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Abstract 

All sentient organisms use contextual information to assess the amount of reward associated 

with a particular behavior.  Human beings have arguably evolved the most sophisticated of these 

mechanisms and are capable of integrating information over a long duration of time to 

accurately assess the expected outcome of a chosen action.  This thesis used 

electroencephalography (EEG) to measure how the human brain processes rewarding and 

punishing feedback in a gambling-type game with variable risk and reward.  Experiment 1 

determined that phase-locked (evoked) and non-phase-locked (induced) electroencephalographic 

activity share only partially overlapping generators in human mediofrontal cortex.  Experiment 2 

determined that the magnitude of certain evoked EEG components during reward processing 

tracked subsequent changes in bets placed in the next round.  These results extend the body of 

literature by assessing the overlap between induced and evoked EEG components and the role 

of evoked activity in affecting future decision making. 
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“Of several responses made to the same situation, those which are 
accompanied or closely followed by satisfaction to the animal will, other 
things being equal, be more firmly connected with the situation, so that, 
when it recurs, they will be more likely to recur; those which are 
accompanied or closely followed by discomfort to the animal will, other 
things being equal, have their connections with that situation weakened, 
so that, when it recurs, they will be less likely to occur.” 

Edward Thorndike, Animal Intelligence: Experimental studies; p.244
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Chapter 1: Introduction 

It is evolutionarily advantageous for organisms to possess mechanisms to adapt behavior 

based on the perceived reward of a given action.  Every sentient organism makes use of this 

adaptive system to balance the associated costs of a behavior with its potential benefits – from a 

predator deciding to hunt a prey animal to an insect foraging for food.  The mechanisms that 

control adaptive behaviors in animals can be estimated using mathematical formulae and 

implemented in software to facilitate machine learning using artificial intelligence (Sutton & 

Barto, 1998) and, potentially, to also help predict the movements of stock markets (Sanfey, 

Loewenstein, McClure, & Cohen, 2006).  Our pursuit of understanding the biological 

mechanisms mediating adaptive behaviors thus bears substantial relevance far beyond the 

scientific pursuit of the unknown. 

A fundamental necessity to engage in decision making is the ability to monitor the outcomes 

of decisions to identify the amount of reward (positive outcomes) or punishment (negative 

outcomes) associated with the action – a cognitive process called feedback processing.  This thesis 

investigates the brain’s electrical responses associated with this operation.  Human beings have 

evolved sophisticated cognitive mechanisms to compute the expected outcome of an action and 

can adjust and improve this analysis through time, making us an ideal organism for psychological 

and neuroscientific investigation into feedback processing.  In the laboratory various types of 

free-choice, gambling-like tasks with variable and uncertain risk and reward can be used to study 

how the human brain engages in action selection and action monitoring when faced with 

uncertain outcomes. 

The availability of modern functional neuroimaging systems provides a way to investigate the 

mechanisms by which the human brain registers positive and negative feedback.  With few 
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exceptions these functional imaging techniques exploit one of two phenomena associated with 

neural activity.  The first involves imaging changes in hemodynamic or metabolic activity within 

the brain in response to changes in neural activity.  The two most common techniques used to 

visualize such changes are functional Magnetic Resonance Imaging (fMRI), which measures 

changes in blood oxygenation levels, and Positron Emission Tomography (PET), wherein a 

radioactive isotope is injected into the bloodstream to track metabolic changes in the brain.  As a 

general rule, both PET and fMRI offer very good spatial resolution and the ability to detect 

changes in many subcortical regions, something that is not possible with other imaging 

techniques.  However, this high spatial sensitivity comes at the expense of poor temporal 

resolution.  For instance, changes in cerebral blood flow exhibit a lagged response of 

approximately 2-10 seconds after the onset of the increased neural activity.  Thus, these types of 

functional imaging techniques are generally unsuited for identifying the specific timecourse of 

cerebral activity and can, at times, fail entirely at identifying brief cerebral responses (including 

some responses specific to feedback processing).  In addition, metabolic imaging systems tend to 

be very expensive to purchase and operate and are generally stationary systems (although 

portable MRI/fMRI systems exist).  They also do not directly measure brain electrical activity 

itself but rather the secondary increase in cerebral blood flow in response to increased brain 

electrical activity – leading to theoretical difficulty in extrapolating from fMRI results to brain 

mechanisms (see however, Lee et al., 2010). 

 The other common form of human functional neuroimaging directly measures the electrical 

activity of the brain at the scalp.  These measurements are possible because of the laminar 

organization of neurons in the neocortex.  Cortical pyramidal cell bodies are arranged parallel to 

each other with their dendrites pointing perpendicular to the surface of the cortex.  The 
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movement of charged ions across the dendritic plasma membrane generates an electric field that 

individually is immeasurably small.  However, the synchronous activity of many tens of 

thousands of pyramid cells generates a summed electric field that is sufficiently large to be 

measured many millimeters away.  There are two scalp imaging techniques that directly measure 

this brain electrical activity: electroencephalography (EEG), which measures the differences in 

electrical potential energy between an electrode of interest and a reference electrode, and 

magnetoencephalography (MEG), which measures the orthogonal magnetic component of this 

electric field.   

In practice, this means EEG is well suited for measuring neocortical activity from tissues 

arranged parallel to the skull whereas MEG is well-suited for measuring neocortical activity from 

tissues perpendicular to the skull.  Modern EEG and MEG systems record from several dozen 

electrodes (EEG) or superconducting quantum interference devices (MEG) to provide whole-

head recordings.  Both modalities offer excellent temporal resolution (on the order of 1,000 

samples per second) to determine the chronological sequence of cortical electrical activity.   

Both techniques, however, are limited in their ability to accurately determine the cortical 

generators of the measured scalp activity – that is, both techniques have limited spatial 

resolution.  The reasons for this are numerous.  First, both systems are generally unable to 

record signals from non-laminar tissues and thus are unable to record from midbrain and 

brainstem regions.  Second, both systems are sensitive to destructive interference, with the 

electric fields measured via EEG cancelled in horizontally opposed tissues and the magnetic 

fields measured via MEG cancelled in tissues aligned parallel with the skull.  There is thus always 

some amount of electric/magnetic activity that is attenuated in each participant, and the amount 

of this attenuation varies with the gross morphology of each participant’s cortical folding.  Third, 
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and by extension from the previous point, there are an infinite number of configurations in which 

the neocortex can be electrically/magnetically active to generate the pattern of activity measured 

at the scalp – working backward from a scalp distribution of voltages to a source location in the 

cortex is known as the inverse problem (Luck, 2005).  The inverse problem is a mathematically 

ill-posed problem, meaning there is no one unique correct solution.  Source-localization 

techniques generally operate in a parsimonious fashion insofar as the simplest solution with the 

fewest assumptions is generally considered correct (Occam, ca. 1300).   

Electroencephalography possesses additional limitations as compared to MEG.  Electric 

fields, but not their magnetic counterparts, are sensitive to distortion by the differing electrical 

resistances of cortex, cerebrospinal fluid in the ventricles, meninges, pia, dura, skull, and scalp.  

Electric fields pass through these tissues by a process known as volume conduction, wherein the 

propagating fields bend and become distorted at the boundaries between regions of different 

electrical properties.  This distortion tends to produce a diffuse pattern of electrical activity at 

the scalp (see Figure 2-2) and any attempt at source-localizing EEG activity must account for 

this distortion or accept a necessarily low spatial precision.  In addition, EEG operates 

analogously to an electrician’s voltmeter, requiring both a reference and a target voltage 

measurement.  Most EEG systems use a single reference point (some use bilateral references at 

the earlobe or the mastoid processes behind the ear) against which all other electrodes of interest 

are compared.  This makes EEG acquisition sensitive to erroneous and spurious electrical 

activity at the reference electrode.  MEG is acquired in a reference-free montage that is not 

affected by this problem.  Despite its limitations, however, the EEG technique is vastly more 

popular in research environments than MEG because the latter technique is, like MRI, expensive 

to purchase and operate, is immobile, and requires specialized personnel to maintain.   
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Both EEG and MEG are recorded continuously during an experiment (generally 30-60 

minutes in duration, though some experiments last longer) but researchers are often interested in 

event-related neural activity during the moments before and after a particular cognitive operation.  

By segmenting the continuous EEG into discrete epochs at the event of interest, then averaging 

trials together for each participant, and then finally grand-averaging across participants, it is 

possible to minimize the random “background” neural activity recorded in the continuous EEG 

and measure the time-locked electric signal specific only to the cognitive task being studied.  

These grand-averaged EEG data are called Event-Related Potentials (ERP) and the experiments 

reported here make extensive use of this technique.   

By recording from multiple electrodes and by generating ERPs at each electrode it is possible 

to create a topographic representation of scalp electrical activity (see Figure 2-2) that can offer 

some insight into the possible intracranial distribution of the neural generators of these voltages.  

The ERP associated with any instantaneous sensory or cognitive event is characterized by a 

series of negative and positive voltage deflections relative to a baseline time period prior to the 

event.  These peaks, and often the differences between peaks, are called components of the ERP.  

With regards to feedback processing there are two ERP components of particular interest: the 

Feedback-Related Negativity (FRN), which is a positive-negative-positive waveform observed at 

fronto-central electrodes (often Fz or FCz; see Appendix B for standardized electrode locations 

on the scalp), and the P300, which is a positive-going deflection frequently observed at centro-

posterior electrode sites (often Cz, CPz, or Pz).  The FRN and P300 will be introduced in 

greater detail in the introduction to Experiment 1.  Briefly, the FRN is likely generated from 

mediofrontal cortex, and possibly involves the Anterior Cingulate Cortex (ACC; Gehring & 

Willoughby, 2002).  The FRN is sensitive both to the valence of feedback (i.e. reward or 
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punishment) and to the perceived riskiness of a choice (Holroyd, Larsen, & Cohen, 2004).  The 

P300 reflects several overlapping components and lacks a single clear anatomical generator, but 

it is believed to be involved in registering and processing task-relevant novel stimuli (Yeung & 

Sanfey, 2004). 

By necessity the EEG activity represented in the grand-averaged ERP is phase-locked across 

trials.  That is, the peaks and troughs of the ERP on successive trials would be aligned in time if 

overlaid onto each other.  Any activity that is not phase-locked across trials is attenuated or 

removed entirely by the averaging process that creates the ERP.  This occurs because of the 

wave-like nature of EEG activity.  Like all waves, the recorded EEG signal has independent 

values for wavelength (i.e. its frequency), for amplitude (i.e. its power) and for phase (the 

discrete location within a particular wavelength).  Waves interact through constructive and 

destructive interference: averaging in-phase waves sums their amplitudes (constructive 

interference), and averaging out-of-phase waves cancels them out (destructive interference).  In 

fact, constructive interference permits cortical pyramidal electric fields to sum sufficiently to be 

detected by scalp electrodes.  Although phase-locked EEG activity represents a substantial 

component of the observed trial-by-trial activity, it is known that power changes in non-phase-

locked ongoing oscillations are also implicated in cognition.  By convention the phase-locked 

activity represented in the ERP is called evoked activity, and the non-phase-locked changes in 

oscillatory activity are called induced activity.  Both kinds of EEG signals are informative with 

respect to feedback processing and both are reported in the following chapters. 

Computing grand-average changes in induced activity is not as straightforward as the 

construction of an ERP.  Rather than simply averaging EEG activity across trials, the EEG must 

be demodulated by an algorithm to compute the discrete power level at each particular 
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frequency – that is, the discrete power at 1Hz, at 2Hz, at 3Hz, and so forth must be 

independently computed.  These segregated power levels can then be grand-averaged and 

represented as a Temporal-Spectral Evolution (TSE) plot.  These plots are three-dimensional, 

representing a percent change in power relative to a baseline (referred to as a 1° change), at a 

particular time latency (a 2° change), and at a specific frequency (a 3° change).   

