial communications link is slower than the

Ethernet link connecting the MC and CP. Alt-Az status commands, such as ALTAZ READ

POSITION, typically require 100 ms to execute.

The software that drives the MC and Alt-Az is constructed out of multiple real­

time tasks. The CP software runs within a single task except when it is in data collection

mode, where it forks a separate task dedicated to receiving scan telemetry from the MC.

Tasks are independent software frames of reference which run in parallel with one another.

They can be thought of as mini-programs which execute independently, without affecting

one another. Tasks are time-multiplexed with the CPU in order to create the illusion that

each task is being simultaneously executed. In reality, each task is alloted a short period

of exclusive access to the CPU. With the IRMA MC and AAC software, all tasks are not

equally served, but rather, are serviced according to their priority, and whether they are

waiting on an event to happen in another process. The black and green arrows appearing the

MC and AAC represent DIO and serial connections respectively. The arrows do not depict

individual lines, but rather, generalized data connections, and their directions. Double

sided arrows show bidirectional data channels, while single sided arrows show unidirectional

channels. A comprehensive description of IRMA's DIO and serial connections is found in

chapter 2 dealing with IRMA's hardware.

3.1 .1 I R M A ' s L a n g u a g e s of I m p l e m e n t a t i o n

As previously mentioned, the IRMA software is designed using a modular, top-

down refinement methodology. This is markedly different from object-oriented (0 0) design,

3.1. IRMA SOFTWARE ARCHITECTURE 60

which requires an 0 0 language like C + + or Java, whereby the overall problem is decom­

posed using 0 0 design techniques such as encapsulation, inheritance, and polymorphism.

Encapsulation associates data with the functions that manipulate them into structures

called objects, and is a form of data hiding. Inheritance promotes software re-usability by

allowing new objects (or classes in their non-instantiated form) to be formed from exist­

ing objects in addition to new code. Polymorphism enables objects to accept a variety of

data input as opposed to writing separate functions for every expected type of input, as is

required by C[l l] .

Dynamic C, the proprietary C compiler produced by Z-World allows the software

designer to further organize his or her program's structure using custom libraries in addition

to functions. Libraries allow the designer to group similar functions into separate files, in

order to prevent the main program file from becoming a long unmanageable list of functions.

Dynamic C's inclusion mechanism differs from standard ANSI C in that header files (dot

.h files) are replaced by dot .lib files, and the #use directive is used in place of of # inc lude

directive.

Libraries specific to each of IRMA's peripheral hardware components were devel­

oped. They appear as solid boxes inside each of the software boxes, as shown in figure 3.1.

Additional libraries were developed to handle specific problems, such as CRC checksum

calculations. Additional libraries, in particular libraries for MicroC/OS, TCP/IP , and GPS

data string parsing are provided with the Dynamic C development software. The list of

custom libraries appear in table 3.1.

3.1. IRMA SOFTWARE ARCHITECTURE 61

Library Target
OE3.LIB US Digital LS7266 R l Optical Encoder Controller
DAC. LIB Maxim MAX5223 2-channel 8-bit serial DAC
HYMATIC2.LIB Hymatic Cryocooler
CRC.LIB CCIT-CRC (16-bit CRC algorithm)
CS5534ADC.LIB Cirrus CS5534 Delta Sigma ADC

Table 3.1: Custom libraries used in IRMA MC and AAC.

The difficulty with this approach is that it is easy to get lost in the sea of functions

and lose sight of the whole, even when libraries are included. It is not always easy to see

the data relations among the logical divisions within the software, nor is it possible to easily

distinguish library functions from functions local to the given program file. This is one area

where the object-oriented approach would be advantageous. For example, when a request

to perform a scan is received by the MC's network communication module, it must pass

the scan parameters, called a job, to the software module responsible for performing data

collection. The process to get the job from the network communications module to the data

collection module involves a long chain of function calls. In addition, there is the tendency

for the number of constant definitions and global variables to mushroom. Global variables

are the primary means to pass data between software tasks in the IRMA software.

The command processor software, responsible for interpreting IRMAscript source

code files into IRMA network command packets, is written in Perl, a popular cross-platform

programming language that is feature-rich, easy to write, and easy to extend. Being an

interpreted language, Perl is a capable rapid development tool, as no compilation and linking

is required. Considerable computational overhead is brought to bear on the processor when

executing a Perl-based application, especially those that call a large number of Perl modules

3.2. IRMA MULTI-TASKING STRUCTURE 62

(which is the case with the command processor software). Executing the CP software on a

333 MHz PC requires 10 -15 seconds for the Perl interpreter to compile the CP software into

Perl byte-code. Even though Perl is an interpreted language, like other modern interpreted

languages the source code is initially compiled into a simpler, machine-code-like statements

called bytecodes, which can be efficiently and quickly interpreted by a virtual machine. The

virtual machine (VM) permits the language to be platform independent. Java also uses a

VM to execute bytecode.

Perl is resource hungry in terms of memory and CPU cycles, making it unsuitable

for hosting on an embedded processor such as the Rabbit. The reasons for choosing Perl over

other compiled languages is twofold. First, it offers powerful regular expression processing

capabilities, and second, several people in the IRMA research group have experience with

Perl programming. A Regular expression is a language description mechanism allowing the

precise definition of patterns of symbols (a string) by means of another string, defined by a

set of syntax rules [2]. Regular expression matching, or pattern matching, is is the technique

used to convert IRMAscript statements into equivalent 3-tuple command codes, which the

MC understands.

3.2 IRMA multi-tasking Structure

3 .2 .1 E v e n t D r i v e n P r o g r a m s

The flow of control within the IRMA MC and AAC software is event driven. Event

driven programs can be visualized as a big loop, where the program blocks (or waits) at the

top of the loop, waiting for input. When input arrives, the program determines what has

3.2. IRMA MULTI-TASKING STRUCTURE 63

to be done from the message, performs the appropriate actions, and returns to the top of

the loop to wait for a new request. This describes the general operation of a generic event-

driven program, which includes most GUI-based user-driven programs [42]. Rather than

user input, such as mouse clicks or key presses, IRMA responds to binary command packets

arriving over the network. In essence, this description accurately describes the control flow

of IRMA's MC and AAC software.

3 .2 .2 M u l t i p r o g r a m m i n g a n d R e a l T i m e

Parallel execution of tasks (multi-tasking, or multiprogramming) combined with

real-time performance (adherence to deadlines) is required by IRMA's control software. For

example, when the Alt-Az mount performs a servo-controlled movement concurrently with

the serial communications task that continuously monitors the serial port for commands,

the motion control task relies on a timing task to update servo loop calculations every 100

ms. Moreover, the servo loop must be updated exactly at this rate in order for the servo

control algorithm to function correctly. The ability to meet deadlines in a timely manner

within a multi-tasking environment is the defining attribute of real-time programming[27].

All modern operating systems attempt to achieve some sense of real-time perfor­

mance. The Linux 2.0 kernel uses two separate scheduling schemes for non-real-time and

soft-real-time performance. Hard real-time systems guarantee that critical tasks will com­

plete on time, and delays have fixed bounds. MicroC/OS-II fits into this category. Soft

real-time systems, such as Windows NT or the Linux kernel, give critical tasks priority over

tasks of lesser importance, but do not guarantee that operations will complete within fixed

deadlines, nor do delays have fixed bounds. This is because real-time systems must know in

3.2. IRMA MULTI-TASKING STRUCTURE 64

advance the durations specific operations (such as I /O), and this is impossible to do with

systems that use virtual (disk-based) memory or secondary storage [56].

The Linux 2.0 kernel uses scheduling classes: time-sharing scheduling to share

the CPU among many tasks (or processes) equitably, where real-time performance is not

important, and soft real-time scheduling to implement near-real-time performance, which

is necessary for applications such as 3-D graphics or video. The time sharing algorithm

uses a prioritized credit based algorithm, where each process in the ready-queue (a queue

within the scheduler that contains a list of ready-to-run processes) is assigned a number of

scheduling credits, which effectively defines its priority. The scheduler selects the task with

the highest number of credits from the ready queue and runs it for a predetermined time,

called a time quantum. In Linux, the time quantum is implemented by decrementing the

task's credits upon every CPU clock tick. When the running task's credits are exhausted

to zero, the scheduler suspends the running task, and runs the next highest priority task.

The act of preempting a task and selecting another task to run is called a context switch.

In most operating systems, context switches occur when the running task blocks on I /O,

which often involves waiting for a key press or data block transfer to complete, or when the

task has run its course within its time quantum, and is preempted by the scheduler.

The Linux real-time scheduler operates similarly in that it always selects the task

with highest priority from a circular task queue, or in the case of multiple equal priority

tasks, selects the task that first entered the queue, called first-in-first-out (FIFO) scheduling.

Again, the processes are alloted a time quantum in which they have full access to the CPU.

When the time quantum is up, the scheduler suspends the running task, and selects the

3.2. IRMA MULTI-TASKING STRUCTURE 65

next task appearing in the circular ready queue, without regard to task priority. This type

of scheduling is called Round-Robin, and guarantees that each process gets ^ units of the

available CPU time, where n is the number of processes in the circular ready queue [56].

MicroC/OS-II uses a priority-based scheduler. No time quantum is assigned to

tasks. Rather, the scheduler switches tasks when the running task blocks on an event, such

as a timer, semaphore or mutex, or when a previously-suspended higher-priority task is

ready to run. A semaphore [56] is a synchronization and communication mechanism that is

often used to restrict access to a resource shared by two or more processes, thus preventing

multiple processes from simultaneously using a single resource. Fundamentally, semaphores

are special variables that can be atomically set (i.e., the process of modifying the semaphore

cannot be interrupted until completed) to one of two states: wait or signal. When a process

wants to use a shared resource, such as the serial port, it accesses semaphore using the

wait operation. If the resource is not being used by another process, the semaphore is

decremented, and the process proceeds to use the resource. When the process has finished

using the resource, it increments the semaphore, signaling to the other processes that the

resource is again available. If the semaphore is decremented to 0, the resource is made

unavailable. Any process that reads the semaphore is suspended by the OS and waits

until the semaphore is incremented by the process using the shared resource. The depth of

the semaphore determines how many processes can concurrently access the resource. For

example, a semaphore of depth 3 can allow up to three processes to share the resource,

while a semaphore with a depth of 1, also known as a binary semaphore or mutex, only

allows a single process to access the resource. In IRMA, the MC-AAC serial communication

3.3. MC AND AAC TASK STRUCTURE 66

channel and the CP-MC network communication link are protected by mutexes, since these

channels can only accommodate a single user at a time.

Round-robin real-time scheduling is not supported by MicroC/OS-II because every

task is required to have its own priority level, and round-robin scheduling requires that all

participating tasks have equal priority. Furthermore, the MicroC/OS-II kernel does not

support task preemption by means of a time quantum [27]. Dynamic C does provide a time

slicing function, but it is not compatible with MicroC/OS-II.

Instead, the software developer must explicitly design the multi-tasking structure

of each of the tasks by strategically assigning task priorities and placing blocking mecha­

nisms within each task in order to put tasks into the ready queue, and make them eligible

for scheduling. Blocking mechanisms include millisecond sleeps, waiting (or pending) on

inter-process communication (IPC) structures such as event flags (similar to UNIX signals or

Windows messages), or waiting on shared resources to become available using inter-process

synchronization objects such as mutexes or semaphores[27].

3.3 MC and AAC Task Structure

The multi-tasking structure of IRMA's MicroC/OS-II based programs (the MC

and AAC) are based on having the high-priority tasks perform their tasks in short bursts,

then sleep for a defined interval or wait on an event, in order to open up slack time in which

the lower-priority tasks can execute. When the lower level task completes its activities, it

will sleep for a prescribed period or block on an event, allowing the next lower-priority task

to execute. The order of execution continues down the priority hierarchy until all the tasks

3.3. MC AND AAC TASK STRUCTURE 67

have completed.

Task priority is assigned according to the degree to which a task can tolerate

being preempted. In priority-based preemptive multi-tasking, tasks can preempt other

tasks having lower priorities than themselves. For example, a task having a priority of 10

can preempt low priority tasks with priority levels greater than 10. However, this same

task can in turn be preempted by higher priority tasks having priority levels less than 10.

The key is to establish which tasks can be preempted and for how long, giving the most

critical task that cannot tolerate preemption the highest priority. All tasks are subject to

preemption if an ISR is present. This should not pose a problem, since an ISR by nature

(should) execute and exit as quickly as possible.

iBoot
Heartbeat Task

Metronome
Task <

1 Flag: send data

Dispatcher Scan Task J
Task Scan Task *\

(STOP)

•(STOP)

Data Collection
Interrupt Sen/ice Routine

Figure 3.2: IRMA master control software: task structure during scanning.

The MC software's task structure, appearing in figure 3.2 contains two primary

3.3. MC AND AAC TASK STRUCTURE 68

tasks that are constantly running: the iBoot power supply watchdog task, and the dispatcher

task. The iBoot task has the highest priority of any task running on the MC. The task

broadcasts a UDP packet every 10 seconds, which is picked up the iBoot device, a power

supply containing an embedded processor and network interface. The iBoot is configured

to expect status packets at a predetermined interval. If the next expected packet fails to

arrive within the interval, the iBoot assumes the device (the IRMA MC) has experienced

software failure, and proceeds to cycle the power to the MC motherboard, forcing a hard

reset. This is a critical activity that must neither be delayed nor preempted for an extended

period of time, which explains the rationale for making this a high priority activity.

The dispatcher task is the most active task within the MC, and is primarily con­

cerned with receiving commands from the CP. Since the majority of commands are classed

as short-duration, meaning they take less than a second to execute, they are allowed to

execute within the dispatcher task. Long duration commands such as scans, however, must

be executed outside the context of the dispatcher task, because the dispatcher must return

to its primary duty of listening for incoming commands. When a scan is requested, the

dispatcher task forks the scan task (shown as a solid arrow in figure 3.2), then returns to

wait for incoming commands. This allows short duration tasks to run concurrently with

the long duration task.

The scan task is responsible for constructing data packets and sending them to the

CP. It also initiates the data collection process, driven by the data collection ISR and the

450 Hz chopper wheel notch interrupt signal. The scan task starts the metronome task, and

enables the ISR to trigger on the external interrupt. The metronome, whose priority is just

3.3. MC AND AAC TASK STRUCTURE 69

below the priority of the iBoot task, but greater than the scan task, counts the data points

collected by the ISR, fetches the current Alt-Az coordinate from the AAC for each data

point, and signals the scan task (by means of an event flag) to construct and transmit the

data packet when 19 points are collected. Once the scan task has successfully transmitted

the data packet, it returns to wait on the data transmit event flag, shown as a dotted arrow

in figure 3.2. When data collection is terminated, the scan task and metronome task are

both instructed to terminate themselves.

MC/AAC Serial
Comm Task

Metronome
Task

MC/AAC Serial
Comm Task

Metronome
Task

1 Flag: do job

•

1 Flag: servo tick

•

Job Task
Long duration
task dispatcher

>
Single Axis ^S"^
Move Task

Dual Axis
^ y Move Task

Job Task
Long duration
task dispatcher

Single Axis ^S"^
Move Task

Dual Axis
^ y Move Task K

Job Task
Long duration
task dispatcher

Single Axis ^S"^
Move Task

Dual Axis
^ y Move Task K

STOP)

STOP)

Flag: move done

Figure 3.3: IRMA Alt-Az controller: task structure of servo movement.

The AAC's task structure, appearing in figure 3.3, parallels the MC's structure.

Its serial communication task, analogous to the MC's dispatcher task, waits for commands

from the MC. Most commands are short-duration, allowing them to be executed within the

communication task. Axis movement tasks are classed as long-duration, thus they must be

run in parallel in their own task(s) concurrently with the serial communication task. The

3.3. MC AND AAC TASK STRUCTURE 70

serial communication task signals the job task by means of an event flag to wake up and

dispatch the axis movement task(s). The job task starts the single axis move task if a single

axis has been specified, or the dual axis move task if both axes have been requested to move.

Either movement task starts the metronome task, the highest priority task in the AAC, to

control servo loop timing. A proportional-integration-derivative (PID) servo tracking loop

is used by the servo move task to move the axis from the initial to the destination angle.

The move task refers to either the single or dual axis move task in this discussion. The

axis move task waits on a 10 Hz servo tick event flag, emitted by the metronome task,

which signals the move task to update the servo loop calculations. Once the movement has

completed, the move task signals the job task (using a flag event) that the axis rotation has

completed. After this, the metronome and move axis task suspend themselves. The priority

levels of tasks in the AAC software place highest priority on the metronome task, followed

by the axis move task (single or dual), serial communications task, and the job task.

It was necessary to introduce a second mode of axis movement to handle extremely

slow movement, that is, movement slower than that achievable when driving the axis motors

at their minimum RPM rates. Slews have the ability to perform periodic steps over a long

period of time, thus lengthen the time to rotate from the initial to destination angle. The

serial communication task signals the job task to wake up and start the appropriate axes

control tasks. Each axis movement is controlled in its own task: one exists for altitude

movement, and another for azimuth. Both axis tasks can be run concurrently, which requires

that they each have unique priority levels. Since both tasks cannot have the same priority,

3.3. MC AND AAC TASK STRUCTURE 71

MC/AAC Serial
Comm Task

Flag: do job 1

. I

Job Task
Long duration
task dispatcher

Figure 3.4: IRMA Alt-Az controller: task structure of slew (stepped) movement.

the slew elevation task has a slightly higher priority than the azimuth slew task. Given

that skydip operations, which involve slewing the altitude axis, are performed more often

than azimuth movements, preference was given to elevation movements. Slew tasks and the

servo move tasks have priority levels that place them below the metronome task priority,

but above every other AAC task.

Once one or both slew tasks have been started, the job task waits for flag events

from the slew task(s). When the flag signal(s) are received, indicating either or both move­

ments are complete and the respective slew control tasks are suspended, the job task returns

to listen for new commands from the serial communications task. This process is shown in

figure 3.4.

: lag: EL slew done Elevation
Slew Task

Flag: AZ slew done

Azimuth
Slew Task

< STOP)

>(STOP)

3.4. DATA COLLECTION INTERRUPT SERVICE ROUTINE 72

3.4 Data Collection Interrupt Service Routine

The MC's data collection ISR runs independently of the MC tasks, running in a

level of software separate from that of the MicroC/OS-II tasks. Its behavior is determined

by the chopper wheel, which generates a 90 Hz notch interrupt signal. The notch interrupt

invokes the ISR, while the sampling parameters of the Cirrus CS5534 A S ADC, in partic­

ular, the ADC word rate, determines the rate of data collection. The duration of the ISR

is determined by the duration of all the combined machine instructions making up the ISR

code.

Sipelkitagrattort

310 LIS
Get time stamp, send
command to sample

signal

310 LIS
Read sampled signal,

send command to sample
temperature / pressure /
relative humidity (TPH)

70 LIS'
Read

sampled
TPH

Figure 3.5: IRMA master controller: data collection ISR structure.

Figure 3.5 shows the ISR's sequence of events (not drawn to scale). The ISR is

broken up into phases to prevent blocking on the relatively long A S integration periods,

shown in gray. The CS5534 is configured to sample the IR signal at 23 noise free bits

of resolution, the highest sampling resolution available on the A S ADC. The resulting

integration time required by the A S is 538 ms. In contrast, around 380 /xs is required to

instruct the A S to start the A/D conversion and read the resulting sample. During the

3.4. DATA COLLECTION INTERRUPT SERVICE ROUTINE 73

integration periods, the MC does not halt execution, but continues normal operation.

Point A in figure 3.5 shows the beginning of the data collection cycle, when the

external interrupt and chop interrupt enable are both enabled. The time lag between

enabling the external interrupt and entering the ISR is shown in the pink region of the

graph, and is dependent upon the rotational period of the chopper wheel, ranging between

0 and 11 /xs. Point B in figure 3.5 marks the beginning of phase 1 of the ISR, where

the command to start the high-resolution A/D conversion of the IR signal is strobed into

the AE. This phase begins by disabling the external interrupt (on the Rabbit) and notch

interrupt enable gate. Next, the sample command is written to the ADC, and a time stamp

is generated for this particular sample. Phase 1 concludes by re-enabling the external

interrupt line and exits the ISR. The notch interrupt enable line is left disabled. Phase 1,

which appears as the green region in the graph, requires 310 /is of execution time.

Point C in figure 3.5 marks the end of the A/D conversion, and the beginning of

phase 2. This phase is triggered not by the chop interrupt, but by a signal transition on

the AE's serial data out (SDO) line, which occurs when the A/D conversion has completed

integration. Shown in blue, phase 2 begins by disabling the external interrupt, followed

by strobing out a 32-bit word containing the 24-bit data word. Immediately following

this, a command to sample one of ten temperature-pressure-humidity (TPH) channels is

strobed into the A S . During data collection, IR signal sampling is interleaved with sampling

through the TPH channels in round-robin fashion. Phase 2 concludes by re-enabling external

interrupts, but not the notch interrupt enable line, then exits the ISR. Total execution time

for phase 2 is 310 /is.

3.5. COMMUNICATION PACKET STRUCTURE 74

Point D in figure 3.5 marks the end of TPH sample integration, and the beginning

of phase 3 (shown in yellow), where the TPH sample is read from the ADC. The ADC's

end-of-conversion signal, represented by a logic transition on its SDO line, triggers the third

and final entry into the ISR. Upon entry, the external interrupt line is disabled, and 32 bits

containing the 24-bit sample word is strobed out of the ADC. The index variable for the

ISR's internal circular shared memory buffer, which stores the entire 19-sample data set,

is updated. After this, the ISR exits, leaving external interrupts and the notch interrupt

enable gate disabled. Both will be re-enabled by the metronome task when it wakes up. 70

Us of CPU time is consumed by phase 3.

In total, only 690 fis of time is spent executing ISR code compared to the duration

of the entire data collection cycle of 583,690 [is. No more than 310 /is is spent in the ISR

at any one time. This impressive performance can be attributed to the fact that the data

collection ISR is written almost entirely in Rabbit 2000 assembly code.

3.5 Communication Packet Structure

The IRMA CP communicates with the MC by means of binary-formatted data

packets, sent over a TCP (Transport Control Protocol) network connection. TCP is a

connection-based protocol, analogous to a telephone system, which establishes a circuit

between the two parties. TCP guarantees that the data transmitted reaches its destination

(which may involve retransmission, if necessary), and that data is received in the order that

was sent. As such, the TCP protocol is considered a reliable protocol.

