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Abstract

With the recent detection of gravitational waves, a new window has opened for studying the

universe. Because gravitational waves interact weakly with matter, they can pass through

matter without being affected significantly. Due to this, they are very important in the study

of the early universe. In this thesis, the interaction of gravitational waves and electromag-

netic waves is studied in the Minkowski and de-Sitter spacetime. The explicit form of the

perturbations (describing electromagnetic waves) is solved in the presence of a gravitational

wave in the Minkowski background. We find a new frequency mode of the perturbed elec-

tromagnetic wave and analyze for resonance. The nature of the wave interaction is depen-

dent on the relative direction of propagation of both the waves. For the de-Sitter spacetime

background, the inhomogeneous wave equations for the perturbed electromagnetic wave

are solved and we find a similar new mode which modulates the electromagnetic wave.
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Chapter 1

Introduction

We wish to understand the origin of the Universe and its evolution using data observed

today. According to the Big Bang theory [1], the universe began with the Big Bang in a

hot, dense, nearly uniform state approximately 13.8 billion years ago. There was a period

of rapid expansion known as cosmic inflation during which the universe expanded and its

volume increased by (approximately) a factor of 1078 (compared to its initial size). Density

waves and gravitational waves were generated due to quantum fluctuations in the matter dis-

tribution, which have been magnified by inflation. After inflation (10−32sec), the universe

was a hot soup of quarks, gluons, electrons and other elementary particles. As the universe

cooled down due to the expansion, quarks clumped into protons and neutrons (10−5s ∼

1s). These protons and neutrons merged together and formed nuclei during the process of

nuclear fusion (roughly between 10 sec to 20 min [2]). As the universe cooled down to

10,000◦C, the electrons, protons and nuclei combined together to form atoms (mostly hy-

drogen and helium).

Before the formation of neutral hydrogen (380,000 years after big bang), the universe was

opaque due to constant interaction between light and matter (free electrons and protons).

Photons started streaming freely after this time and formed the Cosmic Microwave Back-

ground (CMB) visible today. E-mode and B-mode polarization in CMB [3] are associated

with density waves and gravitational waves respectively. The state of the early universe

can be deduced from CMB and CNB (Cosmic Neutrino Background). Since the CMB was

produced approximately 380,000 years after the Big Bang, it is very difficult to deduce the
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1. INTRODUCTION

Figure 1.1: The Cosmic Microwave Background radiation
[3]

state of the very early stages of the universe using it. Neutrino decoupling on the other hand

took place when the temperature of the universe was approximately 1MeV (approximately

1 second after the Big Bang). So the CNB can indeed help us determine the state of the

early universe but neutrinos from CNB have a very low energy (10−10 times smaller than

current direct detection) due to which it is very difficult to detect CNB and get relevant

information about the early universe using CNB.

The recent detection of gravitational waves in February 2016 by LIGO (Laser Inter-

ferometer Gravitational-wave Observatory) [4] and Virgo has opened new doors through

which relevant observations about the early universe might be made. Gravitational waves

can have important information about the very early state of the universe [5] e.g. typi-

cal frequency, intensity, temperature, etc. If the GWB (Gravitational Wave Background

or stochastic background) [6, 7] is detected, then it would have a huge impact on early

universe cosmology and high energy physics. We intend to study the interaction of gravi-

tational waves and electromagnetic radiation which will lead to the detection of primordial

gravity waves.

With our aim being the study primordial gravitational waves, in this work we begin with

the study of their interactions with electromagnetic waves in the background of Minkowski

2



1. INTRODUCTION

spacetime. The behavior of plane-polarized monochromatic electromagnetic wave is stud-

ied when it interacts with a weak linearized gravitational wave. The resultant perturbations

in the electromagnetic waves are studied at the first order. Different aspects like resonance

and the relative direction of propagation of the waves are considered.

In the second part of the work we investigate a similar interaction of the primordial gravi-

tational waves in the background of flat Friedmann–Lemaı̂tre-Robertson–Walker (FLRW)

spacetime [1, 8]. The FLRW spacetime describes a homogeneous, isotropic, expanding

universe. The FLRW metric is the exact solution of the Einstein field equations satisfying

above properties.

Electromagnetic waves are fluctuations in the electric and magnetic field which propagate

at the speed of light. These waves occur at various wavelengths, producing a spectrum

of radiation from radio waves to γ -rays. The Maxwell equations in the curved spacetime

[1, 9] describe the behavior of electric and magnetic fields at different points in spacetime,

depending on the distribution and motion of charges. The Gauss-Ampere law, in the ab-

sence of electric charge, forms the mathematical basis for the electromagnetic waves.

Gravitational waves are disturbances in the curvature of spacetime that propagate outward

Figure 1.2: Gravitational wave polarization

at the speed of light from the source. Accelerating massive (e.g. blackholes, binary neutron

stars, supernova) bodies are sources of gravitational waves. These waves were predicted by

3



1. INTRODUCTION

Albert Einstein in 1916 on the basis of General Theory of Relativity. They are a form of

radiant energy (also known as gravitational radiation), which transports energy away from

the accelerated masses, similar to the electromagnetic radiation produced by accelerated

charges. Gravitational waves were detected in 2016, a hundred years after its prediction,

by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo [4]. Un-

like electromagnetic waves, which are plane polarized, gravitational waves are quadrupole

waves and the relevant polarizations are given by two functions. For a gravitational wave

propagating in the positive Z-direction, the h+ polarization stretches and squeezes the XY-

plane horizontally and vertically; while the h× polarization stretches and squeezes the XY-

plane diagonally over time, as can be seen in figure 1.2. For the considered gravitational

wave, these polarizations are explicitly given as

h+ = A+ cos(ωg(z− t))

h× = A× cos(ωg(z− t)+δ)

where ωg is the frequency of the gravitational wave and the speed of light c = 1 as we work

with geometrized units. A+ and A× are the amplitudes of the two polarizations and δ is the

phase difference.

The interaction between electromagnetic field and gravitational wave generates perturba-

tions and causes oscillatory patterns in the electromagnetic wave. These new electromag-

netic waves frequency modes can be detectable by LIGO and Virgo. The investigation in

this direction can help us with the discovery of primordial gravitational waves [10]. The fre-

quency signatures of primordial gravitational waves can be searched in the CMB radiation

observed today. This will have a profound impact in our understanding of early universe

cosmology and high energy physics as it can be used as a tool to probe the very early state

of the universe. These detected primordial gravitational waves may contain information

about the density, temperature and intensity of the very early state of the universe [5]. This

4



1. INTRODUCTION

information can help us develop better theories and models of the universe and deepen our

understanding of the young cosmos.

Notable work has been done in a similar direction. One such work studies the resonant con-

version of a gravitational wave into an electromagnetic wave and (vice-versa) when a static

electromagnetic field is present [11]. The considered interaction of gravitational waves and

electromagnetic waves are studied too; these include frequency splitting [12], intensity fluc-

tuations [12, 13], deflection of rays [13, 14, 15] and gravitationally induced rotation of the

electromagnetic waves polarisation [15, 16, 17, 18, 19]. One of the works takes a similar

approach as we have adopted and studies the resonance amplification of electromagnetic

waves in the presence of gravitational waves [20].

We have found a nonzero interaction between the electromagnetic waves and the gravi-

tational waves in the background of flat spacetime. When a monochrometic plane-polarized

electromagnetic wave (with angular frequency ωe) and a linearized gravitational wave (with

angular frequency ωg) interact, the resultant frequency mode is found to be
√

ω2
g +ω2

e . This

was expected as the same mode was found in the case of scalar field interaction with gravi-

tational waves [21]. We find null interaction when both waves are propagating in the same

direction and a nontrivial interaction when the propagation is parallel but in the opposite

direction. This is different from the results of [20]. We further note the absence of any

resonance phenomena when frequencies for the waves are the same (i.e. ωg = ωe).

The same kind of interaction can also be determined in the background other than Minkowski

spacetime. In the later part of the work we investigate the interaction of electromagnetic

waves and gravitational waves in the spatially flat FLRW spacetime. The resultant pertur-

bation in the electromagnetic potential components can reveal information about the early

state of the universe. In this thesis we derive the explicit form of the perturbations and plot

them. The study of the effects of these perturbations on the CMB is a work in progress.

In the chapters to follow, we will give a brief review of general relativity, discuss grav-

itational waves and the interaction of gravitational waves with electromagnetic waves in

5



1. INTRODUCTION

the Minkowski and FLRW backgrounds. In chapter two, the important mathematical tools

(tensor analysis) which are useful in understanding and working in general relativity are

introduced. Then we discuss the nature and description of electromagnetic waves in curved

spacetime. In chapter three, a detailed derivation of linearized gravitational waves in the

background of Minkowski spacetime is done. The used gauge conditions are discussed.

The ‘plus’ (h+) and the ‘cross’(h×) polarizations of the gravitational waves, and their ef-

fects are derived as well. In chapter four,detailed calculations for the interactions of the

electromagnetic waves and gravitational waves in the Minkowski spacetime are presented.

Cases like h×= 0 or h+ = 0 and both being nonzero are considered. The resultant first order

perturbations in the electromagnetic four potential components and their graphical repre-

sentation are also shown. In chapter five, we derive the form of electromagnetic waves in

the cosmological background. The detailed calculation of the interaction between electro-

magnetic waves and gravitational waves in the flat-FLRW spacetime is also done in chapter

five. The form of the first order perturbations in the electromagnetic vector potential com-

ponents are found and their graphical representation is also shown. In chapter-6, the results

and prospective continuation of the work are discussed briefly.
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Chapter 2

General Theory of Relativity

To understand gravitational waves, we first need to understand the general theory of rela-

tivity. According to the general theory of relativity, gravity is a geometric property of the

four-dimensional spacetime. The gravitational force is the result of spacetime curvature.

The Einstein field equations describe how the momentum and energy of matter (and radia-

tion) are related to the curvature of spacetime. In this chapter, we will discuss and derive the

mathematical tools that are essential to understand the general theory of relativity. Quanti-

ties like four-velocity, four-momentum, number-flux, stress-energy tensor are defined and

discussed in the sections to follow. Once all the necessary quantities are defined and ex-

plained, we discuss the Einstein field equations as they will be used in chapter 3 for the

derivation of linearized gravitational waves.

2.1 Special Theory of Relativity

Since the general theory of relativity is the generalization of the special theory of rel-

ativity [22, 23], in this section we will briefly review the special theory of relativity. It is

a theory which describes the dynamic relation between space and time, depending on the

state of motion of inertial observers.

In classical mechanics space and time are independent of each other, regardless of the

motion of observers. The Galilean transformation is used to transform from one inertial

reference frame to another. It describes the relationship between the space and time coor-

dinates of two inertial observers (K with coordinates (t,x,y,z) and K′ with the coordinates

7



2.1. SPECIAL THEORY OF RELATIVITY

(t ′,x′,y′,z′)) travelling with relative velocity v in the X-direction.

The Galilean transformation is given by:

t ′ = t,

x′ = x− vt,

y′ = y,

z′ = z.

For a given phenomenon, the rules of Galilean transformation of classical mechanics do not

hold under the implementation of the postulates of the special theory of relativity.

The two postulates of the special theory of relativity are:

1. The laws of physics are invariant (i.e. take the same form) in all inertial reference

frames.

2. The speed of light is constant (in a vacuum) for all inertial observers.

The transformations derived by implementing these postulates are known as Lorentz

transformations. The Lorentz transformations show that inertial observers with relative

velocity will not agree about when and where an event occurred. Meaning, contrary to

Galilean mechanics, events that occur at some time t for one observer (K) do not necessarily

occur at the same time t ′ for an observer (K′) that is moving relative to the observer K.

Hence, the notion of ‘absolute’ space and time as suggested by Galilean transformations is

wrong and must be replaced by an observer-dependent dynamic space and time.

For a given reference frame, an event is a happening specified by a definite time and a

definite location with respect to that reference frame. Therefore, an event can be thought

of as a point, and collection of such events (points) can be thought of as the continuum of

spacetime.

Consider an event p in an inertial reference frame K that is given by the coordinates

(t,x,y,z). Now consider another inertial reference frame K′ which is moving with constant

8



2.1. SPECIAL THEORY OF RELATIVITY

velocity v relative to K in the positive X-direction and has the same coordinate orientation as

K. The origins of K and K′ coincide at time zero of both reference frames. The coordinates

of reference frame K′ are denoted by (t ′,x′,y′,z′). Being constrained by above postulates,

the coordinate values of event p for the frame K′ are obtained to be:

t ′ = γ

(
t− vx

c2

)
,

x′ = γ(x− vt),

y′ = y,

z′ = z, (2.1)

where γ is called the ‘Lorentz factor’ and is given by γ = 1√
1− v2

c2

. Here c is the speed of

light.

The above transformation is known as the ‘Lorentz transformation’ [9]. These transforma-

tions reduce to Galilean transformations when the relative velocity v << c, as then γ ≈ 1

and t >> vx
c2 .

These transformations predict that the length of a moving object is measured (by other ob-

servers) to be shorter (than its rest-frame length) in the direction of motion, a phenomenon

known as ‘length contraction’. And the elapsed time for moving clocks is longer than the

elapsed time for stationary clocks, a phenomenon known as ‘time dilation’. In other words,

moving clocks run slower with respect to stationary clocks. The Lorentz transformations

also indicate that, for moving objects, the addition of velocities is not as simple as suggested

by Galilean transformations.

The shortest distance between two points in the Euclidean geometry is a straight line. The

‘length’ of this shortest distance line remains the same irrespective of the arbitrary choice

of coordinates. Hence, we can say that the distance between two points is invariant in

Euclidean geometry. Similarly, in spacetime, the shortest invariant distance between two

9



2.1. SPECIAL THEORY OF RELATIVITY

points (events) is given by

(∆s)2 =−(∆t)2 +(∆x)2 +(∆y)2 +(∆z)2

where s is called the spacetime interval.

The infinitesimal spacetime interval (ds) is then written as

(ds)2 =−(dt)2 +(dx)2 +(dy)2 +(dz)2.

If we take (x0,x1,x2,x3) = (t,x,y,z), the above can be written as

ds2 =
3

∑
α=0

3

∑
β=0

ηαβdxαdxβ

∴ ds2 = ηαβdxαdxβ,

where in the second step we have used the Einstein summation convention which implies

summation over indices that are repeated as superscript and subscript. The ηαβ is known

as the metric tensor of Minkowski spacetime. The components of the metric tensor (in

Cartesian coordinates) are expressed as

ηαβ =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(2.2)

ηαβ is known as Minkowski space metric.

Also note that the Lorenz transformations can be written in a compact form as

x′α = Λ
α

β
xβ

10



2.2. TENSOR ANALYSIS

where Λα

β
is Lorentz transformation matrix and satisfies ηαβ = Λν

β
Λ

µ
αηµν. The component

form is given by

Λ
α

β
=



γ −vγ 0 0

−vγ γ 0 0

0 0 0 0

0 0 0 0


,

where γ is the Lorentz factor. This coordinate transformation can be simply written as

(using the chain rule)

x′α =
∂x′α

∂xβ
xβ. (2.3)

Another important invariant quantity in spacetime, which all observers agree upon, is called

proper time. Curves in spacetime are often parameterized using the proper time. Proper

time along a (time-like) world line is defined as the time that is measured by a clock fol-

lowing that trajectory. Hence, it is independent of coordinates. The proper time between

two events in spacetime depends not only on the points (events) but also the curve (world

line) connecting them, therefore, on the motion of the clock between the two events. It is

analogous to arc length in three-dimensional Euclidean space. It is denoted by τ. Consider

an infinitesimal spacetime interval ds on a timelike world-line (trajectory of particle) for an

arbitrary Lorentz frame K and an instantaneous rest-frame K′ for the same interval.

∴−c2dτ
2 =−c2dt2 +dx2 +dy2 +dz2,

∴ dτ = dt

√
1− v2

c2 ,

∴ dτ =
dt
γ
.

2.2 Tensor analysis

Manifold and Riemannian geometry

A manifold is any surface (space) which can be divided into open sub-spaces, each of which

11



2.2. TENSOR ANALYSIS

can be mapped to Euclidean space e.g. the m dimensional surface of an n dimensional

sphere (m < n). It is any set that can be parameterized continuously. The number of

independent parameters is the dimension of the manifold, and the parameters themselves

are the coordinates of the manifold [1, 9]. A manifold locally looks like Euclidean space.

