1	Influence of landscape features on the microgeographic genetic structure of a resident
2	songbird.
3	
4	RACHAEL V. ADAMS ¹ , University of Lethbridge, Department of Biological Sciences, 4401
5	University Drive, Lethbridge, AB, T1K 3M4, Canada.
6	Phone: 01 403 332 5213, Fax: 01 403 329 2082, Email: rachael.adams@uleth.ca
7	
8	STEFANIE E. LAZERTE, University of Northern British Columbia, Natural Resources and
9	Environmental Studies, 3333 University Way, Prince George, BC, V2N 4Z9, Canada.
10	
11	KEN A. OTTER, University of Northern British Columbia, Natural Resources and
12	Environmental Studies, 3333 University Way, Prince George, BC, V2N 4Z9, Canada.
13	
14	THERESA M. BURG, University of Lethbridge, Department of Biological Sciences, 4401
15	University Drive, Lethbridge, AB, T1K 3M4, Canada.
16	
17	KEYWORDS: black-capped chickadee, gene flow, landscape genetics, microsatellites,
18	population genetic structure, Circuitscape, barriers
19	
20	¹ Corresponding author
21	
22	Running title: Microgeographic genetic structure of chickadees
23	
24	Word Count: 5342

25 Abstract

Variation in landscape features influence individual dispersal and as a result can affect both 26 27 gene flow and genetic variation within and between populations. The landscape of British Columbia, Canada, is already highly heterogeneous due to natural ecological and geological 28 transitions, but disturbance from human mediated processes has further fragmented 29 30 continuous habitat, particularly in the central plateau region. In this study, we evaluated the effects of landscape heterogeneity on the genetic structure of a common resident songbird, the 31 32 black-capped chickadee (*Poecile atricapillus*). Previous work revealed significant population structuring in British Columbia which could not be explained by physical barriers, so our aim 33 was to assess the pattern of genetic structure at a microgeographic scale and determine the 34 35 effect of different landscape features on genetic differentiation. A total of 399 individuals from 15 populations were genotyped for fourteen microsatellite loci revealing significant 36 population structuring in this species. Individual and population based analyses revealed as 37 many as nine genetic clusters with isolation in the north, the central plateau and the south. 38 Moreover, a mixed modelling approach that accounted for non-independence of pairwise 39 40 distance values revealed a significant effect of land cover and elevation resistance on genetic 41 differentiation. These results suggest that barriers in the landscape influence dispersal which has led to the unexpectedly high levels of population isolation. Our study demonstrates the 42 43 importance of incorporating additional landscape features when interpreting patterns of population differentiation. Despite taking a microgeographic approach, our results have 44 opened up additional questions concerning the processes influencing dispersal and gene flow 45 46 at the local scale.

47 Introduction

Dispersal and gene flow are crucial for maintaining population connectivity and species 48 49 persistence, while also preventing population differentiation and species divergence. The heterogeneity and patchiness of landscapes can influence the ability of an individual to 50 disperse between populations. If dispersal is restricted by barriers in the landscape, the 51 52 resulting decrease in population connectivity can lead to discrete, isolated groups. Over time, these isolated groups may experience reduced genetic diversity and become genetically 53 54 distinct (Baguette and Van Dyck, 2007). Landscape genetics offers new approaches to explicitly test the influence of landscape elements on genetic structure to identify barriers 55 corresponding to structured populations (Manel *et al.*, 2003, Holderegger and Wagner, 2008; 56 57 Sork and Waits, 2010; Manel and Holderegger, 2013).

Large physical structures (e.g. mountain ranges and large water bodies) as well as 58 stretches of unsuitable habitat are obvious barriers to dispersal and subsequent gene flow. The 59 influence of barriers can vary within and among species so it is important to be able to 60 identify the specific factors influencing genetic differentiation of target groups prior to 61 62 implementing management strategies (With et al., 1997). For example, using a landscape genetics approach, Frantz et al. (2012) found that motorways influenced genetic structuring in 63 red deer (Cervus elaphus), but not wild boars (Sus scrofa); as a result, considering 64 65 fragmentation effects of motorways would be primarily targeted at conservation efforts on only the former species. The effects of landscape features can also vary across a species 66 range, as in the ornate dragon lizard (Ctenophorus ornatus), where land clearing was 67 68 associated with genetic differentiation in one area, but not another (Levy et al., 2012). Smaller, less conspicuous structures or environmental variables, such as microclimate, may 69 also influence gene flow. Through landscape genetics, effects of multiple factors on 70

contemporary patterns of genetic structure can be examined across different spatial scales and across species with varying dispersal capabilities, allowing us to better understand how organisms interact with their environment, and how they may respond to future environmental change.

In current landscapes, habitat fragmentation from natural and human-mediated 75 processes can influence the potential for animals to disperse and thus affect the spatial 76 distribution of genetic variation at both large and small geographical scales. Contemporary 77 78 factors such as insect outbreaks (e.g. mountain pine beetle Dendroctonus ponderosae) and habitat degradation (e.g. forestry operations, agricultural conversion) have reduced population 79 connectivity by removing suitable breeding/dispersal habitat (Martin et al., 2006). For 80 81 instance, a combination of already-restricted range of the northern spotted owl (Strix occidentalis caurina) in the Pacific North West coupled with the removal of dense, late 82 successional forest has left the species federally threatened (COSEWIC, 2008; Blackburn et 83 al., 2003; Yezerinac and Moola, 2006). 84

British Columbia (Canada) has a complex climatic and vegetation history following 85 86 the Last Glacial Maximum (26.5 - 19 thousand years ago). When this is combined with broad-scale climatic gradients (i.e. moisture, temperature and topography - Meidinger and 87 Pojar, 1991) in the province, the result is major regional transitions that create rich and 88 89 heterogeneous landscapes (Gavin and Hu, 2013; Figure 1). The province contains six ecozones and 14 biogeoclimatic zones (see Figure 10 in Meidinger and Pojar, 1991). A major 90 longitudinal moisture gradient formed by the Coastal Mountains is characterised by dominant 91 92 maritime moist conifer forest in the west, transitioning to sagebush steppe in the rain-shadow of the south central interior, to mixed conifer and pine forest in the east. The interior regions 93 are further influenced by a latitudinal gradient with increasing summer moisture from south to 94

north. This results in desert steppe in the south transitioning to subboreal and boreal spruce
forest in the north. This natural heterogeneity is further increased by high levels of habitat
fragmentation resulting from current forestry and agricultural practices occurring within the
province.

To determine how these natural and anthropogenic factors influence population 99 structure, we conducted a microgeographic landscape genetic assessment of a common 100 101 resident songbird, the black-capped chickadee (Poecile atricapillus) in British Columbia. Our 102 previous work identified population genetic structuring in central British Columbia, but the sampling regime and range-wide scale of the study meant that smaller geographical barriers 103 104 were less noticeable (Adams and Burg, 2015). Here, a fine-scale transect sampling approach 105 allowed for a more detailed examination of the landscape patterns and processes influencing 106 population genetic structuring and a larger number of microsatellite markers were used to better capture the spatial distribution of genetic variation (Runde et al., 1987; Selkoe and 107 The study area is comprised of a number of different habitats and 108 Toonen, 2006). environmental conditions, so studying genetic variability in a non-migratory species with 109 110 limited dispersal potential will allow us to investigate the role of habitat heterogeneity on the ecology and evolution of populations. The aims of the study were to identify where the 111 112 genetic breaks occur and to evaluate the processes driving differentiation. This led to three 113 main hypotheses; 1) fine scale population genetic differentiation will be evident in the blackcapped chickadee due to the inclusion of additional sampled populations and microsatellite 114 loci; 2) given the level of topographical and climatic variability found within the province, 115 116 dispersal and gene flow are influenced by landscape features and environmental variables, and 3) habitat fragmentation resulting from anthropogenic disturbance (e.g. forestry and 117 agriculture) isolates populations in central and southern British Columbia. 118

120 Materials and Methods

121 *Study Species*

The black-capped chickadee is a resident songbird, common throughout most of North 122 America with a range that covers a large and complex geographical area. Black-capped 123 chickadees are an important study species because they are generalists and thrive in a variety 124 of environmental conditions, although they prefer mixed deciduous and coniferous woodland 125 126 (Smith, 1993). If specific landscape processes are found to have a negative impact on chickadees, this would indicate that other species (particularly specialists) may also be 127 128 affected. As primary cavity nesters, chickadees are dependent on advanced decaying trees or 129 snags in mature forests. Their diet requirements also vary seasonally with a preference for 130 mixed berries, seeds and insects in the winter in comparison to a completely insectivorous diet during the breeding season (Runde et al., 1987). Although chickadees do reside and breed in 131 disturbed areas, studies have found these low quality habitats negatively affect reproduction 132 (Fort et al., 2004a), territoriality (Fort et al., 2004b), song output (van Oort et al., 2006), song 133 134 consistency and perception (Grava et al., 2013a) and song structure (Grava et al., 2013b) in Elevation and the presence of other chickadee species (e.g. mountain 135 this species. chickadees) can also influence their distribution and habitat preference (Campbell et al., 136 137 1997). Collectively, this information highlights the importance of a number of factors related to habitat quality (e.g. mature, dense woodland) on species persistence. 138

139

140 *Sample collection*

We included samples from seven populations collected as part of our previous study (i.e.
FtStJ1, PG, NWBC, NBC, BCR, SAB1 and SAB2; Table 1; Adams and Burg, 2015). We

collected additional samples during the 2012 breeding season using a transect-based approach 143 along HWY 16, the main east-west corridor in north-central British Columbia. Birds were 144 145 captured using mist nets and call playback, and samples of blood (< 100 µl from the brachial vein) and/or feathers were obtained from each individual. This resulted in approximately 20 146 individual birds sampled from each of an additional six locations (i.e. HAZ, HOU, FF, FrL, 147 CLU and FtStJ2; Table 1). Where possible, sampling sites were confined to a 10 km radius. 148 Feather samples were also obtained from two more populations: Vancouver (VAN) and 149 150 Kelowna (KEL). With all individuals combined, sampling took place over ten breeding seasons (2003 – 2010, 2012 and 2013) and a total of 405 individuals from 15 populations 151 152 were collected (Figure 1; Table 1; Supplementary Table S1). Each bird was banded with a 153 numbered metal band to prevent re-sampling and all blood/ feather samples were stored in 154 95% ethanol and, on return to the laboratory, stored at -80°C.

155

156 DNA extraction and microsatellite genotyping

DNA was extracted from blood ethanol mix (10 μl) or feather samples using a modified Chelex protocol (Walsh, 1991). Each individual was genotyped for 14 polymorphic microsatellite loci (Supplementary Table S2) and DNA was amplified for all loci (including new loci Pij02, VeCr05 and CTC101) using the same two-step annealing PCR conditions outlined in Adams & Burg (2015); the exception was for Pij02, where the two-step annealing temperatures were adjusted from 50°C and 52°C to 52°C and 54°C. All procedures following DNA amplification were conducted as in Adams and Burg (2015).

Most individuals were successfully genotyped for all 14 variable microsatellite loci. Seven populations were missing genotypes for locus PmanTAGAn45, four populations for Ppi2, two populations for Titgata02, and two populations for Pij02. All analyses were carried 167 out with and without these four loci to determine if missing data influenced levels of observed 168 population differentiation. In addition, we conducted analyses with and without the feather 169 sampled populations (KEL and VAN) as the DNA extracted from feathers were of lower 170 quality which resulted in missing data and created the potential for genotyping errors from 171 low amplification success for some loci.

172

173 *Genetic analyses*

174 <u>Genetic diversity</u>

A total of 399 individuals remained after removing those genotyped for ≤ 5 loci. Errors 175 within the data (i.e. input errors, allelic dropout, stutter and null alleles) were assessed in 176 177 MICRO-CHECKER v2.2 (van Oosterhout et al., 2004). Allelic richness was calculated in FSTAT v2.9.2.3 (Goudet, 2001) and tests for deviations from Hardy-Weinberg equilibrium 178 (HWE) and linkage disequilibrium (LD) were performed in GENEPOP v4.0.10 (Raymond 179 and Rousset, 1995; Rousset, 2008) using default Markov chain parameters (100 batches, 1000 180 iterations and 1000 dememorisation steps). Both observed and expected heterozygosities 181 182 were calculated in GenAlEx v6.5 (Peakall and Smouse, 2012) to determine the levels of population genetic diversity. Lastly, levels of significance were adjusted using the modified 183 184 False Discovery Rate (FDR) correction (Benjamini and Yekutieli, 2001).

185

186 <u>Population genetic structure analyses</u>

We used multiple approaches to gain insight into the genetic structure of the black-capped chickadee. We used two clustering methods: GENELAND v4.0.0 (Guillot *et al.*, 2005a) and STRUCTURE v2.3.4. (Pritchard et al., 2000). Both use Bayesian models to assign individuals to genetic clusters by maximising HWE and minimising LD, but differ in the way

they use spatial information. STRUCTURE relies solely on genetic data (with the option of predefining populations with location priors) whereas GENELAND incorporates individual spatial coordinates.

Implemented in the program R v 3.1.3 (R Development Core Team, 2015), 194 GENELAND was run in two steps following the recommended protocol of Guillot et al. 195 (2005a, b). First, we ran the program for ten replicates for each K (1 – 10) using the 196 correlated allele frequencies and null allele models and 100,000 McMC iterations, a thinning 197 198 interval of 100 and a maximum rate of Poisson process of 399 (equal to the sample size). The uncertainty attached to spatial coordinates was fixed to 20 km (i.e. the precision of our sample 199 200 locations; 10 km radius) and the maximum number of nuclei in the Poisson-Voronoi 201 tessellation was fixed to 1197 (three times the sample size). The number of clusters (K) was 202 inferred from the modal K and the run with the highest mean posterior probability. A second run was then conducted with the inferred K fixed and all parameters left unchanged to allow 203 individuals to be assigned to clusters. To determine the robustness of this model, 204 GENELAND was run multiple times with different parameters (e.g. with and without the 205 206 correlated allele frequencies and null allele models; and 50,000, 100,000 and 200,000 McMC 207 iterations).

STRUCTURE was run with the admixture model, correlated allele frequencies (Falush *et al.*, 2003) and locations as priors (locpriors). To determine the optimal number of clusters (*K*), we conducted ten independent runs (100,000 burn in followed by 200,000 McMC repetitions) for each value of *K* (1-10). Results were averaged using STRUCTURE HARVESTER v0.6.6 (Earl and vonHoldt, 2012) and both delta *K* (ΔK ; Evanno *et al.*, 2005) and LnPr(X|K) were used to determine the true *K*. Any populations with individuals showing mixed ancestry (e.g. 50% Q to cluster 1, and 50% Q to cluster 2) were rerun individually with

215 two populations representing each of the two clusters involved in the mixed ancestry to determine correct assignment. This is important to check because as K increases above the 216 217 true K value, Q values will often decrease and split clusters (Pritchard et al., 2000). This splitting of populations must be clarified prior to additional testing. Finally, if multiple 218 populations were assigned to the same genetic cluster, those populations were rerun to test for 219 additional substructure using the same parameters as the initial run, but only to a maximum of 220 five runs for each K value. Pairwise F_{ST} values were then calculated in GenAlEx v6.5 to 221 222 investigate the degree of genetic differentiation among the predefined populations. We also calculated D_{EST} (Jost, 2008) in SMOGD v1.2.5 (Crawford, 2010), an alternative measure of 223 diversity that accounts for allelic diversity and is shown to measure genetic differentiation 224 225 more accurately than traditional F_{ST} when using polymorphic microsatellite markers (Heller and Siegismund, 2009). We compared measures of D_{EST} and F_{ST} to determine the true level 226 of genetic differentiation. Since the theoretical maximum of 1 for F_{ST} is only valid when 227 there are two alleles, population wide F'_{ST} , standardised by the maximum F_{ST} value, was 228 calculated in GenAlEx v6.5. To further assess genetic structure among populations, we 229 230 carried out a Principal Coordinate Analysis (PCoA) using both F_{ST} and D_{EST} in GenAlEx 231 v6.5.

