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Abstract

The plant hormone auxin is involved in a wide range of developmental phenomena in

plants. It carries out many of its effects through a signalling network involving the reg-

ulation of specific genes, including those involved in its own polar transport between cells.

These transporters are able to be redistributed between cell faces, causing the asymmet-

ric auxin transport that is a key requirement for the formation of vein patterns in leaves.

In this thesis I describe the development of a biochemical kinetics-based model of auxin

signalling and transport in a single cell, which displays biologically plausible responses

to auxin application. The single-cell model then serves as the basis for a multicell model

of auxin-mediated vein formation at a very early stage of leaf formation in Arabidopsis

thaliana.
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Abbreviations and Conventions

The following abbreviations are used in this thesis:

2,4-D 2,4-dichlorophenoxyacetic acid
ABP1 auxin-binding protein1
AFB auxin-signalling F-box protein
ARF auxin response factor

AtHB8 Arabidopsis thaliana homeobox gene 8
AUX1 auxin-resistant1 (auxin influx transporter)

AuxRE auxin-responsive DNA element
Aux/IAA auxin/indole-3-acetic acid protein

AXR auxin resistant (protein)
CP convergence point
DE differential equation

ECM extracellular matrix
ER endoplasmic reticulum
FD facilitated diffusion

GFP green fluorescent protein
GM ground meristem

GUS β-glucuronidase
IAA indole-3-acetic acid (‘auxin’)
IBA indole-3-butyric acid

LAX like AUX1 (protein)
MDR multiple drug resistance (protein)
NAA 1-naphthaleneacetic acid
NPA 1-N-naphthylphthalamic acid
PGP P-glycoprotein
PID pinoid (protein)
PIN pin-formed (auxin efflux transporter)
PM plasma membrane
PT polar transport

RK4 fourth-order Runge-Kutta integrator
SAM shoot apical meristem
TIR transport inhibitor response (protein)

To refer to genes and proteins, the following conventions will be used: the geneGENE-

EXAMPLE1 (GEN1) codes for protein product GEN1 (or Gen1), andgen1 is a mutant form

of the gene. Gene fusions of a promoter with a reporter are written aspromoter::reporter;

e.g., DR5::GUS has theβ-glucuronidase reporter gene under the control of the auxin-

responsive DR5 promoter.
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Chapter 1

Introduction

Plants have been appreciated from antiquity for their economic importance, their medicinal

uses, and not least for their great beauty. Much of their aesthetic appeal is due to symmetry

and other intricacies of form and pattern. The exquisite patterning of plants and other

organisms is also important for their survival, and thus thestudy of biological patterns has

historically been an area of great interest for the application of mathematical techniques

such as modelling and simulation [1].

One striking feature of plant architecture is the network ofveins visible in their leaves

[2–6]. Veins are necessary both to import water and nutrients to leaf cells, and to remove

wastes and photosynthetic products for distribution to other parts of the plant. While these

vascular functions are common to all plant species, the precise arrangement of the veins

can vary extremely widely (Fig. 1.1). Much of the study of plant development has been

performed using mouse-ear or thale cress, a weed in the mustard family more commonly

known by its systematic name,Arabidopsis thaliana [7–9]. Arabidopsis has long been used

as a model organism for plant genetic, molecular and developmental research, due in large

part to its short life cycle, prolific seed output, small size, and small, simple genome [8,10,

11].

In arabidopsis, leaf vein pattern formation follows a characteristic course (Fig. 1.2),

though with some variation depending on the stage of shoot development during which

Figure 1.1: A variety of leaf venation patterns
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1. Introduction

a b c

Figure 1.2: Sketch of arabidopsis vein formation progress (after [12]; not to scale). (a)

(Primary) midvein only. (b) Midvein and first secondary vein loops. (c) Reticulated vein

pattern in mature leaf. (d) Photo of arabidopsis leaf, courtesy Dr. E. Schultz.

the leaf forms [5, 12–16]. In the developing leaf primordium, a primary midvein forms

acropetally (from the base to the tip of the leaf). The midvein then bifurcates and two

secondary veins form near the edges of the leaf blade. Higher-order veins progressively

differentiate, connecting both to themselves and to secondary vasculature. This process

(secondary, then higher-order veins) is reiterated several times as the leaf blade matures

basipetally. At maturity, veins of multiple orders are found throughout the entire lamina of

the leaf.

The formation of these disparate vein networks is mediated by a plant (phyto-) hormone

called indole-3-acetic acid (IAA) [14,16–18], which has been found in all plants studied to

date [19]. IAA is often referred to as auxin, since it is the most common member of a class

of molecules with related structures known as auxins [20–22]. The structures of IAA and

several other commonly studied auxins are depicted in Figure 1.3.

In arabidopsis and other plants, auxin has an impressive range of effects. Since the iden-

tification of the hormone by Went in the early twentieth century [23], it has been shown to

be involved in cell expansion and division, vascular tissuespecification and differentiation,

2
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Figure 1.3: Structures of common auxins. From left to right: natural auxins, indole-3-acetic

acid (IAA) and indole-3-butyric acid (IBA); synthetic auxins, 1-napthylacetic acid (1-NAA)

and 2,4-dichlorophenoxyacetic acid (2,4-D).

root initiation, tropic responses, and various stages of fruit and flower development – in

short, all plant tissues at all stages of development [19,23–25].

Auxin is unique among known plant hormones in that it is actively moved between

cells in specified directions by transporter proteins [26, 27]. Auxin is a weak acid, with a

pKa of about 4.8 [28]. In the intercellular space (pH≈ 5.5), about 15% of auxin molecules

are protonated and electrically neutral, and can thereforediffuse through the cell membrane

into the cytoplasm. In the more basic cell interior (pH≈ 7), the acidic proton is lost to yield

anionic IAA−, which is unable to diffuse out of the cell. This observationforms the basis

of the long-standing ‘chemiosmotic hypothesis’ for auxin transport, which also postulates

that the asymmetric distribution of auxin efflux transporters is largely responsible for the

directionality of auxin transport (Fig. 1.4) [29,30]. The chemiosmotic hypothesis [31] was

first applied to explain auxin transport in the mid-1970s, and some alternative or comple-

mentary suggestions have since been put forward [32–38], but in large part recent work has

merely supplied details about the molecular players involved in the remarkably prescient

original hypothesis [39]. One important addition has been the realization of the importance

of active auxin transporters, not diffusion alone, for auxin influx [28,40].

The study of how auxin and its polar transport are involved invein formation has re-

vealed an intricately regulated system. Complex regulation is to be expected from a system

that needs to be very plastic (the pattern must regenerate independently in each leaf, be

able to adjust to environmental factors, and take on widely disparate forms in different

3



1. Introduction

Figure 1.4: Schematic representation of the chemiosmotic hypothesis for auxin transport.

Anionic auxin (IAA−) is transported by specific carrier proteins (solid arrows). PIN and

MDR/PGP are efflux carriers, while AUX1 is an influx transporter. Protonated auxin (IAA) is

also able to diffuse from the extracellular space into the cell (dotted arrows), where it ionizes

due to the higher internal pH.

species), but must always achieve a fully connected and functionally similar final state to

be useful. Unfortunately, it is difficult to determine auxinlocation directly [38,41], and so

its presence must usually be inferred from its downstream effects. The sequence of vein

formation referred to above (Fig. 1.2) relies on descriptions of one of those effects, the

visible presence of morphologically distinct vascular elements [4]. These mature vascular

cells are arranged in bundles composed of xylem (water-transporting) and phloem (organic

material-transporting) elements; xylem has thickened cell walls, which make it easier to

distinguish from neighbouring cells, and is often used to gauge vascular strand formation.

The composition of vascular bundles is itself highly regulated, and exhibits polarity that

is linked to the ad-/abaxial (upper/lower) polarity of leaves and to shoot apical meristem

(SAM) patterning [3, 42–44]. The intricate arrangement of different cell types within leaf

vasculature has been studied extensively [45–50], but willnot be considered further here.

4



1. Introduction

Fully differentiated cells are the last stage in vein formation, and we are interested not in

the final state, but in how that stage is reached.

Future vascular cells, comprising the cambium (which will yield both xylem and phlo-

em), are identifiable by their elongated, narrow shape; thismorphology is first visible

in the procambial (vascular meristematic) stage of development [51]. Even before this,

though, cells have committed to eventual vascular fate, as evidenced by specific expression

of marker genes. The stage when vascular cell specification has occurred but no anatom-

ical changes are visible is referred to as either the pre-procambial or provascular stage

of development [15, 51]. The progress of cellular development from unspecified ground

meristem (GM) to prepro- to pro- to true cambium, and then through terminal differen-

tiation, can be traced by the expression of various marker genes at specific developmental

stages [15, 18, 52–54] and by morphological changes. Looking at the earliest possible

stages of pattern formation is important, because very different ideas about auxin produc-

tion, localization and flow direction can arise from observations of different stages. For

instance, xylem in secondary vein loops appears to differentiate from the leaf tip down-

ward [12]. Procambium formation, though, occurs nearly simultaneously along the entire

loop, and the expression of pre-procambial marker AtHB8::GUS starts at an existing vein

and extends upward [15]. Similarly, the midvein forms acropetally, despite a dependence

on basipetal auxin flow [45,55].

The involvement of auxin flow is a key feature in vein formation. An approach com-

plementary to the vascular development markers mentioned above is the use of auxin-

responsive promoters such as DR5 [56, 57] to visualize sitesof high auxin activity, which

to a large extent coincide with areas of vascular differentiation [18, 41]. The auxin trans-

port system, especially the auxin efflux carrier PIN, also has a demonstrated involvement

in vein formation and patterning [14, 17, 58–60]. Cells are marked by PIN and DR5 acti-

vation nearly a day before AtHB8::GUS expression becomes evident [16]. PIN expression

is particularly interesting, because its polarity predicts auxin flow direction, and it is itself

5



1. Introduction

regulated by auxin [61–63]. (See Section 2.2 for more on PIN.) A recent study of PIN

localization in leaves concluded that the expression of PINoccurs at the time when pre-

procambial cells are first being selected from the ground meristem [16]. In a mechanism

similar to that proposed to operate in the meristem during phyllotaxis [64, 65], auxin pro-

duced in slightly older leaves [41] is transported through the epidermis and converges at

a single site, where it is internalized and leads to PIN expression in subepidermal tissues.