It is smooth and has a certain number of dimensions, but the large scale topology of a

manifold maybe very different from Euclidean space e.g. a small part of the surface of a

torus can be mapped one to one into the plane tangent to it. Hence, a manifold is a space

with coordinates that locally look Euclidean but has no distance relation or shape specified.

It is a ‘differential manifold’ on which a symmetric tensor field g has been singled out to act

as the metric. The metric adds structure to the manifold. Thus, choosing different metrics

would give different curvature to the manifold. The sum of the diagonal elements of metric

is called ‘signature’ of the metric. The metric signature for the special and general theories

of relativity is +2. Such a manifold is called pseudo Riemannian manifold. We know thta

global Lorentz frames can not exists in a general gravitational field, so we choose any point

P on the manifold for which gµν(P) = ηµν for all α,β. It is possible to find coordinates such

that, in a neighbourhood of P, the above equations are nearly true:

gµν(P) = ηµν,

∂αgµν(P) = 0,

where ∂α is used to denote partial derivative with respect to α-th coordinate. Any curved

space has a flat space tangent to it at any point and this is the reason why local Lorentz

frames exists.

Vectors

Using the Einstein summation convention, the vectors can be represented as

~V =V µ~eµ

12



2.2. TENSOR ANALYSIS

where V µ are vector components and~eµ are the basis vectors for a given coordinate system.

The Greek indices can take values from 0 to 3. Vectors are usually seen as entities con-

necting two positions in space. However, we can not have a vector connecting two points

on a curved surface as the rules of vector manipulation require space to be flat. To have

the notion of vectors on a curved surface, at every point in the space a ‘tangent space’ is

defined as the set of tangent vectors to all curves passing through that point. Vectors on

every point in the space lie on these tangent spaces. For a flat space, all the tangent spaces

are parallel, but in curved spaces that is not the case. For every vector space, there is a dual

vector space, whose elements define a map from the vector space to the field of scalars. For

a tangent space, the dual vector space is called a cotangent space and its elements are called

one-forms. We can define physical quantites by taking tensor products of m tangent spaces

and n cotangent spaces. These are known as (m n) tensors. In particular, the vector is a

(1 0) tensor and the one-form is a (0 1) tensor.

One-form

Oneform is a (0 1) tensor, which takes a vector as its argument and results in a scalar. It is

denoted by p̃. It is linear in its arguments.

If we have one-form which are defined as ã = b̃+ c̃ and d̃ = αã (where α is a scalar), then

the linearity property can be seen in the action of the one-form on the vector field such that

ã(~V ) = b̃(~V )+ c̃(~V ) and d̃(~V ) = αã(~V ). With above properties, one-form satisfy all the

axioms for a vector space. Hence, they are also called dual vector space to distinguish them

from the space of all vectors.

The components of any (0 N) tensor are obtained by supplying n number of basis vectors.

Hence, the components of one-form p̃ are obtained as

pα := p̃(~eα).

13



2.2. TENSOR ANALYSIS

Hence, when a vector is the argument of p̃ we have

p̃(~A) = p̃(Aα~eα),

∴ p̃(~A) = Aα p̃(~eα),

∴ p̃(~A) = Aα pα.

The basis one-forms are denoted as ω̃α and are defined as

ω̃
α(~eβ) = δ

α

β
.

We can see that, ω̃α(~eβ) gives β-th component of α-th basis oneform in a given coordinate

system. With these the one-form p̃ is given by

p̃ = pαω̃
α,

∴ p̃(~A) = pαω̃
α(Aβ~eβ),

∴ p̃(~A) = pαAβ
ω̃

α(~eβ),

∴ p̃(~A) = pαAβ
δ

α

β
,

∴ p̃(~A) = pαAα.

Metric tensor

A metric tensor is a symmetric (0 2) tensor, which takes two vectors as its arguments and

produces a scalar. It defines the dot product between two vectors. It is linear in its argu-

ments. Meaning,

g(α~A+β~B,~c) = αg(~A,~C)+βg(~B,~C).

For a given space, the metric tensor establishes the distance and angle relation between

points.

14



2.2. TENSOR ANALYSIS

The components of metric tensor are obtained when the basis vectors (for an arbitrary co-

ordinate system) are taken as arguments.

g(~eµ,~eν) =~eµ ·~eν,

g(~eµ,~eν) = gµν.

For Minkowski spacetime (in Cartesian coordinates)

g(~eµ,~eν) = ηµν,

because~eµ ·~eν = 0 for µ 6= ν,~e0 ·~e0 =−1 and~ei.~e j = δi j for Cartesian coordinates.

Hence, the dot product between two vectors using metric tensor is defined as

g(~A,~B) = g(Aµ~eµ,Bν~eν),

∴ g(~A,~B) = AµBνg(~eµ,~eν),

∴ g(~A,~B) = gµνAµBν.

The metric tensor acts as a mapping between one-forms and vectors. Consider g(~V ,), where

one vector argument is given and the second vector argument is yet to be supplied. When

the second vector argument (~A) is supplied in g(~V ,), it will produce a real number. Hence,

g(~V ,) can be seen as a symmetric linear function of vectors producing scalars: a oneform.

g(~V ,) := Ṽ () := g(,~V ).

When the vector argument ~A is supplied to Ṽ (), it evaluates ~A to ~V ·~A

Ṽ (~A) := g(~V ,~A),

∴ Ṽ (~A) =~V ·~A.

15
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The components Vα of the one-form Ṽ can be found by supplying the basis vectors ~eα of

the coordinate system.

Vα := Ṽ (~eα) =~V ·~eα,

∴Vα =V β(~eβ ·~eα),

∴Vα = gαβV β.

As seen in the expression above, the components of the metric tensor gαβ can be used to

lower the index. Similarly, it can be shown that the components of the inverse metric tensor

gαβ can be used to raise the index. (e.g. V α = gαβVβ)

THE STRESS-ENERGY TENSOR

In general relativity, the energy and momentum of a collection of particles (or of a field or

of a fluid) act as the source of gravitational field and curvature. It is important to discuss

how these quantities are described in a frame independently in terms of tensors.

Four-velocity

The path traced by an object through spacetime is called its world-line. The world-line of

an object in spacetime is given by four functions xµ(τ) of proper time τ. The position of

this object is given by four-position vector~x = xµ~eµ for a given inertial frame.

Four-velocity ~U can be defined as a four-vector of unit magnitude which is tangent to the

world-line of the object. At any point of the world-line, ~U can be given as ~U = d~x
dτ

. Its

components are given by

Uµ =
dxµ

dτ
, (2.4)

U0 =
dt
dτ

= γ, (2.5)

U i =
dxi

dt
dt
dτ

= γ~u, (2.6)

16



2.2. TENSOR ANALYSIS

where ~u is the 3-dimensional velocity vector and γ is the Lorentz factor. Hence, ~U can be

written as ~U = γ(1,~u). We can see that in the object’s rest frame ~U = (1,0,0,0) as the

spatial velocity is zero.

The magnitude of ~U is obtained by

~U ·~U =UµUν~eµ~eν,

∴ ~U ·~U = gµν

dxµ

dτ

dxν

dτ
,

∴ ~U ·~U =−1. (2.7)

The second last step follows from the fact that the infinitesimal spacetime interval ds2 =

−dτ2 in the object’s rest frame. The above equality is true for any massive object. It is clear

from the definition of four-velocity that it cannot be defined for a photon.

Four-momentum

Four-momentum is the generalization of classical 3-dimensional momentum to 4-dimensional

spacetime. It is defined as ~P = m0~U , where m0 is the rest-mass (the mass measured in the

rest frame of the particle) of the particle. In any inertial frame it can be written as

~P = m0~U ,

~P = m0γ(1,~u),

~P = (m,m~u),

~P = (E,~p), (2.8)

where m = m0γ is the relativistic mass, ~p is the 3-D relativistic momentum and E is the

energy of the particle.

17



2.2. TENSOR ANALYSIS

Number-flux vector ~N

A collection of particles, all of which are at rest with respect to some inertial frame is called

‘dust’. The number density n is simply the number of particles per unit volume. So n can

be written as

n =
N

∆x∆y∆z
,

where N is the total number of particles contained in the volume ∆x∆y∆z from the rest

frame. It is easy to see that if a dust has velocity v with respect to some inertial frame, then

due to length contraction the number density is given by γn, where γ is the Lorentz factor.

The flux across a surface is defined as the number of particles crossing a unit area of that

surface in a unit time. It can be shown that the flux across a surface of constant xµ (normal

to xµ) is given by γnUµ. Hence, the number-flux vector ~N is defined as ~N = n~U , where n is

the number density and ~U is the four-velocity. In an inertial frame ~N can be written as

~N = n~U ,

~N = nγ(1,~u),

~N = (nγ,nγ~u). (2.9)

From the above equation we can see that the component N0 is the number density, while

the components Ni are the fluxes across the surfaces of constant xi. Hence, N0 can be in-

terpreted as the flux across the surface of constant time i.e. the number of particles in the

spatial volume. Note that ~N ·~N =−n2 as ~U ·~U =−1.

Energy Density

Energy density is defined as total amount of energy per unit volume. In the rest frame of

dust, the energy of each particle is given by m0. Therefore the energy density ρ of all the

particles is given by ρ = nm0.
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If the dust has some velocity with respect to some inertial frame, then the energy density

will given by γ2ρ since number density and energy of each particle have a factor γ due to

relative velocity.

Stress-energy tensor

The stress-energy tensor is a symmetric (2 0) tensor which takes two one-forms as its

arguments and produces a scalar. It is denoted by T. The components T are obtained when

the basis one-forms d̃xµ and d̃xν are the arguments.

T(d̃xµ, d̃xν) = T µν.

The component T µν represents the flux of the µ-th component of four-momentum Pµ across

a surface of constant xν. For example, the component T 00 represents the flux of energy

(0-th component of momentum) across the surface of constant time, which is simply the

energy density.

Let’s briefly consider the meaning of each component.

• T 00 is the energy density as discussed above.

• T 0i is the flux of energy across the surface of constant xi, therefore it represents the

energy flux.

• T i0 is the flux of momentum across the surface of constant time, therefore it repre-

sents the momentum density.

• T i j is the flux of momentum across the surface of constant x j, therefore it represents

the momentum flux.

Let’s consider a general fluid. A fluid is a collection of innumerable particles such that

the dynamics of individual particles cannot be followed. Hence, it is called a special kind

of continuum whose description can only be given in terms of bulk quantities like number
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density, energy density, temperature, pressure, etc. The bulk (collection of particles) which

is large enough so that individual particles do not matter and yet small enough to be homo-

geneous, is called an element of the fluid.

Each element of the fluid is assigned a value of density, pressure, temperature, etc. which

may vary for each element. Mathematically, this approximation is expressed by giving each

point some value of pressure, density, etc. Hence, the fluid can be defined as collection of

various field defined at each location and each time.

For a general fluid, T 0i can be seen as conduction of heat among the fluid elements, T i0

can be interpreted as momentum associated with the energy flux (heat conduction) and T i j

represents forces per unit area between adjacent fluid elements, known as stresses. Forces

per unit area which are parallel to the interface are called sheares and the forces which are

perpendicular to the interface are called pressures.

A perfect fluid is defined as a fluid which has no viscosity and no heat conduction in its rest

frame. From this definition we can conclude the following things:

• In the rest frame of the perfect fluid T i0 = T 0i = 0 due to the lack of heat conduction.

• Shear forces due to viscosity is parallel to the interface of the elements. Since a

perfect fluid has no viscosity, T i j = 0 when i 6= j. Hence, T i j = pδi j, where p is the

pressure and δi j is the identity matrix in 3-dimensions.

From above discussion we can conclude that in the rest frame of perfect fluid, the compo-

nents of T are

T µν =



ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p


(2.10)
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∴ T µν =



ρ+ p 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


+



−p 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p


It is easy to see that above can be expressed as

T µν = (ρ+ p)UµUν + pη
µν (2.11)

The above equation shows the components of the stress-energy tensor for a perfect fluid. It

is frame invariant when written as a tensor equation. Note that the conservation of energy

and momentum is described by (in Cartesian coordinates)

∂νT µν = 0. (2.12)

This equation is correct only in flat spacetime. To find the correct equation in curved space-

time one needs to replace partial derivative with the covariant derivative as we shall see in

the sections to follow.

Derivative of a Vector

If we have a vector ~V =V α~eα, then its derivative is given by

∂~V
∂xβ

=
∂V α

∂xβ
~eα +V α ∂~eα

∂xβ
,

∴ ∂β
~V = ∂βV α~eα +V α

∂β~eα. (2.13)

If we are working in a coordinate system in which the basis vectors are normalized e.g.

Cartesian coordinates, then ∂β~eα = 0. But in any arbitrary coordinate system in which this

might not be the case (e.g. polar coordinate system) the derivative of a vector is given by
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Eq. (2.13).

Christoffel symbols

Because ∂β~eα is itself a vector (in eqn. (2.13)), it can be expressed as a linear combination

of the basis vectors. If we relabel ∂β~eα as ~A, then ~A can be written as ~A = Aµ~eµ. Here, the

coefficients Aµ is the µ-th coefficient of ∂β~eα, Aµ also contains the information of which

basis vector (~eα) is being differentiated with respect to what coordinate (xβ).

To indicate all this information, we can denote the coefficients of vector ∂β~eα as Γ
µ
αβ.

∂β~eα = Γ
µ
αβ~eµ. (2.14)

These symbols (coefficients) Γ
µ
αβ are called the Christoffel symbols. The Christoffel sym-

bols are symmetric in their lower indices, meaning Γ
µ
αβ = Γ

µ
βα. They can be expressed in

terms of derivatives of the metric tensor components as follows

Γ
α
µν =

1
2

gαβ(∂νgβµ +∂µgβν−∂βgµν). (2.15)

This formula can be derived using the definition of the covariant derivative and the com-

patibility of covariant derivative with respect to the metric. (The covariant derivative of the

metric is zero) which we describe next.)

Covariant derivative

Using the Christoffel symbol notation and definition in (2.14), we can rewrite the derivative
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of a vector in curved geometry as

∇β
~V = ∂βV α~eα +V α

∂β~eα,

∴ ∇β
~V = ∂βV α~eα +V α

Γ
µ
αβ~eµ,

∴ ∇β
~V = (∂βV α +V µ

Γ
α
µ β)~eα,

∴ ∇β
~V = ∇βV α~eα.

Hence, the covariant derivative of vector components V α is defined to be

∇βV α = ∂βV α +V µ
Γ

α
µ β. (2.16)

Using the covariant derivative formula (2.16), the divergence of the vector field V α is given

by

∇αV α =
1√
|g|

∂α(
√
|g|V α), (2.17)

where |g| is absolute value of the determinant of the metric tensor. Similarly, the covariant

derivative of a one-form field pα is given by

∇βPα = ∂βPα−PµΓ
µ
αβ
. (2.18)

Some examples of covariant derivative of higher order tensors are as follows [9]

∇βTµν = ∂βTµν−TανΓ
α

µβ
−TµαΓ

α

νβ
,

∇βAµν = ∂βAµν +Aαν
Γ

µ
αβ

+Aµα
Γ

ν

αβ
,

∇βBµ
ν = ∂βBµ

ν +Bα
ν Γ

µ
αβ
−Bµ

αΓ
α

νβ
.
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If the arbitrary tensor Tµν is taken to be the metric tensor gµν, then ∇µgαβ = 0 can be solved

to get the above described definition of the Christoffel symbols in terms of the metric tensor

components.

Parallel Transport

There are two types of curvatures in general theory of relativity: extrinsic curvature and

intrinsic curvature. The extrinsic curvature describes how an m-dimensional surface is

embedded into an n-dimensional surface (n > m). It describes the curvature of the m-

dimensional surface when looked from a higher n-dimensional point of view (bird’s eye

view). Surface of a cylinder is an example of a surface with an extrinsic curvature. It is a 2-

dimensional surface embedded in 3-dimensional space that appears curved when observed

from a 3-dimensional point of view. The distance relation of the points of a cylinder is

the same as the distance relation of a flat surface when observed from the two dimensional

perspective. Parallel lines remain parallel on the surface of a cylinder just like they would

on a flat surface. From this 2-dimensional perspective the surface of the cylinder appears

analogous to a flat surface. A flat sheet of paper can be converted into a cylinder without

tearing or crumpling it, so its intrinsic geometry is that of a plane: it is flat. So, the extrin-

sic curvature describes how m-dimensional surface points are related to the n-dimensional

space.