232

233 Landscape genetics

234 <u>Parameterization of landscape variables</u>

To assess the functional connectivity among populations, we evaluated four competing models: 1) the null model of isolation by geographical distance (or IBD; Wright, 1943), 2) isolation by elevation resistance, 3) isolation by land cover resistance and 4) isolation by combined elevation and land cover resistance (i.e. both land cover and elevation raster layers were combined into one resistance layer, termed 'land-elevation' herein). Pairwise resistance distances were calculated among all sampling sites using spatial datasets and an eight neighbour connection scheme in CIRCUITSCAPE v4.0 (McRae, 2006). This method is based on circuit theory and uses resistance distances to assess all possible pathways between two focal points (or populations) to better map gene flow across the landscape and measure isolation by resistance (IBR).

Categorized land cover and digital elevation maps (DEM), circa 2000, were obtained 245 246 from GEOBASE (www.geobase.ca) and resistances to habitat types were assigned using ArcMap, ESRI[©] (Table 2). Land cover data were categorised into six cover types. The lowest 247 resistance values were assigned to suitable chickadee habitat known to facilitate dispersal (i.e. 248 249 forest cover, particularly broadleaf and mixed forests) whereas other land cover types were classified as being moderately permeable (i.e. coniferous forest, shrubland and grassland), or 250 251 completely impermeable (i.e. unsuitable habitat which included agricultural land and water) to dispersal (Table 2). For elevation, five different ranges were assigned resistance values based 252 on elevations where chickadees have previously been observed. For example, low resistances 253 254 were given to low elevation ranges (< 1500 m), whereas higher resistance values were given to higher elevations where chickadees are rarely observed (> 1500 m) (Table 2). The program 255 outputs a cumulative 'current map' to portray the areas where resistance to gene flow is either 256 257 high or low. Populations SAB1 and SAB2 were excluded from these analyses as georeferenced coordinates were outside the spatial extent of the data. Given the size of our study 258 area, all resistance surfaces were based on a 2 x 2 km resolution. 259

260

261 Landscape effects

We implemented a linear mixed-effect modelling approach based on the maximum-likelihood 262 population-effects (MLPE) model (Clarke et al., 2002) using the 'lmer' function in the 263 package 'lmer4' v1.1.8 (Bates et al., 2015) in R v 3.1.3 (R Development Core Team, 2015). 264 This approach is superior to the Mantel test to identify the landscape variable(s) which best 265 explain population genetic differentiation. This is because these tests are often described as 266 having low statistical power (Legendre and Fortin, 2010) and, more importantly, fail to 267 account for non-independence of each pairwise observation within the distance matrix (Yang, 268 269 2004).

Nine predefined models were used to test for effects of different landscape variables 270 on both estimates of pairwise genetic distance (i.e. F_{ST} and D_{EST}). When fitting MLPE 271 272 models, the 'lmer' function was modified so the random factor would account for multiple memberships (i.e. two individual populations for each pairwise distance) following van Strien 273 Explanatory variables were centred around their mean, and parameter et al. (2012). 274 estimation was performed with the residual maximum-likelihood (REML) criterion (Clarke et 275 al., 2002). For each parameter estimate 95% confidence intervals were calculated. Models 276 277 satisfied the assumptions of normality and constant variance, and showed no evidence of 278 multicollinearity. In landscape genetics, a common technique is to use the Akaike Information Criterion (AIC) for model selection (Storfer et al., 2007). However, use of REML precludes 279 the use of AIC; therefore we used the marginal R^2 statistic developed by Nakagawa and 280 Schielzeth (2013) in the R package, MuMIn v 1.14.0 (Barton, 2014), to select the best fitting 281 and most parsimonious model (c.f. van Strien et al., 2012). 282

283

284 **Results**

285 *Genetic structure*

286 <u>Genetic diversity</u>

Among all loci and populations, the total number of alleles ranged from 3 - 46 alleles 287 288 (Supplementary Table S2). Observed heterozygosity at each site and across all loci ranged from 0.584 (KEL) to 0.683 (SAB1, followed closely by SAB2 at 0.681), and expected 289 heterozygosity ranged from 0.572 (KEL) to 0.717 (FtStJ1; Supplementary Table S3). 290 Accounting for differences in sample size, allelic richness ranged from 2.42 (PG) to 2.79 291 (FtStJ1 and FF; Table 1). Eleven of the fifteen populations contained at least one private 292 293 allele (Table 1); FtStJ1 contained the highest number of private alleles (PA = 11) followed by NBC and SAB2 (PA = 5). Null alleles were detected at a low frequency for a number of loci 294 and were not consistent across populations with the exception of two loci: VeCr05 (0 - 25%)295 296 and Cuµ28 (31 - 71%). We found a large difference between observed and expected heterozygosities across populations for locus VeCr05 (Ho: 0.185, He: 0.306), but not for 297 Cuµ28 (Ho: 0.485, He: 0.502, Supplementary Table S3). Exclusion of VeCr05 and/ or Cuµ28 298 did not alter the results, and so all 14 loci were included in the final dataset. Thirteen 299 deviations from HWE (Supplementary Table S3) and two pairs of loci in disequilibrium were 300 301 identified after corrections for multiple tests. All deviations were the result of a heterozygote deficit. Significant LD was found between loci Titgata02 and CTC101 ($P \le 0.001$) within 302 FtStJ1 and between loci Escu6 and Titgata02 ($P \le 0.001$) within SAB1. As LD was not 303 304 consistent across populations and genotypes showed no association, it is possible that LD is the result of a type 1 error. Results were not substantially affected after removing either the 305 underrepresented loci or the feather sampled populations (see summary statistics in 306 307 Supplementary Table S4).

308

309 <u>Population genetic structure analyses</u>

The two clustering analyses failed to converge on the total number of genetic clusters (K), 310 however a number of groupings were similar across analyses. A hierarchical STRUCTURE 311 312 analysis inferred seven genetic clusters (Supplementary Figure S1a) using both mean log likelihood (Pr(X|K) = -17544.9) and ΔK (Supplementary Figure S1b). A larger number of 313 groupings was found in GENELAND; eight runs suggested K = 9 and two runs suggested K =314 10. As the highest posterior probability was for K = 9 (-958) we took this as being the true 315 estimation of K. For population membership and boundary graphs see Supplementary Figure 316 317 S2. The genetic clusters included single populations (BCR, CLU, FtStJ1, NBC, NWBC, and PG), as well as groups of populations (KEL and VAN, SAB1 and SAB2, and all remaining 318 populations; Figure 1). Five of the groupings were identical to those identified in 319 320 STRUCTURE (BCR, NWBC, PG, FtStJ1 and VAN+KEL; Supplementary Figure S1). The distinction of PG and FtStJ1 is concordant with patterns observed in our previous study 321 (Adams and Burg, 2015). 322

Pairwise F_{ST} and D_{EST} values showed a significant positive correlation ($R^2 = 0.692$, P= 0.003). Pairwise F_{ST} values ranged from 0.009 to 0.316 (Table 3) and after corrections for multiple tests, 86 of the 105 tests were significant indicating a high level of genetic differentiation among populations. Similar levels of population structure were detected using D_{EST} which ranged from 0.005 to 0.329 (Table 3). Overall F'_{ST} was 0.240 (Supplementary Table S5).

Distinct clustering of populations in PCoA was only found using D_{EST} values. The first principal coordinate analysis with all 15 populations resulted in clear separation of populations KEL and VAN from all other populations, as well as differentiation from each other, with the first two axes explaining 50.59% and 17.04% of the variation (Figure 2a) respectively. Isolation of KEL and VAN is concordant with GENELAND. It is important to

note that these two populations contained some missing genotype information. Since PCoA is sensitive to missing data, we removed KEL and VAN from analyses to identify additional structure. Concordant with some of the patterns observed in GENELAND, we see separation of PG as well as NWBC and BCR (Coordinate 1 = 31.05%, Coordinate 2 = 19.93%; Figure 2b).

339

340 *Landscape genetics*

MLPE models were ranked based on marginal R^2 (Table 4). For F_{ST} , the best fitting model 341 included land-elevation (R^2 (mar) = 0.879; Table 4a), whereas for D_{EST} the model with the 342 highest R^2 included both land-elevation and geographical distance (R^2 (mar) = 0.711; Table 343 344 4b). All variables in the best models had a positive effect on genetic distance. Over all models, those including either land cover or land-elevation as explanatory variables produced 345 consistently high R^2 values for both F_{ST} (≥ 0.874) and D_{EST} (≥ 0.660). The effects of 346 geographical distance and elevation varied across all models. Only once was there a 347 significant effect of the parameter elevation (model 7 for D_{EST}), and although geographical 348 349 distance was significant in all models for D_{EST} , (including the top two models) for F_{ST} geographical distance was significant in only two of the nine models. This may be explained 350 by the different properties of the response variables (i.e. F_{ST} is based on allele frequencies 351 352 whereas D_{EST} is based on allelic diversity) and emphasizes the importance of comparing measures of genetic distance. D_{EST} corrects for sampling bias and as the sample sizes varied 353 between sites, this may explain the differences between the two. The effect of geographical 354 355 distance on D_{EST} was consistent across all models, and suggests an isolation by distance (IBD) effect. Meanwhile, land cover and land-elevation had a clear significant effect on all 356 models and across both measures of genetic distance. This suggests that while the combined 357

effect of both land cover and elevation resistances on genetic distance is significant,
ultimately, land cover resistance is the largest factor contributing to variation in population
genetic differentiation.

361

362 Discussion

363 *Fine-scale genetic structure of the black-capped chickadee*

Populations of black-capped chickadees in British Columbia are spatially structured from 364 365 restricted population connectivity as supported by individual based (Bayesian clustering analyses), population based (F_{ST}, PCoA) and landscape based analyses (CIRCUITSCAPE and 366 367 MLPE modelling). Intensive sampling and additional microsatellite loci used in this study 368 resulted in a finer resolution of observed genetic structure. Here, nine genetic clusters were inferred in comparison to four clusters in our previous study (Adams and Burg, 2015) and 369 population genetic differentiation was observed in all regions of British Columbia from the 370 north (NWBC) to the interior (CLU, NBC, FtStJ1, PG) and in the south (VAN and KEL, 371 BCR). 372

373 Despite their vagility and generalist behaviour, black-capped chickadees are a highly sedentary species, showing strong aversion to crossing gaps in suitable habitat and this 374 characteristic appears to have a significant impact on dispersal across fragmented landscapes 375 376 (Desrochers and Hannon, 1997). Population genetic structure is an expected evolutionary consequence of species inhabiting fragmented landscapes (Shafer et al., 2010), especially in 377 species with restricted dispersal (Unfried et al., 2012) like black-capped chickadees. 378 379 Spontaneous and highly irregular, large distance movements (i.e. irruptions) are observed in juveniles (Weise and Meyer 1979), and occasionally in adults (Brewer et al., 2000), and adults 380 will sometimes move down from high altitude localities in response to severe weather 381

conditions or food availability (Campbell et al., 1997). However, black-capped chickadees 382 rarely disperse long distances; although a maximum dispersal of 2000 km was recorded for 383 384 one bird in a recapture study on 1500 individuals; less than 2% of birds dispersed more than 50 km from banding locations, and over 90% remained in the location they were initially 385 banded (Brewer et al., 2000). Distances between adjacent populations in this study are within 386 the potential dispersal range, yet genetic differentiation was observed between populations 387 separated by both small (e.g. ~30 km between FtStJ1 and FtStJ2) and large (e.g. ~390 km 388 389 between PG and HAZ) distances (Figure 1). The observed patterns suggest that at smaller geographical distances, other factors such as habitat heterogeneity and fragmentation resulting 390 391 from both natural and anthropogenic causes may be influencing dispersal and gene flow.

392

393 *Effects of landscape features on genetic differentiation*

A landscape genetic approach revealed the complexity of black-capped chickadee population 394 structuring from just two spatial datasets (elevation and land cover), which highlights the 395 importance of incorporating landscape level data into studies of gene flow in addition to using 396 397 traditional measures of IBD. Despite the relatively weak resolution of model based analyses, 398 both land cover (suitable forest cover) and elevation (low- mid elevation valleys) appear to be important factors in explaining the observed patterns of genetic differentiation in black-399 400 capped chickadees. The models that included land cover combined with elevation (landelevation) best explained genetic differentiation for F_{ST} and D_{EST} in two separate analyses, 401 but it is likely that land cover is the most influential factor (Table 4). As forest generalists, 402 403 dispersal for black-capped chickadees is largely dependent upon the availability of woodland corridors (Bélisle and Desrochers 2002, Desrochers and Bélisle 2007). For example, 404 differences in forest cover can be observed between genetically differentiated populations in 405

Fort St. James (FtStJ1 and FtStJ2). Timber harvesting of the abundant lodgepole pine (*Pinus contorta*) significantly reduces the amount of suitable forest in the south (FtStJ2) in
comparison to the north (FtStJ1) where the forest is managed and protected from logging
(Fondahl and Atkinson, 2007).

Populations were sampled on either side of a distinct mountain (Pope Mountain; 410 approximately 1400 m elevation) and large water body (Stuart Lake) which may act as 411 connectivity barriers. Elevation may therefore be a significant factor, as black-capped 412 413 chickadees are often associated with low-elevation riparian corridors in British Columbia, and tend to be replaced ecologically at higher elevations by mountain chickadees (Poecile 414 gambeli) (Foote et al., 2010). Low resistance dispersal routes also corresponded to areas of 415 416 low elevation (i.e. within the central plateau and to the south; Figure 3). Black-capped chickadees frequently breed between 270 m and 1500 m elevation with the highest elevation 417 recorded at 2300 m in British Columbia (Campbell et al., 1997). As black-capped chickadees 418 are forest dependent and found at lower elevations, it is not surprising that the lack of forest 419 cover and high elevations would impede gene flow. The same two landscape features are 420 421 important in facilitating black bear (Ursus americanus) dispersal in northern Idaho (Cushman 422 et al., 2006).

Differences in land cover and elevation may reflect multiple biogeoclimatic zones across the region; characterised by variation in climate, topography and vegetation. As our populations are distributed across a number of these zones, it is possible that habitat discontinuity is playing a bigger role in genetic differentiation, than physical geographical barriers. For example, genetic differentiation in the north (NWBC) could be explained by local environmental conditions. NWBC is situated within the boreal-black and white spruce biogeoclimatic zone, characterised by long, extremely cold winters and short, warm summers,

and is isolated from other sampling sites by the Skeena and Omineca Mountains. To the south 430 of NWBC, there is a sharp transition from boreal-black and white spruce to Engelmann 431 432 spruce-subalpine fir to interior cedar-hemlock (Parish, 1995). The Engelmann spruce-433 subalpine fir zone occupies the highest forested elevations in British Columbia. Our landscape analyses revealed high pairwise resistance values (results not shown) between 434 NWBC and nearby populations for both elevation and land cover, suggesting limited 435 dispersal. This is also evident from both CIRCUITSCAPE (Figure 3), where there are little to 436 437 no connections between NWBC and nearby populations, and the effect of IBD on pairwise D_{EST} values (Table 4b). Our resistance map of elevation (Supplementary Figure S3a) 438 439 supports isolation of NWBC. Therefore high variability in habitat and climatic conditions 440 combined with high elevations and large geographic distances may explain the genetic differentiation of this population, as when gene flow is low, isolated populations may adapt to 441 local environmental conditions as a result of divergent selection pressures (Cheviron and 442 Brumfield, 2009). However, it is important to note that many neighbouring populations to 443 NWBC have not been sampled and so these observations could be a function of sampling 444 445 regime rather than specific landscape effects. To confirm these speculations, more robust 446 sampling in and around this area is necessary.

Genetic clustering of KEL and VAN was supported by high, yet non-significant pairwise F_{ST} (0.316). Black-capped chickadee subspecies delimitations by size and colouration might explain this grouping; VAN birds are grouped within the Oregon subspecies (*P. a. occidentalis*); KEL birds within the Columbian subspecies (*P. a. fortuitus*) and all other populations in this study within the larger-sized long-tailed subspecies (*P. a. septentrionalis*) (Smith, 1991). While we expected to see reduced gene flow between KEL and VAN because of the presence of two prominent north-south mountain ranges bisecting the two sampling 454 sites, there were inconsistencies among analyses (i.e. differentiation was indicated by F_{ST} and 455 PCoA analyses, but not by Bayesian clustering analyses). It is possible that low valleys 456 within the Coastal Range act as important corridors to dispersal between these two 457 populations. The genetic status of KEL and VAN, however, will require validation with 458 additional sampling.