The subepidermal PIN is localized basally along the route ofthe future midvein. As the

leaf grows, the same sequence of events is reiterated multiple times: auxin collects at an

epidermal convergence point, which then becomes connectedto the midvein by a zone of

cells which gradually narrow to a single strand with basal PIN polarity, and finally the

upper part of the loop develops in a similar manner [16]. Thusprocambial development

seems to occur along strands of tissue with a stable polarized auxin flow.

The observation of zones of auxin flow narrowing into single auxin-transporting files

of cells is reminiscent of a classic series of experiments bySachs, in which he showed

that auxin flow is capable of inducing the formation of veins (in pea stems) [66]. On the

basis of these experiments, Sachs proposed the ‘canalization hypothesis’ [67], which posits

an autocatalytic feedback between auxin flow and auxin transport capacity. Cells with

high levels of auxin flow undergo changes that make them more efficient at transporting

auxin. When coupled with an asymmetry of efflux transporters, as in the chemiosmotic

hypothesis, auxin produced in one zone becomes ‘canalized’into files of cells specialized

for auxin transport (Fig. 1.5) in a manner analogous to the formation of gullies by water

drainage in soft terrain [68].

The canalization hypothesis provided the impetus for a series of modelling papers by

Mitchison in the early 1980s [69–71]. Mitchison’s models involve feedback between auxin

flux and some parameter of the transport process. He first [69]considered purely diffu-

sive auxin transport in an array of cells, with a linear auxinsource and sink at the top and

bottom of the array, respectively. Destabilization of an initially uniform linear flux gradi-

6



1. Introduction

Figure 1.5: Schematic representation of the canalization hypothesis. Auxin produced in

leaf margin cells (top row) is transported basally. Random variations in transport result in

one cell having a slightly higher auxin flux than its neighbours. That cell thereby becomes

better at transporting auxin, which induces higher flux in the cell directly below it, and so on.

High-flux cells, since they rapidly export their auxin contents, become sinks for the auxin of

neighbouring cells, and positive feedback results in a file of cells (a ‘canal’) with high auxin

transport capacities. Cell shading indicates relative auxin flux intensity.

ent leads in this model to the formation of distinct channelsof auxin flow from source to

sink, provided the dependence of the diffusion coefficientson flux is more than linear. In-

corporating growth into the cellular array allows the formation of branching flow patterns,

and loops of vein could be generated by multiple interactinglocalized auxin sources or by

moving sources. The pattern of these localized sources was suggested to perhaps be a prod-

uct of activator-inhibitor patterning, changing in time with changes in leaf shape or size.

Mitchison suggested that diffusion-based patterning, with a distributed and slow-changing

auxin source, was an appropriate model for initial large-scale leaf patterning. Later, more

rapidly changing local sources could effect vein patterning on a smaller scale. Mitchison’s

diffusion-based model was able to reiterate some phenomenaobserved by Sachs [66], such

as the ‘repellent’ effect of nearby strands if both are carrying high auxin fluxes, and the

formation of cross connections from new sources to previously formed strands with low

flux.

7



1. Introduction

Diffusion alone, however, cannot account for some observedphenomena, such as vein

loops with circulatory flow. Mitchison therefore also considered models with polar auxin

transport, particularly in a subsequent paper [71]. This model supposes auxin pumps or

channels at one end of each cell, whose number or transport efficiency increases with in-

creasing auxin flux. Again, transport efficiency must increase more than linearly with the

flux if destabilization of an initially uniform flow pattern is to result in specific strands of

cells with higher auxin transport capacity, which “may be regarded as precursors to veins”.

Under appropriate conditions (high auxin concentration),small loops of continuous auxin

flow can also form, which was not possible for the purely diffusive model. In order for

vein formation to occur in this model, cell polarity (given as the ratio of polar to diffusive

transport) cannot be too large. The allowed polarity can be quite a bit higher, however,

if the cell contains a large vacuole with an auxin-impermeable tonoplast. The effect of

various configurations of such intracellular features on auxin transport velocities was also

considered by Mitchison [70,72,73].

Recently, Rolland-Lagan and Prusinkiewicz investigated the ability of canalization-

based models to account for various experimentally observed features of leaf vein for-

mation, using Mitchison’s facilitated diffusion (FD) and polar transport (PT) models as a

basis [74]. New model variants introduced by these authors included an explicit separate

term for passive diffusion, and the effects of various source and sink configurations were

also investigated. The modelled variables are transport coefficients, interpretable as related

to the number of available auxin transporters (or channels). Background and auxin flux-

responsive production as well as degradation are included,with a set maximum coefficient

for each. In both FD and PT models, transport capacity increases as a function of the square

of auxin flux. As Mitchison found, the response of transport coefficients to changes in flux

must be non-linear for canalization to occur. Simulation results do not directly show vein

differentiation, but auxin fluxes. It is assumed that high auxin flux leads to differentiation,

and so veins are defined as files of cells which have reached their maximum transport ca-

8



1. Introduction

pacity, or which have average influx rate at least three timesgreater than a low-flux cell file.

Auxin-transporting cell strands originally have a low auxin concentration (and high flux),

but the concentration in the file can grow after the strand hasformed.

Using simulations of the refined model, Mitchison’s resultswere confirmed on larger

cell arrays, and the model was extended to account for other features of leaf vein formation.

With a line source and a single sink cell, it is possible for the model to reiterate the seem-

ingly paradoxical acropetal (sink-driven) formation of the midvein, even with basipetal

auxin transport [15, 45, 55]. Loops of secondary vein formation can also be simulated, ei-

ther (in the FD model) by sink movement (simulating leaf growth) and the introduction

of new auxin sources, or (in the PT model) with an extended auxin source and appropri-

ate parameter values. Model results showing similarities to the effects of auxin transport

inhibition or of vein continuity mutants can also be observed in appropriately configured

simulations. It is suggested that localized auxin sources may be important in the forma-

tion of loops and of discontinuous vein segments. The role ofbackground diffusion is also

highlighted in these models, where it can be isolated from the effects of facilitated trans-

port. With no background diffusion, even a single auxin source can lead to fairly closely

spaced strands of high auxin flux. Diffusion increases the ‘reach’ of the strands; existing

strands are able to serve as sinks to cells further away, reducing or preventing the formation

of multiple strands.

Rolland-Lagan and Prusinkiewicz’s canalization model [74] demonstrates at least the

potential to form discontinuous vein segments. It has oftenbeen argued, however, that

the existence of vein patterning mutants with discontinuous vasculature [75–78] implies

the inadequacy of canalization alone to explain vascular pattern development [13, 77, 79].

Another type of model sometimes proposed to simulate formation of vein networks in-

volves reaction-diffusion systems [80–83]. In a reaction-diffusion patterning system, a

local peak of an activator (differentiation-promoting substance) is formed by autocatalysis.

In response to the presence of the activator, an inhibitory substance is produced (or alter-

9



1. Introduction

natively, another activator is depleted). Because the inhibitor diffuses more quickly than

the activator, it keeps the activator from spreading. When activator production ceases as

a result of differentiation, though, inhibitor productionis also retarded. This releases the

inhibitory effect on neighbouring cells; small (random) initial asymmetries can be ampli-

fied into preferred directions for the formation of a new autocatalytic activator peak that

begins the process anew. The combination of local autocatalysis and long-range inhibi-

tion can generate a variety of patterns depending on the production and diffusion rates

of the substances involved and the details of their interactions. Attractive features of the

reaction-diffusion prepattern hypothesis for venation models are that the system displays a

biologically realistic characteristic spacing, with new veins intercalated if necessary during

growth. The simultaneous formation of higher-order veins has also been suggested to rely

on a preexisting pattern possibly due to a reaction-diffusion mechanism [13].

Canalization models such as those by Mitchison and reaction-diffusion mechanisms

discussed by Meinhardtwere for quite some time the two majorchoices for models of vein

formation. The availability of increasing amounts of molecular data, though, especially in

the last several years, and in particular the realization ofthe key role in pattern formation

played by specific auxin transport [14, 16–18, 41], has led tothe recent publication of nu-

merous models studying various portions of the auxin systemat a more-or-less molecular

level. Of particular interest, several of these models investigate the interplay between auxin

localization and its transport, the essence of the canalization hypothesis.

In one example of this, Feugieret al. performed a series of simulations on an ovoid lat-

tice of around 3000 hexagonal cells [84]. Variables considered are auxin fluxes and efflux

carrier concentrations for each cell face, and the internalconcentrations of transporters,

of auxin and of a hypothetical auxin-producing enzyme. Auxin is produced in all cells,

and a single cell corresponding to the leaf petiole serves asa sink. Auxin efflux trans-

porters are produced or reallocated based on the auxin flux through each cell face. Several

model variants were constructed: auxin flux between cells isallowed to be either a linear

10



1. Introduction

or saturating function of auxin concentration, and carrierproteins are considered either as

being independently regulated at each cell face, or as having a fixed total number, com-

petitively distributed to the cell faces from a central compartment. For each of the four

combinations of these characteristics, nine different functional forms were considered for

the dependence of PIN activity on (outward-directed) flux. Computer simulations of the

resulting auxin transport models showed that branching patterns of veins (files of similarly

oriented cells with high flux) could be formed when PIN response was accelerated (greater

than linear) with respect to auxin flux. Interestingly, though, while the branched veins al-

ways had high auxin flux passing through them, they could formwith either high or low

auxin concentrations relative to the non-vein cells. The former case occurred when cell

sides had to compete for a set pool of transporters; the latter when transporter levels were

independently regulated at each cell face.

Under all conditions investigated in [84], only linear veins form, not connected loops.

The same is true for a canalization model by Fujita and Mochizuki [85], which includes a

dependence of PIN metabolism on the presence of a diffusibleenhancer. This hypothetical

enhancer is produced in each cell at a rate dependent on the auxin flux through that cell.

The model shows branching vein formation under certain conditions, with a regular spatial

organization due to the reaction-diffusion-like enhancerbehaviour. With parameter values

intermediate between branching and non-pattern-forming regimes, inhomogeneities can

form without extending to global structure. Small closed paths of auxin flow are observed,

but these are not ‘vein loops’ in the conventional sense, as they do not connect different

parts of the leaf and are not formed by connecting pre-existing linear veins.

