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Abstract

We present a novel looming object detection method for event-based cameras. Event-based

cameras capture a scene without generating redundant information thus reducing the needed

transmission power, bandwidth, and computations to process the redundant information

generated by conventional frame-based cameras. Regular computer vision algorithms can-

not be directly applied to them. Conversely, existing event-based algorithms that detect

looming objects have some limitations. In this thesis, an existing bio-inspired looming ob-

ject detection algorithm for frame-based cameras was adapted for an event-based camera.

The adapted algorithm was then used as part of a novel looming object detection algorithm

that is fast and capable of detecting multiple looming objects in a scene. We tested our

approach on the Davis Dynamic Vision Sensor event-based camera.
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Chapter 1

Introduction

Looming is the apparent enlargement of an object in a scene, indicating that the object is

approaching an observer. Detecting this optical effect is important in nature for the survival

of animals. Being able to detect a looming object or another animal helps to avoid colli-

sions and predators. For similar reasons, this task has also become important in the field of

robotics. In an age where self-driving cars are beginning to become commonplace, it is im-

portant that these machines are able to avoid collisions for the safety of their passengers and

others. A self-driving car should be not only as quick as a human in reacting to avoid hit-

ting a pedestrian, they should also be better. A second example is unmanned aerial vehicles

which some companies have gambled will become the way persons will receive purchased

goods in the future. Applications can even help people with special needs navigate in their

daily life [25].

It is not enough to only detect looming objects. A low response latency is also an impor-

tant factor in the success of avoiding collisions. In order to reduce latency, it is important

to consider the entire process from capturing the data representing a looming object to the

point when the looming object is detected. A conventional frame-based video camera cap-

tures an image frame every few milliseconds. As a result, there is a minimum latency for

those milliseconds between frames. Also, these data have to be transmitted to be processed,

and the complexity of the processing algorithm is at least the same complexity as process-

ing every pixel in each of the image frames. One obvious way to reduce latency is to reduce

the time between frames. However it also increases the amount of generated data which in
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1.1. MAIN CONTRIBUTIONS

turn increases the transmission and processing time. Another approach is to increase the

bandwidth and processing power, but at the cost of increasing the electrical consumption

of the device and hardware requirements. This approach would exclude applications where

the processing power or battery storage is limited. Another solution is to use a camera

that reduces the latency between frames, without increasing the amount of information. In

Chapter 2, we will introduce event-based cameras, a type of cameras that respond quickly

to changes in the scene but only generate relevant information. This approach reduces

hardware and bandwidth requirements while reducing latency in the response time.

A disadvantage to using an event-based camera is that most of the existing state-of-the-

art algorithms for computer vision tasks such as looming object detection cannot be directly

used on the output of an event-based camera. For the problem of looming object detection,

Ridwan and Cheng [23] designed an optical flow algorithm for event-based cameras. The

optical flow algorithm generates optical flow events which are then used as the input for a

looming object detector [22]. The approach solves the problems stated above with its own

limitations. For example, the algorithm cannot detect multiple looming objects or concave

objects.

In this thesis we analyze an existing looming object detection algorithm for frame-based

cameras [5, 28]. This is a bio-inspired algorithm based on a type of mouse retina cells

that react to looming motions. Adapting this algorithm for event-based cameras requires a

careful examination of its operations as well as appropriate choices of data structures, so

that the resulting algorithm behaves in a similar fashion but is much more efficient.

As with the original frame-based algorithm, the adapted event-based algorithm does

not properly detect looming objects that are larger than these cells. Instead, the scene

is partitioned into a number of overlapping cells of different sizes and the event-based

algorithm is applied to each cell. The new approach allows looming objects of different

sizes to be detected, even when multiple objects are looming at the same time.

2



1.2. ORGANIZATION OF THE THESIS

1.1 Main Contributions

In this thesis we present an adaptation of a bio-inspired looming detection algorithm [5,

28] that was originally created for traditional frame-based cameras into event-based cam-

eras. The accuracy of the event-based algorithm is evaluated by comparing its output

against that from the frame-based counterpart. It is shown that the results are accurate

qualitatively, and the event-based algorithm is significantly faster than the frame-based al-

gorithm.

A new event-based optical flow algorithm is then obtained using the output of the bio-

inspired looming detection algorithm. Finally, we proposed a new method of detecting

multiple looming objects by partitioning the observed scene into cells of different sizes. It is

shown that the final looming object detection algorithm is accurate, and has run time similar

to the previous algorithm of Ridwan [22] despite being able to detect multiple looming

objects in a scene. It should also be noted that the algorithms in this thesis are truly event-

based—a decision can be made for each event received from the camera without any need

to collect the events into frames to process in batches.

1.2 Organization of the Thesis

In Chapter 2, background concepts are introduced and previous approaches for both

frame-based and event-based cameras to detect looming objects are described. Chapter 3

presents the adapted bio-inspired algorithm for event-based input, as well as experimental

results on the effectiveness of the adapted algorithm. Chapter 4 shows how the adapted

algorithm can be used to compute optical flow, and presents a novel approach to multiple

looming object detection. Experimental results are shown to demonstrate the effectiveness

of the final algorithm. Concluding remarks and possible directions for future work are given

in Chapter 5.
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Chapter 2

Background

2.1 Looming Object Detection

Looming is the effect perceived by an observer when an object is approaching it. The

object appears to grow larger as it comes nearer [24]. There are neural circuits in animals

that detect approaching objects [21, 27].

In computer vision, we can take advantage of the looming effect to automatically detect

if an object is approaching a digital camera. There are several algorithms for conventional

cameras [8, 18, 19, 26]. The problem lies in separating the object from the rest of the image,

and determining if it is actually growing larger. It is in the former that problems arise.

Objects can have irregular shapes, and we could mistake an object for the background

of the image. Additionally, it is hard to distinguish multiple objects in the image. The

problem becomes even harder if there are multiple objects of different sizes. This method

of detection can be fooled if an object is actually growing, not approaching.

In robotics we usually need a way to avoid obstacles, or get out of the way of a moving

object. In some applications (for instance a self-driving car), these reactions need to be as

quick as possible. If we need to perform a significant amount of computations to detect

looming objects, the reaction time may be high. Even worse, a robot may have limited

hardware which is not dedicated solely to the camera.

4



2.2. EVENT-BASED CAMERAS

Figure 2.1: Example of Dynamic Range.

2.2 Event-Based Cameras

Conventional digital video cameras present a succession of images to represent a video.

As with digital cameras, each image is taken by an array of light sensors, in which each

sensor represents a single pixel. A common frame rate is 24 frames per second (fps). The

images, or frames, are usually taken every 41.67 milliseconds, enough to fool the human

eye into thinking it is looking at a continuous feed.

We should note that every frame a camera takes is a complete new image of whatever

is being filmed. Even if the actual image has not changed, a video camera will continue

to take a new image every 41.67 milliseconds and either stores it or transmits it. There are

compression algorithms that will remove redundant data between frames. These of course

need extra computations to run.

A scene, in a single image, contains areas with different light intensities. A scene with

a high dynamic range refers to an image where the difference between the lowest and the

highest intensity is very large. Conventional cameras have to reduce or increase the general

brightness of an image, to reveal the details of these areas. Favouring one extreme of the

range obscures the other one. Figure 2.1 shows an example of a photograph with high

dynamic range. The overall brightness in the image on the left is reduced allowing it to

show the details of the sky. The brightness is increased on the right allowing it to show the

details of the city, but the sky is too bright to appreciate its details.

5



2.2. EVENT-BASED CAMERAS

In dim light a frame-based camera will need to reduce its frame rate to increase the

exposure time. This is needed so that enough light reaches the camera’s sensors. Each

frame in a video is a sample of the scene being filmed, hence it is affected by sampling

issues. When the frame rate is below the Nyquist Rate [9], the video will present temporal

aliasing. In other words, the frame rate has to be twice as fast as the movement in the scene

it is filming, or its representation will be incorrect. Some applications, such as self-driving

cars, will need to react to quicker movements than the frame rate of a conventional camera.

There are commercial cameras that can capture 1000 frames per second [1], rather than the

usual 24, however these will generate proportionally a huge amount of redundant data.

Neuromorphic engineering is a concept that uses analog and digital electronic circuits

to implement scalable architectures that emulate the architecture of biological brains [16].

These architectures use a threshold logic. Just as neurons, an element in a neuromorphic

architecture gets activated when the weight of its input goes above a certain threshold.

Event-based cameras, such as the Davis Dynamic Vision Sensor [12], are an example of a

neuromorphic architecture.

Event-based cameras take a different approach to traditional cameras. As their name

states, instead of sending frames they send events. An event is triggered when the log

luminance detected by any pixel in the sensor of the camera changes beyond a particular

threshold. This means, if the input becomes darker or brighter. Each pixel in the sensor

is independent from each other, and each will report this change in log luminance asyn-

chronously. An event consists of the coordinates of the pixel, the time stamp of the event,

and the polarity of the change (from bright to dark or from dark to bright).

The event-based camera used in the experiments in this thesis is the Dynamic Vision

Sensor [12] (DVS), specifically the DVS240 [11] model manufactured by Inivation. It is

a low-power-consumption camera, with reduced data rate, high speed (reacts in under a

millisecond) and a high dynamic range.

A sample comparison of a regular camera and the DVS can be found in Figure 2.2. On

6



2.2. EVENT-BASED CAMERAS

Figure 2.2: The Dynamic Vision Sensor (DVS) being carried down a hallway.

the left is a frame of a regular video output (which the DVS can also generate). On the

right is a representation of the events in the DVS captured for a window of time. The green

pixels are positive (from dark to bright) events, and the red are negative events.

There are several benefits when using an event-based camera. These cameras do not

need the computations a frame-based camera requires to compress the information, because

they do not generate redundant information. When the scene contains a high dynamic range,

there is no need to change brightness settings, for every pixel in an event-based camera is

independent of the others. The camera will not take the pixels’ luminance into account,

only when there was some significant change in log luminance. Because the sensor is

constantly exposed, an event-based camera can still capture scenes in dim light. As long as

the changes in log luminance are greater than the camera’s threshold, they will be reported.

Event-based cameras are less susceptible to aliasing. For instance, the DVS [11, 12] has a

minimum latency of 12 microseconds, and a typical latency of 30 to 1000 microseconds. In

comparison, a 1000 fps camera has a minimum latency of one millisecond.

There is a drawback with event-based cameras, though. Computer vision algorithms,

such as those for detecting a falling person [17], that have been implemented in regular

cameras cannot be used directly with the DVS. Our work is to implement new algorithms

or adapt existing ones.
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2.3. BIO-INSPIRED LOOMING DETECTION

Figure 2.3: Sample receptive field.

The events in the DVS are represented using the Address-event Representation [13]

(AER). This is inspired on how regular neurons communicate with each other. The maker

of the DVS provides a library that uses an implementation of AER for both Java [13] and

C [14, 15]. These libraries define a Polarity Event that contains information about a gen-

erated event, including the x and y coordinates, time stamp, and polarity of the pixel that

changed.

