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Abstract

Quantum gravity is one of the interesting fields in contemporary physics which is

still in progress. The purpose of quantum gravity is to present a quantum descrip-

tion for spacetime at 10−33cm or find the ‘quanta’ of gravitational interaction.. At

present, the most viable theory to describe gravitational interaction is general rela-

tivity which is a classical theory. Semi-classical quantum gravity or quantum field

theory in curved spacetime is an approximation to a full quantum theory of grav-

ity. This approximation considers gravity as a classical field and matter fields are

quantized. One interesting phenomena in semi-classical quantum gravity is Hawking

radiation. Hawking radiation was derived by Stephen Hawking as a thermal emission

of particles from the black hole horizon. In this thesis we obtain the spectrum of

Hawking radiation using a new method.

Vacuum is defined as the possible lowest energy state which is filled with pairs of

virtual particle-antiparticle. Vacuum polarization is a consequence of pair creation

in the presence of an external field such as an electromagnetic or gravitational field.

Vacuum polarization in the vicinity of a black hole horizon can be interpreted as

the cause of the emission from black holes known as Hawking radiation. In this

thesis we try to obtain the Hawking spectrum using this approach. We re-examine

vacuum polarization of a scalar field in a quasi-local volume that includes the horizon.

We study the interaction of a scalar field with the background gravitational field of

the black hole in the desired quasi-local region. The quasi-local volume is a hollow

cylinder enclosed by two membranes, one inside the horizon and one outside the

horizon. The net rate of particle emission can be obtained as the difference of the

vacuum polarization from the outer boundary and inner boundary of the cylinder.

Thus we found a new method to derive Hawking emission which is unitary and well

defined in quantum field theory.
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Chapter 1

Introduction

There are four fundamental forces in nature:

• electromagnetic force: is a long range force that acts on charged particles.

For example, electromagnetism is responsible for binding electrons to the nu-

cleus to form the atom. The electromagnetic force between two charged particles

is a result of the exchange of photons. Therefore, photons are mediators of the

electromagnetic force between charged particles.

• weak nuclear force: is a very short range interaction≈ 10−18m [1]. Weak

interaction acts on all fermions which are spin-1/2 elementary particles. The

mediators of the weak interaction are W+, W− and Z bosons which are known

as weak bosons.

• strong nuclear force: acts on some fermions and bosons. Fermions are divided

into two main categories, baryons and leptons. Also, main types of bosons are

mesons and gauge bosons. Baryons and mesons collectively are named hadrons.

Strong interaction affects hadrons. It is a short range interaction≈ 10−15m, [1],

and is the force that binds protons and neutrons to form a nucleus.
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• gravity: is the force between massive bodies. It is long range and the graviton

which has not been detected yet is responsible to mediate gravity.

Based on Grand Unified Theory(GUT), strong nuclear force, weak nuclear force and

electromagnetic force are distinguishable at low temperature or equivalently at low

energy. However, these three forces would be indistinguishable at high temperature.

Among these forces gravity is the strange one. Gravity is not unified with the other

three forces of nature and there is no successful theory to quantize it until now. In

this thesis we are going to study gravitational interaction and will review theories

that have been suggested to describe gravity.

Newton’s description of gravity was the most acceptable theory of gravity until

the 20th century. He justified gravity as a mutual force between massive bodies which

is inversely proportional to the square of the distance between them. Newtonian me-

chanics is valid at the limit of low speeds, also the theory is frame-dependent. Newto-

nian laws of mechanics are invariant for inertial observers which are non-accelerating

observers. In order to define a preferred frame of reference among the infinite number

of inertial frames Newton proposed the concept of absolute space. However, absolute

space contradicts the third law of Newton and therefore was rejected by physicists.

In 1905 Einstein announced his special theory of relativity that could solve the

problem of preferred inertial frame of Newtonian mechanics by postulating that all

inertial frames are the same to do all physical experiments. Special relativity is

applicable for inertial frames or equivalently for flat spacetime. In order to include

accelerating frames or the curved spacetime a generalization of special relativity is

required.

In 1916 Einstein announced his general theory of relativity as a generalization

of special theory of relativity. Some principles such as Mach’s principle, equivalence

principle and so on, inspired Einstein to formulate his general theory of relativity.
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This theory provided a new approach to the concept of space and time. In general

relativity, time is observer-dependent and is not universal. Also, gravity is justified

as due to the geometry of spacetime not as a force between massive objects like the

Newtonian perspective.