459

460 Dispersal in fragmented landscapes

461 Loss of genetic diversity from habitat loss can impede a species' ability to adapt to changes in their environment, and lead to reductions in reproductive fitness and population size 462 (Frankham, 1995; Haag et al., 2010; Woltmann et al., 2012; Finger et al., 2014). As such, loss 463 464 of forests within low- to mid-elevation areas from both natural and anthropogenic processes could have a significant impact on chickadee dispersal, and thus on the health of chickadee 465 populations. One reason for reduced dispersal in fragmented habitats is predation risk. Both 466 St Clair et al. (1998) and Desrochers and Hannan (1997) found that black-capped chickadees 467 are less willing to cross gaps of > 50 m of unsuitable habitat. In areas of central British 468 469 Columbia where logging and other activities have fragmented chickadee habitat, dispersal 470 would be restricted. The size and abundance of cut-blocks from forestry activities may be restricting dispersal; however, explicit testing at an even smaller spatial scale is required. 471 472 Unexpectedly, our resistance map (Figure 3) displayed a large area in the central plateau (between FrL and CLU) where movement is impeded. This area corresponds to an area of 473 increased agriculture which could explain differentiation of CLU in GENELAND analyses as 474 475 well as lower observed allelic diversity and observed heterozygosities (FF, FrL and FtStJ2; Tables 1 and S3). 476

477 Natural contributors to habitat fragmentation may also explain patterns of genetic structure observed here. Bark beetle outbreaks have been observed in western Canada since 478 the 1900s (Swaine, 1918). Current outbreaks are spreading quickly with warmer/milder 479 480 winters facilitating their expansion across western Canada. The mountain pine beetle outbreak has destroyed huge portions of mature pine forests throughout British Columbia, 481 particularly in the central plateau region within elevations of 800 and 1400 m (Safranyik and 482 Wilson, 2006). Habitat loss could be leading to high levels of population isolation here, 483 484 particularly in low-mid elevation forested valleys which serve as dispersal corridors. In fact, a number of populations within this region are showing signs of reduced genetic diversity, 485 particularly the PG population (Ho = 0.594, He = 0.669; Table 1), suggesting that some 486 487 populations may be experiencing a bottleneck as a result of restricted gene flow. Thus, despite being common, widely distributed and of little conservation concern (IUCN Red List), 488 isolated chickadee populations may be undergoing microevolutionary processes which may 489 eventually lead to local adaptation. 490

491

492 Conclusions

Weak population genetic differentiation is expected for common and widespread species with the ability to disperse among habitat patches (i.e. bird flight), but our findings suggest that variation and/or changes in the environment can impact genetic differentiation in mobile species, resulting in microgeographic population structuring.

Dispersal and gene flow among black-capped chickadee populations appear to be affected by variation in landscape topography and forest cover; features critical to chickadee survival and reproductive success. Climatic differences among sampling sites may also create differential selective pressures. The importance of including landscape features when

assessing connectivity and population differentiation is particularly relevant when identifying 501 502 vulnerable populations and management units, as over time isolated populations may diverge 503 through local adaptation or inbreeding. In the face of climate change, biogeographic zones 504 will change and forest tree species are under threat of shifting and narrowing distributions (Hebda, 1997; Hamann and Wang, 2006; Wang et al., 2012) which could in turn, have an 505 impact on black-capped chickadee populations. Changes in precipitation and winter 506 temperature have already driven shifts in the geographic patterns of abundance of bird 507 508 populations in western North America (Illán et al., 2014).

509 Overall, when assessing patterns of genetic differentiation of populations, a smaller 510 sampling scale and the inclusion of more loci can provide additional patterns of genetic 511 structure. More importantly, incorporating both landscape features and environmental 512 variables when explaining patterns can significantly improve our understanding of how 513 species evolve in response to changes in their environment.

514

515 **Conflict of Interest**

516 The authors declare no conflict of interest.

517

518 Acknowledgments

Funding for this project was provided by a Natural Science and Engineering Research Council (NSERC) Discovery Grant and Alberta Innovates (AI) New Faculty Award. We also thank P. Pulgarin-Restrepo, B. Graham, K. Gohdes, C. MacFarlane, A. Martin, and volunteers from Project Feederwatch and BC Bird Breeding Atlas for helping with sample collection for this project. Finally, we would like to thank Dr. Maarten J. van Strien for his expertise in the R programming environment.

526 Data Accessibility

527 All microsatellite genotypes will be archived prior to publication.

- 529 Supplementary Information
- 530 Supplementary information is available at Heredity's website.

531 **References**

- Adams, R.V., Burg, T.M. (2015) Influence of ecological and geological features on rangewide
 patterns of genetic structure in a widespread passerine. *Heredity* 114: 143-154.
- Baguette, M., Van Dyck, H. (2007). Landscape connectivity and animal behavior: functional
 grain as a key determinant for dispersal. *Landscape Ecology* 22: 1117-1129.
- 536 Barton, K. (2015). MuMIn: Multi-Model Inference. R package version 1.14.0.
 537 http://CRAN.R-project.org/package=MuMIn
- Bates, D., Maechler, M., Bolker, B., Walker S (2015) lme4: Linear mixed-effects models
 using Eigen and S4_. R package version 1.1-8, <URL: http://CRAN.R-
 project.org/package=lme4>.
- 541 Bélisle, M., Desrochers, A. (2002) Gap-crossing decisions by forest birds: an empirical basis
 542 for parameterizing spatially-explicit, individual-based models. *Landscape Ecology*,
 543 17: 219-231.
- Benjamini, Y., Yekutieli, D. (2001). The control of false discovery rate under dependency. *Annals of Statistics* 29: 1165-1188.
- Blackburn, I., Godwin, S. (2003) *The status of the Northern Spotted Owl* (Strix occidentalis
 caurina) *in British Columbia*. Draft report for Ministry of Water, Land and Air
 Protection, Victoria. BC.
- Brewer, A.D., Diamond, A.W., Woodsworth, E.J., Collins, B.T., Dunn, E.H. (2000) *The Atlas of Canadian Bird Banding, 1921-95. Volume 1: Doves, Cuckoos and Hummingbirds through Passerines.* CWS Publication, Ottawa, Canada.
- Campbell, W., Dawe, N.K., McTaggart-Cowan, I., Cooper, J.M., Kaiser, G.W., McNall,
 M.C.E., Smith, G.E.J. (1997) *Birds of British Columbia, Volume 3, Passerines- Flycatchers through Vireos.* Vancouver, BC, UBC Press.

- Cheviron, Z.A., Brumfeld, R.T. (2009) Migration-selection balance and local adaptation of
 mitochondrial haplotypes in rufous-collared sparrows (*Zonotrichia capensis*) along an
 elevational gradient. *Evolution* 63: 1593-1605.
- Clarke, R.T., Rothery, P., Raybould, A.F. (2002). Confidence limits for regression
 relationships between distance matrices: estimating gene flow with distance. *Journal of Agricultural, Biological, and Environmental Statistics*. 7: 361-372.
- 561 COSEWIC. (2008). COSEWIC assessment and update status report on the Spotted Owl Strix
 562 occidentalis caurina, Caurina subspecies, in Canada. Committee on the Status of
 563 Endangered Wildlife in Canada. Ottawa. vii + 48 pp.
- 564 Crawford, N.G. (2010). SMOGD: software for the measurement of genetic diversity.
 565 *Molecular Ecology Resources* 10: 556-557.
- Cushman, S. A., McKelvey, K. S., Hayden, J., & Schwartz, M. K. (2006) Gene flow in
 complex landscapes: testing multiple hypotheses with causal modeling. *The American Naturalist* 168: 486-499.
- Desrochers, A., S. J. Hannon. (1997) Gap crossing decisions by forest songbirds during the
 post-fledging period. *Conservation Biology* 11: 1204-1210.
- Desrochers, A., Bélisle, M. (2007) Edge, patch, and landscape effects on Parid distribution
 and movements. In. Otter, K. A. (ed). The Ecology of Chickadees and Titmice: an
 integrated approach. Oxford University Press, Oxford, U.K. pp: 243-261.
- 574 Earl, D.A., vonHoldt, B.M. (2012) STRUCTURE HARVESTER: a website and program for
- visualizing STRUCTURE output and implementing the Evanno method. *Conservation Genetics Resources* 4: 359-361.

- Evanno, G., Regnaut, S., Goudet, J. (2005) Detecting the number of clusters of individuals
 using the software STRUCTURE: a simulation study. *Molecular Ecology* 14: 26112620.
- Falush, D., Stephens, M., Pritchard,J.K. (2003) Inference of population structure using
 multilocus genotype data: linked loci and correlated allele frequencies. *Genetics* 164:
 1567-1587.
- Finger, A., Radespiel, U., Habel, J. C., Kettle, C. J., Koh, L. P. (2014) Forest fragmentation
 genetics: what can genetics tell us about forest fragmentation? *Global Forest Fragmentation*, 50.
- Fondahl, G., Atkinson, D. (2007) Remaking Space in North-Central British Columbia: The
 Establishment of the John Prince Research Forest. *BC Studies: The British Columbian Quarterly* 154: 67-95.
- Foote, J.R., Mennill, D.J., Ratcliffe, L.M., Smith, S. (2010) Black-capped Chickadee (*Poecile atricapillus*), The Birds of North America Online (A. Poole, Ed.). Ithaca: Cornell Lab
 of Ornithology; Retrieved from the Birds of North America Online: http://bna.birds.cornell.edu/bna/species/039X
- Fort, K.T., Otter, K.A. (2004a) Effects of habitat disturbance on reproduction in black-capped
 chickadees (*Poecile atricapillus*) in Northern British Columbia. *Auk* 121: 1070–1080.
- Fort, K.T., Otter, K.A. (2004b) Territorial breakdown of black-capped chickadees *Poecile atricapillus*, in disturbed habitats? *Animal Behaviour* 68: 407–415.
- 597 Frankham, R. (1995) Conservation genetics. *Annual review of genetics* **29**: 305-327.

598 Frantz, A.C., Bertouille, S., Eloy, M.C., Licoppe, A., Chaumont, F., Flamand, M.C. (2012)

Comparative landscape genetic analyses show a Belgian motorway to be a gene flow

- barrier for red deer (*Cervus elaphus*), but not wild boars (*Sus scrofa*). *Molecular Ecology* 21: 3445-3457.
- Gavin, D.G., Hu, F.S. (2013) POLLEN RECORDS, POSTGLACIAL | Northwestern North
 America. *Earth Systems and Environmental Sciences*; 124-132.
- Goudet, J. (2001). FSTAT, a program to estimate and test gene diversities and fixation indices
 (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html. Updated
 from Goudet (1995).
- Grava, T., Grava, A, Otter K.A. (2013a) Habitat-induced changes in song consistency affect
 perception of social status in male chickadees. *Behavioral Ecology & Sociobiology* 67:
 1699-1707.
- Grava, T., Fairhurst, G.D., Avey, M.T., Grava, A., Bradley, J., Avis, J.L., Bortolotti, G.R,
 Sturdy, C.B. Otter, K.A. (2013b) Habitat quality affects early physiology and
 subsequent neuromotor development of juvenile black-capped chickadees. *Plos ONE*8: e71852.
- Guillot, G., Mortier, F., Estoup, A. (2005a) GENELAND: a computer package for landscape
 genetics. *Molecular Ecology Notes* 5: 712-715.
- Guillot, G., Estoup, A., Mortier, F., Cosson, J. F. (2005b) A spatial statistical model for
 landscape genetics. *Genetics* 170: 1261-1280.
- Haag, T., Santos, A. S., Sana, D.A., Morato, R.G., Cullen Jr, L., Crawshaw Jr, P.G., and
 Eizirik, E. (2010) The effect of habitat fragmentation on the genetic structure of a top
- 620 predator: loss of diversity and high differentiation among remnant populations of
- 621 Atlantic Forest jaguars (*Panthera onca*). *Molecular Ecology* **19**: 4906-4921.

622	Hamann, A., Wang, T. (2006) Potential effects of climate change on ecosystem and tree
623	species distribution in British Columbia. Ecology 87: 2773–2786.
624	Hebda, R.J. (1997). Impact of climate change on biogeoclimatic zones of British Columbia
625	and Yukon. Responding to global climate change in British Columbia and Yukon, 1.
626	Heller, R., Siegismund, H.R. (2009) Relationship between three measures of genetic
627	differentiation GST, DEST and G'ST: how wrong have we been? Molecular
628	<i>Ecology</i> 18 : 2080-2083.
629	Holderegger, R., Wagner, H.H. (2008) Landscape genetics. Bioscience 58: 199-207.
630	Illán, J.G., Thomas, C.D., Jones, J.A., Wong, W.K., Shirley, S.M., Betts, M.G. (2014)
631	Precipitation and winter temperature predict long-term range-scale abundance changes
632	in Western North American birds. <i>Global Change Biology</i> . 20 : 3351–3364.
633	Jost, L. (2008) GST and its relatives do not measure differentiation. Molecular Ecology 17:
634	4015-4026.
635	Legendre, P., Fortin, M-J. (2010) Comparison of the Mantel test and alternative approaches

- for detecting complex multivariate relationships in the spatial analysis of genetic
 data. *Molecular Ecology Resources* 10: 831-844.
- Levy. E., Kennington, W.J., Tomkins, J.L., LeBas, N.R. (2012) Phylogeography and
 Population Genetic Structure of the Ornate Dragon Lizard, *Ctenophorus ornatus*. *PLoS ONE* 7: e46351.
- Manel, S., Schwartz, M.K., Luikart, G., Taberlet, P. (2003) Landscape genetics: combining
 landscape ecology and population genetics. *Trends in Ecology and Evolution* 18: 189197.

- Manel, S., Holderegger, R. (2013) Ten years of landscape genetics. *Trends in Ecology and Evolution* 28: 614-621.
- Martin, K., Norris, A., Drever, M. (2006) Effects of bark beetle outbreaks on avian
 biodiversity in the British Columbia interior: Implications for critical habitat
 management. *BC Journal of Ecosystems and Management* 7:10–24.
- 649 McRae, B. (2006) Isolation by resistance. *Evolution* **60**: 1551-1561.
- Meidinger, D. Pojar, J. (1991) *Ecosystems of British Columbia*. B.C. Min. For., Victoria, BC.
 Spec. Rep. Series 6.
- Nakagawa, S., Schielzeth, H. (2013) A general and simple method for obtaining R2 from
 generalized linear mixed-effects models. *Methods in Ecology and Evolution* 4: 133–
 142.
- Parish, R. (1995) *Tree Book: Learning to recognize trees of British Columbia.* Canadian
 Forest Service 1st edition. pp 176.
- Peakall, R., Smouse, P.E. (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic
 software for teaching and research--an update. *Bioinformatics* 28: 2537-2539.
- Pritchard, J.K., Stephens, M., Donelly, P. (2000) Inference of population structure using
 multilocus genotype data. *Genetics* 155: 945-959.
- R Development Core Team. (2015) *R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.* http://www.R-project.org.
- Raymond, M. Rousset, F. (1995) GENEPOP (Version 1.2): Population genetics software for
 exact tests and ecumenicism. *Journal of Heredity* 86: 248-249.
- Rousset, F. (2008) GENEPOP'007: a complete re-implementation of the GENEPOP software
 for Windows and Linux. *Molecular Ecology Resources* 8: 103-106.

- Runde, D.E., Capen, D.E. (1987). Characteristics of northern hardwood trees used by cavitynesting birds. *Journal of Wildlife Management* 51: 217-223.
- 669 Safranyik, L., Wilson, W.R. (2006) The mountain pine beetle: a synthesis of biology,
 670 management, and impacts on lodgepole pine. Natural Resources Canada, Canadian
- 671 Forest Service, Pacific Forestry Centre, Victoria, British Columbia 304 p.
- Selkoe, K.A., Toonen, R.J. (2006) Microsatellites for ecologists: a practical guide to using and
 evaluating microsatellite markers. *Ecology Letters* 9: 615-629.
- Shafer, A.B.A, Côté, S.D., Coltman, D.W. (2010) Hot spots of genetic diversity descended
 from multiple Pleistocene refugia in an alpine ungulate. *Evolution* 65: 125-138.
- 676 Smith. S.M. (1991) The black-capped chickadee; behavioural ecology and natural history.
 677 Comstock Publishing, Ithaca, NY, USA. Pp 362.
- Smith, S.M. (1993) *Black-capped chickadee* (Parus atricapillus). *The Birds of North America*.
 A. Poole and F. Gill. Philadelphia, PA, The Birds of North America, Inc. 39.
- Sork, V.L., Waits, L. (2010) Contributions of landscape genetics–approaches, insights, and
 future potential. *Molecular Ecology*, **19**: 3489-3495.
- St. Clair, C.C., Bélisle, M., Desrochers, A., Hannon, S. (1998) Winter responses of forest birds
 to habitat corridors and gaps. *Conservation Ecology* 2: 13.
- Storfer, A., Murphy, M.A., Evans, J.S., Goldberg, C.S., Robinson, S., Spear, S.F., Dezzani, R.,
 Delmelle, E., Vierling, L., Waits, L. P. (2007). Putting the 'landscape'in landscape
 genetics. *Heredity* 98: 128-142.
- 687 Swaine, J.M. (1918) Insect injuries to forests in British Columbia. Pages 220-236 in H.N.
- 688 Whitford, R. D. Craig. The Forests of British Columbia. Commission on Conservation689 Canada. Ottawa. 409 p.