2.3 Bio-Inspired Looming Detection

Fülöp and Zarándy [5, 28] implemented a mathematical model that describes one type

of cells in the mouse retina. This cell gets activated when a dark object is looming. These

cells (also called receptive fields) are arranged into a grid (Figure 2.3). The cells may

overlap, and each cell contains an equal number of excitatory and inhibitory channels.

An inhibitory channel responds to changes from dark to light. An excitatory channel

responds to changes from light to dark. If a dark object is approaching, several elements

in the light sensor will turn from light to dark, firing the excitatory channels. At the same

time, there will be little response from the inhibitory channels. The opposite happens when

a dark object is moving away from the camera (recessing). When a dark object is moving

sideways, the same number of elements will go from dark to light as from light to dark. In

other words, the same amount of excitatory and inhibitory channels will fire.

The model just described can only detect dark looming objects in front of a bright

8



2.3. BIO-INSPIRED LOOMING DETECTION

background. Fülöp and Zarándy [6, 28] improved their model to detect both dark and

bright looming objects. The new model focuses only on whether there is a change at all.

The excitatory channel is redefined to respond when the intensity changes in a pixel where

up until now there has been no change. The inhibitory channel now responds to a pixel that

had intensity changes recently, but is remaining constant now. As an object moves in the

picture its edges obscure the background, provoking changes in intensity, and increasing the

activity in the excitatory channel. After some time the pixels affected by the edge are now

inside the object, their changes in intensity become very small, provoking activity in the

inhibitory channel. When an object approaches, there will be an outline of excitatory pixels

in the shape of the object, surrounding a similar outline of inhibitory pixels. There will be

more excitatory than inhibitory pixels. This can be seen in Figure 2.4, where the edge of

an approaching square generates a perimeter of excitatory pixels, with an trailing perimeter

of inhibitory pixels. The opposite happens when the object is moving away, which is also

called recessing. When an object is presenting lateral movement, the number of activated

excitatory and inhibitory channels will be the same. When the difference in excitatory

and inhibitory channels increases, there is a looming object. When the difference decreases

there is a recessing object. When the difference does not change, there is a lateral movement

or no movement at all.

The new model is achieved by preprocessing the image, through a series of functions.

First, a temporal convolution is applied against past values:

ui, j(t) =
s−1

∑
n=0

pici, j(t−n)wn (2.1)

where pici, j(t) is the intensity value of the image at positions i and j at time t, s is the

number of frames to compare, t is the present time, and w is a vector of weights, one per

frame. For example: w =
[
1;−1

2 ;−1
2

]
.

Equation (2.1) sets to zero all the pixels that have not changed in the last few frames. It

is comparing the values of each pixel in the current frame against values in previous ones.

9



2.3. BIO-INSPIRED LOOMING DETECTION

Figure 2.4: Excitatory (green) and Inhibitory (red) pixels.

Using the sample weights, if the pixel has not changed in intensity for 3 frames, the current

intensity will be multiplied by 1, the previous two will be multiplied by −1
2 , so the value of

u will be 0. If the pixel has just changed intensity, the sum will be non-zero. An increase

in luminance will give a positive u, while a decrease in luminance will give a negative

u. The magnitude of u will be directly proportional to the magnitude of the difference in

luminance.

To remove noise and small changes in luminance, the following functions are used:

g(u) =


(ui, j +od)wd if(ui, j +od)> 0

0 otherwise
(2.2)

h(u) =


(−ui, j +ol)wl if(−ui, j +ol)> 0

0 otherwise
(2.3)

picdi f fi, j(l) = g(pici, j(l))+h(pici, j(l)) (2.4)

Note that h(u) inverts a negative u, and g(u) makes a negative u = 0. The direction of

10



2.3. BIO-INSPIRED LOOMING DETECTION

the change in luminance has no effect in the computations. od and ol functions as threshold

values. g(u) filters negative values below od and h(u) filters positive values under ol . The

wd and wl constants exist as weights to the output of the filter.

To give an example of how the offsets work. Assume s = 2, w = [1;−1], od = 0, ol = 0,

wd = 1, and wl = 1. With this configuration ui, j(t) compares only the current and previous

frames, the offsets have no effect, and wd and wl have no effect on the computations. If the

pixel at (i, j) became darker by a magnitude of 5, ui, j(t) =−5. When placed in the filters,

g(−5) = 0 and h(−5) = 5. If the same configuration is used, but od =−10 and ol =−10,

then g(−5) = 0 and h(−5) = 0. The ol brings the −ui, j back into a negative number, so the

function outputs 0.

Figure 2.5 shows the effect of these equations when applied to an approaching square.

The square grows one pixel at a time in every direction. All pixels are either at maximum

brightness or 0. Thus, the output of the equations generates a hollow square with one-

pixel thickness. This video was created artificially, and within each frame the square grows

exactly one pixel in each direction. The pixels always change from the minimum intensity

value to the maximum one. Because of the nature of the video, only one frame needs to

be compared at a time, and there are no small brightness transitions. So there is no need to

correct any offset. The constants to generate the image were set to: w= [1;−1], od = ol = 0,

wd = wl = 1.

Using the filtered changes, the following equations calculate the response in the excita-

tory and inhibitory channels:

Ei, j(t) =
s−1

∑
n=0

picdi f fi, j(t−n)wen (2.5)

Ii, j(t) =−
s−1

∑
n=0

picdi f fi, j(t−n)win (2.6)

where i and j are the spatial coordinates of a pixel, s is the number of frames that will be

11



2.3. BIO-INSPIRED LOOMING DETECTION

Figure 2.5: Sample output of change detection.

evaluated, and both we and wi are weights for the convolutions in the excitatory/inhibitory

channels. Similar to w, we and wi may be set to [1;−1
2 ;−1

2 ], so two previous frames are

compared.

Follow-up operations ensure that only large changes in luminance are taken into ac-

count, by adding a certain offset:

he(x) =


(x+oe) if (x+oe)> 0

0 otherwise
(2.7)

hi(x) =


(x+oi) if (x+oi)> 0

0 otherwise
(2.8)

where oe and oi are offset values for their respective channels.

After the individual pixel values have been calculated the method calculates the value

for the whole receptive field.

resk,l = r

(
∑

(i, j)∈Nr(k,l)
he(Ei, j)−hi(Ii, j)

)
(2.9)

where Nr(k, l) is the receptive field at position (k, l), the evaluated (i, j) takes values of
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the coordinates covered by the receptive field, and r is a rectification function: r(x) =

x(sign(x)+1)/2.

Finally, comparing the current and previous res values, the algorithm decides if the area

is looming, recessing, or no-change/moving-sideways:

decision =


”recessing” if res(t)< res(t−1)

”lateral/nothing” if res(t) = res(t−1)

”looming” if res(t)> res(t−1)

(2.10)

The problem with this approach is that either we have a receptive field that covers the

whole image no matter where the centre is, or we have smaller fields that are unaware of

the others. The former will have to process the entire “frame” for every pixel. However,

the object may be too small, and the algorithm will spend time processing useless data. In

contrast, a large object may step over the boundaries of the receptive fields. This may cause

the individual receptive fields to give the wrong answer.

2.4 Optical Flow

In video processing, optical flow is the apparent motion of an object in video. It is the

perceived shift of intensity from one pixel to another. The optical flow of an object can be

represented as a collection of vectors at each pixel.

In the animal kingdom there are cells that get activated when a perceived object moves.

These specialized neurons process a large amount of information coming from their field of

view in a very short amount of time [21]. Estimating the optical flow is an important task

because it is a key component in solving motion detection problems.

Though there are existing optical flow algorithms [2, 10, 4], they are mostly imple-

mented for frame-based cameras. However, Ridwan and Cheng [22, 23] have designed an

optical flow algorithm that takes the input of an event-based camera.

The optical flow algorithm of Ridwan and Cheng works under the assumption that if a
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certain pixel had a log luminance change recently, and another pixel close to it has a change

of the same polarity, the object generating that change has changed position. Using these

two pixels, we can calculate a displacement vector. In an ideal example, when an object is

moving only the pixels at its edges will be changing and the ones in its body will remain

constant. Hence, an optical flow algorithm will output vectors at the edges of the object.

2.5 Dynamic Vision Sensor Looming Detection

Ridwan and Cheng [22, 23] developed an algorithm that uses the optical flow of an

object in a video to determine if it is looming.

A looming object detection algorithm that is based on optical flow takes the vectors as

input. When an object is looming, a significant portion of the vectors point away from its

centre. When it is recessing, a significant portion will point towards its centre. When it is

moving sideways, a significant portion of the vectors will point in the direction of motion.

The algorithm computes the centre of the object as the mean of all of these vectors. Then,

as explained above, if the vectors are pointing away from the centre, the object is looming.

Figure 2.6 shows an example of the Optical Flow of an approaching and a recessing image.

(a) Example of optical flow in a looming figure. (b) Example of optical flow in a recessing figure.

Figure 2.6: Example of optical flow.

In a regular frame-based camera this approach involves eliminating redundant pixels,

and computing frame by frame. The Dynamic Vision Sensor already does this for us.

Its stream of events will only contain the changing pixels which form the contour of the
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object. Ridwan’s approach computes the optical flow from the input of the DVS, and uses

it to detect looming objects towards the camera.

There are a few problems with this approach. First, if there are two objects in the field

of view, they will be considered as one. The algorithm was meant for a single object.

All similar vectors in a period of time are considered to come from the same object. The

algorithm will compute the centre inside one of the objects, or outside of both, and it will

produce an incorrect decision.

Second, if the object in the scene is concave, the output of the algorithm may be wrong.

The centre may be computed outside of the object itself. For simplicity, Ridwan’s algorithm

was designed for only convex objects.

Third, the sensor is imperfect, and sometimes it shows an incomplete silhouette of the

object. For example, perhaps only two-thirds of the boundary are reported by the DVS. The

lack of information may be enough to compute an incorrect centre or an incorrect optical

flow direction. The output would be incorrect.

Finally, an object may contain internal patterns. For example, the imperfections of a

rock. These will cause the optical flow algorithm to generate extra vectors. The looming

algorithm may decide that they are a part of the contour of the object, and may compute an

incorrect looming decision.

Fülöp and Zarándy’s algorithm, detailed in Section 2.3, has no problem detecting con-

cave objects because it does not need to compute a centre. Unfortunately, it cannot be

applied directly to an event-based camera. In the following chapter an adaptation of the

algorithm will be presented, along with how it benefits from using an event-based camera.
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Chapter 3

Event-based Bio-Inspired Looming
Detection

3.1 Introduction

An event is a discrete log luminance change in a pixel. The changes are discrete because

event-based cameras only generate events when the log luminance of an image pixel has

changed above a certain threshold. Event-based algorithms refer to those that process pixel

events separately as they arrive. This is opposed to frame-based algorithms in which a

complete frame is generated, transmitted and processed.

Section 2.5 presented Ridwan’s [22] algorithm to detect approaching objects using an

event-based camera, and enumerated the situations where it would fail to give the correct

decision. Section 2.3 presented Fülöp and Zarándy’s [6] algorithm to detect approaching

objects in frame-based cameras. This chapter will present an adapted algorithm for event-

based cameras. We will discuss the adaptation’s trade-offs, and the limitations of both

approaches.

To adapt the algorithm, it is necessary to consider the following issues:

1. There are no frames. Any decision has to be reached by comparing incoming pixel

events, against older recorded events.