In chapter two we will review the Newtonian mechanics and its shortcomings.

We will mention the main statements of special relativity and the reasons that it was

proposed. Since the concept of space and time is changed, the transformation that re-

lates different coordinate systems should also change. We will show that the Galilean

transformation in Newtonian mechanics has been replaced by Lorentz transforma-

tions in special relativity. Then we describe a basic concept in Newtonian mechanics

which is mass of a body. We introduce different types of mass and will see that there

is a unique mass associated to an object and all different types of mass refer to a

single entity. We will also describe different definitions of mass in special relativity.

A brief review of the principles that motivated Einstein to postulate his general

relativity as a generalization of special relativity is presented in chapter two. We shall

talk about the key ideas of Mach’s principle, principle of equivalence and principle of

general covariance and explain how they helped Einstein to build his theory.

We will see that the principle of general covariance implies that the physical laws

must have tensorial form in order to be invariant in all frames of reference. There-

fore, our next task would be to study tensors. Tensors live on manifolds which can be

interpreted as the background spacetime. We will discuss rank of tensors, their trans-

formation rules and then will introduce important tensors in general relativity. The

most essential tensor in general relativity is Einstein tensor Gµν and we will describe

all the tensors required to understand Einstein tensor. Einstein field equations which
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are a set of equations to describe gravity as a result of the curvature of spacetime are

Gµν = Rµν −
1

2
gµνR =

8πGTµν
c2

,

we will talk about all the terms in the above equation and will see that field equations

manifestly express that the cause of gravity is geometry of spacetime. We shall finish

chapter two by explaining geodesics which are the generalization of the straight lines

of the flat spacetime and demonstrate possible trajectories that physical particles can

take in spacetimes with non vanishing curvatures.

We already expressed that Einstein’s field equations are alternatives to Newton’s

law of gravity. Thus, in order to understand the nature of gravity one has to solve

the field equations. The first solution for these equations for the case Tµν = 0 that

describes the field equations in the vacuum was found by Karl Schwarzschild. Vacuum

field equation describes the case where there are no matter fields in the region of

spacetime under consideration. Chapter three is devoted to the analysis of the vacuum

solution of the field equations. The solution of the vacuum equation depicts a black

hole which is a singularity in spacetime and has strong gravitational field. A black

hole affects its surrounding spacetime as a result of its strong gravitational field. A

classical black hole tends to absorb whatever is in its gravitational field and even light

can not escape the gravitational field of a black hole. There is a surface associated

with each black hole know as the event horizon. Nothing can go out of the event

horizon and no observer outside the event horizon can get information from inside

the horizon. We will see that for a Schwarzschild black hole the event horizon is

located at r = 2GM (c=1), where r shows the radial distance from the center of the

hole, M is the mass of the black hole and G is the gravitational constant.
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We will explain the concept of singularity that describes the infinities of the

spacetime line element. In chapter three we will explain the singularities of the

Schwarzschild spacetime. We shall observe that r = 2GM is a coordinate singularity

and is removable while r = 0 is an intrinsic singularity related to the geometry of

spacetime. Coordinate singularity at r = 2GM can become a regular point by ap-

plying a proper coordinate transformation. Eddington-Finkelstein coordinates were

suggested by Arthur Eddington and David Finkelstein in order to remove the sin-

gularity at r = 2GM . This coordinate is well-behaved at the horizon, however, the

singularity at r = 0 still exists in Eddington-Finkelstein coordinates. Therefore, the

Schwarzschild solution can be extended to r = 0 by choosing Eddington-Finkelstein

coordinates.

The next interesting topic that is covered in this chapter is the Kruskal solution

and then Penrose diagrams. The Kruskal coordinates are coordinates which are reg-

ular everywhere outside the singularity at r = 0. We will introduce the Kruskal

coordinates and will write the Schwarzschild line element in terms of them.

Now that the coordinate singularity is removed, we will describe a way to study the

infinities of spacetime. One can bring the entire spacetime onto a compact region and

study the structure of infinity by applying a proper conformal transformation. Pen-

rose diagram was introduced by Roger Penrose in an effort to bring in the infinities of

the spacetime to finite positions. The process is based on conformal transformation of

the physical metric of the spacetime. First we shall review the procedure to construct

Penrose diagram for Minkowski spacetime and then for the Kruskal solution.