T C P is more computationally expensive than the less reliable but more efficient

3.5. COMMUNICATION PACKET STRUCTURE 75

UDP, which broadcasts a simple packet containing the recipient's address and the data.

The recipient may or may not receive the packet, which gets routed from host to host as it

makes its way across the (inter)network to its destination. As such, its operation is similar

to how letters are delivered by the postal system. TCP was chosen as the network protocol

on which to base IRMA network communication because it was anticipated that IRMA's

network infrastructure may be unreliable, subject to crosstalk, electrical noise and marginal

cables or interconnects. This assumption proved to be correct during tests at the Gemini

South observatory at Cerro Pachon, Chile, when an IRMA unit began to experience network

communication failures.

IRMA network communication packets are structured binary data carried in TCP

packets. The MC and CP software is responsible for constructing and dissecting IRMA net­

work communication packets. The MC and CP's underlying Dynamic C networking library

handles T C P / I P network transactions. CP-MC network communication uses binary pack­

ets rather than ASCII strings, since binary-formatted packets require less effort to parse

than strings. Being that they only contain numeric codes, and all the codes have fixed

lengths, a simple compact algorithm is capable of decomposing and parsing the packets.

The MC is only an 8-bit microprocessor having limited memory resources, thus the devel­

oper must be mindful of efficiency. A generic network communications packet, pictured

in figure 3.6, contains three primary items: a header, body, and a checksum. This packet

structure is common to all network-based communications performed between the CP and

MC, regardless of their function.

3.5. COMMUNICATION PACKET STRUCTURE 76

A B C D E

Header Data Payload CRC

Figure 3.6: Generic IRMA network communications packet. A: Number of bytes in data
payload (D). B: Packet number of the current packet group. C: Total number of packets in
the current packet group. D: Data payload. E: CRC (Cyclic Redundancy Check) checksum.

IRMA network packets are aligned to 4-byte longword boundaries, making the

4-byte (32-bit) integer the the smallest data division within the packet. Headers contain

three fields. The first field indicates the number of bytes (not 4-byte longwords) in the

data payload. Field two indicates the identity of a packet within a block of packets, called a

packet group. This labeling is necessary if a single data set is spanned across multiple IRMA

network packets. Field three indicates the total number of packets within the current packet

group. The fourth field contains the content of the packet. It contains its own structure

depending on its type. An IRMA network packet contains at least one data item. The fifth

field is the Cyclic Redundancy Check (CRC) checksum packet, used by the packet recipient

to test the integrity of the packet. A CRC is a hash function which calculates a checksum

word from a large block of binary data, which is appended to the end of a data packet to

be transmitted. The recipient can easily recalculate the CRC value from the received data

packet in order to detect transmission errors.

The 12-byte header and 4-byte CRC checksum act as a wrapper around the IRMA

network communications packet, enabling the packet recipient to determine the size of the

packet, identify the packet's position within a data block spanned across multiple packets,

and verify that the packet contains no transmission errors. Reading packets is relatively

3.5. COMMUNICATION PACKET STRUCTURE 77

easy for the packet recipient: it must read 12 bytes, from which it can determine the number

of successive bytes it must read from the socket. Once the recipient has read this number

of bytes, it can assume it has read the entire packet, and proceed to calculate the CRC

value over the entire packet excluding the final 4 bytes that contain the packet's embedded

CRC. The recipient can be confident that the packet contains no communications errors if

the packet's embedded checksum matches the recipient-calculated checksum.

A B C D E F Go Gi ... G n
H

Header Data Payload CRC

Figure 3.7: IRMA network communications command packet.

The command packet, pictured in figure 3.7, is one of the most common type

of communications packet. The command packet is divided into 4 primary fields. The

first field (D) contains the command code. The next two fields (E and F) contain the

command modifiers associated with the given command code. IRMAscript commands are

structured as a three-tuple: [command] [modifierl] [modifier2] in order to organize

IRMA's functionality into families of commands. Zero to fifteen parameters (fields Go -

Gn) can be associated with a command. The number of parameters associated with a

particular command is fixed, thus the recipient (the IRMA MC) knows in advance how

many parameters to expect and read from the network socket.

Data values being passed to or from the MC are represented as 32-bit integers.

3.5. COMMUNICATION PACKET STRUCTURE 78

Where floating point values must be passed, scaling is used to temporarily represent the

floating point value as an integer. Pre-established scaling factors have been hard-coded into

the CP and MC software for each data item requiring floating point - integer conversion.

A B C D

LU F 0 Fi ... F n
G

Header Data Payload CRC

Figure 3.8: IRMA network communications data packet.

Data packets are sent by the MC to the CP when the given command is capable

of producing data. Data-generating commands include status requests, such as current Alt-

Az position, or scan requests, which produce scan data packets. The data packet, shown

in figure 3.8, consists of a packet type flag (D), the number of data points (E), and the

data values (Fn - F n) . The packet type field is populated with value 3000, indicating that

this packet is of type DATA.FIELD. A data payload produced by a scan contains 114

data points, or 19 6-tuples, each of which represents an IR signal sample along with its

time stamp, current mount altitude and azimuth position, and an environmental reading

(temperature-pressure-humidity). In total, this constitutes a 456 byte data payload.

3.6. IRMA COMMUNICATION PROTOCOLS 79

3.6 IRMA Communication Protocols

3.6 .1 I R M A N e t w o r k C o m m u n i c a t i o n H a n d s h a k i n g P r o t o c o l

Figure 3.9: IRMA network communications handshaking sequence.

Network transactions between the CP and MC are conducted using a simple hand­

shaking protocol closely based on the protocol used with the Herschel/SPIRE Test Facility

Fourier Transform Spectrometer (TFTS)[53]. The TFTS packet communication protocol

follows the European Space Agency (ESA) Packet Telecommand Standardfl]. This protocol

is used for communication among electronic ground support equipment, and is similar to

the protocol used by ESA to communicate with spacecraft. Prior to IRMA III, the author

was involved in designing the control software for the TFTS, which was built to test the

3.6. IRMA COMMUNICATION PROTOCOLS 80

SPIRE imaging Fourier transform spectrometer. SPIRE (Spectral and Photometric Imag­

ing REceiver) is one of three instruments to be launched in 2007 as part of the European

Space Agency's Herschel mission. The instrument will allow for high resolution imaging

spectroscopy and photometry in the far infrared electromagnetic spectrum[26].

The IRMA protocol, pictured in figure 3.9 involves three steps or four steps if

data (telemetry) is returned. After the command is received, the MC responds by sending

an acknowledgment packet, a packet indicating the requested activity is has begun, a data

packet (if applicable), and finally a packet indicating the requested activity has concluded.

The MC responds with an acknowledgment (ACK) packet whenever it receives a

command packet. The ack packet, shown in figure 3.10, consists of a single 4-byte field (D)

containing a code indicating whether the command was successfully received or not.

A B c D E

Header Data CRC
Payload

Figure 3.10: IRMA network communications acknowledgment (ACK) packet.

The ack code contains the value 1000 (ACK_SUCCESS) if the command packet

was received without error, while a value of 1001 (ACK_FAILURE) indicates the packet

contained an error, such as an invalid command code, or a data corruption detected by

calculating its checksum. The function start packet (figure 3.11) consists of three 4-byte

integer fields: an identification (ID) field (field Do), a duration field (field D\), and a field

3.6. IRMA COMMUNICATION PROTOCOLS 81

indicating whether a data packet is about to follow this packet (field D2).

A B c D 0 Di D 2
E

Header Data CRC
Payload

Figure 3.11: IRMA network communications function start packet.

The ID field contains the code F U N C T I O N J 3 T A R T , which has the value 2000.

This code indicates the commencement of the requested function. The duration field can

contain one of two codes: D U R A T I O N - S H O R T , which is equal to 2010, or D U R A ­

T I O N - L O N G , which is equal to 2011. This code tells the CP the general duration of a

given command. At the current stage of IRMA development, most commands are catego­

rized as short duration, including functions that would be considered long. This is because

long duration functions are run in parallel in their own task. As far as the CP is concerned,

it only needs to know that the command it sent was received and executed. This field

may be reassigned for different usage in later versions of IRMA. The data present field,

when set to value 2020 (D A T A . P R E S E N T) , indicates that a data packet will follow this

packet. When this field is set to 2021 (DATA _ N O T - P R E S E N T) , no data packet should

be expected to follow.

The data packet consists of two header fields and up to 114 4-byte values. The first

3.6. IRMA COMMUNICATION PROTOCOLS 82

A B C D E F 0 Fi ... F n
G

Header Data Payload CRC

Figure 3.12: IRMA network communications data packet.

field (D) contains the value 3000, which represents the DATA-FIELD code. The second

field (E) contains the number of data values to follow. Fields Fn through Fn constitute the

data fields.

A B c D E

Header Data CRC
Payload

Figure 3.13: IRMA network communications function complete packet.

The function complete packet, appearing in figure 3.13 (field D), consists of a single

4-byte field that can contain one of two codes: F U N C T I O N - C O M P L E T E .SUCCESS

(value 4000), signifying that the function completed without any errors, or F U N C T I O N

. C O M P L E T E - F A I L U R E (value 4001), signifying that the function experienced errors

during execution.

3.6. IRMA COMMUNICATION PROTOCOLS 83

3.6 .2 I R M A M C - A A C Serial C o m m u n i c a t i o n s

Originally, it was planned that the communication protocol would be used for all

communication among IRMA's three processors: the CP, MC and AAC. A high speed, 115

kbit/s 2-wire serial link was planned to link the MC to the AAC, since the AAC does not

have a network interface. After extensive testing and debugging, it was found that the serial

link was not acceptably reliable, being subject to communication lock-ups. The solution,

as suggested on Rabbit Semiconductor's technical support bulletin board[23], was to drop

the baud rate of the serial channel down to 19.2 kbit/s. This translates into roughly 2000

characters per second. Due to the considerably lowered bandwidth between the MC and

AAC, the communication protocol had to be significantly simplified. The basis of the MC-

AAC serial protocol is the msCommPacketType data structure, shown in figure 3.14: a

fixed-size, 6-field data frame consisting of a command field, four data fields, and a CRC

checksum field.

Command
Data Field A
Data Field B
Data Field C
Data Field D

CRC

Figure 3.14: IRMA serial communications packet structure.

Serial packets differ from their network counterparts in that they are not transmit-

3.6. IRMA COMMUNICATION PROTOCOLS 84

ted as binary data. Rather, serial packets are converted to ASCII character strings, and are

encapsulated with a header and footer character. An example of a serial communications

packet string appears in figure 3.15.

STX CMD Field A Field B Field C '. Field D '. CRC ETX

Figure 3.15: IRMA serial communications packet string.

The header character is the ASCII S T X character (integer value 1). It is a non-

printable character that is part of the base 7-bit ASCII character set. It is used to indicate

to the recipient that a serial data stream immediately follows this character. The C M D

command field tells the AAC what kind of function is being requested. These codes are part

of a special AAC command set that is mapped to the IRMA Alt-AZ commands. Rather

than a 3-tuple, AAC commands consist a single integer code. Table 3.2 lists each of the

Alt-Az serial command codes and their aliases. The final character, an ASCII E T X code

(integer value 2) is used to represent the end of a serial data transmission. By encapsulating

a serial data stream with these two characters, the data reader can easily detect when a

string starts and ends.

Serial transactions with the AAC are kept as simple as possible. The 24 byte

serial communications packet is converted to ASCII characters for transmission, but for

this discussion, the packet will be discussed in its binary form. The host initiating the

transaction (which is always the MC), sends the serial communications packet to the AAC.

The AAC receives the packet, converts it from ASCII to binary, and performs the function.

3.6. IRMA COMMUNICATION PROTOCOLS 85

Once complete, the AAC responds with the same packet, this time with data fields populated

if applicable.

Code Alias
1 ALTAZ.READ_CURRENT_POSITION
2 ALTAZJVIOVETO
3 ALTAZ.HALT
5 ALTAZJPING
6 ALTAZ-SET-ALT .OFFSET
7 ALTAZ_SET_AZ_OFFSET
8 ALTAZ.SET-RTC
9 ALTAZ-SLEW-STATUS
10 ALTAZ-MOVE.AXIS
11 ALTAZJNIT
12 ALTAZJNIT.AXES
13 ALTAZJNIT.SERVO-ELEV
14 ALTAZJNIT-SERVOJ\.ZIM
15 ALTAZJNIT-MOTOR
16 ALTAZ.SLEWTO
17 ALTAZ_RD_POSLOG_RANGE
18 ALTAZ-RD.POSLOG-DATA
19 ALTAZJNIT.POSLOG
20 ALTAZ.POSLOG-STATE
21 ALTAZ.REBOOT

Table 3.2: IRMA AAC command codes sent over MC AAC serial link.

When the MC sends the serial packet, it populates the command code field with

a serial command code. Function parameters, where necessary, are passed via data fields 1

through 4. A checksum is calculated over the entire packet excluding the last 4 bytes, and

is stored in the last 4-byte field. The packet is converted into a serial ASCII string, where

colons are used as field delimiters. The string is wrapped with S T X and E T X characters

3.6. IRMA COMMUNICATION PROTOCOLS 86

and transmitted over the 19.2 kbit/s serial link.

(MC)
Command

Response
/ d a t a

MC *

Figure 3.16: IRMA serial communications protocol.

The AAC has a real-time task devoted to monitoring serial data traffic. When it

reads a S T X character, it proceeds to read up to 80 characters or when at E T X character

is encountered. A complete ASCII-serialized data packet populated with the full scale

unsigned 32-bit integers along with 5 colon delimiters works out to 59 bytes. If the serialized

packet was received without error, the AAC will respond with a the same packet, where the

command packet is populated with the M S C O M M _ S U C C E S S code (integer value 101).

Data is returned in the four data slots, and a checksum value is calculated and placed in

slot 6.

A 5-second timeout is applied to every serial communications transaction. If the

full serialized packet is not received within a 5 second period, the receiver assumes that the

packet is lost, and responds with an error acknowledgment, shown in figure 3.18, where the

command field is populated with the MSCOMM_FAILURE code (integer value 101), and

each of the four data fields are populated with the M S C O M M _ E R R _ T I M E O U T code

3.6. IRMA COMMUNICATION PROTOCOLS 87

MSCOMM_SUCCESS
Data Field A
Data Field B
Data Field C
Data Field D

CRC

Figure 3.17: IRMA serial communications packet: successful transaction.

(integer value 77,777,777). If the reader calculates a checksum different from the embedded

checksum, an error packet with data fields populated with M S C O M M _ E R R _ C R C (inte­

ger value 66,666,666) is returned. Finally, if the incoming packet does not terminate within

80 characters (that is, no E T X character is detected before the 80th read character), an

error packet with the data fields set to code M S C O M M _ E R R _ B U F _ O V E R R U N (inte­

ger value 55,555,555) is returned. These error code values were chosen as they are outside

the scope of expected values returned by the AAC's optical encoder chip.

MSCOMM FAILURE
MSCOMM_ERR TIMEOUT

MSCOMM_ERR_TIMEOUT

MSCOMM.ERR TIMEOUT

MSCOMM_ERR_TIMEOUT

CRC

MSCOMM FAILURE
MSCOMM_ERR CRC
MSCOMM_ERR_CRC
MSCOMM ERR CRC
MSCOMM_ERR_CRC

CRC

MSCOMM FAILURE
MSCOMM_ERR BUFOVERRUN

MSCOMM_ERR_BUF_OVERRUN

MSCOMM.ERR BUF.OVERRUN

MSCOMM_ERR_BUF_OVERRUN

CRC

Figure 3.18: IRMA serial communications packet: failed transactions.

3.7. IRMA CONFIGURATION AND DATA FILES 88

3.7 IRMA Configuration and Data Files

This, the final section on the chapter on IRMA's software structure, is concerned

with the configuration files required by the CP, MC and AAC, the data files produced

during scans, and the setup requirements for the CP software.

3 .7 .1 I R M A C P Conf igura t ion

The IRMA CP software, unlike the MC and AAC software, runs within the context

of an operating system and the Perl language interpreter. The CP software's ability to run

is dependent on whether the Perl language is installed, if all the necessary Perl modules

(libraries) are installed, and if all the configuration files, IRMA scripts and helper files are

in the correct relative paths.

Compil ing a Rabbit 2000 Boot Image

When setting up the IRMA system for the first time, the latest MC and AAC

software should be loaded into their respective Rabbit controller's flash memory. The Rabbit

Field Utility (RFU) program, bundled with the Dynamic C development software, is a small

Windows-based program that loads Rabbit boot images (files having the .b in extension)

into flash memory. Images are created within Dynamic C by performing a target-less

compilation of the given Rabbit source code. First, the target board type must be defined

by selecting Define target configuration from the Options menu. MC software must be

compiled for the 22MHz RCM2100, CPU revision 1Q5T. AAC software must be compiled for

the 25MHz RCM2010, CPU revision 1Q2T. Second, the line #def ine R2K_VERJ[Q5T must be

3.7. IRMA CONFIGURATION AND DATA FILES 89

present in the constant definition block of the MC source code. If a revision IQ3T processor

is present on the RCM2100, the definition should be changed to #def ine R2K_VER_TQ3T. If a

revision IQ2T module is being used, it is critical that the definition be changed to #def ine

R2K.VER.IQ2T. The IQ2T definition selects an alternate compilation of the MC software

that calls special work-around functions involved in setting up the data collection ISR.

More details on this issue is found in the footnote below 1. Third, the T C P / I P configuration

information must be defined via the following constant definitions: -PRIMARY.STATIC J P ,

-PRIMARY_NETMASK, MYJMAMESERVER, and MY.GATEWAY. Next, the compiler

must be configured to target boot images for flash memory by selecting Compiler from the

Options menu, then click on the radio button titled Code and Bios in Flash. The last step

is to compile the boot image by selecting Compile with defined target configuration from

Compile to .bin file, in the Compile menu. Include debug code/RST 28 instructions, found

in the Compile menu, should not be selected. Complete instructions on using the Dynamic

C development environment can be found in the Dynamic C User's manual[65].

Preparing the Target Platform for the I R M A C P Software

The CP software is primarily designed to operate on UNIX or UNIX-like operating

systems, such as Linux. First, Perl version 5.8.x should be present in order to ensure all
1If a new RCM2010 processor module is present in the Alt-Az unit, the chip will likely be revision IQ5T,

which requires that the AAC software be compiled for revision IQ5T. At the time of writing, no operational
IRMA unit uses an RCM2100 microcontroller whose chip revision number is less than IQ3T.
Chip versions is of particular importance to the MC software becuase it uses external interrupts, and version
IQ2T of the Rabbit 2000 processor contains a bug in its interrupt detection circuitry. More information
on this problem can be found in Z-World's technical note TN201: Rabbit 2000 Microprocessor Interrupt
problem, www.zworld.com/documentation/docs/refs/TN301/TN301.pdf. Again, this bug does not affect
any currently operational IRMA MC board, as all the legacy (IQ2T) RCM2100 boards have been retired
or discarded. This issue, however, is significant, because if a IQ2T board were installed, the ISR would not
work without some modification.

http://www.zworld.com/documentation/docs/refs/TN301/TN301.pdf

3.7. IRMA CONFIGURATION AND DATA FILES 90

the necessary Perl modules will compile. One can determine the version of Perl installed on

one's system with the command p e r l —vers ion . Version 5.8.1 is found on the in-house

IRMA CP platform. Next, a compiler, preferably the GNU C compiler, should be present.

The Perl modules were compiled using gcc version 3.3.2 and 3.3.3. GNU Fortran is also

necessary in order to build some of the Perl modules. The TCL/TK software suite should

also be installed, as it supports the GUI libraries used by the IRMA GUI software.

Once the languages are installed, the SLALIB positional astronomy library, fol­

lowed by PGPLOT graphics subroutine library, should be installed. Next, the Perl modules

should be installed. Table 3.3 contains a list of modules necessary to run the CP soft­

ware. These modules can be installed downloading them individually from www.cpan.org

and installing them manually (consult README file contained in each module archive), or

by performing an automated network based installation. Issuing the command (with root

privileges) p e r l -MCPAN - e s h e l l from a shell starts the network installation environment.

Modules can be installed by typing i n s t a l l <module name>, where the module name is

found in the module column. The modules should be installed in the order they are listed in

the table. The directory I R M A d a t a must be created. It will contain scan data collected

by the MC. It should be owned by user i r m a u s e r and belong to group users . Naturally,

a user account for i r m a u s e r will have to be created beforehand.

The next step is to place the IRMA CP software archive somewhere on the host

system. The easiest method is to obtain the source tree from alpha.physics.uleth.ca via

CVS using the command cvs checkout IRMA. To retrieve a source tree via CVS from the

http://www.cpan.org

3.7. IRMA CONFIGURATION AND DATA FILES 91

M o d u l e Desc r ip t ion
Bundle::CPAN Perl module network installer helper utilities
Time:: Piece Object Oriented time objects
Time::ParseDate Module for parsing both relative and absolute dates
Tk GUI toolkit for Perl (Perl/Tk) based on TK 8.0
Astro:: SLA Perl interface to SLAlib positional astronomy library
Astro:: Constants Physical constants for use in astronomy
DateTime Date and time module useful for converting dates
DateTime::Locale Localization support for DateTime.pm (above)
DateTime::Format::Strptime Parse and format strp and strf time patterns
Tk::Date Date/time widget for perl /Tk
Spreadsheet::ParseExcel Extract information from an Excel spreadsheet
IPC::ShareLite Light-weight interface to shared memory
Math::Round Perl extension for rounding numbers
GD Interface to Gd Graphics Library
Compress ::Bzip2 Interface to the bzip2 compression library
PerlIO::gzip Perl gzip/gunzip compression utilities

Table 3.3: Perl modules used by the IRMA CP Software.

source file server, alpha.physics.uleth.ca, the user must have the CVSROOT and CVS-RSH

environment variables set. These can be set inside the user's shell initialization file. For

example, the following lines are found in the author's .tcshrc configuration file:

setenv CVSROOT 11:ext:ianQ142.66.41.12:/files/projects/IRMA/Software/cvsroot"

setenv CVS-RSH "ssh"

The CP source code root directory structure appears in table 3.4.