The intrinsic curvature only considers the relationships amongst the points as observed

from the (m -dimensional) surface itself. It does not rely on the notion of a higher-dimensional

space. In a surface with intrinsic curvature, the distance between any two points is not the

same as of a flat space. Parallel lines would either converge or diverge on a surface with

nonzero intrinsic curvature. The general theory of relativity describes this intrinsic curva-

ture of the 4-dimensional spacetime without referring to any higher dimensions. The (2D)

surface of a sphere is an example of a surface with an intrinsic curvature.

Consider a triangle with points A, B and C on a flat surface. Now consider a vector at
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Figure 2.1: Parallel transport of a vector on a flat surface

point A. Let’s transport this vector (along the curve) from A to B to C and back to A with

the condition that the vector is always tangent to the surface and parallel to itself after any

infinitesimal displacement. Such a construction is called parallel-transport. When it returns

to point A again, we see (in figure 2.1) that it will be parallel to itself and will have the same

magnitude.

Now consider a triangle with points A, B and C on the surface of a sphere such that points

A and C are on the equator and point B is on the pole. If we parallel transport a vector

along the triangle (curve) ABC and back to A, we see (figure 2.2) that the vector is pointing

in some other direction and/or has different magnitude. In other words, the vector is not

parallel to itself.

This means that on a curved manifold it is not possible to define a globally parallel vector

field. Two vectors can only be compared after parallel-transporting one of them to the other.

In other words, they can be compared in the tangent space of a point. And this comparison

will depend on the path taken for parallel transport. Therefore, we cannot claim that a cer-
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Figure 2.2: Parallel transport of a vector on the surface of a sphere

tain vector at point A is parallel to another vector at B or not.

Let’s consider a curve on a curved surface defined by the parameter λ. The tangent

vector ~U is then given by

~U =
d~x
dλ

If we have a vector field ~V defined on the curve such that vectors ~V at infinitesimally close

points of the curve are parallel and of equal magnitude, then ~V is said to be parallelly

transported along the curve. In a locally inertial (flat) coordinate system, the components
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of ~V must be constant along the curve in the infinitesimal neighbourhood of point P.

dV α

dλ
= 0, (2.19)

∴
∂V α

∂xβ

dxβ

dλ
= 0,

∴Uβ
∂βV α = 0,

∴Uβ
∇βV α = 0,

∴ ∇~U
~V = 0.

In the fourth step of the above equation we used the fact that Γα
µν = 0 at point P, hence the

partial derivative can be changed as a co-variant derivative. And since it is a tensor equa-

tion, it is true in any arbitrary frame.

Geodesic

On a curved surface, a geodesic is analogous to a straight line of Euclid’s flat space. It is a

curve that is ‘as nearly straight as possible’ on a curved surface. A straight line in Euclid’s

geometry is a curve for which the tangent at a point is parallel to the tangent at a previous

point. So, a geodesic is essentially a curve that is obtained by parallel transporting the

tangent vector. Looking at the definition of parallel transport of a vector, it can be given by

∇~U
~U = 0,

∴Uβ
∇βUα = 0,

∴Uβ
∂βUα +Γ

α

µβ
UµUβ = 0,

∴
d2xα

dλ2 +Γ
α

µβ

d2xµ

dλ

dxβ

dλ
= 0.

The above equation is a nonlinear, second-order differential equation for xα(λ). It has

a unique solution for a given initial position and initial direction. We can get a unique

geodesic with different initial conditions.
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Riemann Tensor

It is rather difficult to distinguish flat space from curved space just by looking at the metric

as the representation of the metric is coordinate dependent. Even in flat space, the metric

does not take the simplest form unless one is working with Cartesian coordinates. The

Christoffel symbols and their partial derivatives do vanish in flat space when using Carte-

sian coordinates, but they do not vanish in flat space when represented by any arbitrary

coordinates (e.g. polar coordinates). This is due to the fact that the Christoffel symbols are

not tensors. Even in curved spaces, one can always choose locally inertial coordinates (at

some point P) such that the metric is the Minkowski metric and the Christoffel symbols are

zero (at that point).

We need a more useful mathematical tool which can be used to distinguish curved spaces

from a flat one. Let’s use the fact that, on a curved surface (e.g. a sphere), when a vector is

parallel transported in a closed loop, it is not identical to the original vector when we return

to the starting point [24]. Consider a closed loop (see figure 2.3) formed by the coordinate

grids xµ,xµ+δxµ,xν and xν+δxν. Consider a vector V λ
A at point A. Let’s say that vector V λ

A

is represented by V λ
C when parallel transported across ABC. And vector V λ

A is represented

by V λ

C when parallel transported across ADC. The difference between V λ
C and V λ

C is denoted

as δV λ (at the point C). δV λ will tell us whether the space is flat or curved. If δV λ is zero

then the space is flat, otherwise it is curved.

Mathematically, V λ
C can be represented as ∇µ∇νV λ since we are parallel transporting across

the coordinate grids. Similarly, V λ

C can be represented as ∇ν∇µV λ.

∴ δV λ = ∇µ∇νV λ−∇ν∇µV λ,

∴ δV λ = [∇µ,∇ν]V λ.
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Figure 2.3: Parallel transport of a vector on the path ABC and ADC across the closed loop
formed by the coordinate grids

Hence, δV λ is obtained by finding the commutator of the covariant derivatives ∇µ and ∇ν.

[∇µ,∇ν]V λ = ∇µ∇νV λ−∇ν∇µV λ

= (∂µ(∇νV λ)−Γ
σ
µν∇σV λ +Γ

λ
µσ∇νV σ)− (∂ν(∇µV λ)−Γ

σ
νµ∇σV λ +Γ

λ
νσ∇µV σ),

= (∂µΓ
λ
να−∂νΓ

λ
µα +Γ

λ
µσΓ

σ
να−Γ

λ
νσΓ

σ
µα)V

α.

In last few steps, we reapplied the definition of covariant derivative, relabelled the summa-

tion index as to take V α out of the bracket, removed the same terms with opposite signs and

used the fact that the Christoffel symbols are symmetric in their lower index (torsion free

condition).

Since the covariant derivatives ∇µ and ∇ν are tensors, their commutator [∇µ,∇ν] is also a

tensor. Even though the Christoffel symbols are not tensors, ∂µΓλ
να− ∂νΓλ

µα +Γλ
µσΓσ

να−

Γλ
νσΓσ

µα is a tensor, it obeys all the tensor transformation laws and is independent of the
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coordinates.

Rα

βµν
= ∂µΓ

α

νβ
−∂νΓ

α

µβ
+Γ

α
µσΓ

σ

νβ
−Γ

α
νσΓ

σ

µβ
. (2.20)

Rα

βµν
is called the Riemann curvature tensor. It is a (1,3) tensor which measures the

curvature of the given space. Unlike the Christoffel symbols, Rα

βµν
does not vanish in local

inertial frames.

Using the metric tensor one can write gαλRλ

βµν
= Rαβµν.

We can contract the first and the third index of Rα

βµν
to define the Ricci tensor. It is denoted

by Rµν.

Rµν := Rα
µαν,

∴ Rµν = gαβRβµαν.

The Ricci tensor (Rµν) can be further contracted to define the Ricci scalar.

R := gµνRµν,

∴ R = gµνgαβRαµβν.

2.3 General relativity

The weak equivalence principle:

Freely falling particles move on a timelike geodesic of the spacetime.

The Einstein equivalence principle:

Any local physical experiment not involving gravity will have the same results if performed

in a freely falling inertial frame as if it were performed in a flat spacetime of special rela-

tivity. [9] Or, in other words, it is possible to choose a locally inertial coordinate system at

every spacetime point in a gravitational field such that, within a sufficiently small region of
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the point, the laws of nature are the same as in special relativity. There is great similarity

between the equivalence principle and the appearance of local flatness on a curved Rie-

mannian manifold. Because of this resemblance one may expect that spacetime in general

relativity can be described with a pseudo-Riemannian manifold [9].

The Principle of General Covariance:

We will now discuss the principle that is used to generalize valid equations from special

relativity to general relativity. It is known as the ‘principle of general covariance’. This

principle states that a physical equation holds true in all coordinate systems if:

1. The equation holds true in absence of gravitation (i.e. it holds true in special relativ-

ity).

2. It is a tensor equation (i.e. it preserves its form under a general coordinate transfor-

mation).

By the equivalence principle, an equation that is correct in a locally inertial coordinate

system can be written and then a general coordinate transformation can be made to find

the corresponding equation in an arbitrary coordinate system. Using the principle of gen-

eral covariance, we can find the equation that holds for all coordinate systems in a simple

manner. It follows from the equivalence principle by considering any equation that satisfy

condition (1) and (2). Since the equation is generally covariant it preserves its form under

a general coordinate transformation, so if its form is correct in one coordinate system then

it is correct in all coordinate systems. The equivalence principle says that at every point in

spacetime there exists locally inertial coordinate systems in which the effects of gravity are

absent. Since we assumed that our equation holds in special relativity and therefore holds

in these locally inertial systems, it must hold in all coordinate systems.

So to find equations that are correct in a general gravitational field we simply take the

valid tensor equations of special relativity and replace all partial derivatives by coordinate

appropriate covariant derivatives and the Minkowski spacetime metric ηµν by the general
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metric tensor gµν.

THE EINSTEIN FIELD EQUATIONS

In the above sections we have introduced the mathematical tools which are crucial in un-

derstanding how spacetime gets curved due to massive bodies. The Einstein field equations

(EFE) are a set of nonlinear equations which describe how the spacetime gets curved [25].

They can be derived from the action principle formulated based on the invariance under

general coordinate transformations [25]. They are given by

Rµν−
1
2

gµνR = 8πTµν (2.21)

where Rµν is the Ricci tensor, R is the Ricci scalar, gµν is the metric tensor and Tµν is the

stress-energy tensor.

The left hand side of the equation is known as the Einstein tensor Gµν. It describes how

the spacetime curves. All the information of the source (like energy, mass, pressure and

electromagnetic field) is contained in the stress-energy tensor Tµν. For a given distribution

of matter (described by Tµν), one can solve the EFE to obtain the metric tensor gµν. Once

the metric tensor is found, one can know everything about the given space as it can be used

to calculate Christoffel symbols, Riemann tensor, Ricci tensor and Ricci scalar.

Since Rµν,gµν and Tµν are symmetric in their indices, we have a set of ten independent

equations described by EFE. The contracted Bianchi identity for EFE is given by

∇
µRµν =

1
2

∇νR. (2.22)

But with the consideration of contracted Bianchi identity, we are left with six independent

equations which need to be solved for the metric tensor. Once the solution is found, we

know how the spacetime is curved. The motion of particles through curved spacetime (in

the absence of all the forces except for gravity) is described by the geodesic equation.
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2.4 Electromagnetic waves

Maxwell’s equations [26] describe the behavior of electric and magnetic fields at dif-

ferent points in spacetime, depending on the distribution and motion of charges. These

equations are as follows

~∇.~E =
ρ

ε0
, (Gauss’s law)

~∇.~B = 0,

~∇×~E =−∂~B
∂t

, (Faraday’s law)

~∇×~B = µ0~J+µ0ε0
∂~E
∂t

(Ampere’s law),

where the vector ~E is the electric field vector, ~B is the magnetic field vector, ρ is the electric

charge density and ~J is the electric current density. The constants ε0 and µ0 represent the

permittivity and the permeability of empty space. We know that

~B = ~∇×~A, (2.23)

~E =−~∇φ− ∂~A
∂t

, (2.24)

where ~A is the magnetic potential and φ is the electric potential. Now if we transform the

magnetic potential as ~A→ ~A′ = ~A+~∇Λ and the electric potential as φ→ φ′ = φ− ∂Λ

∂t , then

the electric and magnetic field remain unchanged for any scalar function Λ. This can be

easily seen by substituting the transformed magnetic and electric potentials in the above

equations. A particular choice of the scalar and vector potentials is known as a gauge po-

tential; and such changes in the electric potential φ and magnetic potential ~A are known as

the gauge transformations.

The Lorenz gauge

In the Lorenz gauge we pick the magnetic vector potential and the scalar electric potential
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such that ~∇.~A =− 1
c2

∂φ

∂t holds.

∴ ~∇.~A+
1
c2

∂φ

∂t
= 0. (2.25)

In tensor notation above can be written as

∂µAµ = 0, (2.26)

where the components of the four-vector Aµ are given by Aµ = (φ

c ,
~A). It is known as the

electromagnetic four potential.

Maxwell’s equations in this gauge become

2Aν = µ0Jν, (2.27)

where the components of the four-vector Jν are given by Jν = (cρ,~j). It is known as the

four-current (ρ is the charge density).

Note that after the interaction with the gravitational wave, the four-potential Aµ can be

divided in two parts, the unperturbed part denoted by A and the perturbed part denoted by

Ã.

Aµ = Aµ + Ãµ(h) . (2.28)

Here 2Aµ = 0 is the unperturbed electromagnetic wave and 2Ãµ 6= 0 is the perturbed

electromagnetic wave. Note that Aµ� Ãµ as the electromagnetic potential perturbations

are caused by a weak gravitational wave.

Electromagnetic field strength tensor

It is an anti-symmetric (0 2) tensor with six independent components (electric and magnetic
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field components). In the covariant component form it is given by

Fµν = ∂µAν−∂νAµ. (2.29)

The contravariant matrix form of it can be given by

Fµν =



0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0


. (2.30)

Maxwell’s equations in tensor form

The tensor form of Gauss’s law and Ampere’s law can be written as

∂νFµν = µ0Jµ. (2.31)

Gauss’s law for magnetism and Faraday’s law can be written as

∂µFνλ +∂νFλµ +∂λFµν = 0. (2.32)

In the absence of sources Jµ = (0,0,0,0) and eqn. (2.31) will describe electromagnetic

waves

∂νFµν = 0. (2.33)

Maxwell’s equations in curved geometry

From the ‘Minimal Coupling Principle’, Maxwell’s equations [1] in curved spacetime can

be written as

∇νFµν = 0;
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But we know that

∇νFµν =
1√
|g|

∂ν(
√
|g|Fµν),

∴ ∇νFµν = ∂νFµν = 0 . (2.34)

2.5 Conclusion

The essential ideas of the special theory of relativity were discussed. The Lorentz

transformation; and general coordinate transformation notations were introduced. It was

shown that the metric tensor g defines lengths and angles on the given manifold; and has

all the necessary information to describe the manifold. For any arbitrary coordinate sys-

tem, the components of the metric tensor are given by gµν = ~eµ ·~eν. Quantities such as

four-velocity(Uµ), four-momentum, number-density, number-flux and energy density were

defined in the given framework. The meaning of stress-energy tensor components was dis-

cussed in detail and it was shown that in any arbitrary coordinates its components are given

by T µν = (ρ+ p)UµUν + pgµν. The notion of differentiation on a curved surface was in-

troduced and the covariant derivative of a vector was defined to be ∇βV α = ∂βV α+V µΓα
µ β.

With the definition of Christoffel symbols as Γα
µν = 1

2gαβ(∂νgβµ + ∂µgβν− ∂βgµν). Key

mathematical tools like parallel transport, geodesic equation, Riemann curvature tensor,

Ricci tensor and Ricci scalar were discussed in depth. Using the Einstein equivalence prin-

ciple, it was established that in the gravitational field at every point a local inertial coordi-

nate system can be chosen such that the laws of physics are the same as in special relativity.

The Einstein Field Equations describe how matter and energy curve spacetime.
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Chapter 3

Gravitational Waves

3.1 Introduction

Gravitational waves were predicted shortly after Einstein introduced the general theory

of relativity in 1916. However, their detection was rather difficult due to experimental and

technological limitations. They were recently detected by LIGO and Virgo and announced

in February 2016 [4]. These gravitational waves were produced due to a binary blackhole

merger. With this detection, a new era of gravitational wave optics has begun. A grav-

itational wave is a ripple in the fabric of spacetime. It is generally produced due to the

acceleration of massive bodies. Because gravitational waves interact weakly with matter,

they can be used to observe the events which might not be visible using electromagnetic

radiation. There are efforts towards detecting primordial gravitational waves [6, 7, 27].