2. Unlike the frame-based approach, there is not a fixed period of time between events.

The present and previous events may be substantially distant in time. Hence, it is

necessary to use thresholds. If the time difference between two events is greater than
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3.3. EVENT-BASED EXCITATORY AND INHIBITORY CHANNELS

the threshold the two events are not considered to affect one another.

3. The weight and offset constants in the equations are not necessary. Fülöp and Zarándy’s

algorithm deals with intensity levels, and these constants are used to remove small

changes. The input from the event-based cameras consists of only the direction of the

change. Small changes and the magnitude are not reported.

3.2 Picdiff and DVS Input

As explained in Section 2.3, event-based cameras only generate information on pixels

where the log luminance has changed beyond a certain threshold. Fülöp and Zarándy’s

algorithm emulates this behaviour through the following steps:

1. Attenuate repeated light intensities between frames using equation (2.1).

2. Attenuate changes below the value of a threshold, and ignore the polarity of the

change in intensity using equations (2.2) and (2.3).

When adapting the Fülöp and Zarándy’s algorithm, it was not necessary to emulate the

aforementioned steps. The output of an event-based camera is analogous to them.

To adapt the rest of the algorithm (described in equations (2.5-2.10)) the sections of the

picture were also separated into overlapping receptive fields.

3.3 Event-based Excitatory and Inhibitory Channels

As described in Section 2.3, equations (2.5) and (2.6) measure a pixel’s activity in the

excitatory and inhibitory channels. Similarly, the adapted algorithm defines excitatory and

inhibitory pixel-events:

Excitatory Event: an event generated by the camera. It is the first event to be received

after a period of time longer than the one defined in an excitatory threshold.
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3.4. COMPUTATION OF FINAL RESULT (RES)

eth eth ith

Excitatory Inhibitory

Excitatory set
Excitatory expire

Inhibitory set Inhibitory expire

Figure 3.1: A single event timeline

Inhibitory Event: an event generated by the algorithm itself after there has been a

period of inactivity (defined in an inhibitory threshold) since the last event from the

camera was received at that pixel.

As mentioned above, event-based cameras generate binary information. Similarly the

emulated approach does not quantify the activity in the excitatory and inhibitory channels,

but only whether there is any activity at all. Hence, there is no need to emulate equations

(2.7) and (2.8).

Figure 3.1 shows the lifespan of an event in a single pixel. An event is first received,

such that there had not been any event for that pixel for the time specified in eth (Excitatory

Threshold), the pixel becomes excitatory. Then, some time elapses, another period of eth,

and the pixel is no longer excitatory. Now the pixel is considered inhibitory. After the time

set in ith (Inhibitory Threshold) the pixel returns to a normal state.

Figure 3.2 shows the effect of receiving several consecutive events within the excitatory

threshold. The first event sets the pixel in a excitatory state. Then more events continue to

arrive, causing no effect, for none of their time stamps are more than one eth apart from the

first event. The first event expires, returning the pixel to a normal status. Because the last

event to arrive is newer that the expired one, the pixel is not set the pixel in an inhibitory

state. Only after the last event has expired, and after the time specified in exp th (expiration

threshold) has elapsed, the pixel is set to the inhibitory state for the duration specified in

ith.
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eth
. . .

eth exp th ith

Excitatory Inhibitory

Last Excitatory Last Event

Figure 3.2: Multiple events timeline

3.4 Computation of Final Result (res)

Equation (2.9) is emulated by counting the excitatory and inhibitory events inside of the

receptive field—subtracting the inhibitory count from the excitatory count and applying the

same rectification function on the difference. Finally, equation (2.10) was modified so that

res(t−1) is a previous result of the adapted version of equation (2.9). If this previous result

was above a period of time, defined in a resThreshold, the decision Nothing is returned.

Otherwise the same path as the original equation is followed.

In total, four thresholds have been defined:

Excitatory threshold (eth): the time that must have elapsed for an event between two

events for the second one to be considered excitatory. Also, the time the event remains

being excitatory.

Inhibitory threshold (ith): the time an event remains being inhibitory.

Expiration threshold (exp th): the time before a regular event expires.

res threshold (resThreshold): the maximum time between the previous res time stamp

and the current res time stamp.

3.5 Supporting Data Structures

As explained in Section 2.2, an event consists of the coordinates of the pixel where it

comes from, the time stamp when it occurred, and its polarity. The adapted approach keeps
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track of the time stamp of the most recent event at each coordinate in a two-dimensional

array. Any new event’s time stamp is compared with the one stored here.

There is a difference between the required approach to process inhibitory events and

the approach to process excitatory events. To decide if an event is excitatory, the algorithm

checks if the received event is the first to be received after a period defined in an excitatory

threshold. To decide if an event is inhibitory, the algorithm needs to find the pixels that have

received an event recently. The difference on the event’s time stamp and the present time

must be greater than the excitatory threshold, but smaller than the inhibitory threshold. A

solution would be to search through the most-recent-event array and count all of the events

that are within the inhibitory threshold. However, the algorithm would have to perform this

search every time a new event appears. Since the camera used for this thesis has 190×180

pixels, the adapted algorithm would perform 34,200 operations per event. This method is

inefficient, but there is a way to considerably reduce the number of operations:

1. The algorithm uses counters to keep track of how many excitatory and inhibitory

events are being observed by a Receptive Field at any point in time.

2. The algorithm needs to keep track of all the events it has labelled as excitatory, in-

hibitory or neither.

3. When an event is labelled excitatory or inhibitory, the algorithm increases the respec-

tive counter.

4. When the algorithm stops tracking an old event, the algorithm decreases its respective

counter.

A good data structure to keep track of events is a queue [3]. The adapted algorithm

adds a new event at the back of the queue. The oldest events are at the front. To stop

tracking, or expire, old events, the events at the front, as long as their time stamp is beyond

the inhibitory thresholds are removed. There are three queues that are needed:
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excitatory queue: for all events that are the first to come, after the time specified by

the threshold eth.

regular queue: for all the events that were not classified as excitatory.

inhibitory queue: When events from the previous queues expire, they are inserted into

this queue. To avoid repeated events (for instance, if an event is expired from the excita-

tory and regular queues at the same time) events are only added to the inhibitory queue

if they have the same time stamp as the most recent event, at their location.

Figure 3.3 shows how a single event transitions between the queues. Here, ∆1 =

current ts− last ts and ∆2 = current ts− event ts; eth, ith, and exp th are the excitatory,

inhibitory and the expiration thresholds, and exQ, regQ and inhQ are the excitatory, regular

and inhibitory queues. The following explains what happens after three iterations (three

events enter at different times).

When an event evt1 enters, current ts is set to evt1’s time stamp (last ts was set to some

initialization value), and ∆1 is calculated. If it is above the excitatory threshold, the event

is classified as excitatory and sent to exQ. Otherwise, the event is classified as regular and

sent to regQ. Now ∆2 is calculated using current ts and evt1’s (the only event in either exQ

or regQ at this point). Since at this point both time stamps are equal, ∆2 is zero. Regardless

of which of the two queues it was placed in, it will be below the threshold and evt1 remains

in place. There are no events in inhQ yet, so last ts is updated to current ts, and the function

ends.

When another event evt2 enters, current ts is updated, and it is treated as evt1. Now ∆2

is calculated using current ts and evt1’s ts. If the event was sent to regQ, it is compared to

exp T h; if was sent to exQ, it is compared to eth. If the value of ∆2 is below or equal to the

its corresponding threshold, it remains in the queue. If it is above, two things may happen.

If evt1’s time stamp is different than last ts it is only expired. Otherwise, evt1’s time stamp

is updated to current ts and sent to inhQ. For this example, it is supposed that the event
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evt instart

exQregQ

inhQ expire

∆1 > eth∆1 ≤ eth

∆2 > eth

∆2 ≤ eth

∆2 > exp th

∆2 ≤ exp th

∆2 > ith

∆2 ≤ ith

Figure 3.3: Event State Diagram

was placed in inhQ. Now, ∆2 is recalculated, using current ts and evt2’s (the only event in

either exQ or regQ at this point), as before it will be zero, and the event remains in place.

Again ∆2 is recalculated, using current ts and evt1’s (the only event in inhQ at this point),

it is also zero and the event remains in place. Finally, last ts is updated to current ts, and

the function ends.

When the third event evt3 enters, current ts is updated. The events flow in a similar

way as the previous paragraph until the function reaches the inhQ again. Assume evt2 also

entered inhQ. Now ∆2 is calculated using evt1’s time stamp (the event at the front of the

queue). If it is below or equal to ith it remains in place. Otherwise, it is expired. Just as

before, evt2 would calculate a ∆2 = 0. So it remains in inhQ. Finally, last ts is updated to

current ts, and the function ends.

3.6 Organization of Program Flow

The algorithm is implemented in an object-oriented language. There are three main

classes where the algorithm is implemented. As it can be seen in Figure 3.4, the classes

were implemented using the Observer Design Pattern [7], making them both subject and

observer. The Receptive Field Class implements the emulated functions. It holds a count
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each for excitatory and inhibitory events that gets modified through the notify function.

When the counts are modified, the Receptive Field is triggered into making a decision. The

Receptive Field is observed by any class that needs to learn about its decision—a graphical

display, for instance—and it observes the Container Class.

The Container Class holds all of the Receptive Fields that cover the image, and it holds

the three event queues explained above. Every time an event is added or expired from a

queue, the Container notifies all of the Receptive Fields that cover its location. These re-

ceptive fields then update their counts and process a decision. The Container Class observes

the Network Class.

The Network Class is responsible of creating and interconnecting the Container object,

all of its Receptive Fields, and any observer of the latter. It then observes the camera or

video input, and sends new events to the Container.

When a new event is generated in the camera, it is sent to the Network, which in turn

sends it to the Container. The Container classifies the event, places it in its corresponding

queue, and notifies the corresponding Receptive Fields. Then it processes the queues and

further notifies the Receptive Fields. For each notification, these update their counts and

compute a decision. For each decision, the Receptive Fields notify their observers.

3.7 Algorithm

This section contains the description of the adapted algorithm. It is divided into three

algorithms.

Algorithm 1 describes how an event is processed in the Container class when the notify

function is invoked. The conditional statement in lines 4 to 9 verify if the event is old

enough to be considered an excitatory event. If so, the corresponding receptive fields are

notified (Algorithm 2), else it is considered to be a regular event.

After classifying the input event, the algorithm proceeds to inspect the excitatoryQueue.

Any event older than the excitatory threshold is extracted (expired), and the corresponding
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Figure 3.4: Class Diagram

receptive field is notified (Algorithm 2). As shown in line 15, if the expired event’s time

stamp matches the last event’s time stamp, the event is added to the inhibitory queue. Also,

its time stamp is updated to the current time, for it is now a new event, and the corresponding

Receptive Field is notified (Algorithm 2).

Within lines 21 and 29 the algorithm proceeds to process the eventQueue in the same

manner as the above, except the Receptive field is not notified (Algorithm 2) as the event is

expired from the queue.

Finally, lines 30 through 34 show how the events are expired from the inhibitoryQueue.

Again, the corresponding Receptive Field is notified (Algorithm 2).