Neuroscientists have divided the possible EEG frequency spectra into discrete bands based 

on their functional importance. The conventional definitions are as follows: Delta, 0-4Hz; Theta, 

4-7 Hz; Alpha, 8-11 Hz; Beta, 12-30 Hz; and Gamma, 30-100Hz.  Frequencies above 100 Hz are 

for most practical purposes immeasurably weak and frequencies below approximately 0.1 Hz 

tend to be filtered out during most EEG acquisitions.  Although each of these frequency bands 

may be involved in various forms of cognitive control, theta oscillations are of particular interest 

to cognitive neuroscientists.  Theta oscillations are extremely robust, being among the most 

powerful oscillations generated by the human brain (only delta oscillations are of greater 

amplitude) and among the easiest to acquire.  In turn, this means that event-related theta 

oscillations can be obtained by averaging over a limited number of trials (approximately 15).  

Theta rhythms have been implicated in a number of cognitive operations including feedback 

processing (Cohen, Elger, & Ranganath, 2007; Luu, Tucker, Derryberry, Reed, & Poulsen, 2003; 

Marco-Pallares et al., 2008), memory (Jensen & Tesche, 2002) and linguistic (Hagoort, Hald, 

Bastiaansen, & Petersson, 2004) tasks.   

1.1 Research Goals 

This thesis presents two studies aimed at elucidating the functional and anatomical properties 

of brain electrical activity during feedback processing.  First, a number of EEG investigations 
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have identified characteristic changes in low-frequency EEG activity during feedback processing 

separate from the phase-locked ERP, but the generators of this activity were previously 

unknown.  Experiment 1 thus used an advanced source localization technique, Beamformer 

spatial filtering, to identify the cortical generators of feedback-induced low-frequency activity, 

and the extent to which these generators overlap anatomically with the generators of evoked 

feedback responses.  Second, the amplitude of certain ERPs are known to positively correlate 

with learning speed and negatively correlate with error avoidance.  Experiment 2 thus tested the 

hypothesis that larger FRN and P300 amplitudes are associated with subsequent bet changes on 

a trial-by-trial basis.   
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Chapter 2: Experiment One.  Right-Frontal Cortex Generates Reward-Related Theta-
Band Oscillatory Activity 

2.1 Abstract 

When participants in a gambling game are given feedback as to whether they won or lost the 

previous bet, a series of stereotypical brain electrical responses can be observed in the 

electroencephalogram (EEG) and the stimulus-locked Event-Related Potential (ERP).  These 

include the Feedback-Related Negativity (FRN), a posterior P300, and a feedback-induced 

increase in power at the theta (4 to 8 Hz) band over frontal scalp.  Although the generators of 

the FRN and P300 have been studied previously, little is known about the generator of 

feedback-induced theta. To investigate these feedback-related responses, participants played a 

gambling game and chose either high-risk/high-reward or low-risk/low-reward bets.  The FRN 

was not modulated by the riskiness of the bet, but both P300 and feedback-induced theta were 

of greater amplitude following high- relative to low-risk bets.  Using a bilateral multi-source 

Beamformer approach, I localized the induced theta-band responses following wins and losses 

to partially overlapping regions in the right medial frontal cortex, possibly including Anterior 

Cingulate Cortex (ACC).  Using a dipole-fitting approach, I found that the generators of 

feedback-induced theta were anatomically distinct from those of the FRN and P300.  

2.2 Introduction  

Humans can identify positive and negative outcomes of their actions and make predictions 

about future outcomes.  Broadly construed, these mechanisms probably serve two functions: 

first, to guide our current actions by keeping us engaged in beneficial behaviors and causing us 

                                                
 This chapter is adapted from Christie, G.J., & Tata, M.S., 2009. Right frontal cortex generates reward-related theta-band 
oscillatory activity. Neuroimage 48, 415-422. 
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to disengage from detrimental behaviors, and second, to guide learning processes that influence 

future behaviors.  The functional neurobiology of these reward processing systems can be 

investigated in the laboratory using neuroimaging techniques in conjunction with gambling or 

guessing games that provide feedback about good or bad choices.  

In a gambling game, feedback typically indicates either win or a loss to the player, resulting in 

a stereotypical series of deflections evoked in the ERP. Two components have been of particular 

interest: the FRN (possibly related to the feedback Error-Related Negativity) and the feedback-

related P300.  The FRN is a fronto-central negative difference in the ERP following losses or 

negative feedback that is generated from mediofrontal cortex, possibly within ACC (Gehring & 

Willoughby, 2002) .  The FRN is associated with reward-based learning (Bellebaum & Daum, 

2008) and adaptive decision-making (Cohen et al., 2007).  The FRN reflects more than the 

simple registration of “win” or “lose”: its magnitude is modulated by expectancy.  Small wins 

generate an FRN if the alternative outcome was a bigger win (Holroyd, Larsen, & Cohen, 2004). 

There is a correlation between FRN amplitude and response switching (Yasuda, Sato, Miyawaki, 

Kumano, & Kuboki, 2004), FRN amplitude decreases as participants improve in a learning task 

(Krigolson, Pierce, Holroyd, & Tanaka, 2008), and FRN-like activity can be elicited by 

unexpected positive feedback (Holroyd, Pakzad-Vaezi, & Krigolson, 2008; Oliveira, McDonald, 

& Goodman, 2007).  There is also evidence suggesting the evaluative properties of the FRN are 

affected by the motivational significance of a given task (Donkers, Nieuwenhuis, & van Boxtel, 

2005; Yeung, Holroyd, & Cohen, 2005).  Together, these results suggest the FRN reflects reward 

prediction errors and thus may represent the function of a neural system mediating 

reinforcement learning (Holroyd et al., 2004).  
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The feedback-related P300 is a posterior potential that has been found following feedback 

about wins and losses in gambling games (Yeung et al., 2005; Yeung & Sanfey, 2004) and in a 

learning task with a monetary reward (Bellebaum & Daum, 2008).  Unlike the FRN, the P300 

seems to be related to the probability or risk associated with a particular outcome and not to the 

valence (winning or losing) of that outcome (Yeung & Sanfey, 2004).  Unlike the FRN, the 

anatomical generators of the P300 remain poorly identified. 

In addition to the feedback-evoked FRN and P300, recent investigations have identified an 

induced oscillatory response in the theta band (4 – 8 Hz) during feedback processing (Cohen et 

al., 2007; Gehring & Willoughby, 2004; Marco-Pallares et al., 2008).  This induced theta response 

is greater in power and phase coherence following losses relative to wins.  Induced responses to 

wins, however, are modulated more by reward probability than are responses to losses, and are 

greatest in power and phase coherence when there is a low probability of winning (Cohen et al., 

2007).  It has been suggested that theta oscillatory activity represents the functional coupling of 

several mediofrontal brain structures involved in feedback processing.  However, the 

neuroanatomical generators of this induced theta-band power have yet to be identified. 

Despite substantial work to investigate reward processing mechanisms in non-human animals 

(see e.g. Everitt, Dickinson, & Robbins, 2001; Schultz, 2007), the functional anatomy of these 

circuits in humans remains poorly understood.  Studies using functional MRI have implicated a 

distributed network of sub-cortical and frontal cortical structures mediating reward processing 

(Delgado, Nystrom, Fissell, Noll, & Fiez, 2000; McClure, Berns, & Montague, 2003; McClure, 

York, & Montague, 2004;  O'Doherty et al., 2004; O'Doherty, Deichmann, Critchley, & Dolan, 

2002; Pagnoni, Zink, Montague, & Berns, 2002; Schonberg, Daw, Joel, & O'Doherty, 2007). 

This network includes the ventral striatum and medial orbitofrontal cortex in reward processing 
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and the lateral orbitofrontal cortex and ACC in loss processing (Liu et al., 2007).  Although the 

components of a frontal reward processing network have thus been identified based on 

metabolic activity, the electrical activity within this network has not yet been fully characterized.   

One study using intra-cranial electrodes in a neurosurgical patient found feedback-related ERP 

responses in the alpha band within paracingulate cortex (Oya et al., 2005).  Electrical Source 

Imaging of the FRN (Donkers et al., 2005; Gehring & Willoughby, 2002; Holroyd, Hajcak, & 

Larsen, 2006; Holroyd et al., 2004; Marco-Pallares et al., 2008; Miltner, Braun, & Coles, 1997; 

Nieuwenhuis, Holroyd, Mol, & Coles, 2004; Nieuwenhuis, Yeung, Holroyd, Schurger, & Cohen, 

2004; Yeung et al., 2005; Yeung & Sanfey, 2004) has consistently found one or more 

generator(s) on the anterior medial wall of the frontal lobe, possibly in ACC, suggesting this 

structure contributes to reward processing.  However, using a dipole analysis constrained by 

fMRI data, Nieuwenhuis et al. (2005) found evidence for a more distributed network involving 

rostral anterior cingulate, posterior cingulate, and right superior frontal gyrus.   

It is unclear whether generators within ACC or elsewhere account for the feedback-induced 

theta-band power observed in other studies.  The peak of the FRN and the peak increase in 

induced theta-band power are at similar latencies (approximately 250 ms post-stimulus), and 

both components appear to originate in right-hemisphere mediofrontal cortex (see Results 

section).  Using a gambling paradigm, Cohen et al. (2007) observed enhanced theta-band activity 

during the window of the FRN.  Taken together, this suggests a functional relationship between 

the FRN and increases in theta-band activity. The FRN may originate due to transient phase-

locking of induced oscillatory theta-band activity.  Conversely, the observed increase in theta-

band power may be the result of the neural activity generating the evoked FRN.  To date, no 

study has determined the relationship, if any, between these two components. A study by Luu et 
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al. (2003) used a dipole-fitting approach on filtered ERP data to examine feedback-evoked theta 

power and found possible generators in rostral ACC and in dorsal medial frontal cortex.  Here I 

report evidence based on a Beamforming approach that feedback-induced theta power is indeed 

generated primarily in the right mediofrontal cortex. 

The present study used a gambling game similar to the Iowa Gambling Task to investigate the 

functional anatomy of feedback-induced neural activity.  All test participants were undergraduate 

students who received only a fixed, non-monetary reward of 2% bonus course credit. Gambling-

game experiments frequently use a variable monetary reward, and subjects are motivated by 

financial gain to perform well on the experimental task.  In this experiment, the amount of 

reward is not based on performance; thus, test subjects had no direct, salient incentive to learn 

based on the magnitude of the bets they placed or the feedback they received on these bets.  

Nevertheless, I hypothesized that feedback-related P300 and FRN effects would be modulated 

by risk and valence as reported in other literature.   

I also extended the data collection to address three questions regarding the mechanisms of 

feedback processing.  First, what are the anatomical generators of the observed theta-band 

signal, and does this activity arises from within ACC?  Second, is the neural activity of this theta-

band generator modulated by the riskiness of the bet that led to the reward?  Finally, what 

relationship, if any, exists between the FRN, the P300 and the increase in induced theta-band 

activity?  I used a three-stage process to analyze the data.  First, to ensure the use of fixed reward 

engaged normal feedback processing, I replicated the results of previous studies with respect to 

FRN, P300, and oscillatory theta-band activity.  Subsequently, I used the Beamformer spatial 

filtering technique to localize cortical sources of feedback-induced theta-band activity (Green & 

McDonald, 2008; Green & McDonald, 2010, in press; Gross et al., 2001; Van Veen, van 
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Drongelen, Yuchtman, & Suzuki, 1997), and concluded by implementing a dipole-fitting 

method, constrained by the Beamformer results, to identify the extent to which cortical regions 

associated with theta-band activity were also implicated in generating the FRN. 

2.3 Materials and Methods 

2.3.1 Participants 

Twenty-five undergraduate students at the University of Lethbridge participated for course 

credit (but not monetary reward).  Of these, data from two were excluded after debriefing 

because they indicated they had used a card-counting strategy to try to “beat” the game and thus 

had erratic behavioral performance.  Data from four participants were excluded because of 

excessive eye-movement artifact (see below).  Thus, data from 19 participants (12 female, mean 

age 22.0, two left-handed) were entered into the analysis.  Participants were screened with the 

Canadian Problem Gambling Index to exclude frequent gamblers and none reached exclusion 

criteria (the mean CPGI score was 0.9).  All procedures were in accordance with the Declaration 

of Helsinki and were approved by the University of Lethbridge Human Subject Research 

Committee; all participants gave written informed consent.   