The formation of only branching vein patterns in several different canalization models,

and the existence of venation mutants with open-ended veins[86, 87], led Feugier and

Iwasa to suggest that the connection of veins to one another could be due to a process

separate from that involved in vein formation [79]. They proposed a model based on the

earlier one by Feugieret al. [84] with fixed total PIN in each hexagonal cell, linear auxin
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1. Introduction

flux, and PIN reallocation to a cell face depending on the square of the outward auxin flux

through that face. In addition, however, an entity called ‘flux-bifurcator’ is introduced,

whose presence is an indicator of strong auxin outflux (and likely vein identity) in a cell. If

two cells both with high flux-bifurcator levels are near one another they can interact, with

each cell reallocating auxin transporters to the side facing the other. Simulations (again

with uniformly produced auxin) result in the formation of branching or reticulated patterns,

depending on parameters. Discontinuous veins or loops of continuous flow may also result

under certain conditions. The authors draw attention to thefact that no cells occur with

flux out of two opposing ends; thus, though somewhat realistic venation patterns can be

generated, there is a difference with experimental data from Scarpellaet al. [16], who

found such a bipolar cell in every (secondary) vein loop.

In addition to the work already cited, there are many other models examining aspects

of auxin-related phenomena in plants. So, for instance, models have been developed to

reconcile theories of polar auxin transport through linearfiles of cells with experimental

observations in stem sections [88–90], to simulate auxin transport-mediated patterning in

trees [91, 92], to examine the interplay of vein patterning with leaf blade growth [6, 93],

and to study the feasibility of diffusion-based patterningof the area within an existing vein

loop [94]. Venation models using cellular automata [95] or biomechanical stresses [96,97]

have been proposed. Another well-known patterning phenomenon in plants, leaf phyllotaxy

(the arrangement of leaves around the stem), has also been modelled by various groups

– particularly within in the past year [81, 98–103]. While the levels of detail in these

model treatments vary, most examine only a few cellular variables explicitly. The effects

of other necessary components are incorporated either through simulation conditions, or

by introducing hypothetical substances to generate the necessary effects. It is therefore

often difficult to interpret these models in terms of the biochemical components involved

in auxin-mediated patterning. Of course, including more molecular detail increases the

complexity and the number of parameters in a model, making full exploration of state
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1. Introduction

space unrealistic. But this disadvantage is outweighed by the possibility of investigating a

range of cellular phenomena at a molecular level, as well as more facile comparison with

known mutants.

To my knowledge, no mathematical model for vein patterning has yet been developed

that includes both the transport of auxin and the signallingmechanism that responds to it,

despite the close connection between the two systems [62, 104, 105]. A great deal of ge-

netic and biochemical data relevant to both auxin transportand auxin signalling has been

published in recent years. My goal in this thesis has been to incorporate known intermolec-

ular interactions into a fairly comprehensive model incorporating both the auxin signalling

and transport networks involved in the very earliest stagesof vein pattern formation. Per-

forming and analyzing simulations with this model affords insights into the vein patterning

network in plants, and provides a convenient way to abstractthis complex system from the

even greater complexity of auxin’s effects in plants.

13



Chapter 2

Model Description

As described in the Introduction, auxin occupies a very important position in plant biology.

Thanks to the concerted efforts of research groups around the world, an understanding of

how auxin achieves its effects has begun to come into focus over the past several years.

Recent overviews of auxin biology can be found in,e.g., [105–112].

One of the disadvantages of auxin’s pleiotropic effects is that it is often difficult to

separate a single phenomenon or gene of interest from the many related processes that are

also affected. This is a major motivation for developing a mathematical version of the auxin

system: it enables examination of cellular changes at a higher resolution than is available

in the laboratory [113–115]. An added benefit, of course, is that many different conditions

can be simulated in a short time, without the limitations imposed by growth and handling

of real plants.

Conceptually, the auxin system in plants can be thought of intwo separate but inter-

acting parts: the signal transduction pathway by which auxin influences cellular activity,

and the mechanism of its transport between cells. This chapter provides a summary of the

molecular interactions involved in auxin biology, and describes how these interactions have

been incorporated in a mathematical model.

2.1 Auxin Signalling

Most biological signalling pathways begin with a cellular receptor recognizing a stimulus,

which is then transduced into some effect(s) [107, 116]. A logical way to begin the study

of auxin signalling, then, was to identify an auxin receptor. This had already been done in

the 1970s with the initial characterization of auxin-binding protein 1 (ABP1) [117]. ABP1

is essential for plant growth, and seems to be linked to earlyauxin responses, including ion

channel and voltage changes at the plasma membrane [118]. Most ABP1 is ER-localized,

14



2. Model Description

though, and despite extensive study its roles and mechanisms remain far from clear [119–

122].

Considerably more is known about responses not involving ABP1, especially auxin’s

effects on gene expression. Several characterized gene families display rapid expression in-

creases (within minutes) upon the application of auxin [123]. Rapidly auxin-induced genes

are identified by auxin-responsive elements (AuxREs) in their promoter regions [124,125].

Transcription factors known as auxin response factors (ARFs) bind to these AuxREs [124,

126, 127]. The earliest known and best-characterized of the22 arabidopsis ARFs act as

transcriptional activators. It has since been found that only those ARFs with glutamine-rich

middle regions are activators [128], but the function of repressing ARFs is less clear [129].

Interactions between ARFs are also possible, but to limit the complexity of our model we

consider only a single ARF species, acting as an activator.

Single ARF binding is insufficient for transcriptional activation (or possibly for a basal

level of transcription) [129, 130]. Dimerization of DNA-bound ARFs through their N-

terminal domains III & IV is required to induce full transcription of auxin-responsive

genes [105]. We assume every ARF binding site to be constantly occupied (i.e., initial

ARF binding to DNA is strongly favoured), and so only the poolof DNA with an ARF al-

ready bound must be explicitly considered. This simplification still allows for the inclusion

of constitutive gene transcription.

ARF+ARF/DNA
k+

1

k−1

−⇀↽− ARF2/DNA (2.1)

Once ARFs are dimerized on the promoters of auxin-responsive genes, transcription

commences. Both transcription and translation are rapid processes compared to other char-

acteristic time scales of the system, and thus gene product accumulation is modelled as

instantaneous upon ARF dimerization. Numerous cellular factors – promoter strength,

mRNA copy number, post-transcriptional modifications, etc. – influence gene transcription
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2. Model Description

and translation, and in general these effects will differ for different genes. Therefore, the

production rate for each of the auxin-regulated species in the model is specified separately.

ARF2/DNA
k2,AUX
−−−→ ARF2/DNA +AUX1

ARF2/DNA
k2,PIN
−−−→ ARF2/DNA +PINin

ARF2/DNA
k2,x
−−→ ARF2/DNA +Aux/IAA

(2.2)

AUX1 is an auxin influx transporter; PIN is an auxin efflux transporter. Both are discussed

further in Section 2.2, dealing with auxin transport. The third auxin-responsive gene prod-

uct considered in reactions (2.2) is a member of a family of early auxin-responsive gene

products known as the auxin/indole-3-acetic acid (Aux/IAA) proteins [123,131], which are

key actors in auxin signalling. Like ARFs, Aux/IAAs includedomains III and IV, and so

can heterodimerize with ARFs. This heterodimerization mayoccur by way of competi-

tive binding of Aux/IAAs to free ARFs, reducing the number offree ARFs available to

homodimerize on AuxREs [132]; alternatively, Aux/IAAs maybind to ARFs already on

DNA promoters, and physically impede ARF access. Either mechanism leads to a reduc-

tion in ARF homodimerization, thus preventing auxin-responsive transcription (reactions

(2.1) and (2.2)).

Aux/IAA +ARF
k+

3

k−3

−⇀↽− inactive dimer

Aux/IAA +ARF/DNA
k+

4

k−4

−⇀↽− inactive DNA

(2.3)

It is also possible for Aux/IAAs to homodimerize, reducing the number of free Aux/IAAs

in solution [133].

Aux/IAA +Aux/IAA
k+

5

k−5

−⇀↽− (Aux/IAA )2 (2.4)
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2. Model Description

Aux/IAA proteins are rapidly turned over within plant cells[134], and their function

depends upon this dynamic instability. Upon the application of auxin, Aux/IAAs are de-

graded by the 26S proteasome [135]. This degradation reliesupon the ubiquitination of the

Aux/IAAs by an E3 ubiquitin ligase, SCFTIR1 [136–138]. Auxin binding to the TIR1 (or

related AFB1-3) protein of the SCFTIR1 complex directly promotes Aux/IAA ubiquitin tag-

ging within 5 minutes [106,130,139–142]. We model the ubiquitination of Aux/IAAs by a

Michaelis-Menten-type equation; the maximal tagging speed depends on the efficiency of

the SCFTIR1 E3 complex, which is activated by auxin. For simplicity, tagging and degrada-

tion are treated together; in essence, we treat the degradation of Aux/IAAs as instantaneous

once the ubiquitin tagging has occurred.

Aux/IAA −→ v6 =
k6KSCF [auxinin][Aux/IAA ]

(1+KSCF [auxinin])([Aux/IAA ]+K6m)
(2.5)

As tagged Aux/IAAs are degraded in response to auxin, they release ARFs (reactions (2.3)),

which are then free to homodimerize and elicit transcriptional responses (reactions (2.2)).

2.2 Auxin Transport

In order to bind to TIR1 and effect signalling, auxin must of course first enter the cell.

We restrict our attention to specific polar transport, whichrelies on the action of dedicated

transport proteins. AUXIN-RESISTANT1 (AUX1) seems to be the major influx trans-

porter [143, 144], along with related (so far uncharacterized) LIKE AUX1 (LAX) gene

products [145–147]. Members of the PIN-FORMED (PIN) protein family function as ef-

flux transporters [63,148–151], as do MULTI-DRUG RESISTANCE/P-GLYCOPROTEIN

(MDR/PGP) proteins [150–153]. AUX1 and the PINs are by far the most well-studied

transporters, and so our model includes AUX1 and a single PINspecies (most likely

PIN1 in leaves [16]). Note (reactions (2.2), above) that auxin-responsive control of both

transporter-coding genes is allowed for in our model.
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2. Model Description

Both influx and efflux are treated in a similar way, with Michaelis-Menten kinetics.

Auxin on one side of the plasma membrane reversibly binds to atransporter (AUX1 or

Figure 2.1: A single leaf

cell, showing the extracellular

spaces between it and neigh-

bouring cells. Labels a – d

identify regions of extracellular

space and the adjacent cell

faces.

PIN), forming an enzyme-substrate complex (labelled C1

or C2, respectively). The transporter then releases the

auxin on the opposite side of the membrane. This mech-

anism is simplified (e.g., it doesn’t consider transporter

structural changes or the possibility of transporter com-

plexes rather than single enzymes) but it accurately models

phenomena such as transporter saturation. Auxin trans-

port processes are considered to be irreversible, as there

is no experimental evidence for bidirectional auxin trans-

port by either family of proteins. This may be related to

auxin’s different ionization states on either side of the cell

membrane (see below.) Polarity of transport implies a dif-

ference between various cell faces, and we therefore treat

the transporter concentrations in each face of the cell sep-

arately. Modelled cells are rectangular, with the cell sides and adjacent extracellular spaces

labelleda-d for the top, left, right, and bottom of the cell, respectively (Fig. 2.1).