Algorithm 2 describes the actions taken by a receptive field when its notify function is

invoked.

The conditional between lines 4 and 7 is set in place so that a decision is only processed

on a change of time stamp. This is meant to avoid firing several times when processing

events with the same time stamp. If the event indeed contains a new time stamp, the time
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Algorithm 1 An event enters a container
1: Global Variables: Excitatory threshold eth, Inhibitory threshold ith; Array with the

last event time stamp for each location lastEvtT s; Queues of excitatory exQ, regular
evtQ and inhibitory inhQ

2: Input: Event e consisting of location x,y, time stamp ts.
3: Output: Notifications to observers (Receptive fields).
4: if e.ts− lastEvtT s[e.y][e.x]> eth then
5: exQ.push(e)
6: notify observers to increase the excitatory count.
7: else
8: evtQ.push(e)
9: end if

10: ts← e.ts
11: while not exQ.empty() and ts− exQ. f ront().ts > ith do
12: exev← exQ. f ront()
13: exQ.pop()
14: notify observers to decrease the excitatory count.
15: if exev.ts = lastEvtT s[exev.y][exev.x] then
16: notify observers to increase the inhibitory count.
17: exev.ts← ts
18: inhQ.push(exev)
19: end if
20: end while
21: while not evtQ.empty() and ts− evtQ. f ront().ts > ith do
22: ev← evtQ. f ront()
23: evtQ.pop()
24: if ev.ts = lastEvtT s[ev.y][ev.x] then
25: notify observers to increase the inhibitory count.
26: ev.ts← ts
27: inhQ.push(ev)
28: end if
29: end while
30: while not inhQ.empty() and ts− inhQ. f ront().ts > ith do
31: Eventev← inhQ. f ront()
32: inhQ.pop()
33: notify observers to decrease the inhibitory count.
34: end while

stamp is updated. Algorithm 3 is run, and the observers (such as a display) are notified.

Lines 8 through 20 decode the input message and take the appropriate action of increas-

ing or decreasing the excitatory or inhibitory counts.

Algorithm 3 runs the steps to make a decision in the Receptive Field, and notifies its
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Algorithm 2 A Receptive field is notified
1: Global Variables: Time stamp of the previously received event lastT s;

inhibitoryCount; excitatoryCount
2: Input: Event e consisting of location time stamp ts, event type excitatory/inhibitory

and action increase/decrease
3: Output: Notifications to observers (Displays or others).
4: if e.ts > lastT s then
5: lastT s← e.ts
6: Process the RF and notify observers.
7: end if
8: if e.type = inhibitory then
9: if e.action = increase then

10: inhibitoryCount← inhibitoryCount +1
11: else
12: inhibitoryCount← inhibitoryCount−1
13: end if
14: else if e.type = excitatory then
15: if e.action = increase then
16: excitatoryCount← excitatoryCount +1
17: else
18: excitatoryCount← excitatoryCount−1
19: end if
20: end if
21: lastT s← e.ts;

observers. Lines 4 and 5 calculate the res value by obtaining the difference between the

excitatory and inhibitory counts, apply the rectification function (same as in Section 2.3) to

it.

The conditional in line 6 verifies that the time stamp of the previous res value is within

the res threshold, and that both values are different. Otherwise, the decision is NOTHING.

If both conditions are met and the current res is smaller than the previous, the decision is

set to RECESSING. If the current res is larger, the decision is LOOMING.

Finally, the previous values are updated to the current, and the observers are notified.
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Algorithm 3 Process Receptive Field
1: Global Variables: Time stamp of the previously received event lastT s;

inhibitoryCount; excitatoryCount; Previous calculation of res lastResVal and its time
stamp lastResT s.

2: Input: Event e consisting of location time stamp ts, event type excitatory/inhibitory
and action increase/decrease

3: Output: Notifications to observers (Displays or others).
4: x← excitatoryCount− inhibitoryCount
5: res← x∗ (sign(x)+1)/2
6: if lastT s= lastResT s or lastT s− lastResT s> resT hreshold or res= lastResVal then
7: decision← NOT HING
8: else if res < lastResVal then
9: decision← RECESSING

10: else
11: decision← LOOMING
12: end if
13: lastResT s← lastT s
14: lastResVal← res
15: Notify observers about the decision

3.8 Analysis of complexity per event

Every time the algorithm is invoked by an incoming event, it adds the event to a queue,

and starts expiring old events. A single invocation of the algorithm could take O(n) time,

where n is the number of old events in the queues. However, this ends up emptying the

queues, and in the next invocation the algorithm would take constant time. This invocation

would add only one event to the queue, hence the next invocation would also take constant

time. The algorithm will do few operations most of the time, but may do a lot of operations

at any one time.

To better explain the complexity analysis, amortized analysis is used instead [3]. In Al-

gorithm 1, when an event is received, it is stored in the excitatory queue (and its receptive

fields are notified using Algorithm 2) or into the regular queue. After some time, the event

expires. If the event expired from the excitatory queue its receptive fields are notified using

Algorithm 2. If the event’s time stamp matches the one in the last event array, it is inserted

into the inhibitory queue, and its receptive field is notified using Algorithm 2. In the case
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that it is an excitatory event, and the pixel generates no further events, the event will trig-

ger the Receptive Field four times during its lifetime. In the case where the event is not

excitatory and not the last event to be received, it will not trigger anything. In conclusion

any event that enters the algorithm will trigger, at most, four receptive field decisions. All

receptive field decisions are done in constant time. Hence, processing each event is done in

constant time on average.

3.9 Experiments

3.9.1 Setup

To test the adapted algorithm, both the original frame-based algorithm and the adapted

algorithm were implemented in two separate programs. The event-based camera used to

test both algorithms is able to output both a stream of events and a regular video. Making

it possible to compare both approaches simultaneously.

The excitatory, inhibitory and res thresholds were set to the period between frames. So

all the events that generated a particular event are taken into account.

Each of the programs outputs its decisions into a file: the decision, its time stamp, the

location of the receptive field that is activating, and the size of the receptive field.

A program was written to compare the output of both implementations. It compares the

decisions made at a certain time between the two implementations and calculates the Preci-

sion and Recall rate. Because the frame-based implementation only generates information

at precise intervals (every 50ms in a 20 fps video) and the event-based algorithm generates

information every few microseconds, a threshold is used to bind the event-based decisions

to the nearest decision of the frame-based approach.

Table 3.1 shows the configuration used in artificial and real captures.
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Table 3.1: Configuration for tests.

Excitatory
Threshold

Inhibitory
Threshold

Res
Threshold

Evaluation
Threshold

Artificial Captures 50000 50000 50000 49999
Regular Captures 33333 33333 33333 33332

3.9.2 Dataset

A set of videos was created to test the efficacy of the algorithms. There are a few videos

that were created artificially. These were created using a program that simulated both each

frame of the video and each event. A brief description of them is given in Appendix A.

Table 3.2 shows the properties of the videos used in this chapter.

Table 3.2: Video Properties

Video Duration Frames
per second

Number
of
frames

Number
of
Events

Events per
second

MergingCards0 16.7s 30 502 752540 45062.3
MovingCard2 7.8s 30 234 891577 114304.7
MovingCard3 8.5s 30 254 616984 72586.4
MovingCard4 11.6s 30 348 998124 86045.2
MultipleRect0 10.0s 30 299 1664585 66458.5
MultipleRect1 14.8s 30 442 2734478 184762.0
NonConvex0 8.3s 30 249 643509 77531.2
NonConvex1 13.1s 30 394 863532 65918.5
NonConvex2 8.9s 30 266 403402 45326.1
RotatingCard0 7.9s 30 238 1000295 126619.6
RotatingCard1 8.6s 30 257 684831 79631.5
SpinningCard0 5.8s 30 173 395658 68216.9
SpinningCard1 8.0s 30 240 610202 6275.3
Testvideo 4.1s 30 122 494733 120666.6
Text0 6.7s 30 201 627565 93666.4
Text1 9.9s 30 298 1196079 120816.1
TwoCardsMoving0 7.9s 30 238 1006830 127446.8
TwoCardsMoving1 10.2s 30 308 375423 36806.2
TwoCardsMoving2 20.3s 30 609 861447 42435.8
Walking0 15.5s 30 466 4486973 289482.1
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3.9.3 Evaluation Metrics

Since our goal is to emulate the frame-based algorithm, the output of the frame-based

implementation is considered to be the ground truth. Precision [20] is defined as the number

of decisions in the event-based approach that have a matching decision in the frame-based

approach, over the total number of event-based decisions:

precision =
# of matches

# event-based decisions
(3.1)

Recall [20] is defined as the number of decisions in the frame-based approach that have

a match in the event-based approach, over the total number of frame-based decisions.

recall =
# of matches

# frame-based decisions
(3.2)

For the decisions to match, they must come from the same receptive field, the absolute

difference between their time stamps must not exceed the threshold, and they must have the

same decision.

High precision means that most of the decisions made by the algorithm are correct.

High recall means that most of the events that should be detected are being detected. A

high precision but low recall would tell that the algorithm is making the correct decision,

but it is not making many of them. A low precision but high recall would mean that the

algorithm is detecting most of the events it should be detecting, but it is also making a large

number of decisions it should not be making.

3.9.4 Machine

Table 3.3 shows the characteristics of the machine where the experiments were per-

formed, and Table 3.4 shows the specification of the camera used to record the videos.

The excitatory, expiration and inhibitory thresholds were set to 50ms, and the res thresh-

old was set to 100ms.
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Table 3.3: System specification

Name Value
CPU AMD A12 7th Gen 2.7GHz
RAM 4 GiB

Table 3.4: The Dynamic Vision Sensor camera specifications [11]

Name Value
Model DVS240
Optics CS-mount
I/O USB2.0
Software cAER
Power Source USB Type B
Power Consumption Low/high activity: 30/60 mA @ 5 VCD

.

3.9.5 Results

Three size and overlap configurations were tested on the dataset. As explained in Sec-

tion 2.3 two or more receptive fields can cover the same region (Figure 2.3). In the case

of the adapted algorithm the Receptive Fields are rectangular (Figure 3.5), and the overlap

is the number of pixels, in one dimension, that one receptive field can be placed over the

other.

The configurations tested were: a receptive field of 3× 3 pixels with an overlap of 2

pixels, a receptive field of 89×89 pixels with an overlap of 45 pixels, and a receptive field

of 179×179 pixels with an overlap of 0 pixels. These were chosen to see how the adapted

Figure 3.5: Rectangular receptive fields. Adjacent receptive fields are coloured differently
for visualization.
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algorithm behaved using a small receptive field, a receptive field a quarter of the image, and

a receptive field covering the whole image. The latter does not have any overlap as there is

nothing to gain from a second receptive field covering the whole picture, shifted one pixel.

The results can be found in Tables 3.5, 3.6 and 3.7.

Table 3.5: Experiments with 3×3 receptive fields with an overlap of 2.