Another essential area of study in black hole physics is ‘thermodynamics of black

holes’. One can assign corresponding laws of thermodynamics to the black holes.

The rest of chapter three covers the laws of black hole thermodynamics and how one

can compare them to the classical laws of thermodynamics. We will observe that
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according to the laws of thermodynamics black holes must have entropy.

Up to now, we have treated black holes as classical objects that just absorb what-

ever is in their gravitational field. However, if one takes into account quantum consid-

erations black holes will possess some interesting properties. Quantum effects imply

non-zero temperature for the black holes and therefore black holes are not black any-

more. They emit a radiation called Hawking radiation which is predicted to have a

black body spectrum. Hawking radiation can not be justified classically, since noth-

ing can escape the gravitational field of a classical black hole. In chapter four we

talk about QFT in curved spacetime which will be used in chapter five to derive the

Hawking radiation spectrum.

A major field in theoretical physics is quantum field theory (QFT). The aim

of quantum field theory is to describe the physics of quantum particles by provid-

ing mathematical methods. Standard QFT examines the physics of quantum fields

in Minkowski spacetime which is a four-dimensional flat spacetime. However, for

the curved spacetimes or equivalently for accelerating observers the physical laws for

quantum fields would be different. Chapter four covers the basic elements of quantum

field theory in Minkowski spacetime for different classes of fields. Fields are catego-

rized to different types based on their spins. We introduce real scalar fields, complex

scalar fields and fermionic fields. We shall describe the quantization of fields and

canonical commutations and will explain the equations of motion for each of them.

We will see that equations of motion are obtained by generalizing the Lagrangian

method that is used in classical mechanics. At the end of this section we define a

crucial concept in QFT, i.e, vacuum.

A challenging subject in contemporary physics is finding a theory for quantizing

gravity. However, no acceptable theory has been found yet. Consequently, there is

no viable theory to study the effects of a quantized background gravitational field on
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matter fields which are also quantized. Hence, one has to concentrate on the case

where gravity is a classical field and matter fields are quantized. This approach is

known as semiclassical gravity or quantum field theory in curved spacetime. The

rest of chapter four is about the physics of quantum fields in curved spacetime. We

examine the physics of different types of fields in curved spacetime and discuss the

concept of vacuum in curved spacetime which is different from Minkowski spacetime

vacuum.

In chapter five we introduce the concept of vacuum polarization which is used to

explain the emission of the Hawking radiation in the vicinity of the black hole horizon.

In modern quantum field theory, vacuum is defined as the state with the lowest energy

which is full of virtual particle-antiparticle pairs. However, before this accepted model

for the vacuum, the Dirac sea was the available description for the vacuum. In this

chapter we will talk about Dirac sea as a sea of negative energy electrons and describe

its deficiencies and then will review the modern view of vacuum polarization. We will

explain how to compute the rate of the vacuum decay by defining the S matrix of the

interaction. Our objective is to justify the Hawking radiation as due to the vacuum

polarization close to the black hole horizon. Since we are interested in computing the

rate of the vacuum decay in the Schwarzschild spacetime we will define the possible

vacua for this background spacetime. Based on our selection for the vacuum we will

try to find the rate of particle production in the vicinity of the horizon. This rate

gives us the spectrum of the Hawking radiation which was predicted by Hawking.

Our method to obtain Hawking radiation from the concept of vacuum polarization

is a new approach. Our idea is to consider a cylindrical quasi-local region around the

horizon which has two boundaries, one inside the horizon and the other one outside

the horizon. The interaction term of the scalar field action in the presence of gravity

is the key term for our computations. We will show that the vacuum expectation
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value of the interaction term of the action in the defined quasi-local region gives us

the spectrum of Hawking radiation.

Hawking radiation as an emission from black holes is an outcome of quantum field

theory in curved spacetime which is a semi-classical quantum gravity. This theory

is an approximation to semiclassical gravity and in order to achieve a full quantum

theory of gravity one has to consider gravity as a semi-classical or if possible as

a quantum field. QFT in curved spacetime and Hawking radiation as one of its

predictions is an active research area and more research has to be done to present a

viable quantum theory of gravity.
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Chapter 2