AUX1 j +auxinout,j

k+
7a

k−7a

−⇀↽−C1j

k7b
−→ AUX1 j +auxinin j = a,b,c,d

PINj +auxinin

k+
8a

k−8a

−⇀↽−C2j

k8b
−→ PINj +auxinout,j j = a,b,c,d

(2.6)

AUX1 and PIN transporter proteins may also be constantly degraded. Note that PINs are

assumed not to be removed directly from the plasma membrane,but from an internal pool
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2. Model Description

of PIN proteins (PINin, discussed below), which is not directly involved in transport.

AUX1
k9
−→

PINin

k10
−→

(2.7)

PINs have been shown to constantly cycle between the plasma membrane (PM) and in-

ternal compartments in an actin-dependent manner [62,154–158], and it is this constitutive

cycling that allows for development and realignment of auxin transport polarity.In planta,

AUX1 also undergoes constitutive cycling and is asymmetrically localized in in some root

tissues [147, 150, 159, 160] and in the shoot apical meristem[65, 101]. However, AUX1

polarity has not been demonstrated for leaf mesophyll, and in the current model PINs are

considered to be the only polarized species, as originally suggested by the chemiosmotic

hypothesis for auxin transport [29, 30, 39]. It would be interesting to investigate the effect

of polarized auxin influx, particularly if the model were extended to non-leaf cells, but such

study is beyond the scope of the current work.

Asymmetrical auxin transport polarity is achieved in our model by targeting PIN pro-

teins preferentially to certain regions of the plasma membrane in a manner dependent on

the auxin concentration external to each face. (Recall thatfor computational simplicity,

we consider only a single type of PIN.) This requires separate rates for internalization

and externalization of PINs. In the absence of detailed knowledge of cellular mechanisms

for external concentration sensing, the rate of PIN exocytosis to each face of the plasma

membrane,vout, j, is given an arbitrary formulation which can be modified (by changing

the exponentn) to instantiate different forms of auxin dependence of the exocytotic rate.

The effects of changingn are considered in Section 3.7. PINs are re-internalized at acon-

stant rate from the PM to an internal pool (PINin), which is also where PINs originally
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2. Model Description

accumulate when produced (reactions (2.2)).

PINin −→PINj vout, j =
kout [PINin]

1+
(

[auxinout]j
Kt

)n

PINj −→PINin vin, j = kin[PIN]j

j = a,b,c,d (2.8)

The protonated form of auxin, which exists to some extent at the relatively low pH of

the intercellular space, can diffuse into cells. Diffusionis also possible between adjacent

regions of the extracellular space. Cytoplasmic auxin is nearly completely deprotonated

due to an elevated internal pH, and therefore can not diffuseout of the cell [144,161].

auxinout,j

k11
−→ auxinin j = a,b,c,d

auxinout,j

kECM
−−−→ auxinout,k j = a,b,c,d; k = neighbours of j

(2.9)

2.3 Model Equations

The model description outlined in the previous sections canbe formulated mathematically

as a set of differential equations (DEs). Most of the equations are derived from mass-

action kinetics, with enzyme-mediated steps following Michaelis-Menten-type kinetics, as

described. The rates of auxin addition and removal used in simulations are given by fin and

fout, respectively. The full set of DEs corresponding to the described model system is given

below. (As above, the four sides of the cell are labelleda throughd; the ‘neighbours’ of a

side are the sides adjacent to it (see Figure 2.1).)

d
dt

[auxinin] =
d

∑
j=a

{

k7b[AUX1]j[auxinout]j
[auxinout]j +Km1

−
k8b[PIN]j [auxinin]

[auxinin]+Km2
+ k11[auxinout]j

}
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d
dt

[auxinout]a = f in −
k7b[auxinout]a[AUX1]a

[auxinout]a+Km1
+

k8b[auxinin][PIN]a
[auxinin]+Km2

−k11[auxinout]a+∑
k

{kECM[auxinout]k} k = b,c

d
dt

[auxinout]j = −
k7b[auxinout]j [AUX1]j

[auxinout]j +Km1
+

k8b[auxinin][PIN]j
[auxinin]+Km2

−k11[auxinout]j +∑
k

{kECM[auxinout]k}

j = b,c; k = neighbours of j

d
dt

[auxinout]d = −
k7b[auxinout]d[AUX1]d

[auxinout]d+Km1
+

k8b[auxinin][PIN]d
[auxinin]+Km2

− k11[auxinout]d

+∑
k

{kECM[auxinout]k}− fout[auxinout]d k = b,c

d
dt

[Aux/IAA ] = k2,x[ARF2/DNA]− k+
3 [Aux/IAA ][ARF]+ k−3 [inactive dimer]

−k+
4 [Aux/IAA ][ARF/DNA]+ k−4 [inactive DNA]

−k+
5 [Aux/IAA ]2+ k−5 [(Aux/IAA )2]

−
k6KSCF [auxinin][Aux/IAA ]

(1+KSCF [auxinin])([Aux/IAA ]+K6m)

d
dt

[(Aux/IAA )2] = k+
5 [Aux/IAA ]2− k−5 [(Aux/IAA )2]

d
dt

[ARF] = −k+
1 [ARF][ARF/DNA]+ k−1 [ARF2/DNA]

−k+
3 [Aux/IAA ][ARF]+ k−3 [inactive dimer]

d
dt

[ARF/DNA] = −k+
1 [ARF][ARF/DNA]+ k−1 [ARF2/DNA]

−k+
4 [Aux/IAA ][ARF/DNA]+ k−4 [inactive DNA]

d
dt

[ARF2/DNA] = k+
1 [ARF][ARF/DNA]− k−1 [ARF2/DNA]
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d
dt

[inactive dimer] = k+
3 [Aux/IAA ][ARF]− k−3 [inactive dimer]

d
dt

[inactive DNA] = k+
4 [Aux/IAA ][ARF/DNA]− k−4 [inactive DNA]

d
dt

[AUX1]j =
1
4

{

k2,AUX [ARF2/DNA]
}

− k9[AUX1]j j = a,b,c,d

d
dt

[PIN]in = k2,PIN[ARF2/DNA]− k10[PIN]in

−
d

∑
j=a







kout [PIN]in

1+
(

[auxinout] j
Kt

)n − kin[PIN]j







d
dt

[PIN]j =
kout [PIN]in

1+
(

[auxinout] j
Kt

)n − kin[PIN]j j = a,b,c,d

Examination of these equations shows that the total concentrations of soluble ARFs and of

bound DNA in the cell are constant, leading to the following conservation relations:

[ARF]+ [ARF2/DNA]+ [inactive dimer] = a0,

and [ARF/DNA]+ [ARF2/DNA]+ [inactive DNA] = b0.

Therefore, the concentrations of the inactive ARF—Aux/IAAdimers, whether free or

DNA-bound, need not be tracked separately, but can be determined from the concentra-

tions of other species:

[inactive dimer] = a0− [ARF]− [ARF2/DNA],

and [inactive DNA] = b0− [ARF/DNA]− [ARF2/DNA].
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Chapter 3

Single-Cell Model

The differential equation model presented in Section 2.3 was simulated using the simu-

lation softwarexppaut [162]. Several different integrators are available inxppaut; the

(adaptive) ‘stiff’ integrator was used for simulations of the auxin model, because it is well

suited to handle dynamics on widely varying time scales. An initial step size ofdt = 0.05

was used, with minimum step sizedt = 1x10−12 and maximumdt = 1. Simulations under

a variety of conditions were duplicated with other integrators (Euler, Gear, RK4) and with

smaller step sizes to ensure reliability of results. This chapter describes how model parame-

ters were chosen, simplifications made to the original model, and the results of simulations

obtained using the simplified model.

3.1 Parameter Determination

After the DE system was derived, an arbitrary but biologically defensible set of parameters

and initial conditions was chosen as a starting point for simulations. These parameters were

then varied widely, both individually and in combination, and simulation results compared

and checked for plausibility. Unfortunately, direct comparisons to experiment are difficult,

because time courses – or even single-time determinations –of protein concentrations in

plant cells are rarely reported. Parameter values and concentrations reported based on this

model should therefore be considered as being in arbitrary units; establishing the qualitative

behaviour of the model is of primary importance. If suitablequantitative data become

available, model parameters could then be tuned to fit experimental time courses.

One assumption was introduced immediately to simplify the system. Auxin-mediated

transcriptional regulation of both transporter genes,AUX1 andPIN, is allowed in reactions

(2.2). However, for all simulations the total concentration of AUX1 was set to be constant

(k2,AUX = k9 = 0) and equally distributed between cell faces. Each parameter (with the
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3. Single-Cell Model

Table 3.1: Default parameter values for single-cell model.

Parameter Value Parameter Value Parameter Value

f in 0.1 fout 1 n 1

kECM 0.01 kin 1 kout 2

Kt 1 k+
1 1 k−1 1

k2,PIN 2 k2,AUX 0 k2,x 10

k+
3 1 k−3 1 k+

4 1

k−4 1 k+
5 1 k−5 1

k6 0.5 k7b 1 k8b 1

k9 0 k10 0.005 k11 0

KSCF 0.1 K6m 2 Km1 1

Km2 1 a0 0.5 b0 0.02

Table 3.2: Default initial conditions for single-cell model.

Species Concentration Species Concentration

auxinin 1 auxinout,j 0

AUX1 j 1 PINin 1

PINj 0 Aux/IAA 2

(Aux/IAA )2 0 ARF 0.5

ARF/DNA 0.02 ARF2/DNA 0

exception of those involving AUX1) was then varied over several orders of magnitude, and

interactions between sets of parameters were also considered. Since the model’s qualitative

behaviour is of interest, round values of the correct magnitude were chosen as defaults.

The default parameters and initial conditions deduced fromthis procedure are presented in

Tables 3.1 and 3.2.
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3. Single-Cell Model

3.2 Model Simplification

Upon viewing simulation results, it eventually became evident that several of the reactions

included in Sections 2.1 and 2.2 had redundant effects. The model outlined there is already

much simplified from reality. Nevertheless, less complex systems are easier to study, and so

any simplifications that preserve the core behaviours of themodel are, in general, desirable.

A key part of auxin signalling is the inhibition of transcription by Aux/IAA proteins.