These are the waves which were produced shortly after the Big-Bang during the process

of inflation [28] and due to early astrophysical sources. In this chapter, we will study how

the weak gravitational waves can be described mathematically as the perturbation on the

background metric. We show a detailed derivation of the form of the metric perturbation

hµν. We will only consider the linear terms of the metric perturbation and solve the Ein-

stein field equations in the absence of any matter. The background spacetime is taken to

be Minkowski spacetime described by the metric ηµν. Note that to describe gravitational

waves in any other spacetime, we follow a similar procedure as done in this chapter.
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3.2. LINEARIZED EINSTEIN FIELD EQUATIONS

3.2 Linearized Einstein field equations

To obtain the linearized Einstein field equations, let’s consider a spacetime with mod-

est curvature. One can think of regions of space which are far away from any massive

gravitating bodies. The gravity is so weak that the metric gµν for the given spacetime is

‘close’ to the metric ηµν of Minkowksi spacetime, with small deviations due to curvature.

Mathematically, it can be written as

gµν = ηµν +hµν, (3.1)

where hµν is a ‘small’ metric perturbation [9, 29, 30, 27]. Since the metric components

can be described in any arbitrary coordinates, there is no natural sense of the norm of a

tensor being ‘small’. To rectify this, we can require that |hµν| � 1 when the metric ηµν is

described by ηµν = diag(−1,1,1,1).

Let’s now find the inverse of hµν. We begin with gµν =ηµν+Xµν, where Xµν is the unknown

inverse of hµν.

gµνgνβ = (ηµν +hµν)(η
νβ +Xνβ),

∴ δ
β
µ = δ

β
µ +ηµνXνβ +η

νβhµν, (∵ gµνgνβ = ηµνη
νβ = δ

β
µ)

∴ η
µα

ηµνXνβ =−η
µα

η
νβhµν,

∴ Xαβ =−η
µα

η
νβhµν.

Because |hµν| � 1, we have neglected the higher order terms of hµν in the second step.

Now we can write gµν = ηµν−ηµαηνβhµν. Because hαβ ≡ ηµαηνβhµν, we have

gµν = η
µν−hµν. (3.2)

This equation is correct up to first order in hµν. Note that the raising and lowering of the

indices is not done through the metric tensor gµν, but through ηµν. This is due to only
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keeping the linear terms in hµν.

We need to substitute the above definitions of the metric and its inverse to find the linearized

Einstein field equations. To do so, let’s first find the Christoffel symbols using the definition

Γ
α
µν =

1
2

gαβ(∂νgβµ +∂µgβν−∂βgµν).

By keeping only the terms of linear order, we find that

Γ
α
µν =

1
2

η
αβ(∂νhβµ +∂µhβν−∂βhµν).

Now that the linearized Christoffel symbols have been found, we can find the linearized

Ricci tensor by

Rµν = ∂αΓ
α
µν +∂νΓ

α
µα +Γ

α
ασΓ

σ
νµ−Γ

α
νσΓ

σ
αµ,

∴ Rµν =
1
2
(∂ν∂

αhµα +∂µ∂
αhνα−∂α∂

αhµν−∂ν∂µhα
α) (3.3)

and similarly, the Ricci scalar is given by

R = gαβRαβ,

∴ R = η
αβRαβ. (∵ |hαβ| � 1) (3.4)

After substituting the above results in the Einstein field equations (2.21), the linearized

Einstein equations are found to be

(∂ν∂
αhµα +∂µ∂

αhνα−∂α∂
αhµν−∂ν∂µhα

α)−ηµν(η
αβRαβ) = 16πTµν,

∴ (∂ν∂
αhµα +∂µ∂

αhνα−∂α∂
αhµν−∂ν∂µh)−ηµν[

1
2
(2∂

α
∂

βhαβ−2∂
α

∂αh)] = 16πTµν,

∴ ∂ν∂
αhµα +∂µ∂

αhνα−∂α∂
αhµν−∂ν∂µh−ηµν∂

α
∂

βhαβ +ηµν∂
α

∂αh = 16πTµν.

(3.5)
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To simplify the expression above we can define the trace-reversed form of hµν as

hµν = hµν−
1
2

ηµνh; (3.6)

hµν is called trace-reversed of hµν because ηµνhµν = h = −h. We can also write hµν =

hµν− 1
2ηµνh, which can be easily verified.

With this definition of hµν, the linearized Einstein field equations can be rewritten as

−∂α∂
αhµν +∂µ∂

αhνα−ηµν∂
α

∂
βhαβ = 16πTµν,

∴2hµν−∂µ∂
αhνα +ηµν∂

α
∂

βhαβ =−16πTµν, (3.7)

where ∂α∂α = −∂2
t +∇2 = 2 is called the d’Alembertian operator or the wave operator.

If we can simplify the above expression such that the last two terms on the left side of

the equality vanish (i.e. ∂νhµν = 0), then we will have a wave equation with the source

term on the right side of equality. In general relativity, we have the freedom to select a

situation appropriate coordinate system or ‘gauge’. To better understand if we can choose a

coordinate system in which ∂νhµν = 0, let us consider an arbitrary infinitesimal coordinate

(gauge) transformation of the form

xα→ x′α = xα +ξ
α(x0,x1,x2,x3),

where the ‘prime’ refers to the transformed coordinates for the convenience of the cal-

culation. Here ξα(x0,x1,x2,x3), shortly written as ξα(xµ), is the function of position that

represents an arbitrary infinitesimal displacement four-vector.

To see how this changes the metric perturbations, we need to find the derivative of x′α and
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xα with respect to each other.

∴
∂x′α

∂xβ
=

∂xα

∂xβ
+

∂ξα(xµ)

∂xβ
,

∴
∂x′α

∂xβ
= δ

α

β
+

∂ξα

∂xβ
. (3.8)

Similarly, we can find

∂xα

∂x′β
=

∂x′α

∂x′β
− ∂ξα

∂xν

∂xν

∂x′β
, (∵ xα = x′α−ξ

α(xµ))

∴
∂xα

∂x′β
= δ

α

β
− ∂ξα

∂xν

[
∂x′ν

∂x′β
− ∂ξν

∂xµ
∂xµ

∂x′β

]
,

∴
∂xα

∂x′β
= δ

α

β
− ∂ξα

∂xν

[
δ

ν

β
− ∂ξν

∂xµ
∂xµ

∂x′β

]
,

∴
∂xα

∂x′β
= δ

α

β
− ∂ξα

∂xν
δ

ν

β
+

∂ξα

∂xν

∂ξν

∂xµ
∂xµ

∂x′β
,

∴
∂xα

∂x′β
= δ

α

β
− ∂ξα

∂xβ
, (3.9)

where in the last step, the higher order terms of ξα(xµ) are neglected as |ξα(xµ)| is very

small. Using results above we can write the transformed metric g′µν as

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ,

∴ η
′
µν +h′µν = (δα

µ −∂µξ
α)(δ

β

ν−∂νξ
β)(ηαβ +hαβ),

∴ ηµν +h′µν = δ
α
µ δ

β

νηαβ +δ
α
µ δ

β

νhαβ−δ
α
µ ηαβ∂νξ

β−δ
β

νηαβ∂µξ
α (∵ η

′
µν = ηµν),

∴ ηµν +h′µν = ηµν +hµν−∂νξµ−∂µξν,

∴ h′µν = hµν−∂νξµ−∂µξν. (3.10)

In the above calculation, we have neglected the higher order terms of small quantities (i.e.

∂µξαhαν is neglected).The above equation represents the gauge transformed metric pertur-

bation and is correct to the first order in hµν and ξα.

Since our equations are in the trace-reversed form of hµν, let us also find the gauge trans-
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formed form of the trace-reversed metric perturbation hµν. We have

h
′
µν = h′µν−

1
2

ηµνh′,

∴ h
′
µν = hµν−∂νξµ−∂µξν−

1
2

ηµν(h−2∂αξ
α),

∴ h
′
µν = hµν−

1
2

ηµνh−∂νξµ−∂µξν +ηµν∂αξ
α,

∴ h
′
µν = hµν−∂νξµ−∂µξν +ηµν∂αξ

α. (3.11)

The condition that we want Eq. (3.7) to satisfy is

∂
νhµν = 0 (or equivalently ∂νh

µν
= 0). (3.12)

The above condition is known as the Lorenz gauge condition and the class of gauges satis-

fying this condition are known as Lorenz gauges. They are also known as harmonic gauges

or Hilbert gauges.

Let us say that the metric perturbation (in some coordinate system) does not satisfy the

Lorenz gauge. Is there a way to impose the Lorenz gauge by putting some constraints on

ξα? To find that, consider a coordinate system that satisfies the Lorenz gauge condition.

Therefore, we have

∂
νh
′
µν = 0,

∴ ∂
νhµν−∂

ν
∂νξµ−∂

ν
∂µξν +ηµν∂

ν
∂αξ

α = 0,

∴ ∂
νhµν−2ξµ−∂µ∂

ν
ξν +∂µ∂αξ

α = 0,

∴2ξµ = ∂
νhµν. (3.13)

Hence, the Lorenz gauge can be imposed on any metric perturbation hµν by making an in-

finitesimal coordinate transformation ξα with condition that 2ξµ = ∂νhµν. The constraint

equation always has solutions for a well behaved source term, as it is the three dimensional
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inhomogeneous wave equation.

So, if in a certain coordinate system (xβ) the hαβ does not satisfy the Lorenz gauge con-

dition, then to find a coordinate system x′β in which the Lorenz gauge is satisfied; solve

2ξβ = ∂αhαβ and make the coordinate transformation xβ→ x′β = xβ +ξβ.

Note that the ξµ is not unique. Any Λµ satisfying the homogeneous wave equation 2Λµ = 0

can be simply added to the ξµ and will still obey the Lorenz gauge condition (i.e. 2(ξµ +

Λµ) = ∂νhµν).

Imposing the Lorenz gauge condition on Eq. (3.7), we get

2hµν =−16πTµν, (3.14)

which is the inhomogeneous wave equation. Here, the metric perturbation hµν propagates

on the flat Minkowski background as a wave and is sourced by the energy momentum ten-

sor Tµν.

Now let us consider the propagation of gravitational waves when Tµν = 0 (i.e. in the vac-

uum)

2hµν = 0. (3.15)

The simplest general solution to above homogeneous wave equation can be given as

hµν = Aµνei(−ωgt+~k·~x)

hµν = Aµνeikαxα

, (3.16)

where the constant Aµν is a symmetric polarization tensor, which contains information about

the amplitude and the polarization of the linearized gravitational wave. The xα is simply the

position vector components given by (t,x,y,z) and the constant kα represents the four-wave

vector components, given by kα = (ωg,kx,ky,kz). As one-form components they can be
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written as kα = (−ωg,kx,ky,kz). The substitution of the general solution yields

∂
µ
∂µ(Aµνeikαxα

) = 0,

∴ η
µν

∂ν(ikαδ
α
µ eikαxα

) = 0,

∴−η
µνkµkνeikαxα

= 0,

∴ kµkµ = 0, (3.17)

∴ (ωg)
2 = δ

i jkik j. (3.18)

The last result translates into the fact that the gravitational waves travel at the speed of light.

The speed of any wave is given by v = ωg

|~k|
, which is equal to 1 (c) using the equation above.

Let us now impose the Lorenz gauge condition to the standard solution.

∂
νhµν = 0,

∴ η
βν

∂β(Aµνeikαxα

) = 0,

∴ η
βνAµνikβeikαxα

= 0,

∴ Aµνkν = 0. (3.19)

The above equation shows that the four-wave vector kν is orthogonal to the polarization

tensor Aµν. Due to Aµν being symmetric, it has 10 independent components. But now with

the set of four equations (constraints), the number of independent components of Aµν re-

duces to 6. Let us now try to further reduce the number of independent components of Aµν

by doing another gauge transformation.

The constraint 2ξµ = ∂νhµν put on the infinitesimal displacement vector ξα does not

exhaust all the freedom to choose coordinates (gauge freedom). We can still make another

infinitesimal coordinate transformation xα→ x′α = xα+Λα with the constraint that 2Λµ =

0. This constraint is imposed by the Lorenz gauge condition. As discussed previously

44



3.2. LINEARIZED EINSTEIN FIELD EQUATIONS

2(ξµ +Λµ) = ∂νhµν is valid and consistent.

If we choose the form of Λµ as

Λµ = Bµeikαxα

, (3.20)

where Bµ is a constant and the kα is the wave-vector used in the standard solution of hµν,

then it is easy to see that it satisfies 2Λµ = 0, due to kνkν = 0. As calculated previously, the

transformed metric perturbation h′µν will be given by

h′µν = hµν−∂νΛµ−∂µΛν (3.21)

and the transformed trace-reversed metric perturbation will be given by

h
′
µν = hµν−∂νΛµ−∂µΛν +ηµν∂αΛ

α. (3.22)

Substituting the form of Λµ we obtain

h
′
µν = hµν−∂ν(Bµeikαxα

)−∂µ(Bνeikαxα

)+ηµνηγα∂γ(Bαeikβxβ

),

∴ A′µνeikαxα

= Aµνeikαxα

− ikνBµeikαxα

− ikµBνeikαxα

+ηµνη
γαikγBαeikβxβ

,

∴ A′µν = Aµν− ikνBµ− ikµBν +ηµνikαBα. (3.23)

The above equations show the relation among the polarization tensor components after the

transformation (A′µν) and before the transformation (Aµν). Now, let us find the relation

between Bµ and Aµν such that A′µν has the simplest form.

If we require that the trace of the transposed polarization tensor components vanish,

A′νν = 0, (3.24)
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then the relation between Bν and Aν
ν is given by

η
µνA′µν = η

µνAµν−η
µνikνBµ−η

µνikµBν +η
µν

ηµνikαBα,

∴ A′νν = Aν
ν−2ikνBν +4ikαBα,

∴ 0 = Aν
ν +2ikνBν,

∴ kνBν =
i
2

Aν
ν. (3.25)

If we require that

A′0ν = 0, (3.26)

then we have

∴ A0ν− ikνB0− ik0Bν +η0νikαBα = 0,

∴ A0ν− ikνB0− ik0Bν−
1
2

η0νAν
ν = 0 (∵ kαBα =

i
2

Aν
ν).

When the free index ν = 0 in the above equation, then we have

A00−2ik0B0 +
1
2

Aν
ν = 0,

∴ B0 =−
i

2k0

[
A00 +

1
2

Aν
ν

]
. (3.27)

When the free index ν is spatial, then we have

A0 j− ik jB0− ik0B j = 0,

∴ A0 j−
k j

2k0

[
A00 +

1
2

Aν
ν

]
− ik0B j = 0,

∴ B j =−
iA0 j

k0
+

ik j

2(k0)2

[
A00 +

1
2

Aν
ν

]
. (3.28)

Using the relations (3.27) and (3.28), we can transform to a coordinate system in which

A′0ν
= 0 and A′νν = 0. After the transformation Λµ, we can relabel the A′µν as Aµν.
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Before the transformation, Aµν had 6 independent components. Three additional constraints

are introduced by the requirement A0ν = 0 and one more constraint is introduced by the

required Aν
ν = 0. Hence, Aµν has 2 independent components.

(Note that A0ν = 0 are four different equations, only three constraints are there due to ν = 0

translating to one of the previous constraint Aµνkν = 0.)

The above used gauge satisfies the following conditions:

• ∂νhµν = 0 (Aµνkν = 0)

• h0ν = 0 (A0ν = 0), meaning all temporal components of hµν is zero.

• hν
ν = 0 (Aν

ν = 0), meaning the trace of hµν is zero.

Such a gauge is known as the transverse-traceless (TT) gauge. This name makes sense as

the metric perturbation is traceless and is perpendicular to the wave-vector. The notation

for the metric perturbation in the TT-gauge is given by hT T
µν . Since in the TT-gauge the trace

of h
T T
µν is zero, there is no difference between the trace-reversed metric perturbation hµν and

the metric perturbation hµν.

h
T T
µν = hT T

µν . (3.29)

Consider a gravitational wave which is propagating in the x3 direction. The wave-vector

components for such a wave is given by

kα = (ωg,0,0,ωg). (3.30)

This is due to the fact that kµkµ = 0. Due to the form of the wave-vector components kα,

Aµνkν = 0 and A0ν = 0, it is easy to conclude that

A3ν = 0. (3.31)

This means the only nonzero components are A11,A12,A21 and A22. Because Aµν is traceless
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and symmetric, we can write

Aµν =



0 0 0 0

0 A+ A× 0

0 A× −A+ 0

0 0 0 0


. (3.32)

The reason for the notation ‘+’ and ‘×′ will become clear when the interaction of gravita-

tional wave with matter particles is explained.