690	Unfried, T.M., Hauser, L., Marzluff, J.M. (2013) Effects of urbanization on song sparrow
691	(Melospiza melodia) population connectivity. Conservation Genetics 14: 41-53.
692	van Oort, H., Otter, K.A., Fort, K., Holschuh, C.I. (2006) Habitat quality, social dominance
693	and dawn chorus song output in black-capped chickadees. <i>Ethology</i> 112: 772–778.
694	van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M., Shipley, P. (2004) MICRO-CHECKER:
695	software for identifying and correcting genotyping errors in microsatellite data.

696 *Molecular Ecology* **4:** 535-538.

- van Strien, M.J., Keller, D., Holderegger, R. (2012) A new analytical approach to landscape
 genetic modelling: least-cost transect analysis and linear mixed models. *Molecular Ecology*, 21: 4010-4023.
- Walsh PS, Metzger DA, Higuchi R. (1991). Chelex 100 as a medium for simple extraction of
 DNA for PCR based typing from forensic material. *Biotechniques* 10: 506-513.
- Wang, T., Campbell, E.M., O'Neill, G.A., Aitken, S.N. (2012) Projecting future distributions
 of ecosystem climate niches: Uncertainties and management applications. *Forest Ecology and Management* 279: 128-140.
- Weise, C.M., Meyer, J.R. (1979) Juvenile dispersal and development of site-fidelity in the
 Black-capped Chickadee. *The Auk*, 40-55.
- With, K.A., Gardner, R.H., Turner, M.G. (1997) Landscape connectivity and population
 distributions in heterogeneous environments. *Oikos* 78: 151-169.
- 709 Woltmann, S., Kreiser, B.R., Sherry, T.W. (2012) Fine-scale genetic population structure of an
- 710 understory rainforest bird in Costa Rica. *Conservation Genetics* **13**: 925-935.
- 711 Wright, S. (1943) Isolation by distance. *Genetics* **28**(2): 114.

- Yang, R-C. (2004) A likelihood-based approach to estimating and testing for isolation by
 distance. *Evolution* 58: 1839-1845.
- Yezerinac, S., Moola, F.M. (2006) Conservation status and threats to species associated with
 old-growth forests within the range of the Northern Spotted Owl (*Strix occidentalis*
- 716 *caurina*) in British Columbia, Canada. *Biodiversity* **6**: 3-9.

Table 1. Sampling location information including site abbreviation (Abbrev.), geographical
location (latitude (Lat) and longitude (Long)) and sample size (*N*). Microsatellite summary
statistics for each population and all loci including: observed (Ho) and expected (He)

heterozygosities, number of private alleles (PA) and allelic richness (AR).

Location	Abbrev.	Lat (°N)	Long (°W)	N	Ho	He	PA	AR
Revelstoke	BCR	50.9807	-118.1817	54	0.652	0.708	4	2.66
Northern BC	NBC	54.8883	-127.7665	43	0.647	0.690	5	2.68
Cluculz Lake	CLU	53.9102	-123.5496	20	0.654	0.703	4	2.70
Fort Fraser	FF	53.9629	-124.5331	11	0.644	0.672	0	2.79
Francois Lake	FrL	54.0488	-125.6988	20	0.622	0.668	1	2.64
Fort St. James Town	FtStJ 2	54.4183	-124.2743	18	0.623	0.667	0	2.69
Hazelton	HAZ	55.2829	-128.0470	20	0.622	0.682	1	2.66
Houston	HOU	54.4043	-126.6433	18	0.620	0.666	1	2.72
Kelowna	KEL	49.9200	-119.3950	8	0.584	0.572	0	-
Northwest BC	NWBC	58.3003	-130.6677	17	0.658	0.689	2	2.63
Vancouver	VAN	49.2644	-123.0816	33	0.649	0.625	0	-
Fort St. James John Prince Research Station	FtStJ 1	54.6453	-124.3949	61	0.666	0.717	11	2.79
Prince George	PG	53.8936	-122.8289	30	0.594	0.669	1	2.42
Southern Alberta 1	SAB1	49.3455	-114.4153	30	0.683	0.677	3	2.60
Southern Alberta 2	SAB2	49.0694	-113.8561	22	0.681	0.707	5	2.7

Table 2. Landscape models and corresponding resistance values assigned to each cover type or range in CIRCUITSCAPE analyses. Model

724 hypotheses are also provided.

Model	Resistance values assigned to cover types/ ranges	Hypothesis			
Null	Uniform landscape (all cells given a value of 1)	Isolation by Distance			
	Mixed forest $= 1$				
	Broadleaf forest $= 2$				
I and acrea	Coniferous forest $= 5$	Isolation by Desistance			
Land cover	Shrubland $= 10$	Isolation by Resistance			
	Grassland/ wetland/ bryoids = 100				
	Unsuitable habitat (incl. agricultural land) = 1000				
	0 - 800 m = 1				
	801 - 1000 m = 5				
Elevation	1001 - 1500 m = 10	Isolation by Resistance			
	1501 - 2300 m = 100				
	2301 - 3454 m = 1000				
Land-elevation	Combined land cover and elevation resistance maps using "raster calculator"	Isolation by Resistance			

Table 3. Pairwise F_{ST} values (below diagonal) and harmonic mean estimates of D_{EST} (above diagonal) for 15 black-capped chickadee

726	populations based	1 on 14	1 microsatellite loci.	Bold values	indicate s	significance	after corre	ections fo	r multiple tests.
						()			

	BCR	NBC	CLU	FF	FrL	FtStJ2	HAZ	HOU	KEL	NWBC	VAN	FtStJ1	PG	SAB1	SAB2
BCR	-	0.045	0.032	0.038	0.040	0.056	0.035	0.062	0.224	0.041	0.149	0.037	0.106	0.031	0.021
NBC	0.014	-	0.015	0.018	0.030	0.043	0.029	0.048	0.217	0.043	0.162	0.043	0.091	0.015	0.009
CLU	0.017	0.020	-	0.017	0.019	0.042	0.023	0.037	0.239	0.051	0.184	0.017	0.063	0.019	0.008
FF	0.056	0.054	0.058	-	0.034	0.039	0.010	0.011	0.218	0.070	0.190	0.020	0.096	0.026	0.010
FrL	0.087	0.097	0.097	0.130	-	0.048	0.040	0.052	0.202	0.070	0.167	0.049	0.098	0.030	0.024
FtStJ2	0.088	0.094	0.100	0.129	0.159	-	0.050	0.063	0.166	0.066	0.123	0.046	0.103	0.033	0.038
HAZ	0.057	0.063	0.058	0.094	0.136	0.135	-	0.044	0.202	0.052	0.157	0.029	0.094	0.039	0.018
HOU	0.065	0.063	0.072	0.096	0.140	0.140	0.116	-	0.279	0.059	0.211	0.046	0.102	0.048	0.021
KEL	0.195	0.204	0.207	0.235	0.264	0.253	0.226	0.262	-	0.243	0.168	0.240	0.329	0.243	0.222
NWBC	0.018	0.019	0.025	0.065	0.101	0.099	0.069	0.067	0.212	-	0.175	0.050	0.103	0.048	0.043
VAN	0.172	0.183	0.189	0.217	0.246	0.234	0.218	0.234	0.316	0.188	-	0.164	0.237	0.156	0.178
FtStJ1	0.011	0.014	0.012	0.053	0.092	0.090	0.057	0.064	0.200	0.017	0.177	-	0.091	0.013	0.025
PG	0.035	0.033	0.034	0.080	0.118	0.121	0.087	0.081	0.237	0.036	0.211	0.031	-	0.073	0.043
SAB1	0.014	0.014	0.017	0.055	0.095	0.094	0.062	0.066	0.208	0.022	0.187	0.009	0.037	-	0.005
SAB2	0.013	0.013	0.019	0.056	0.092	0.094	0.061	0.065	0.201	0.021	0.183	0.013	0.030	0.012	-

Table 4. Results of maximum-likelihood population effects (MLPE) model selection after accounting for non-independence of pairwise distance observations. For all models, pairwise F_{ST} (a) and D_{EST} (b) values were the response variable. Models are ranked based on marginal R^2 value (high to low) with the best fitting model having the highest R^2 value. For each explanatory variable included in the model, values (x10⁻⁴) are presented as regression slopes \pm 95% confidence interval. Values in bold indicate significant parameter estimates

732 (i.e. 95% confidence intervals which do not overlap zero). Explanatory variables not included in the model are indicated by '--'.

<i>a</i>)	Regres	Regression Slope Est. \pm 95% Confidence Intervalsb)Regression Slope Est. \pm 95% Confidence Interval					ce Intervals				
Model	Distance	Elevation	Land cover Land-elevation M		Marginal R^2	Model	Distance	Elevation	Land cover	Land-elevation	Marginal R^2
4				$\textbf{0.83} \pm \textbf{0.04}$	0.879	9	$\textbf{0.08} \pm \textbf{0.05}$			$\textbf{0.59} \pm \textbf{0.14}$	0.711
9	0.01 ± 0.01			$\textbf{0.83} \pm \textbf{0.04}$	0.878	6	$\textbf{0.08} \pm \textbf{0.05}$		$\textbf{0.59} \pm \textbf{0.14}$		0.710
7		2.05 ± 5.42	$\textbf{0.83} \pm \textbf{0.04}$		0.875	7		$\textbf{24.19} \pm \textbf{20.31}$	$\textbf{0.65} \pm \textbf{0.14}$		0.709
6	0.01 ± 0.01		$\textbf{0.83} \pm \textbf{0.04}$		0.875	8	$\textbf{0.12} \pm \textbf{0.10}$	-17.46 ± 42.29	$\textbf{0.56} \pm \textbf{0.16}$		0.694
3			$\textbf{0.89} \pm \textbf{0.04}$		0.875	4				$\textbf{0.06} \pm \textbf{0.37}$	0.667
8	$\textbf{0.03} \pm \textbf{0.02}$	-7.38 ± 10.72	$\textbf{0.81} \pm \textbf{0.04}$		0.874	3			$\textbf{0.64} \pm \textbf{0.15}$		0.660
5	$\textbf{0.23} \pm \textbf{0.11}$	94.38 ± 45.94			0.158	5	$\textbf{0.27} \pm \textbf{0.11}$	$\textbf{-80.24} \pm \textbf{48.16}$			0.173
1	0.05 ± 0.06				0.022	1	$\textbf{0.11} \pm \textbf{0.07}$				0.129
2		$\textbf{-12.00} \pm \textbf{27.41}$			0.008	2		16.96 ± 29.46			0.022
1 Titles and legends to figures

Figure 1. Sampling locations of the black-capped chickadee (*Poecile atricapillus*) in British
Columbia (See Table 1 for abbreviations) with inferred clusters from GENELAND (*K* = 9)
denoted by the patterned circles (and colours in the online version). The nine genetic clusters are
1) NWBC, 2) NBC, 3) FtStJ1, 4) PG, 5) CLU, 6) HAZ, HOU, FF, FrL and FtStJ2, 7) BCR, 8)
VAN and KEL, and 9) SAB1 and SAB2.

7

Figure 2. Principal coordinate analysis conducted in GenAlEx based on pairwise D_{EST} values for (a) all 15 populations (coordinates 1 and 2 explained 50.59% and 17.04% of the variation respectively) and (b) after removal of populations KEL and VAN (coordinates 1 and 2 explained 31.05% and 19.93% of the variation respectively).

12

Figure 3. Map showing the resistance grid output from CIRCUITSCAPE analyses for the resistance surface of land cover and elevation combined (land-elevation) as this variable best explained genetic differentiation in other analyses. A close up of the central plateau region is included (bottom).

17

Table 1. Sampling location information including site abbreviation (Abbrev.), geographical
location (latitude (Lat) and longitude (Long)) and sample size (*N*). Microsatellite summary
statistics for each population and all loci including: observed (Ho) and expected (He)
heterozygosities, number of private alleles (PA) and allelic richness (AR).

22

Table 2. Landscape models and corresponding resistance values assigned to each cover type or
 range in CIRCUITSCAPE analyses. Model hypotheses are also provided.

25

Table 3. Pairwise F_{ST} values (below diagonal) and harmonic mean estimates of D_{EST} (above diagonal) for 15 black-capped chickadee populations based on 14 microsatellite loci. Bold values indicate significance after corrections for multiple tests.

29

Table 4. Results of maximum-likelihood population effects (MLPE) model selection after 30 accounting for non-independence of pairwise distance observations. For all models, pairwise 31 $F_{\rm ST}$ (a) and $D_{\rm EST}$ (b) values were the response variable. Models are ranked based on marginal R^2 32 value (high to low) with the best fitting model having the highest R^2 value. For each explanatory 33 variable included in the model, values $(x10^{-4})$ are presented as regression slopes \pm 95% 34 confidence interval. Values in bold indicate significant parameter estimates (i.e. 95% confidence 35 intervals which do not overlap zero). Explanatory variables not included in the model are 36 37 indicated by '--'.

38

39 Supplementary Information

Figure S1. (a) A hierarchical STRUCTURE analysis inferred six genetic groups with additional
substructuring found for FtStJ1 and SAB1, as illustrated in the histograms (right). Each vertical
line represents one individual and the colour(s) of each line represents the proportion of
assignment of that individual to each genetic group. Inferred genetic groupings (coloured pie
charts) were overlaid onto a map for better visualisation (left). Overall population assignment

45	was verified by (b) log likelihood plots (LnPr(X K)) and (c) delta K.	Runs involving only two
46	populations could not be plotted.	

47

48 Figure S21. GENELAND output including the modal number of clusters (K = 9), map of 49 population membership, and map boundaries for each of the nine clusters inferred.

50

Figure S₃₂. Maps showing the resistance grid output from CIRCUITSCAPE analyses for the
resistance surfaces (a) elevation and (b) land cover.

53

Table S1. Details of black-capped chickadee sampled. Samples in grey were removed from
analyses. Sources include Burg lab (wild), and University of Northern British Columbia
(UNBC).

57

Table S2. Repeat type (if known), primer sequence, allele size range (bp), number of alleles (*Na*)
and MgCl₂ concentration for each microsatellite locus used to genotype black-capped chickadee
individuals. * indicates new primer designed during this study.

61

Table S3. Expected (*He*) and observed (*Ho*) heterozygosities, total number of alleles (*Na*) for 15 populations of black-capped chickadees at 14 microsatellite loci. Summaries are provided for across loci and across populations. Bold values indicate deviations from HWE. See Table 1 for sampling site abbreviations.

66

Tables S4. A comparison of the summary statistics after the removal of feather sampled
populations KEL and VAN and underrepresented microsatellite loci. These include a) mean
observed and expected heterozygosities across populations and b) loci as well as c) pairwise FST
values.

71

72 **Table S54.** Pairwise F'_{ST} values for 15 black-capped chickadee populations based on 14 73 microsatellite loci with significant values in bold ($P \le 0.05$).