Two possible methods of inhibition are included in reactions (2.3): Aux/IAAs may titrate

out free ARFs, or they may physically impede ARF dimerization on DNA promoters [163].

Either mechanism leads to fewer ARFs that are able to dimerize and promote transcription

of auxin-responsive genes. Simulations were carred out using each of the inhibition mech-

anisms separately, and it was found that there were only quantitative differences from the

case where both are included simultaneously. (Compare Figure 3.1a,b with 3.1c,d.) Since

Aux/IAAs are directly involved in the reaction that is being‘turned off’, their initial be-

haviour differs somewhat, but the traces can be made essentially identical by altering other

parameter values slightly. The model used in all subsequentsections therefore includes

Aux/IAAs interacting only with free ARFs (i.e., k+
4 = k−4 = 0).

Another simplification is warranted by lack of knowledge about the experimental sys-

tem. The dimerization of Aux/IAA proteins postulated in reaction 2.4 is certainly possi-

ble, but the extent and/or importance of this featurein vivo is unknown [105, 133]. As

above, simulations performed with and without reaction 2.4gave qualitatively similar re-

sults. (Compare Figure 3.1a,b with 3.1e,f.) Aux/IAA homodimerization was therefore

omitted from the model for all subsequent simulations (i.e., k+
5 = k−5 = 0). Future revi-

sions of the auxin model may include multiple Aux/IAAs, among which various differences

have been amply demonstrated [134, 164, 165]. Also, there seem to be some differences

(such as the involvement of domain I, not just domain III) between homodimerization and

heterodimerization of Aux/IAAs [166]. Therefore, if multiple Aux/IAA species were to be
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Figure 3.1: Comparison of original and simplified models. Time courses of internal IAA

(a,c,e,g) and Aux/IAA (b,d,f,h) concentrations. (a,b) Original model, with all parameters as

in Table 3.1. (c,d) Without Aux/IAA binding to ARF/DNA (k+
4 = k−4 = 0). (e,f) Without Aux/IAA

homodimerization (k+
5 = k−5 = 0). (g,h) See page 27.
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Figure 3.1: Continued from page 26. (g,h) Simplified model (k+
4 = k−4 = k+

5 = k−5 = 0). Note

similarity to original behaviour in (a,b).

considered in the course of further investigations, a suitably modified version of reaction

2.4 would likely assume greater importance.

3.3 Simplified Model Equations

The omission of Aux/IAA—ARF/DNA interaction and of Aux/IAAhomodimerization

means that any rate equations involving those processes must be modified. The DE system

corresponding to the simplified system is presented below (see also Figure 3.1(g,h)). Es-

sentially, it is the result of settingk+
4 = k−4 = k+

5 = k−5 = 0 in the equations of Section 2.3.

It is this set of DEs that was used as the basis for all simulations in the remainder of this

thesis. A schematic of the auxin system is given in Figure 3.2.

d
dt

[auxinin] =
d

∑
j=a

{

k7b[AUX1]j[auxinout]j
[auxinout]j +Km1

−
k8b[PIN]j [auxinin]

[auxinin]+Km2
+ k11[auxinout]j

}

d
dt

[auxinout]a = f in −
k7b[auxinout]a[AUX1]a

[auxinout]a+Km1
+

k8b[auxinin][PIN]a
[auxinin]+Km2

−k11[auxinout]a+∑
k

{kECM[auxinout]k} k = b,c
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3. Single-Cell Model

Figure 3.2: Schematic of the auxin signalling system. (a) No auxin present. Aux/IAA repres-

sors bind to ARF transcription factors, preventing ARF dimerization on auxin-responsive

DNA elements (AuxREs; TGTCTC motif) and thereby inhibiting transcription. (b) With auxin

present. Auxin enables the interaction of SCFTIR1 with Aux/IAAs, leading to their ubiquiti-

nation and subsequent degradation by the 26S proteasome. In the absence of Aux/IAAs,

ARFs homodimerize on AuxREs and transcription of PINs and of Aux/IAAs commences.
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3. Single-Cell Model

d
dt

[auxinout]j = −
k7b[auxinout]j [AUX1]j

[auxinout]j +Km1
+

k8b[auxinin][PIN]j
[auxinin]+Km2

−k11[auxinout]j +∑
k

{kECM[auxinout]k}

j = b,c; k = neighbours

d
dt

[auxinout]d = −
k7b[auxinout]d[AUX1]d

[auxinout]d+Km1
+

k8b[auxinin][PIN]d
[auxinin]+Km2

−k11[auxinout]d+∑
k

{kECM[auxinout]k}− fout[auxinout]d

k = b,c

d
dt

[Aux/IAA ] = k2,x[ARF2/DNA]− k+
3 [Aux/IAA ][ARF]+ k−3 [inactive dimer]

−
k6KSCF [auxinin][Aux/IAA ]

(1+KSCF [auxinin])([Aux/IAA ]+K6m)

d
dt

[ARF] = −k+
1 [ARF][ARF/DNA]+ k−1 [ARF2/DNA]

−k+
3 [Aux/IAA ][ARF]+ k−3 [inactive dimer]

d
dt

[ARF/DNA] = −k+
1 [ARF][ARF/DNA]+ k−1 [ARF2/DNA]

d
dt

[ARF2/DNA] = k+
1 [ARF][ARF/DNA]− k−1 [ARF2/DNA]

d
dt

[inactive dimer] = k+
3 [Aux/IAA ][ARF]− k−3 [inactive dimer]

d
dt

[AUX1]j =
1
4

{

k2,AUX [ARF2/DNA]
}

− k9[AUX1]j j = a,b,c,d

d
dt

[PIN]in = k2,PIN[ARF2/DNA]− k10[PIN]in

−
d

∑
j=a







kout [PIN]in

1+
(

[auxinout] j
Kt

)n − kin[PIN]j






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3. Single-Cell Model

d
dt

[PIN]j =
kout [PIN]in

1+
(

[auxinout] j
Kt

)n − kin[PIN]j j = a,b,c,d

The resulting conservation relations are slightly different than those in Section 2.3:

[ARF]+ [ARF2/DNA]+ [inactive dimer] = a0,

and [ARF/DNA]+ [ARF2/DNA] = b0.

Again, the conservation expressions allow the concentration of inactive ARF—Aux/IAA

dimers and of DNA-bound ARFs to be determined from those of other species:

[inactive dimer] = a0−b0− ([ARF]− [ARF/DNA]),

and [ARF2/DNA] = b0− [ARF/DNA]).

3.4 PIN Production & Competition Models

In addition to redistribution of PINs, an obvious way for a cell to respond to increasing

auxin levels is to produce more of the efflux transporters. While PINs were not originally

identified as auxin-responsive gene products [167], their transcription has since been shown

to increase in an auxin-dependent manner [168]. PIN production was therefore included

in reactions (2.2), though at a lower rate than for Aux/IAAs,which are primary auxin

response products. According to results reported by Geldner et al., however, PINs are not

significantly turned over except on quite long time scales [155]. An alternative version of

the model was therefore constructed, which maintains a constant total PIN level (by setting

k2,PIN = k10 = 0, as was done for AUX1 in Section 3.1). In this situation, cell faces must
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3. Single-Cell Model

Table 3.3: Default parameter values for PIN production and competition models. Parameters

shown here are only those that differ between the two models, or from the default parameters

in Table 3.1.

Parameter Production Competition Parameter Production Competition

k2,PIN 2 0 k10 0.005 0

f in 0.5 0.5 fout 1 1

compete for a limited number of PIN transporters, and this istermed the ‘competition’

model. The original version, with additional PINs producedin response to auxin, is called

the ‘production’ model. Default values for those parameters that differ between the two

model versions are summarized in Table 3.3, as well as the auxin flow parameters used

for simulations with both. All other parameters retain their default values in both model

versions (Table 3.1), and in both model versions PINs are able to cycle between cell faces

and an internal pool.

For consistency, all simulations depicted in the remainderof this thesis were started

from a low-auxin equilibrium. This state was obtained by starting with an internal auxin

concentration of 0.1 units, and no external auxin. The closed system (no auxin influx or

efflux; fin = fout = 0) was then simulated with all parameters at default values until equilib-

rium was reached (t= 100 000 for PIN production model, t= 200 000 for PIN competition

model). The resulting equilibrium concentrations are summarized in Table 3.4, and were

used as initial conditions for all subsequent simulations.

3.5 Auxin Flow Simulations

As described in the previous section, two possibilities were considered for PIN response to

auxin: the ‘production’ model (PINs are produced in response to auxin), and the ‘compe-

tition’ model (total PIN concentration is held constant). As expected, the two versions of
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3. Single-Cell Model

Table 3.4: Initial conditions for PIN production and competition model simulations, repre-

senting low-auxin equilibrium. These initial conditions were obtained by simulating models

using default parameters (Tables 3.1 and 3.3) and initial conditions (Table 3.2) until equilib-

rium was reached, as described in the text.

Species Production Competition Species Production Competition

[auxinin] 0.0561 0.0274 [auxinout]j 0.0112 0.0181

[AUX1]j 1 1 [PIN]in 0.1057 0.3387

[PIN]j 0.2091 0.6653 [Aux/IAA ] 36.32 71.65

[ARF] 0.0134 0.0069 [ARF/DNA] 0.0112 0.0199

the model exhibit marked differences in their responses to the onset of auxin flow. Figure

3.3 depicts the results of initiating top-to-bottom auxin flow through a model cell initially

at low-auxin equilibrium (i.e., at the initial conditions shown in Table 3.4). In the produc-

tion model, a low initial PIN concentration means that auxinentering the cell cannot be

efficiently exported, and the internal auxin concentrationinitially increases rapidly (Fig.

3.3a). By contrast, in the competition model, there is immediately enough PIN protein

present to efficiently remove auxin, and thus the internal auxin concentration only slowly

rises to its eventual level (Fig. 3.3b). The production model does also eventually attain a

stable internal auxin concentration, after enough PIN has been produced to keep up with

the influx of auxin (Fig. 3.3c).

In both the PIN production and competition models, the final external concentration

of auxin on each side of the cell is very similar (Fig. 3.3d,e). Interestingly, though, the

equilibrium concentrations of auxin inside the cell differsignificantly, as may be seen by

comparing Figure 3.3a to 3.3b. The PIN production model withsustained auxin flow has an

internal auxin concentration significantly lower than thatabove the cell (and even somewhat

lower than is found on cell sidesb andc; Fig. 3.3a,d). In the PIN competition scenario, by
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Figure 3.3: Comparison of auxin levels in PIN production & competition models; all parame-

ters at default values. PIN production model in (a,c,d); PIN competition model in (b,e). (a,b)

Internal auxin concentration time courses. (c) Total PIN concentration time course. (d,e)

External auxin concentration time courses.
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Figure 3.4: Comparison of Aux/IAA concentration time courses in PIN production & com-

petition models. All parameters set to default values. (a) PIN production model. (b) PIN

competition model.

contrast, the internal auxin concentration is much higher than the concentration outside the

cell (Fig. 3.3b,e). The possible significance of this difference is discussed in Chapter 5.