Since we know the form of metric perturbation to be hT T
µν = Aµνeikαxα

, in the component

form it can be written as

hµν =



0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


, (3.33)

where h+ and h× are simply given by

h+ = A+ cos(ωgz−ωgt), (3.34)

h× = A× cos(ωgz−ωgt +δ), (3.35)

where ωg is the angular frequency of the gravitational wave and δ is the phase difference.

The metric components gµν = ηµν +hµν can be given by

gµν =



−1 0 0 0

0 1+h+ h× 0

0 h× 1−h+ 0

0 0 0 1


. (3.36)

48



3.3. CONCLUSION

Figure 3.1: The effects of the plus (h+) and cross (h×) polarizations of the gravitational
wave on matter particles lying on the plane perpendicular to the wave propagation.

Note that Det(gµν) =−1+h2
++h2

×
∼=−1.

The inverse metric was found to be gµν = ηµν−hµν. Hence, it can be written in the compo-

nent form gµν as

gµν =



−1 0 0 0

0 1−h+ −h× 0

0 −h× 1+h+ 0

0 0 0 1


(3.37)

To understand the effects of gravitational waves described by above metric, we need to see

how they affect the motion of a collection of particles. We can not use the geodesic equation

for a single particle as, to the first order in hµν, we can always find the coordinates in the

TT-gauge such that they are stationary [1]. Due to this, we consider a ring of particles lying

on a plane perpendicular to the direction of the wave propagation. We consider the relative

motion (as described by the geodesic deviation equation) of the particles forming a ring.

When the equations of motion are solved, first when A+ = 0 and then when A× = 0, we

find that the particles oscillate back and forth in the shape of a ‘+′ in the former case and in

the shape of a ‘×′ in the later case. A depiction of such a motion is described in figure 3.1.
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3.3 Conclusion

The weak metric perturbations hµν were defined in the background of Minkowski space-

time (ηµν). Quantities like Christoffel symbols, Riemann curvature tensor, Ricci tensor and

Ricci scalar were found to the linear order in hµν. Einstein’s field equations were solved

for the metric with perturbations in the absence of any matter (Tµν = 0). Trace reversed

metric perturbations hµν were defined to simplify the form of the second order partial dif-

ferential equation. Simplifying the expression further and choosing the Lorenz gauge yields

the homogeneous wave equation in trace-reversed metric perturbations, which is given by

2hµν = 0 in vacuum. The remaining gauge freedom was used by choosing the transverse-

traceless (TT) gauge. By solving the homogeneous wave equation using the standard solu-

tion and taking the direction of wave propagation to be in the positive Z-direction, it was

shown that there are only two independent components of hT T
µν . Further calculation showed

that the hT T
µν can be divided in two polarizations, the ‘plus’ (h+) polarization and the ‘cross’

(h×) polarization, as they cause specific oscillations in the matter particles lying in the plane

perpendicular to the direction of wave propagation. It was shown that the metric gµν in Eq.

(3.37) describes linearized gravitational waves propagating in the positive Z-direction.

50



Chapter 4

Interaction of Electromagnetic waves
and Gravitational waves

4.1 Introduction

In recent years the gravitational wave detection with LIGO [4] has opened a new win-

dow for the study of the Universe. Gravitational waves from distant events are arriving

on earth and are being studied and analyzed using the LIGO detector. The Space Laser

Interferometer will also be functional in the near future [31]. In this circumstance, it is

important to study the interaction of gravitational waves with matter, and predict new ob-

servations. The detectors can search for the predictions. Further primordial gravitational

waves [7, 27] have not been detected yet and new interactions might shed some light on

the stochastic relics from early universe cosmology. Here we analyze and obtain a new

perturbation mode (which was previously found for scalar field particles and neutrinos) for

electromagnetic waves. This work is very important as electromagnetic wave interactions

with gravitational waves are being investigated in the interferometers.

4.2 When h× polarization is absent

Now we will study the interaction of gravitational waves with electromagnetic waves

by solving for the electromagnetic gauge field in the background metric of the gravitational

wave. We have already introduced the equation of motion of the electromagnetic field in

chapter 2 equation and Eq. (2.33). As we know the gravitational wave has two differ-

ent polarizations and for the simplicity of the calculation, we will first consider the case
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4.2. WHEN H× POLARIZATION IS ABSENT

when the cross polarization is absent from the gravitational wave propagating in the posi-

tive Z-direction. The metric tensor describing such a gravitational wave will be obtained by

substituting h× = 0 in Eq.(3.37). Hence, the metric tensor gµν can be given by

gµν =



−1 0 0 0

0 1−h+ 0 0

0 0 1+h+ 0

0 0 0 1


(4.1)

where h+ = A+ cos(ωgz−ωgt).

To describe the nature of the electromagnetic field in this nearly flat spacetime with

perturbations hµν, we will find the correct form of the electromagnetic field strength tensor.

We know that the contravariant electromagnetic field strength tensor components can be

written as Fαβ = gαµgβνFµν, where the metric gµν = ηµν−hµν. Using this, we can simplify

the contravariant electromagnetic field strength tensor as follows:

Fαβ = gαµgβνFµν,

∴ Fαβ = (ηαµ−hαµ)(ηβν−hβν)Fµν,

∴ Fαβ = η
αµ

η
βνFµν−η

αµhβνFµν−η
βνhαµFµν. (4.2)

In the last step of the above calculation, the higher order terms of hµν is neglected. The

above equation describes the correct nature of electromagnetic field for the given spacetime.

Now to understand the behaviour of electromagnetic wave, we will find the expression

∂βFαβ = 0 for each free index. We have,

∂βFαβ = η
αµ

η
βν

∂βFµν−η
αµ

∂β(h
βνFµν)−η

βν
∂β(h

αµFµν) = 0 . (4.3)
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4.2. WHEN H× POLARIZATION IS ABSENT

Using the definition of Fµν from above, we can simplify each term of the above equation

separately.

For the first term of 4.3:

η
αµ

η
βν

∂βFµν = η
αµ

η
βν

∂β(∂µAν−∂νAµ),

∴ η
αµ

η
βν

∂βFµν = η
αµ

∂
ν(∂µAν−∂νAµ),

∴ η
αµ

η
βν

∂βFµν = η
αµ

∂µ(∂
νAν)−η

αµ
∂ν∂

νAµ,

∴ η
αµ

η
βν

∂βFµν = −η
αµ2Aµ (∵ ∂νAν = 0).(4.4)

For the second term of 4.3:

η
αµ

∂β(h
βνFµν) = η

αµhβν
∂βFµν +η

αµFµν∂βhβν,

∴ η
αµ

∂β(h
βνFµν) = η

αµhβν
∂βFµν (∵ ∂βhβν = 0).(4.5)

For the third term of 4.3:

η
βν

∂β(h
αµFµν) = η

βνhαµ
∂βFµν +η

βνFµν∂βhαµ,

∴ η
βν

∂β(h
αµFµν) = hαµ

∂µ∂
νAν−hαµ

∂ν∂
νAµ +η

βνFµν∂βhαµ,

∴ η
βν

∂β(h
αµFµν) = −hαµ2Aµ +η

βνFµν∂βhαµ (∵ ∂νAν = 0).(4.6)

Substituting the results (4.4), (4.5) and (4.6) in Eq. (4.3), we obtain

∂βFαβ =−η
αµ

∂ν∂
νAµ−η

αµhβν
∂βFµν +hαµ

∂ν∂
νAµ−η

βνFµν∂βhαµ = 0,

∴−η
αµ

∂ν∂
ν(Aµ + Ãµ)−η

αµhβν
∂βFµν +hαµ

∂ν∂
ν(Aµ + Ãµ)−η

βνFµν∂βhαµ = 0,

∴−η
αµ

∂ν∂
νÃµ−η

αµhβν
∂βFµν +hαµ

∂ν∂
νÃµ−η

βνFµν∂βhαµ = 0,

∴ η
αµ2Ãµ +η

αµhβν
∂βFµν +η

βνFµν∂βhαµ = 0. (4.7)
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4.2. WHEN H× POLARIZATION IS ABSENT

Here, A represents the unperturbed electromagnetic four-potential components and Ã rep-

resents the perturbed electromagnetic four-potential components (note that |Aµ| � |Ãµ|). In

the second last step, the term |hαµ2Ãµ| is neglected due to both terms being very small.

In the expression above, α is the only free index which can take values from 0 to 3. Let us

find the set of four inhomogeneous wave equations for each value of α. We will neglect the

higher order terms of the small quantities during the simplification.

When the free index α = 0 :

η
002Ã0 +η

00h11
∂1F01 +η

00h22
∂2F02 = 0,

∴2Ã0 +h11
∂1(∂0A1−∂1A0)+h22

∂2(∂0A2−∂2A0) = 0,

∴2Ã0 +h11
∂0∂1(A1 + Ã1)+h22

∂0∂2(A2 + Ã2)− (h11
∂

2
1 +h22

∂
2
2)(A0 + Ã0) = 0,

∴2Ã0 +h11
∂0∂1A1 +h22

∂0∂2A2− (h11
∂

2
1 +h22

∂
2
2)A0 = 0. (4.8)

When the free index α = 1 :

η
112Ã1 +η

11h11
∂1F11 +η

11h22
∂2F12 +η

00F10∂0h11 +η
33F13∂3h11 = 0,

∴2Ã1 +h22
∂1∂2A2−h22

∂
2
2A1 +∂0h11(∂0A1−∂1A0)+∂3h11(∂1A3−∂3A1) = 0. (4.9)

When the free index α = 2 :

η
222Ã2 +η

22h11
∂1F21 +η

22h22
∂2F22 +η

00F20∂0h22 +η
33F23∂3h22 = 0,

∴2Ã2 +h11
∂2∂1A1−h11

∂
2
1A2 +∂0h22(∂0A2−∂2A0)+∂3h22(∂2A3−∂3A2) = 0. (4.10)

When the free index α = 3 :

η
332Ã3 +η

33h11
∂1F31 +η

33h22
∂2F32 = 0,

∴2Ã3 +h11
∂3∂1A1 +h22

∂3∂2A2− (h11
∂

2
1 +h22

∂
2
2)A3 = 0. (4.11)
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4.2. WHEN H× POLARIZATION IS ABSENT

To solve the above inhomogeneous wave equations and find the perturbations in the

electromagnetic four-potential components, let’s consider an electromagnetic wave prop-

agating in the X-direction with angular frequency ωe. Note that the gravitational wave is

propagating in the positive Z-direction.

Consider the electromagnetic wave described by

~B = B0y cos(ωex−ωet) ĵ,

∴ By = B0y cos(ωex−ωet),

∴ ∂3A1−∂1A3 = B0y cos(ωex−ωet), (∵ ~∇×~A = ~B)

∴ ∂1A3 = −B0y cos(ωex−ωet) (∵ ∂3A1 = 0), (4.12)

where B0y is the amplitude of the magnetic field. Substituting the electromagnetic four-

potential components for a plane polarized electromagnetic wave propagating in the posi-

tive X-direction in Eq. (4.8), we obtain

∴2Ã0 = 0 . (4.13)

Substituting the electromagnetic four-potential components in Eq. (4.9), we obtain

2Ã1 = −∂3h11
∂1A3,

∴2Ã1 = −∂3[A+ cos(ωgz−ωgt)]∂1A3.

∴2Ã1 =−A+B0yωg sin(ωgz−ωgt)cos(ωex−ωet) . (4.14)

Substituting the electromagnetic four-potential components in Eq. (4.10), we obtain

∴2Ã2 = 0 . (4.15)
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4.3. WHEN H+ POLARIZATION IS ABSENT

Substituting the electromagnetic four-potential components in Eq. (4.11), we obtain

2Ã3 = h11
∂

2
1A3,

∴2Ã3 = [A+ cos(ωgz−ωgt)]∂2
1A3.

∴2Ã3 = A+B0yωe cos(ωgz−ωgt)sin(ωex−ωet) . (4.16)

We find when only the h+ is present, the perturbations are produced in the X and Z direc-

tions. The solutions for the above inhomogeneous wave equations are given at the end of

section 4.4 in Eq. (4.52).

4.3 When h+ polarization is absent

Now we will consider the case when the plus polarization is absent from the gravita-

tional wave propagating in the positive Z-direction. The metric tensor describing such a

gravitational wave will be obtained by substituting h+ = 0 in Eq. (3.37). Hence, the metric

perturbation hµν and metric tensor gµν can be given by

hµν =



0 0 0 0

0 0 h× 0

0 h× 0 0

0 0 0 0


, (4.17)

gµν =



−1 0 0 0

0 1 −h× 0

0 −h× 1 0

0 0 0 1


, (4.18)
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4.3. WHEN H+ POLARIZATION IS ABSENT

where h× = A× cos(ωgz−ωgt +δ).

Now to find of perturbation in the electromagnetic-four potentials of the electromagnetic

wave, we will substitute the given form of the metric in the Maxwell equations describing

wave as shown in Eq. (4.7).

When the free index α = 0 in Eq. (4.7) :

∴ η
αµ2Ãµ +η

αµhβν
∂βFµν +η

βνFµν∂βhαµ = 0,

∴ η
002Ã0 +η

00h12
∂1F02 +η

00h21
∂2F01 = 0,

∴2Ã0 +h12
∂1(∂0A2−∂2A0)+h21

∂2(∂0A1−∂1A0) = 0,

∴2Ã0 +h12
∂0∂1(Ã2 +A2)−h12

∂1∂2(Ã0 +A0),

+h21
∂0∂2(Ã1 +A1)−h21

∂1∂2(Ã0 +A0) = 0,

∴2Ã0 +h12
∂0∂1A2−h12

∂1∂2A0 +h21
∂0∂2A1−h21

∂1∂2A0 = 0. (4.19)

The higher order terms in the small quantities are neglected in the last step.

When the free index α = 1 in Eq. (4.7) :

∴ η
αµ2Ãµ +η

αµhβν
∂βFµν +η

βνFµν∂βhαµ = 0,

∴ η
112Ã1 +η

11h12
∂1F12 +η

11h21
∂2F11 +η

00F20∂0h12 +η
33F23∂3h12 = 0,

∴2Ã1 +h12
∂1(∂1A2−∂2A1)− (∂2A0−∂0A2)∂0h12 +(∂2A3−∂3A2)∂3h12 = 0,

∴2Ã1−h12
∂1∂2A1 +h12

∂
2
1A2−∂2A0∂0h12 +∂0A2∂0h12 +∂2A3∂3h12−∂3A2∂3h12 = 0.

(4.20)

57



4.3. WHEN H+ POLARIZATION IS ABSENT

When the free index α = 2 in Eq. (4.7) :

∴ η
αµ2Ãµ +η

αµhβν
∂βFµν +η

βνFµν∂βhαµ = 0,

∴ η
222Ã2 +η

22h12
∂1F22 +η

22h21
∂2F21 +η

00F10∂0h21 +η
33F13∂3h21 = 0,

∴2Ã2 +h21
∂2(∂2A1−∂1A2)− (∂1A0−∂0A1)∂0h21 +(∂1A3−∂3A1)∂3h21 = 0,

∴2Ã2 +h21
∂

2
2A1−h21

∂1∂2A2−∂1A0∂0h21 +∂0A1∂0h21 +∂1A3∂3h21−∂3A1∂3h21 = 0.

(4.21)

When the free index α = 3 in Eq. (4.7) :

∴ η
αµ2Ãµ +η

αµhβν
∂βFµν +η

βνFµν∂βhαµ = 0,

∴ η
332Ã3 +η

33h12
∂1F32 +η

33h21
∂2F31 = 0,

∴2Ã3 +h12
∂1(∂3A2−∂2A3)+h21

∂2(∂3A1−∂1A3) = 0,

∴2Ã3 +h12
∂1∂3A2−h12

∂1∂2A3 +h21
∂2∂3A1−h21

∂2∂1A3 = 0. (4.22)

To solve the above inhomogeneous wave equations and find the perturbations in the elec-

tromagnetic four-potential components, let’s consider an electromagnetic wave propagating

in the positive X-direction with angular frequency ωe. Note that the gravitational wave is

propagating in the positive Z-direction.