Video Total
Frame-
based
Time

Total
Event-
based
Time

Average
Event-
based
Time

Worst
Event-
based
Time

Precision Recall

MergingCards0 9.22s 1.67s 2.21µs 59.4ms 4.39% 18.10%
MovingCard2 4.33s 1.54s 1.73µs 63.3ms 12.48% 21.93%
MovingCard3 4.51s 1.31s 2.13µs 64.5ms 4.98% 15.67%
MovingCard4 6.20s 2.08s 2.08µs 116.8ms 3.95% 12.85%
MultipleRect0 5.65s 2.62s 1.57µs 116.2ms 19.59% 36.92%
MultipleRect1 8.33s 5.18s 1.89µs 222.2ms 16.94% 38.74%
NonConvex0 4.65s 1.10s 1.71µs 64.7ms 6.66% 19.10%
NonConvex1 7.54s 1.53s 1.78µs 63.5ms 7.45% 17.44%
NonConvex2 4.81s 0.90s 2.24µs 31.4ms 8.64% 25.21%
Walking0 9.18s 15.07s 3.36µs 429.4ms 25.48% 51.87%
RotatingCard0 4.58s 1.90s 1.90µs 63.9ms 8.61% 20.00%
RotatingCard1 4.70s 1.47s 2.14µs 57.7ms 4.17% 17.11%
SpinningCard0 3.05s 0.75s 1.90µs 36.8ms 9.73% 21.80%
SpinningCard1 4.33s 1.04s 1.71µs 61.1ms 3.66% 10.27%
Testvideo 2.22s 0.94s 1.89µs 31.7ms 7.03% 24.34%
Text0 3.93s 1.58s 2.51µs 67.9ms 38.04% 57.19%
Text1 5.16s 3.50s 2.93µs 117.8ms 18.98% 36.14%
TwoCardsMoving0 4.41s 1.69s 1.68µs 58.2ms 9.94% 22.90%
TwoCardsMoving1 5.45s 0.96s 2.55µs 32.1ms 5.21% 21.29%
TwoCardsMoving2 11.01s 1.46s 1.69µs 62.5ms 6.39% 15.24%
ArtificialOne 8.42s 0.33s 2.15µs 16.1ms 73.87% 69.60%
ArtificialTwo 3.54s 0.08s 1.87µs 5.1ms 72.00% 61.66%

The low precision and recall rates in Table 3.5 are mainly attributed to noise in the

captured videos. Figure 3.6 shows a comparison of the output of the frame-based and

event-based implementations. Figure 3.6(a) shows the output of the frame implementation,

in which the offsets described in equation (2.2) and equation (2.3) are set to 20. Small
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Table 3.6: Experiments with 89×89 receptive fields with an overlap of 45.

Video Total
Frame-
based
Time

Total
Event-
based
Time

Average
Event-
based
Time

Worst
Event-
based
Time

Precision Recall

MergingCards0 2.45s 0.47s 0.62µs 15.6ms 41.34% 90.00%
MovingCard2 1.17s 0.55s 0.62µs 16.9ms 49.51% 81.99%
MovingCard3 1.21s 0.40s 0.65µs 8.9ms 48.85% 88.46%
MovingCard4 1.72s 0.64s 0.64µs 15.8ms 34.60% 87.78%
MultipleRect0 1.49s 1.06s 0.64µs 31.5ms 37.46% 75.00%
MultipleRect1 2.15s 1.86s 0.68µs 61.4ms 41.69% 75.52%
NonConvex0 1.25s 0.40s 0.62µs 9.6ms 26.63% 79.90%
NonConvex1 1.95s 0.55s 0.64µs 16.6ms 29.43% 87.17%
NonConvex2 1.31s 0.28s 0.70µs 8.8ms 42.74% 86.56%
Walking0 2.42s 3.81s 0.85µs 59.9ms 52.78% 93.99%
RotatingCard0 1.21s 0.63s 0.63µs 17.4ms 33.04% 87.53%
RotatingCard1 1.19s 0.48s 0.70µs 9.6ms 30.10% 86.86%
SpinningCard0 0.89s 0.26s 0.65µs 9.4ms 51.87% 94.83%
SpinningCard1 1.18s 0.36s 0.58µs 8.8ms 26.95% 75.33%
Testvideo 0.58s 0.33s 0.67µs 9.6ms 33.61% 86.57%
Text0 1.03s 0.43s 0.69µs 17.8ms 57.22% 88.88%
Text1 1.48s 0.94s 0.78µs 30.2ms 43.81% 85.75%
TwoCardsMoving0 1.20s 0.63s 0.63µs 17.4ms 42.26% 78.81%
TwoCardsMoving1 1.58s 0.28s 0.75µs 9.0ms 44.22% 89.90%
TwoCardsMoving2 2.96s 0.55s 0.64µs 18.0ms 51.44% 91.15%
ArtificialOne 2.55s 0.10s 0.63µs 0.2ms 68.14% 16.33%
ArtificialTwo 1.06s 0.03s 0.64µs 0.2ms 60.24% 22.11%

changes due to noise are effectively ignored by these offsets. As seen in Figure 3.6(c), the

frame-based implementation output with the offsets set to 3 shows a considerable amount

of noise. The videos used as input to the frame-based implementation are affected by

noise resulting from the lossy video compression format used in storing these videos. The

noise is visible in Figure 3.6(c) because the offset was lowered. On the other hand, the

events recorded by the DVS used as input to the event-based implementation contain noise

caused by smaller changes of log luminance if the threshold in the DVS was set too low

(Figure 3.6(b)). The types and locations of noise contained in the input for the frame-based
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Table 3.7: Experiments with a 179×179 receptive field with an overlap of 0.

Video Total
Frame-
based
Time

Total
Event-
based
Time

Average
Event-
based
Time

Worst
Event-
based
Time

Precision Recall

MergingCards0 1.59s 0.39s 0.52µs 4.2ms 51.03% 92.56%
MovingCard2 0.73s 0.44s 0.49µs 4.4ms 51.73% 87.58%
MovingCard3 0.81s 0.30s 0.49µs 2.3ms 44.77% 86.67%
MovingCard4 1.14s 0.55s 0.56µs 4.8ms 44.88% 93.01%
MultipleRect0 0.95s 0.77s 0.46µs 8.7ms 37.70% 80.21%
MultipleRect1 1.41s 1.42s 0.52µs 9.7ms 42.20% 78.49%
NonConvex0 0.82s 0.34s 0.52µs 2.5ms 35.89% 85.71%
NonConvex1 1.29s 0.45s 0.53µs 4.7ms 35.69% 85.66%
NonConvex2 0.86s 0.20s 0.49µs 2.3ms 44.42% 86.29%
Walking0 1.55s 3.19s 0.71µs 17.8ms 52.55% 95.91%
RotatingCard0 0.73s 0.54s 0.54µs 4.7ms 27.83% 90.54%
RotatingCard1 0.82s 0.38s 0.55µs 4.6ms 41.54% 92.00%
SpinningCard0 0.56s 0.21s 0.53µs 2.2ms 45.03% 100.00%
SpinningCard1 0.77s 0.31s 0.51µs 2.2ms 46.97% 98.84%
Testvideo 0.40s 0.27s 0.56µs 2.5ms 24.77% 87.69%
Text0 0.67s 0.32s 0.51µs 4.3ms 59.16% 89.80%
Text1 0.96s 0.71s 0.59µs 4.5ms 47.00% 89.05%
TwoCardsMoving0 0.80s 0.51s 0.51µs 4.6ms 42.78% 78.26%
TwoCardsMoving1 0.93s 0.22s 0.58µs 2.4ms 43.50% 94.39%
TwoCardsMoving2 1.88s 0.52s 0.60µs 5.4ms 60.85% 95.75%
ArtificialOne 1.70s 0.09s 0.61µs 0.2ms 59.26% 7.34%
ArtificialTwo 0.70s 0.02s 0.52µs 0.1ms 59.26% 16.33%

and event-based are different, resulting in low precision and recall rates. In contrast, the

artificial videos have higher precision and recall rates. The regular video still has some

compression noise that has to be attenuated with od and ol . However, the event stream has

only the relevant events and no noise.

Figure 3.7 shows a visual comparison of both outputs. The configuration uses receptive

fields of size 3×3 pixels and an overlap of 2 pixels. Note the similarity in the Looming

Detection windows. There is an outer border of receptive fields with a looming decision

followed by a trailing border of recessing decisions. This is what Fülöp and Zarándy [6]
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(a) Output of the frame-based implementation setting od = 20 and ol = 20.
Looming receptive fields are green, while recessive receptive fields are red.

(b) Output of the event-based implementation.

(c) Output of the frame-based implementation setting od = 3 and ol = 3.

Figure 3.6: Noise in the input.

expected to see when part of a looming object moves through the receptive fields. As

the object first enters there are more excitatory events and the receptive field generates a

looming decision. Later, those events expire and become inhibitory events, provoking the

recessing response. Although there is a low precision and recall rate for the event-based

implementation, qualitatively both algorithms are yielding similar results especially if the

noisy parts are ignored. In addition to noise, the precision and recall rates are low because

the event-based implementation may produce the correct decision for a receptive field at a
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slightly different time or location, despite the fact the output is qualitatively correct.

(a) Output of the frame-based implementation setting od = 20 and ol = 20

(b) Output event implementation

Figure 3.7: Comparison using artificial videos.

This effect reverses in Tables 3.6 and 3.7. The recall of the captured videos rises above

70%, there even is a case that has a recall of 100%. Their precision is low, but significantly

higher than the ones in Table 3.5. This is due to the fact that when the receptive fields are

larger, isolated noise affects the receptive fields less significantly. In addition, it is less likely

for a decision to be reported at an incorrect location because the receptive fields are larger.

The artificial videos see a steep drop in recall. Their precision drops, but still remains above

50%. Figure 3.8 shows what happens using the ArtificialOne video with a receptive field

size of 179×179 and overlap of 0. The event-based adaptation is not detecting looming or

recessing events for most of the video, while the frame-based implementation is showing

some output. The recall is so low because most of the time the frame-based implementa-
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Figure 3.8: Comparison between frame-based and event-based implementations.

tion is deciding for looming or recessing while the event-based is producing a NOTHING

output.

The event-based adaptation is not producing an output because the the calculated res

values are perfectly constant. For instance, if the rectangle in the video is approaching at

time t, the perimeter of excitatory events is 89× 89 pixels, and the trailing silhouette of

inhibitory events is 88×88 pixels. The number of excitatory events is:

ext = 89×2+(89−2)×2 = 352

.
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The number of inhibitory events is:

inht = 88×2+(88−2)×2 = 348

Hence the res value is, as explained in Section 3.4:

rest = r(352−348) = 4

At time t + 1, the video advances exactly one pixel to every side. The perimeter of

excitatory events is 90× 90, and the perimeter of inhibitory events is now 89× 89. The

calculations are as follows:

ext+1 = 90×2+(90−2)×2 = 356

.

inht+1 = 89×2+(89−2)×2 = 352

.

rest+1 = r(356−352) = 4

Both res values equal to 4, and equation (2.10) shows that if both values are exactly the

same, the decision is NOTHING. This is not a problem in the frame-based implementation,

because it does not just count events. Instead it sums the intensity values of the pixel. These

intensity values have been modified by compression noise, the weights and the offsets of

the different functions. The events of the artificial video are perfect, the actual video is not.

This effect is not seen in the smaller receptive fields because the boundary of the figure

does not remain in the receptive field for a long time. The effect is further masked by the

overlap of receptive fields.