In addition to auxin levels, the concentration of Aux/IAA signalling molecules differs

between the two model versions (Fig. 3.4a,b). In the PIN production model, Aux/IAAs

are degraded while the internal auxin level remains high. Once most of the auxin has been

expelled from the cell by newly manufactured PINs, fewer Aux/IAAs are degraded than

are produced, and the concentration rebounds (Fig. 3.4a). This is consistent with initial de-

scriptions of Aux/IAAs as rapid auxin-responsive gene products [123, 169], increasing in

concentration some minutes after auxin application. In thePIN competition case, the much

higher equilibrium concentration of internal auxin induces continued Aux/IAA degrada-

tion; as a result, Aux/IAA concentrations remain low (Fig. 3.4b).

One drawback of the PIN competition model is its greater sensitivity to changing pa-

rameter values. If the rate of auxin addition is increased beyond that used in the simulations

above, the PIN production model compensates by producing more PIN proteins; though it

takes longer, eventually a stable equilibrium is still reached (Fig. 3.5a; compare Fig. 3.3a).

In the PIN competition model, though, the total amount of PINis fixed; increasing the

auxin influx to fin = 1 (with all other parameters unchanged), causes the obviously unphys-
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Figure 3.5: Comparison of PIN production & competition model responses to high auxin

flow. Model parameters as in Figure 3.3, except f in = 1. (a) PIN production model. (b) PIN

competition model.

ical situation of a constantly increasing internal auxin concentration, shown in Figure 3.5b.

Within real plants, auxin homeostasis mechanisms not included in our model would likely

be engaged to cope with such accumulation. In our model, of course, the initial amount

of PIN in the competition case could be artificially adjustedas necessary to compensate

for higher auxin influx, but the PIN production model is able to cope without such un-

desirable manipulation. In reality, the PIN competition and production models introduce

a false dichotomy; a hybrid of the two is more likely to operate. Competition for existing

PINs would provide the fast initial response to auxin, whileproduction of more PINs would

follow and enable a slower adaptation to a sustained auxin presence.

In both model versions, the distribution of PIN proteins among the sides of the cell is

key to auxin transport; the localization of PINs is the mechanism by which transport po-

larity is determined. The response of cellular PIN distribution to different levels of auxin

flow was examined. As expected, PINs are evenly distributed among cell sides in the ab-

sence of auxin flow (Fig. 3.6a). As the flow of auxin from the topto bottom of the cell is

increased, the PIN proteins become more and more asymmetrically localized (Fig. 3.6b,c).

Interestingly, the proportion of PIN proteins on each cell face is the same in both the PIN
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3. Single-Cell Model

Figure 3.6: Polar PIN redistribution in response to auxin flow. All parameters at default

values unless otherwise noted. Line weights (and circle diameter) are proportional to relative

concentrations of PIN proteins at each face (and in the internal endosomal pool). Weights

shown are for the PIN production model; results for the competition model are similar, but

have lower absolute PIN concentrations and higher internal auxin levels. (a) Low-auxin

equilibrium (f in = fout = 0). (b) Low auxin flow from top to bottom (f in = 0.1, fout = 1). (c)

Moderate auxin flow (f in = 0.5, fout = 1; i.e., default conditions, as used in previous figures).

competition and production models, despite (sometimes large) differences between abso-

lute PIN concentrations.

3.6 Auxin Pulse Simulations

PIN redistribution and other cellular events examined hereoccur very early after auxin ap-

plication. Externally visible changes such as cell polarization [170] and tracheary element

formation [171–173] occur at much later stages, and imply anirreversible commitment to

vascular cell fate. It is likely, however, that a commitmentto vascular cell identity is made

at a growth stage well before gross morphological changes occur. In particular, it is pos-

sible that a sufficiently large change in the PIN redistribution system modelled here could

cause the cell to ‘switch’ fates and adopt a stable auxin transport direction. The polarity

induced by different levels of steady auxin flow through the cell, treated in Section 3.5,

is stable only as long as the flow was continued. The response of model cells to pulses
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Figure 3.7: (a) Heaviside function, f (t) = H(t−5). f (t) = 0 for t < 5, and f (t) = 1 for t < 5
(b) Diagram of an auxin pulse. Here psize= 10, pi = 100and pf = 105, so auxin is added to

the extracellular space above the cell at a rate of 10 (units of concentration
time ) from t = 100until

t = 105.

(brief, intense applications) of auxin was therefore examined to investigate whether such a

mechanism could be sufficient to cause permanent cell polarization [40].

Simulations were run under the same conditions as in Figure 3.3 to facilitate com-

parisons, and allowed to proceed until equilibrium was reached (t= 5000). Auxin pulse

simulations were then begun from that equilibrium condition. Additional external auxin is

supplied by increasing the amount of auxin influx from above the cell for a specified period,

using the Heaviside step function built intoxppaut (Heaviside functionH(t−a) has value

0 for t < a and value 1 for t> a; Fig. 3.7a). The result is a slightly modified version of the

DE for [auxinout]a:

d
dt

[auxinout]a = f in +psize

(

H(t−pi)−H(t−pf)
)

−
k7b[auxinout]a[AUX1]a

[auxinout]a+Km1
+

k8b[auxinin][PIN]a
[auxinin]+Km2

−k11[auxinout]a+ ∑
k=b,c

{kECM[auxinout]k},

where new parameters psize, pi and pf are the magnitude, starting and ending times, respec-

tively, of the auxin pulse application. Figure 3.7b shows a diagrammatic view of an auxin

pulse.
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Figure 3.8: Cell response to auxin pulse application (additional influx rate=10, applied from

t=100 to t=105, after equilibration at the conditions of Figure 3.3). PIN production model in

(a,c); PIN competition model in (b,d). (a,b) Internal auxin time courses. (c,d) Aux/IAA time

courses.

Simulation results with auxin pulses are depicted in Figures 3.8 and 3.9. As seen in

Figure 3.8a,b, internal auxin does accumulate rapidly uponauxin application, as expected.

However, this accumulation is temporary, and the final internal auxin concentration is un-

changed from the constant-flow situation with no pulse applied (compare Fig. 3.3), in both

the PIN production and competition cases. The same is true for Aux/IAAs (Fig. 3.8c,d) and

PIN proteins (Fig. 3.9). The Aux/IAA concentration can be clearly seen to be diminished

by auxin-induced degradation, and then to be produced in response to auxin signalling and

return to its previous level. Similarly, the distribution of PINs changes dramatically to acco-

modate the additional auxin above the cell, but as soon as thepulse of auxin has beendealt

with, the system reverts to the state in which it was prior to the pulse.
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Figure 3.9: Polar PIN redistribution at cell faces in response to auxin pulse application;

conditions as in Figure 3.8. Line weights (and circle diameter) are proportional to relative

concentrations of PIN proteins at each face (and in the internal endosomal pool). Times are

in top left corner. (a) PIN production model. (b) PIN competition model.

The same phenomenon occurs with only minor variations if theauxin pulse is adminis-

tered at different times, from another direction than the steady flow, with no additional flow

at all, or if the pulse is larger or replaced by multiple (simultaneous or sequential) pulses

[data not shown]. In many of these enumerated cases the only difference from the simu-

lations shown is in the time that the system takes to return toits original state. If instead

of a transient pulse a permanently higher level of auxin flow is introduced, the cell (as ex-

pected) becomes more highly polarized (Fig. 3.10). But thischange, too, is not permanent;

reducing auxin flow again restores the same internal conditions. These results suggest that

the auxin relocation mechanism modelled here, while it is highly plastic, is not sufficient in

isolation to develop permanent cellular polarization of auxin transport. Instead, the equilib-

rium state adopted by the modelled cell depends only on the permanent auxin flow through

the cell.
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Figure 3.10: Cell response to increased auxin influx in the PIN production model (f in = 1.0,

after equilibration at the conditions of Figure 3.3). (a) Internal auxin time course. (b) Aux/IAA

time course. (c) Polar PIN redistribution. Line weights (and circle diameter) are proportional

to relative concentrations of PIN proteins at each face (and in the internal endosomal pool).

Times are in top left corner.

3.7 PIN Targeting

The cellular mechanisms for auxin’s control of transportertargeting remain largely un-

known. The PINOID (PID) kinase is at least partially responsible [150,170,174,175]. Dif-

ferent types of PIN proteins also affect each other and are partially functionally redundant,

even showing unusual polarity if required to compensate formissing transporters [63, 64,

176–178]. The signalling involved in this replacement seems to depend on thePLETHORA

(PLT) genes [176, 179]. Different PINs have different targetingpathways, too, though;

PIN1 is controlled by GNOM, while PIN2 and others are independent of GNOM con-

trol [156,180,181].
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The model developed in Chapter 2 posits a feedback from extracellular auxin concen-

tration to PIN targeting, but leaves the mechanism unspecified. Equation 2.8 describes the

targeting of PINs to cell membranes on the basis of external auxin concentration. The form

of this targeting – an important feedback from auxin to the control of its transport – can be

changed by altering the parametern, set equal to 1 for all simulations described thus far.

Simulations with various values ofn can be seen in Figure 3.11. Larger values ofn provide

a steeper response around the threshold (Kt), and typically more polarized cells.

In several other models of auxin transport [65, 101], PINs are localized towards cell

faces with higher external auxin concentrations, instead of lower. Such behaviour can be

reproduced by allowing negative values forn, corresponding to switching the bias of PIN

targeting (Fig. 3.11d,h). The single-cell model developedhere is thus quite flexible; of

interest will be the effects of changingn in multicell simulations.