2.3.2 Gambling Task 

Participants in gambling tasks form an implicit understanding of the risks and rewards of the 

various choice options and adjust their selections accordingly (Bechara, Damasio, Damasio, & 

Anderson, 1994; Cavedini, Riboldi, Keller, D'Annucci, & Bellodi, 2002; Goudriaan, Oosterlaan, 

de Beurs, & van den Brink, 2005).  Thus, to facilitate the implicit learning required for the task, 

participants completed a training session in which they completed a computerized version of the 
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Iowa Gambling Task prior to EEG recording sessions.  The task was as described in Bechara et 

al. (1994); briefly, participants were instructed to obtain as much reward as possible by selecting 

from four decks of cards, denoted as decks A, B, C and D.  Decks A and B always paid $100 for 

each selection and decks C and D always paid $50.  Each draw also had a pseudorandom chance 

of having a loss in addition to the gain, and the loss could exceed the gain.  For example, if a 

participant selected deck B he or she would always win $100 but might also simultaneously lose 

$1250, for a net loss of $1150.  The test lasted 100 draws, although participants were not 

instructed as to the length of the task nor were they informed as to the amount of time 

remaining.  A characteristic property of the IGT is that the higher-reward decks, namely decks A 

and B, have the same net negative expected value of -$250 over ten draws, and decks C and D 

have the same net positive expected value of +$250 over ten draws.  Thus, good performance in 

the IGT requires preferentially selecting the apparently lower-reward $50 decks (C and D) over 

the apparently higher-reward $100 decks (A and B). 

Once the training sessions were complete, participants performed an adaptation of the IGT 

suitable for the ERP technique (similar also to previous tasks used to elicit the FRN) (Gehring & 

Willoughby, 2002; Hewig et al., 2006; Nieuwenhuis, Holroyd et al., 2004; Oya et al., 2005; 

Yacubian et al., 2006; Yeung et al., 2005).  The paradigm consisted of a main screen with a 

horizontal bar (size) at the top, which displayed the subject’s current winnings or losses.  Two 

buttons at the center of the screen (size; how were they placed side by side or on top of each 

other) allowed the participant to specify either a small ($50) or large ($100) bet (betting screen) 

and to play the selected bet by clicking with a computer mouse.  Upon selecting their choice 

(small or large), a central fixation cross appeared.  A colored square, the feedback stimulus, then 

appeared after a random (but uniformly distributed) duration of 500 to 1500 ms . A green square 
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indicated a win and a red square indicate a loss for the current trial.  This feedback stimulus 

remained visible for 1000 ms and then the betting screen reappeared.  Participants either won or 

lost the value of their wager. The win/loss schedule was pseudorandom (randomized within 

runs of 10 trials) with a 0.6/0.4 win/lose probability for the $50 bet and a 0.4/0.6 win/lose 

probability with the $100 bet.  Thus there were four possible outcomes: High-Risk Win (40% 

chance after betting “high”), High-Risk Loss (60% chance after betting “high”), Low-Risk Win 

(60% chance after betting “low”), and Low-Risk Loss (40% chance after betting “low”).  

Participants played the game for 45 minutes or until 400 trials had been completed, whichever 

came first. 

2.3.3 EEG Recording and Analysis 

The EEG was recorded from 128 sites at a 500 Hz sampling rate using Ag/AgCl electrodes in 

a geodesic net (Electrical Geodesics Inc., Eugene, OR, USA).  Electrode placement was 

recorded with a Polhemus Fast-Trak (Polhemus, Colchester, VT, USA) for later registration with 

the EEG dataset.  Impedances were maintained below 100 KΩ.  The montage was initially 

referenced to the vertex and then digitally re-referenced to an average reference.  Data were 

imported into the BESA software package (Megis Software, Grafelfing, Germany) for further 

analysis.  The record was visually inspected for bad channels and the signal from a small number 

of electrodes was replaced with interpolated signal (approximately five per participant; ocular, 

reference, and channels of interest were not interpolated).  Ocular artifacts were corrected using 

the adaptive artifact correction algorithm (Ille, Berg, & Scherg, 2002b).  HEOG and VEOG 

threshold voltages were 150 µV and 250 µV respectively.  
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2.3.4 Analysis of Evoked Activity 

The ERP was computed by averaging the EEG in a 1000 ms window, with a 200 ms pre-

stimulus baseline, time-locked to the presentation of the feedback stimulus.  Epochs with an 

amplitude greater than 120 µV were rejected during automatic artifact scanning.  Epochs were 

averaged within the four conditions and the waveforms interpolated into a standard 81-electrode 

montage in the 10-20 system to minimize electrode placement errors across participants.  The 

data were then grand-averaged and filtered with high-pass (0.6 Hz, 6 dB/octave) and low-pass 

(30 Hz, 12 dB/octave) zero-phase Butterworth filters.  

The FRN was identified as the largest difference between the win and loss waveforms at an 

approximate latency of 246 ms post-stimulus.  The mean amplitude of the FRN was computed 

inside a window spanning approximately 50 milliseconds on either side of this peak, from 200 to 

300 ms post-stimulus.  Similarly, the P300 was identified as the peak of the positive-going 

deflection in the waveform of each condition, identified at a latency of approximately 330 ms in 

all conditions.  The amplitude of the P300 was measured as the mean amplitude in a window 

spanning twenty milliseconds on either side of this peak, from 310 and 350 ms post-stimulus.  

These windows are broadly consistent with previous studies (Holroyd & Coles, 2002) and 

appeared to capture the important differences between conditions.  In the analysis to follow the 

FRN is defined as the mean difference between the peaks in this window, not the absolute 

amplitudes of these waves, as in the P300.  For isopotential maps the difference wave was 

computed by subtracting High-Risk Loss from High-Risk Win waveforms and Low-Risk Loss 

from Low-Risk Win waveforms.  

A repeated-measures ANOVA (Fisher, 1918) with two levels of the factor risk (high/low) and 

two levels of the factor valence (win/lose) was performed on the mean amplitude of the evoked 
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activity. For the FRN the ANOVA was performed at electrode FCz between 200 and 300 ms 

and for the P300 the ANOVA was performed at CPz between 310 and 350 ms. 

2.3.5 Time-Frequency Analysis 

Time-Frequency (TF) plots were calculated using BESA for each participant’s four conditions 

within a frequency range of 4.0 to 50.0 Hz with a 2.0 Hz / 25 ms sampling resolution.  These 

values were selected to provide a maximal tradeoff in accuracy between frequency and time 

resolution.  The Fieldtrip (F.C. Donders Centre, Nijmegen, Netherlands) toolbox for Matlab 

(The Mathworks, Natick, MA, USA) was used to create averaged TF plots across all participants 

for each of the four conditions. An ANOVA with two levels of the factor risk (high/low) and 

two levels of the factor valence (win/lose) was performed on the theta-band amplitude during 

the 150 – 350 ms post-stimulus interval. 

A bilateral multi-source Beamformer technique (Hoechstetter et al., 2004) was used to image 

the intracranial signal sources of induced theta-band power subsequent to both wins and losses.  

Beamformer images were generated using BESA within a 150 – 350 ms post-stimulus interval (-

200 to 0 baseline) for signal between 4 and 8 Hz, using a four-shell ellipsoid head model and the 

original 128-channel montage.  The Beamforming approach results in four (one per condition) 

3D volumetric datasets for each participant in which the parameter Q, a measure of signal 

strength in the epoch of interest relative to baseline, is computed for each voxel.  These volume 

maps were imported into the BrainVoyager QX software package (Brain Innovation B.V., 

Maastricht, Netherlands).  Rather than average across participants, I identified voxels that were 

most likely to have exhibited increased theta signal relative to baseline.  For each voxel, a one-

tailed t-test (Gossett, 1908) was used to compare the mean Q value to zero.  As is commonly 
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done in fMRI work, the resulting volume map of t-scores was thresholded at p<.001 

(uncorrected for multiple comparisons). 

2.3.6 Dipole-Fitting Analysis 

I tested the hypothesis that the FRN and/or the P300 might reflect a transient phase-locking 

of theta by considering whether the computed theta sources could account for the grand-average 

FRN and/or P300 ERP components in a multiple dipole model of brain electrical activity.  

Electrical source analysis (BESA) was applied to the 20 ms window centered on the peak of the 

FRN, which I have described as the difference wave between wins and losses at a given bet 

magnitude.  A multi-source dipole-fitting solution was computed inside the BESA program for 

the 240 – 260 ms post-stimulus window.  The same analysis was repeated on the 320 – 340 ms 

post-stimulus window of the P300 for the High-Risk Win and High-Risk Loss waveforms.  

Because of well-known spatial limitations of the dipole-fitting technique (Green, Conder, & 

McDonald, 2008) this procedure is best attempted using dipole locations constrained by a priori 

knowledge of the underlying functional anatomy.  In this analysis, dipoles were placed at the two 

foci of increased theta activity obtained from the Beamformer analysis of High-Risk Wins and 

High-Risk Losses.  Dipoles were fixed at the Talairach coordinates of the focus for High-Risk 

Loss (19, 33, 12) and the maximum focus for High-Risk Win (25, 17, 28). I also modeled a three-

dipole solution for the same difference wave with an additional dipole placed at a second focus 

of theta activity in the Beamformed High-Risk Win condition (31, 25, 7).  Finally, to determine 

the extent to which the FRN and P300 components are generated by bilateral theta generators, I 

repeated these analyses using four- and six-dipole models, with additional dipoles mirrored into 

the left hemisphere at Talairach coordinates -25, 17, 28; -19, 33, 12; and -31, 25, 7. For the FRN 
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component, a forward solution was computed for the High-Risk Losses – High-Risk Wins 

difference wave, and for the P300 component, forward solutions were computed using the 

High-Risk Win and High-Risk Loss waveforms. 

2.4 Results 

2.4.1 Behavioural Results 

Participants registered an average of 342 wagers (±90.2).  Of these, the Low-Risk $50 bet was 

selected 69.7 % of the time and the High-Risk $100 bet was selected 30.3% of the time (± 

12.6%).  The absolute outcomes of the four experimental conditions were thus: 12.1% for High-

Risk Wins, 18.2% for High-Risk Losses, 41.8% for Low-Risk Wins, and 27.9% for Low-Risk 

Losses (note that the subsequent electrophysiological results consider the smaller subset of trials 

that were accepted as artifact-free). 

2.4.2 EEG Results 

Participants in this gambling task demonstrated both FRN (Figure 2-1A, 2-3A) and P300 

effects (Figure 2-1B, 2-3B) consistent with previous literature. The FRN had slightly right-

lateralized frontal scalp distribution (Figures 2-2A and 2-2B).  Differences in P300 scalp 

distributions were midline and posterior (Figures 2-2C and 2-2D).  
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Figure 2-1: Grand-Averaged ERP waveforms showing FRN and P300 effects for wins and 

losses following feedback on high-risk/high-reward bets and low-risk/low-reward bets at 

selected sites.  A) The Feedback-Related Negativity, indicated by shading, is the difference 

between Win and Lose waveforms at about 245 ms.  B) The P300, indicated by shading, is the 

positive deflection at about 330 ms. 
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Figure 2-2: Grand-Averaged ERP waveforms showing FRN and P300 effects for wins and 

losses Distribution of scalp voltages during feedback processing, overlaid onto an average head 

model.  Distribution of the Win – Loss FRN following feedback on A) high-risk/high-reward 

bets and B) low-risk/low-reward bets.  Scalp distribution of P300 modulation due to risk (high 

minus low) on C) winning trials and D) losing trials. 
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Figure 2-3: Mean amplitudes (in µV) of feedback-evoked potentials A) during the FRN window: 

200 – 300 ms; B) during the P300 window: 310 – 350 ms. C)  Power changes (in percent) in 

induced theta-band oscillatory window: 150 – 350 ms.  Frequency range (theta activity): 4 – 8 

Hz.  Error bars depict standard error of the mean. 