The complexity of processing a single event was explained in Section 3.8. Because of
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the algorithm’s amortized time, processing an event takes constant time on average. There

are two important measures in Tables 3.5, 3.6 and 3.7, Average Event Time and Worst Event

Time. Average event time is simply the time it took to process the entire video divided by

the number of events. Although the worst time of MergingCards0 in Table 3.5 is 54.4

milliseconds, on average each event took 2.21 microseconds (over a thousand times faster

than the frame-based implementation).

Naturally, the number of events received per unit of time is also important. Notice also

that Walking0 has the longest times across the different datasets. This is the only dataset

in which the camera is moving. From the point of view of the camera almost everything is

changing. Hence the number of input events is considerably larger than the other datasets.

Table 3.2 confirms this—the number of events per second in Walking0 is the highest.

Notice that the longest times are in Table 3.5. It is to be expected since there are so

many receptive fields with maximum overlap. This is clear in Table 3.7 as the times are

significantly reduced.

The frame-based implementation takes a considerable amount of time to run compared

to the event-based implementation. For instance, in Table 3.5, the frame-based implemen-

tation takes over 5 times longer than the event-based implementation on the MergingCards0

dataset. The only time this is reversed is in the Walking0 video, which, as explained before,

contains a larger number of events every second.

3.10 Summary

In this chapter, we presented an event-based adaptation of the frame-based bio-inspired

looming detection algorithm of Fülöp and Zarándy. Experiments were performed to deter-

mine how well the event-based algorithm emulates the frame-based algorithm. When the

receptive fields are small, the precision and recall rates of the event-based implementation

were low due to a number of factors including noise. However, the looming and recessing

decisions appear to be correct qualitatively when effect noise is ignored. We also showed
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that the processing time required by the event-based algorithm is significantly smaller than

that required by the frame-based algorithm in most cases.

In the next chapter we will describe a new looming object detection algorithm using the

event-based algorithm here as a starting point. It will be shown that the low precision and

recall rates as well as the effect of noise do not affect the result of the looming detection

algorithm developed in the next chapter, because the results are correct qualitatively.
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Chapter 4

Looming Object Detection

In Chapter 3, the bio-inspired looming and recessing detection algorithm for receptive fields

was adapted for use with event-based cameras. While the output of the event-based algo-

rithm is not identical to those of the frame-based algorithm, it appears to be correct quali-

tatively.

The bio-inspired algorithm does not give a proper answer when the size of the object

is larger than the receptive field. This chapter improves the previous model to solve this

issue. It is also shown that the algorithm in Chapter 3 provides output that can be used to

compute the optical flow with a new approach. Moreover, the new approach will partition

the image into boxes of different sizes in an attempt to find the ones that are most fitting for

the objects being observed. Each separate box will use the output of the new optical flow

algorithm to determine if there is an object looming in that box.

4.1 Optical Flow

Consider Figure 4.1(a) which is the same image as Figure 3.7(b). The window on the

left shows the input events, and the one on the right shows the output of the looming detec-

tion algorithm of Chapter 3. The algorithm was configured to use 3×3 receptive fields with

an overlap of 2 pixels. This image was taken when the rectangle in the image was looming.

The receptive fields in the outer edge of the rectangle produces looming decisions while

receptive fields in the inner edge produces recessing decisions. The opposite happens in

the output of Figure 4.1(b), where the rectangle is recessing. As the edges of the rectangle
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move, there is a leading perimeter of looming receptive fields, and a trailing perimeter of

recessing fields. In short, the edges of an object move from a recessing receptive field to-

wards a looming one. Thus, our new optical flow algorithm searches for looming receptive

fields next to recessive ones.

(a) Looming rectangle.

(b) Recessing rectangle.

Figure 4.1: Artificial video of a looming and recessing rectangle. Looming receptive fields
are coloured green while recessing receptive fields are coloured red.

Algorithm 4 shows how to calculate the optical flow at a pixel when a decision from

Algorithm 3 is made. The for statement in line 6 searches the 8-neighbourhood [9] around

the input (X ,Y ) for a recent decision which is opposite to the one received. Notice the

search order gives priority to the coordinates above, below, left, and right of (X ,Y ), for
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these are the closest. The if condition at line 7 ensures (x,y) are within the limits of the

image, and that the last decision at that location happened within the optical flow threshold.

Also notice that the directions in lines 9 and 11 ensure that the optical flow vector points

from a recessing event to a looming event. Finally, if no suitable adjacent decision is found,

the program returns (0,0) to indicate no motion was found.

Algorithm 4 Optical Flow Algorithm
1: Global Variables: Optical flow threshold oth, Array with the last decision received at

location x,y lastDes, Array with the time stamp of the last decision received at location
x,y lastDesT s.

2: Input: X coordinate, Y coordinate, Time stamp ts, Decision des.
3: Output: Direction of motion, in rectangular representation (x,y).
4: rs← number of rows in lastDes.
5: cs← number of columns in lastDes.
6: for all (x,y) ∈ {(X−1,Y ),(X +1,Y ),(X ,Y −1),(X ,Y +1),(X−1,Y −1),(X +1,Y −

1),(X +1,Y −1),(X +1,Y +1)} do
7: if 0≤ x < cs and 0≤ y < rs and ts− lastDesT s[y][x]≤ oth then
8: if des = LOOMING and lastDes[y][x] = RECESSING then
9: return (X-x,Y-y)

10: else if des = RECESSING and lastDes[y][x] = LOOMING then
11: return (x-X,y-Y)
12: end if
13: end if
14: end for
15: return (0,0)

4.2 Analyzing Optical Flow Events

As explained in Section 2.5, Ridwan’s algorithm computes the optical flow of the input

DVS events. It then computes the centroid of the optical events as the centre of the object.

The dot product of the optical flow vector and the vector from the centre to the optical

flow event is computed to determine see if the motion is pointing away from the centre. If

enough vectors point away from the centre, the object is considered to be looming.

Our new approach does not compute the centre of the observed object. Instead, the

centre of the image is assumed to be an interior point of the object. Using the dot product,

43



4.2. ANALYZING OPTICAL FLOW EVENTS

we compute the number of optical flow events pointing towards and away of the centre. If

there are more vectors pointing away from the centre than vectors pointing towards it, the

object is looming. To verify that the centre is enclosed by the object, the algorithm ensures

that at least one of the optical flow events is in each of the four quadrants of the image,

representing the areas above-left, above-right, below-left, and below-right of the centre.

The thresholds used in the algorithms are listed as follows:

oth: this is the threshold for expiring old LOOMING/RECESSING events as well as for

expiring the computed optical flow events.

dth: it is a real number between 0 and 1. It represents the minimum ratio of optical

flow events that have to point away from the centre of the optical flow field for it to be

considered looming.

Algorithm 5 shows what happens when a new optical flow event is received from a

receptive field. This function is in charge of keeping track of the latest event from each

receptive field. This can be observed in lines 10 and 11. Lines 12 to 26 use Algorithm 4

to compute the optical flow of the received event, and if appropriate adds it to the optical

flow event queue (ofeq). Two things happen after a new optical flow event is placed in the

queue—the quadrant where the event is located is identified, and the dot product between

two vectors is calculated. If the dot product is positive, the away count is increased. If it is

negative the toward count is increased. Line 27 shows how the algorithm expires old optical

flow events from ofeq. When an optical flow event is expired the appropriate count for its

quadrant is decreased as well as the appropriate count for its direction (away or toward).

As in Algorithm 2, observers are only notified when the time stamp changes, as it is shown

in line 4. This avoids reacting multiple times to events with the same time stamp. This

algorithm has a constant time complexity for each event on average, using an amortized

analysis similar to what was done in Section 3.8. This approach would not output the

correct decision if the centre of the picture is not inside the object, or if there are multiple

objects.
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Algorithm 5 Analysis of Optical Flow Events
1: Global Variables: Counters away and toward, Optical flow threshold oth, Time stamp

of the last decision received lastT s, Queue of optical flow events o f eq, Array with the
last decision received at location x,y lastDes, Array with the time stamp of the last
decision received at location x,y lastDesT s.

2: Input: Event evt consisting of location x,y, time stamp ts, and polarity pol.
3: Output: Notifications to observers (Display or others).
4: if evt.ts > lastT s then
5: lastT s← evt.ts
6: notifyObservers()
7: end if
8: cx← number of rows in lastDes divided by two.
9: cy← number of columns in lastDes divided by two.

10: lastDes[evt.y][evt.x]← evt.pol
11: lastDesT s[evt.y][evt.x]← evt.ts
12: (dx,dy)← computeDirection(evt.x,evt.y, evt.ts, evt.pol)
13: if not (dx = 0 and dy = 0) then
14: ofevent← (evt.x,evt.y,dx,dy,evt.ts)
15: ofeq.push(ofevent)
16: aboveLe f t← aboveLe f t +1 if(o f event.x < cx and o f event.y < cy)
17: aboveRight← aboveRight +1 if(o f event.x > cx and o f event.y < cy)
18: belowLe f t← belowLe f t +1 if(o f event.x < cx and o f event.y > cy)
19: belowRight← belowRight +1 if(o f event.x > cx and o f event.y > cy)
20: dot← (o f event.x− cx)×o f event.dx+(o f event.y− cy)×o f event.dy
21: if dot > 0 then
22: away← away+1
23: else if dot < 0 then
24: toward← toward +1
25: end if
26: end if
27: while not ofeq.empty() and evt.ts−o f eq. f ront().ts > oth do
28: o f event← o f eq. f ront()
29: aboveLe f t← aboveLe f t−− if(o f event.x < cx and o f event.y < cy)
30: aboveRight← aboveRight−− if(o f event.x > cx and o f event.y < cy)
31: belowLe f t← belowLe f t−− if(o f event.x < cx and o f event.y > cy)
32: belowRight← belowRight−− if(o f event.x > cx and o f event.y > cy)
33: dot← (o f event.x− cx)×o f event.dx+(o f event.y− cy)×o f event.dy
34: if dot > 0 then
35: away← away−1
36: else if dot < 0 then
37: toward← toward−1
38: end if
39: o f eq.pop()
40: end while
41: lastT s← evt.ts

45



4.2. ANALYZING OPTICAL FLOW EVENTS

Algorithm 6 Notify Observers
1: Global Variables: Queue of optical flow events o f eq, Array with the last decision

received at location x,y lastDes, Array with the time stamp of the last decision received
at location x,y lastDesT s.

2: Input: None.
3: Output: Notifications to observers (Displays or others).
4: surrounded ← aboveLe f t > 0 and aboveRight > 0 and belowLe f t > 0 and

belowRight > 0
5: di f f ← away− toward
6: if |di f f |< o f eq.size×dth then
7: des← NOT HING
8: else if away > toward and surrounded then
9: des← LOOMING

10: else
11: des← NOT HING
12: end if
13: Notify observers about the des

Algorithm 6 takes the queue of optical flow events from Algorithm 5 and implements

the new looming detection approach. Line 4 sets that the centre is surrounded if an optical

flow event was found in each of the four quadrants. Since there could be a case of lateral

movement where the away count and the toward count would be very close to each other,

the conditional in line 6 makes sure that the absolute difference between them is higher

than a configurable ratio. Line 8 tests for the looming case. Since this algorithm is meant

to detect looming objects, there is no test for recessing. Once a decision is reached, the

algorithm terminates by notifying the observers.