It should be noted that despite the high degree of nonlinearity introduced by positing

higher values for exponentn, no indication of permanent cell polarization is seen. The con-

clusion reached in the previous section therefore remains valid: the modelled portion of the

auxin system is insufficient to determine permanent cell fate, at least under the conditions

so far considered.
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3. Single-Cell Model

Figure 3.11: PIN localization under differing hypotheses for PIN polarity determination. Line

weights (and circle diameter) are proportional to relative concentrations of PIN proteins at

each face (and in the internal endosomal pool). All parameters at default values except as

noted. (a-e) PIN production model, (f-h) PIN competition model. (a,e) n = 1 (default, as in

Fig 3.6c); in (e), Kt = 10. (b,f) n = 2. (c,g) n = 10. (d,h) n = −2.
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Chapter 4

Multicell Model

Pattern formation does not happen, of course, within a single cell, although the dynamics

of single cells underlie the phenomena observed in larger tissues. The model of auxin sig-

nalling and transport regulation developed in the previouschapters was therefore extended

to a two-dimensional array of cells representing, for instance, a layer of undifferentiated

subepidermal tissue in a leaf primordium. This array, called simply a ‘leaf’ for conve-

nience, is composed of individual cells each instantiatingthe reaction dynamics laid out in

Section 3.3. The cells communicate indirectly through the transport of auxin.

4.1 Model Setup & Parameters

Cellular auxin is exported (by PIN proteins) to and imported(by AUX1 transporters) from

the adjoining extracellular space, not directly to and fromneighbouring cells (Eqns. (2.6)).

The concentrations of auxin in the extracellular matrix1 (ECM) on sides j of a cell are

therefore variables ([auxinout]j) to be considered along with the concentrations of various

species within the (presumably well-mixed) cell. Every region of the ECM is shared by

two cells (Fig. 2.1), so[auxinout]a of a given non-edge cell is identified with[auxinout]d of

the cell above, and similarly[auxinout]b of each interior cell is identical to[auxinout]c of the

cell directly to the left. Each region of the ECM is assumed tobe rapidly mixed, and to

therefore have a uniform concentration of auxin. Cells on the margins of the leaf have no

extracellular space and no possibility of transport towards the outside of the leaf (except

for petiole cells; see below).

Cells are laid out in a rectangular grid for convenience. Thedefault dimensions chosen

are a 19 x 19 array of cells. This is fairly small for ease of simulation, and has an odd

number of columns so that there is a central cell file. The exact size is arbitrarily chosen,

1Extracellular matrix is used here to mean everything between the cell membranes of two neighbouring
cells –i.e., the cell walls and the middle lamella.
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Table 4.1: Default parameter values for multicell model

Parameter Value Parameter Value Parameter Value

Ncols 19 Nrows 19 prodb 0.0

width 1 prod 2.0 pwidth 1

but is not unrealistic for the stage of primordium formationduring which the very earliest

auxin transport-mediated patterning occurs [15, 16, 182].Assuming the modelled ‘leaf’

to correspond to this early primordium, an influx of auxin would be expected from the

epidermal convergence point (CP) at the tip of the leaf. Thisis modelled by allowing auxin

production in a number (parameter ‘width’) of cells in the center of the top row of cells at

a given rate (‘prod’) that is analogous to the parameter fin in the single cell model. (Note,

though, that this specific auxin production occurs in only one or a few cells, corresponding

to the internalization of epidermal auxin flow at the tip CP.)The multicell equivalent to the

single-cell parameter fout is somewhat less exact. The leaf primordium is attached to the

stem by a petiole which is assumed to connect to a sink in the form of stem vasculature. The

model accounts for this by allowing efflux in a basal direction from a number (‘pwidth’) of

cells in the center of the bottom row. Auxin reaching the petiole is assumed to be removed

by existing stem vasculature, and cannot re-enter the leaf.The default width for both

source (epidermal CP) and sink (petiole) is one cell (Table 4.1). A basal auxin production

rate (‘prodb’) in all cells is also allowed, though set to zero by default.

A summary of default parameter values used in multicell simulations is presented in

Table 4.1. Multicell simulations were carried out with C++,using the Roussels’ first-order

(adaptive) Gear integrator [183] with a default step sizedt = 0.0125.
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4.2 Simulation Results

A full exploration of parameter space in the multicell modelhas not yet been performed.

This section will describe the results of simulations at selected parameter values, as an

indication of the model’s performance and possible applications. An obvious place to start

is with the same default parameters and conditions as were used in the single-cell model.

Results of multicell simulations for 500 time units at the original default values (Tables 3.1

and 3.2) and at the default values for the PIN production model (Tables 3.3 and 3.4) are

illustrated in Figures 4.1 and 4.2, respectively. Apart from a few differences in detail, these

simulations and those using the default initial conditionsfrom the PIN competition model

[not shown] behave similarly. Auxin produced specifically at the top of the leaf rapidly

dissipates, and auxin concentrations form a gradient from top to bottom of the leaf. There

is some evidence of sink-driven formation of a central region of cells with noticeably lower

auxin concentration than its neighbours.

Because no internal PIN production is seen in the very earliest stages of primordium

formation [16], and intrinsic auxin production in those tissues is low [41], some simulations

were begun with initial concentrations of auxin and PIN set to zero. In this case, PINs are

present only if produced in response to auxin, so parametersk2,PIN = 10 andk11 = 1 were

set to compensate. Simulations under these conditions are shown in Figure 4.3. The model

behaviour is similar to that seen in Figure 4.2, though slower.

The auxin production peak in this simulation spreads out symmetrically, and dissipates

before sink-driven vein formation can occur. One way for this symmetry to be broken is

if one side of the auxin peak nears the sink before it can diminish. Simulations with a

smaller (19 x 9) leaf confirmed this, and a zone of reduced auxin concentration formed

along the entire central column of cells (Fig. 4.4). This suggests that, consistent with

experimental descriptions [16], perhaps midvein development begins at a very early stage,

when there are only a few cells separating auxin source and sink. Increasing the amount

of auxin production (by setting prod= 100) speeds the leaf simulation, and also allows
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Figure 4.1: Auxin concentrations in a multicell model with parameter and initial condition

defaults from single cell model, as per Tables 3.1 and 3.2. Each cell is represented by a

point at the intersection of two lines, and the height of the point above the basal plane (0 on

the z-axis) represents the concentration of auxin in that cell.
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Figure 4.2: Auxin concentrations in a multicell model with parameter and initial condition de-

faults from single cell PIN production model. (Parameters as in Figure 4.1 except differences

given in Table 3.3, and initial conditions as in Table 3.4. Axes are defined as in Figure 4.1.)
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Figure 4.3: Auxin concentrations in multicell model simulation with initial conditions

[auxinin] = [PINin] = [PINout]j = 0, and parameters k2,PIN = 10 and k11 = 1. All other

conditions, and axis definitions, as in Figure 4.1.
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Figure 4.4: Auxin concentrations in multicell model simulation with Nrows = 9 and other

conditions as in Figure 4.3. Axes are defined as in Figure 4.1.

a better view of the interesting wave-like transition from ahigh-auxin peak at the source

to low auxin concentration along the entire central column (Figure 4.5). Note that the

disappearance of the auxin peak at the leaf tip shown here is inconsistent with continued

DR5::GUS expression seenin vivo over several days [16,182].

In no simulation was there any sign of vein loops, which wouldnot in any case be ex-

pected to form until new epidermal convergence points form [16] and the original one at

the tip ceases functioning (presumably after midvein differentiation). The simulated ‘vein’
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Figure 4.5: Auxin concentrations in multicell model simulation with prod= 100 and other

conditions as in Figure 4.4. Axes are defined as in Figure 4.1.
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Figure 4.6: Auxin concentrations in multicell model simulations with n 6= 1. (a) n = 10, with all

other conditions as in Fig. 4.3. (b) n =−0.1, with default conditions except [auxinout]j = 10,

prod= 10, k2,PIN = 10, k11 = 0.1. Axes are defined as in Figure 4.1.

analogues seen are also only fairly broad zones of depleted auxin, not the narrow files of

high auxin expected on the basis of [16]. As described in Section 3.7, more pronounced

PIN localization can be seen for higher values of exponentn. Simulations under these con-

ditions, though, showed results similar to those performedwith n = 1 (Fig. 4.6a). As shown

in Figure 4.6b, negative values ofn do not lead to dramatically different behaviour either;

the central area still displays a low relative auxin concentration. This may be due in part to

the way the petiole connection is implemented, which is an area for future consideration.

Despite the limitations of the model under the conditions examined to date, rudimentary

auxin channel formation is seen to be at least possible with the multicell extension of our

single-cell model. It is hoped that a more comprehensive exploration of the multicell model

will reveal parameter conditions leading to more realisticresults.
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Chapter 5

Conclusion

5.1 Summary

The patterns of veins in plant leaves are a ubiquitous example of biological patterning, so

much so that we often don’t consider the complexity and variety of these patterns at all.

When time is taken to look for examples, the range of forms found in different species is

breathtaking. Even greater astonishment is provoked when one considers that the observed

final products – complete venation networks – are not the result of previously determined

schematics that plants just have to follow as they develop. Rather, the veins so vital to the

plants’ well-being are generatedde novo along with each new organ, in a manner that is

flexible enough to develop a connected, functional distribution system despite environmen-

tal perturbations. It is no wonder, then, that vein patterning has attracted the interest of

multiple groups interested in modelling the phenomenon mathematically.

Models have been developed to provide insights into many aspects of auxin-mediated

patterning. Several of these models generate visually pleasing results, but are not necessar-

ily linked to any particular system [80, 83, 96]. Even specific vein-formation models may

be relatively abstract [93]. Recent advances in genetic andbiochemical studies, especially

using the model plantArabidopsis thaliana, have made possible models that specifically

examine the role of auxin-related cellular components [79,84, 184]. Many are predicated

on the canalization hypothesis of Sachs [66, 68], which supposes that auxin flow through

a cell feeds back to increase the auxin transport capacity ofthe cell. Under this condi-

tion, random variations in auxin distribution lead to the development of preferred strands

of auxin flow, presumed to inform subsequent vein differentiation [69,71,74].

The transport of auxin is closely linked to its intricate andwell-studied signalling path-

ways [62, 104, 105]. Existing models for auxin behaviour tend to focus primarily or ex-

clusively on transporter behaviour. Enough biological data on auxin-mediated signalling
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has now accrued, however, to make possible reasonable guesses at the molecular interac-

tions underlying auxin’s effects in both signalling and transport [105–108]. With these data

in hand, the time was ripe for a molecular-level model to investigate the cellular basis of

auxin’s effects. My goal in this thesis has been to describe the development of a model

incorporating both auxin signalling and transport mechanisms.