An FRN was present during the feedback window from 200 to 300 milliseconds, as evidenced 

by a significant main effect of valence (win vs. loss), F1,18=7.135; p=.016. I also found a 

significant main effect of risk (high vs. low), F1,18=30.494; p<.001, however the interaction was 

not significant, F1,18 = 1.497; p = .237 (Figure 2-1).  Since the FRN is usually taken to be the 

difference between wins and losses (i.e. the effect of valence), I thus conclude that the FRN was 

not modulated by risk in this paradigm (non-significant interaction).  To rule out deviations from 

expectancy I compared two outcomes with identical expected probabilities: High-Risk Wins and 
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Low-Risk Losses (both have an EP of 40%).  A post-hoc comparison was made between the 

mean amplitudes of the High-Risk Win and Low-Risk Loss waveforms during the 200 – 300 ms 

window; the mean amplitudes of the two waveforms differed significantly, t18 = 5.002; p<.001.   

During the 310 to 350 ms interval the P300 was larger in High- relative to Low-Risk bets, but 

its amplitude was not affected by valence.  There was a significant main effect of risk, 

F1,18=28.898; p<.001, but not of valence, F1,18=1.701; p=.209, and the interaction between risk 

and valence was only marginally significant, F1,18=2.844; p=.109. 

 

Figure 2-4: Time-Frequency plots showing induced theta (4 – 8 Hz) at FCz for each condition at 

a time and frequency sampling resolution of 2.0 Hz / 25 ms. 

Feedback-induced increases in theta-band (4 – 8 Hz) amplitude over baseline were modulated 

by risk (Figure 1-3), F1,18=10.004; p=.005, but did not differ significantly with valence, 

F1,18=0.058; p=.812, nor was the interaction between risk and valence significant, F1,18=0.402; ; 

p=.534.  Beamformer analysis revealed regions of voxels significant at the p<.001 level in the 
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High-Risk Loss and High-Risk Win conditions (Figure 2-5) but were not observed in either of 

the Low-Risk conditions.  These regions were only partially overlapping, with High-Risk Loss 

activity focused at Talairach coordinates 19, 33, 12, and High-Risk Win activity at two foci: 25, 

17, 28 and 31, 25, 7. 

 

Figure 2-5: Cortical generators of theta activity as revealed by Beamforming and thresholded at; 

p<.001 (uncorrected for multiple comparisons), A) after High-Risk Wins and B) after High-Risk 

Losses.  Regions in red and yellow denote significant increases in theta-band activity relative to 

baseline. 

The Beamformer-constrained two-dipole forward solution, with dipoles fixed at the foci of 

increased theta-band activity (but allowed to rotate), yielded a solution with a mean Residual 

Variance of 31.8% during the FRN window.  The three-dipole model, with an additional dipole 

obtained from the High-Risk Win condition, yielded a forward solution with 30.9% RV.  

Mirrored into the left hemisphere, the four-dipole and six-dipole models yielded solutions with 
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26.0% and 24.1% RV, respectively.  An analysis of the P300 component using the High-Risk 

Wins waveform yielded increasingly accurate forward solutions with 18.1% RV (2-dipole), 13.9% 

RV (3-dipole), 9.5% RV (4-dipole), and 5.4% RV (6-dipole).  An analysis using the High-Risk 

Losses waveform yielded nearly identical forward solutions with RVs of 18.2%, 13.9%, 11.1%, 

and 6.0%. 

2.5 Discussion 

A substantial body of literature suggests that reward processing – recognizing positive and 

negative feedback and registering the associated probabilities of each outcome – is mediated by a 

network of cortical and subcortical structures (see Holroyd & Coles, 2002 for review). This study 

has replicated the main findings of previous work: I observed significant FRN and P300 

components following feedback in a gambling task.  Recent investigations of induced oscillatory 

activity following reward feedback have revealed an induced increase in theta-band power (4 – 8 

Hz) after feedback presentation (Cohen, 2007; Cohen, Elger, & Fell, 2008; Luu et al., 2003; 

Marco-Pallares et al., 2008).  I have also replicated this finding: there was a significant increase in 

low-frequency power following reward feedback.  I tentatively ascribe the observed increase in 

low-frequency activity to the theta band as this is parsimonious with other studies (Marco-

Pallares et al., 2008) but I do not discount the possibility of additional signal generators in the 

low alpha band (8 – 10 Hz). 

The mean amplitude of the P300 was modulated by the riskiness of the selected bet whereas 

the mean amplitude of the FRN was modulated by the valence of the outcome.  Both the FRN 

and P300 responses are sensitive to stimulus probability (Cohen et al., 2007) and infrequent 

outcomes are known to increase the amplitude of these responses.  In this study, the effects of 
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two related forms of stimulus probability must be considered: the expected probability, which is the 

implicit understanding formed by a test subject as to the likelihood of obtaining a win or a loss 

for a selected bet, and the absolute probability of a given stimulus, which is the frequency at which 

a stimulus was physically experienced. A recent theory suggests the FRN reflects activity of 

midbrain dopaminergic neurons coding for deviations from expected outcome (Holroyd & 

Coles, 2002) consistent with a Reinforcement Learning theory of the FRN (Krigolson et al., 

2008; see also Sutton & Barto, 1998).  Consequently, the size of the FRN should be larger 

subsequent to larger deviations from expected outcome.  To rule out deviations from expectancy 

I compared two outcomes with identical expected probabilities: High-Risk Wins and Low-Risk 

Losses (both have an EP of 40%).  If the FRN codes only for deviations from expected 

outcome one would expect to find no difference in the amplitudes of these two waveforms.  

Instead there was a considerable difference between the two ERPs.  These results are especially 

noteworthy because of the choice of reward: test participants received a fixed, non-monetary 

reward of bonus course credit regardless of their performance in the gambling game.  Although 

test participants had no salient motivation to care about the bets they placed or the feedback 

they received, the electrophysiological data from this study are similar to those observed in other 

studies on feedback processing. I interpret these data collectively to suggest that the FRN 

encodes relative risk in determining expected outcome, which is in turn broadly consistent with 

the theory that the FRN is affected by the motivational significance of events (Donkers et al., 

2005; Yeung et al., 2005). 

Theta-band activity was modulated by the riskiness of the selected wager but did not 

significantly differ with the valence of the outcome.  The present study extends previous work 

by providing strong evidence that feedback-related theta power is generated by right hemisphere 
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medial frontal structures.  This evidence comes from a novel electrical source imaging approach, 

the volumetric analysis of Beamformer data, which had not yet been applied to this 

phenomenon.  These data also support theoretical arguments that implicate the anterior 

cingulate cortex in monitoring feedback in cognitive tasks (Holroyd & Coles, 2002). 

Of interest is the extent to which the observed increase in induced theta-band output is related 

to the neural processes that give rise to the FRN.  To address this I used a dipole-fitting 

approach with several candidate models using the foci obtained from the Beamformer analysis 

of the High-Risk Win and High-Risk Loss conditions.  Two- and three-dipole solutions yielded 

only partially accurate forward solutions. This inability of theta foci to account for the generators 

of the FRN suggests the FRN and feedback-induced theta share only partially overlapping 

generators in right-hemisphere medial-frontal cortex.  It may be the FRN also entails one or 

more frequency components outside of the theta band that could not be accounted for by 

dipoles constrained to be at generators of theta oscillations.  I conclude that feedback-evoked 

FRN represents more than a transient phase-locking of feedback-induced theta.  As a general 

rule in dipole modeling, increasing the number of dipoles improves the accuracy of the forward 

solution and diminishes the residual variance, however adding two and three left-hemisphere 

dipoles symmetric to those in the right hemisphere improved the model’s fit to the FRN only 

slightly. Thus, the FRN and the feedback-induced theta in this study are similar in their tendency 

to be right-lateralized. 

A Beamformer-constrained dipole analysis of the P300 yielded solutions with greater accuracy 

than those of the FRN.  Additionally, the accuracy of the P300 solutions increased substantially 

when dipoles were mirrored into the left hemisphere, suggesting the presence of bilateral 

generators for the P300.  This indicates that the P300 component is generated bilaterally and 
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may be more functionally and anatomically similar to the feedback-induced theta oscillation than 

the FRN. I believe this is most likely the result of the operational definition of the FRN in this 

study.  In this analysis the FRN was identified as the difference between the evoked potentials to 

positive and negative feedback.  The Beamformer-restrained dipole analysis thus localized 

electrical signals common to both positive and negative feedback.  Applying this analytical 

technique to the feedback N200 may reveal an important difference in the relationship between 

induced oscillatory theta activity and the evoked electrical responses to positive and negative 

valence. 

2.5.1 Theta-band Oscillations within a Reward Processing Network 

Oscillations in the theta band have been suggested to provide functional coupling of disparate 

cortical and subcortical regions involved in both error and feedback processing (Luu et al., 

2003).  Such coupling is probably necessary to support the several sub-processes of reward 

processing such as discrimination of feedback stimuli and updating any ongoing registration of 

the probabilities of various outcomes.  This notion is consistent with the suggestion that theta-

band signals are critical for coordinating activity across large-scale networks (Buzsaki & 

Draguhn, 2004; Von Stein & Sarnthein, 2000). Furthermore, theta-band activity is believed to be 

critical during memory processes, for example during encoding stimuli into implicit memory 

(Klimesch, Doppelmayr, Russegger, & Pachinger, 1996) and during recognition tasks 

(Doppelmayr, Klimesch, Schwaiger, Stadler, & Rohm, 2000; Klimesch, Doppelmayr, Schwaiger, 

Winkler, & Gruber, 2000). 

 Luu et al. (2003) investigated the theta-band component of the evoked FRN (rather than 

induced theta) by bandpass-filtering ERP data between 4 – 12 Hz.  Using a dipole-fitting 
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approach, their study observed that a pair of midline sources, one possibly in rostral ACC and 

another in dorsal medial frontal cortex, generated feedback-evoked theta components. Their 

study was unable to image sources of induced activity and was unable to resolve different 

contributions from the two hemispheres.  The present results extend this finding in two ways:  

First, I was able to image the combined effects of induced and evoked theta.  Second, by using 

bilateral multi-source Beamforming, my analysis was sensitive to theta-band signals generated in 

either hemisphere.  Since significant voxels were observed in the right hemisphere only, I 

conclude that feedback-induced theta is substantially right lateralized, as has been suggested by 

previous work (Gehring & Willoughby, 2004; Marco-Pallares et al., 2008).  It should be noted 

that the Beamformer images (Figure 2-5) are statistical parametric maps indicating regions of 

consistency across participants, rather than maps of grand-averaged theta activity per se.  

Individuals exhibited substantial variability in their Q maps, including some engagement of the 

left frontal lobe.  This variability probably accounts for the tendency of dipole-fitting approaches 

to localize midline or bilaterally symmetric sources as the best fitting models when applied to 

grand-averaged data. 

The approach to analyzing Beamformer volume maps in this study was conservative because it 

viewed each voxel independently (necessitating an arbitrarily high t-score threshold) rather than 

as members of larger clusters of functionally related voxels (as would a dipole-fitting approach).  

Consequently, regions of increased theta power may have been missed.  I nevertheless conclude 

that the results are consistent either with a single theta signal generator on the medial wall of the 

right frontal lobe, or a group of generators within medial frontal cortex that are closely 

associated both functionally and anatomically.  However, I do not rule out the possibility of less 

prominent contributing sources, especially in left frontal cortex.  Because regions of increased 
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theta power following wins and losses only partially overlapped, I further speculate partially 

distinct networks, depending on its valence, process feedback.   

2.5.2 The Role of Risk in Feedback-Related Brain Responses 

The choice of a higher-risk/higher-reward bet led to significantly increased theta amplitude 

subsequent to feedback in the time-frequency analysis. The Beamforming analyses also found 

significantly increased Q values in medial frontal cortex following feedback on high-risk but not 

low-risk bets.  This sensitivity to outcome probability is broadly consistent with previous work 

(Cohen et al., 2007) and might be due to two independent factors.  First, the rewards and 

punishments on high-risk trials were necessarily of greater magnitude (as incentive to take the 

higher risk).  This may contribute greater saliency to the feedback stimulus.  Second, in this study 

participants were implicitly aware of the contingencies of higher and lower risk bets.  Thus they 

may have entered an attentional set upon initiating high-risk bets that potentiated subsequent 

brain responses.  Cohen et al. (2007) found that decreasing reward probability (as in the high- 

relative to low-risk conditions) led to greater theta-band power following wins but not following 

losses.  By contrast, I found no such dissociation between risk and valence.  It thus remains 

unclear whether attentional set might potentiate induced theta specifically for feedback stimuli or 

more generally for any subsequent stimulus. 