(b)

(a)

(b)

Population	ID	Location	Lat (N)	Long (W)
BCR	BCR001	Revelstoke, BC	50.981	-118.182
BCR	BCR002	Revelstoke, BC	50.981	-118.182
BCR	BCR003	Revelstoke, BC	50.983	-118.179
BCR	BCR004	Mt Revelstoke Ski Chalet, BC	51.007	-118.191
BCR	BCR005	Mt Revelstoke Ski Chalet, BC	51.007	-118.191
BCR	BCR006	Mt Revelstoke Ski Chalet, BC	51.014	-118.203
BCR	BCR007	Mt Revelstoke Ski Chalet, BC	51.014	-118.203
BCR	BCR008	Mt Revelstoke Ski Chalet, BC	51.006	-118.182
BCR	BCR009	Revelstoke field, BC	50.982	-118.180
BCR	BCR010	Revelstoke Resort, BC	50.970	-118.172
BCR	BCR011	Revelstoke Resort, BC	50.970	-118.174
BCR	BCR012	Begbie Falls Revelstoke, BC	50.944	-118.205
BCR	BCR013	Mount MacPherson Revelstoke, BC	50.942	-118.223
BCR	BCR014	9 mile Revelstoke, BC	50.897	-118.114
BCR	BCR015	Smokey Bear Revelstoke, BC	50.989	-118.278
BCR	BCR016	Frisby Rd Revelstoke, BC	51.066	-118.194
BCR	BCR017	Frisby Rd Revelstoke, BC	51.066	-118.194
BCR	BCR018	Frisby Rd Revelstoke, BC	51.052	-118.219
BCR	BCR019	Frisby Ridge Rd Revelstoke, BC	51.059	-118.206
BCR	BCR020	Frisby Ridge Rd Revelstoke, BC	51.059	-118.206
BCR	BCR021	Frisby Ridge Rd Revelstoke, BC	51.141	-118.209
BCR	BCR022	Frisby Ridge Rd Revelstoke, BC	51.059	-118.223
BCR	BCR023	Frisby Ridge Rd Revelstoke, BC	51.062	-118.224
BCR	BCR024	Frisby Ridge Rd Revelstoke, BC	51.062	-118.224
BCR	BCR025	Frisby Ridge Rd Revelstoke, BC	51.062	-118.224
BCR	BCR026	Frisby Ridge Rd Revelstoke, BC	51.065	-118.226
BCR	BCR027	Frisby Ridge Rd Revelstoke, BC	51.063	-118.232
BCR	BCR028	Frisby Ridge Rd Revelstoke, BC	51.063	-118.232
BCR	BCR029	Frisby Ridge Rd Revelstoke, BC	51.049	-118.229
BCR	BCR030	Frisby Ridge Rd Revelstoke, BC	51.049	-118.229
BCR	BCR031	Frisby Ridge Rd Revelstoke, BC	51.052	-118.226
BCR	BCR032	Frisby Ridge Rd Revelstoke, BC	51.056	-118.225
BCR	BCR033	West Bridge, Revelstoke BC	51.003	-118.218
BCR	BCR034	Machete Island 2, Revelstoke, BC	50.971	-118.202
BCR	BCR035	Westside RD 2, Revelstoke BC	51.013	-118.237
BCR	BCR036	Westside RD 2, Revelstoke BC	51.013	-118.237
BCR	BCR037	Bridge Creek, Revelstoke BC	50.994	-118.172
BCR	BCR038	Westside RD 1, Revelstoke BC	51.004	-118.228
BCR	BCR039	Williamson Lake, Revelstoke, BC	50.970	-118.175
BCR	BCR040	Williamson Lake, Revelstoke, BC	50.970	-118.175
BCR	BCR041	Williamson Lake, Revelstoke, BC	50.970	-118.175
BCR	BCR042	Williamson Lake, Revelstoke, BC	50.970	-118.175
BCR	BCR043	Revelstoke City Park, BC	50.984	-118.198
BCR	BCR044	Revelstoke City Park, BC	50.984	-118.198
BCR	BCR045	Revelstoke City Park, BC	50.984	-118.198
BCR	BCR046	Begbie Dyke, Revelstoke, BC	50.996	-118.315

BCR	BCR047	Begbie Dyke, Revelstoke, BC	50.996	-118.315
BCR	BCR048	Begbie Dyke, Revelstoke, BC	50.996	-118.315
BCR	BCR049	Begbie Dyke, Revelstoke, BC	50.996	-118.315
BCR	BCR050	Revelstoke City Park, BC	50.984	-118.198
BCR	BCR051	Westside Road, Revelstoke, BC	51.004	-118.228
BCR	BCR052	Westside Road, Revelstoke, BC	51.004	-118.228
BCR	BCR053	Westside Road, Revelstoke, BC	51.004	-118.228
BCR	BCR054	Westside Road, Revelstoke, BC	51.004	-118.228
NBC	CBC001	Smithers, BC	54.785	-127.151
NBC	CBC002	Smithers, BC	54.785	-127.151
NBC	CBC003	Smithers, BC	54.785	-127.151
NBC	CBC004	Smithers, BC	54.785	-127.151
NBC	CBC005	Smithers, BC	54.785	-127.151
NBC	CBC006	Smithers, BC	54.785	-127.151
NBC	CBC007	Smithers, BC	54.785	-127.151
NBC	CBC008	Smithers, BC	54.785	-127.151
NBC	CBC009	Smithers, BC	54.785	-127.151
NBC	CBC010	Smithers, BC	54.785	-127.151
NBC	CBC011	Smithers, BC	54.785	-127.151
NBC	CBC012	Smithers, BC	54.785	-127.151
NBC	CBC013	Smithers, BC	54.785	-127.151
NBC	CBC014	Smithers, BC	54.785	-127.151
NBC	CBC015	Smithers, BC	54.785	-127.151
NBC	CBC016	Smithers, BC	54.785	-127.151
NBC	CBC017	Smithers, BC	54.785	-127.151
NBC	CBC018	Smithers, BC	54.785	-127.151
NBC	CBC019	Smithers, BC	54.785	-127.151
NBC	CBC020	Smithers, BC	54.785	-127.151
NBC	CBC021	Smithers, BC	54.785	-127.151
NBC	CBC022	Smithers, BC	54.785	-127.151
NBC	CBC023	Smithers, BC	54.785	-127.151
NBC	CBC024	Smithers, BC	54.785	-127.151
NBC	CBC025	3928 Mountainview Ave, Thornhill BC	54.506	-128.543
NBC	CBC026	Ferry Island, BC	54.512	-128.574
NBC	CBC027	Stockner's Residence; Kispiox BC	55.468	-127.735
NBC	CBC028	Stockner's Residence; Kispiox BC	55.468	-127.735
NBC	CBC029	Tyee Lake, Telkwa BC	54.707	-127.040
NBC	CBC030	Tyee Lake, Telkwa BC	54.707	-127.040
NBC	CBC031	Tyee Lake, Telkwa BC	54.707	-127.040
NBC	CBC032	4567 Tyee Lake Rd., Telkwa BC	54.725	-127.036
NBC	CBC033	4567 Tyee Lake Rd., Telkwa BC	54.725	-127.036
NBC	CBC034	4567 Tyee Lake Rd., Telkwa BC	54.725	-127.036
NBC	CBC035	4567 Tyee Lake Rd., Telkwa BC	54.725	-127.036
NBC	CBC036	4567 Tyee Lake Rd., Telkwa BC	54.725	-127.036
NBC	CBC037	4567 Tyee Lake Rd., Telkwa BC	54.725	-127.036
NBC	CBC038	4567 Tyee Lake Rd., Telkwa BC	54.725	-127.036
NBC	CBC039	4567 Tyee Lake Rd., Telkwa BC	54.725	-127.036

NBC	CBC040	4567 Tyee Lake Rd., Telkwa BC	54.725	-127.036
NBC	CBC041	4567 Tyee Lake Rd., Telkwa BC	54.725	-127.036
NBC	CBC042	4567 Tyee Lake Rd., Telkwa BC	54.725	-127.036
NBC	CBC043	4567 Tyee Lake Rd., Telkwa BC	54.725	-127.036
CLU	CBC-CLU131	Cluculz Lake- Brookside camp, BC	53.913	-123.593
CLU	CBC-CLU132	Cluculz Lake- Brookside camp, BC	53.913	-123.593
CLU	CBC-CLU133	Cluculz Lake - West Meier Road, BC	53.875	-123.638
CLU	CBC-CLU134	Cluculz Lake - West Meier Road, BC	53.875	-123.638
CLU	CBC-CLU135	Cluculz Lake - West Meier Road, BC	53.875	-123.638
CLU	CBC-CLU136	Cluculz Lake - West Meier Road, BC	53.875	-123.638
CLU	CBC-CLU137	Finmore Rd - Cluculz Lake, BC	53.940	-123.580
CLU	CBC-CLU138	Finmore Rd - Cluculz Lake, BC	53.950	-123.573
CLU	CBC-CLU139	Cobb Lake, Cluculz, BC	53.962	-123.557
CLU	CBC-CLU140	Cobb Lake Road, Cluculz, BC	53.962	-123.557
CLU	CBC-CLU141	Cobb Lake Road, Cluculz, BC	53.962	-123.557
CLU	CBC-CLU142	Cobb Lake Road, Cluculz, BC	53.962	-123.566
CLU	CBC-CLU143	Finmore Rd - Cluculz Lake, BC	53.935	-123.576
CLU	CBC-CLU144	Beverly Lake Forest Road, Cluculz, BC	53.923	-123.575
CLU	CBC-CLU145	Tapping Road, Cluculz, BC	53.885	-123.573
CLU	CBC-CLU146	Tapping Road, Cluculz, BC	53.885	-123.573
CLU	CBC-CLU147	Tapping Road, Cluculz, BC	53.890	-123.521
CLU	CBC-CLU148	Lloyd Road, Cluculz, BC	53.868	-123.494
CLU	CBC-CLU149	Lloyd Road, Cluculz, BC	53.875	-123.502
CLU	CBC-CLU150	Lloyd Road, Cluculz, BC	53.875	-123.502
FF	CBC-FF120	Lily Lake Road - Fort Fraser, BC	53.963	-124.533
FF	CBC-FF121	Lily Lake Road - Fort Fraser, BC	53.963	-124.533
FF	CBC-FF122	Lily Lake Road - Fort Fraser, BC	53.963	-124.533
FF	CBC-FF123	Lily Lake Road - Fort Fraser, BC	53.963	-124.533
FF	CBC-FF124	Lily Lake Road - Fort Fraser, BC	53.963	-124.533
FF	CBC-FF125	Lily Lake Road - Fort Fraser, BC	53.963	-124.533
FF	CBC-FF126	Lily Lake Road - Fort Fraser, BC	53.963	-124.533
FF	CBC-FF127	Lily Lake Road - Fort Fraser, BC	53.963	-124.533
FF	CBC-FF128	Lily Lake Road - Fort Fraser, BC	53.963	-124.533
FF	CBC-FF129	Lily Lake Road - Fort Fraser, BC	53.963	-124.533
FF	CBC-FF130	Lily Lake Road - Fort Fraser, BC	53.963	-124.533
FrL	CBC-FrL062	17224 Colleymount Rd, Francois Lake, BC	54.040	-125.991
FrL	CBC-FrL063	17224 Colleymount Rd, Francois Lake, BC	54.040	-125.991
FrL	CBC-FrL064	Colleymount Road, Francois Lake, BC	54.040	-125.987
FrL	CBC-FrL065	Colleymount Road, Francois Lake, BC	54.040	-125.987
FrL	CBC-FrL066	Colleymount Road, Francois Lake, BC	54.040	-125.987
FrL	CBC-FrL067	Colleymount Road, Francois Lake, BC	54.040	-125.987
FrL	CBC-FrL068	Colleymount Road, Francois Lake, BC	54.040	-125.987
FrL	CBC-FrL069	30867 Collymount Road, Francois Lake, BC	54.019	-125.184
FrL	CBC-FrL070	30867 Collymount Road, Francois Lake, BC	54.019	-125.184
FrL	CBC-FrL071	30867 Collymount Road, Francois Lake, BC	54.019	-125.184
FrL	CBC-FrL072	30867 Collymount Road, Francois Lake, BC	54.019	-125.184
FrL	CBC-FrL073	Collymount Road, Francois Lake, BC	54.005	-126.265

FrL	CBC-FrL074	Collymount Road, Francois Lake, BC	54.005	-126.265
FrL	CBC-FrL075	Collymount Road, Francois Lake, BC	54.005	-126.265
FrL	CBC-FrL076	Collymount Road, Francois Lake, BC	54.005	-126.265
FrL	CBC-FrL077	Collymount Road, Francois Lake, BC	54.005	-126.265
FrL	CBC-FrL078	Collymount Road, Francois Lake, BC	54.005	-126.265
FrL	CBC-FrL079	Collymount Road, Francois Lake, BC	54.005	-126.265
FrL	CBC-FrL080	Collymount Road, Francois Lake, BC	54.005	-126.265
FrL	CBC-FrL081	Collymount Road, Francois Lake, BC	54.005	-126.265
FtStJ2	CBC-FSJ 044	Necoslie Road, Fort St James, BC	54.416	-124.220
FtStJ2	CBC-FSJ 045	Necoslie Road, Fort St James, BC	54.416	-124.220
FtStJ2	CBC-FSJ 046	Necoslie Road, Fort St James, BC	54.416	-124.220
FtStJ2	CBC-FSJ 047	4494 Sowchea Road, Fort St James, BC	54.427	-124.314
FtStJ2	CBC-FSJ 048	4494 Sowchea Road, Fort St James, BC	54.427	-124.314
FtStJ2	CBC-FSJ 049	4494 Sowchea Road, Fort St James, BC	54.427	-124.314
FtStJ2	CBC-FSJ 050	4494 Sowchea Road, Fort St James, BC	54.427	-124.314
FtStJ2	CBC-FSJ 051	4494 Sowchea Road, Fort St James, BC	54.427	-124.314
FtStJ2	CBC-FSJ 052	4494 Sowchea Road, Fort St James, BC	54.427	-124.314
FtStJ2	CBC-FSJ 053	4494 Sowchea Road, Fort St James, BC	54.427	-124.314
FtStJ2	CBC-FSJ 054	4494 Sowchea Road, Fort St James, BC	54.427	-124.314
FtStJ2	CBC-FSJ 055	4494 Sowchea Road, Fort St James, BC	54.427	-124.314
FtStJ2	CBC-FSJ 056	Hanley, Fort St James, BC	54.402	-124.287
FtStJ2	CBC-FSJ 057	4712 Sowchea Road, Fort St James, BC	54.426	-124.317
FtStJ2	CBC-FSJ 058	4712 Sowchea Road, Fort St James, BC	54.426	-124.317
FtStJ2	CBC-FSJ 059	4712 Sowchea Road, Fort St James, BC	54.426	-124.317
FtStJ2	CBC-FSJ 060	4712 Sowchea Road, Fort St James, BC	54.426	-124.317
FtStJ2	CBC-FSJ 061	4712 Sowchea Road, Fort St James, BC	54.426	-124.317
HAZ	CBC-HAZ082	Kispiox Salmon River Rd, BC	55.281	-127.669
HAZ	CBC-HAZ083	Kispiox Salmon River Rd, BC	55.281	-127.669
HAZ	CBC-HAZ084	New Hazelton College St., BC	55.251	-128.453
HAZ	CBC-HAZ085	New Hazelton College St., BC	55.251	-128.453
HAZ	CBC-HAZ086	New Hazelton College St., BC	55.251	-128.453
HAZ	CBC-HAZ087	New Hazelton College St., BC	55.251	-128.453
HAZ	CBC-HAZ088	New Hazelton College St., BC	55.251	-128.453
HAZ	CBC-HAZ089	New Hazelton College St., BC	55.251	-128.453
HAZ	CBC-HAZ090	New Hazelton College St., BC	55.251	-128.453
HAZ	CBC-HAZ091	New Hazelton College St., BC	55.251	-128.453
HAZ	CBC-HAZ092	New Hazelton College St., BC	55.251	-128.453
HAZ	CBC-HAZ093	New Hazelton College St., BC	55.251	-128.453
HAZ	CBC-HAZ094	New Hazelton College St., BC	55.251	-128.453
HAZ	CBC-HAZ095	New Hazelton College St., BC	55.251	-128.453
HAZ	CBC-HAZ096	New Hazelton College St., BC	55.251	-128.453
HAZ	CBC-HAZ097	New Hazelton College St., BC	55.251	-128.453
HAZ	CBC-HAZ098	New Hazelton College St., BC	55.251	-128.453
HAZ	CBC-HAZ099	Swannell Dr, New Hazelton, BC	55.264	-127.652
HAZ	CBC-HAZ100	Swannell Dr, New Hazelton, BC	55.264	-127.652
HAZ	CBC-HAZ101	Swannell Dr, New Hazelton, BC	55.264	-127.652
HOU	CBC-HOU102	Houston - Shady Campground, BC	54.416	-126.633