The IRMA GUI-based control programs are located in the root of the IRMA

CP source tree: IRMA.pl, and viewirma.pl. IRMA.pl is the main GUI control pro­

gram to drive IRMA. viewirma.pl is a utility to view archived IRMA data files. To run

IRMA from the command line, change the current directory to IRMA/HelperProgs/ and

issue the command: ./irmaExec.pi <UNIT_NUMBER> <SCRIPT_NAME> IRMAscript.xls,

http://IRMA.pl
http://viewirma.pl
http://IRMA.pl
http://viewirma.pl

3.7. IRMA CONFIGURATION AND DATA FILES 92

Directory Description
auto Contains the CCIT16-CRC shared library (custom Perl module)
Config Contains configuration files, IRMAscript command listing (Excel file)
HelperProgs IRMA CP executables stored here (irmaExec.pl)
IRMA IRMA CP Perl modules stored here
SCRIPTS Contains scripts defining IRMA's operation

Table 3.4: IRMA CP source code tree.

where U N I T - N U M B E R corresponds to the box number of the unit, and S C R I P T - N A M E

refers to the name of the script (contained in the SCRIPT directory) to be executed. Each

IRMA unit, or box, has an identification number that is used to address individual IRMA

units in multiple unit deployment situations.

3 .7 .2 I R M A C o n f i g u r a t i o n Fi les

Each IRMA unit (box) has a unique configuration file, stored in the /IRMA/Conf ig

directory. The configuration file shown below provides the CP with the IP address and data

port of the master controller, and supplies the gear reduction ratios, servo parameters and

detector calibration constants to the MC.

**
2004-01-01T00:00:00
IPaddress 128.171.116.72
Data_port 10072
Cooler TR282
Board 1
Dummy calibration data for this time period
CalibrateLow 77_7.74e6
CalibrateHigh 319_6.82e6
**
2004-08-09T15:00:00
Unit returned from Hawaii
IPaddress 142.66.41.40
ElevGearReduction 128

http://irmaExec.pl

3.7. IRMA CONFIGURATION AND DATA FILES 93

AzimGearReduction 128
BeltReduction 8
MinMotorRPM 500
MaxMotorRPM 25000
MaxGearRPM 8000
elev.kProp 10.0
elev_klnteg 1.0
elev_kDeriv 1.0
azim.kProp 1.0
azim_klnteg 1.0
azim_kDeriv 1.0
**

The file is broken into parameter blocks, which are delimited by lines of repeating

asterisks. A time stamp appears at the head of the block, which establishes the date/time

when the immediately following parameters took effect. The parameters within a block

include all lines following the time stamp, up to but not including the next block delimiter

line. A parameter line consists of a label followed by a value, and is terminated with a

carriage return. A whitespace separates the label from the value. Comments can be included

in the configuration file by typing a pound sign " # " (or octothorp) at the beginning of the

line.

When irmaExec.pl is executed, either through the IRMA.pl GUI, or via the com­

mand line, it reads in the box file specified by the box number command line parame­

ter, accepting parameter fields whose time stamp is closest to the current time/date. For

example, if irmaExec.pl were executed on some date in 2004, it would accept the IP

address values from the command block dated 2004-08-09T15:00:00, rather than from

2004-01-01T00:00:00, which is chronologically 8 months earlier (approximately). Since

the parameters Data_port, Cooler, Board, CalibrateLow, and CalibrateHigh do not ap­

pear in the more recent parameter block, these values are accepted.

http://irmaExec.pl
http://IRMA.pl
http://irmaExec.pl

3.7. IRMA CONFIGURATION AND DATA FILES 94

The following list parameters can be defined in a CP configuration file. If param­

eters are not defined, default dummy parameters are assigned in their place.

Data-Port

The T C P / I P socket port that is used by the MC to send scan data to.

Antenna
The identification number of the antenna that the given IRMA unit is associated
with. This parameter is not always used.
ElevGear Reduct ion
The gear reduction ratio of the gear box driving the elevation axis.

AzimGear Reduct ion

The gear reduction ratio of the gear box driving the azimuth axis.

Bel tReduct ion
The gear reduction ratio caused by the drive belt. The total gear reduction ratio
of a given gear is the sum of its gear box reduction ratio and the belt reduction
ratio.
M a x M o t o r R P M
This is the vendor-specified maximum motor rotational rate, generated when
full scale voltage is applied to the motor controller unit.
M i n M o t o r R P M
This is the vendor-specified minimum motor rotational rate, generated when
zero volts is applied to the motor controller unit.

M a x G e a r R P M
The maximum recommended rotational rate of the gear head (not the motor).
This value is provided by the motor vendor.

elev_kProp, elev_klnteg, elev_kDeriv
Servo constants for the elevation axis motor. The three constants refer to the
proportional, integration and derivative constants (PID), which must be deter­
mined by the user by tuning the servo algorithm.

azim_kProp, azim_klnteg, azim_kDeriv
Servo constants for the azimuth axis motor. The three constants refer to the
proportional, integration and derivative (PID) constants, which must be deter­
mined by the user by tuning the servo algorithm.

Location
This refers to the name of the site where this given IRMA unit is located.

Cooler

The model number of the cryo cooler associated with this given IRMA unit

Board
An ID number which identifies the IRMA motherboard associated with this
given IRMA unit.

3.8. IRMA CP DATA FILE STRUCTURE 95

CalibrateLow
This is the ADC count when the IR channel measures the unpowered shutter
blackbody calibration source (cold). Calibration of the calibration target in hot
and cold states (powered and unpowered) relates the IR measurement with a
temperature reading from the same target.

CalibrateHigh
This is the ADC count when the IR channel measures the powered-up (hot)
shutter calibration source. See the description of CalibrateLow for calibration
details.

3.8 IRMA CP Data File Structure

When a scan is requested, the CP software forks a child process that reads scan

data packets from the MC. The CP software opens a file in the /IRMAdata directory, and

writes ASCII text to this file as data packets arrive. A typical data record appears as a

space-delimited string, terminated with a carriage return. One data record corresponds

to a single A/D sample. The example below shows a sample on channel 1 (the IR signal

channel), taken March 28th, 2005 at 3:00 AM. The azimuth and altitude position of the

mount have not been initialized.

1 7680596 2005-03-28T03:00:21.803 3962.9004 3953.8477
A B C D E

Field A contains the channel number of the given sample. Channel numbers range

from 1 through 11 inclusive. ADC channel usage is listed in table A.5. The raw A/D

sample, given in ADC units out of the maximum full scale value, appears in field B. An ISO-

formatted date/t ime stamp appears in field C. Field D contains current azimuth position,

followed by current altitude position in field E. Azimuth and altitude positions are given in

3.9. CONCLUSION 96

degrees. When the Alt-Az mount has not been initialized, the default altitude and azimuth

positions are 90,000 optical encoder units. This translates into 3955.07 degrees if one divides

90,000 by 8192/360 (or approximately 22.75), the number of optical encoder units in one

degree.

The IRMA MC software automatically organizes scan data files into data directo­

ries unique to the IRMA unit that produced the data. For example, scans from box 2 will go

into directory /IRMAdata/IRMA-2/year. The directory named <year> is the 4 digit year

in which the data file was colleced. Data are additionally organized into directories labeled

with the date the data were taken. Finally, data files are truncated on the hour, so a single

data file will span no longer than one hour. Data collected over a long period, say 12 hours,

30 minutes, will be spanned across 13 files, the last file containing only a half-hour's worth

of data.

3.9 Conclusion

This chapter has shown that the IRMA software is not a single executable entity

- it is distributed across three separate hardware hosts in order to share the computa­

tional load. Given IRMA's distributed nature, robust communication protocols are used on

IRMA's two primary communication channels: the CP-MC network link and the MC-AAC

serial communication channel. Each of IRMA's software modules are structured to support

multi-tasking through the use of the Micrium MicroC/OS-II real time kernel, which provides

priority-based preemptive multitasking and real-time performance. The heart of the IRMA

data collection system is the MC's data collection interrupt service routine, implemented

3.9. CONCLUSION 97

in assembly language in order to achieve maximum execution speed. Much of complexity

of the IRMA software is due to its distributed multi-tasking nature, while the software

routines responsible for controlling hardware and collecting data are generally quite simple.

IRMA's complex structure, however, provides a solid foundation for the system allowing

flexible control and extensibility.

98

Chapter 4

I R M A Software Modules

The previous chapter focused on the structure of IRMA's software components.

This involved examining the relationships among IRMA's software components and the

inner structure of the MC and AAC. This chapter will examine the algorithms powering

some of the significant mechanisms within the IRMA software components, as well as some of

the theory behind these algorithms. These mechanisms include the IRMA CP's IRMAscript

language interpreter and the AAC's motion-control routines.

4.1 IRMAscript Language Interpreter

The Command Processor software, i rmaExec.pl , is essentially a translator pro­

gram, converting human-readable IRMAscript language into machine-readable binary pack­

ets that can be efficiently transmitted over the network and easily decoded. IrmaExec is

also an interpreter, because it controls the behavior of the program, specifically in flow

control (looping and branching). A comprehensive description of IRMAscript's syntax is

http://irmaExec.pl

4.1. IRMASCRIPT LANGUAGE INTERPRETER 99

found in appendix A.

When IRMA software development was just beginning, it was anticipated that

IRMA would need a highly flexible, fine-grained control mechanism considerably more pow­

erful that that used for IRMA I or II. Previously, IRMA I's user interface consisted of a

simple graphical user interface (GUI), and IRMA IPs GUI relied on web page forms. It

seemed logical that a custom language would serve IRMA's requirements. The IRMAscript

control language grew out of these efforts.

In hindsight, a more elegant and powerful solution would have been to control

IRMA using Perl, with the IRMA specific commands encapsulated in a custom-written Perl

module. This would not be particularly difficult, given that the IRMAscript interpreter is

written in Perl. Perl modules function as libraries that extend the functionality of the Perl

language. Perhaps in a future version of IRMA, IRMAscript will be replaced with a driver

library. However, some complex instrumentation systems do use custom scripting languages

for control.

It must be emphasized, however, that IRMAscript is an ad-hoc implementation

of an interpreted computer language. It is reminiscent of early pseudo-code interpreters,

which translated assembly language-like mnemonic commands into their equivalent machine

language statements[32]. IRMAscript's grammar is limited by the interpreter's crude design,

which is driven entirely by regular expression pattern matching. The language, however,

is adequate for performing the tasks required by IRMA, i.e., perform repetitive sequences

of hardware control commands while certain conditions are held, write data to files, and

perform simple arithmetic and logic operations.

4.1. IRMASCRIPT LANGUAGE INTERPRETER 100

Interpreters and compilers must translate instructions from one form to another.

While interpreters perform the actions specified by the statements in the source code as they

are encountered, compilers function entirely as language translators, generating machine

language instructions, which can be executed by the target computer directly at some later

time. Compilers, along with interpreters, share similar internal mechanisms. A typical

compiler contains a scanner, a parser, scope checker and code generator[16]. The scanner,

parser and scope checker make up the front end of the compiler, while the code generator

(the part that outputs the CPU-executable machine instructions) constitutes the back end

of the compiler. IrmaExec contains minimal implementations of all four functions. A

typical compiler/interpreter will contain well-defined modules or classes handling each of

these functions.

Scanners are responsible for recognizing the tokens, or strings, that make up a

language statement. This involves reading the input file (the source code), throwing away

the white space, and determining whether the tokens are literal values (numbers), named

variables or constants, or reserved words, that is, the recognized commands of the language.

Parsers are tasked with determining if an input command string, consisting of a

sequence of tokens, conforms to the syntax of the language. This is the most complex phase

of compilation, and in many compiler designs, it is the parser that drives the compiling

process. Typically, the parser fetches tokens (words) from the scanner until it can assemble

a valid language sentence, or statement, according to a fixed set of production rules (a

grammar) and a rule-lookup mechanism (an automata). Automata are similar in form to

state machines. There are many algorithms, some more involved than others, that are

4.1. IRMASCRIPT LANGUAGE INTERPRETER 101

designed to recognize whether strings belong to a language. The IRMAscript interpreter

uses a simple language recognition machine, called a finite automata, along with a simple

set of production rules to parse IRMAscript statements.

Scope checking and type checking are generally combined in a compiler. Since

IRMAscript does not consider data type, and all variables are considered global, that is,

visible throughout the program, this stage is not included in the interpreter.

Code generation takes a verified language statement and translates it into lower-

level machine-readable codes that can be accepted by the target processor. Compilers

generate an executable file out of the machine codes, or opcodes, while interpreters execute

these statements on the target machine. IrmaExec generates machine-executable codes,

contained in discrete binary packets, which it sends over the network to the IRMA mas­

ter controller. Where the IRMAscript statement does not command an IRMA hardware

component, such as a variable assignment or flow control, the interpreter will execute the

statement directly within the context of the irmaExec process, which in turn is being exe­

cuted by the Perl virtual machine.

4 .1 .1 C o m p u t e r L a n g u a g e T h e o r y

IRMAscript is a language, albeit a small, trivial one. From first principles, lan­

guages consist of a set of strings, which are in turn made up of finite sequences of symbols.

Symbols can be any kind of character, such as binary numbers, or text characters. A string

containing zero characters is known as the empty string e. The finite set of symbols that

constitute a language is called an alphabet E. For example, the alphabet E = {a,b,c,..z}

4.1. IRMASCRIPT LANGUAGE INTERPRETER 102

Parse tree

Scanner
IRMAscript statements
are read In one line at a
time rather than character
by character.

Fetch token

Parser

4
Scope/Type

Checking

Code
Generator

IrmaExec translates
parsed Instruction
Into equivalent
IRMA network
instruction packet,
skipping scope &
type checking.

J-] Comman
/~J is sent to

Command packet
MC over

TCP socket connection

Figure 4.1: Block diagram of a typical compiler. IRMA's language interpreter skips scope
and type checking since all variables are global and typeless.

can generate the language L containing the strings {car, cat, bad, map}. Languages that

contain zero strings are refered to as the empty set 0. The question remains: how can a

finite language made up of a finite set of strings be represented?

Languages can be defined inductively using the union U, concatenation, and Kleene

closure * set operations. Parenthesis are used to denote precedence. Union is sometimes

expressed with the vertical bar symbol |, which denotes alternatives. Concatenation is

analogous to the logical a n d operation. A Kleene closure is a set operation that defines a

set of strings that can be generated by concatenating zero (the empty string) or more strings

from another set of strings. Regular expressions (RE) can be written using set operations,

parenthesis and alphabet symbols to describe languages or words in the language. The

following list of rules defines a regular expression [30]:

4.1. IRMASCRIPT LANGUAGE INTERPRETER 103

1. The empty set 0 and each member of alphabet E are REs.

2. If symbols a and (3 of alphabet E are RE's, then (a/3) is an RE. This amounts to

concatenation (the a n d operation).

3. If symbols a and 0 of alphabet E are RE's, then (a U (3) is a RE. This amounts to

union (the or operation).

4. If symbol a is a regular expression, then a is an RE.

5. Nothing else is a RE.

For example, the RE (a\b)*c describes the set of all strings concluded by a single

symbol c. Furthermore, if E = {a, b}, then the set of all strings of length 2 can be de­

scribed by the RE (a\b)(a\b). The fact that regular expressions can describe patterns of

symbols makes them particularly useful in identifying words, or lexemes, that make up a

language statement. Regular expressions, however, cannot describe nested constructs[30]

of unspecified depth, such as found in a complex mathematical expressions. Thus, regular

expressions can only describe regular languages. The IRMAscript language interpreter uses

regular expressions to identify (or accept) IRMAscript statements, so IRMAscript can be

considered a regular language. As such, IRMAscript does not permit nesting of expressions:

only one, or in some cases two, expressions are permitted per statement, such as in the case

of the whi le statement.

Regular expressions can describe strings of a language, but they cannot recognize

if a string belongs to a given language. A language recognition device following the steps

described in an algorithm must be used instead. Finite automata can be used to model

4.1. IRMASCRIPT LANGUAGE INTERPRETER 104

the algorithm driving language recognition devices. In essence, finite automata are models

of minimal computers possessing no memory. Additionally, any regular language can be

recognized by a finite automata[30].

A finite automata (FA) can be visualized as a black box that can be in one of n

discrete states depending on the input fed into the black box, by means of a metaphorical

input tape. On the tape are printed input symbols that are part of some language. The

black box has a reading head, which is analogous to the head on a tape recorder. When the

read head passes over a character on the tape, the internal state of the black box changes

to a new state, depending upon the character read and the previous state of the box. The

read head can move forwards or backwards along the tape. Initially, the black box is in the

start state. A string is accepted when the black box, reading the tape from left to right,

reads a character that puts it into a final state.

Formally, a FA consists of the 5-tuple M = {E, S, S, s, F}, where E alphabet of

symbols, 5 is a finite set of states, 6 is a transition function (rules that define when the FA

moves from state to state), a single start state s, and a set of final accepting states F. The

transition function S can be described in a table, showing how the given state and input

symbol maps to a specific output state. Directed graphs, in the form of a state diagram, are

commonly used to describe the transition function. FA's come in two forms: deterministic

finite automatae (DFA) and non-deterministic finite automatae (NFA). While the state of

a DFA is completely determined by its input and its current state, a NFA has the ability

to choose one or more possible paths (as indicated in its diagram) after reading its input.

Regardless of the type of FA used, for every NFA there exists an equivalent DFA. Therefore,

4.1. IRMASCRIPT LANGUAGE INTERPRETER 105

NFAs are convenient to use for diagramming purposes, as they are simpler to draw, as they

have fewer state transitions. For example, the NFA that accepts the string L = aba appears

in figure 4.2.

Figure 4.2: Directed graph of a NFA that accepts the language (aba)*

Directed graphs are constructed from a series of nodes and arrows, where each

node represents a NFA state, and each arrow is labeled with an input symbol. The node

labeled go has an arrow pointing to it, which indicates it is the start state. After reading

its input tape, the NFA can choose to go to state q\ if the input was an a, or go to state

<?4 if the input was a b. Final state, 93 appears as a double circle. The graph shows that

any number of aba character sequences, which includes zero sequences as indicated by the

e symbol, are accepted by the NFA. Any other input sequence results in the NFA entering

an error state, meaning the input was identified as not belonging to the given language.

A NFA or DFA can be easily expressed in a programming language, as it is nothing

more than a state machine. The NFA described in figure 4.2 can be expressed with the

following C code:

a

e

4.1. IRMASCRIPT LANGUAGE INTERPRETER 106

state = qO;
while(ch = getc(FILE) != EOF)
{

if(ch == 'a')
{

switch(state)
{
case qO:

state = qi; break;
case ql:

state = q4; break;
case q2:

state = q3; break;
case q3:

state = ql; break;
case q4:

state = q4; break;
}

>
else if(ch == 'b')
{

switch(state)
{
case qO:

state = q4; break;
case ql:

state = q2; break;
case q2:

state = q4; break;
case q3:

state = q4; break;
case q4:

state = q4; break;
}

}
>

i f (s t a t e == q3)
p r i n t f (" s t r i n g a c c e p t e d \ n ") ;

e l s e i f (s t a t e == q4)
p r i n t f (" s t r i n g not a c c e p t e d \ n ") ;

The IRMAscript interpreter is written in Perl, a popular systems programming

4.1. IRMASCRIPT LANGUAGE INTERPRETER 107

language that has powerful regular expression pattern matching tools. The algorithm to

match the string aba can be expressed in Perl simply as:

while(<FILE>)
•C

$statement = $_;
i f ($s tatement =" /aba/)
{

p r i n t " s t r i n g accepted\n";
>
e l s e
•C

p r i n t " s t r i n g not a ccep ted \n" ;
}

>

IRMAscript syntax is extremely simple in order to avoid nested statements, which

would require a recursive parser. The general structure for hardware commands follows the

pattern of one command and two command modifiers:

[Command] [Modifier field 1] [Modifier field 2]

followed by n parameters, depending on the command issued. All other IRMAscript com­

mands, such as flow control commands, delays, and console I /O, may use one or no modifiers,

according to their function. In order to make the language easily readable, a three-tuple

syntax is used to divide the commands into families, where each family consists of sub­

commands that perform specific fine-grained functionality relating to that family. For ex­

ample, the functions dealing with the Master Controller's real time clock are encompassed

in the RTC command family.

Inside the interpreter, the input source code file is opened, and each line is read

individually, split into tokens along the whitespace contained in the statement, and entered

4.1. IRMASCRIPT LANGUAGE INTERPRETER 108

RTC READ DATE.TIME
RTC READ EPOCH.TIME
RTC SET ARBITRARY .TIME
RTC SET DATE-TIME

into an associative array structure, which operates like a hash table. A line is identified

as a string of text terminated with a carriage return character (ASCII decimal code 10).

Line numbers, generated by the interpreter, formulate the hash key. This mechanism allows

convenient access to individual IRMAscript statements by simply passing a line number to

the associative array, which are often referred to in Perl terminology as a hash table.

Once the entire script has been read into the program code hash table, the inter­

preter executes a program by iterating through the range of line numbers and their associ­

ated IRMAscript statement, starting at line zero. Iterative loops (repea t n. . endloop) as

well as conditional loops (do. . while) require a mechanism to permit jumping back to the

top of the loop. Upon entering loop for the first time, an array indexed with the current

loop nesting depth is given the line number of the statement immediately following the loop

head only after its index is incremented. This is the target address that the interpreter

uses to jump to the top of the loop when it encounters the bottom of the loop. The loop

nesting index allows the interpreter to keep track of which loop head address it should use,

according to which loop is active. Iterative loops also use an array (indexed to the current

loop nesting) to store the loop iteration count. This variable is initialized to the r epea t

parameter and is decremented on each pass through the loop. The interpreter exits the loop

when the iteration variable is decremented to zero, then decrements the loop nesting array.