The results differ from previous reports in other respects: Whereas this study found feedback-

induced modulations only in the theta band, Marco-Pallares et al. (2008) and Cohen et al. (2007) 

also found an increase in power over frontal scalp within the 20 to 30 Hz band at an 

approximate latency of 250-400 ms following wins relative to losses – a reward-induced 

response. I found no such increase in this band.  These differences may reflect fundamental 
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differences in how reward type modulates feedback processing.  In both previous studies the 

amount of monetary compensation depended on the participant’s performance, whereas 

subjects in this study received fixed, non-monetary reward.  It may be that this higher-frequency 

activity is the result of exogenous motivation that enhanced the saliency of wins relative to losses 

among their participants. Further investigation of these discrepant results may elucidate how 

motivational states are represented during feedback processing. 
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Chapter 3: Experiment Two. The FRN and P300 encode information about future 
decisions. 

3.1 Abstract  

Humans possess sophisticated mechanisms to monitor the outcome of a chosen action and to 

update the expected outcome of that action – a cognitive operation called feedback processing.  

Electroencephalography can be used to observe the electrical responses in the cortex to these 

processes.  Two evoked components have been heavily implicated in mediating feedback 

processing: the mediofrontal Feedback-Related Negativity (FRN) and the posterior P300.  

Changes in FRN amplitude have been linked to response switching and adaptive learning and 

may represent a mechanism controlling learning.  In the present study, a gambling game was 

used to study FRN and P300 responses to positive (winning) and negative (losing) outcomes.  

FRN and P300 amplitudes were significantly higher during feedback on winning trials when 

participants subsequently selected a different bet type.  These results suggest that electrical 

indices of action selection are observable during feedback processing, possibly preceding 

conscious perception. 

3.2 Introduction 

It is necessary for sentient organisms to monitor the outcomes of their actions in order to 

optimize future behaviors.  An essential component of action monitoring is feedback processing, the 

cognitive process of discerning rewarding (positive) outcomes from punishing (negative) 

outcomes.  This process can be studied in the laboratory using human subjects participating in 

gambling-type paradigms with variable risk and reward while brain electrical responses are 
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gathered using electroencephalography (EEG; Gehring & Willoughby, 2002; Holroyd & Coles, 

2002). 

I previously implemented a modified version of the Iowa Gambling Task (Bechara et al., 

1994)  to investigate feedback processing mechanisms in the human brain.  This paradigm is 

noteworthy because it is a probabilistic learning task with negative- and positively-weighted 

wagers.  Participants are instructed to maximize their earnings over the experiment and thus 

tend to gravitate towards the positively-valued wager over time. 

At least two Event-Related Potentials (ERPs) have been identified and characterized in 

mediating feedback processing: the Feedback-Related Negativity and the P300. The FRN is a 

negative deflection in the electroencephalogram at frontocentral scalp approximately 250 ms 

after receiving feedback. The P300 is a characteristic positive deflection in the EEG at posterior 

scalp approximately 300-350 ms that has been observed in numerous cognitive tasks (Polich & 

Kok, 1995).  In the context of feedback processing the P300 is known to be sensitive to the 

perceived riskiness but insensitive to the valence of a selected action (Yeung et al., 2005; Yeung 

& Sanfey, 2004).  Early evidence indicated a relationship between abnormal evoked feedback 

components and damage to frontal cortex (Gehring & Knight, 2000), and feedback-related EEG 

spectra were hypothesized to represent the activity of a mediofrontal computational system used 

to evaluate the magnitude to which an encountered outcome deviated from the expected 

outcome learned through experience (Holroyd & Coles, 2002).  In the ensuing years, empirical 

evidence from numerous studies lent support to this theory and extended it to implicate FRN 

activity in mediating behavioral control and adaptive learning.  For example, in a gambling game 

not unlike the one used in this paradigm, Yasuda et al. (2004) observed behavioral switching 

after large unexpected losses and corresponding increases in FRN amplitude during the 
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processing of these losses.  Bellebaum et al. (2008) noted that FRN amplitude correlated with 

error avoidance in a different gambling task, and multiple investigations by Krigolson and 

Holroyd (Holroyd & Krigolson, 2007; Krigolson & Holroyd, 2007b; Krigolson et al., 2008) tie 

FRN amplitude to learning and behavioral adaptation in various tests of skill. 

Because feedback processes like the FRN are associated with behavioral adaptation and 

improvement over time, it is seems reasonable to posit that the magnitude of evoked feedback 

spectra correlate with subsequent decisions made on a trial-by-trial basis.  Such a direct 

relationship has not yet been established.  Worse, the operational definition of the FRN has to 

date been the difference in EEG activity based on whether the experienced feedback was 

rewarding (positive feedback) or punishing (negative feedback), irrespective of the subsequent 

action chosen by a participant.  Information about the subsequent bet type is lost as the 

computed ERP collapses across this factor.  Because of the nature of betting strategies in certain 

gambling tasks that are used to study it, the FRN may be disproportionately influenced by one 

or the other level of the factor switch/stay.  For example, if one outcome (e.g. wins) tends to 

trigger participants to repeat the same behaviour (stay), whereas the other outcome (loss) tends 

to trigger participants to change behaviors (switch), then the operational definition of the FRN 

as the effect of valence is insufficient.  Instead, what may be needed is an analysis in which 

valence and risk are held constant and the ERP during the FRN window is contrasted between 

the subsequent action (switch or stay).  The paradigm used in Experiment 1 is well suited to test 

this theory both because it is known to generate robust feedback-related EEG spectra and 

because it is a probabilistic learning task and participants must appropriately implement feedback 

to adapt their behavior.   
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The present study thus tested the hypothesis that FRN and P300 amplitudes differ not only 

based on valence and bet size as is frequently reported, but also based on the action 

subsequently taken by participants in the paradigm.  Because the FRN is theorized to represent 

deviation from expectancy, and because large FRN amplitudes are correlated with response 

switching (Yasuda et al., 2004), I further hypothesized that the largest FRN amplitudes would be 

observed during High-Risk Win and Low-Risk Loss conditions when participants subsequently 

switched to the other bet type on the next round. 

3.3 Materials and Methods 

3.3.1 Participants 

Thirty-three undergraduate students at the University of Lethbridge participated for course 

credit but not monetary reward.  Because the analysis would subdivide the four main 

experimental outcomes into eight conditions based on the bet placed in the subsequent round 

(Switch or Stay), I selected the subset of participants with at least 35 trials in each of the four 

main conditions to maximize statistical power.  Thus, data from 17 participants (6 female, mean 

age 22.5, 2 left-handed) were entered into this analysis.  Participants were screened with the 

Canadian Problem Gambling Index (Ferris & Wynne, 2001) to exclude individuals who gamble 

excessively and none reached exclusion criteria (the mean CPGI score was 0.4).  Procedures 

were in accordance with the Declaration of Helsinki and were approved by the University of 

Lethbridge Human Subject Research Committee; all participants gave written informed consent.   
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3.3.2 Behavioral Tests 

Participants completed the Sensation Seeking Scale (SSS; Zuckerman, Eysenck, & Eysenck, 

1978) prior to the commencement of the gambling task.  The SSS is a composite test that 

assesses four aspects of an individual’s personality: thrill-seeking, experience-seeking, 

disinhibition, and susceptibility to boredom.  Participants completed a questionnaire on general 

physical and mental health to exclude participants with visual deficits or psychiatric/neurological 

disorders and none reached exclusion criteria.  Finally, because participants in gambling games 

are known to form implicit assumptions of the relative riskiness of available bets (Bechara et al., 

1994; Cavedini et al., 2002; Goudriaan et al., 2005), participants completed a computerized 

version of the Iowa Gambling Task (IGT) prior to EEG acquisition so that they had the implicit 

knowledge that large bets were disadvantageous over long-term play.  The odds of wining in the 

gambling task during the subsequent EEG recording session were identical to the IGT.  

Employing the IGT as a pre-screening task also allowed us to ensure that our participants were 

responsive to the specific parameters of the feedback in our task. 

3.3.3 EEG Gambling Task 

Subjects participated in the same paradigm used in Experiment 1, which framed the task in the 

context of a gambling game and was suitable for the ERP technique (similar also to previous 

tasks used to elicit the FRN; see Gehring & Willoughby, 2002; Hewig et al., 2006; Nieuwenhuis, 

Holroyd et al., 2004; Oya et al., 2005; Yacubian et al., 2006; Yeung et al., 2005).  The paradigm 

consisted of a main screen with a horizontal bar at the top, which displayed the subject’s current 

winnings or losses.  Buttons at the center of the screen allowed the participant to specify either a 

small ($50) or large ($100) bet and to play the selected bet by clicking with a computer mouse.  
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Upon pressing the play button, a central fixation cross appeared.  A colored square then 

appeared after a random (uniformly distributed) duration of 500 to 1500 ms.  A green square 

indicated a win and a red square indicate loss on the current trial.  This feedback stimulus 

remained visible for 1000 ms and then the betting screen reappeared.  Participants either won or 

lost the value of their wager. The win/loss schedule was pseudorandom (randomized within 

runs of 10 trials) with a 0.6/0.4 win/lose probability for the $50 bet and a 0.4/0.6 win/lose 

probability with the $100 bet.  Thus there were four possible outcomes: High-Risk Win (40% 

chance after betting “high”), High-Risk Loss (60% chance after betting “high”), Low-Risk Win 

(60% chance after betting “low”), and Low-Risk Loss (40% chance after betting “low”).  

Participants played the game until 400 trials had been completed. 

3.3.4 EEG Recording and Analysis 

The electroencephalogram was recorded from 128 sites at a 500 Hz sampling rate using 

Ag/AgCl electrodes in a geodesic net (Electrical Geodesics Inc., Eugene, OR, USA).  Electrode 

placement was recorded with a Polhemus Fast-Trak (Polhemus, Colchester, VT, USA) for later 

registration with the EEG dataset.  Impedances were maintained below 100 kiloohms.  The 

montage was initially referenced to the vertex and then digitally re-referenced to an average 

reference.  Data were imported into the BESA software package (Megis Software, Grafelfing, 

Germany) for further analysis.  The record was visually inspected for bad channels and the signal 

from a small number of electrodes was replaced with interpolated signal (approximately five per 

participant; ocular, reference, and channels of interest were not interpolated).  Ocular artifacts 

were corrected using the adaptive artifact correction algorithm (Ille, Berg, & Scherg, 2002a).  

HEOG and VEOG threshold voltages were 150 µV and 250 µV respectively.  Data were notch 
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filtered at 60 Hz to eliminate line noise.  The electroencephalogram was then segmented into 

epochs with a duration of 1200 ms, including a 200 ms pre-stimulus baseline and a 1000 ms 

post-stimulus window. 

 The analysis of the EEG data was divided into two stages.  I first sought to replicate the 

common findings that the frontocentral FRN was modulated by the Valence (Win/Loss) and 

the Riskiness (High/Low) of the wager and that the posterior P300 was modulated only by the 

Riskiness of the wager.  Trials were thus created for the four main experimental outcomes: 

High-Risk Win, High-Risk Loss, Low-Risk Win, and Low-Risk Loss.  Next, to quantify the 

differences in these evoked components with respect to the choice the participant would make 

in the subsequent trial, trials were redefined based on whether the participant chose the same bet 

type on the subsequent trial (Stay condition) or changed to the other bet type (Switch condition).  

There were thus eight possible conditions, depicted in Table 3-1. 

Table 3-1.  Possible experimental outcomes.  Conditions wherein a participant placed the same 

bet on the subsequent round (Stay conditions) are denoted in green and conditions wherein a 

participant changed bets on the subsequent round (Switch condition) are denoted in red. 