HOU	CBC-HOU103	Houston - Shady Campground, BC	54.416	-126.633
HOU	CBC-HOU104	Houston - Shady Campground, BC	54.416	-126.633
HOU	CBC-HOU105	Houston - Shady Campground, BC	54.416	-126.633
HOU	CBC-HOU106	Houston - Shady Campground, BC	54.416	-126.633
HOU	CBC-HOU107	Houston - Shady Campground, BC	54.416	-126.633
HOU	CBC-HOU108	Houston - Shady Campground, BC	54.416	-126.633
HOU	CBC-HOU109	Houston - Shady Campground, BC	54.416	-126.633
HOU	CBC-HOU110	Houston - Shady Campground, BC	54.416	-126.633
HOU	CBC-HOU111	Houston - Shady Campground, BC	54.416	-126.633
HOU	CBC-HOU112	Houston - Shady Campground, BC	54.416	-126.633
HOU	CBC-HOU113	Houston - Shady Campground, BC	54.416	-126.633
HOU	CBC-HOU114	Houston - Shady Campground, BC	54.416	-126.633
HOU	CBC-HOU115	Houston - Duck Pond, BC	54.391	-126.656
HOU	CBC-HOU116	Houston - Duck Pond, BC	54.391	-126.656
HOU	CBC-HOU117	Houston - Duck Pond, BC	54.391	-126.656
HOU	CBC-HOU118	Houston - Shady Campground, BC	54.416	-126.633
HOU	CBC-HOU119	Houston - Shady Campground, BC	54.416	-126.633
KEL	KEL001	Mission Creek, Kelowna, BC	49.867	-119.439
KEL	KEL002	Mission Creek, Kelowna, BC	49.867	-119.439
KEL	KEL003	Mission Creek, Kelowna, BC	49.867	-119.439
KEL	KEL004	Mill Creek, Kelowna, BC	49.972	-119.364
KEL	KEL005	Mill Creek, Kelowna, BC	49.972	-119.364
KEL	KEL006	Mill Creek, Kelowna, BC	49.972	-119.364
KEL	KEL007	Mill Creek, Kelowna, BC	49.972	-119.364
KEL	KEL008	Mission Creek, Kelowna BC	49.876	-119.430
NWBC	NWBC001	Telegraph Creek, BC	58.401	-131.212
NWBC	NWBC002	Telegraph Creek, BC	58.401	-131.212
NWBC	NWBC003	Telegraph Creek, BC	57.909	-131.224
NWBC	NWBC004	Telegraph Creek, BC	57.909	-131.224
NWBC	NWBC005	Dease Lake, BC	58.507	-130.023
NWBC	NWBC006	Dease Lake, BC	58.430	-129.987
NWBC	NWBC007	Dease Lake, BC	58.430	-129.987
NWBC	NWBC008	Dease Lake, BC	58.430	-129.987
NWBC	NWBC009	Dease Lake, BC	58.430	-129.987
NWBC	NWBC010	Dease Lake, BC	58.430	-129.987
NWBC	NWBC011	Dease Lake, BC	58.430	-129.987
NWBC	NWBC012	Dease Lake, BC	58.430	-129.987
NWBC	NWBC013	Telegraph Creek, BC	57.913	-131.210
NWBC	NWBC014	Telegraph Creek, BC	57.913	-131.210
NWBC	NWBC015	Telegraph Creek, BC	57.913	-131.210
NWBC	NWBC016	Telegraph Creek, BC	57.913	-131.210
NWBC	NWBC017	Telegraph Creek, BC	57.913	-131.210
VAN	VAN001	Jericho Park, Vancouver	49.269568	-123.195325
VAN	VAN002	Jericho Park, Vancouver	49.271095	-123.19865
VAN	VAN003	Stanley park, Vancouver, BC	49.294	-123.143
VAN	VAN004	Stanley park, Vancouver, BC	49.294	-123.143
VAN	VAN005	Stanley park, Vancouver	49.293847	-123.142856

VAN	VAN006	Memorial South, Vancouver	49.229783	-123.086267
VAN	VAN007	Memorial South, Vancouver, BC	49.230	-123.086
VAN	VAN008	Memorial South, Vancouver	49.229783	-123.086267
VAN	VAN009	Pacific Spirit, Vancouver, BC	49.270	-123.237
VAN	VAN010	Pacific Spirit, Vancouver, BC	49.270	-123.237
VAN	VAN011	Pacific Spirit, Vancouver, BC	49.270	-123.237
VAN	VAN012	Pacific Spirit, Vancouver, BC	49.270	-123.237
VAN	VAN013	Queen Elizabeth, Vancouver, BC	49.241	-123.116
VAN	VAN014	Queen Elizabeth, Vancouver, BC	49.241	-123.116
VAN	VAN015	Queen Elizabeth, Vancouver, BC	49.243	-123.113
VAN	VAN016	Queen Elizabeth, Vancouver, BC	49.243	-123.113
VAN	VAN017	Burnaby Lake, Vancouver, BC	49.240	-122.952
VAN	VAN018	Burnaby Lake, Vancouver, BC	49.240	-122.952
VAN	VAN019	Burnaby Lake, Vancouver, BC	49.240	-122.952
VAN	VAN020	Burnaby Lake, Vancouver, BC	49.244	-122.937
VAN	VAN021	Burnaby Lake, Vancouver, BC	49.244	-122.937
VAN	VAN022	Burnaby Lake, Vancouver, BC	49.245	-122.939
VAN	VAN023	Burnaby Lake, Vancouver, BC	49.245	-122.939
VAN	VAN024	Trout Lake, Vancouver, BC	49.256	-123.061
VAN	VAN025	Trout Lake, Vancouver, BC	49.256	-123.061
VAN	VAN026	Centre, Vancouver, BC	49.226	-123.021
VAN	VAN027	Centre, Vancouver, BC	49.226	-123.021
VAN	VAN028	Centre, Vancouver, BC	49.226	-123.021
VAN	VAN029	Centre, Vancouver, BC	49.226	-123.021
VAN	VAN030	Centre, Vancouver, BC	49.227	-123.014
VAN	VAN031	Centre, Vancouver, BC	49.227	-123.014
VAN	VAN032	Centre, Vancouver, BC	49.226	-123.016
VAN	VAN033	Centre, Vancouver, BC	49.226	-123.016
FtStJ1	BC-MI-037	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-038	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-039	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-040	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-041	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-042	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-043	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-044	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-045	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-046	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-047	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-048	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-049	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-050	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-051	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-052	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-053	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-054	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-055	John Prince Research Station, Ft St James BC	54.645	-124.395

FtStJ1	BC-MI-056	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-057	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-058	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-059	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-060	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-061	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-062	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-063	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-064	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-065	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-066	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-067	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-068	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-069	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-070	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-071	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-155	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-156	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-157	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-158	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-159	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-160	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-161	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-162	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-163	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-164	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-165	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-166	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-167	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-168	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-169	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-170	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-171	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-172	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-173	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-174	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-175	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-177	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-178	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-179	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-180	John Prince Research Station, Ft St James BC	54.645	-124.395
FtStJ1	BC-MI-184	John Prince Research Station, Ft St James BC	54.645	-124.395
PG	BC-PU-01	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-02	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-03	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-04	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-05	UNBC, Prince George BC	53.894	-122.829

PG	BC-PU-06	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-07	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-08	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-09	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-10	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-11	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-12	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-13	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-14	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-15	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-16	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-17	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-18	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-19	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-20	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-21	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-22	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-23	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-24	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-25	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-26	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-27	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-28	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-29	UNBC, Prince George BC	53.894	-122.829
PG	BC-PU-30	UNBC, Prince George BC	53.894	-122.829
SAB1	SAB001	West Castle, AB	49.345	-114.415
SAB1	SAB002	West Castle, AB	49.345	-114.415
SAB1	SAB003	West Castle, AB	49.345	-114.415
SAB1	SAB004	West Castle, AB	49.345	-114.415
SAB1	SAB005	West Castle, AB	49.345	-114.415
SAB1	SAB006	West Castle, AB	49.345	-114.415
SAB1	SAB007	West Castle, AB	49.345	-114.415
SAB1	SAB008	West Castle, AB	49.345	-114.415
SAB1	SAB009	West Castle, AB	49.345	-114.415
SAB1	SAB010	West Castle, AB	49.345	-114.415
SAB1	SAB011	West Castle, AB	49.345	-114.415
SAB1	SAB012	West Castle, AB	49.345	-114.415
SAB1	SAB013	West Castle, AB	49.345	-114.415
SAB1	SAB014	West Castle, AB	49.345	-114.415
SAB1	SAB015	West Castle, AB	49.345	-114.415
SAB1	SAB016	West Castle, AB	49.345	-114.415
SAB1	SAB017	West Castle, AB	49.345	-114.415
SAB1	SAB018	Syncline Ski Area, AB	49.391	-114.340
SAB1	SAB019	Syncline Ski Area, AB	49.391	-114.340
SAB1	SAB020	Syncline Ski Area, AB	49.391	-114.340
SAB1	SAB021	Syncline Ski Area, AB	49.391	-114.340
SAB1	SAB022	Syncline Ski Area, AB	49.391	-114.340

SAB1	SAB023	Syncline Ski Area, AB	49.391	-114.340
SAB1	SAB024	Field station cabin, AB	49.349	-114.411
SAB1	SAB025	North Lost Creek Rd, TWP 60-1, AB	49.472	-114.463
SAB1	SAB026	North Lost Creek Rd, TWP 60-1, AB	49.472	-114.463
SAB1	SAB027	North Lost Creek Rd, TWP 60-1, AB	49.472	-114.463
SAB1	SAB028	North Lost Creek Rd, TWP 60-1, AB	49.472	-114.463
SAB1	SAB029	North Lost Creek Rd, AB	49.472	-114.463
SAB1	SAB030	North Lost Creek Rd, AB	49.472	-114.463
SAB2	SAB031	Hwy 6, Waterton, S AB	49.106	-113.821
SAB2	SAB032	Hwy 6, Waterton, S AB	49.106	-113.821
SAB2	SAB033	Hwy 6, Waterton, S AB	49.106	-113.821
SAB2	SAB034	Hwy 6, Waterton, S AB	49.106	-113.821
SAB2	SAB035	Crandall Lake Campground, Waterton, S AB	49.097	-113.955
SAB2	SAB036	Crandall Lake Campground, Waterton, S AB	49.097	-113.955
SAB2	SAB037	Hwy 6, Waterton, S AB	49.084	-113.802
SAB2	SAB038	Hwy 6, Waterton, S AB	49.084	-113.802
SAB2	SAB039	Hwy 6, Waterton, S AB	49.084	-113.802
SAB2	SAB040	Hwy 6, Waterton, S AB	49.076	-113.791
SAB2	SAB041	Hwy 6, Waterton, S AB	49.076	-113.791
SAB2	SAB042	Belly River Campground, Waterton, S AB	49.022	-113.687
SAB2	SAB043	Belly River Campground, Waterton, S AB	49.022	-113.687
SAB2	SAB044	Marquis Hole Picnic Area, Waterton, S AB	49.069	-113.856
SAB2	SAB045	Marquis Hole Picnic Area, Waterton, S AB	49.069	-113.856
SAB2	SAB046	Marquis Hole Picnic Area, Waterton, S AB	49.069	-113.856
SAB2	SAB047	Marquis Hole Picnic Area, Waterton, S AB	49.069	-113.856
SAB2	SAB048	Marquis Hole Picnic Area, Waterton, S AB	49.069	-113.856
SAB2	SAB049	Marquis Hole Picnic Area, Waterton, S AB	49.069	-113.856
SAB2	SAB050	Marquis Hole Picnic Area, Waterton, S AB	49.069	-113.856
SAB2	SAB051	Marquis Hole, Waterton, S AB	49.069	-113.856
SAB2	SAB052	Belly River Campground Waterton, AB	49.023	-113.687

Source	Band/ Museum ID
Wild	2490-57684
Wild	2490-57685
Wild	bcch 3
Wild	2490-57686
Wild	2490-57687
Wild	2490-57688
Wild	2490-57689
Wild	2490-57690
Wild	2490-57691
Wild	2490-57692
Wild	2490-57692
Wild	2490-57694
Wild	2490-57695
Wild	2490-57695
Wild	2490-37090
Wild	2490-576097
Wild	2490-57600
Wild	2490-37099
Wild	2490-37700
Wild	2490-57701
Wild	2490-37702
WIId Wild	2490-37703
Wild	2490-37704
WIId Wild	2490-37703
Wild	2490-37700
Wild	2490-37707
Wild	2490-37700
Wild	2490-37709
Wild	2490-57711
Wild	2490-57712
Wild	2490-57712
Wild	2490-57714
Wild	2490-37714
Wild	2500-94928
Wild	2500-94930
Wild	2500-94931
Wild	2500-94932
Wild	2500-94933
Wild	2300-94937
Wild	3111-40303
Wild	3111-40300
Wild	3111-40307
Wild	3111-40300
Wild	3111-40309
Wild	3111-40310
Wild	3111-40311
VV 11(1	

Wild	3111-48313
Wild	3111-48314
Wild	3111-48315
Wild	3111-48316
Wild	3111-48317
Wild	3111-48318
Wild	3111-48319
Wild	3111-48320
Wild	2520-39893
Wild	2529-39882
Wild	2520-39883
Wild	2520-29884
Wild	2520-39885
Wild	2520-39886
Wild	2520-39887
Wild	2520-39888
Wild	2520-39889
Wild	2520-39890
Wild	2520-39891
Wild	2520-39892
Wild	2520-39898
Wild	2520-39894
Wild	2520-39899
Wild	2520-39900
Wild	2490-57761
Wild	2490-57762
W1ld	2490-57763
Wild	2490-57764
Wild	2490-57765
Wild	2490-57766
Wild	2490-57767
W1Id	2490-57768
W1IQ	2500-94901
Wild	2500-94902
Wild	2500-94903
Wild	2500-94904
Wild	2500-94900
Wild	2500-94907
Wild	2500-94915
Wild	2500-94916
Wild	2500-94917
Wild	2500-94918
Wild	2500-94919
Wild	2500-94920
Wild	2500-94909
Wild	2500-94910

Wild	2500-94911
Wild	2500-94912
Wild	2500-94913
Wild	2500-94914
Wild	2560-28981
Wild	2560-28982
Wild	2560-28983
Wild	2560-28984
Wild	2560-28985
Wild	2560-28986
Wild	2560-28987
Wild	2560-28988
Wild	2560-28989
Wild	2560-28990
Wild	2560-28991
Wild	2560-28992
Wild	2560-28993
Wild	2560-28994
Wild	2560-28995
Wild	2560-28996
Wild	2560-28997
Wild	2560-28998
Wild	2560-29000
Wild	3111-48304
Wild	2560-28970
Wild	2560-28971
Wild	2560-28972
Wild	2560-28973
Wild	2560-28974
Wild	2560-28975
Wild	2560-28976
Wild	2560-28977
Wild	2560-28978
Wild	2560-28979
Wild	2560-28980
W1Id	2560-28912
W1Id	2560-28913
Wild	2560 28914
Wild	2560 28016
Wild	2560 28917
Wild	2560-28917
Wild	2560-28918
Wild	2560-28919
Wild	2560-28920
Wild	2560-28922
Wild	2560-28923

Wild	2560-28924
Wild	2560-28925
Wild	2560-28926
Wild	2560-28927
Wild	2560-28928
Wild	2560-28929
Wild	2560-28930
Wild	2560-28931
Wild	2500-94994
Wild	2500-94995
Wild	2500-94996
Wild	2500-94997
Wild	2500-94998
Wild	2500-94999
Wild	2500-95000
Wild	2560-28901
Wild	2560-28902
Wild	2560-28903
Wild	2560-28904
Wild	2560-28905
Wild	2560-28906
Wild	2560-28907
Wild	2560-28908
Wild	2560-28909
Wild	2560-28910
Wild	2560-28911
Wild	2560-28932
W1IQ	2560-28933
WIIG	2500-28954
Wild	2560-28955
Wild	2560 28027
Wild	2560 28937
Wild	2560-28938
Wild	2560-28939
Wild	2560-28941
Wild	2560-28942
Wild	2560-28943
Wild	2560-28944
Wild	2560-28945
Wild	2560-28946
Wild	2560-28947
Wild	2560-28948
Wild	2560-28949
Wild	2560-28950
Wild	2560-28951
Wild	2560-28952