As in Section 3.5, it is necessary to keep track of the decision events that enter the

observed area of the picture. Each field has an array that keeps track of the most recent

decision and the time stamp at (x,y). This structure works best since there is no need to count

the number of received events at any particular time, but it is necessary to have random

access to any of the latest events.

The opposite is true for the optical flow vectors. There is no need to access a particular

vector randomly, but it is necessary to count how many recent vectors point toward the

centre. Since not every decision in the array is recent enough or relevant, a queue is used
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to store only the recent vectors. Again, the complexity of the overall algorithm is constant

time on average for each event.

4.3 Partitioning Into Optical Flow Fields

Since the centre of the observed image is used as the centroid of the object, this method

of looming detection would only be capable of giving a correct answer if the object’s

perimeter encloses the centre of the image. The approach will fail if this assumption is

false, or if there are multiple objects in the scene.

To handle these issues, we developed a new approach which divides the image into

sections of different sizes and locations, in the hope that one or more of these sections will

contain an object containing the centre of the section. We call these sections optical flow

fields. Just as an array of overlapping receptive fields is used in Chapter 3, the new approach

uses an array of overlapping optical flow fields.

The new algorithm uses different grids of overlapping optical flow fields. There can

be grids of optical flow fields of various sizes so that objects of different sizes can be

detected. The appropriate optical flow field can then respond using Algorithms 5 and 6.

The average complexity of the resulting algorithm per event is constant for each optical

flow field, regardless of the size of the field. Thus, the average complexity per event is

linear in the number of optical flow fields.

Since the new approach uses a looming detector for each optical flow field in the grid, it

is important to filter out erroneous decisions from fields that do not really contain the entire

object. For instance, Figure 4.2 shows four optical flow fields (in yellow) of 89×89 pixels

each without any overlap. The looming and recessing decisions of the receptive fields from

Algorithm 3 result in most of the optical flow vectors pointing towards the centre of the

four optical flow fields. Hence the four fields will not give a looming response. This would

be wrong, since none of them encompasses the complete object.

To mitigate this problem, the algorithm verifies that there is at least one vector in each
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Figure 4.2: Smaller fields.

of the four quadrants of the optical flow field as a way to confirm that the centre of the

optical flow field is within the object. If one of the quadrants is missing, the field reaches a

decision of NOTHING. Notice that this is a fast but inaccurate test, as there may be cases in

which the centre is enclosed inside an object and yet not all four quadrants will contain an

optical flow event (e.g. a triangular object). As a result, this verification sacrifices recall to

favour precision. Since it only needs to have a single optical flow event in each quadrant, it

is susceptible to artifacts in the quadrant.

4.4 Experiments

4.4.1 Datasets

Because the focus of this algorithm is to detect looming motion, the tests were run

against the datasets described in Appendix A that contained looming objects.

Table 4.1 contains the properties of the artificial and DVS datasets that were not de-

scribed in Chapter 3.

4.4.2 Setup

The display class used by the adapted algorithm creates pseudo-frames to show each of

the events—events are collected at regular intervals for display purposes. The algorithm is
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Table 4.1: Number of events in dataset.

Dataset Number of Events
A01 23744
A02 26410
A03 16818
A13 19300
B09 176565
B12 79850

fully event-based and does not collect events into frames to obtain a decision.

The DVS outputs a stream of events as well as a regular video. Taking advantage of

this, the capture period for each of the frames was taken from the frame-rate of the output

videos of the event-based camera, 30 fps, and in the frame-rate of the artificial videos, 20

fps. All the thresholds were set to 1
f rame−rate (the period between two frames) of the output

video.

Since the new algorithm is not based on Fülöp and Zarándy’s algorithm, it was not pos-

sible to use the frame-based implementation to automatically generate a ground truth for

calculating the precision and recall. The ground truth in this case was created by visually

analyzing each pseudo-frame and labelling them Looming, or Not Looming (Lateral/Re-

cessing/Nothing). The videos contain certain motions that are hard to catalogue by human,

such as small lateral motions that could also be either looming or recessing. These cases

were removed in the precision and recall calculations.

Table 4.2 shows the parameter settings for each of the tests. In addition to the thresholds

oth and dth, the other constants are:

size: each optical field contains size × size receptive fields (instead of actual pixels).

overlap: it is the amount of overlap between optical fields measured in number of

receptive fields.

Notice B09 appears twice because two different values of dth were tested.
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Table 4.2: Configuration for looming tests.

Receptive Fields Optical Flow
Dataset eth ith rth size overlap oth dth size overlap
A01 50000 50000 50000 3 2 50000 30 100 22
A02 50000 50000 50000 3 2 50000 30 100 22
A03 50000 50000 50000 3 2 50000 30 100 22
A13 50000 50000 50000 3 2 50000 30 100 61
ArtificialOne 50000 50000 50000 3 2 50000 30 178 0
ArtificialTwo 50000 50000 50000 3 2 50000 0 89 80
B09 33333 33333 33333 3 2 33333 30 147 120
B09 2 33333 33333 33333 3 2 33333 20 147 120
B12 33333 33333 33333 3 2 33333 20 178 0
MovingCard2 33333 33333 33333 3 2 33333 30 178 0
MovingCard3 33333 33333 33333 3 2 33333 30 178 0
NonConvex2 33333 33333 33333 3 2 33333 30 178 0

Table 4.3: Configuration for non-looming tests.

Receptive Fields Optical Flow
Dataset eth ith rth size overlap oth dth size overlap
ArtificialOne 50000 50000 50000 3 2 50000 30 89 0
ArtificialTwo 50000 50000 50000 3 2 50000 0 178 0
B09 2 33333 33333 33333 3 2 33333 20 147 120
MovingCard3 33333 33333 33333 3 2 33333 30 89 0

A smaller set of tests was run to compute the recall of non-looming motion. This means

that when it is certain that there is no complete looming object in the area enclosed by the

optical flow field, there should not be any looming decision. Table 4.3 shows the configu-

rations for the videos.

4.4.3 Evaluation Metric

Equations (4.1) and (4.2) show how precision and recall are calculated. Precision is the

ratio of all the detected looming pseudo-frames over all detected looming pseudo-frames.

Recall is the ratio of all detected looming pseudo-frames over all the frames that should

have been detected as looming.
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precision =
# of True Looming

# True Looming+# False Looming
(4.1)

recall =
# of True Looming

# True Looming+# False Not Looming
(4.2)

Equation (4.3) shows how to obtain the recall of non-looming motion. It used in the

fields that should not react, for they do not contain or fit the objects in the scene. It is the

ratio of times the field should not have reacted, against all of the decisions:

recall =
# of True Non-Looming

# True Non-Looming+# False Looming
(4.3)

4.4.4 Results

Table 4.4 shows the execution times of the tests. Notice that most of the average event

processing times are below 4 microseconds. In most cases the worst event processing time

is below 3 milliseconds. Naturally, the number of optical flow fields affects the processing

time. In the case of ArtificialTwo, there are more events and there are more optical flow

fields to process. The average event processing time is comparable to Ridwan’s algorithm,

although our approach allows for multiple looming objects to be detected as well.

To test how the algorithm’s processing times change with different optical flow field

size and overlap, different configurations were tested against B09 2. Table 4.5 shows the

results of the different tests. Note that though there are more optical flow fields covering

the image in the 3× 3 configuration, the 45× 45 is has the longest processing time. The

number of optical flow fields is not slowing the processing time but the number of fields

covering each event is.

Table 4.6 shows the precision and recall for each of the experiments. In the A01 dataset

the top right object is moving sideways. There is only one pseudo-frame where the circle

appears to approach and the algorithm detected it, generating a recall of 100%. It also

detected a looming motion when there was none to detect, so the precision rate is only
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Table 4.4: Execution times

Dataset Total time Average
Event
Processing
Time

Worst
Event
Processing
Time

A01 0.06s 2.66µs 1.6ms
A02 0.07s 2.59µs 2.0ms
A03 0.04s 2.17µs 1.6ms
A13 0.10s 4.93µs 2.2ms
ArtificialOne 0.49s 3.15µs 1.9ms
ArtificialTwo 1.23s 29.85µs 11.3ms
B09 2 0.93s 5.25µs 2.3ms
B09 0.93s 5.27µs 1.8ms
B12 0.60s 7.48µs 8.7ms
MovingCard2 2.02s 2.27µs 2.3ms
MovingCard3 1.73s 2.80µs 1.6ms
NonConvex2 1.28s 3.18µs 1.9ms

50%. For the bottom left object, the algorithm was able to detect all the looming motions. It

reported looming for one pseudo-frame where the object was not looming, so the precision

was not 100%.

In the A02 dataset, the algorithm detected both objects with equal precision and recall.

There was only one instance in which it detected looming motion from both objects when

there was no looming motion.

In the A03 dataset, the algorithm was again able to detect all of the looming motions of

the top right object, and detected one false positive. For the bottom object it failed to detect

one of the looming motions, but it did not give any false positives.

In the A13 dataset, the two squares presented no looming motion, and the algorithm did

not detect any false positives. Precision and Recall are undefined because the denominators

in (4.1) and (4.2) are zero. This means that the recall is undefined because there was nothing

to detect, but the precision is undefined because there were no false positives and no true

positives. The algorithm detected every looming motion of the centre object and had one

false positive.
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Table 4.5: Time tests B09 2 with different size and overlap.

Size Overlap Number
of Optical
Flow Fields

Total
time

Average
Event
Processing
Time

Worst
Event
Processing
Time

178 0 1 0.58s 3.27µs 1.4ms
89 0 4 0.50s 2.85µs 1.4ms
89 80 120 8.34s 47.23µs 7.7ms
45 0 12 0.46s 2.63µs 1.3ms
45 40 783 17.00s 96.26µs 16.9ms
25 0 49 0.52s 2.97µs 1.3ms
25 20 1023 6.22s 35.25µs 8.5ms
13 0 182 0.59s 3.33µs 1.7ms
13 10 3304 5.31s 30.07µs 7.9ms
3 2 32736 3.96s 22.41µs 8.1ms

Table 4.6: Test results.

Dataset Precision Recall
A01(Top Right) 50.0% 100.0%
A01(Bottom Left) 93.8% 100.0%
A02 (Top Right) 91.7% 100.0%
A02 (Bottom Left) 91.7% 100.0%
A03 (Top Right) 90.9% 100.0%
A03 (Bottom Left) 100.0% 75.0%
A13 (Top Right) undefined undefined
A13 (Centre) 93.8% 100.0%
A13 (Bottom Left) undefined undefined
ArtificialOne 100.0% 100.0%
ArtificialTwo(Left) 100.0% 100.0%
ArtificialTwo(Right) 90.0% 97.3%
B09 89.3% 80.6%
B09 2 88.6% 96.9%
B12 95.0% 95.0%
MovingCard2 0.0% undefined
MovingCard3 94.4% 86.4%
NonConvex2 83.6% 49.0%

ArtificialOne showed a precision and recall of 100%. The left object in ArtificialTwo

has the same result. The right object in ArtificialTwo had one false negative and 4 false
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positives.