4.1. IRMASCRIPT LANGUAGE INTERPRETER 109

10 repeat 3 / / outer loop head
11 repeat 2 / / inner loop head
12 pr int "some_str ing ,W
13 endloop
14 endloop

In the preceding example, the interpreter will repeat the inner loop three times,

as defined in the outer loop. The loop nesting index before entering the loop structures

is zero. Upon entering the outer loop, the loop nesting index is incremented to 1. Upon

entering the inner loop, the loop nesting is incremented to 2. Entering a loop increments

this index, while exiting a loop decrements it. Values stored in the array at a particular

index value are therefore unique according to the current loop nesting level. The loop

iteration index is used the same way: entering a loop increments its index, while exiting

a loop decrements the index. Below is a snippet of the actual code that controls the

r e p e a t . . endloop construction.

i f ($s tatement [0] =~ /"REPEAT/)
{

dereference argument 1
i f (de f ined($var iab les{$s ta tement [l] }))
{

$statement [1] = $variables{$statement [1] } ;
>

i f ($ s ta tement [1] == 0)
{

$loopNesting++;
$ i t e r a t i o n s [$loopNesting] = 0;
$pc = moveToEndOfBlockO ;
$pc++;

>
else
{

$ i terat ions [$ loopNest ing] = $statement [1] ;
$loopBase[$loopNesting] = $pc+l;
$loopNesting++;

4.1. IRMASCRIPT LANGUAGE INTERPRETER 110

$pc++;
>
$tokenMatch = 1 ;
last SWITCH;

>

if($statement[0] =~ /"ENDLOOP/)
{

if(SloopNesting > 0)
•C

$iterations [$loopNesting-l] — ;

if($iterations [$loopNesting-l] < 1)
•C

$pc++;
$loopNesting—;

>
else
•c

$pc = $loopBase[$loopNesting-l] ;
>

}
$tokenMatch = 1 ;
last SWITCH;

}

IRMA hardware command functions must be converted from the three-string

human-readable format to the numeric three-digit command code embedded in network

command packets. The IRMAscript hardware command set is stored separately from the

interpreter in an Excel spreadsheet file in tabular format, which to allows for easy modifica­

tion. One of the first tasks performed by irmaExec upon start-up is to read the command

set spreadsheet and extract the three digit code based on a simple algorithm. IrmaExec

uses the S p r e a d s h e e t : : P a r s e E x c e l Perl module to parse the Excel spreadsheet. The com­

mand, modifierl and modifier2 codes are generated by sequential counters that increment

when data contained in the corresponding command, modifierl and modifier2 spreadsheet

4.1. IRMASCRIPT LANGUAGE INTERPRETER 111

columns show transitions. Once calculated, the three-digit code is entered into the com-

m a n d C o d e H a s h hash table, using the command and two modifier strings as keys.

For example, the gps family of commands, as shown in table 4.1 appear as the

second block of related commands in the command set spreadsheet, thus their command

code equals 2. GPS commands that handle reading data are identified by their first mod­

ifier field equaling 1, while serial port control commands are identified by the number 2.

Each individual reading or serial function is uniquely identified by means of modifier field

2. The goal of this naming scheme is to uniquely identify each hardware control command.

When modifying the command set spreadsheet, new entries must be added to the bottom

of the block of commands for some given command family, in order to prevent changing

the numbering scheme. A list of command strings and their corresponding codes can be

generated within irmaExec by uncommenting the print statement immediately following the

label C M D S E T _ P R I N T . Command codes are hard-coded in the MC software running on

the Rabbit.

S t r i n g N u m e r i c
C M D M O D I M O D 2 C M D M O D I M O D 2
GPS READ DATE-TIME 2 1 1
GPS READ EPOCH-TIME 2 1 2
GPS READ LAT.LON 2 1

CO

GPS SERIAL OPEN 2 2 1
GPS SERIAL CLOSE 2 2 2

Table 4.1: GPS command codes: string versus numeric representation.

The IRMAscript interpreter makes extensive use of Perl language features, in par-

4.2. ALT-AZ CONTROLLER SOFTWARE 112

ticular, hash tables and regular expression pattern matching. Further specialized function­

ality, such as parsing spreadsheets or calculating CCIT-16 CRC checksums, is implemented

via Perl modules. The interpreter is initialized via configuration files, which includes its

own command set, as contained in an Excel spreadsheet file. The overall structure of the

IRMAscript interpreter can be summarized in the following pseudocode:

i n i t i a l i z e command code hash t a b l e

open i r m a s c r i p t f i l e (read)
do

read l i n e from f i l e
s p l i t l i n e i n t o f i e l d s , put i n t o a r r ay
put a r r a y in source code hash t a b l e wi th key = l i n e count
increment l i n e count

u n t i l r each EOF

i n i t i a l i z e program counter "pc" t o 0

do
ge t s t a t emen t from source code hash t a b l e u s ing key = pc
p a t t e r n match s ta tement on command, mod i f i e r l and modif ie r2
look up command code us ing keys command, modi and mod2
make command packet
send command packet t o MC accord ing t o network comm p r o t o c o l

whi le pc < t o t a l l i n e s in program

This concludes a general overview of the structure and theory behind the IRMAscript

interpreter. A complete description of the IRMAscript language is found in appendix A.

4.2 Alt-Az Controller Software

The altitude-azimuth (Alt-Az) mount is capable of pointing the IRMA MC unit

to any Alt-Az coordinate in the sky with 1 encoder unit precision; roughly 1/22 of a degree.

This is derived from the fact that a the optical encoder contains 8192 ticks per a 360 degree

4.2. ALT-AZ CONTROLLER SOFTWARE 113

revolution: one encoder tick equals 360/8192, or roughly 1/22 degrees. The elevation axis

has 198 degrees of rotation, which allows it to slew (or rotate) from one horizon to another.

The azimuth axis, meanwhile, is capable of rotating roughly 365 degrees. The AAC operates

internally on the local (or horizon) coordinate system, using encoder units as its basis of

angular measurement. Celestial objects, however, are located in terms of right ascension

(RA) and declination (Dec).

The equatorial coordinate system is used to locate celestial objects on the celestial

sphere, an imaginary spherical shell that surrounds the Earth. Just as one locates an object

on the earth's surface using 2 coordinates, latitude for the Y-axis and longitude for the X-

axis, one locates celestial objects on the surface of the celestial sphere using declination

(DEC) for the Y-axis and right ascension (RA) for the X-axis[13]. Coordinate conversion

is done outside the IRMA system, although early on in IRMA development, a RA-DEC

Alt-Az conversion library was created and tested for inclusion in the IRMA MC software.

4 .2 .1 A l t - A z In i t ia l i za t ion

Prior to using the Alt-Az mount, physical elevation and azimuth reference points,

or fiducial markers, must be determined through a process called homing the axes. The

homing process involves a sequence of steps, as shown in the a l t a z _ i n i t . irma script.

Initially, the LS7266R1 optical encoder chip (OE) must be reset, and its elevation and

azimuth counters set to 10,000.

Axis initialization process, which is known as homing, involves determining the

location of both the clockwise (CW) and counterclockwise (CCW) rotational limits of the

elevation and azimuth axes. The homing procedure for the elevation axis follows the se-

4.2. ALT-AZ CONTROLLER SOFTWARE 114

quence illustrated in figure 4.3. Initialization begins with the elevation axis rotating in the

CCW direction until it encounters and overshoots the CCW limit, shown as the black arrow

starting at point a. The AAC backs out of the limit, as shown by the red arrow, until it

reaches the threshold of the CCW limit. The AAC makes note of this position, and rotates

the elevation axis in the CW direction, as indicated by the blue arrow starting at point c.

When the CW limit is encountered and overshot, the AAC halts the axis, backs up slowly in

the CCW direction, as shown by the green arrow, until the elevation axis is on the threshold

of the CW limit. The AAC takes note of the position, calculates the rotational range (in

optical encoder ticks) from difference between the two limits, then initializes the elevation

axis position counter to 10,000.

Position 10,000 is the starting position from which all rotational movements are

made, and represents 0 optical encoder ticks from the CW limit. An offset value of 10,000

was chosen to prevent the OE counter from wrapping to 16,777,216 when it reverses direction

and rotates below the 0 angle mark. This will occur when the axis is near the 0 angle

threshold. The OE control chip contains a 24-bit counter which produces unsigned binary

coded decimal (BCD) values. CCW rotation causes the OE counter to increment, while

CW rotation causes the OE counter to decrement. IRMA reports the elevation and azimuth

positions with the offset subtracted from the raw OE counter values. The elevation axis

has approximately 198 degrees of free rotation, allowing the IRMA unit to slew 180 degrees

from horizon to horizon.

The homing sequence on the azimuth axis is largely identical to that described

4.2. ALT-AZ CONTROLLER SOFTWARE 115

CCW»"£
Limit

< CW
Limit

Figure 4.3: Initialization sequence of the elevation axis. Initialization, also called homing,
follows the rotation sequence illustrated by the four arrows labeled a through d. Homing
begins with a CCW rotation (a), a high-precision search for the CCW limit (b), a CW
rotation to the CW limit (c), concluding with a high-precision search for the CW limit (d).
The azimuth axis homing procedure follows the same sequence of events. The range of
rotation on the azimuth axis, however, is slightly greater than 360 degrees.

for the elevation axis. The only difference is the azimuth axis' ability to rotate a full 360

degrees. The degrees of rotation between the CW and CCW limits is slightly greater than

360 degrees, due to the design of the optical limits mechanism.

4.2 .2 A l t - A z Offsets

Internally, IRMA considers 0 degrees elevation and 0 degrees azimuth as the

counter clockwise physical limits of both axes, which are defined by their respective opto

switches. The elevation opto limit roughly corresponds to the physical horizon. When

IRMA is pointing at its default elevation home position (optical encoder reading 0), its

field of view dips slightly below the horizon. With azimuth, however, there is no physical

4.2. ALT-AZ CONTROLLER SOFTWARE 116

correspondence between azimuth home position and true north. As a consequence, IRMA

requires the use of elevation and azimuth offsets, which must be applied to the encoder

readings when planning axis moves.

Optical encoder counter readings form the benchmark that IRMA measures its

position against. For example, 90 degrees on the elevation axis is located directly above

the IRMA unit (zenith). IRMA Alt-Az movements are specified in terms of degrees (in

degrees, minutes, seconds) above the horizon, not in degrees relative to its current position,

or distance. IRMA interprets movement destinations in the same way. The benefit of using

absolute angles is that it simplifies the use of offset angles.

Figure 4.4: Azimuth axis rotation examples with an offset (here defined as 135 degrees).
The blue arrow (a) shows a rotation to 0 degrees. The black arrow (b) shows a rotation
to 180 degrees. The red arrow (c) shows a rotation to 270 degree, which wraps across the
physical rotation limit. Since the destination lies 45 degrees beyond the physical limit, the
AAC would rotate the axis in the CW direction, shown as by the green arrow (d).

180°

a (angle 0)

physical
rotation limit

4.2. ALT-AZ CONTROLLER SOFTWARE 117

Offset angles are added to both elevation and azimuth OE readings. Movements

relative to the offset angle are illustrated in figure 4.4. If one were to move 180 degrees (the

black arrow labeled b) and the offset angle were 135 degrees (the blue arrow), the resulting

destination angle would be 180 + 135 — 315 degrees. In the case of elevation angles, it

is possible to obtain negative angles if the axis dips below the angle of offset. This does

not occur with angle measurements on the azimuth axis because it is capable of rotating a

full 360 degrees. It is possible to request azimuth angles that wrap across the optical limit.

The red line (labeled c) shows the path of rotation resulting from a request to rotate to

270 degrees, given a starting angle of 180 degrees, and a 135 degree offset. The solution is

to subtract 360 from all destination angles greater than 360 and take the absolute value,

which in this case is 45 degrees.

destdeg = \(destAngledeg + offsetdeg) - 360d e s | (4.1)

The path of rotation taken by the axis appears as the green arrow d, which rotates in the

CW direction (towards physical angle 0) in order to avoid the 360 degree physical limit.

4 .2 .3 A x i s g e a r i n g a n d s p e e d

The axis rotation speed is determined by the input voltage value into the voltage

controller and the gear reduction ratio for a given axis. Additionally, each gearbox has

a maximum recommended rotation rate, which is fixed at 8000 RPM. The relationship

between input voltage and motor rotation speed is linear, and can be determined from the

manufacturer's motor and gear specifications. The parameters in question are shown in

table 4.2.

4.2. ALT-AZ CONTROLLER SOFTWARE 118

M o t o r A t t r i b u t e Value
Elevation Gear Reduction Ratio 1621:1
Azimuth Gear Reduction Ratio 3027:1
Belt Gear Reduction Ratio 8:1
Maximum Motor Speed (2.5V) 12,500 RPM
Minimum Motor Speed (OV) 500 RPM
Maximum Recommended Motor Speed 8000 RPM

Table 4.2: Maxon motor parameters.

The minimum and maximum motor speeds provide the slope of the linear equation

defining the relationship between input voltage and output axis speed, shown in equation

4.2. The full scale voltage is 2.5 V. An offset of 500 RPM defines the Y-intercept of the

equation. Voltages are in volts, and all speeds are defined in RPMs.

[MaxMotSpdrev. - MinMotSpdxsiL)
\ min min J axisSpdigL = [FullscaleVoltage ' InPutV°tta9ev+MinMotSpd£2L

(4.2)

Equation 4.2 gives the output axis speed in RPMs without considering the effect

of the gear reductions due to the gear head and drive belt. Also, the output motor speed

must be truncated at 8000 RPM. For example, an input voltage of 1.25 V (half of full scale)

translates into:

((12.50(1 rev -BOO rev) \
A 1.25y + 500xs3L

UXlSOUUrev. — n „ n (4.3)
y min 3027 x 8 v '

Since the output motor speed (in RPM) is less than 8000, the value is legal, allowing us

apply the gear reduction by dividing the motor rotational speed by the product of the

gear reduction ratios, resulting in a net rotational speed of 0.27 RPM, or 3.72 minutes per

revolution.

4.2. ALT-AZ CONTROLLER SOFTWARE 119

It is useful to know the net rotational speed of the axis in terms of ticks per second

along the DAC value required to generate this speed. Ticks per second is calculated by:

(net Motor Spd ££M.) . ,
\ min J ticks

axisSyducks = — t£2L- (4.4)
s nil s

min

Optical encoder ticks per second is the unit of speed used by the IRMA AAC. There are 8192

ticks per revolution (360 degrees). Each tick is equivalent to 2.63 arcminutes, as calculated

by (8 i 9 2 t

d . e g

f c) 60 arcminutes. To determine the net motor speed in terms of an input digital to

analog (DAC) value (range: 0 - 255), simply substitute FullscaleVoltage with 255, which

is the full scale 8-bit DAC value. This effectively changes the slope of the linear equation

defining this relationship.

4 .2 .4 S e r v o M o t i o n C o n t r o l

The elevation and azimuth axes require fine motor control in order to perform point

to point moves that are accurate within one encoder unit. Motor speed must be controlled

as to gently accelerate and decelerate the motors, thus avoid damaging the gear heads with

sudden starts and stops. A trapezoidal-shaped velocity versus time profile will produce this

kind of motion (see figure 4.5), and can be easily generated using basic kinematic equations

for constant acceleration.

Servo-controlled motion control is generated by calculating a position versus time

displacement profile, based on user-supplied speed and a constant acceleration value. The

displacement profile generating function, known as update-mp-posi t ion, breaks the curve

into three phases: the acceleration phase, cruise phase and deceleration phase. They can

be clearly seen in the velocity versus time plot in figure 4.5. To generate this profile, the

Figure 4.5: Displacement and velocity paths, generated by IRMA's servo motion control
software. This path describes a 36.3 degree (826 ticks) rotation at 20 ticks per second.

4.2. ALT-AZ CONTROLLER SOFTWARE 121

AAC must calculate a unique displacement at a prescribed rate given a target speed and

acceleration. Since deceleration has the same magnitude as acceleration, the position at

which deceleration should begin can be calculated by subtracting the acceleration distance

from the requested move distance. The remaining distance between the acceleration and

deceleration phases is the cruise distance.

When the AAC begins to perform a servo-controlled movement, it zeros a time

counter, zeros the displacement variable, and enables a high-priority task that signals the

servo movement every 50 ms to read its current position and calculate a theoretical posi­

tion along the displacement curve, based on the elapsed time relative to the start of the

movement. At each tick increment in the servo movement, the displacement curve is in one

of three states: acceleration, cruise and deceleration. Each state uses a unique algorithm to

calculate its theoretical displacement from the start of the movement, given the current time.

The displacement curve's state, which is initialized to the acceleration state, is promoted

to the next state when the newly calculated displacement crosses the end of acceleration

threshold, or the start of deceleration threshold. When a displacement is found to cross

the end of deceleration threshold, the destination has been reached, and axis movement his

halted by enabling the axis brake.

Displacements for the theoretical displacement profile are generated using motion

equations of constant acceleration, which are found in any first year college physics textbook.

During the acceleration phase, displacement is calculated using equation 4.5, where D is

in ticks, T is in seconds, and A, the user-defined constant acceleration value, is defined in

4.2. ALT-AZ CONTROLLER SOFTWARE 122

accel

Accelerati on Cruise Deceleration

D accel " elapsed

decel

D decel

Figure 4.6: Displacement curve generation. Each region of curve: the acceleration, cruse
and deceleration phases, has a unique equation for calculating displacement D.

ticks
seconds2'

1 r

DACC = ^(TelapsedY (4.5)

The cruise phase is characterized by constant velocity. Displacement during this phase is

calculated by equation 4.6. Velocity is measured in j j ^ g j -

DCRUISE — DACC + (y(Telapsed ~ TACC)) (4.6)

Calculating displacement during the deceleration phase, defined in equation 4.7, is more

complex as it must take into account times and displacements from the previous phases.

Time T, velocity V and displacement D remain in the same units defined in the previous

4.2. ALT-AZ CONTROLLER SOFTWARE 123

phases. Equation 4.8 defining R (in seconds) and equation 4.9 defining Q (in ticks) represent

intermediate steps in calculating D.

D = Q + {\(-A)R2) (4.7)

R = Teiapsed - TACC ~ ^CRUISE (4.8)

Q — DACC + DcRUISE + {V(Telapsed ~ TACC ~ TCRUISE)) (4.9)

The displacement profile must be tracked over time, whereby the axis in question

reaches position s at time t, as dictated by the profile. The algorithm that performs the

tracking, that is, conforms the physical behavior of the machine to the desired behavior is

called its control law, or control algorithm[33].

Control systems, such as IRMA's AAC, are closed loop systems as they use feed­

back after applying input to the plant, which in this case is a voltage driving the motor

controller. The difference between the desired result (the set point) and the feedback value

(typically measured from a sensor) is the error signal, E. Control algorithms attempt to

converge the error signal to zero. The degree to which this is done successfully is dependent

upon the control algorithm being used, and the nature of the system being controlled.

IRMA servo-based move command uses a proportional-integral-derivative (PID)

servo loop as its control law. Proportional feedback control multiplies a gain constant Kp

with the error signal: thus Kv is proportional to the magnitude of the error E. When the

physical system deviates from the desired behavior a little, a small amount of correction

is applied. When the physical system deviates by a more significant amount, however,

much correction is applied. Depending on the amount of gain applied, this can result

in overcompensation, or overshoot, which can cause the system to oscillate. Reducing

4.2. ALT-AZ CONTROLLER SOFTWARE 124

proportional gain can reduce overshoot and possible oscillation (called ringing), but it may

introduce more steady state error. Using proportional control alone, it is difficult to balance

the goals of reducing oscillation, decreasing convergence time, and reducing steady state

error, because they typically compete with one another[63].

time (seconds)

50

Figure 4.7: Motor speed oscillation due to poorly chosen or untuned P, I and D constants.
The thick line represents the actual axis displacement from 0 to 826 encoder units (ticks).
The thin S-shaped displacement curve represents the theoretical path that the PID servo
loop attempts to track, represented by the thick line. The error signal is shown as the thin
line oscillating about the X-axis.

Integration and derivative control terms are often included with the proportional

term to achieve these control goals. Integration involves summing all the previous error

terms and multiplying the result with a constant, Kj. The integral term is useful for

increasing long-term accuracy by reducing error[33]. As Kj is increased, the rate at which

the error converges to zero increases. The derivative control is focused on the rate of change

in the error signal. The derivative gain constant, Kp, is multiplied with the the derivative of

4.2. ALT-AZ CONTROLLER SOFTWARE 125

the error signal, which is defined as the change in the error signal over time. The derivative

term acts to predict future system behavior based on what happened in the past. If the

error has changed slowly in the past, it will likely do so in the future. The derivative term

gives the controller the ability to generate a strong response against sudden changes in

the error signal[33]. Combining derivative with proportional control allows control of the

system's transient response (rate of convergence and oscillation control) without affecting

steady state tracking[63]. Combining the P, I and D constants together yields the following

equation:

Where E is the error, t is time and MV is the manipulated variable, that is, the value

that is to be fed back into the physical system, or plant. A block diagram representing this

expression appears in figure 4.8.

In applying the PID control algorithm to IRMA's velocity tracking motion control

source code, appearing in the following code snippet, the error signal (f E) is calculated as

the difference between the theoretical position (f RelPosTH) along the displacement profile

and the actual position (fRelPos) reported by the optical encoder (line 1). Calculation of

the proportional term occurs in line 3. The integral term calculation (line 4) involves multi­

plying the integral constant with a running sum of each error value (f IntegSum) multiplied

by the change in time, fDeltaTime. The time delta, which is set to 50 ms, determines the

rate at which the PID servo loop checks its feedback and performs the necessary adjust­

ment to the system. Finally, the derivative term is calculated by the derivative constant

multiplied by the change in error (fDeltaE) over the change in time, as shown in line 6.

(4.10)

4.2. ALT-AZ CONTROLLER SOFTWARE 126

REFERENCE
VALUE

ERROR

• f ^INTEGRAL • f ^INTEGRAL

+
INTEGRATOR

+

DERIVATOR

'ROPORTIONAL

dV
dT

FEEDBACK ADC

DAC &
DRIVER

OUTPUT

PLANT

Figure 4.8: PID algorithm block diagram[64]

Once the three terms are added together (fMV), the resulting value is scaled to an 8-bit

value that can be fed into the DAC. A full view of IRMA's PID servo routine is found in

the SingleAxisMoveTask function, which appears in the AAC source code.

1 fE = fRelPosTH - fRelPos;
2 fDeltaE = fE - fPrevE;
3 fMVp = altazConstants.elev_kProp * fE;
4 fMVi = altazConstants.elev_klnteg * flntegSum;
5 fIntegSum = fIntegSum + (fDeltaTime * fE);
6 fMVd = altazConstants.elev.kDeriv * (fDeltaE / fDeltaTime);
7 fMV = fMVp + fMVi + fMVd;

4.3. CONCLUSION 127

4.3 Conclusion

This chapter has examined the IRMAscript language interpreter and the regular

expression pattern matching algorithm that powers language statement parsing. This chap­

ter has also examined the AAC software that controls the Alt-Az mount, focusing on the

axis initialization process, how destination angles are calculated, and how trapezoidal ve­

locity curves are calculated and translated into axis movements, using a PID servo tracking

algorithm. If IRMAscript is going to continue to be used in future IRMA models, the inter­

preter would benefit from a redesign, where the regular expression-based parsing algorithm

would be replaced with a more sophisticated parser, such as a top-down recursive descent

parser. Eliminating IRMAscript entirely, however, and using a Perl module encapsulating

IRMA system control commands would be a preferred solution, because IRMA scripts could

be defined in Perl, which is a popular and versatile language.