Wild	2560-28953
Wild	2560-28954
Wild	2560-28955
Wild	2560-28956
Wild	2560-28957
Wild	2560-28958
Wild	2560-28959
Wild	2560-28960
Wild	2560-28961
Wild	2560-28962
Wild	2560-28963
Wild	2560-28964
Wild	2560-28967
Wild	2560-28966
Wild	2560-28965
Wild	2560-28968
Wild	2560-28969
UNBC	2590-61272
UNBC	2590-61273
UNBC	2590-61274
UNBC	2590-61275
UNBC	2590-61276
UNBC	2590-61277
UNBC	2590-61278
Wild	2710-78331
Wild	2520-39865
Wild	2520-39866
Wild	2520-39867
Wild	2520-39868
Wild	2520-39874
Wild	2520-39875
Wild	2520-39876
Wild	2520-39877
Wild	2520-39878
Wild	2520-39879
Wild	2520-39880
Wild	2520-39881
Wild	2520-39859
Wild	2520-39860
Wild	2520-39861
Wild	2520-39862
Wild	2520-39863
Wild	2590-61239
Wild	2590-61240
Wild	2590-61241
Wild	Not Banded #1
Wild	2590-61242

Wild	2590-61243
Wild	2590-61244
Wild	2590-61245
Wild	Not Banded #2
Wild	2590-61246
Wild	2590-61247
Wild	2590-61248
Wild	2590-61249
Wild	2590-61250
Wild	2590-61251
Wild	2590-61252 #1
Wild	2590-61252 #2
Wild	2590-61254
Wild	2590-61255
Wild	2590-61256
Wild	2590-61257
Wild	2590-61258/59
Wild	2590-61260
Wild	2590-61261
Wild	2590-61262
Wild	2590-61263
Wild	2590-61264
Wild	2590-61265
Wild	2590-61266
Wild	2590-61267
Wild	2590-61268
Wild	2590-61269
Wild	2590-61270
UNBC	2350-75681
UNBC	2350-75926
UNBC	2350-75727
UNBC	2350-75703
UNBC	1950-36368
UNBC	2350-76006
UNBC	1950-36334
UNBC	2350-75916
UNBC	2350-75732
UNBC	1950-36327
UNBC	2350-75921
UNBC	2350-75920
UNBC	2350-75919
UNBC	1950-36308
UNBC	1950-36307
UNBC	1950-36329
UNBC	1950-36302
UNBC	2350-75908
UNBC	2350-75729

UNBC	1950-36309
UNBC	1950-36339
UNBC	1950-36349
UNBC	1950-36354
UNBC	1950-36340
UNBC	2350-75924
UNBC	1950-36301
UNBC	2350-75911
UNBC	1950-36342
UNBC	2350-75933
UNBC	2350-76009
UNBC	2350-75939
UNBC	2350-76082
UNBC	2350-75938
UNBC	2350-75931
UNBC	2350-76015
UNBC	2590-61093
UNBC	2590-61094
UNBC	2590-61096
UNBC	2590-61097
UNBC	1950-36344
UNBC	2590-61098
UNBC	2590-61099
UNBC	2590-61100
UNBC	2350-75979
UNBC	2350-75802
UNBC	2350-75803
UNBC	2350-75804
UNBC	2350-75981
UNBC	2359-75980
UNBC	2350-75699
UNBC	2350-75805
UNBC	2350-75807
UNBC	2350-75808
UNBC	2350-76030
UNBC	2350-75801
UNBC	2590-61108
UNBC	2350-75857
UNBC	2350-75852
UNBC	2350-75853
UNBC	2350-75854
UNBC	2350-75856
UNBC	1950-36098
UNBC	1950-36100
UNBC	1950-36213
UNBC	1950-36214
UNBC	1950-36217

UNBC	1950-36218
UNBC	1950-36220
UNBC	1950-36227
UNBC	1950-36228
UNBC	1950-36229
UNBC	1950-36240
UNBC	1950-36252
UNBC	1950-36257
UNBC	1950-36263
UNBC	1950-36264
UNBC	1950-36157
UNBC	1950-36164
UNBC	1950-36177
UNBC	1950-36223
UNBC	1950-36294
UNBC	1950-36295
UNBC	1950-36296
UNBC	1950-36298
UNBC	1950-36300
UNBC	2350-75601
UNBC	2350-75602
UNBC	2350-75603
UNBC	2350-75604
UNBC	2350-75605
UNBC	2350-75606
Wild	2490-57633
Wild	2490-57634
Wild	2490-57635
Wild	2490-57636
Wild	2490-57637
Wild	2490-57638
Wild	2490-57639
Wild	2490-57646
Wild	2490-57647
Wild	2490-57649
Wild	2490-57650
Wild	2490-57651
Wild	2490-57652
Wild	2490-57653
Wild	2490-57654
Wild	2490-57655
Wild	2490-57656
Wild	2490-57659
Wild	2490-57660
Wild	2490-57661
W1ld	2490-57662
Wild	2490-57663

Wild	2490-57664
Wild	2490-57673
Wild	2490-57677
Wild	2490-57678
Wild	2490-57679
Wild	2490-57680
Wild	2490-57682
Wild	2490-57683
Wild	2490-57715
Wild	2490-57716
Wild	2490-57717
Wild	2490-57718
Wild	2490-57719
Wild	2490-57721
Wild	2490-57722
Wild	2490-57723
Wild	2490-57724
Wild	2490-57725
Wild	2490-57726
Wild	2490-57727
Wild	bcch 43
Wild	2490-57728
Wild	2490-57729
Wild	2490-57730
Wild	2490-57731
Wild	2490-57732
Wild	2490-57733
Wild	2490-57734
Wild	2490-57737
Wild	А

Locus	Repeat type	Sequence (5' to 3')	Size range (bp)	Na	MgCl ₂ (mM)
PAT MP 2-14F	-	GAACAGATAAAGCCAAATTAC	125-167	19	2
PAT MP 2-14R		TAGTGAATGCTTGATTTCTTTG			
PAT MP 2-43F	-	ACAGGTAGTCAGAAATGGAAAG	141-211	28	1.5
PAT MP 2-43R		GTATCCAGAGTCTTTGCTGATG			
Escu6F	-	CATAGTGATGCCCTGCTAGG	120-248	26	1.5
Escu6R		GCAAGTGCTCCTTAATATTTGG			
Titgata02F	$(GATA)_{12}$	ATTGCTTGATATTTGAAAGCATA	116-276	17	2
Titgata02R		TTGTCTTTTGGGTTGCCTGA			
Titgata39F	$(GATA)_{10}$	CATGTATTTTCCAAAAGTAAATAT	222-258	11	2
Titgata39R		CTGCTATTCTGCAAACTTGTGG			
CcaTgu11F	-	TGCTTAGGAAATAGGAAGCACA	212-218	4	2
CcaTgu11R		CTGCAACTTAAGCARRGTTATGA			
PmanTAGAn71F	$(TAGG)_6(TAGA)_{11}$	TCAGCCTCCAAGGAAAACAG	157-193	10	2.5
PmanTAGAn71R		GCATAAGCAACACCATGCAG			
PmanTAGAn45F	(TGA) ₁₀	CCCCTGGCTCTTTCATATCC	320-407	26	2
PmanTAGAn45R		GACAGGTGTTGGCACAAGG			
Ase18F	(GT) ₁₂	ATCCAGTCTTCGCAAAAGCC	188-220	8	2.5
Ase18R		TGCCCCAGAGGGAAGAAG			
Cuµ28F	(CA) ₁₂	GAGGCACAGAAATGTGAATT	182-186	3	2.5
Cuµ28R		TAAGTAGAAGGACTTGATGGCT			
Ppi2F	-	CACAGACCATTCGAAGCAGA	324-488	46	2.5
Ppi2R		GCTCCGATGGTGAATGAAGT			
VeCr05F	$(AC)_8$	ACACACTTATGTGCATGGGCT	288-340	4	2.5
VeCr05R		ATATTTCAGGTATGGGTTTGGTTC			
CtC101-F	(CATC) ₈	GTCCAGTAGGTAGGTGTGATG	232-284	12	2.5
CtC101-R		TTATTTAGGTGCCAGAGAGATG			
Pij02F	(GT) ₂₃	CACACCTACCTCATGGATCT	168-258	35	2.5
Pii02Rnew*		CTGCATCAACTCATGTCCTG			

Reference

Otter et al., 1998

Otter et al., 1998

Hanotte et al., 1994

Wang et al., 2005

Wang et al., 2005

Olano Marin et al., 2010

Saladin et al., 2003

Saladin et al., 2003

Richardson et al., 2000

Gibbs et al., 1999

Martinez et al., 1999

Tarvin, 2006

Stenzler et al., 2004

Saito et al., 2005

		PAT MP-14	Titgata39	Escu6	Titgata02	PAT MP-43	Ase18	PmanTAGAn 71	Cuµ28
	Na	12	9	16	14	14	6	8	3
BCR	Но	0.600	0.593	0.852	0.774	0.769	0.370	0.759	0.566
	He	0.647	0.691	0.911	0.854	0.856	0.338	0.782	0.496
	Na	11	7	19	14	17	6	8	3
NBC	Но	0.711	0.744	0.833	0.814	0.907	0.256	0.674	0.372
	Не	0.658	0.742	0.916	0.852	0.906	0.234	0.751	0.543
~	Na	7	7	16	11	13	3	6	3
CLU	Ho	0.750	0.800	1.000	0.800	0.950	0.250	0.700	0.421
	Не	0.685	0.765	0.901	0.865	0.864	0.226	0.715	0.445
	Na	5	6	10	10	9	2	5	3
FF	Ho	0.556	0.400	0.900	1.000	1.000	0.167	0.900	0.700
	Не	0.673	0.690	0.875	0.883	0.846	0.153	0.700	0.565
	Na	3	6	15	10	12	4	8	3
FrL	Ho	0.500	0.800	0.650	0.900	0.950	0.450	0.800	0.400
	Не	0.524	0.663	0.891	0.859	0.884	0.448	0.778	0.521
	Na	3	7	12	11	14	3	8	3
FtStJ 2	Ho	0.176	0.706	0.706	1.000	0.889	0.333	0.765	0.778
	He	0.403	0.775	0.874	0.893	0.889	0.290	0.765	0.554
	Na	5	9	13	11	13	2	8	3
HAZ	Но	0.500	0.950	0.750	0.950	1.000	0.050	0.650	0.400
	He	0.540	0.821	0.886	0.801	0.878	0.049	0.760	0.521
	Na	8	6	15	10	14	3	7	2
HOU	Но	0.714	0.800	0.722	0.933	0.833	0.313	0.857	0.353
	Не	0.804	0.691	0.907	0.873	0.887	0.275	0.827	0.457
	Na	3	4	8	-	6	2	4	2
KEL	Но	0.571	0.667	0.857	-	0.857	0.167	0.750	0.200
	He	0.439	0.722	0.847	-	0.776	0.153	0.750	0.420
	Na	7	9	12	8	8	4	5	2
NWBC	Ho	0.824	0.824	0.824	0.882	0.706	0.294	0.765	0.353
	Не	0.720	0.754	0.891	0.773	0.775	0.346	0.721	0.484
	Na	5	3	13	-	8	4	6	3
VAN	Ho He	0.520	0.333 0.573	0.850	-	0.826	$0.500 \\ 0.400$	0.882 0.787	0.667 0.571
		01100	01070	0.000		01772	01100	01101	01071
	Na	16	8	18	14	17	6	8	3
1311	H0 II-	0.760	0.833	0.891	0.900	0.733	0.262	0.847	0.383
	не	0./41	0.739	0.912	0.875	0.000	0.200	0.781	0.438
D C	Na	11	7	17	11	14	5	6	3
PG	Ho	0.364	0.607	0.583	0.478	0.481	0.357	0.750	0.690
	Не	0.748	0.795	0.898	0.849	0.860	0.528	0.633	0.499
GAD1	Na	10	6	20	11	13	2	7	3
SAB1	Ho	0.655	0.833	0.833	0.893	0.900	0.200	0.759	0.533
	Не	0.640	0.686	0.902	0.839	0.882	0.180	0.727	0.455
	Na	7	8	16	10	13	3	8	3
SAB2	Ho	0.611	0.909	0.909	0.857	0.818	0.227	0.773	0.455

	He	0.702	0.791	0.912	0.815	0.863	0.241	0.778	0.538
Average for each	Na	8	7	15	10	12	4	7	3
Average for each	Но	0.587	0.720	0.811	0.745	0.841	0.280	0.775	0.485
locus	He	0.626	0.728	0.894	0.735	0.856	0.275	0.750	0.502

Ppi2	PmanTAGA n45	CcaTgu11	VeCr05	CtC-101	Pij02	Pop. mean across all loci
24	20	3	3	9	17	11
0.745	0.900	0.389	0.184	0.887	0.744	0.652
0.932	0.900	0.494	0.329	0.804	0.876	0.708
23	16	3	2	8	19	11
0.757	0.762	0.286	0.200	0.907	0.829	0.647
0.839	0.843	0.431	0.224	0.844	0.882	0.690
16	16	3	2	9	16	9
0.750	0.579	0.250	0.350	0.850	0.700	0.654
0.807	0.896	0.501	0.439	0.838	0.900	0.703
8	-	2	2	8	13	6
0.333	-	0.300	0.111	1.000	1.000	0.644
0.861	-	0.455	0.278	0.850	0.914	0.672
-	-	2	3	6	14	7
-	-	0.200	0.278	0.750	0.786	0.622
-	-	0.495	0.285	0.801	0.870	0.668
		2				0
-	-	3	2	9	15	8
-	-	0.500	0.000	0.833	0.786	0.623
-	-	0.551	0.245	0.843	0.918	0.667
12	-	2	2	7	14	8
0.333	-	0.600	0.316	0.750	0.833	0.622
0.907	-	0.480	0.499	0.805	0.915	0.682
11	-	2	1	10	15	8
0.667	-	0.222	0.000	0.778	0.867	0.620
0.833	-	0.346	0.000	0.880	0.880	0.666
-	-	3	2	4	-	4
-	-	0.750	0.400	0.625	-	0.584
-	-	0.531	0.480	0.602	-	0.572
				_		
13	-	3	2	7	13	8
0.563	-	0.588	0.000	0.824	0.882	0.658
0.859	-	0.469	0.291	0.817	0.860	0.689
		4	2	0		6
-	-	4	0 240	0 882	-	0 649
-	-	0.789	0.240	0.882	-	0.625
		0.007	0.505	0.004		0.025
26	16	4	2	10	22	12
0.846	0.647	0.492	0.138	0.800	0.786	0.666
0.896	0.872	0.511	0.348	0.817	0.923	0.717
2	5	3	2	9	9	7
1.000	1.000	0.621	0.069	0.571	0.750	0.594
0.500	0.750	0.499	0.238	0.815	0.750	0.669
9	15	2	2	10	19	9
0.826	0.833	0.467	0.167	0.800	0.862	0.683
0.813	0.877	0.464	0.299	0.851	0.861	0.677
16	12	3	2	11	14	0
0.667	0.727	0 364	0.318	0.955	0 947	0.681
	··· - ·				~~~ • • •	5.001

0.909	0.819	0.501	0.268	0.874	0.892	0.707
11	8	3	2	8	13	
0.499	0.422	0.454	0.185	0.814	0.718	
0.610	0.456	0.489	0.306	0.816	0.763	

a) Average number of alleles (Na), observed and expected heterozygosities (Ho, He) across populations for each microsatellite locus.

	PAT MP-		Titgata39		Escu6		Titgata02		PAT MP-		Ase18		PmanTAGAn71		Cuµ28		Ppi2		PmanTAGAn4		CcaTgu11		VeCr05		CtC-101		Pij02	
	+	-	+	-	+		+	-	+	-	+	-	+	-	+	-	+	-	+	-	+		+	-	+		+	-
Na	8	8	7	7	15	15	10	11	12	13	4	3	7	7	3	3	11	12	8	9	3	3	2	2	8	9	13	15
Ho	0.587	0.594	0.720	0.754	0.811	0.804	0.745	0.860	####	0.841	0.280	0.272	0.775	0.769	0.485	0.493	0.499	0.576	0.422	0.487	####	0.406	0.185	0.164	0.814	0.823	0.718	0.829
He	0.626	0.653	0.728	0.740	0.894	0.898	0.735	0.849	####	0.867	0.275	0.275	0.750	0.747	0.502	0.503	0.610	0.704	0.456	0.526	####	0.477	0.306	0.288	0.816	0.834	0.763	0.880
⁺includi ⁻KEL ar	ng popu Id VAN	ulation remo	s KEL : ved	and VA	N	-					-				•		-		-		•		-			-		•

b) Average number of alleles (Na), observed and expected heterozygosities (Ho, He) across loci for each population.