Most of the artificial videos had high precision and recall. In most cases the false

positives and false negatives happened when the object reached its minimum and maximum

sizes during the looming or recessing motion. These were the times when the object just

starts or just stops the looming motion.

Both B09 and B12 showed high precision and recall, even when the input datasets have

a large mount of noise. Two configurations were used in B09. Reducing the dth ratio from

30% to 20% reduced precision by less than 1%, but it increased the recall by more than

16%.

MovingCard2 had no looming motion, it is a similar case to A01 and A13. There was

nothing to detect for recall, but there were 29 false positives. Given that the stream is

7.8 seconds long, and the pseudo-frames are being generated at 30 fps, the false positives

represent 12.4% of all the decisions presented.

MovingCard3 had looming motion, and continued to show that the algorithm works

well even in noisy conditions.

NonConvex2 had an acceptable precision though a low recall. Concave objects are

still challenging to detect by analyzing the optical flow directions against the centre of the

optical flow field.

Experiments were also run to evaluate the accuracy of our algorithm in not producing

looming decisions when there is no looming object in an optical flow field. Table 4.7 shows

the recall for non-looming motion. Results in ArtificialOne show that even though there

is a part of the rectangle in each of the optical flow fields, the fields rarely detect looming

motions. The experiments show that the only moment they detect it is when the border

crosses the centre of the field. At that moment alone are there optical flow events in every

quadrant of the field.

Results in ArtificialTwo show that a large field is able to ignore the smaller objects.

Though these are encapsulated by the field, their perimeters do not surround the centre of
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Table 4.7: Non-looming motion recall.

Dataset Recall
ArtificialOne(top-left) 96.0%
ArtificialOne(top-right) 96.0%
ArtificialOne(bottom-left) 100.0%
ArtificialOne(bottom-right) 98.0%
ArtificialTwo 100.0%
B09 2(top-left) 100.0%
B09 2(top-right) 100.0%
B09 2(bottom-left) 100.0%
B09 2(bottom-right) 100.0%
MovingCard3(top-left) 95.7%
MovingCard3(top-right) 91.1%
MovingCard3(bottom-left) 83.2%
MovingCard3(bottom-right) 81.3%

the field.

In B09 2 the configuration was left as it was in the previous tests. On running this

test again it was noticed that what originally looked like false positives was just when the

video was initializing or when the object was changing from looming to recessing. Hence

they were ignored and the non-looming recall resulted in 100%. The test shows how even

with a large amount of noise in the image, the algorithm still ignores non-looming motion.

Figure 4.3 shows three moments of the dataset. The first shows the rectangle looming

towards the camera, the other two show the recessing motion. Each row of screens contains

the output of the camera, the output of the algorithm in Chapter 3, and the output of the

looming algorithm (the green squares indicate looming detection in that area). Notice the

amount of noise present in the output of the camera, and the output of the first algorithm.

When the figure is recessing the algorithm does not produce a looming decision.

MovingCard3 is similar to ArtificialOne. The recall is lower in the bottom fields because

the object is not perfectly centred, and there are moments when it fits in the height of the

bottom fields. When this happens the four quadrants of each field actually have an optical

flow event.
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Figure 4.3: Three moments in the B09 dataset. In the top row, the object is looming. The
object is recessing in the second and third row. In each row, the image on the left shows
the DVS events and the middle image shows the output of the algorithm in Chapter 3. The
image on the right contains a green square if the corresponding optical flow field detected
looming.
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4.5 Summary

This chapter presents a novel approach to looming object detection. It uses a similar

algorithm to compute the optical flow of the image as Ridwan’s algorithm, but differs by

using our adapted algorithm from the works of Fülöp and Zarándy to compute optical flow.

Our approach is tolerant to noise. Our approach also does not attempt to compute the centre

of the objects. Instead it attempts to find the most appropriate optical flow field enclosing

the object. Our new algorithm is capable of detecting multiple looming objects of different

sizes in different parts of the scene, and has run time similar to Ridwan’s single looming

object detection algorithm. However, the algorithm have the same limitation as Ridwan’s

algorithm for detecting looming concave objects.
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Conclusion

In this thesis we have presented a novel approach to detect looming objects in an event-

based camera. This algorithm is adapted from Fülöp and Zarándy’s work with frame-based

cameras. We have run both quantitative and qualitative experiments to validate our ap-

proach. The result of our event-based adaptation is visually similar to the result from the

frame-based algorithm. Also, the run time is significantly shorter.

We have also designed an optical flow algorithm using the output from the event-based

adaptation of Fülöp and Zarándy’s algorithm. Our approach differs from the previous algo-

rithm of Ridwan and Cheng in that our optical flow algorithm filters out noise using Fülöp

and Zarándy’s algorithm. Finally, we designed a looming object detector by partitioning

the scene into optical flow fields of different sizes and applying a single looming object

detector in each field. Our looming detector does not attempt to compute the centroid of the

perceived objects. Instead it attempts to encapsulate them in the appropriate field. We have

tested out approach on both artificial and captured datasets, including some that are noisy,

and received positive results. We have been able to successfully detect multiple looming

objects and ignore other motions. The run time of our algorithm is similar to Ridwan’s

looming detection algorithm despite the fact that the new algorithm can detect multiple

looming objects.

58



5.1. FUTURE RESEARCH DIRECTIONS

5.1 Future Research Directions

In this section, we outline some possible future research directions to address some of

the limitations of our proposed algorithms.

Automatic thresholds: all of our temporal thresholds have to be manually set. A sys-

tem that changes these thresholds as the video progresses is yet to be devised.

Automatic optical field size and position: the algorithm presented in Chapter 4 relies

on having the correct optical flow field at the right position. Several field sizes can be

set at the same time, but as the number increases so does the time it takes to process

an event. It may be possible to choose the correct size and position of these fields,

especially if the algorithm takes into account the sizes and positions of detected objects

in the past.

Better out-of-bounds detection: to decide if an object is properly enclosed by an op-

tical flow field in our algorithm, we verify if there is at least one optical flow event in

each of the four quadrants of the field. We could improve on this by requiring that an

even amount of optical flow events is distributed in the four quadrants. This can im-

prove precision rates by filtering out the results from more optical flow fields. However

it would potentially reduce the rate of recall as well.

Concave objects: an improved version of the approach in Chapter 3 could potentially

detect looming concave objects better than the current implementation. The approach

in Chapter 4 still has the same limitation as Ridwan’s algorithm.
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Appendix A

Dataset Description

MergingCards0 : Two playing cards being moved sideways, across each other. At
some point one eclipses the other, and they look as if they were a single figure.

MovingCard2 : A playing card being moved in a circle, in counterclockwise direction.
Since the card is not looming or recessing, the video is a good way to test the algorithm’s
response to sideways motion.

MovingCard3 : A playing card being moved back and forth towards the camera. It is
a good way to test the algorithm’s ability to detect looming and recessing motion.

MovingCard4 : A playing card being moved in a horizontal circle, in clockwise mo-
tion. The card looms on the right of the picture, then moves to the left, recesses, moves
right, and repeats. This is a more complex motion than the previous two. It is a more
challenging test to the algorithm.
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MultipleRect0 : Six rectangles of different sizes and orientations being moved side-
ways, upwards and downwards. There is no looming motion. It is a fitting test to see
how the algorithm reacts to multiple objects, moving as a whole.

MultipleRect1 : Eight squares are being moved towards the camera, away from it, up
and down. It is also rotated around a midpoint in the squares. There is some looming
and recessing motion. Again, this is a fitting test to see how the algorithm reacts to
multiple objects, moving as a whole.

NonConvex0 : A concave figure being moved upwards, downwards and sideways.
This one is not looming. This video and the following two will show if the adapted
algorithm is able to properly classify the motion of a concave object.

NonConvex1 : A concave figure being moved and rotated. There is no looming mo-
tion.
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A. DATASET DESCRIPTION

NonConvex2 : A concave figure being moved back and forth towards the camera.

RotatingCard0 : A playing card is being rotated clockwise and counterclockwise.
This is a fitting test to see how the adapted algorithm reacts to an object that is not
moving laterally, towards, or away from the camera, but rotates instead.

RotatingCard1 : A card following the path of a circle, and rotating in a manner that
makes one of its sides to face the centre of the trajectory at all times. It switches between
clockwise and counterclockwise directions. In this case the object is presenting lateral
motion.

SpinningCard0 : A playing card being rotated in a counterclockwise direction. Just
as with RotatingCard0, this is a fitting test to see how the adapted algorithm reacts to an
object that moves in its own axis.

SpinningCard1 : A card following the path of a circle, and rotating clockwise in a
manner that makes one of its sides to face the centre of the trajectory at all times. This
is similar to RotatingCard1, useful to see if the algorithm properly classifies lateral
motion.
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A. DATASET DESCRIPTION

Testvideo : A playing card being moved back and forth towards the camera. This is a
good way to start testing the adapted algorithm, it does not have other kind of movement
other than looming and recessing.

Text0 : A piece of paper containing letters being moved quickly in a small circle. Text0
and Text1 are another fitting test for concave objects as well as multiple objects moving
as a whole.

Text1 : A piece of paper containing letters being moved back and forth towards the
camera.

TwoCardsMoving0 : Two playing cards (one rotated 90◦ from the other) being moved
upwards, downwards and sideways. There is no looming motion. TwoCardsMoving0
and TwoCardsMoving1 are another test for multiple objects moving as a whole.
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TwoCardsMoving1 : Two playing cards (one rotated 90◦ from the other) being moved
back and forth towards the camera.

TwoCardsMoving2 : Two cards are being moved back and forth towards the camera.
One card is always moving in the opposite direction of the other. This video is a fit-
ting test to see how well the algorithm classifies the motion of two objects moving in
different directions.

Walking0 : The camera is being carried through a hallway. Elements such as doors and
shelves are visible to the sides. The lamps are visible on the ceiling, and their reflection
on the floor. Since the camera is the one moving in this video, it the adapted algorithm
should detect everything as a looming object.

ArtificialOne : A single square that approaches and recesses from the observer. It
grows/shrinks exactly one pixel every 50ms.

ArtificialTwo : Two squares that approach and recess from the observer at the same
time. Each square grows/shrinks exactly one pixel every 50ms.
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A. DATASET DESCRIPTION

A01: This is an artificial dataset containing two objects: a sideways moving circle on
the top left and a looming and recessing square in the bottom left.

A02: This is an artificial dataset with the same objects as A01. In this dataset both
objects are looming and recessing at the same rate.

A03: This is an artificial dataset with the same objects as A01. In this case the circle
looms and recesses as it did in A02. The square starts looming, then stops for a few
milliseconds, and starts looming and recessing again. Since this is a stream of DVS
events, when the square stops moving it disappears from the screen.

A13: This is an artificial dataset with a circle at its centre and two squares, one at the
top right and another at the bottom left. The circle approaches and recesses while the
squares move sideways. Because of their horizontal motion, only the left and right
edges are visible.
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A. DATASET DESCRIPTION

B09: This is a captured dataset. The main object is a square that is at the centre and
bottom right side of the screen. It approaches and recesses in the picture. Some of the
pseudo-frames on the right show a considerable amount of noise.

B12: This is a captured dataset. The main object is a circle that approaches and recedes
at the centre of the screen.
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