128

Chapter 5

Future directions for I R M A

5.1 Testing Campaigns

5.1 .1 M a u n a K e a , 2 0 0 4

IRMA III underwent initial field testing at the Smithsonian Submillimeter Array

(SMA), Mauna Kea, Hawaii between May 24 and June 16, 2004. The testing campaign set

out to demonstrate that multiple IRMA units could track PWV variations, and that its

PWV measurements, when converted to phase variation measurements, could closely follow

data from the Smithsonian Astrophysical Observatory (SAO) seeing monitor[43].

Figure 5.1 shows 4 and a half hours of data simultaneously collected by two IRMA

units, each of which were attached to two SMA antennas separated 141 m apart. The black

and red traces at the bottom of the figure show the spectral power (in watts) of the IR

signal received by each antenna. The offset between the two signals is caused by using a

common filter profile during data processing, and the lack of correct temperature sensor

5.1. TESTING CAMPAIGNS 129

calibration on one unit's blackbody. In reality, each IRMA unit's filter has its own unique

profile, which needs to be applied to its own data set. The top trace shows the difference

in spectral power measured between the two antennas. The two signals track each other

closely, since the two antennas are pointed the planet Jupiter. A region of signal instability

appears approximately 1500 seconds after the beginning of the observation session. For

approximately 1500 seconds, one of the antennas pointed away from Jupiter, resulting in

the unstable region where the signals do not correlate. Approximately 3000 seconds into

the observation session, the unaligned antenna is pointed again at Jupiter. From this point

onwards, the two signals show close correlation, as indicated by the top curve showing the

difference in signal between the two antennas. Atmospheric turbulence appears as rapid

fluctuation in the spectral power readings.

This particular observation session commenced in the early afternoon, around

14:00 local time (Hawaii standard time: HST). The spectral power data shows rapid fluctu­

ations in the first 8000 seconds (roughly 2 hours) of the observation, indicating atmospheric

turbulence. The turbulence decreases as the observing session moves into the evening. This

atmospheric behavior is indicative of Mauna Kea's well known temperature inversion layer,

where a layer of cold, moist air is trapped at lower altitudes by an upper layer of hot, dry

air. As the ambient temperature drops in the afternoon, this inversion layer breaks down,

allowing the cold moist layer to bubble up over the summit, resulting in the atmospheric

turbulence appearing in this data[43].

5.1. TESTING CAMPAIGNS 130

IRMA ADC Output

Figure 5.1: First set of simultaneous data taken by dual IRMA units at the Smithsonian
Millimeter Array, Mauna Kea, Hawaii, June 15, 2004. This 4.5 hour data collection ran
from 14:00 to 18:30 HST.

5.1.2 G e m i n i S o u t h

In February of 2005, two IRMA units were shipped to the Gemini South Observa­

tory, atop Cerro Pachon in the Chilean Andes. A concrete pad was prepared for one IRMA

unit, situated a few tens of meters from the Gemini telescope dome. IRMA's software sys­

tems went through extensive debugging, with special emphasis on it's Alt-Az software. The

IRMA hardware and software operated as expected up until the final day of testing, when

Ethernet communication problems began to occur, manifesting itself in extremely slow net­

work transactions between the CP and MC. Pinging the MC from the CP showed packet

losses ranging between 50 to 75 percent. The network communication problems appear to

5.2. POLAR DEPLOYMENT OF IRMA 131

have been solved after an alternate data/power umbilical cable was attached to the IRMA

unit. The cause of this problem has yet to be determined. In the time that passed while

IRMA lay idle, its vacuum had deteriorated, requiring its getter to be re-fired. The fragility

of IRMA's hardware has been an ongoing problem. It is not unexpected, however, given

that IRMA is still experimental.

5.2 Polar Deployment of IRMA

5.2 .1 A n t a r c t i c a

Over the past decade, attention has been directed towards Antarctica as a possible

site for future astronomical observatories. Antarctica is attractive to astronomers for its low

atmospheric water vapor content and low ambient temperature, both of which contribute

to exceptionally low infrared sky brightness. Studies by Nggyen in 1996 show that the at­

mospheric thermal emission, centered around 2.36 microns, is darker than any other known

observatory site, and is comparable to conditions 27 km above sea level[39]. Additionally,

extremely low wind speeds have been reported at the Antarctic high plateau, which allows

for optimal seeing conditions [58]. Seeing is inversely related to the amount of atmospheric

turbulence; low turbulence results in higher observable angular resolution[25].

Particular attention has been given to Dome C, high on the Antarctic plateau

some 3200 m above sea level[58]. The site is at sufficient elevation to place it above the

200-300 m band of turbulent atmosphere that extends from the Antarctic ice found at sea

level. During the winter season, Dome C receives around 100-300 microns of precipitation,

and has an average temperature of -60 C. Due to its extreme low temperatures and low

5.2. POLAR DEPLOYMENT OF IRMA 132

humidity, the atmosphere at Dome C has exceptionally low infrared darkness. In 2000,

infrared brightness measurements of the wintertime atmosphere showed the site to be as

much as 20 times darker than Mauna Kea in some regions of the 10 micron window.

... X - 1

Figure 5.2: Concordia Station, Dome C, Antarctica. The AASTINO remote observatory
appears in the foreground as a green igloo[3].

Concordia station is a French/Italian research station located at Dome C. Un­

manned, automated site testing stations have been placed at Concordia in order to char­

acterize atmospheric conditions of the Antarctic high plateau. In 2003, an automated sta­

tion called AASTINO (Automated Astrophysical Site Testing International Observatory),

was deployed. Roughly the size of a travel trailer, AASTINO is a portable, autonomous,

remotely-operated cabin housing numerous pieces of instrumentation. It relies on solar

power as well as two Sterling cycle engines for power, and is connected to the Internet via

an Iridium satellite telephone [28]. IRMA will arrive in Antarctica between November 2005

and January 2006, at the beginning of Antarctic summer. There it will spend a year on

board AASTINO measuring water vapor content above Dome C. The IRMA detector box

and Alt-Az mount will be mounted to the roof of AASTINO, while the command processor

5.2. POLAR DEPLOYMENT OF IRMA 133

PC will be housed inside the AASTINO cabin.

5.2.2 T h e A r c t i c

Characterization of the arctic environment for suitable astronomical observation

sites is only in its infancy. Programs such as the European Southern Observatory's ESPAS[40]

program (ESO Search of Potential Astronomical Sites) have been searching around the world

for promising ground-based telescope sites. The arctic is an attractive region to locate ob­

servatories because it is more accessible than the Antarctic. Logistical infrastructure in

the form of military and weather stations exist in northern Canada and Greenland. Like

Antarctica, regions in the Arctic are extremely dry and cold. The Arctic winter is char­

acterized by extremely calm, cold conditions with very little cloud cover; ideal observing

conditions. Barbeau Peak, a 2616 m summit located on Canada's Ellesmere Island, has

been identified by ESPAS as a candidate observatory location. Barbeau Peak is situated in

an Arctic desert, receiving 18 mm of precipitation annually each winter (November through

April). It has been suggested that the annual average night-time precipitation at Barbeau

Peak may be close to 0 mm, making it even drier than Cerro Paranal, Chile (2635 m),

considered to be one of the best observation sites on Earth[25].

5.2 .3 A d a p t i n g I R M A t o Po lar C o n d i t i o n s

Long-range plans for IRMA include possible deployment in the Canadian arctic.

Design of a completely autonomous, cold weather hardened IRMA is already underway.

Deploying IRMA in the polar regions presents several challenges, in particular, the effect of

the extreme cold on IRMA's moving parts. IRMA's chopper wheel axis bearing lubricant

5.2. POLAR DEPLOYMENT OF IRMA 134

becomes viscous at low temperature, which required that the chop wheel bearing be repacked

with a new lubricant. The flex cable, which carries power and communication lines from the

Alt-Az base to the IRMA detector box, becomes stiff when subjected to -80 C temperatures.

Teflon-coated wires gathered into a bundle are being considered as a solution, as there is

no suitable supplier for short lengths of Teflon flex cables.

Many conventional integrated electronic devices, such as single board computers,

are not tested to function to specifications at temperatures lower than 0 C, although they

may correctly operate at low temperature. At issue is the possibility that these devices

may contain temperature sensitive components, in particular, certain types of capacitors,

which will fail at sub-zero temperatures. Extended temperature range devices are verified

to operate at temperatures as low as -40 C. The IRMA MC and AAC control computers

are rated extended temperature operation. IRMA, however, must be able to survive tem­

peratures as low as -90 C, the minimum expected temperature that could be experienced

at Antarctica. Therefore, it has been necessary to perform environmental testing on the

IRMA units destined for Antarctica. In the spring of 2005, the AIG research group acquired

a large (292 1) environmental chamber[10] capable of reaching -86 C for low temperature

testing of the IRMA MC and the Alt-Az mount..

Semiconductor electronics, such as the Rabbit mircocontroller modules, have been

proved to operate normally under cold (-80 C) conditions in the freezer. Components

containing electrolytic capacitors, such as the power supply and Maxon motor controllers

have failed, as their capacitance drops with respect to temperature. The power supply for

the cold temperature IRMA has been relocated to inside the AASTINO cabin (where it will

5.2. POLAR DEPLOYMENT OF IRMA 135

be within the operational temperature range of electrolytic capacitors). The electrolytic

capacitors in the Maxon motor controllers have been replaced with tantalum capacitors,

which can tolerate lower temperatures.

5.2 .4 R e m o t e C o m m u n i c a t i o n s

The other challenge facing IRMA is its remote communication link. Tests have

been performed using an Iridium satellite telephone to establish a serial P P P (point to point)

connection between IRMA and a host computer at the University of Lethbridge. This link

carries T C P / I P traffic, permitting a user to connect to IRMA as if it were another host

on the Internet. Tests to dial into IRMA from a remote computer as well as from IRMA

using the Iridium telephone have been successful. It is anticipated that IRMA operators

will dial into IRMA to perform configuration or housekeeping tasks. For the majority

of communication uplinks, IRMA will automatically dial out over the Iridium network and

connect to a U of L based computer to transmit its science and housekeeping data. Network

bandwidth is greater and less costly when dialing into Iridium's Internet service from an

Iridium telephone, rather than directly dialing into a remote Iridium telephone. This is the

method AASTINO uses to transmit its data to its operation center at the University of

New South Wales (UNSW), in Sydney.

5.2 .5 M i g r a t i n g f rom 8-bit t o 32-bi t E m b e d d e d C o m p u t e r s

For true autonomous operation, IRMA will need to possess a greater degree of

reliability and flexibility. This requires that operators have the option to log into IRMA

regardless of IRMA's condition in order to manage the system, reconfigure (perhaps even re-

5.2. POLAR DEPLOYMENT OF IRMA 136

compile the IRMA source), and reset the IRMA software. The autonomous, remote version

of IRMA is based around PC-104 small form factor computer hardware instead of Rabbit

microcontrollers. Roughly 3.5 by 3.75 inches square, PC-104 computers are true IBM PC

compatible computers capable of running desktop operating systems. The remote version

of IRMA will run RedHat 9 (kernel version 2.4.20), permitting the IRMA master control

software to be developed using conventional development tools and languages: ANSI C,

using the GNU C / C + + compiler. All the PC-104 hardware selected for IRMA is all rated

for extended temperature (-40 C to 85 C) range.

Tri-M TMZ104 PC-104 Single Board Computer

Figure 5.3: Tri-M TMZ104 PC/104 single board computer, powered by a 667 MHz Trans­
meta Crusoe 5500 CPU.

Based on a 667 MHz Transmeta Crusoe 5500 microprocessor, the Tri-M TMZ104

5.2. POLAR DEPLOYMENT OF IRMA 137

features 272 MB of SRAM, 1 USB 1.1 port, 2 RS-232 serial ports, 1 parallel port, 1 EIDE

channel (supporting 1 master and 1 slave device) 1 keyboard port, 1 PS/2 mouse port, and

a PC-104 16-bit expansion bus for connecting additional PC-104 modules. The TMZ104

is certified for operation at temperatures between -40 C to 85 C. Power consumption on

the TMZ105 varies with the CPU workload. The CPU is configured to dynamically switch

between 33 and 533 MHz, resulting in power consumption ranging between 1.8 and 1.93 W.

The TMZ104 is manufactured by Tri-M Engineering[14].

Diamond Sys tems Emerald M M - D I O Serial /Digital IO Module

The Diamond Systems Emerald MM-DIO [9] is a 48 channel DIO card that also

includes 4 RS-232 serial ports. The board uses the PC/104 form factor and interfaces to

the TMZ104 via the 16-bit PC-104 bus. It is temperature rated for operation between -40

C to 85 C. Serial speeds up to 115 kbps are supported. All 48 DIO lines are bidirectional.

Power consumption is set at 100 mA.

Aaeon P C M 3 6 6 0 10-BaseT Ethernet Module

The Aaeon PCM3660[18] is a 16-bit, 10 Mbit/s Ethernet module, based on the Re-

alTek 8019 network interface chip (NIC). The 8019 is based on the Novel NE2000-compatible

network interface chip. To use this network card under Linux, the system must be man­

ually configured to load ne .o module, as this (as well as any other PC-104 card) is not

plug-and-play, but rather, based on older-style ISA technology. The PCM3660 is not rated

for extended temperature operation; it is designed to operate in temperatures between -15

C to 70 C. The PCM3660 consumes 400 mA.

5.2. POLAR DEPLOYMENT OF IRMA 138

R T D CML16686GX333HR P C / 1 0 4 C P U Module

Figure 5.4: RTD CML16686GX333HR PC/104 single boaxd computer, featuring an on­
board Ethernet controller. The computer is powered by a 333 MHz National Semiconductor
Geode CPU.

Although the Tri-M TMZ104 CPU module is exceptional in its low power usage,

it does not have on-board networking, which means that an additional PC/104 add-on

network module must be added, adding to the bulk of the embedded computer. The RTD

CML16686GX333HR[52] CPU module requires 6.3 W of power, but features a 10/100

Base-T Ethernet controller, as well as many of the features offered on the Tri-M module.

The CPU is a National Semiconductor Geode GX-1 Intel-compatible processor clocked at

333 MHz; roughly half the speed as the Tri-M's Transmeta Crusoe processor. This CPU

module is being considered as a replacement for the Tri-M board, because it along with the

Diamond MM-DIO board can both fit in IRMA's electronics compartment.

5.2. POLAR DEPLOYMENT OF IRMA 139

M-Systems Disk-On-Chip 2000 Technology

A 576 MB M-Systems MD2203-D576[31] Disk-On-Chip 2000 (DOC) serves as the

hard drive for the PC/104 version of IRMA. Having no moving parts makes the DOC

highly desirable in a hostile (wet and cold) environments. The DOC is rated for operation

at temperatures as low as -40 C. The main difficulty with using DOC storage is that it,

being based on NAND-gate flash memory technology, can only tolerate between 100,000

and 1 million erase cycles. NOR-based flash memory, the most common type of non­

volatile RAM used, can handle only a tenth of that - between 10,000 and 100,000 erase

cycles[59] per memory cell. Fortunately, the DOC device driver supplied with the chip

uses wear-leveling to spread read/write operations across the memory cell array. Despite

this precaution, the number of erase cycles remains fixed, thus requiring judicious use of

memory. Swap memory, which uses a section of the hard disk to store the state of suspended

(swapped-out) processes, will be disabled, in order to reduce the amount of disk read/write

activity. Consequently, IRMA's operating system will be configured to have a small memory

footprint. This implies the use of a small, minimal kernel, using only necessary features.

Linux is scalable, and should easily fit within the 272 MB memory space.

5.2 .6 P o r t i n g R a b b i t - b a s e d I R M A Software t o t h e P C

The IRMA control software (excluding the Alt-Az software) is currently being

ported over to the PC platform, which has required some significant structural changes. The

CP software, along with the IRMA GUI (if required) will be hosted on the MC computer

along with the MC software, eliminating the CP computer. Both programs will run in

5.2. POLAR DEPLOYMENT OF IRMA 140

separate processes (tasks), and communicate with each other over a local socket, which

unlike the Ethernet link, is 100 percent reliable. The AAC will remain on the Alt-Az

unit due to limited number of wires that can be contained in the flex cable. The Alt-Az

controller is interfaced to 26 DIO lines '(shown in figure 2.16) that handle motor control

and position feedback. There is provision for a third computer, hosted on on a Rabbit

RCM2200 microcontroller module, to monitor the solar power kit. The solar controller

(SC) will communicate with the MC via a local Ethernet LAN using the IRMA network

packet protocol and packet structure. No IRMA system planned for deployment requires a

solar power unit or a Rabbit SC module.

Since the CP software is written in Perl under the Linux OS, it should require very

little modification when ported over to the PC/104 platform, which will be also running

Linux. Virtually no modifications are required for the CP software. It can communicate

with the MC software using the PC/104 host's IP address, or by using the network loopback

address. This is important as it will help ensure the Rabbit and PC IRMA software are

compatible with each other. That is, the same CP software can be used with both platforms.

Porting the MC code, which was originally written in Dynamic C, will require

more effort. The MicroC/OS-II tasks need to be translated over to UNIX-style processes.

Hardware dependent system calls, such as DIO and serial communication, must be trans­

lated into the equivalent Linux system calls. Serial and digital I /O must be remapped from

the Rabbit to the PC-104 hardware. The MC's data collection interrupt service routine

(ISR) as defined on the Rabbit was anticipated to be rewritten as a Linux device driver.

Fortunately, the Linux driver library for the Diamond MM-DIO board supports user-mode

5.3. FINAL THOUGHTS 141

interrupt functions, which are much simpler to implement (as they run in user memory

space), and function in similar fashion to ISRs.

Finally, the Rabbit to PC-104 software port presents the opportunity to restructure

the IRMA software to reduce (or hide) complexity and enhance readability. It may be

advantageous to implement IRMA's modules and libraries as objects, implying that the

IRMA software be rewritten in C + + . One of the big problems identified in the current MC

source code is the proliferation of globals, which is indicative of poor, or at least ad hoc

design. Global variables and structures were used in the MC software as a means to pass

data between tasks and hold system state. Under C or C + + , a wide range of inter-process

communication (IPC) mechanisms are available to the developer. Rethinking the design of

the MC software may be a worthwhile exercise. Due to the limited time window available

to deliver the Antarctic and Thirty Meter Telescope (TMT) IRMA units, the MC software

is being rewritten in C in order to simplify and speed up the porting process.

5.3 Final Thoughts

The IRMA control system is by far the most complex instrument control system

designed by the Astronomical Instrumentation group. Its code base adds up to roughly

25,000 lines spread across four autonomous software executables and three platforms: the

PC-based command processor, the RCM2100-based master controller, the RCM2010-based

Alt-Az controller, and the PC-based IRMA GUI front end written by Amy Smith. Use of

a custom scripting language allows precise and flexible control of the IRMA instrument.

The modules responsible for hardware control, namely the MC and AAC, are embedded

5.3. FINAL THOUGHTS 142

systems based on low-power, robust 8-bit microcontrollers containing no moving parts,

making them well suited for use in hostile environments. Additionally, IRMA's hardware

control modules deliver hard real-time performance by means a preemptive multitasking

kernel. Future instrumentation designed by the University of Lethbridge's Astronomical

Instrumentation Group will likely be influenced by IRMA for years to come.

143

Appendix A

IRMAscript

A. l Overview

When the operating specifications of IRMA were being established, it was decided

early on that IRMA should be controlled not by a set of pre-defined operation sequences,

as had been the case with the earlier incarnations of IRMA, but rather with a command

language in order to provide the operator with the greatest amount of operational flexibility.

This approach to device control is not uncommon with advanced systems. The Unidex[19]

family of motion control units used with the AIG's Mach-Zehnder FTS (MZFTS) and

Herschel/SPIRE Test FTS provide proprietary scripting languages to control their multi-

axis motion controller.

Although time consuming at first, using scripts to control instrumentation allows

the operator to define complex sequences in a file that can be executed at will. IRMA takes

this approach. There is a GUI interface to do simple interactive tasks, and an interpreter to

drive complex command sequences. Ultimately, everything in IRMA is based around scripts

A.2. LANGUAGE STRUCTURE AND FEATURES 144

and its native command language, IRMAscript. Each button and menu choice is mapped

to a specific script, or generates a script dynamically, in order to define the behavior of

the requested button click or menu selection. The IRMAscript interpreter, i rmaExec.pl ,

is the primary interface between the operator and the IRMA instrument. All commands

that IRMA responds to originate from this program.

A.2 Language Structure and Features

IRMAscript is an interpreted language. That is, the language syntax is not con­

verted into a primitive set of instruction codes before execution. Rather, each statement

is extracted from its source file and tested for syntactic correctness and executed as they

appear in the script. The process of interpretation results in programs executing slower

than programs originally compiled into native machine code, due to the overhead of re­

peatedly converting human-readable computer language statements into machine-readable

instructions (often re-interpreting the same statement over and over in the case of looped

instructions). The IRMAScript language interpreter does not perform the actions defined

in the IRMAscript statement, so speed of execution is not important - ease and flexibility

of use, however, is.

An IRMAscript statement is structured simply. For commands that directly con­

trol IRMA, a command statement consists of a command type, followed by two modifiers,

and zero to fifteen arguments. The command type and its two modifiers define a unique

command. The arguments are provided in order to pass information pertinent to the com­

mand to IRMA. Most command statements, with the exception of the Alt-Az moveto/slewto

http://irmaExec.pl

A.2. LANGUAGE STRUCTURE AND FEATURES 145

commands, have zero or one argument. In addition to IRMA commands, IRMAscript pro­

vides variables, data assignment, arithmetic, system commands (such as reading system

time), looping mechanisms, lists, and flow control, and console I /O. They do not follow the

same command structure described above.

Whitespace is used to delimit, or separate, each of the elements (command type,

modifiers and arguments) that make up an IRMAscript statement. Whitespace can consist

of spaces or tabs. Each statement must terminate with a carriage return. Only one state­

ment can appear on one line, which precludes IRMAscript from being a free form language,

such as C or C + + . IRMAscript is case-less. It does not matter whether IRMAscript state­

ments are written in upper or lower case letters. Within the interpreter, all statements are

converted to uppercase.

Variables in IRMAscript are typeless since Perl, the language that IRMAscript is

implemented in, is itself typeless. Type is determined by the context of the statement. For

example, one would not want to perform arithmetic operations on textual data, such as a

t ime/date string. Doing so will generate a runtime error and cause the currently running

IRMAscript to break execution. Variables can have any name, including reserved words,

but must be prefixed by a dollar sign '$'.