	BCR		CBC		CLU		FF		FrL		FtStJ2		HAZ		HOU		KEL		NWBC		VAN		FtStJ1		1 PG		SAB1		SAB2	
	+	х	+	х	+	X	+	х	+	х	+	х	+	х	+	х	+	х	+	х	+	х	+	х	+	х	+	х	+	х
Na	11	8	11	8	9	7	6	5	7	6	8	6	8	6	8	7	4	4	8	6	6	6	12	9	7	8	9	8	9	7
Но	0.652	0.597	0.647	0.589	0.654	0.632	0.644	0.603	0.622	0.547	0.623	0.569	0.622	0.597	0.620	0.559	0.584).584	0.658	0.600	0.649	0.649	0.666	0.614	0.594	0.509	0.683	0.615	0.681	0.634
He	0.708	0.635	0.690	0.625	0.703	0.638	0.672	0.608	0.668	0.629	0.667	0.619	0.682	0.624	0.666	0.607	0.572).572	0.689	0.627	0.625	0.625	0.717	0.647	0.669	0.651	0.677	0.609	0.707	0.647
+inclu	ding all	lloci																	•											•

xunderrepresented loci removed
c) A comparison of calculated pairwise F_{ST} values after removing populations KEL and VAN (above diagonal) and underrepresented loci (below diagonal). Bold values indicate significance after corrections for multiple tests.

BCR NBC CLU FF FrL FtStJ2 HAZ HOU KEL NWBC VAN FtStJ1 PG SAB1 SA BCR - 0.014 0.017 0.059 0.096 0.097 0.061 0.069 0.018 0.011 0.036 0.014 0.036 NBC 0.013 - 0.021 0.057 0.107 0.104 0.068 0.067 0.020 0.014 0.036 0.015 0.015 0.015 0.021 - 0.061 0.107 0.112 0.062 0.077 0.025 0.013 0.036 0.018 0.015 0.015 0.021 - 0.147 0.104 0.106 0.069 0.056 0.087 0.059 0.04 FrL 0.053 0.061 0.063 - 0.189 0.157 0.162 0.112 0.102 0.133 0.105 0.15 FtStJ2 0.053 0.058 0.067 0.069 0.068 - 0.		1														
BCR - 0.014 0.017 0.059 0.096 0.097 0.061 0.069 0.018 0.011 0.036 0.014 0.04 NBC 0.013 - 0.021 0.057 0.107 0.104 0.068 0.067 0.020 0.014 0.034 0.015 0.01 CLU 0.016 0.020 - 0.061 0.107 0.112 0.062 0.077 0.025 0.013 0.036 0.018 0.015 0.021 - 0.149 0.147 0.104 0.106 0.069 0.056 0.087 0.059 0.04 Fr 0.053 0.061 0.063 - 0.189 0.157 0.162 0.112 0.102 0.133 0.105 0.04 FtStJ2 0.053 0.058 0.067 0.061 0.094 - 0.155 0.163 0.110 0.099 0.138 0.105 0.16 0.170 0.188 0.105 0.167 0.205 - 0.072		BCR	NBC	CLU	FF	FrL	FtStJ2	HAZ	HOU	KEL	NWBC	VAN	FtStJ1	PG	SAB1	SAB2
NBC 0.013 - 0.021 0.057 0.107 0.104 0.068 0.067 0.020 0.014 0.034 0.015 0.01 CLU 0.016 0.020 - 0.061 0.107 0.112 0.062 0.077 0.025 0.013 0.036 0.018 0.015 FF 0.018 0.015 0.021 - 0.149 0.147 0.104 0.106 0.069 0.056 0.087 0.059 0.0 FrL 0.053 0.061 0.063 0.063 - 0.189 0.157 0.162 0.112 0.102 0.133 0.105 0.05 FrL 0.053 0.061 0.063 0.063 - 0.155 0.163 0.110 0.099 0.138 0.103 0.105 0.05 HAZ 0.020 0.025 0.021 0.024 0.069 0.068 - 0.131 0.074 0.060 0.096 0.066 0.01 HAZ 0.028 0.025 0.036 0.026 0.073 0.074 0.048 - <	BCR	-	0.014	0.017	0.059	0.096	0.097	0.061	0.069		0.018		0.011	0.036	0.014	0.014
CLU 0.016 0.020 - 0.061 0.107 0.112 0.062 0.077 0.025 0.013 0.036 0.018 0.015 FF 0.018 0.015 0.021 - 0.149 0.147 0.104 0.106 0.069 0.056 0.087 0.059 0.075 FrL 0.053 0.061 0.063 0.063 - 0.189 0.157 0.162 0.112 0.102 0.133 0.105 0.057 FrL 0.053 0.061 0.063 0.094 - 0.155 0.163 0.110 0.099 0.138 0.103 0.061 HAZ 0.020 0.025 0.021 0.024 0.069 0.068 - 0.131 0.074 0.060 0.096 0.066 0.011 HOU 0.028 0.025 0.026 0.073 0.074 0.048 - 0.072 0.068 0.088 0.071 0.04 KEL 0.168 0.177 0.182 0.177 0.208 0.167 0.205 - 0.018 <	NBC	0.013	-	0.021	0.057	0.107	0.104	0.068	0.067		0.020		0.014	0.034	0.015	0.013
FF 0.018 0.015 0.021 - 0.149 0.147 0.104 0.106 0.069 0.056 0.087 0.059 0.057 FrL 0.053 0.061 0.063 0.063 - 0.189 0.157 0.162 0.112 0.102 0.133 0.105 0.1 FtStJ2 0.053 0.058 0.067 0.061 0.094 - 0.155 0.163 0.110 0.099 0.138 0.103 0.1 HAZ 0.020 0.025 0.021 0.024 0.069 0.068 - 0.131 0.074 0.060 0.096 0.066 0.0 HOU 0.028 0.025 0.036 0.026 0.073 0.074 0.048 - 0.072 0.068 0.088 0.071 0.0 KEL 0.168 0.177 0.182 0.177 0.208 0.196 0.167 0.205 - - 0.018 0.038 0.022 0.0 VAN 0.144 0.154 0.162 0.157 0.155 0.157 0.157 <t< td=""><td>CLU</td><td>0.016</td><td>0.020</td><td>-</td><td>0.061</td><td>0.107</td><td>0.112</td><td>0.062</td><td>0.077</td><td></td><td>0.025</td><td></td><td>0.013</td><td>0.036</td><td>0.018</td><td>0.020</td></t<>	CLU	0.016	0.020	-	0.061	0.107	0.112	0.062	0.077		0.025		0.013	0.036	0.018	0.020
FrL 0.053 0.061 0.063 0.063 - 0.189 0.157 0.162 0.112 0.102 0.133 0.105 0. FtStJ2 0.053 0.058 0.067 0.061 0.094 - 0.155 0.163 0.110 0.099 0.138 0.103 0.1 HAZ 0.020 0.025 0.021 0.024 0.069 0.068 - 0.131 0.074 0.060 0.099 0.138 0.103 0.1 HAZ 0.020 0.025 0.021 0.024 0.069 0.068 - 0.131 0.074 0.060 0.099 0.138 0.103 0.1 HOU 0.028 0.025 0.036 0.026 0.073 0.074 0.048 - 0.072 0.068 0.088 0.071 0.0 KEL 0.168 0.177 0.182 0.177 0.208 0.196 0.167 0.205 - - 0.018 0.038 0.022 0.0 VAN 0.144 0.154 0.162 0.157 0.155	FF	0.018	0.015	0.021	-	0.149	0.147	0.104	0.106		0.069		0.056	0.087	0.059	0.059
FtStJ2 0.053 0.058 0.067 0.061 0.094 - 0.155 0.163 0.110 0.099 0.138 0.103 0.1 HAZ 0.020 0.025 0.021 0.024 0.069 0.068 - 0.131 0.074 0.060 0.096 0.066 0.0 HOU 0.028 0.025 0.036 0.026 0.073 0.074 0.048 - 0.072 0.068 0.096 0.066 0.0 HOU 0.028 0.025 0.036 0.026 0.073 0.074 0.048 - 0.072 0.068 0.088 0.071 0.0 KEL 0.168 0.177 0.182 0.177 0.208 0.196 0.167 0.205 - - - 0.018 0.038 0.022 0.0 0.0 0.018 0.038 0.022 0.0 0.0 0.018 0.038 0.022 0.0 0.0 0.018 0.018 0.018 0.012 0.032 0.00 0.0 0.0 0.018 0.018 0.012 0.032 0.00	FrL	0.053	0.061	0.063	0.063	-	0.189	0.157	0.162		0.112		0.102	0.133	0.105	0.101
HAZ 0.020 0.025 0.021 0.024 0.069 0.068 - 0.131 0.074 0.060 0.096 0.066 0.0 HOU 0.028 0.025 0.036 0.026 0.073 0.074 0.048 - 0.072 0.068 0.088 0.071 0.0 KEL 0.168 0.177 0.182 0.177 0.208 0.196 0.167 0.205 - - 0.018 0.038 0.022 0.0 NWBC 0.017 0.017 0.024 0.028 0.067 0.065 0.032 0.030 0.186 - 0.018 0.038 0.022 0.0 VAN 0.144 0.154 0.162 0.157 0.188 0.175 0.157 0.175 0.264 0.160 - - - 0.032 0.032 0.009 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.032 0.030 - 0.032 0.032 0.009 0.0 0.0 <td>FtStJ2</td> <td>0.053</td> <td>0.058</td> <td>0.067</td> <td>0.061</td> <td>0.094</td> <td>-</td> <td>0.155</td> <td>0.163</td> <td></td> <td>0.110</td> <td></td> <td>0.099</td> <td>0.138</td> <td>0.103</td> <td>0.104</td>	FtStJ2	0.053	0.058	0.067	0.061	0.094	-	0.155	0.163		0.110		0.099	0.138	0.103	0.104
HOU 0.028 0.025 0.036 0.026 0.073 0.074 0.048 - 0.072 0.068 0.088 0.071 0.071 KEL 0.168 0.177 0.182 0.177 0.208 0.196 0.167 0.205 -	HAZ	0.020	0.025	0.021	0.024	0.069	0.068	-	0.131		0.074		0.060	0.096	0.066	0.065
KEL 0.168 0.177 0.182 0.177 0.208 0.196 0.167 0.205 - 0.018 0.038 0.022 0.0 NWBC 0.017 0.017 0.024 0.028 0.067 0.065 0.032 0.030 0.186 - 0.018 0.038 0.022 0.0 VAN 0.144 0.154 0.162 0.157 0.188 0.175 0.157 0.175 0.264 0.160 - <t< td=""><td>HOU</td><td>0.028</td><td>0.025</td><td>0.036</td><td>0.026</td><td>0.073</td><td>0.074</td><td>0.048</td><td>-</td><td></td><td>0.072</td><td></td><td>0.068</td><td>0.088</td><td>0.071</td><td>0.069</td></t<>	HOU	0.028	0.025	0.036	0.026	0.073	0.074	0.048	-		0.072		0.068	0.088	0.071	0.069
NWBC 0.017 0.017 0.024 0.028 0.067 0.065 0.032 0.030 0.186 0.018 0.038 0.022 0.04 VAN 0.144 0.154 0.162 0.157 0.188 0.175 0.157 0.157 0.264 0.160 -	KEL	0.168	0.177	0.182	0.177	0.208	0.196	0.167	0.205	-						
VAN 0.144 0.154 0.162 0.157 0.188 0.175 0.175 0.264 0.160 - FtStJ1 0.009 0.013 0.011 0.015 0.057 0.055 0.019 0.026 0.173 0.016 0.148 - 0.032 0.032 0.009 0.040 0.080 0.084 0.048 0.041 0.209 0.034 0.181 0.030 - 0.038 0.040 PG 0.013 0.014 0.016 0.017 0.060 0.059 0.025 0.029 0.182 0.021 0.159 0.009 0.037 - 0.038 0.040 SAB1 0.013 0.014 0.016 0.055 0.057 0.022 0.026 0.173 0.021 0.159 0.009 0.037 - 0.038 0.040 SAB2 0.011 0.013 0.016 0.055 0.057 0.022 0.026 0.173 0.021 0.153 0.012 0.029 0.011	NWBC	0.017	0.017	0.024	0.028	0.067	0.065	0.032	0.030	0.186	-		0.018	0.038	0.022	0.022
FtStJ1 0.009 0.013 0.011 0.015 0.057 0.055 0.019 0.026 0.173 0.016 0.148 - 0.032 0.009 0.0 PG 0.032 0.032 0.032 0.040 0.080 0.084 0.048 0.041 0.209 0.034 0.181 0.030 - 0.038 0.0 SAB1 0.013 0.014 0.016 0.017 0.060 0.059 0.025 0.029 0.182 0.021 0.159 0.009 0.037 - 0.0 SAB2 0.011 0.013 0.016 0.016 0.055 0.057 0.022 0.026 0.173 0.021 0.159 0.012 0.029 0.011	VAN	0.144	0.154	0.162	0.157	0.188	0.175	0.157	0.175	0.264	0.160	-				
PG 0.032 0.032 0.032 0.040 0.080 0.084 0.048 0.041 0.209 0.034 0.181 0.030 - 0.038 0.4 SAB1 0.013 0.014 0.016 0.017 0.060 0.059 0.025 0.029 0.182 0.021 0.159 0.009 0.037 - 0.4 SAB2 0.011 0.013 0.016 0.055 0.057 0.022 0.26 0.173 0.021 0.153 0.012 0.029 0.011	FtStJ1	0.009	0.013	0.011	0.015	0.057	0.055	0.019	0.026	0.173	0.016	0.148	-	0.032	0.009	0.013
SAB1 0.013 0.014 0.016 0.017 0.060 0.059 0.025 0.029 0.182 0.021 0.159 0.009 0.037 - 0.013 SAB2 0.011 0.013 0.016 0.055 0.057 0.022 0.026 0.173 0.021 0.153 0.012 0.029 0.011	PG	0.032	0.032	0.032	0.040	0.080	0.084	0.048	0.041	0.209	0.034	0.181	0.030	-	0.038	0.031
SAB2 0.011 0.013 0.018 0.016 0.055 0.057 0.022 0.026 0.173 0.021 0.153 0.012 0.029 0.011	SAB1	0.013	0.014	0.016	0.017	0.060	0.059	0.025	0.029	0.182	0.021	0.159	0.009	0.037	-	0.012
	SAB2	0.011	0.013	0.018	0.016	0.055	0.057	0.022	0.026	0.173	0.021	0.153	0.012	0.029	0.011	-

	BCR	NBC	CLU	FF	FrL	FtStJ2	HAZ	HOU
BCR	-							
NBC	0.044	-						
CLU	0.052	0.063	-					
FF	0.172	0.169	0.180	-				
FrL	0.271	0.301	0.301	0.403	-			
FtStJ2	0.273	0.293	0.312	0.399	0.494	-		
HAZ	0.178	0.197	0.181	0.292	0.422	0.418	-	
HOU	0.201	0.196	0.223	0.297	0.434	0.436	0.360	-
KEL	0.605	0.634	0.644	0.731	0.821	0.787	0.703	0.812
NWBC	0.054	0.059	0.076	0.201	0.314	0.307	0.213	0.208
VAN	0.536	0.568	0.588	0.675	0.764	0.727	0.676	0.726
FtStJ1	0.034	0.042	0.039	0.165	0.287	0.281	0.177	0.198
PG	0.108	0.102	0.107	0.248	0.365	0.376	0.271	0.251
SAB1	0.043	0.045	0.054	0.172	0.294	0.291	0.192	0.206
SAB2	0.041	0.041	0.060	0.173	0.285	0.291	0.191	0.201

0.658 -0.983 0.582 -0.622 0.054 0.550 -0.735 0.112 0.655 0.096 -0.646 0.067 0.579 0.028 0.115 -0.036 0.625 0.066 0.569 0.041 0.092 -

-