Starting from a kinetic treatment of presumed molecular interactions, a differential

equation model was derived to describe the temporal dynamics of molecular species. In

simulations, this simple model showed biologically plausible responses to auxin applica-

tion. Interestingly, however, the modelled auxin-responsive network was unable to induce

the cell to adopt a permanently polarized auxin-transporting fate. This is consistent with

recent experimental results showing that the reorganization of auxin flow paths predates

the expression of even the earliest known procambial gene markers [16]. Expression of

auxin transporters occurs in a diffuse zone that then narrows to a single file of cells, much

as envisioned in the canalization hypothesis. Canalization of flow into connected strands

of auxin-transporting cells occurs even in mutant plants that are characterized by discon-

tinuous vein formation [16, 60, 77]. This suggests that somecomponent not included in

our model, perhaps connected to procambial development genes expressed during vascular

differentiation, is involved in establishing permanent polar auxin transport.

5.2 Discussion

The model presented in this thesis is highly simplified relative to biological reality. Indeed,

any useful model of a complex system must be, in some sense, ‘wrong’ – if it included

all the attributes of the original system, it would have verylittle utility as a model! [115]

Nevertheless, there are a number of areas of the model presented that could be expanded

upon if certain additional phenomena, particularly mutantphenotypes, are to be simulated

fully.
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The auxin signalling network included in Chapter 2 comprises a single self-regulating

Aux/IAA protein, interacting with a single type of ARF. In arabidopsis, the Aux/IAAs

comprise a family of 29 members, with some redundancy, but also a wide range of dif-

ferent behaviours and expression patterns [134, 185, 186].For example,IAA3/SHY2 and

IAA17/AXR3 mutant plants display opposite phenotypic effects [105]. Aux/IAAs are de-

graded by protein complexes which have their target specificity conferred by F-box pro-

teins, of which there are some 700 in arabidopsis [139,140,187]. The regulatory complex-

ity available in such a system supplies more than enough material for detailed investigation

through a separate model, even in isolation from downstreameffects. Nevertheless, at least

a little more of this signalling web could be fruitfully added to this model eventually. This

would, of course, necessitate a reconsideration of the simplifications introduced in Sec-

tion 3.2.

Differing behaviours of various Aux/IAAs, ARFs and other proteins in distinct cell

types could also explain some apparent contradictions in auxin transport behaviour. In a

2003 model of auxin-mediated phyllotactic patterning in the shoot apical meristem (SAM),

for example, Reinhardtet al. require auxin to be preferentially transported in the direction

of a local auxin maximum [65]. The model developed here is founded on exactly the oppo-

site hypothesis: auxin is transported by PINs away from areas of auxin accumulation, and

toward regions with lower concentrations. This discrepancy may be due to different regu-

latory circuits operating in leaves than in the SAM. That such cell-type-specific differences

can occur is amply demonstrated in studies of arabidopsis roots, where even neighbouring

files of cells can have completely opposite auxin transporter polarization [160].

Observed changes in transporter polarity could be due tode novo transcription of PINs,

or merely to a redistribution of existing proteins. Experimental results have shown that

transport polarity changes in roots do not depend upon transcription of new PINs [104],

and that cellular PIN levels change relatively slowly [155]. Nevertheless,PIN genes are

transcriptionally activated by auxin [16,109,168,182,188,189], and are regulated through
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the Aux/IAA—ARF pathway [104, 168]. There are also suggestions that auxin can in-

duce PIN downregulation [109, 168] and even specific PIN degradation, possibly via a

proteasomal pathway [190, 191]. Many of these responses aretissue-, cell-, time- and

concentration-dependent [43,104,168,176], leaving a substantial lack of clarity on the rel-

evance of auxin-mediatedPIN transcription. Therefore, model variants with either PIN

upregulation by auxin or a constant total level of PIN were considered (Section 3.4). Much

of the behaviour of both model versions is the same, which suggests that it may be difficult

to distinguish between the two situations experimentally.The most significant difference

between the results of the two variants is in the internal cellular concentration of auxin. As

outlined in Section 3.5, having PINs produced in response toauxin means that the level of

auxin inside the cell at equilibrium is lower than that in theextracellular space. Model cells

with a fixed, limited level of PINs, on the other hand, developa high internal auxin con-

centration relative to the cell exterior. This is consistent with simulation results reported by

Feugieret al., whose quite different modelling approach also showed thatauxin-responsive

PIN production results in vein cells with auxin concentrations lower than external levels,

while competition for a limited pool of PINs produces vein cells with auxin concentrations

higher than their surroundings [84].

The idea of vein cells having high auxin concentrations is contrary to the naive expec-

tation of veins acting as sinks in early canalization models[69, 71]. There is experimental

evidence from several species, howevever, that cambial cells are enriched in auxin relative

to surrounding cells [18, 41, 60, 184, 192, 193].PIN transcriptional regulation by auxin

seems obviously useful, providing an additional level of feedback for auxin-mediated con-

trol. According to the model results discussed above, this would imply a low internal auxin

concentration. However, auxin-regulated PINs and high auxin in veins are not necessar-

ily mutually exclusive. It would be beneficial for developmental control if plant tissues

were able to accumulate auxin even against a concentration gradient, and Kramer [184]

has suggested that this could be accomplished by, for example, two sets of transporters:
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one to move auxin polarly in transport channels (as includedin our model), and a second

to accumulate auxin in the strand from bordering cells. The lack of the putative second

auxin accumulation system in our model could perhaps account for the fact that auxin con-

centrations in the extracellular spaces of the multicell model are considerably lower than

intracellular auxin levels in both production and competition models. It is also important to

note that all multicell simulations performed – with eitherPIN production or competition

scenarios – display relatively low auxin concentration in putative vein areas. This seems to

be linked to the way the petiole is modelled, and merits further investigation.

The function of auxin as a differentiation signal within provascular tissues brings up an

interesting question: just what is it about auxin that cellsare interpreting? Many models

of the auxin transport system are phrased in terms of auxin flux [69–71, 79, 84, 85], and

for these models it is “implicitly assumed that there is a mechanism for measuring the

auxin flux leaving a cell” [71]. The model developed here, on the other hand, is formulated

with PIN polarization responding to the concentration of auxin, not the flux. The exact

mechanism for auxin sensing remains unclear, but there certainly does seem to be some

cellular capacity to respond to auxin concentrations. Discussions of root gravitropism are

usually phrased in terms of altered auxin accumulation, andit is a high concentration of

auxin that inhibits cell elongation [194]. In auxin transport mutants, extra veins form along

the leaf margin, where high auxin concentrations occur but flux is reduced [17]. It has also

been shown that it is active auxin, rather than functioning auxin transport, that influences

PIN expression in roots [168]. On the other hand, Sachs carried out an experiment where

auxin was provided in such a way that no flux was possible. Under these conditions, no

vessel differentiation occurred. When an outlet was provided, however, veins began to

differentiate in the direction of the resultant flux [67]. Similarly, in tobacco cells it is “auxin

polar transport, and not auxin per se, [that] mediates pattern formation” [195]. The highly

interconnected regulation of auxin transport, polarity and signalling causes difficulties in

separating auxin flux and concentration effects of auxin transporters. Alterations in polar
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auxin transport certainly affect patterning [196–198], but it is often unclear whether it is

the transportper se, or the delivery of auxin and resulting accumulation, that is causing

the observed effects [199]. It is certainly possible that different signalling pathways could

respond to both concentration and flux.

So how is the auxin signal – whatever it is – measured by the cell? Since auxin transport

is so central to both polarity and signalling, the transporter proteins are obvious candidates

for involvement. InEscherichia coli, it has been shown that glucose-6-phosphate (Glc6P)

transporter protein UhpC is also a sensor for external Glc6Pconcentration [200]. By anal-

ogy, perhaps PIN or AUX1 proteins could have roles as sensorsin addition to their transport

capacity. Cell measurement of efflux through efflux transporters was already suggested by

Mitchison, who also made the point that this would not be sufficient if diffusion was the

main method of auxin entry to the cell, because many of the ejected molecules would

simply reenter the cell and upset the accounting [71]. He proposed that specific auxin up-

take channels could, however inefficiently, remove the difficulty. The finding that active

auxin influx is more important than diffusion in most tissues[28] suggests that counting of

molecules by transporters is at least feasible. Alternatively, the non-catalytic NPA-binding

component of the auxin efflux complex might play a role [40, 201], or there may be a (so

far unknown) cell-surface auxin receptor [141].

The success of auxin-mediated patterning in plants is due atleast in part to its great

adaptibility. It would be undesirable to have cell identitydetermined too early in develop-

ment; in order to respond to developmental and environmental cues, the growing leaf must

maintain its plasticity until a stable pattern is formed, which can then be made permanent

by further differentiation. Such fixed cell fate – and the permanent polarization it implies –

is not seen in the undifferentiated cells modelled here, even when subjected to large inputs

of auxin under varying circumstances. These results are consistent with experimental find-

ings by Scarpella and others [15,16], who have shown that theearliest anatomically visible

vein precursors actually occur rather late in auxin response, and are preceded by stages
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which are much more plastic. It is at these earlier stages that auxin-conductive pathways

are set up, which (in wild-type plants at least) subsequently inform the locations of vas-

cular differentiation. This ‘staged’ concept of auxin-responsive vein formation also helps

to explain experimental results seemingly contradictory to the idea of canalization, such as

the vascular islands reported by Koizumiet al. [77] In such cases, the initial completely

connected pattern of auxin-conducting cells suffers fragmentation due to faults in further

development. Canalization in its purest form seems to occurat the very early stage of

leaf development investigated in this thesis, and multicell simulations suggest that it first

establishes strands of high auxin transport while the primordium is still very small.

Both Feugieret al.’s model mentioned above [84] and that of Dimitrov and Zucker,

which deals only with auxin diffusion [94], assume auxin to be produced everywhere in the

leaf. Much remains unknown about auxin production and degradation [202]. A certain low

level of leaf-wide auxin production seems likely, though perhaps not at the earliest stages of

development [41]. Others have argued for more localized auxin production zones [55,203],

though Scarpellaet al.’s recent results mentioned above suggest that these specific auxin-

producing areas may have been examined during leaf growth stages later than those of

interest for our model. They could perhaps be a consequence rather than a cause of early

patterning, and result from a quite different mechanism [16].

5.3 Prospects

“Auxin does everything” [24]. As is clear from the previous section, much remains un-

known, but new insights are constantly being gained into theelegant mechanisms by which

a single simple chemical can regulate such a diversity of phenomena. Auxin’s unprece-

dented mode of TIR1 binding [204], recently revealed by X-ray crystallography [142],

hints that it almost certainly has more surprises in store. As experimentalists reveal more

and more of the complexity of plant biology, theoretical models will develop in parallel
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and deepen our understanding still further. Hopefully the model of auxin signalling and

transport developed here will have a part to play in the story.
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