Numbers in IRMAscript, like in Perl, are real numbers. That is, they can be

integer or floating point numbers, and be negative or positive. Literal numeric vales can

be expressed as real numbers, just like in other languages. The only exception is that

IRMAscript has no provision for scientific notation, nor can numbers be represented in

different bases, such as hexadecimal or octal. Only base ten numbers are supported.

A.3. IRMASCRIPT LANGUAGE SUMMARY 146

The range of numbers expressible in IRMAscript is based on the range of numbers

expressible in Perl. In Perl, all numbers are represented internally as double precision

floating point values. Thus, the range of numbers in IRMAscript is equal to the range of

numbers expressible in double precision floating point numbers. The effective range of IEEE

double precision floating point numbers is ± 1 0 3 0 8 - 2 5 .

Comments in IRMAscript are specified by placing a leading pound sign at the

beginning of the comment statement. For a block of text that needs to be commented, a

pound sign must precede every line. There is no mechanism for multi-line comments such

as /* ... */, as found in C, C + + or Java.

A.3 IRMAscript Language Summary

The following table lists all IRMA system commands addressable within the IR­

MAscript language. Non-system commands, such as flow control commands, are not listed.

C o m m a n d Modif ier 1 Modif ier 2 A r g u m e n t s

STARTPROG SOCKET OPEN

ENDPROG SOCKET CLOSE

CRYO STATE ON

CRYO STATE OFF

CRYO SET MANUAL.MODE

CRYO SET A U T O C O D E

A.3. IRMASCRIPT LANGUAGE SUMMARY 147

CRYO SET STOPPED_MODE

CRYO SET SET_POINT tempKelvin

CRYO READ C O M P ^ M P

CRYO READ SET-POINT

CRYO READ MODE

CRYO READ CURR.TEMP

CRYO READ OSC-FREQ

CRYO SERIAL OPEN

CRYO SERIAL CLOSE

GPS READ DATE-TIME

GPS READ EPOCH-TIME

GPS READ LAT.LON

GPS SERIAL OPEN

GPS SERIAL CLOSE

ADC INIT RESYNCH

ADC INIT RESET

ADC INIT RW.TEST

ADC SET CSR chan,gain,wordRate,polarity

ADC SET GAIN channel, gainValue

ADC SET OFFSET channel, offset Value

ADC SAMPLE N O J N T channel

A.3. IRMASCRIPT LANGUAGE SUMMARY 148

ADC SAMPLE O N J N T channel

ADC READ CSR channel

ADC READ GAIN channel

ADC READ OFFSET channel

ADC READ CONFIG.REGISTER

SHUTTER STATE OPEN

SHUTTER STATE CLOSE

SHUTTER READ LIMIT

SHUTTER READ OVERCURRENT

SHUTTER SET OC-RESET

CHOP-MOTOR STATE ON

CHOP-MOTOR STATE OFF

CHOP-MOTOR STATE MEASURE-RPM.ON

CHOP-MOTOR STATE MEASURE-RPM.OFF

CHOP-MOTOR READ STATE

CHOP-MOTOR READ RPM

BB STATE ON

BB STATE OFF

BB READ STATE

ALTAZ MOVE-TO DMS elD,elM,elS,azD,azM,azS,spd

ALTAZ STATE POSLOG poslog_enable/poslog.disable

A.3. IRMASCRIPT LANGUAGE SUMMARY 149

ALTAZ STATE HALT

ALTAZ STATE REBOOT

ALTAZ INIT PING

ALTAZ INIT ALTAZ

ALTAZ INIT AXES ELEVATION /AZIMUTH

ALTAZ INIT SERVO

ALTAZ INIT MOTOR

ALTAZ SET ALT.OFFSET offset

ALTAZ SET AZ.OFFSET offset

ALTAZ READ POSITION

ALTAZ READ TASK-STATUS

ALTAZ READ ALT.OFFSET

ALTAZ READ AZ.OFFSET

ALTAZ READ POSLOG-RANGE

ALTAZ READ POSLOG-DATA

ALTAZ READ POSLOGJSTATE

ALTAZ SERIAL OPEN

ALTAZ SERIAL CLOSE

ALTAZ SLEW_TO DMS elD,elM,elS,azD,azM,azS,spd

RTC SET DATE-TIME

RTC READ DATE-TIME

A.3. IRMASCRIPT LANGUAGE SUMMARY 150

RTC SET ARBITRARY-TIME YYYY-MM-DDThh:mm:ss

SCAN SIGNAL O N J N T

SCAN SIGNAL STOP

SCAN READ STATE

IRMA STATE OFF

IRMA READ UPTIME

SUN-SENSOR READ STATE

SUN-SENSOR READ SHUTTERJ3TATE

SUN-SENSOR STATE SHUTTER-OPEN

SUN-SENSOR STATE SHUTTER-CLOSE

NOTCH-FILTER STATE 60HZJN

NOTCH-FILTER STATE 60HZ.OUT

NOTCH-FILTER STATE 120HZJN

NOTCH-FILTER STATE 120HZ.OUT

NOTCH-FILTER READ 60HZ

NOTCH-FILTER READ 120HZ

BANDPASS-FILTER STATE IN

BANDPASS-FILTER STATE OUT

BANDPASS-FILTER READ STATE

A.4. IRMASCRIPT LANGUAGE DEFINITION 151

A.4 IRMAscript Language Definition

A . 4 . 1 List M a n i p u l a t i o n

INITIALIZATION

Construct (initialize) a list with one or more elements.

Example usage

$angles = l i s t 90 130.65 142.32 153.88 157.28 159.88 159.93
$fullname = l i s t $firstName $middleName SlastName

L E N G T H

Return the length of a list.

Example usage

$lstLen = l i s t l e n g t h $someList

I N D E X

Reference an element of a list, where the index ranges from 0 (the first element) to n.

Example usage

$x = substr ing $sourceString $index
$x = substr ing SsourceString 3

S U B S T R I N G

Retrieve a substring from a colon delimited data record. In IRMA commands that return

multiple data items, such as ALTAZ INIT PING, data is returned as a colon delimited string.

This command splits the data string into its constituent data items and returns the desired

datum, based on an index value.

Example usage

$x = substr ing $sourceString $index
$x = substr ing $sourceString 3

A.4. IRMASCRIPT LANGUAGE DEFINITION 152

A . 4 . 2 U t i l i t y F u n c t i o n s

D E G 2 D M S

Convert an Alt-Az coordinate expressed as floating point degrees into degree-minute-second

(DMS) format. The Degrees, minutes and seconds must be variables because the deg2dms

function places values in these variables. They are not input variables.

Example usage

deg2dms $angle $d $m $s
deg2dms 63.52 $d $m $s

S T A R T P R O G S O C K E T O P E N / E N D P R O G S O C K E T CLOSE

Open and close a T C P / I P stream socket connection to the IRMA master controller. If a

script contains instructions to execute on the IRMA master controller, a network socket

must be established to the IRMA MC, as low-level IRMA system commands and data flow

over this connection. If a script does not contain IRMA hardware control commands, it is

not necessary to wrap a script with these statements.

Example usage

s t a r t p r o g socket open
gps s e r i a l open
$currTime = r t c read da te_t ime
gps s e r i a l c l o s e
endprog socket c l o s e

L O C A L H O S T

This command handles system functions performed by the host computer's operating sys­

tem.

localhost log open
Open the log file. A log file name must be created using the new log f i lename
command before logging can commence.

A.4. IRMASCRIPT LANGUAGE DEFINITION 153

localhost log close
Close the log file.

Example usage

The example shown for the new command include examples of the local log
commands.

N E W

The new family of functions creates new data items of various types, such as filenames and

time stamps.

new log filename
Automatically generate and return a filename, and create a directory path for
the new file. Filenames generated by this function follow the ISO time format:

Y Y Y Y - M M - D D T H H m m S S . d a t

and end with the . dat extension. File paths follow the structure:

/ I R M A d a t a / I R M A _ < b o x N u m b e r > / Y Y Y Y / Y Y Y Y - M M - D D

where /IRMAdata/ is a link (or filesystem shortcut) to some directory where
IRMA data is stored, < b o x N u m b e r > is the IRMA unit's identifier number,
Y Y Y Y is the year in which the data/log file was created, and Y Y Y Y - M M -
D D is a year-month-day time stamp. This directory format organizes data files
chronologically according to the particular unit.

new iso t imes tamp
Create a time stamp string conforming to the ISO date-time format:

Y Y Y Y - M M - D D T H H : m m : S S . s s s

Where Y Y Y Y refers to year, M M to month (1-12), D D to day (1-31), H H to
hour (0-23), m m to minute (0-59), SS to second (0-59), and sss to milliseconds
(0-999). The symbols -, T, and : are delimitation symbols.

Example usage

$fi lename = new log f i lename
l o c a l h o s t log open $filename
r e p e a t 500

$timestamp = new i s o timestamp

A.4. IRMASCRIPT LANGUAGE DEFINITION 154

$ch4 = ADC SAMPLE NO.INT 4
print "1,\s,4,\s,$ch4,\s,$timestamp,\s,0,\s,0,\n"
wait 60

endloop
localhost log close

A . 4 . 3 Var iab le M a n i p u l a t i o n

A S S I G N

Assign a value to a variable. The source of the assignment can be literal or another variable.

Literal values can be numeric or string. Strings can be defined with or without enclosing

double quotes. When quotes are used, it is permitted to include whitespace in the string.

Example usage

assign $temp 4
assign SprevPos $currPos
assgin $date Jan-15-2005

assign $dateString "January 15, 2005 - 8:15 PM"

I N C R / D E C R

Increment or decrement a value contained in a variable. This operation does not work with

literals, as literals cannot have values assigned to them.
Example usage

incr $cntr
deer ScountDown

E V A L

Perform arithmetic operations and assign results to a variable. This command precedes

a simple arithmetic statement involving two operands and one operator. The operations

available are addition, subtraction, multiplication, division, modular division, and expo-

A.4. IRMASCRIPT LANGUAGE DEFINITION 155

nentiation. The operands can be literals or variables, but the result must be assigned to a

variable.

Example usage

e v a l $x = $y + 3
e v a l $ d i f f = $prev - $curr
e v a l $we ight = $mass * 9.81
e v a l $avg = $sum / $n
e v a l $z = $count '/, 256
e v a l $ s q r t = 9 " 0 . 5

A . 4 . 4 D e l a y s

W A I T

Delay execution of the script by N seconds. N can be a real value, ranging from 0 to some

arbitrary value.

Example usage

w a i t $pauseValue
w a i t 30

A . 4 . 5 F l o w C o n t r o l

D O .. W H I L E

While loops repeatedly execute a block of statements while some arbitrary condition is

logically evaluated to be true. With d o .. while statements, the condition is tested at the

end of the block, as opposed to the beginning of the block, which occurs in while loops.

A d o .. while loop in IRMAscript opens with a d o statement, and closes with a while

condition statement. Any number of IRMAscript statements, including other d o .. while

A.4. IRMASCRIPT LANGUAGE DEFINITION 156

loops, can be included in this block. There is no limit to the number of do .. while loops

that can be nested within one another.

The condition can take two forms: a simple comparison involving two operands, or

a compound conditional statement that logically ands or ors two comparisons. For example,

a simple conditional statement takes the form $x < $y, while a compound conditional is

structured $x < $y or $a = $b.

Four kinds of comparison are available: less than <, greater than >, equality = and

inequality ! =. Logical anding and orring can be specified in a compound conditional using

the symbols and and or. Do not use the symbols && or || to perform logical evaluations.

E x a m p l e usage

s imple c o n d i t i o n a l express ion
do

$x = cryo read curr_temp
p r i n t " $ x , \ n "
wai t 1

whi le $x > 77

compound c o n d i t i o n a l express ion
a s s i g n $opened 1
a s s i g n Sclosed 2
do

wai t 2
p r i n t " shu t t e r_moving , \n"
$x = s h u t t e r read l i m i t

whi le $x != $opened and $x != $closed

R E P E A T .. E N D L O O P

Repeat execution of a block of statements. This structure is equivalent to a for loop that

increments from 0 to n.

E x a m p l e usage

A.4. IRMASCRIPT LANGUAGE DEFINITION 157

a s s i g n $cnt 0
r e p e a t 5

p r i n t " $ c n t , W
endloop

G O T O

The most basic flow control mechanism is the goto statement. When the IRMAscript inter­

preter executes go to label statement, program control jumps to the IRMAscript statement

immediately following the label labelName statement. Using gotos as a form of program

flow control can lead to unstructured, unmanageable code. However, in the context of IR­

MAscript, whose scripts tend to be quite short (less than a printed page long), the issue

of structured goto-less programming is not important. Given the relatively primitive flow

control mechanisms available in IRMAscript, goto allows the programmer to develop so­

phisticated flow control within an IRMA script. With labels, the use of a colon after the

label name is optional.

E x a m p l e usage

a s s i g n $x 4
i f $x < 12 and $x > 0

i f $x != 3
i f $x < 5

goto DONE
endif
goto FAILURE

endif
endif

l a b e l DONE:
p r i n t " s u c c e s s ! , \ n "
goto EXIT

l a b e l FAILURE:
p r i n t " f a i l u r e !

A.4. IRMASCRIPT LANGUAGE DEFINITION 158

l a b e l EXIT:

A . 4 . 6 I n p u t / O u t p u t C o m m a n d s

P R I N T

Feedback from an executing IRMAscript can be directed to the console (or shell) by means

of the p r i n t command. The argument to the print command can be a literal or a variable.

In its most simple form, p r i n t can accept bare literals, either text or numeric, which is

inconsequential to IRMAscript, as it is a typeless language. If a string literal enclosed in

double quotes is passed as the parameter, the user can format the output, mixing variables

and literals together. The only stipulation is that each item in the string, whether literals

or variables, must be separated by commas, and there must not be any whitespace between

the quotes. The reason for the prohibition on whitespace is that the IRMAscript interpreter

divides statements into their constituent parts (tokens) along whitespace divisions. Two

special literals can be used within printf strings: The \ s symbol defines a single whitespace,

while the \ n symbol defines a linefeed, and is often called a newline character.

Output can be directed to an open log file by including the log modifier imme­

diately after the p r i n t command. The methods for defining the string format is identical

to the standard p r i n t command. The l o c a l h o s t command has methods to open and

close logfiles. Furthermore, the a s s ign command can be used to define strings that can be

assembled using the p r i n t command.

E x a m p l e usage

p r i n t 345
p r i n t Word

A.4. IRMASCRIPT LANGUAGE DEFINITION 159

p r i n t " G r e e t i n g s ! , \ n "
p r i n t $timestamp
p r i n t " T i m e - D a t e : , \ s) $ h o u r) \ s , $ m i n u t e , \ s , $ s e c o n d , \ n "
p r i n t log " $ c h A s , $ s a m p l e A s , $ t i m e s t a m p A s , $ a z , \ s , $ a l t , \ n "

A . 4 . 7 S y s t e m C o m m a n d s

The following group of commands are responsible for controlling and/or reading

data from IRMA's hardware components, which includes the AAC.

N O T C H - F I L T E R

The notch-f i l te r s t a t e [filter] commands enable or disable the 60 Hz notch filter. The

filter is enabled with the 60hz_in parameter, and disabled with the 60hz_out parameter.

Reading 60 Hz notch filter state can be done with the notch-f i l ter r e a d 60hz command.

A return value of 0 (zero) indicates that the filter is not enabled, while a return value of 1

indicates that the filter is enabled.

E x a m p l e usage

n o t c h _ f i l t e r s t a t e 60hz_in
n o t c h _ f i l t e r s t a t e 60hz_out
$x = n o t c h _ f i l t e r read 60hz

B A N D P A S S - F I L T E R

The bandpass_f i l te r s t a t e [in /ou t] is used to enable or disable the 455 Hz bandpass filter,

whose job is to filter out all frequencies above and below the 455 Hz chopper wheel frequency.

The filter is enabled with the in parameter, and disabled with the out parameter. The state

of the bandpass filter can be read with the bandpass- f i l t e r r e a d s t a t e command. A return

value of 0 (zero) indicates that the filter is not enabled, while a return value of 1 indicates

A.4. IRMASCRIPT LANGUAGE DEFINITION 160

that the filter is enabled.

Example usage

bandpass.filter state in
bandpass_filter state out
$x = bandpass.filter read state

S H U T T E R

The command shutter state [open/close] signals the shutter control circuitry to respec­

tively open or close the shutter. Once this command is issued, it cannot be aborted. The

shutter will open or close until it has reached its destination position. Shutter condition

during actuation can be read with the shutter read limit command. The following integer

codes are returned: 3 - shutter is in the process of moving during shutter movement, 2 -

shutter is closed (covering the optical aperture), and 1 - shutter is in the open position

(optical aperture is exposed). Shutter jams can be detected by looking for an increase in

the amount of current going to the shutter motor. The shutter overcurrent bit is set when

this condition occurs. Calling the shutter read overcurrent statement returns the value

of the overcurrent bit: 1 when the overcurrent condition exists, and 0 when it does not.

When the overcurrent condition bit has been set, it must be reset to zero by calling the

shutter set oc_reset command.

Example usage

assign $moving 3
assign $sClose 1
assign SsOpen 2

STARTPROG SOCKET OPEN

##############################
set 40 second timeout period
##############################

A.4. IRMASCRIPT LANGUAGE DEFINITION 161

ScurrTime = rtc read epoch_time
eval $timeout = $currTime + 40

SHUTTER STATE Open
do

$x = shutter read limit
print $x
ScurrTime = rtc read epoch_time
print "CURR.TIME:,\s,$currTime,\n"

If shutter not opened within 40 seconds, assume that it
is either disconnected or jammed. Reverse shutter direction
and exit.. .

if $currTime > $timeout

shutter state close
goto DONE

endif

wait 2
while $x != $s0pen

label DONE
ENDPROG SOCKET CLOSE

B B

The b b state [setting] command enables or disables the blackbody shutter heater. The

heater is turned on by calling this command with the argument on, while off turns the

blackbody heater off. The state of the heater can be read by calling the command b b read

state. The return value 1 indicates that the blackbody heater is on, while a return value

of 0 (zero) indicates that it is off.

Example usage

bb state on
$x = bb read state
if $x = 1

print "bb.heater.is.on,\n"

A.4. IRMASCRIPT LANGUAGE DEFINITION 162

endif

bb state off
$x = bb read state
if $x = 0

print "bb.heater.is.off,\n"
endif

C H O P - M O T O R

The 450 Hz chop wheel is controlled and monitored by means of the chop_motor family

of commands. The chop wheel is turned on or off by the chop_motor state setting

command, where setting can be set to on or off. ^hop.motor read state reads the chop

wheel status, returning the value 1 if the chop wheel motor is on, and 0 if it is off.

To read the chop wheel's angular speed in revolutions per minute (RPM), IRMA

must first be set in angular speed measurement mode. In this mode, IRMA counts the

number of interrupt pulses from the chop wheel over a selected period of time. Conse­

quently, one cannot simultaneously perform a data collection scan and measure chop wheel

angular speed. To perform a measurement, one turns the chop wheel on, then issues the

command chop_motor s tate measure_rpm.on to put IRMA into angular speed mea­

surement mode. The next step is to wait for a period of time, using the wait seconds

command. The longer the time spent in angular speed measurement mode, the more ac­

curate the average angular speed value will be. Wait periods ranging between 30 and 60

seconds provide adequate results. After the wait period has passed, one takes IRMA out of

measurement mode with the command chop_motor state measure jrpm_off, then reads

the resulting value with the command chop .motor read rpm.

Example usage

A.4. IRMASCRIPT LANGUAGE DEFINITION 163

chop_motor state on
wait 15
chop_motor state measure_rpm_on
wait 45
chop_motor state measure_rpm_off
wait 2
$rpm = chop_motor read state
print "Motor_state:,$rpm,\n"
wait 3
$rpm = chop_motor read rpm
print "Motor.RPM:,$rpm,\n"
chop_motor state off

R T C

The IRMA MC's Rabbit 2100 microcontroller module contains a real-time clock (RTC)

chip, from which the Rabbit obtains date-time information. The RTC chip uses 1980 epoch

time, whereby time is calculated as the number of elapsed seconds since midnight, January

1, 1980. This is identical to how the Microsoft MS-DOS operating system calculates time,

unlike UNIX or Linux, which uses the 1970 epoch as the basis for calculating time.

Current time on the MC's RTC is read with the command rtc read date_time.

Returned is a colon-delimited string containing the current date time: year : month :

day : hour : minute : second. As an example, February 12, 2005, at 3:37:49 PM would

be returned as 2005:2:12:15:37:49. Months range from 1 to 12, days range from 1 to 31,

hours range from 0 to 23, and minutes and seconds range from 0 to 59.

If the IRMA MC RTC is not set, date-time will default to the epoch time of 0,

or January 1, 1980, 00:00:00. Date-time can be set in two ways: either by providing a

user-defined date-time string, or by using the global positioning system (GPS) receiver's

date-time, the former method being the most accurate.

Current time in 1980 epoch format can be read using the rtc read epoch-t ime

A.4. IRMASCRIPT LANGUAGE DEFINITION 164

command. This command is convenient for timing events within an IRMA script, as it

returns a 32-bit unsigned integer number representing the current time as the number of

elapsed seconds since midnight of January 1, 1980.

User-defined date-time can be set using the the command rtc set arbitrary _time

ISOtimeString. An ISO formatted date time string has the following format: YYYY-

MM-DDThh:mm:ss, where Y Y Y Y is a four-digit year, M M is month (1 - 12), D D is

day-of-month (1-31), hh is hour (24-hour format), m m is minute, and ss is second. The

punctuation contained in this format (the T and dashes -) must be left as shown.

The second method of setting date-time, using the GPS receiver, requires that

the serial channel to the GPS board be opened. Not doing so will result in the call to set

the RTC to timeout and fail. Once the serial channel has been opened, the command rtc

set date_time will read the current date time from the GPS receiver, convert it to 1980

epoch format, and write it to the RTC. The GPS emits a time synchronization signal every

second. Date-time is written to the RTC as soon as this time synch signal goes high. One

concludes the RTC setting session by closing the serial channel to the GPS.