Substituting the electromagnetic four-potential components for a plane polarized electro-

magnetic wave propagating in the positive X-direction in Eq. (4.19), we obtain

∴2Ã0 +h12
∂0∂1A2 +h21

∂0∂2A1 = 0,

∴2Ã0 = 0 . (4.23)

Substituting the electromagnetic four-potential components in Eq. (4.20), we obtain

∴2Ã1 +h12
∂

2
1A2 +∂0A2∂0h12 = 0,
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4.4. WHEN BOTH POLARIZATION H+ AND H× ARE PRESENT

∴2Ã1 = 0 . (4.24)

Substituting the electromagnetic four-potential components in Eq. (4.21), we obtain

∴2Ã2 =+∂1A0∂0h21−∂0A1∂0h21−∂1A3∂3h21,

∴2Ã2 =−∂1A3∂3h21 (∵ ∂1A0 = 0),

∴2Ã2 =−∂1A3∂3(A× cos(ωgz−ωgt +δ)),

∴2Ã2 =−A×ωgB0y sin(ωgz−ωgt +δ)cos(ωex−ωet) . (4.25)

Substituting the electromagnetic four-potential components in Eq. (4.22), we obtain

∴2Ã3 +h12
∂1∂3A2−h12

∂1∂2A3 +h21
∂2∂3A1−h21

∂2∂1A3 = 0,

∴2Ã3 = 0 . (4.26)

The solutions for the above inhomogeneous wave equations are calculated in the section

4.4 in Eq. (4.52). We find that the h× interacts with only the y-component of the gauge

field.

4.4 When both polarization h+ and h× are present

Now we will consider the case when both, the plus and the cross, polarizations are

present in the gravitational wave propagating in the positive Z-direction. Hence, the metric
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4.4. WHEN BOTH POLARIZATION H+ AND H× ARE PRESENT

perturbation hµν and metric tensor gµν can be given by

hµν =



0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


. (4.27)

In the above equations h+ = A+ cos(ωgz−ωgt) and h× = A× cos(ωgz−ωgt +δ).

As shown in the previous sections, the electromagnetic wave equation in curved geometry

is given by Eq. (4.7)

∴ η
αµ2Ãµ +η

αµhβν
∂βFµν +η

βνFµν∂βhαµ = 0 .

When the free index α = 0 in Eq. (4.7):

∴ η
αµ2Ãµ +η

αµhβν
∂βFµν +η

βνFµν∂βhαµ = 0,

∴ η
002Ã0 +η

00h11
∂1F01 +η

00h12
∂1F02 +η

00h21
∂2F01 +η

00h22
∂2F02 = 0,

∴2Ã0 +h11
∂1(∂0A1−∂1A0)+h12

∂1(∂0A2−∂2A0)+h21
∂2(∂0A1−∂1A0)

+h22
∂2(∂0A2−∂2A0) = 0,

∴2Ã0 +h11
∂0∂1(Ã1 +A1)−h11

∂
2
1(Ã0 +A0)+h12

∂0∂1(Ã2 +A2)−h12
∂1∂2(Ã0 +A0)

+h21
∂0∂2(Ã1 +A1)−h21

∂1∂2(Ã0 +A0)+h22
∂0∂2(Ã2 +A2)−h22

∂
2
2(Ã0 +A0) = 0,

∴2Ã0 +h11
∂0∂1A1−h11

∂
2
1A0 +h12

∂0∂1A2−h12
∂1∂2A0 +h21

∂0∂2A1−h21
∂1∂2A0

+h22
∂0∂2A2−h22

∂
2
2A0 = 0.

(4.28)
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4.4. WHEN BOTH POLARIZATION H+ AND H× ARE PRESENT

(because |hαβ∂µ∂νÃγ(h)| ≈ 0 due to both terms being function of hµν).

When the free index α = 1 in Eq. (4.7) :

∴ η
αµ2Ãµ +η

αµhβν
∂βFµν +η

βνFµν∂βhαµ = 0,

∴ η
112Ã1 +η

11h11
∂1F11 +η

11h12
∂1F12 +η

11h21
∂2F11 +η

11h22
∂2F12

+η
00F10∂0h11 +η

33F13∂3h11 +η
00F20∂0h12 +η

33F23∂3h12 = 0,

∴2Ã1−h12
∂1∂2A1 +h12

∂
2
1A2−h22

∂
2
2A1 +h22

∂1∂2A2−∂1A0∂0h11 +∂0A1∂0h11

+∂1A3∂3h11−∂3A1∂3h11−∂2A0∂0h12 +∂0A2∂0h12 +∂2A3∂3h12−∂3A2∂3h12 = 0.

(4.29)

When the free index α = 2 in Eq. (4.7) :

∴ η
αµ2Ãµ +η

αµhβν
∂βFµν +η

βνFµν∂βhαµ = 0,

∴ η
222Ã2 +η

22h11
∂1F21 +η

22h12
∂1F22 +η

22h22
∂2F22 +η

22h21
∂2F21

+η
00F10∂0h21 +η

33F13∂3h21 +η
00F20∂0h22 +η

33F23∂3h22 = 0,

∴2Ã2 +h11
∂1∂2A1−h11

∂
2
1A2 +h21

∂
2
2A1−h21

∂1∂2A2−∂1A0∂0h21 +∂0A1∂0h21

+∂1A3∂3h21−∂3A1∂3h21−∂2A0∂0h22 +∂0A2∂0h22 +∂2A3∂3h22−∂3A2∂3h22 = 0.

(4.30)

When the free index α = 3 in Eq. (4.7) :

∴ η
αµ2Ãµ +η

αµhβν
∂βFµν +η

βνFµν∂βhαµ = 0,

∴ η
332Ã3 +η

33h11
∂1F31 +η

33h12
∂1F32 +η

33h21
∂2F31 +η

33h22
∂2F32 = 0,

∴2Ã3 +h11
∂1(∂3A1−∂1A3)+h12

∂1(∂3A2−∂2A3)+h21
∂2(∂3A1−∂1A3)

+h22
∂2(∂3A2−∂2A3) = 0,

∴2Ã3 +h11
∂1∂3A1−h11

∂
2
1A3 +h12

∂1∂3A2−h12
∂1∂2A3 +h21

∂2∂3A1

−h21
∂2∂1A3 +h22

∂2∂3A2−h22
∂

2
2A3 = 0. (4.31)
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4.4. WHEN BOTH POLARIZATION H+ AND H× ARE PRESENT

Let’s consider an electromagnetic wave propagating in the X-direction with angular fre-

quency ωe. Note that the gravitational wave is propagating in the Z direction.

Consider the electromagnetic wave described by

~B = B0y cos(ωex−ωet) ĵ.

(4.32)

Then we can use Eq. (4.12) to find the explicit form of the inhomogeneous wave equations.

For such an electromagnetic wave, we obtain 2Ãµ for each value of the free index µ:

2Ã0 = 0 (4.33)

2Ã1 =−A+B0yωg sin(ωgz−ωgt)cos(ωex−ωet), (4.34)

2Ã2 = A×ωgB0y sin(ωgz−ωgt +δ)cos(ωex−ωet), (4.35)

2Ã3 = A+B0yωe cos(ωgz−ωgt)sin(ωex−ωet). (4.36)

Since we have

2Ã3 = h11
∂

2
1A3,

where h11 and ∂2
1A3 are given by

h11 = A+ cos(ωg(z− t)),

∂
2
1A3 = B0yωe sin(ωe(x− t))

we find

2Ã3 = A+B0yωe cos(ωg(z− t))sin(ωe(x− t)) = h(~x, t).
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4.4. WHEN BOTH POLARIZATION H+ AND H× ARE PRESENT

Using standard results on Cauchy problem and Duhamel’s principle [21], one has :-

Ã3(~x) =−
1

4π

∫ h(~x′, t ′)
r

d3x′ (4.37)

=−
A+B0yωe

4π

∫ cos(ωg(z′− t ′))sin(ωe(x′− t ′))
r

d3x′, (4.38)

where

r = |~X ′−~X |, t ′ = t− r and ~X ′ =~r+~X . (4.39)

Thus,

Ã3(~x) =−
A+B0yωe

4π

∫ (eiωg(z′−t ′)+ e−iωg(z′−t ′)

2
eiωe(x′−t ′)− e−iωe(x′−t ′)

2i

)
d3r
r

=−
A+B0yωe

4π(4i)

∫ (
eiωg(z′−t ′)eiωe(x′−t ′)− eiωg(z′−t ′)e−iωe(x′−t ′)+ e−iωg(z′−t ′)eiωe(x′−t ′)

− e−iωg(z′−t ′)e−iωe(x′−t ′)
)

d3r
r

=−
A+B0yωe

4π(4i)

(
I1(ωg,ωe)− I1(ωg,−ωe)+ I1(−ωg,ωe)− I1(−ωg,−ωe)

)
, (4.40)

where

I1(ωg,ωe) =
∫ eiωg(z′−t ′)eiωe(x′−t ′)

r
d3X ′. (4.41)

We simplify

I1(ωg,ωe) =
∫

eiωg(z+r cosθ−t+r)eiωe(x+r sinθcosφ−t+r)rdr sinθdθdφ (4.42)

= eiωg(z−t)eiωe(x−t)
∫

eiωg(r cosθ+r)eiωe(r sinθcosφ+r)rdr sinθdθdφ (4.43)

= eiωg(z−t)eiωe(x−t)I0, (4.44)
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4.4. WHEN BOTH POLARIZATION H+ AND H× ARE PRESENT

where

I0 =
∫ 2π

φ=0
ei(ωg+ωe)reiωgr cosθeiωer sinθcosφrdr sinθdθdφ (4.45)

=
∫

ei(ωg+ωe)reiωgr cosθ(2π)J0(ωer sinθ)rdr sinθdθ, (4.46)

which is obtained using Gradshteyn and Rhyzik [32]. Making a variable change of x= cosθ

and using Gradshteyn and Rhyzik [32] gives us,

I0 = 2π

∫ 1

x=−1
ei(ωg+ωe)reiωgrxJ0(ωer

√
1− x2)dx rdr (4.47)

= 4π

∫ t

r=0
ei(ωg+ωe)r

sin(
√

ω2
g +ω2

er)√
ω2

g +ω2
e

dr. (4.48)

Making a notation change of ω = ωg+ωe and ||~ω||=
√

ω2
g +ω2

e and integrating 4.47 using

sin t = eit−e−it

2i yields

I0 =
4π

||~ω||
1
2i

[
eiωt
(

ei||~ω||t

i(ω+ ||~ω||)
− e−i||~ω||t

i(ω−||~ω||)

)
− 1

i(ω+ ||~ω||)
+

1
i(ω−||~ω||)

]
,

which simplifies further to

I0 =
4π

||~ω||
1
2i

[
eiωt
(

2ωsin(||~ω||t)
2ωgωe

− 2||~ω||cos(||~ω||t)
i2ωgωe

)
+

2||~ω||
i2ωgωe

]
(4.49)

=
4π

||~ω||
1
2i

[
eiωt

ωgωe

(
ωsin(||~ω||t)+ i||~ω||cos(||~ω||t)

)
+
||~ω||

iωgωe

]
(4.50)

= 2π

[
− 1

ωgωe
+

eiωt

ωgωe

(
cos(||~ω||t)− i

ω

||~ω||
sin(||~ω||t)

)]
. (4.51)

Substituting this back into Eq. (4.42), we get

−
A+B0yωe

4π(4i)
I1(ωg,ωe)=−

A+B0y

8i
eiωgzeiωex

ωg

(
cos(||~ω||t)−i

ω

||~ω||
sin(||~ω||t)

)
−

A+B0y

8i
eiωg(z−t)eiωe(x−t)

ωg
.
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4.4. WHEN BOTH POLARIZATION H+ AND H× ARE PRESENT

We can find the value of I1(ωg,ωe)− I1(ωg,−ωe)+ I1(−ωg,ωe)− I1(−ωg,−ωe) using the

result above. Similarly, we can find the value of the other components of Aµ in a similar

way. The obtained perturbation solution for the x-component is given by

Ã1 =−
B0yA+

4ωe

√
ω2

g +ω2
e

[
(ωe +ωg)cos(ωex+ωgz)sin(t

√
ω2

e +ω2
g)

−
√

ω2
g +ω2

e sin(ωex+ωgz)cos(t
√

ω2
g +ω2

e)

+(ωe−ωg)cos(ωex−ωgz)sin(t
√

ω2
e +ω2

g)−
√

ω2
g +ω2

e sin(ωex−ωgz)cos(t
√

ω2
e +ω2

g)

+
[√

ω2
g +ω2

e sin(ωex+ωgz− t(ωg +ωe))+
√

ω2
g +ω2

e sin(ωex−ωgz+ t(ωe−ωg))
]
.

(4.52)

The solution for Ã2 would be the same as this, except for A+ → A× and ωgz→ ωgz+ δ

. The solution for Ãz will also be similar; which we can obtain by using phase shifts of

ωex→ ωex+π/2 and ωgz→ ωgz+π/2 and in the coefficient B0yA+/(4ωe

√
ω2

e +ω2
g)→

B0yA+/(4ωg

√
ω2

e +ω2
g). It is easy to see that from the pertubed gauge potentials found

above, we can find the perturbed ~E and ~B fields. Note that the perturbed wave is not a

plane-wave and has propagation in X and Z directions. This can be interpreted as scattering

of electromagentic radiation due to gravitational wave. And the perturbed electromagentic

wave is no longer plane polarized.

We have found the expected mode in the gauge potential perturbation as it was found

for the scalar field interaction in the paper [21]. We have an explicit form of the gauge

potential with the frequency of the new modes
√

ω2
g +ω2

e . We have made a schematic plot

of the functional form of the perturbations to show how the mode fluctuates in time and

space. We have taken ωg = 3 and ωe = 4 for the schematic plot 4.1, these frequencies are

not realistic. For a realistic frequency, the peak frequency of the CMB is 160 GHz. The

gravitational waves that can be detected by the LIGO has approximate frequency of 100

Hz.
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4.4. WHEN BOTH POLARIZATION H+ AND H× ARE PRESENT

Figure 4.1: The perturbations in the x-component of the electromagnetic four-potential over
time. For the purposes of the plot in 4.1 ωg = 3 and ωe = 4. The plots are snapshots at 9
different time instants and are not to scale as in a real situation.
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4.4. WHEN BOTH POLARIZATION H+ AND H× ARE PRESENT

Now let’s consider an electromagnetic wave propagating in the Z-direction with angular

frequency ωe. Note that the gravitational wave is propagating in the Z direction.

Consider the electromagnetic wave described by

~B = B0y cos(ωez−ωet) ĵ,

∴ By = B0y cos(ωez−ωet),

∴ ∂3A1−∂1A3 = B0y cos(ωez−ωet), (∵ ~∇×~A = ~B)

∴ ∂3A1 = B0y cos(ωez−ωet), (4.53)

∴ ∂0A1 = −B0y cos(ωez−ωet). (4.54)

Using the above results we obtain,

2Ã0 = 0. (4.55)

For the free-index α = 1, we have

2Ã1 = ∂3A1∂3h11−∂0A1∂0h11,

∴2Ã1 =−∂3A1∂3(A+ cos(ωgz−ωgt))+∂0A1∂0(A+ cos(ωgz−ωgt)),

∴2Ã1 = B0yA+ωg cos(ωez−ωet)sin(ωgz−ωgt))−B0yA+ωg cos(ωez−ωet)sin(ωgz−ωgt)),

∴2Ã1 = 0. (4.56)

For the free-indices 2 and 3, we have

2Ã2 = 0, (4.57)

2Ã3 = 0. (4.58)
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4.4. WHEN BOTH POLARIZATION H+ AND H× ARE PRESENT

Therefore there is zero interaction when the waves are propagating parallel to each other.

Now let’s consider an electromagnetic wave propagating in the negative Z-direction with

angular frequency ωe. Note that the gravitational wave is propagating in the positive Z-

direction.

~B = B0y cos(ωez+ωet) ĵ,

∴ By = B0y cos(ωez+ωet),

∴ ∂3A1−∂1A3 = B0y cos(ωez+ωet), (∵ ~∇×~A = ~B)

∴ ∂3A1 = B0y cos(ωez+ωet), (4.59)

∴ ∂0A1 = B0y cos(ωez+ωet). (4.60)

Using above results we obtain the value of 2Ãµ for each value of µ,

2Ã0 = 0. (4.61)

For the free-index α = 1, we have

2Ã1 = ∂3A1∂3h11−∂0A1∂0h11,

∴2Ã1 = ∂3A1∂3(A+ cos(ωgz−ωgt))−∂0A1∂0(A+ cos(ωgz−ωgt)),

∴2Ã1 =−B0yA+ωg cos(ωez+ωet)sin(ωgz−ωgt)−B0yA+ωg cos(ωez+ωet)sin(ωgz−ωgt),

∴2Ã1 =−2B0yA+ωg cos(ωez+ωet)sin(ωgz−ωgt)). (4.62)
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4.5. CONCLUSION

∴ Ã1 = −
A+B0yωg

2

[
1

ω+ ω̃

(
1
ω

sin(ωgt +ωgz)+
1
ω̃

sin(ω̃gt + ω̃gz)
)

+
1

ω− ω̃

(
1
ω

sin(−ωt +ωz)− 1
ω̃

sin(−ω̃t + ω̃z)
)

− 1
(ω+ ω̃)

(
1
ω

sin(ωz− ω̃t)+
1
ω̃

sin(ω̃z−ωt)
)

+
1

ω− ω̃

(
1
ω̃

sin(ω̃z−ωt)− 1
ω

sin(ωz− ω̃t)
)]

, (4.63)

where ω = ωg +ωe , ω̃ = ωg−ωe When ωg = ωe the exact solution gives us

Ã1 =−A+B0y
1

8ωg
[4(ωgt− sin(2ωgt))+ sin(2ωg(z+ t))+ sin(2ωg(z− t))−2sin(2ωgz)] .