Firs t  Bet  Outcome  Second Bet  Condi t ion Name 

    
High-Risk Win High-Risk High-Risk Win Stay 
 Win Low-Risk High-Risk Win Switch 

 Loss High-Risk High-Risk Loss Stay 
 Loss Low-Risk High-Risk Loss Switch 

    
Low-Risk Win High-Risk Low-Risk Win Switch 
 Win Low-Risk Low-Risk Win Stay 

 Loss High-Risk Low-Risk Loss Switch 
 Loss Low-Risk Low-Risk Loss Stay 
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In both analyses the FRN was identified as the mean amplitude of the negative-going 

deflection in the averaged ERP at electrode FCz during the 200-300 ms post-feedback and the 

P300 was measured as the mean amplitude of the positive deflection in the averaged ERP at 

electrode CPz during the 300-350 ms post-feedback window.  These timings are consistent both 

with my previous study (Christie & Tata, 2009) and broadly consistent with other investigations 

into feedback processing.  Data were quantified using mixed-model ANOVAs with two levels of 

the factor Risk (High/Low), two levels of the factor Valence (Win/Loss) and, where necessary, 

two levels of the factor Subsequent Bet (Switch/Stay).  Post-hoc pairwise T-tests were used as 

needed to validate the direction of the differences from the ANOVA. 

3.4 Results 

3.4.1 Behavioral Results 

The mean score on the SSS was 21.4 (S.D.=7.01; the maximum possible score is 40).  The 

breakdown of the individual sub-tests is as follows (S.D. in parentheses; the maximum possible 

score on each sub-test is 10): Disinhibition 4.2 (3.01); Boredom 2.8 (2.38); Thrill-seeking 7.4 

(2.72); Experience-seeking 6.2 (1.75). 

The mean score on the IGT, as defined by the number of advantageous deck selections (decks 

C and D) minus the number of disadvantageous deck selections (decks A and B), was 6.9 

(S.D.=26.30; the maximum score is 100 and the minimum is -100).  Participants improved 

significantly between the first and last 20 card selections; t14=3.556; p=.0031. 

                                                
1 Data from two participants were lost and were not entered into this analysis. 
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Participants placed significantly more advantageous Low bets in the fourth block of the 

gambling game than in the first block, t(16)=2.798; p=.013 (see Figure 3-1). 

 

Figure 3-1: Behavioral performance as defined by the number of advantageous $50 bets placed 

minus the number of disadvantageous $100 bets placed during each block of 100 bets.  

Participants improved significantly between the first and final blocks of the experiment. 

 
The distribution of selected trials and the subset of valid trials entered into the EEG analyses 

is presented in Table 3-2.  The most common experimental conditions were Low-Risk Loss Stay 

and Low-Risk Loss Switch, consistent with participants placing the Low-Risk wager most often. 
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Table 3-2.  Play behavior across all four blocks.  ‘Total’ denotes the number of bets placed for a 

particular bet type irrespective of the subsequent bet type.  ‘Switch’ indicates the participants 

selected the opposite bet type on the subsequent trial and ‘Stay’ indicates the participant chose 

the same bet type on the subsequent trial.  ‘Accepted’ denotes the number of trials that were 

defined as artifact-free and were used in the subsequent EEG analyses.  Standard Error of the 

Mean is denoted in parentheses. 

  Tota l  Swit ch  Stay  

     
High-Risk Win Total 59.3 (4.2) 23.3 (3.3) 35.9 (4.0) 

 Accepted 51.5 (3.9) 20.4 (3.1) 31.2 (3.6) 
     
High-Risk Loss Total 79.6 (5.6) 42.7 (5.9) 36.6 (5.3) 

 Accepted 66.0 (3.7) 35.6 (5.5) 30.2 (5.0) 
     
Low-Risk Win Total 154.4 (5.7) 40.4 (5.2) 113.9 (8.5) 
 Accepted 134.7 (6.2) 34 (4.3) 100.6 (8.5) 
     
Low-Risk Loss Total 106.7 (3.7) 25.6 (3.5) 80.5 (6.8) 
 Accepted 93.6 (4.4) 23.0 (3.0) 70.1 (6.7) 

3.4.2 EEG Results 

In the replication analysis there was both an FRN at electrode FCz and a P300 at electrode 

CPz (see Figure 3-2).  The mean amplitude of the FRN was modulated by Risk, F1,16=24.481; 

p<.001, and by Valence, F1,16=9.149; p=.008, but the Risk by Valence interaction was not 

significant, F1,16=1.876; p=.190.  Pairwise comparisons revealed the FRN to be significantly 

larger for the two High-Risk conditions relative to the two Low-­‐Risk conditions, t16>4.451; 

p<.001, and significantly larger for the two Win conditions relative to the two Loss conditions, 

t16>2.586; p<.02 (Figure 3-2).  The mean amplitude of the P300 (Figure 3-3) was modulated by 

Risk, F1,16=26.771; p<.001, but not by Valence, F1,16=0.019; p=.893, and the Risk by Valence 
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interaction was not significant, F1,16=0.741; p=.402. Pairwise comparisons revealed the P300 to 

be significantly larger for the two High-Risk conditions relative to the two Low-Risk conditions, 

t16>4.394; p<.001. 

 

Figure 3-2: Grand-averaged ERP waveforms for the FRN holding Subsequent Bet (switch/stay) 

constant for High-Risk (top) and Low-Risk (bottom) conditions.  The FRN was measured at 

electrode FCz from 200-300 ms post-feedback.  The waveform is colored red when participants 

subsequently switched to the other bet type on the next trial and is colored green when 

participants subsequently stayed on the same bet type on the next trial. Thick lines denote wins 

and thin lines denote losses.  FRN amplitude was significantly larger to wins than losses at each 

of the four conditions.  
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Figure 3-3: Grand-averaged ERP waveforms for the FRN.  The FRN was measured at electrode 

FCz from 200-300 ms post-feedback.  The waveform is colored red when participants 

subsequently switched to the other bet type on the next trial and is colored green when 

participants subsequently stayed on the same bet type on the next trial.  Significant differences 

are marked with asterisks (*).  

In the Subsequent Bet analysis the mean amplitude of the FRN was modulated by Risk, 

F1,15
2=27.903; p<.001, by Valence, F1,15=14.149; p=.002, and by Subsequent Bet, F1,15=30.166; 

p<.001.  None of the of the two-way interactions were significant.  Pairwise comparisons 

revealed that the FRN was significantly larger in the Switch relative to the Stay condition for the 

High-Risk Win condition, t16=2.606; p=.019, and the Low-Risk Win condition, t16=3.510; 

                                                
2 One participant did not have any trials in the High-Risk Loss Switch condition and was excluded from the appropriate 
analyses. 
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p=.003, but not for the High-Risk Loss, t15=1.546=.143, or Low-Risk Loss, t16=1.622; p=.124, 

conditions (Figure 3-3). 

 

 

Figure 3-4: Grand-averaged ERP waveforms for the P300.  The P300 was measured at electrode 

CPz from 300-30 ms post-feedback.  The waveform is colored red when participants 

subsequently switched to the other bet type on the next trial and is colored green when 

participants subsequently stayed on the same bet type on the next trial.  Significant differences 

are marked with asterisks (*).  

The mean amplitude of the P300 was modulated by Risk, F1,15=18.813; p=.001, and by 

Subsequent Bet, F1,15=9.052; p=.009, but not by Valence, F1,15=0.142; p=.711.  The Valence by 
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Subsequent Bet interaction was significant, F1,15=5.024; p=.041.  Pairwise comparisons revealed 

that the P300 was significantly larger in the Switch relative to the Stay condition for the High-

Risk Win condition, t16=2.356; p=.032, and the Low-Risk Win condition, t16=2.368; p=.031, but 

not for the High-Risk Loss, t15=1.160=.264, or Low-Risk Loss, t16=0.657; p=.521, conditions 

(Figure 3-4). The three-way Risk by Valence by Subsequent Bet interaction was not significant, 

F1,15=0.009; p=.925.  

3.5 Discussion 

Previous studies have implicated the evoked FRN and P300 with registering and processing 

deviations from an expected outcome, with the FRN sensitive both to the valence 

(positive/negative) of the outcome and the perceived riskiness of the chosen bet, and the P300 

sensitive only to the perceived riskiness of the chosen bet.  The present study replicates the most 

common observations of these studies.  An FRN was observed over fronto-central electrode 

sites that was significantly affected by the riskiness of the chosen bet.  Although there was a 

significant main effect of valence on FRN amplitude, the interaction between risk and valence 

was not significant and I conclude that the FRN was not modulated by valence in this paradigm.  

A P300 was observed over centro-parietal electrodes that was significantly affected by the 

riskiness of the chosen bet but not by the valence of the outcome.  These findings replicate 

those observed in Christie and Tata (2009) and extend the body of scientific knowledge by 

linking both FRN and P300 amplitudes with the subsequent action made in this gambling 

paradigm.  When participants were informed they had won the selected bet, and when they 

would subsequently go on to choose the other bet type on the next trial, both the FRN and 

P300 were significantly larger than when they placed the same bet type on the next round. FRN 
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amplitude is known to reflect valence and perceived risk, but in this case I found significant 

differences in the ERP during the FRN latency window, and at the same electrode as the FRN, 

even when valence and risk were held constant.  This finding is novel and merits further 

consideration. 

FRN amplitude is sensitive to stimulus probability (Krigolson & Holroyd, 2007b) and P300 

amplitude is sensitive to the rate at which a stimulus is encountered (Polich, 2007).  In this 

experiment both the High-Risk Win Switch and Low-Risk Win Switch conditions were 

encountered less frequently than their Stay counterparts, and so one possible interpretation is 

that the differences in FRN and P300 amplitudes in this study arose solely due to outcome 

probability.  I would argue against this explanation as it “puts the cart before the horse”; it is 

contingent on participants having already formulated a strategy for the next round before 

feedback was processed on the present round.  It is unclear when participants formulate their 

strategy and the data offer no support for this hypothesis.  I instead propose that participants 

have not yet formulated a strategy, and that the observed differences in FRN and P300 

amplitudes in the two Win-Switch conditions (relative to the two Win-Stay conditions) reflect 

fundamental differences in the processing of rewarding feedback that subsequently influence the 

bet selected at a later time.  Although there is, again, no evidence in this paradigm to support this 

hypothesis, it is supported by literature linking FRN amplitude with adaptive decision-making.  

FRN amplitude is positively correlated with response switching (Yasuda et al., 2004), with 

improved adaptive learning (Krigolson & Holroyd, 2007a, 2007b), and with error avoidance 

(Bellebaum & Daum, 2008).  There is thus substantial precedent that evoked feedback responses 

represent more than the mere registration of win or loss.  To my knowledge though, this study is 

the first to demonstrate a direct relationship between FRN amplitude and subsequent choices. 
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The only observed increases in FRN and P300 amplitude occurred when participants won a 

bet and subsequently switched to the other bet.  As participants were instructed to win as many 

points as possible, it stands to reason the subsequent decision to switch bets was made because 

the participant believe he or she was unlikely to win again with the same bet.  Because risk and 

reward are confounded in this paradigm there are a few possible interpretations of this decision.  

Since participants improved significantly over the duration of the experiment it is fair to assume 

they developed, if not explicitly then implicitly, the understanding that the High-Risk wager was 

disadvantageous to long-term play.  It is therefore possible that the increased ERP amplitudes 

during the High-Risk Win Switch condition represent the registration that the experienced 

outcome was better than expected, and the increased FRN and P300 activity served to devalue 

that action on the subsequent trial.  This theory fails to explain the increased ERP amplitude 

observed in the Low-Risk Win Switch condition.  Instead, it may be that the activity observed in 

the two Win Switch conditions represent some type of neural signal to disengage from a 

rewarding outcome to pursue another, more rewarding outcome – in other words, to stop 

exploiting a given action and to start exploring for another, more rewarding action, consistent with 

the theory that the evoked FRN and P300 represent a reinforcement-learning mechanism in 

mediofrontal cortex to mediate adaptive decision making (Holroyd & Coles, 2002; Sutton & 

Barto, 1998).  More research is necessary to elucidate how these ERP components are implicated 

in future decision-making. 