Example usage

s e t t i n g t h e RTC us ing GPS da t e - t ime
gps s e r i a l open
r t c s e t da te_ t ime
$x = r t c read da te_ t ime
p r i n t "$X,YQ"
$y • r t c r ead epoch_time
p r i n t " $ y , \ n "
gps s e r i a l c l o s e

s e t t i n g t h e RTC with a r b i t r a r y t ime s t r i n g
r t c s e t a r b i t r a r y _ t i m e 2005-01-20T15:37:45
wai t 3
$x = r t c read da te_ t ime

A.4. IRMASCRIPT LANGUAGE DEFINITION 165

print "$x,\n"

G P S

The GPS family of commands involves the reading of time-date and location information

from the IRMA MC's GPS receiver board. The GPS is interfaced to the MC by means

of a 4800 bps serial channel. Consequently, all commands to the GPS must be preceded

by issuing the command to open the GPS serial channel: gps serial open. After the

transaction with the GPS has been completed, the GPS serial channel should be closed

using gps serial close.

Date time is read from the GPS receiver using the command gps read date_time.

The data returned is contained in a colon-delimited string: year : month : day : hour

: minute : second. Epoch time, returned in 1980 epoch format, is read by calling gps

read epoch_time. Latitude-longitude data is read with the command gps read lat Jon.

Data is returned as a colon-delimited string:

Example usage

gps serial open

read date-time
$dateTime = gps read date.time
$year = substring $dateTime 0
$mon = substring $dateTime 1
$day = substring SdateTime 2
$hour = substring SdateTime 3
$min = substring $dateTime 4
$sec = substring $dateTime 5

read epoch time
$epochTime = gps read epoch_time

read IRMA's latitude & longitude
SlatLon = gps read lat_lon

A.4. IRMASCRIPT LANGUAGE DEFINITION 166

gps s e r i a l c l o s e

I R M A

This family of commands is used to perform system-level activities on the IRMA system

as a whole. The statement irma state off forces the IRMA MC software to reboot. The

statement irma read upt ime returns the number of elapsed seconds since the IRMA MC

was powered up or last rebooted. The value returned by this command is represented in

floaing-point seconds.

Example usage

read IRMA MC uptime
$uptime = irma read uptime
p r i n t "UPTIME ,$uptime,\n"

Reboot MC
irma s t a t e off

Wait f o r reboot t o f i n i s h
wai t 10

Read uptime again
Suptime = irma read uptime
p r i n t "UPTIME, $uptime, \n"

S U N . S E N S O R

The solenoid-controlled shutter protecting the filter and IR detector can be controlled in

software using the sun_sensor commands. The state of the sun shutter is read using

sun_sensor read shutter-state. A return value of 0 indicates that the shutter is closed

(covering the filter and detector), while a value of 1 indicates the shutter is open. A photo

cell coupled with discrete logic automatically closes the sun shutter when IRMA's line of

sight comes within ± 15 degrees of the sun (or any bright light source), is read using the

A.4. IRMASCRIPT LANGUAGE DEFINITION 167

command sun_sensor read state. A return value of 1 indicates that the sun sensor is

detecting a bright light source in its line of sight. A value of zero indicates the opposite.

Example usage

sun_sensor state shutter_open

assign $shutterClosed "Sun shutter is closed"
assign $shutterOpen "Sun shutter is open"
assign $sunInView "Sun is within 10 degrees of view"
assign $sunNotInView "Sun is not in view"

$x = sun_sensor read shutter_state
if $x = 0

print "$shutterClosed,\n"
endif
if $x = 1

print "$shutterOpen,\n"
endif

$x = sun_sensor read state
if $x = 0

print "$sunNotInView,\n"
endif
if $x = 1

print "$sunInView,\n"
endif

sun_sensor state shutter_close

CRYO

The Stirling engine (cryo cooler) that cools the IR detector is controlled by the cryo family

of commands. Before attempting to send commands to the cyro cooler, the serial com­

munication channel to the cooler must be opened with the command cryo serial open.

Likewise, the channel is closed with the command cryo serial close,

cryo read comp_amp
Returns the compressor amplitude value as a floating point value.

A.4. IRMASCRIPT LANGUAGE DEFINITION 168

cryo read set .point
Returns the cryo cooler's set point temperature in degrees Kelvin. The return
value is a floating point number.

cryo read mode
Returns an integer code representing the operational mode of the cryo cooler
controller.

cryo read curr_temp
Returns the current temperature in degrees Kelvin of the cryo cooler's cold
finger. The return value is a floating point number.

cryo read osc_freq
Returns the cryo cooler's oscillation frequency, which is the frequency of the
piston inside the cold finger. The oscillation frequency is expressed in cycles per
second (Hz).

cryo set manual_mode
This command sets the cryo cooler into manual mode, which powers the cryo
cooler down.

cryo set set .point temperature
This command sets the desired temperature of the cryo cooler's cold finger.
This command will successfully execute only when the cryo cooler is in man­
ual j n o d e .

cryo set auto_mode
The cryo cooler begins to cool when this command is received. Cooling is a
gradual process, taking roughly 30 minutes according to the cryo cooler con­
troller's internal configuration settings. When target set point temperature is
reached, the controller will maintain this temperature as long as it is in auto
mode.

Example usage

cryo_cooler_demo.irma
#######################

s t a r t p r o g socket open
cryo s e r i a l open

de f ine t empera tu re s e t po in t
a s s i g n $ s e t p o i n t 70
cryo s e t s e t _ p o i n t $ s e t p o i n t
$x = cryo read s e t _ p o i n t
p r i n t "Set_poin t :$x , \n"

A.4. IRMASCRIPT LANGUAGE DEFINITION 169

start cooling cycle
cryo set auto_mode
$x = cryo read mode
print "mode:,$x,\n"

do
$currTemp = cryo read curr_temp
print "current_temperature:,$currTemp,\u"
wait 10

while $currTemp > $setpoint

print "cryo_cooler_at target_temperature,\n"

keep cryo at target temperature for 10 hrs
$endTime = rtc read epoch_time
assign StenHours 36000
eval $endTime = $endTime + $tenHours
do

wait 60
$compAmp = cryo read comp_amp
$currTemp = cryo read curr_temp
$oscFreq - cryo read osc_freq
ScurrTime = rtc read epoch_time

while $currTime < $endTime

power down cryo cooler
cooler set manual_mode
$x = cooler read mode
print "mode:,$x,\n"

cryo serial close
endprog socket close

A D C

Control of the Cirrus CS5534 Delta-Sigma ADC is handled by the adc family of commands.

Before A/D conversions can be performed, the ADC must be first initialized using the

resynch command, adc init resynch, then reset using the reset command, adc init

resynch. The last step involves configuring each of the ADC's four channels with the

A.4. IRMASCRIPT LANGUAGE DEFINITION 170

command: adc set csr arguments. The following list describes each of the CS5534

IRMAscript functions in depth,

adc init resynch
Calling this command puts the ADC's serial port into a known state. When
using the ADC for the first time, it is recommended that this command be called
in order to ensure that the ADC will successfully accept serial commands. At
low level, this command serially writes 15 bytes of the value OxFF, followed by
1 single byte valued OxFE.

adc init reset
This command resets the ADC and sets its fundamental parameters. At low
level, the reset command sets the RS bit in the CS5534's configuration register,
which has the effect of forcing a system reset.

adc set offset channel value
Set offset command allows the user to configure each of the CS5534's four input
channels' offset registers. Channels 1 through 4 can be specified, while the value
field can accept offset values ranging between —2 2 3 and 2 2 4 . The offset value
represents the fraction of the input span that must be applied to the output
value of the ADC to shift it up or down. Offset values must be defined in ADC
units. For example, an offset of 255 refers to a positive offset of 255 /2 2 4 of the
A D C ' s input span. ADC channels configured for taking unipolar samples have
an input span of 2 2 4 , while channels configured for bipolar mode have an input
span of 2 2 3 [8]. The CS5534's default offset setting is 0.

adc set gain channel value
Similar to the set offset command, set gain allows the user to manually set a
gain value, ranging from 64 to 2 - 2 4 , to channels 1 through 4. When a channel's
gain register is set, the offset is subtracted from the A/D sample value, after
which this result is multiplied with the the gain value. IRMA currently does not
use custom gain settings. Instead, gain and offset are applied to the the data in
post processing. The CS5534's default gain value is 1.

adc read gain channel
adc read offset channel
These two commands read the current gain and offset values from the CS5534
ADC.

adc set csr channel gain word-rate polarity
Each of the CS5534's four input channels can be configured in terms of signal
gain, accuracy (word rate) and input span (polarity). Channel settings are
stored in the CS5534's four channel setup registers (CSR). Gain as defined in the
CSR is separate from the gain contained in the channel gain registers described

A.4. IRMASCRIPT LANGUAGE DEFINITION 171

earlier. Gain values can be defined with the IRMAscript constants or their
respective numeric values, as shown in table A.2.

Gain Value
CS5534.GAIN.1 1
CS5534.GAIN.2 2
CS5534.GAIN_4 4
CS5534.GAIN.8 8
CS5534.GAIN.16 16
CS5534.GAIN.32 32
CS5534.GAIN.64 64

Table A.2: CS5534 ADC gain settings in IRMAscript.

Resolution refers to the number of noise free bits contained in the A/D sample
value. The longer the ADC integrates the analog signal, the greater the accu­
racy (or resolution) of the digitized sample. Table A.3 lists the different sample
resolutions in terms of noise-free resolution bits, integration time (in millisec­
onds), and word-rate. Input span of digitization can be either unipolar, where
A/D values contain values ranging from 0 to 2 2 4 - 1, or bipolar, which allow
signed values ranging from —2 2 3 to 2 2 3 - 1 . Table A.4 lists constants and their
respective numeric values can be applied to the polarity field.

Resolut ion Bits Integration ms Word rate
CS5534JIES.23 23 CS5534JNTEG.538 538 7
CS5534_RES_22_SLOW 22 CS5534JNTEGJ269 269 15
CS5534JIES.22.FAST 22 CS5534JNTEG.136 136 30
CS5534JIES_21_SL0W 21 CS5534JNTEG.69 69 60
CS5534.RES-21-FAST 21 CS5534JNTEG.35 35 120
CS5534JIES.18 18 CS5534JNTEG.19 18.2 240
CS5534JIES.17.SLOW 17 CS5534JNTEG.10 9.9 480
CS5534JIES.17.FAST 17 CS5534JNTEG.6 5.7 960
CS5534JIES.16 16 CS5534JNTEG.4 3.6 1920
CS5534JIES-13 13 CS5534JNTEG.2 1.5 3840

Table A.3: CS5534 ADC sample resolution settings in IRMAscript.

A.4. IRMASCRIPT LANGUAGE DEFINITION 172

Polarity Value
CS5534JJNIPOLAR I—

•

CS5534.BIPOLAR 2

Table A.4: CS5534 ADC polarity settings in IRMAscript.

adc read csr channel
The contents of each of the CSR channels can be read using this command. A
colon-delimited string having the following format is returned:

channel : gain : word-rate : polarity

adc init rw. tes t
Primarily used for troubleshooting and verification, the read-write test command
tests the ADC to ensure that the IRMA software can communicate with it. An
arbitrary value is written to one of the CS5534's offset registers, then that value
is read back from the offset register. If the two values are identical, the test is
deemed a success, and a value of 1 is returned. A failed read-write test returns
a 0 (zero). This command should be followed with a ADC system reset in order
to clear the dummy value in the offset register.

adc sample sample-type channel
This command initiates an A/D sample on a given ADC channel. The re­
turned value is given in ADC units, thus it must be interpreted according to
the channel's polarity setting: bipolar or unipolar. Two types of samples can be
taken: those synchronized to the 450 Hz chop wheel, specified with the on Jnt
parameter, or samples not synchronized to the chop wheel, specified with the
no_int parameter. When the on Jnt parameter is specified, the A/D sample
commences when the chop wheel signal (mapped through the Rabbit interrupt
channel) reports a logic level of 1. The channel parameter is mapped to 11
separate channels, 8 of which are multiplexed into ADC channel 4.

Example usage

###############
adc_demo.irma
###############
startprog socket open

A.4. IRMASCRIPT LANGUAGE DEFINITION 173

C h a n n e l Desc r ip t ion
1 IR Signal
2 Humidity
3 Atmospheric Pressure
4 Tempi: Blackbody Shutter
5 Temp2: Blackbody Shutter
6 Temp3: Mirror Base
7 Temp4: ADC
8 Temp5: Base Compartment
9 Temp6: Pump
10 Temp7: Shutter Motor
11 Temp8: Pre-amp

Table A.5: ADC channel usage on the IRMA MC.

initialize ADC
adc init resynch
adc init reset

perform read-write test
$x = adc init rw.test

if $x == 0
goto ADCFAILURE

endif

configure channel setup registers
adc init reset
adc set csr i 1 CS5534_INTEG_538 CS5534JJNIP0LAR
adc set csr 2 8 CS5534_INTEG_4 CS5534_UNIP0LAR
adc set csr 3 16 CS5534_INTEG_4 CS5534JJNIP0LAR
adc set csr 4 1 CS5534_INTEG_4 CS5534.BIP0LAR

configure offset and gain on channel 1
adc set offset 1 5000
adc set gain 1 12
Schloffset = adc read offset 1
$chlgain = adc read gain 1
print "$chloffset:,$chlgain,\n"

read back channel setup registers
assign $ch 1

A.4. IRMASCRIPT LANGUAGE DEFINITION 174

do
$cs r = adc read c s r $ch
$chan = s u b s t r i n g $ch 0
Sgain = s u b s t r i n g $ch 1
Swordrate = s u b s t r i n g $ch 2
$po la r = s u b s t r i n g $ch 3
p r i n t "CHAN : , \ s , $ c h a n , \ n "
p r i n t "GAIN: , \ s , $ g a i n , \ n "
p r i n t "WORDRATE : , \ s ,Sword ra t e , \ n "
p r i n t "POLARITY : , \ s , S p o l a r , \ n "
i n c r $ch

whi le $ch < 5

read a l l t h e ADC channels
a s s i g n $ch 1
do

Ssample = adc sample no_in t $ch
p r i n t " $ c h , \ s , S s a m p l e , \ n "
i n c r $ch

whi le $ch < 12

l a b e l ADCFAILURE:
endprog socket c lo se

S C A N

The scanning process involves repeatedly sampling the IR signal and temperature / pressure

/ humidity channels at some interval. Scanning differs from reading an ADC channel directly

in that the A/D sampling process is contained separate real-time task, and uploads the data

to a separate network port on the IRMA CP. This allows the MC to service other commands

while the data collection process is executing, such as moving the Alt-Az mount, or querying

the status of the cryo cooler. The Alt-Az serial communications channel must be opened

before executing the scan command. Additionally, it is vital that the Alt-Az channel be

left open for the duration of the scan. Closing the channel during a scan will lead to scan

failure, which results in the scan terminating itself,

scan read status

A.4. IRMASCRIPT LANGUAGE DEFINITION 175

Returns the value 1 if a scan is currently executing on the MC, otherwise the
value 0 is returned.

scan signal on Jn t
Forks the data collection process task, where the IR signal is sampled on the
positive edge of the notch notch interrupt signal. Temperature, pressure and
humidity channels are each sampled following one IR signal sample in a round-
robin fashion.

scan signal no Jn t
IR signal, temperature, pressure and humidity are sampled, but the IR signal
A/D conversion is not synchronized to the notch interrupt.

Example usage

################
scan_demo.irma
################
s t a r t p r o g socket open

check i f a scan i s a l r eady running .
i f scan i s n ' t runn ing , scan read s t a t e
w i l l r e t u r n 0
$x = scan read s t a t e
i f $x == 1

goto ENDOFSCRIPT
endif

conf igure ADC
adc i n i t resynch
adc i n i t r e s e t
adc s e t c s r 1 1 7 1
adc s e t c s r 2 1 1920 1
adc s e t c s r 3 1 1920 1
adc s e t c s r 4 1 1920 1

open s e r i a l p o r t and *leave* i t open!
a l t a z s e r i a l open

fork t h e scan t a s k
scan s i g n a l on_in t

l a b e l ENDOFSCRIPT:
endprog socket c lo se

A.4. IRMASCRIPT LANGUAGE DEFINITION 176

ALTAZ

Movement and control of the altitude and azimuth axes is handled by the a l taz family

of commands. Given that the AAC is connected to the MC over a serial communications

link, the AAC-MC serial connection must be opened before any altaz command can be sent.

Failing to open the serial port when sending AAC commands produces subtle errors that are

hard to track down. In executing a sequence of commands within a single file, the error is

more direct: the command string destined for the AAC will not get transmitted. However,

the current implementation of IRMA is typically controlled via multiple single-command

scripts that are generated on-the-fly by the IRMA GUI, whereby a single command is

contained in its own script. This, results in the incomplete transmission of command strings,

leaving the remaining characters in the serial buffer. The operator would observe that the

IRMA MC sends the entire command string, yet the IRMA AAC only reads a portion of

the string, hangs, then times out once the five second timeout period has expired. If the

operator sends another command, the AAC receives a corrupted string, because it contains

the new command plus the fragment characters left over from the last command. There are

five subgroups of commands within the altaz command family: Alt-Az mount initialization

commands, parameter setting commands, parameter/status reading commands, movement

commands, and operation mode commands. Each of the altaz command groups will be

examined in detail.

Commands destined for the AAC are sent over the MC/AAC serial link using the

serial packet communications protocol. This protocol is discussed in depth in section 3.6.2,

and includes a discussion of error codes that result due to serial transmission errors,

a l t az ser ial o p e n

A.4. IRMASCRIPT LANGUAGE DEFINITION 177

altaz serial close
These commands respectively open and close the serial channel from the MC to
the AAC.

altaz init altaz
Once the Alt-Az serial channel has been opened, the first command that should
be sent to the AAC is the init altaz command. This command has the effect
of initializing the AAC's two-channel optical encoder chip that is responsible
for digitizing axis encoder positions. Upon initializing the optical encoder chip,
altitude and azimuth axis positions are set to 90,000 encoder units. There are
8192 encoder units in one revolution.

altaz init axes axis
Upon using the AAC for the first time, or where re-initialization is required, the
axes should be sent to their default positions. The init axes command performs
a homing operation, whereby it determines the clockwise and counter-clockwise
optical limits on both axes. When axis homing has completed, altitude and
azimuth positions are set to position 0 (in encoder units). The axis parameter
can be defined in three ways: altitude, elevation, or azimuth.

altaz init motor
The gearboxes and motor controllers used in the IRMA AAC differ from unit to
unit. In order to deal with these variations, gear ratios, motor RPM values, and
other configuration information unique to the given IRMA unit is contained in a
configuration file. By issuing this command, the CP uploads motor configuration
information, stored in the particular IRMA unit's configuration file, into the
AAC. Without this information, the AAC cannot calculate motor speeds or
slewing times. Therefore, it is vital that init motor be called before any axis
movement is attempted.

altaz init servo
The AAC uses a servo loop, based on proportional-integration-derivative (PID)
motion control algorithm, to control axis movement. PID servo control algo­
rithm has three constants, P , I and D, which are unique to each Alt-Az mount.
The init servo command loads the PID constants for the altitude and azimuth
axes into the AAC. If the servo-controlled movement move_to command is go­
ing to be used, servo parameters must be loaded into the AAC beforehand. The
slew_to non-servo movement command does not require servo parameters to be
set. The command init servo may be called while the AAC is idle (not moving)
as many times as required, which is particularly helpful if the user is "tuning"
the servo algorithm.

altaz init ping
The Alt-Az ping command is used to check if the AAC is on-line, ready to
receive commands. If the AAC is alive and on-line, it returns a three-field,
colon delimited string of the form:

A.4. IRMASCRIPT LANGUAGE DEFINITION 178

987654321 : 123456789 : uptime

If the AAC is not on-line or unresponsive, the three fields will contain the code
999999999. The Upt ime field indicates the number of elapsed CPU ticks since
the IRMA MC was booted. Each CPU tick is 1/64 seconds, therefore to convert
this value to elapsed seconds, divide it by 64. Uptime can also be read using
the command altaz read uptime.

altaz set alt_offset offsetjvalue
altaz set az_offset offset-value
The set offset commands are provided in order to allow the user to define
virtual fiducial points, thus avoid the necessity of physically orienting IRMA's
fiducial (the axis limits) to external physical references, such as zenith for el­
evation, or north for azimuth. By providing an offset value defined in optical
encoder units, IRMA's AAC calculates all axis moves relative to the offset po­
sition instead of the default physical limit. Axis offsets is the angle between the
physical limit and the position where the physical reference is determined to be.
The default offset value for both axes is zero.

altaz s tate poslog action
AAC position logging is controlled using this command. Three separate activ­
ities can be performed: log initialization, log enabling and log disabling. Upon
AAC start-up, the position log is allocated, zero-filled, and its index pointer
is pointed to the first element in the position log array. This action should
be explicitly called before using the position log by using the log_clear con­
stant in the action parameter. One begins logging an axis movement by calling
this command using the log.enable constant. Logging is stopped by using the
log-disable constant.

altaz s tate halt

Stop movement immediately in both axis,

altaz s tate reboot
Perform a soft reset (or reboot) of the AAC software running on the Alt-Az
controller. The master controller software is not affected.
altaz move_to axis alt_d alt.m alts az-d azjm azs speed
Servo-controlled movements, which track a theoretical velocity versus position
profile, are performed using the move_to command. Three parameters must
be provided: the axis to be moved, the destination angle, and the axis rota­
tion speed, specified in degrees per second. Options available for axis include:
altitude, azimuth, and dualaxis.

The destination angle is defined in degree-minute-second format, where altitude
degrees, minutes and seconds occupy fields 4, 5 and 6 respectively (assuming
field 1 refers to the "altaz" symbol). For single-axis movement, altitude or

A.4. IRMASCRIPT LANGUAGE DEFINITION 179

azimuth destinations should be written to fields 4, 5 and 6, while fields 7, 8 and
9 should be zero-filled. For dual-axis movements, altitude should occupy fields
4, 5 and 6, and azimuth should occupy fields 7, 8 and 9. Field 10 is populated
with the desired axis speed. In the case of dual-axis movement, the speed refers
to the diagonal speed between the two moving axis, or rather, the speed required
for both axes to meet at the final altitude/azimuth coordinate.

Since this is a servo-controlled move command, movements are continuous, and
are consequently limited to the speed options provided by the given Alt-Az
mount's gearing. The slowest speed possible with this command occurs when
the axis motor is driven at 0 volts, which corresponds to 500 motor RPM. The
axis will rotate considerably slower than the minimum motor RPM, due to the
motor's gear box and drive belt. Be aware that it is impossible to perform
movements slower than the minimum motor RPM. For performing movements
slower than the minimum achievable speed, there is the slew_to command.

altaz slew_to dms axis alt-d altjm alts azJi azjm azs speed
Usage of the slew_to command is identical to move_to. What differs is the
range of speeds available, and the fact that movement is not servo controlled.
When a speed less than the minimum achievable speed is selected, slew_to goes
into stepping mode, where the given slew path is broken up into sub-degree, one
encoder unit steps. The axis (or axes) rotate for the duration calculated from
the slew path length and the requested speed.