(4.64)

Note that in the above equation, the first term in the bracket is linear in time, so the lin-

earized approximation (|Aµ| � |Ãµ|) breaks down as the time grows. However, the per-

turbed E and B fields are independent from this run-away term. For the free-index α = 2,

we have

2Ã2 = ∂3A1∂3h21−∂0A1∂0h21, (4.65)

2Ã2 =−2B0yA×ωg cos(ωez+ωet)sin(ωgz−ωgt). (4.66)

The answer of the above inhomogeneous wave equation can be obtained by changing A+

to A× in the result (4.63).

For the free-index α = 3, we have

2Ã3 = 0. (4.67)

Hence, we see that when the waves are travelling anti-parallel, there is a nonzero interac-

tion; while when they are parallel, there is zero interaction.
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4.5. CONCLUSION

4.5 Conclusion

In this chapter we have derived the interaction of the electromagnetic waves with gravi-

tational waves in the background of Minkowski spacetime. Initially we have a plane electro-

magnetic wave propagating and a perturbation is produced when a weak gravitational wave

interacts with it. These perturbations are propagating in time and we find the new mode to

have frequency
√

ω2
g +ω2

e . This mode has been found previously in [20, 33], but we find

an explicit form of the perturbations. Since Aµ = (φ,~A), one can calculate the components

of perturbed electric and magnetic fields using Eq. (2.23) and Eq. (2.24). The perturbed ~E

and ~B fields will also have the new mode and new components are generated. It is intresting

to note that scattering phenomenon and change from plane wave polarization occur when

electromagentic radiation interacts with a gravitational wave. In the anti-parallel case, we

find a runaway term in the perturbed gauge potentials, but it does not affect the perturbed

electromagnetic field components. We anticipate that this result can be used in the detec-

tion of gravitational wave. From our solution we test for resonance. As shown, when both

waves are propagating in the same direction, there is zero interaction and hence there is

no resonance. When the waves are anti-parallel, we do find nonzero perturbation. Our in-

terpretation of the results are: when there is a gravitational wave, it introduces a new type

of fluctuation which exhibits a behavior similar to displacement current if compared with

the flat-space Maxwell’s equations. By this we mean that the source terms in the inho-

mogeneous differential equations are generated by the fluctuations in the electromagnetic

four-potentials due to the gravitational wave and not by any source charges. If we look at

Eq. (4.7), then we see that when the waves are in the same direction, the shape of the initial

electromagnetic wave is preserved and there is no perturbation generated. When the waves

are in different directions, the shape of the initial wave changes due to the gravitational

wave and generates source terms in the Maxwell’s equation.
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Chapter 5

Interaction in Cosmological background

5.1 Introduction

In the previous chapter we studied the interaction of gravitational waves and electro-

magnetic waves in the Minkowski background and we anticipate that this will be relevant

in the detection of gravitational waves on earth. We are aware that there is an ongoing

search for the primordial gravitational waves by Nano-Grav [7]. The primordial gravita-

tional waves were produced during the initial moments after the Big-Bang and also due

to the fluctuations in the inflationary era. Today they are remnants in the stochastic back-

ground and we try to find them in the B-mode of the cosmic microwave backgroud (CMB).

In this chapter, we study the interaction of gravitational waves with the electromagnetic

waves in the de-Sitter background with the hope of shedding some new light on the primor-

dial gravitational waves and their imprints on the CMB. We find the inhomogeneous wave

equations for the gauge potentials. As in the previous chapter, the electromagnetic wave

equations in the presence of the gravitational waves give us source terms for the inhomo-

geneous wave equations. The explicit form of perturbation in electromagnetic potential is

found and the work is in progress towards the effects of these perturbations on the CMB.

5.2 Cosmological metric

The Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) metric is an exact solution of

Einstein’s field equations with the condition that the universe be spatially homogeneous

and isotropic over time.
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5.2. COSMOLOGICAL METRIC

The FLRW metric is given by

ds2 =−dt2 +a2(t)
[

dr2

1− kr2 + r2dΩ
2
]

(Here dΩ
2 = dθ

2 + sin2
θ dφ

2). (5.1)

In above equation a(t) is known as the scale factor and k is the curvature constant, it can

have three possible values +1, 0 or -1.

k =+1 corresponds to a closed universe. (elliptical geometry).

k = 0 corresponds a flat universe. (Euclidean Geometry).

k =−1 corresponds to an open universe. (hyperbolic Geometry).

The Einstein field equations in the absence of matter, with the cosmological constant, are

given by

Rµν−
1
2

gµνR =−Λgµν. (5.2)

where Λ is called the cosmological constant [34]. For our discussion, we will be considering

a a spatially flat universe (k = 0). In comoving Cartesian coordinates the flat FLRW metric

is given by

ds2 =−dt2 +a2(t)δi jdxidx j. (5.3)

For a metric with the cosmological constant Λ, the scale factor a(t) = eHt where H =
√

Λ

3

and Λ > 0 Now if we take the change of variables as

dt = a(τ)dτ

where a(τ) = − 1
Hτ

and τ is called the conformal time. Note that a(τ)→ 0 when τ→−∞

and a(τ) = 1 when τ = − 1
H . In the regime we are studying, the conformal time increases

and we can redefine the range of τ to be positive in that interval.

72
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We obtain the conformal form of the flat FLRW metric given by

ds2 = a2(τ)[−dτ
2 +δi jdxidx j]. (5.4)

Hence, the metric components are given by

gµν = a2(τ)ηµν, (5.5)

∴ gµν =
ηµν

a2(τ)
. (5.6)

Note that

Detgµν = a8(τ)

List of nonzero Christoffel symbols for the given metric

Γ
0
µµ = H (τ), Γ

i
0i = H (τ), (5.7)

where H (τ) is the Hubble parameter in conformal time τ and it is given by

H (τ) =
1

a(τ)
da
dτ

. (5.8)

Note that µ can take values from 0 to 3, while i can take value from 1 to 3.

5.3 Electromagnetic waves in the cosmological background

In this section we study in detail the propagation of electromagnetic waves in de-Sitter

space. These have been found before in [35]. In this thesis we derive the equations and

solutions ab-initio. This is to facilitate the perturbation calculations which is new and

which we formulate in this chapter.
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5.3. ELECTROMAGNETIC WAVES IN THE COSMOLOGICAL BACKGROUND

Maxwell’s equations in curved geometry

From the ‘Minimum Coupling Principle’ [1], the Maxwell’s equations (describing the elec-

tromagentic wave) in curved spacetime can be written as

∇βFαβ = 0. (5.9)

as discussed in section 2.3. But we know that

∇βFαβ =
1√
|g|

∂β(
√
|g|Fαβ) = 0. (5.10)

Hence we can further simplify it as

∴ ∂β(
√
|g|Fαβ) = 0,

∴ ∂β(
√

a8gαµgβνFµν) = 0,

∴ ∂β(a
4
η

αµa−2
η

βνa−2Fµν) = 0,

∴ η
αµ

η
βν

∂βFµν = 0. (5.11)

Lorenz Gauge in curved spacetime

We know that the electromagnetic field has a gauge symmetry and we can fix that using the

Lorenz gauge condition. In flat space electromagnetic theory this gauge condition is written

as ~∇ ·~A =− 1
c2

∂φ

∂t

∴ ~∇.~A+
1
c2

∂φ

∂t
= 0

(here ~A is the 3-D magnetic vector potential and φ is the scalar electric potential)

For Minkowski spacetime the above in tensor notation can be written as

∂µAµ = 0 (5.12)
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5.3. ELECTROMAGNETIC WAVES IN THE COSMOLOGICAL BACKGROUND

(here Aµ = (φ

c ,
~A) is known as the electromagnetic four potential.)

Using the ‘minimum coupling principle’, in curved spacetime the Lorenz gauge can be

given as

∇αAα = 0, (5.13)

∴ ∇αAα = ∂αAα +Aµ
Γ

α
µα = 0,

∴−∂αAα = Aµ
Γ

α
µα,

∴−∂αAα = A0
Γ

α
0α +A1

Γ
α
1α +A2

Γ
α
2α +A3

Γ
α
3α,

∴−∂αAα = A0(Γ0
00 +Γ

1
01 +Γ

2
02 +Γ

3
03),

∴ ∂αAα =−4A0H ,

∴ ∂αAα = 4a−2A0H , (5.14)

where the values of the Christoffel symbols are taken from Eq. (5.7). Also note that

∂αAα = ∂α(gµαAµ),

∴ 4a−2A0H = Aµ∂αgµα +gµα
∂αAµ,

∴ 4a−2A0H = 2a−2A0H −a−2
∂0A0 +a−2

η
i j

∂iA j,

∴ η
i j

∂iA j = 2A0H +∂0A0, (5.15)

where in the second step we substitute the equation 5.14.

Now we will find the inhomogeneous wave equations for the components of the electro-

magnetic gauge potential Aµ.
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5.3. ELECTROMAGNETIC WAVES IN THE COSMOLOGICAL BACKGROUND

when α = 1:

∴ η
αµ

η
βν

∂βFµν = 0,

∴ η
11

η
βν

∂βF1ν = 0,

∴ η
0ν

∂0F10 +η
i j

∂iF1 j = 0

∴−∂0(∂1A0−∂0A1)+ηi j∂i(∂1A j−∂ jA1) = 0,

∴ ∂
2
0A1−∂0∂1A0 +∂1(η

i j
∂iA j)−η

i j
∂i∂ jA1 = 0,

∴−2A1 +∂1(2A0H +∂0A0)−∂0∂1A0 = 0 (∵ 5.15),

∴−2A1 +2H ∂1A0 = 0 (Here 2= ∂µ∂
µ). (5.16)

From the symmetry of Eq. (5.11) we can say that

For the free index α = 2 the inhomogeneous wave equation is

∴−2A2 +2H ∂2A0 = 0. (5.17)

For the free index α = 3 the inhomogeneous wave equation is

∴−2A3 +2H ∂3A0 = 0. (5.18)

Now we will solve the inhomogeneous wave equations to find the explicit form of the

electromagnetic vector potential components Aµ.
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when the free index α = 0 in Eq. (5.11):

∴ η
00

η
βν

∂βF0ν = 0,

∴ η
00

∂0F00 +η
i j

∂iF0 j = 0 (∵ F00 = 0),

∴ η
i j

∂i(∂0A j−∂ jA0) = 0

∴ η
i j

∂i∂0A j−η
i j

∂i∂ jA0 = 0,

∴ ∂0(η
i j

∂iA j)−η
i j

∂i∂ jA0 = 0,

∴ ∂0(2A0H +∂0A0)−η
i j

∂i∂ jA0 = 0, (∵ 5.15)

∴ 2H ∂0A0 +2A0Ḣ +∂
2
0A0−η

i j
∂i∂ jA0 = 0 (Here Ḣ =

dH
dτ

),

∴−2A0 +2H ∂0A0 +2A0Ḣ = 0 (Here 2= ∂µ∂
µ),

∴−2A0−
2
τ

∂0A0 +
2
τ2 A0 = 0 (∵ H =−1

τ
). (5.19)

To further simplify the equation let’s take the form of A0(t,~x) as

A0(τ,~x) = A0(τ)ei~k.~x. (5.20)

Hence the inhomogeneous wave equation (5.19) becomes

∂
2
τ(A0(τ)ei~k.~x)−∂

2
j(A0(τ)ei~k.~x)− 2

τ
∂0(A0(τ)ei~k.~x)+

2
τ2 A0(τ)ei~k.~x = 0,

∴ [∂2
τA0(τ)+ k2A0−

2
τ

∂0A0(τ)+
2
τ2 A0]ei~k.~x = 0,

∴
d2A0

dτ2 −
2
τ

dA0

dτ
+(

2
τ2 + k2)A0 = 0. (5.21)

The standard form of Bessel’s differential equation is given by

x2 d2y
dx2 + x

dy
dx

+(x2−α
2)y = 0 (5.22)

To get the form of above equation from Eq. (5.21) we will do as follows
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Let’s take

A0(τ) = τ
nA
′
0(τ),

∴ Ȧ0 = nτ
n−1A

′
0 + τ

nȦ
′
0 (where Ȧ0 =

dA0

dτ
),

∴ Ä0 = n(n−1)τn−2A
′
0 +2nτ

n−1Ȧ
′
0 + τ

nÄ
′
0. (5.23)

Substituting above in Eq. (5.21) we obtain

∴ n(n−1)τn−2A
′
0 +2nτ

n−1Ȧ
′
0 + τ

nÄ
′
0−

2
τ

nτ
n−1A

′
0−

2
τ

τ
nȦ
′
0 +(

2
τ2 + k2)τnA

′
0 = 0,

∴ Ä
′
0 +(2n−2)τ−1Ä

′
0 +(n2−3n+2)τ−2A

′
0 + k2A

′
0 = 0. (5.24)

Comparing with Eq. (5.22) we need

2n−2 = 1,

∴ n =
3
2
.

Hence Eq. (5.24) becomes

∴ Ä
′
0 +

1
τ

Ä
′
0 +(− 1

4τ2 + k2)A
′
0 = 0. (5.25)

Now to further simplify let’s take

τ
′ = s,τ

∴
dτ′

dτ
= s,
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where s is a proportionality constant. Hence, Eq. (5.25) becomes

∴ Ä
′
0 +

1
τ′

Ä
′
0 +(− 1

4τ′2
+

k2

s2 )A
′
0 = 0,

∴ τ
′2Ä

′
0 + τ

′Ä
′
0 +(τ′2− (1/2)2)A

′
0 = 0. (∵ s =±k comparing with 5.22) (5.26)

Equation (5.26) has the standard form of Bessel’s differential equation and the solution is

given by

∴ A
′
0 = J1

2
(τ′),

∴ A0 = τ
3
2 J1

2
(±kτ),

∴ A0(τ) =

(
2

πk

) 1
2

τsin(kτ)

(
∵ J1

2
(x) =

√
2
πx

sinx

)
, (5.27)

∴ A0(τ,~x) =
(

2
πk

) 1
2

τsin(kτ)ei~k.~x. (∵ 5.20) (5.28)

Substituting the result (5.28) in the inhomogeneous wave equation (5.16) we obtain

∴2A1(τ,~x) =−
2
τ

∂1A0(τ,~x),

∴2A1(τ,~x) =−2ik1

(
2

πk

) 1
2

sin(kτ)ei~k.~x,

∴ A1(τ,~x) =

[
P1 sin(kτ)+Q1 cos(kτ)− ık1

(
2

πk3

)1/2

τcos(kτ)

]
ei~k.~x. (5.29)

Substituting this result (5.28) in inhomogeneous wave equation (5.17) we obtain

∴2A2(τ,~x) =−
2
τ

∂2A0(τ,~x),

∴2A2(τ,~x) =−2ik2

(
2

πk

) 1
2

sin(kτ)ei~k.~x,

∴ A2(τ,~x) =

[
P2 sin(kτ)+Q2 cos(kτ)− ık2

(
2

πk3

)1/2

τcos(kτ)

]
ei~k.~x. (5.30)
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Substituting this result (5.28) in inhomogeneous wave equation (5.18) we obtain

∴2A3(τ,~x) =−
2
τ

∂3A0(τ,~x),

∴2A3(τ,~x) =−2ik3

(
2

πk

) 1
2

sin(kτ)ei~k.~x,

∴ A3(τ,~x) =

[
P3 sin(kτ)+Q3 cos(kτ)− ık3

(
2

πk3

)1/2

τcos(kτ)

]
ei~k.~x. (5.31)

In the above equations, Pi and Qi are integration constants. When these constants are

zero, Fi j = 0 and F0i =−i ki
k

( 2
πk

) 1
2 cos(kτ)ei~k·~x.