It would be informative to correlate a participant’s evoked FRN and P300 amplitudes during 

the Win Switch conditions with the rate of response switching during the experiment.  

Unfortunately, such a correlation is highly confounded because the amplitude of an individual 

subject’s ERP is frequently related to the number of trials used in computing that average (Luck, 
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2005).  Time-frequency analysis on a trial-by-trial basis may yield sufficiently stable data to assess 

individual differences in EEG activity preceding changes in bets, which in turn would offer 

compelling insight into brain electrical responses preceding changes in action selection. 
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Chapter 4: Discussion 

The experiments in this thesis investigated electrical responses in the human brain during 

feedback processing in a gambling game.  These responses include the evoked FRN and P300, 

and induced changes in theta-band power.  Experiment 1 used Beamformer source localization 

to determine that the generators of feedback-induced theta power comprised partially 

overlapping regions in right medial frontal cortex for win and loss conditions, possibly including 

the Anterior Cingulate Cortex (ACC).  To my knowledge this represents the first study to 

source-localize this activity.  Experiment 1 also investigated the relationship between induced 

and evoked theta activity by identifying the extent to which the generators of induced theta 

activity also accounted for the scalp topography of the FRN and P300.  I placed dipoles at the 

same locations as the foci of the identified generators of induced theta better and allowed these 

dipoles to freely rotate to best explain the P300 than the FRN.  Neither evoked component was 

well described (the best solution had 5.4% RV), which suggests that evoked and induced 

generators share only partially overlapping cortical generators with frontal cortex.  As the 

paradigm used in both experiments is a free-choice task, Experiment 2 investigated differences 

in feedback-related ERPs based on subsequent gambling decisions.  Significant increases in FRN 

and P300 amplitudes were observed during feedback processing when participants subsequently 

switched from one bet type to the other on the subsequent trial.  This novel finding is broadly 

supported by empirical observations in other studies and within the theoretical framework of a 

dopaminergic reinforcement learning system in frontal cortex.   
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4.1 The Functional Significance of Theta Oscillations 

Theta rhythms are among the most robust oscillations observable in the human brain and 

have been linked to a number of cognitive processes beyond feedback processing, including 

executive function (Sauseng, Hoppe, Klimesch, Gerloff, & Hummel, 2007), memory (Klimesch, 

1999; Sammer et al., 2007), visuospatial processing (Buzsaki, 2005), attention (Gross et al., 2004), 

and conscious perception (Doesburg, Green, McDonald, & Ward, 2009).  It is believed that 

distant cortical regions interact by phase-locking within the theta band to form re-entrant 

cortico-cortical “loops” to exchange and process information (Varela, Lachaux, Rodriguez, & 

Martinerie, 2001).  Recent findings using EEG support this theory; theta-band synchronization 

has been demonstrated between ACC and dorsolateral PFC during the Stroop task (Hanslmayr 

et al., 2008; Stroop, 1935).  It may be that feedback processing entails synchronous activity 

between ACC and other frontal cortex structures to mediate the numerous subprocesses of 

feedback processing, perhaps including orbitofrontal cortex to update outcome expectancy 

(Wallis, 2007) and dorsolateral PFC to update working memory and in the control of overt 

attention (MacDonald, Cohen, Stenger, & Carter, 2000).  To date no such analysis has been 

performed. 

It is well established that the hippocampus (HPC) is a substantial generator of theta-band 

neural activity (see for e.g. Maurer & McNaughton, 2007).  However, the source localizations 

performed in this thesis do not lend evidence that the HPC is a generator of feedback-related 

theta activity.  This is unsurprising; the HPC is a deep structure that has largely resisted 

functional imaging using EEG.  The hippocampus may be involved in mediating feedback 

processing in ways not detectable using EEG.  For example, it is well known that HPC damage 

is associated with marked deficits in declarative memory (Scoville & Milner, 1957), and the 
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ability to consciously integrate the encountered feedback during the experiment (approximately 

45 minutes) is almost certainly essential for good performance.  That said, it is not generally 

believed that the HPC is involved in generating procedural and implicit memories.  An 

interesting observation is that participants in this paradigm are generally not consciously aware 

of its win/loss ratio.  Informal debriefings suggest that participants often implemented 

nonspecific strategies such as, “I change to the other bet whenever I lost” or, “I’d place the $50 

bet twice and then the $100 once, then repeat”.  Broadly construed, this is in turn consistent 

with one of the interesting observations of participants in the original IGT: subjects improve 

their performance over time without being consciously aware of the task’s probabilities.  Given 

this, it is unclear what role, if any, HPC activity plays is mediating feedback processing.  It may 

be that frontal theta rhythms are “inherited” from HPC theta activity, and that frontal cortex 

and the HPC form a network that exchanges information via theta phase locking (Hyman, Zilli, 

Paley, & Hasselmo, 2005) .  Such a network has been theorized for nearly 75 years (Papez, 1937), 

and it is exciting that modern neuroimaging techniques are finally able to shed empirical to the 

specific mechanics of this system. 

4.2 Risk and Decision Making 

In both experiments I described the $100 wager as the “High Risk” bet and the $50 wager as 

the “Low Risk” bet.  This definition follows from the expected value (EV) of the two bets, with 

the larger bet having a net negative EV and the smaller bet having a net positive EV.  As 

participants are instructed to score as many points as possible, and because  of the $100 bet’s 

negative EV, one may argue that a participant’s decision to place the large bet (especially late in 

the task when he or she has likely formed an implicit understand that the large bet is 
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disadvantageous) may originate from a decision to “take a chance” at receiving an unlikely large 

reward.  However, this behavior does not conform to the pattern of decision-making other 

researchers define as ‘risky’.  For example, in a study wherein participants had to obtain a 

minimum number of points in a particular round to receive a reward, participants would 

routinely choose actions with greater variance, even if the expected value was the same, to score 

sufficient points to obtain their reward (Mishra & Lalumière, 2010).  Such patterns of “risky” 

decision-making are also consistent with real-life risky behaviors such as crime, drug use, and 

unsafe sex (Mishra & Lalumière, 2009).  ‘Risk’, as used to define the wagers in this paradigm, is 

clearly different from the concept of risk as it pertains to decision making. 

At least three factors make it difficult to interpret the results in these experiments with the 

psychosocial definition of risky decision making.  First, participants were not informed as to 

each bet’s EV, and although most participants at least implicitly formed an accurate expectation 

of the EV for the two bets, this knowledge was not available to them throughout the entirety of 

the task.  Second, although participants did have a visual record of their performance during the 

task (the horizontal bar at the top of the main betting screen depicted the participant’s 

performance), participants did not know precisely how many bets remained in the task.  Finally, 

as shall be discussed in section 4.4, participants were not rewarded based on their performance 

in the task.  Additionally, although there is substantial evidence as to the neural processes 

mediating feedback processing, there is comparatively less research unifying these mechanisms 

with those governing risky or safe decision making.  It is known, though, that risk-averse 

behavior is correlated with baseline EEG activity in right-hemisphere prefrontal cortex (Gianotti 

et al., 2008) and with activity in bilateral dorsolateral prefrontal cortex (Fecteau et al., 2007), and 

it is also known that FRN amplitude inversely correlates with the frequency with which 
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participants experience large aversive outcomes (Bellebaum & Daum, 2008).  Risky decision 

making may thus arise via a combination of neocortical activities, including responses in 

mediofrontal cortical to signal deviations from expectancy and responses in frontal cortex to 

either inhibit or disinhibit an appropriate response. 

4.3 Dopamine, Reinforcement Learning and Attention 

A substantial literature implicates dopamine (DA) as a chemical signal between mesencephalic 

and frontal cortex structures to process deviations from expected outcomes (Berridge & 

Robinson, 1998; Miller & Cohen, 2001; Schultz, Dayan, & Montague, 1997).  It is important to 

note that the activity of dopaminergic circuits does not uniquely code for hedonism or reward as 

is described in popular literature.  Using a classical conditioning paradigm (Pavlov, 1927) Schultz 

et al. (1997) observed that mesencephalic dopaminergic cells would fire robustly to the onset of 

a juice reward, ostensibly signaling the onset of reward delivery.  Over time however, the same 

cells would fire in response not to the onset of the reward, but to a predictive cue that signaled 

the delivery of the reward.  The animal had learned to pair a cue with an expected reward, and 

changes in the activity of mesencephalic DA cells tracked this paired conditioning.  Finally, after 

establishing this relationship, subsequently withholding the juice reward resulted in DA cells not 

firing at the approximate time the juice reward was expected – coding for a negative deviation 

from expectancy. 

Though not a classical conditioning paradigm, participants in these experiments nevertheless 

learned, at least implicitly, to associate the small wager with a more frequent positive outcome 

and the large wager with a more frequent negative outcome.  It is not possible to directly image 

neural activity in the mesencephalon using EEG (although such imaging has recently been made 
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possible using fMRI; see D'Ardenne, McClure, Nystrom, & Cohen, 2008), but it is generally 

believed that the change in electrical activity observed in the ACC during feedback processing 

represents the cortical synaptic target of DA activity in the midbrain (Holroyd & Coles, 2002).  

The two experiments in this thesis further extend this theory.  The evoked components 

measured in Experiment 1 differed significantly between the High-Risk Win and Low-Risk Loss 

conditions, despite having the same expected probability of 40%, and the evoked components in 

Experiment 2 differed for the High-Risk Win and Low-Risk Win conditions depending on the 

bet selected in the subsequent round.  Collectively, these results extend the functional 

importance of evoked mediofrontal electrical activity.  It is unlikely that mediofrontal EEG 

activity codes solely for deviation from expectancy, but instead represents the activity of some 

network that uses feedback to affect learning. 

A potentially worthwhile avenue for future research involves studying feedback processing 

mechanisms in pathological gamblers.  Preliminary data from a pilot study indicate that 

participants who score high on the CPGI (7 or higher, and indicative of problem gambling) may 

not learn as quickly as control participants that the $100 bet is negatively valued (data not 

published).  It is probable that this behavioral deficit arises from deficiencies in feedback 

processing mechanisms in gamblers.  Although feedback processing has been studied in 

pathological gamblers using fMRI (Reuter et al., 2005), I know of no study to date that used the 

EEG technique to investigate feedback mechanisms in gamblers (see though Regard, Knoch, 

Gutling, & Landis, 2003). 

One reason for reward processing is to maintain engagement with a valuable behaviour and to 

disengage from behaviours that are detrimental.  Problem gamblers exhibit an inability to 

disengage attention while playing VLT games (Diskin & Hodgins, 1999), possibly related to 
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hyperactivation of a reward signal during gambling.  At the other extreme, individuals with 

Attention Deficit/Hyperactivity Disorder (ADHD) tend to have difficulty maintaining 

behavioral engagement on a task.  ADHD affects approximately 5% of children (Schonwald & 

Lechner, 2006) and tends to persist into adulthood.  A prominent theory of ADHD proposes 

that it also arises from a reward-processing deficit (Haenlein & Caul, 1987; Holroyd, Baker, 

Kerns, & Muller, 2008; Sagvolden, Johansen, Aase, & Russell, 2005; Sonuga-Barke, Taylor, 

Sembi, & Smith, 1992).  Despite the contrast in behavioural manifestations, ADHD and PG are 

substantially comorbid (Goudriaan, Oosterlaan, de Beurs, & Van den Brink, 2004), suggesting 

that these conditions might share a common dysfunction in reward-processing mechanisms.  

The interaction between DA activity during feedback processing and attentional mechanisms has 

received little study, although there are at least two lines of evidence linking these phenomena: 

(1) The treatment for ADHD typically involves the prescription of DA-stimulant drugs such as 

methylphenidate or dextroamphetamine, and (2), in laboratory studies, participants are faster and 

more accurate at the deployment of attention to spatial locations that have been associated with 

reward (Maunsell, 2004).  It may be that feedback processing mechanisms interact with attention 

to prioritize information and to control the process of engagement and disengagement of 

attention to relevant stimuli.  Future research in Dr. Matthew Tata’s laboratory aims to elucidate 

this interaction between reward processing and attention. 