Mention should be made about the relationship between offset angles and axis
moves. Offset angles for each axis are measured from the counterclockwise limit
switch in the clockwise direction. The AAC rotates to the requested angle,
to which is added the currently defined offset angle. The offset angle should
be considered as zero degrees. Altitude angles less than the offset angle are
reported as negative angles, while azimuth angles less than the offset wrap at
360 degrees, because the azimuth axis has the ability to rotate a full 360 degrees.

Full rotational movement allows for the possibility of destination angles that lie
beyond the far (clockwise) limit. In such cases, the AAC rotates the azimuth
axis in the opposite direction to the target angle lying beyond the far limit.
In the case of low-speed, small-distance movements that result in destinations
crossing the rotational limit, the AAC drives the axis to the destination angle
in the opposite direction at high speed in order to eliminate the annoyance of
slewing nearly 360 degrees as low speed.

altaz read posit ion
This command returns a three-value colon-delimited string containing altitude
and azimuth value respectively. The third field contains scan status: 1 when a
scan is executing, and 0 when no scan is running.

altitude : azimuth : scanstatus

A.4. IRMASCRIPT LANGUAGE DEFINITION 180

read posit ion is the most common query request to the AAC because during
scans, the MC requests axis positions for each data point collected.

altaz read task-status
In order to remain responsive to incoming commands, the AAC executes axis
movements separate from the main dispatcher task, read task s t a t u s allows
external processes, such as an executing IRMA script, to check up on an ongoing
AAC movement, and determine when the operation has completed. Task status
is returned as one of three codes: code 0 indicates there is no axis movement
task operating, while code 2 indicates a task is executing. Code 1 is returned
when the AAC is dispatching a long-duration job to one of its available tasks.
It is rare that this code would be encountered, and should be considered simply
as a running task.

altaz read alt .offset
altaz read az-offset
These two commands respectively return the currently denned altitude and az­
imuth offset values in optical encoder units. There are 8192 units per revolution.

altaz read poslog_state
The poslog commands are used primarily for Alt-Az servo tuning. They allow
the user to collect axis motion data necessary for tuning the AAC's PID servo
control loop. The read poslog_state command returns the current operation
mode of the position log, the table in the AAC that is used to store servo and
position data. Three states can be reported: code 1 indicates the position log
is enabled. Code 0 indicates the position log is disabled. Code 2 is returned
if the position log was not initialized during AAC start-up. This can happen
if an extended memory allocation failure occurred on board the AAC Rabbit
processor.

altaz read poslog_range
Calling this command returns the dimensions of the position log, a memory array
aboard the AAC containing position and servo data. A four field colon-delimited
string is returned:

min array index : max array index : curr array index : NULL

The range of data readable from the AAC's position log is found between the
minimum array index and the current array index inclusive. Reading values
beyond the maximum array index will result in a memory read error on the
AAC.

altaz read poslog_data index
Given some index value, this command returns the position log entry at that
index. A four field, colon-delimited array is returned:

A.4. IRMASCRIPT LANGUAGE DEFINITION 181

DAC val : rel pos : theor pos : error val

D A C val contains the 8-bit unsigned integer that is written to the AAC's DAC,
which in turn controls axis speed. Rel pos refers to the actual position of the
axis relative to its start position, and is given in optical encoder units. Theor
pos is the calculated theoretical axis position, also given in optical encoder
units. It is this theoretical displacement path that the PID servo must track.
The last field, error val, contains the PID algorithm error value. All four data
are necessary in the servo tuning process.

Example usage

#################

altaz_demo.irma
#################

startprog open socket

altaz serial open

assign $running 2
ping the AAC
$status = altaz init ping
print "ping.status: ,$status,\n"
$a = substring 0 Sstatus
$b = substring 1 Sstatus
$c = substring 2 Sstatus
if $a != 987654321

if $b != 123456789
if $c != 181818181

goto DEAD.AAC
endif

endif
endif

initialize motor, servo, then optical encoder chip
altaz init motor
altaz init servo
altaz init altaz

find optical limits on elevation axis
altaz init axes altitude
wait 4
do

A.4. IRMASCRIPT LANGUAGE DEFINITION 182

$x = altaz read task.status
print "$x,\n"
wait 2

while $x == $running

wait 2

then on azimuth axis
altaz init axes azimuth
wait 4
do

$x = altaz read task_status
print "$x,\n"
wait 2

while $x == $running

set elevation and azimuth offsets
altaz set alt_offset 183
altaz set az_offset 5234
$a = altaz read alt_offset
$b = altaz read az_offset
print "offsets:,$a,$b,\n"

move elevation and azimuth axes to 5.5 degrees
at 3 degrees per second
altaz move_to dms dualaxis 5 30 0 5 30 0 3
do

wait 2
$status = altaz read task_status
print "status:,$status,\u"
$pos = altaz read position
$altPos = substring 0 $pos
$azPos = substring 1 $pos
print "position:,$altPos,$azPos,\n"

while $status == $running

move elevation axis to zenith Q 2 degrees per second
altaz move.to dms altitude 90 0 0 0 0 0 2
do

wait 2
$status = altaz read task_status
$pos = altaz read position
$altPos = substring 0 $pos
print "elevation:,$altPos,\n"

A.4. IRMASCRIPT LANGUAGE DEFINITION 183

while $status == $running

step azimuth 50 degrees Q 0.05 degrees/sec
altaz slew.to azimuth 50 0 0 0 0 0 0.05
do

wait 2
$status = altaz read task_status
$pos = altaz read position
$azPos = substring 1 $pos
print "azimuth:,$azPos,\n"

while $status == $running

label DEAD.ALTAZ:
reboot the AAC
altaz state reboot
altaz serial close

endprog close socket

The following example demonstrates turning the servo by using the Alt-Az po­
sition log. This example program assumes that the elevation axis has been
initialized, and that the motor and servo parameters have been loaded into the
AAC.

#######################################
servo_tuning_demo.irma
demonstrate tuning the elevation axis
#######################################

startprog socket open

altaz serial open

assign Srunning 2
########################
Start position capture
########################

altaz state poslog poslog_clear
altaz state poslog poslog log_enable

altaz moveto dms altitude 90 0 0 0 0 0 4
do

wait 1
Sstatus = altaz read task_status

A.4. IRMASCRIPT LANGUAGE DEFINITION 184

altaz poslog disable

playback position log values. These values could be
captured by redirecting terminal output to file

$tuneValues = altaz read poslog_range
print $tuneValues \n

$minlndex = substring $tuneValues 0
Smaxlndex = substring $tuneValues 1
$currlndex = substring $tuneValues 2
print "min_index: ,$minlndex,\n"
print "max_index:,$maxlndex,\n"
print "curr_index:,$currIndex,\n"

assign $cnt 0
do

$data = altaz read poslog_data $cnt
print "$data,\n"
incr $cnt

while Sent < $currlndex

altaz serial close

endprog socket close

185

Bibliography

[1] European Space Agency. Packet Telecommand Standard. Technical Report PSS-04-

017, Packet Telecommand Standard, Issue 2, April 1992.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques

and Tools. Addison Wesley, Reading, MA, 1986.

[3] Eric Aristidi. Photo of Concordia Station, Dome C, Antarctica. Universite de Nice.

[4] Bradley W. Carroll and Dale A. Ostlie. An Introduction to Modern Astrophysics.

Addison Westley, Reading, MA, 1996.

[5] I. M. Chapman, D. A. Naylor, and R. R. Phillips. Correlation of Atmospheric Opacity

Measurements by SCUBA and an Infrared Radiometer. Monthly Notices of the Royal

Astronomical Society, 354(2):621-628, 2004.

[6] Ian M. Chapman. The Atmosphere Above Mauna Kea at Mid-Infrared Wavelengths.

Master's thesis, Univeristy of Lethbridge, 2002.

[7] Cirrus Logic, Inc., Austin, TX. Cirrus Logic CS5531/32/33/34 Data Sheet Errata,

Single Conversion Mode Timing, March 2000.

BIBLIOGRAPHY 186

[8] Cirrus Logic, Inc., Austin, Texas. CS5531/32/33/34 Product Data Sheet, September

2004. www.cirrus.com/en/pubs/proDatasheet/CS5531-32-33-34_Fl.pdf.

[9] Diamond Systems Corporation. Emerald-MM-DIO Quad RS-232 + 48 Digital I/O

PC/104 Users Manual. Newark, CA, 2002. www.tri-m.com/products/diamond/files/

manual/emmdio-man.pdf.

[10] Thermo Electron Corporation. Revco Web Page. World Wide Web, 2005. www.revco-

sci.com/catalog/ult/value/86_chest_specs.html.

[11] H. M. Deitel and P. J. Deitel. Java: How to Program. Prentice Hall, Upper Saddle

River, NJ, 1997.

[12] A. James Diefenderfer and Brian E. Holton. Principles of Electronic Instrumentation.

Saunders College Publishing, Philadelphia, PA, third edition, 1994.

[13] Peter Duffett-Smith. Practical Astronomy With Your Calculator. Cambridge University

Press, Cambridge, second edition, 1981.

[14] Tri-M Engineering. TMZ104 User Manual. Port Coquitlam, BC, 2003. engineering.tri-

m.com / products/engineering/files / manual / tmz / tmz 104

[15] Globalsat Technology Corporation, Taipei, Taiwan. GPS Receiver Engine Board

Software Command, January 2001. www.usglobalsat.com/downloads/General Down-

loads /GPS/NEMA -Commands .pdf .

[16] Per Brinch Hansen. Brinch Hansen on Pascal Compilers. Prentice Hall, Englewood

Cliffs, NJ, 1985.

http://www.cirrus.com/en/pubs/proDatasheet/CS5531-32-33-34
http://www.tri-m.com/products/diamond/files/
http://www.revco-
http://sci.com/catalog/ult/value/86_chest_specs.html
http://www.usglobalsat.com/downloads/General

BIBLIOGRAPHY 187

[17] Theresa Hitchens. Space-Based Missile Defense: Not So Heavenly. World Wide Web,

July 2003. www.cdi.org/friendlyversion/printversion.cfm?documentID=1487.

[18] Aaeon Systems Inc. PCM-3660/3661 PC/104 Ethernet module. Hazlet, NJ, May 1995.

ftp://data.aaeonsystems.com/DOWNLOAD/MANUAL/PCM-3660Manual.pdf.

[19] Aerotech Inc. Unidex 500 PC-Card Multi-Axis Motion Controller. World Wide Web.

www.aerotech.com/products / pdf/u500.pdf.

[20] Rabbit Semiconductor, Inc. Rabbit 2000 Microprocessor Interrupt Problem. Techni­

cal Note TN301, Rabbit Semiconductor, Davis, CA. www.rabbitsemiconductor.com/

documentation/docs/refs/TN301 /TN301 .pdf.

[21] Rabbit Semiconductor, Inc. Rabbit Memory Management In a Nutshell. Technical

Note TN202, Davis, California. www.zworld.com/documentation/docs/refs/TN202/

TN202.pdf.

[22] Rabbit Semiconductor, Inc. Company Info: About Rabbit Semiconductor. World Wide

Web, 2005. www.rabbitsemiconductor.com/company/aboutUs.shtml.

[23] Z-World, Inc. Rabbit Semiconductor Technical Bulletin Board. World Wide Web.

www. zworld. com/support/bb/index .html.

[24] Texas Instruments. Applying Oversampling Data Converters: 2002 Signal Acquisition

and Conditioning for Industrial Applications Seminar, focus.ti.com/docs/training/

catalog/events/event.jhtml?sku=SEM402009, 2002.

http://www.cdi.org/friendlyversion/printversion.cfm?documentID=1487
ftp://data.aaeonsystems.com/DOWNLOAD/MANUAL/PCM-3660Manual.pdf
http://www.aerotech.com/products
http://www.rabbitsemiconductor.com/
http://www.zworld.com/documentation/docs/refs/TN202/
http://www.rabbitsemiconductor.com/company/aboutUs.shtml
http://focus.ti.com/docs/training/

BIBLIOGRAPHY 188

[25] Liviu Ivanescu. Arctic Astronomy. www.eso.org/gen-fac/pubs/astclim/espas/Arctic,

October 2004.

[26] Rutherford Appleton Laboratory. SPIRE Homepage. World Wide Web, 2002.

www.ssd.rl.ac.uk/SPIRE/.

[27] Jean J. Labrosse. MicroC/OS-II: The Real-Time Kernel. CMP Books, Lawrence, KS,

second edition, 2002.

[28] J.S. Lawrence, Ashley, Burton M.C.B, M.G., and et al. The AASTINO: Automated

Astrophysical Site Testing INvincible Observatory. Memorie della Societa Astronomica

Italiana Supplement^ 2:217-220, 2003.

[29] O. P Lay. MMA Memo 209: 183 GHz Radiometric Phase Correction for the Millimeter

Array. Web, 1998. www.alma.nrao.edu/memos/html-memos/alma209/mma209.ps.gz.

[30] Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory of Computa­

tion. Prentice Hall, Englewood Cliffs, NJ, 1981.

[31] M-Systems, Inc., Newark, CA. DiskOnChip 2000 DIP Data Sheet, September 2004.

www.m-systems.com.

[32] Bruce J. MacLennan. Principles of Programming Languages: Design, Evaluation and

Implementation. Holt, Rinehart and Winston, New York, second edition, 1987.

[33] Howard V. Malmstadt and Christie G. Enke. Electronics and Instrumentation for

Scientists. The Benjamin/Cummings Publishing Company, Inc., Reading, MA, 1981.

http://www.eso.org/gen-fac/pubs/astclim/espas/Arctic
http://www.ssd.rl.ac.uk/SPIRE/
http://www.alma.nrao.edu/memos/html-memos/alma209/mma209.ps.gz
http://www.m-systems.com

BIBLIOGRAPHY 189

[34] Maxim Integrated Products, Sunnyvale, California. MAXIM MAX5223 Low-Power,

Dual 8-Bit, Voltage Output Serial DAC in 8-Pin SOT23, 2001. pdfserv.maximic.com/

en/ds/MAX5223.pdf.

[35] Maxim Integrated Products, Sunnyvale, CA. Maxim MAX6126 Ultra-High Pre­

cision, Ultra-Low-Noise Series Voltage Reference, July 2004. pdfserv.maxim-

ic.com/en/ds/MAX6126.pdf.

[36] Maxon Motor AG, Sachseln, Switzerland. Maxon Motor Control 1-Q-EC Amplifier

DEC50/5, January 2003.

[37] David A. Naylor, Ian M. Chapman, and Bradley G. Gom. Measurements of Atmo­

spheric Water Vapor Above Mauna Kea Using an Infrared Radiometer. In Joseph A.

Shaw, editor, Proceedings of SPIE Volume 4815: Atmospheric Radiation Measurements

and Applications in Climate, pages 36-45, Bellingham, WA, September 2002. SPIE -

The International Society for Optical Engineering.

[38] David A. Naylor, Bradley G. Gom, Ian S. Schofield, and et al. Remotely Operated

Infrared Radiometer for the Measurement of Atmospheric Water Vapor. In Marija Stro-

jnik Bjorn F. Andresen, Gabor F. Fulop, editor, Proceedings of SPIE: Infrared Tech­

nology and Applications XXVIII, pages 208-928, Bellingham, WA, 2003. SPIE - The

International Society for Optical Engineering.

[39] H. T. Nguyen, Bernard J. Rauscher, Scott A. Severson, and et al. The South Pole

Near-Infrared Sky Brightness. Publications of the Astronomical Society of the Pacific,

108:718-720, August 1996.

http://pdfserv.maximic.com/
http://ic.com/en/ds/MAX6126.pdf

BIBLIOGRAPHY 190

[40] European Southern Observatory. ESO Search of Potential Astronomical Sites Work­

ing Groups Homepage. World Wide Web, 2000. www.eso.org/gen-fac/pubs/astclim

/espas/ .

[41] National Radio Astronomy Observatory. Atacama Large Millimeter Array. World Wide

Web, April 2005. www.alma.nrao.edu/ALMAHandout/Apr05.pdf.

[42] Charles Petzold. Programming Windows. Microsoft Press, fifth edition, 1999.

[43] Robin R. Phillips, David A. Naylor, James diFrancesco, and et. al. Initial Results of

Field Testing an Infrared Water Vapor Monitor for Millimeter Astronomy (IRMA III)

on Mauna Kea. In Jr. Jacobus M. Oschmann, editor, Proceedings of SPIE Volume:

5489, pages 146-153, Bellingham, WA, September 2004. SPIE - The International

Society for Optical Engineering.

[44] Maxim Integrated Products. Demystifying Sigma-Delta ADCs. Application Note

1870, Maxim Integrated Products, January 2003. www.maximic.com/appnotes.cfm/

appnote_number/1870.

[45] Rabbit Semiconductor, Inc., Davis, CA. Introduction to TCP/IP, 2001.

www.rabbitsemiconductor.com / documentation/docs / manuals/TCPIP/Introduction /

tcpintro.pdf.

[46] Rabbit Semiconductor, Inc., Davis, CA. Roadmap to TCP/IP Sample Pro­

grams, 2003. www.rabbitsemiconductor.com/documentation/SamplesRoadmap/tcpip-

roadmap.pdf.

http://www.eso.org/gen-fac/pubs/astclim
http://www.alma.nrao.edu/ALMAHandout/Apr05.pdf
http://www.maximic.com/appnotes.cfm/
http://www.rabbitsemiconductor.com
http://www.rabbitsemiconductor.com/documentation/SamplesRoadmap/tcpip-

BIBLIOGRAPHY 191

[47] Rabbit Semiconductor, Inc., Davis, CA. Dynamic C TCP/IP User's Manual

Vol. 1, 2004. www.rabbitsemiconductor.com/documentation/docs/manuals/TCPIP/

UsersManualVl/tcpVl .pdf.

[48] Rabbit Semiconductor, Inc., Davis, CA. Dynamic C TCP/IP User's Manual

Vol. 2, 2004. www.rabbitsemiconductor.com/documentation/docs/manuals/TCPIP/

UsersManualV2/tcpV2.pdf.

[49] Rabbit Semiconductor, Inc., Davis, CA. RCM2000 RabbitCore Data Sheet, 2005.

www.rabbitsemiconductor.com/products/rcm2000/rcm2000.pdf.

[50] Rabbit Semiconductor, Inc., Davis, CA. RCM2100 RabbitCore Data Sheet, January

2005. www. rabbitsemiconductor.com/products/rcm2100/rcm2100.pdf.

[51] Rayming Corporation, Industry, CA. GPS Development Kit DK-ER102, September

2003. www.usglobalsat.com.

[52] RTD Embedded Technologies, Inc., State College, PA. CML16686GX cpuMod-

ule User's Manual, 2003. www.rtd.com/NEWjnanuals/hardware/cpumodules/

CML16686GX.pdf.

[53] Ian Schofield. Test Facility FTS Data ICD. Technical Report SPIRE-UoL-PRJ-001452,

Herschel / Spire Project, January 2004.

[54] Ian S. Schofield and David S. Naylor. Instrumentation Control Using the Rabbit

2000 Embedded Microcontroller. In Gianni Raffi Hilton Lewis, editor, Proceedings

of SPIE Volume: 5496, pages 392-401, Bellingham, WA, September 2004. SPIE - The

International Society for Optical Engineering.

http://www.rabbitsemiconductor.com/documentation/docs/manuals/TCPIP/
http://www.rabbitsemiconductor.com/documentation/docs/manuals/TCPIP/
http://www.rabbitsemiconductor.com/products/rcm2000/rcm2000.pdf
http://www.usglobalsat.com
http://www.rtd.com/NEWjnanuals/hardware/cpumodules/

BIBLIOGRAPHY 192

[55] Rabbit Semiconductor. Rabbit 2000 Microprocessor Designer's Handbook. Davis,

California, 2000. www.rabbitsemiconductor.com/documentation/docs/manuals/

Rabbit2000/DesignersHandbook/R2000DH.pdf.

[56] Abraham Silberschatz and Peter Baer Galvin. Operating System Concepts. Addison

Wesley Longman, Inc., Reading, MA, 1997.

[57] Graeme J. Smith. An Infrared Radiometer for Millimeter Astronomy. Master's thesis,

University of Lethbridge, 2001.

[58] J. W. V. Storey, M. C. B Ashley, J. S. Lawrence, and et al. Dome C - The Best Astro­

nomical Site in the World? Memorie della Societa Astronomica Italiana Supplementi,

2(13):13 - 18, 2003.

[59] Arie Tal. Two Technologies Compared: NOR vs. NAND White Paper. Technical

Report 91-SR-012-04-8L, Rev 1.1, M-Systems, July 2003. www.m-systems.com/files/

documentation/doc/nor _vs_nand.pdf.

[60] OPTEK Technologies. Product Bulletin OPB930L. World Wide Web, July 1996.

www.optekinc.com/pdf/OPB930L.pdf.

[61] US Digital Corporation, Vancouver, WA. LS7266R1 Encoder to Microprocessor Inter­

face Chip, March 2004. www.usdigital.com/products/ls7266/.

[62] US Digital Corporation, Vancouver, WA. E6 Optical Kit Encoder, July 2005.

www.usdigital.com/data-sheets/E6 Data Sheet.pdf.

http://www.rabbitsemiconductor.com/documentation/docs/manuals/
http://www.m-systems.com/files/
http://www.optekinc.com/pdf/OPB930L.pdf
http://www.usdigital.com/products/ls7266/
http://www.usdigital.com/data-sheets/E6

BIBLIOGRAPHY 193

[63] Frank Vahid and Tony Givargis. Embedded System Design: A Unified Hard­

ware/Software Introduction. John Wiley and Sons, Inc., Hoboken, NJ, 2002.

[64] Tim Wescott. PID Without a PhD. Embedded Systems Programming, October 2000.

www.embedded.com/2000/0010/0010feat3.htm.

[65] Z World, Inc., Davis, California. Dynamic C User's Manual, September 2004. www.

zworld.com/documentation/docs/manuals/DC/DCUserManual/DCPUM.pdf.

http://www.embedded.com/2000/0010/0010feat3.htm
http://zworld.com/documentation/docs/manuals/DC/DCUserManual/DCPUM