5.4 Perturbation in the conformal background

In this section we will study the perturbation in the magnetic potentials due to gravi-

tational wave in the cosmological background [35, 36, 37, 38]. For this we will solve the

Maxwell’s equations in the presence of gravitational wave. The weak gravitational wave

perturbation in the conformal background is given by

gµν = a2(τ)(ηµν +hµν), (5.32)

∴ gµν =
1

a2(τ)
(ηµν−hµν), (5.33)

gµν =
1

a2(τ)



−1 0 0 0

0 1−h+ −h× 0

0 −h× 1+h+ 0

0 0 0 1


. (5.34)
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5.4. PERTURBATION IN THE CONFORMAL BACKGROUND

Maxwell’s equation for electromagentic wave in de-Sitter spacetime with gravita-

tional waves

From the ‘Minimal Coupling Principle’, the above equation in curved spacetime can be

written as

∇νFµν = 0

But we know that

∇βFαβ =
1√
|g|

∂β(
√
|g|Fαβ) = 0,

∴ ∂β(
√

a8gαµgβνFµν) = 0,

∴ η
αµ

η
βν

∂βFµν−η
αµhβν

∂βFµν−hαµ
η

βν
∂βFµν−η

βνFµν∂βhαµ = 0. (5.35)

Lorenz gauge

Here we explicitly find the form of the Lorenz gauge condition in the presence of gravita-

tional waves.

∂αAα = 4H A0a−2,

η
i j

∂iA j = 2A0H +∂0A0−h+(∂2A2−∂1A1)+h×F12. (5.36)

Now we will find the inhomogeneous wave equations for each value of α in Eq. (5.35).
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5.4. PERTURBATION IN THE CONFORMAL BACKGROUND

When the free index α = 0:

∴ η
00

ηβν∂βF0ν−η
00hβν

∂βF0ν = 0,

∴ η00∂0F00 +η
i j

∂iF0 j− (h11
∂1F01 +h12

∂1F02 +h21
∂2F01 +h22

∂2F02) = 0,

∴ η
i j

∂i(∂0A j−∂ jA0)− (h+∂1F01 +h×∂1F02 +h×∂2F01−h+∂2F02) = 0,

∴ ∂0(η
i j

∂iA j)−∂i∂
iA0 +[h+(∂2F02−∂1F01)−h×(∂1F02 +∂2F01)] = 0,

∴ ∂0(2A0H −h+∂2A2 +h+∂1A1 +h×F12 +∂0A0)−

∂i∂
iA0 +h+(∂2F02−∂1F01)−h×(∂1F02 +∂2F01) = 0,

∴−2A0 +2H ∂0A0 +2A0Ḣ +∂0h+(∂1A1−∂2A2)+h+∂0(∂1A1−∂2A2)+∂0h×F12

−h×∂0F12 +h+(∂2F02−∂1F01)−h×∂2(F01 +F02) = 0,

∴2Ã0 =−∂0h+(∂1A1−∂2A2)−h+∂0(∂1A1−∂2A2)−∂0h×F12

+h×∂0F12 +h+(∂2F02−∂1F01)−h×∂2(F01 +F02).

(5.37)

Because we set all the integral constants of magnetic potentials (describing the electromag-

netic wave in this background) to zero, the only nonzero terms on the right hand side will

be due to F0i being nonzero.

∴2Ã0 =−∂0h+(∂1A1−∂2A2)−h+∂0(∂1A1−∂2A2)

+h+(∂2F02−∂1F01)−h×∂2(F01 +F02) (5.38)

when the‘cross polarization’ (h×) is absent from the gravitational wave, above simplifies to

2Ã0 = ∂0h+(∂1A1−∂2A2)+h+(∂2
1−∂

2
2)A0 (5.39)

where we have used the formula for the h+ = A+ωgτe−iωgτ

(
1− i

ωgτ

)
eiωgz [27, 39]. From

the above it is evident that if the electromagnetic wave is only in the Z-direction, there is no
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5.4. PERTURBATION IN THE CONFORMAL BACKGROUND

interaction from this term. Note that if the wave vector components k1 = k2, then the right

hand side will vanish and we will have no perturbation in the 0-th component of the gauge

potential.

We take the Green’s function from Tsamis and Woodard [40, 41] of the form

Gret
µν(x,x

′) =
θ(∆τ)

4π
δ
′(y)

∂y(x,x′)
∂xµ

∂y(x,x′)
∂x′ν

=−θ(∆τ)

2π2 Limε→0
εy

(y2 + ε2)2
∂y(x,x′)

∂xµ
∂y(x,x′)

∂x′ν
(5.40)

where

y(x,x′)≡ H2a(τ)a(τ′)
(
|~x−~x′|2− (|τ− τ

′|− iε)2
)

and we can derive the perturbations using the above Green’s function. But when we formu-

lated the integral as in chapter-4, the answer was not obtained in a closed form. So we solve

the inhomogeneous differential equations using MAPLE. Now we will find the equations

for the other three components and solve them. Setting α = i in the wave equation (5.35),

we get:

η
ii
η

βν
∂βFiν = η

ii
η

00
∂i∂0A0−η

ii (
η

00
∂

2
0 +η

j j
∂

2
j
)

Ai +η
ii
η

j j
∂i∂ jA j,

= η
ii
η

00
∂i∂0A0−η

ii(2Ai)+η
ii
∂i (2A0H +∂0A0−h+(∂2A2−∂1A1)+h×F12) .

(5.41)

In the second equation we have used the Lorenz gauge condition ∂µAµ = 0. This gives the

following

−η
ii2Ai +η

ii2H ∂iA0 = η
ii
∂i(h+(∂2A2−∂1A1))−η

ii
∂i(h×F12)+η

iihβν
∂βFiν.

+hiµ
η

βν
∂βFµν +η

βνFµν∂βhiµ (5.42)

The above are the inhomogeneous wave equations for the remaining three components
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5.4. PERTURBATION IN THE CONFORMAL BACKGROUND

of the electromagnetic potential, which can be found using the propagator in Eq. (5.40).

However, we solve the inhomogeneous differential equations using MAPLE. In the source

term of the equation, we use the F0i as follows. Using the example of the electromagnetic

field where the constants Pi,Qi are zero, we get the non-zero components of the electric

field strength to be

F0i =−i
ki

k

(
2

πk

)1/2

cos(kτ)ei~k·~x. (5.43)

For the 0-th component one has

2Ã0 = ∂0h+(∂1A1−∂2A2)+h+(∂2
1−∂

2
2)A0

= A+e−iωgτ(ωgτ)eiωgz(−iωg)(k2
1− k2

2)

(
2

πk3

)1/2

τcoskτei~k·~x

−A+e−iωgτ (ωgτ− i)eiωgz(k2
1− k2

2)

(
2

πk

)1/2

τsin(kτ)ei~k·~x = j0(τ,x,y,z,) (5.44)

We assume motivated from the right hand side of the above equation the Ãµ(τ,~x)= ei~̃k·~xÃµ(τ),

where~̃k =~kg +~k. Plugging this we get an equation for Ã0 which is a pure function of τ of

the form

d2Ã0

dτ2 −
2
τ

dÃ0

dτ
+(k̃2 +

2
τ2 )Ã0 =− f (τ) (5.45)

where

f (τ) = A+e−iωgτ
ωgτ(−iωg)(k2

1− k2
2)

(
2

πk3

)1/2

τcos(kτ)

−A+e−iωgτ
ωgτ

(
1− i

ωgτ

)
(k2

1− k2
2)

(
2

πk

)1/2

τsin(kτ) (5.46)
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Figure 5.1: The real part of the unperturbed 0-th component of the electromagnetic potential
A0 as a function of absolute conformal time τ

Figure 5.2: The real part of perturbed 0-th component of the electromagnetic potential Ã0
as a function of absolute conformal time τ
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Using MAPLE we obtain the solution to the above equation as

Ã0 =C1τcos(k̃τ)+C2τsin(k̃τ)− τ

k̃

(
sin(k̃τ)

∫ cos(k̃τ)g(τ)
τ

dτ− cos(k̃τ)
∫ sin(k̃τ)g(τ)

τ
dτ

)
(5.47)

We find the re-appearance of the ‘new mode’ frequencies of k̃ =
√

k2
g + k2 and the

integrals can be obtained using MAPLE. Using MAPLE plot as a function of τ (using

C1 =C2 = 0) we find that the gravitational wave produces modulation over the shape of the

unperturbed wave. Note this perturbation is proportional to A+ and therefore much weaker

than the original wave. We expect to study any way to make these modulations detectable,

and its effect on the CMB in the near future.

For the plot we use k1 = 4,k2 = 0,ωg = 3 and the frequency of output mode as k̃ = 5.

The integral

τ

k̃

(
sin(k̃τ)

∫ cos(k̃τ)g(τ)
τ

dτ− cos(k̃τ)
∫ sin(k̃τ)g(τ)

τ
dτ

)
(5.48)

takes the following form:

Ã0 ∼C1τcos(5τ)+C2τsin(5τ)− 16√
2π

A+τe−3iτ
((

iτ
8
+

41
384

)
cos(4τ) (5.49)

+
(−2i+3τ)

32
sin(4τ)

)
eik1x+iωgz

We then plot the real part of the above as a function of time, setting x = 0;z = 0 C1 =C2 = 0

to examine the frequency behaviour in the figure 5.2. We have used the similarity sign as

there can be some normalization constants. We then find the mode for the propagation of

the Ã1 component. The equation for the Ã1 is found as
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5.4. PERTURBATION IN THE CONFORMAL BACKGROUND

2Ã1 = 2H ∂1Ã0 +h+∂
2
1A1−h+∂0F01−F01∂0h+. (5.50)

Using the same method as for the Ã0 we find that the time dependent part of the equation

can be obtained as:

∂
2
0Ã1 + k̃2Ã1 =

2
τ
(ik1)Ã0 +A+

ik1

k

(
2

πk

)1/2[(
k2

1(ωgτ− i)+ iω2
g
)

τcos(kτ) (5.51)

+(ωgτ− i)k sin(kτ)

]
e−iωgτ

Figure 5.3: The real part perturbed 1st component of the electromagnetic potential Ã1 as a
function of absolute conformal time τ

As previously we take the example of k1 = 4,k2 = 0,ωg = 3 and find the following
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solution for Ã1 gives

Ã1 ∼C1 cos(5τ)+C2 sin(5τ)+

(
192τ2−164iτ−24

96
√

2π

)
sin(4τ)e−3iτ (5.52)

+
1√
2π

(
τ− i

1
24

)
cos(4τ)e−3iτ

If we set k2 = 0 then

Figure 5.4: The real part of perturbed 3rd component of the electromagnetic potential Ã3 as
a function of absolute conformal time τ

2Ã2 = 0, (5.53)
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if we keep k2 then the equation is similar to that for Ã1. Further:

2Ã3 = ∂3h+(∂2A2−∂1A1). (5.54)

We can solve for Ã3 easily using MAPLE and we get:

Ã3 ∼C1 cos(5τ)+C2 sin(5τ)− 2A+√
2π

e−3iτ
[(
−τ

2
+

i
3

)
cos(4τ) (5.55)

+

(
−τ

2 +
11
24

+ iτ
)

sin(4τ)

]
ei3ze4ix

The plots for Ã1, Ã3 are in the figures 5.3 and 5.4. We can see that the gravitational wave

produces modulations in the form of the waves.

5.5 Conclusion

In this chapter we study the interaction of the gravitational waves with electromagnetic

waves in the background of de-Sitter metric. We found the inhomogeneous wave equation

for the perturbation in the 0-th component of the gauge field. We find that if the EM wave

is in the Z-direction, then there is no perturbation. The form of perturbation in the 0-th

component of the electromagnetic potential is found in Eq. (5.49). Similarly, the perturba-

tions Ã1 and Ã2 are found to be as given in Eq. (5.52) and (5.55) respectively. We find from

the graphs that the electromagnetic perturbations are modulated due to the interaction with

gravitational waves and we expect to find signatures of this in current observations. We

can find the electromagentic field components from the gauge potentials and the scattering

of electromagentic radiation (also found in the Minkowski background interaction) occurs

due to the interaction with a gravitational wave. We note that the unperturbed gauge po-

tentials increase linearly with conformal time while the perturbed gauge potentials increase

quadratically with conformal time τ. This is understood as, the perturbed gauge potentials

being the result of interaction between the electromagentic and gravitational wave, both of
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which are linearly proportional to conformal time.
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Chapter 6

Conclusion

Our aim was to analyze the interaction of gravitational waves with electromagnetic waves

in the background of Minkowski spacetime and de-Sitter spacetime, so that the perturba-

tions in the electromagnetic four-potential components can be found. The presence of such

nonzero perturbations might be detected and used to find the imprints of primordial gravi-

tational waves on the cosmic microwave background radiation observed today.

In chapter 2, the important mathematical and conceptual background was provided in order

to explain the fundamental ideas of the general theory of relativity. Relevant mathemat-

ical tools like metric tensor, Christoffel symbols, covariant derivative, parallel transport,

Riemann curvature tensor, stress-energy, etc were introduced. After briefly discussing the

equivalence principle, the Einstein field equations were introduced which describe the rela-

tion among energy, momentum and curvature of spacetime.

In chapter 3, the metric tensor (gµν) describing the propagation of a weak gravitational

wave in the background of Minkowski space was found in Eq. (3.37). Taking the form

of the metric tensor as gµν = ηµν + hµν, the Einstein field equations were solved (to first

order in hµν) in the absence of matter; which produced a homogeneous wave equation in

the TT-gauge. The explicit form of the metric perturbation hµν was found and it was shown

that it has two independent components, known as h+ and h× polarization.

In chapter 4, we analyzed the interaction of a linearized gravitational wave with a plane po-

larized monochrometic electromagnetic wave. We find that (to linear order in hµν) this inter-

action causes perturbations in the electromagnetic potential components Aµ. The perturbed

91



6. CONCLUSION

mode of frequency is found to be
√

ω2
g +ω2

e as expected, where ωg and ωe are the angular

frequencies of the gravitational wave and electromagnetic wave, respectively. We note that

the nature of wave interaction is dependent on the relative direction of wave propagation.

We do not find any resonant amplification when the waves are parallel to each other. The in-

teraction is understood as: The flat-space Maxwell’s equations are not valid to describe the

nature of electromagnetic field in the presence of a gravitational wave. When the Maxwell’s

equations are found in the curved background, we find that there are source terms in the in-

homogeneous wave equation. This is most clear when we find Maxwell’s equations in the

curved background (4.7) given by ηαµ2Ãµ =−ηαµhβν∂βFµν−ηβνFµν∂βhαµ. Note that the

right hand side of this expression, which acts as a source term, would be zero in the absence

of gravitational wave. The perturbation plot of the x-component of Ãµ at different times is

shown in figure 4.1.

In chapter 5, we analyze the interaction of gravitational waves and electromagnetic waves

in the background of de-Sitter spacetime. To simplify the expression, we consider the case

when the h× is absent. The same perturbed mode of frequency is found as in the Minkowski

spacetime background. We interpret this perturbation in the same way as previously done.

However, the de-Sitter metric does change the nature of perturbation significantly as seen

in Eq. (5.49), (5.52) and (5.55) compared to Minkowski spacetime results. The plot for the

perturbed 0-th component of electromagnetic potential over the conformal time τ is shown

in figure 5.2. Similarly, the plots for the Ã1 and Ã3 are (respectively) shown in figures 5.3

and 5.4.

We note that in Minkowski and de-Sitter background, scattering of electromagentic ra-

diation occurs when it interacts with a gravitatonal wave. The perturbed radiation is no

longer transeversly plane-polarized due to the interaction. When both waves are propagat-

ing anti-parallelly (w.r.t each other) in Minkowski background, we find a runaway term in

the perturbed gauge potentials which do not affect the electromagnetic wave components.

Our results have phase shift (in the electromagentic waves) terms similar to those used by
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LIGO and the remaining terms contain the new frequency mode. These perturbations in

the electromagnetic wave are tiny in magnitude but might be detectable with technolog-

ical advancement. In future work, we will be working towards the explicit solution for

the perturbed electromagnetic potential when both polarizations of gravitational waves are

present in the background of de-Sitter spacetime. We will then try to find their effects on

the B-modes of the cosmic microwave background radiation. The search for other phys-

ical phenomena in cosmology where these perturbations can be detected is also work in

progress.
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