Finally, because future bet switching has an observable index in the EEG during feedback 

processing it may be possible to perform real-time analysis to determine the probability of bet 

switching before participants perform the action.  Such “pre-conscious” neural activity is 

supported by other studies that observed characteristic brain responses prior to or in the absence 

of conscious perception (Binsted, Brownell, Vorontsova, Heath, & Saucier, 2007; Libet, 
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Gleason, Wright, & Pearl, 1983), and is consistent with the Somatic Markers hypothesis posited 

by Bechara et al. (1994) to explain emotional decision making during the IGT.  

4.4 Limitations of the Present Studies 

There are at least three factors that limit the interpretability of the results presented in this 

thesis.   

First, participants in these studies were not financially compensated and received 2% bonus 

course credit irrespective of their task performance.  This is unlike most studies of feedback 

processing that use variable cash reward based on a participant’s performance.  This limitation 

has been discussed in detail in the discussion of Experiment 1 but the major points bear 

repeating: participants significantly improved over the course of both experiments and 

demonstrated feedback-related EEG spectra consistent with other studies. 

Second, I have not observed the beta-band (20-30 Hz) power increases observed by Cohen et 

al. (2007) and Marco-Pallares et al. (2008).  In these studies beta activity was observed 

subsequent to positive feedback and was maximal during unlikely wins.  This activity was not 

observed in Experiment 1.  It is unlikely that this failure stems from the choice of experimental 

paradigm.  The paradigm used in this thesis was a probabilistic learning task wherein participants 

learned to optimize performance by selecting a positively-valued wager (the $50 bet) more 

frequently than a negatively-valued wager (the $100 bet).  Although this is inconsistent with 

Marco-Pallares et al. who used a fixed-probability task adapted from Gehring and Willoughby 

(2002), it is broadly consistent with Cohen et al., who implemented a blocked gambling paradigm 

wherein participants had to continuously learn new reward probabilities and associations 

throughout the experiment.  It is also unlikely that this failure to replicate arises due to 
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insufficient statistical power.  Electrical power decreases as the frequency of the EEG increases 

and as a general rule the number of trials that must be sampled scales linearly with the frequency 

of interest; if changes in the theta band (4-7 Hz) require approximately 15-20 trials to reach 

significance, changes in the beta band (20-30 Hz) require approximately 60-80 trials to reach 

significance (personal communication, Anthony Herdman, Department of Psychology, Simon 

Fraser University).  In Experiment 1 there were insufficient trials in the High-Risk Win and 

High-Risk Loss conditions (approx. 20) to observe beta rhythms, but there were sufficient trials 

in the Low-Risk Win and Low-Risk Loss (approx. 60-75).  Finally, it is also unlikely that this 

failure to replicate arose due to the use of the dense-array, high-impedance EEG system (EGI 

128-channel HydroCel Geodesic Sensor Net) available at the University of Lethbridge, as similar 

systems have been used to study high-frequency oscillations in other studies (Gruber, Muller, & 

Keil, 2002; Muller, Gruber, & Keil, 2000; Sokhadze et al., 2009).  The best explanation is thus 

the one posited in the discussion to Experiment 1: beta-band activity may reflect the processing 

of variable reward.  Although no study has yet investigated the interaction between reward type 

and beta activity, preliminary data from an ongoing study with paid participants do not suggest 

this is the case.  It may be that the factors previously listed interact in an unknown manner to 

attenuate beta-band activity.  At present the role of beta-band oscillations during feedback 

processing remains poorly understood. 

Third, any EEG analysis requires sufficient signal-to-noise to identify electrical spectra of 

interest from the background electrical activity of the brain.  This necessitates a minimum 

number of trials in a given condition – approximately 15-20 for studies examining low-frequency 

(e.g. theta) power changes and perhaps more for ERP analyses.  Participants were encouraged in 

both experiments to perform as well as possible.  This led to a situation wherein some 
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participants performed the task so well that there were insufficient trials to analyze and they were 

excluded from analysis.  Although these participants were in the minority in Experiment 1, 

approximately half the participants in Experiment 2 were excluded for not having sufficient 

trials.  The exclusion of these high-performing participants restricted the possibility of analyzing 

feedback processing mechanisms in participants where, arguably, these mechanisms were most 

effective.  An investigation comparing theta (and possibly beta) power changes between high- 

and low-performing individuals might offer compelling insight into individual differences in 

feedback processing mechanisms. 

4.5 Summary 

A number of characteristic brain responses were observed in response to processing 

rewarding and punishing feedback in a gambling game, including the evoked FRN and P300 and 

increases in induced theta-band EEG activity.  Changes in induced EEG activity have received 

substantially less scrutiny than changes in evoked EEG activity.  Experiment 1 indicates that 

induced changes are generated in mediofrontal cortex but that they share only partial cortical 

overlap with the generators of evoked feedback responses.  Experiment 2 suggests that FRN 

and P300 amplitudes can be modulated by the subsequent response placed in a gambling game.  

This finding is especially noteworthy because it demonstrates a further factor that affects the 

amplitude of evoked feedback-related activity, and because it links evoked EEG responses to 

future decision making.  In turn, this extends the functional significance of evoked responses 

beyond the detection of violations to expectancy to an active cognitive processes implicated in 

learning mechanisms. 
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Appendix A: EGI HydroCel Geodesic Sensor Net Electrode Locations 
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Appendix B: International 10-10 Electrode Placement Locations 
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Appendix C: Canadian Pathological Gambling Index 

Subject Code  ______________________________ 

Date  ______________________________ 

 
 
 
Some of the next questions may not apply to you, but please try to be 
as accurate as possible.  Thinking about the past 12 months: 
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Have you bet more than you could really afford to lose?     
 

 
 

 

 

Have you needed to gamble with larger amounts of money to get 

the same feeling of excitement? 
 

 
  

 

When you gambled, did you go back another day to try to win 

back the money you lost?                                                           
 

 
  

 

Have you borrowed money or sold anything to get money to 

gamble? 
 

 
  

 

Have you felt that you might have a problem with gambling?      

Has gambling caused you any health problems, including stress 

or anxiety? 
 

 
  

 

Have people criticized your betting or told you that you had a 

gambling problem, regardless of whether or not you thought it 

was true? 

 

 

  

 

Has your gambling caused any financial problems for you or your 

household? 
 

 
  

 

Have you felt guilty about the way you gamble or what happens 
when you gamble? 
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Appendix D:  Zuckerman Sensation Seeking Scale  

Directions:  Each of the items below contains two choices, A and B.  Please circle 
the letter of the choice which most describes your likes or the way you feel.  In some 
cases you may find items in which both choices describe your likes or feelings.  
Please choose the one which better describes your likes or feelings.  In some cases 
you may find items in which you do not like either choice.  In these cases mark the 
choice you dislike least.  Do not leave any items blank. 
 
It is important you respond to all items with only one choice, A or B.  We are 
interested only in your likes or feelings, not in how others feel about these things or 
how one is supposed to feel.  There are not right or wrong answers as in other kinds 
of tests.  Be frank and give your honest appraisal of yourself. 
 

1. A I like “wild” uninhibited parties. 

 B I prefer quiet parties with good conversation. 
 
2. A There are some movies I enjoy seeing a second or even a third time. 

 B I can’t stand watching a movie I’ve seen before. 
 
3. A I often wish I could be a mountain climber. 

 B I can’t understand people who risk their necks climbing mountains. 
 
4. A I dislike all body odors. 

 B I like some of the earthy body smells. 
 
5. A I get bored seeing the same old faces. 

 B I like the comfortable familiarity of everyday friends. 
 
6. A I like to explore a strange city or section of town by myself, even if it 

means getting lost. 

 B I prefer a guide when I am in a place I don’t know well. 
 
7. A I dislike people who do or say things just to shock or upset other 

people. 

 B When you can predict almost everything a person will do and say he or 

she must be a bore. 
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8. A I usually don’t enjoy a movie or a play where I can predict what will 

happen in advance. 

 B I don’t mind watching a movie or play where I can predict what will 

happen in advance. 
 
9. A I have tried marijuana or would like to. 

 B I would never smoke marijuana. 
 
10. A I would not like to try any drug which might produce strange and 

dangerous effects on me. 

 B I would like to try some of the new drugs that produce hallucinations. 
 
11. A A sensible person avoids activities that are dangerous. 

 B I sometimes like to do things that are a little frightening. 
 
12. A I dislike “swingers” (people who are uninhibited and free about sex). 

 B I enjoy the company of real “swingers.” 
 
13. A I find that stimulants make me uncomfortable. 

 B I often like to get high (drinking liquor or smoking marijuana). 
 
14. A I like to try new foods that I have never tasted before. 

 B I order the dishes with which I am familiar, so as to avoid 

disappointment and unpleasantness. 
 
15. A I enjoy looking at home movies, travel slides, or home videos. 

 B Looking at someone’s home movies, travel slides, or home videos bores 

me tremendously. 
 
16. A I would like to take up the sport of water-skiing. 

 B I would not like to take up water-skiing. 
 
17. A I would like to try surf-board riding. 

 B I would not like to try surf-board riding. 
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18. A I would like to take off on a trip with no pre-planned or definite routes, 

or timetable. 

 B When I go on a trip I like to plan my route and timetable fairly carefully. 
 
19. A I prefer the “down-to-earth” kinds of people as friends. 

 B I would like to make friends in some of the “far-out” groups like artists or 

“punks.” 
 
20. A I would not like to learn to fly an airplane. 

 B I would like to learn to fly an airplane. 
  

21. A I prefer the surface of the water to the depths. 

 B I would like to go scuba diving. 
 
22. A I would like to meet some persons who are homosexual (men or 

women). 

 B I stay away from anyone I suspect of being “gay” or “lesbian.” 
 
23. A I would like to try parachute jumping. 

 B I would never want to try jumping out of a plane with or without a 

parachute. 
 
24. A I prefer friends who are excitingly unpredictable.  

 B I prefer friends who are reliable and predictable. 
 
25. A I am not interested in experience for its own sake.   

 B I like to have new and exciting experiences and sensations even if they 

are a little frightening, unconventional, or illegal.   
 
26. A The essence of good art is in its clarity, symmetry of form and harmony 

of colors. 

 B I often find beauty in the “clashing” colors and irregular forms of modern 

paintings. 
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27. A I enjoy spending time in the familiar surroundings of home. 

 B I get very restless if I have to stay around home for any length of time. 
 
28. A I like to dive off the high board. 

 B I don’t like the feeling I get standing on the high board (or I don’t go near 

it at all). 
 
29. A I like to date members of the opposite sex who are physically exciting. 

 B I like to date members of the opposite sex who share my values. 
 
30. A Heavy drinking usually ruins a party because some people get loud and 

boisterous. 

 B Keeping the drinks full is the key to a good party. 
 
31. A The worst social sin is to be rude. 

 B The worst social sin is to be a bore. 
 
32. A A person should have considerable sexual experience before marriage. 

 B It’s better if two married persons begin their sexual experience with each 

other. 
 
33. A Even if I had the money I would not care to associate with flighty rich 

persons in the 'jet set.' 

 B I could conceive of myself seeking pleasures around the world with the 

“jet set.” 
 
34. A I like people whoa are sharp and witty even if they do sometimes insult 

others. 

 B I dislike people who have their fun at the expense of hurting the feelings 

of others. 
 
35. A There is altogether too much portrayal of sex in movies. 

 B I enjoy watching many of the “sexy” scenes in the movies. 
 
36. A I feel best after taking a couple of drinks. 

 B Something is wrong with people who need liquor to feel good. 
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37. A People should dress according to some standards of taste, neatness, 

and style. 

 B People should dress in individual ways even if the effects are sometimes 

strange. 
 
38. A Sailing long distances in small sailing crafts is foolhardy. 

 B I would like to sail a long distance in a small but seaworthy sailing craft. 
 
39. A I have no patience with dull or boring persons. 

 B I find something interesting in almost every person I talk with. 
 
40. A Skiing fast down a high mountain slope is a good way to end up on 

crutches. 

 B I think I would enjoy the sensations of skiing very fast down a high 

mountain slope. 
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