An Introduction to Einstein’s

Theory of General Relativity

General relativity (GR) is a theory which describes gravity and was announced by

Albert Einstein in 1916. According to the general relativity, gravity is considered as

the manifestation of curvature of spacetime. Before the advent of GR, gravity was

viewed as an attractive force between two massive bodies that obeys Newton’s law of

gravity. For two masses m1 and m2 which are separated a distance r, the gravitational

force is directly proportional to the product of their masses and inversely proportional

to the square of the distance between them, so,

~F =
Gm1m2

r2
~r (2.1)

with G = 6.67 × 10−11m3kg−1s−2 is the gravitational constant (Fig. 2.1). Ac-

cording to GR, the distribution of matter in spacetime defines the geometry and

curvature of spacetime which is interpreted as gravity. GR is generalization of the

special theory of relativity (SR) which is valid in flat spacetime or equivalently for
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Figure 2.1: Gravitational force between two massive bodies m1 and m2 is F = Gm1m2

r2
.

non-accelerating observers. SR was proposed by Einstein in 1905 in order to solve

the problem of inertial frames of Newtonian mechanics. The Galilean principle of

relativity (or Newtonian relativity) says

• all laws of physics should have the same form in all inertial frames.

Because the observers move with constant velocity, they can be considered as inertial

observers. Inertial frames are those classes of frames with zero acceleration with

respect to a preferred frame of reference. We can have an infinite number of inertial

observers. The problem is whether there exists a way to distinguish between different

inertial frames? Is there any preferred inertial frame among them? To answer this

question, Newton had to propose the concept of absolute space. Absolute space

is an independent entity which has no interaction with anything else and always

remains the same. Absolute space is like a background for the physical events that

can affect them. The absolute reference frame is the one which is not accelerated with

respect to the absolute space. From Newton’s third law we know that all the physical

interactions must be mutual. Therefore, it does not make sense that absolute space

can not be influenced by anything else while it influences all the physical events. So,
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absolute space seemed to be trivial.

Einstein’s special relativity solved this problem by assuming that all the inertial

frames are equivalent for all physical experiments, therefore, the concept of absolute

space is not required anymore.

2.1 Special relativity

Special relativity is a generalization of Newtonian relativity and has the same state-

ment but it includes the laws of electrodynamics besides the laws of mechanics. Ac-

cording to the SR all motions are relative and we don’t have any absolute motion.

The basic assumptions of SR are as follows:

1. The speed of light is the same in all inertial frames.

2. All laws of physics are the same in all inertial frames.

In Newtonian mechanics inertial frames are related to each other by the so called

‘Galilean transformations’ which will be described later. SR needed an alternative

for Galilean transformations in order to have the speed of light invariant in all iner-

tial frames. Lorentz transformations are the desired transformations which will be

explained in the following.

2.1.1 Lorentz transformations

Before the announcement of SR, the Newtonian description of spacetime was the most

accepted pattern and the Galilean transformations were the required transformations

to relate inertial observers.

Suppose that we have two inertial frames S1 and S2, where S2 is moving with

constant velocity v along the x-axis relative to S1 (Fig. 2.2).

If these two frames measure the same event in spacetime, their measurements can
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Figure 2.2: Two inertial frames moving in x direction with constant velocity v with
respect to each other.

be related to each other by the Galilean transformations such as

t2 = t1, (2.2)

x2 = x1 − vt, (2.3)

y2 = y1, (2.4)

z2 = z1. (2.5)

A basic presumption in Galilean transformation is that there is a universal time.

So, time does not change from one inertial frame to another inertial frame. But

Einstein believed that time is a frame-dependent concept and different observers in

different frames have different time coordinates. One famous thought experiment to

understand the frame-dependence of time is as follows:
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assume that there are two observers A and B. A is standing outside a train which

is travelling with constant velocity v along a straight line relative to his frame of

reference. B is standing inside the train in the middle of a carriage. Two flashes of

light are coming towards B from the two ends of the carriage which are equidistant

from A. B will see the two flashes of light at the same time, so, according to his frame

of reference these two events are simultaneous. However, A is moving towards one of

the signals and away from the other one, hence, according to A’s frame of reference

one signal comes before the other one. A concludes that these two events are not

simultaneous (Fig. 2.3).

Figure 2.3: Two light sources at two ends of a carriage. B will receive the two light
signals at the same time while A receives the light signal from source 2 before the one
from source 1.

This simple thought experiment shows that time is not a universal concept.

Whether two events occur at the same time depends on the observer. So, Galilean

transformations are not the proper transformations to relate the inertial frames.

Einstein introduced Lorentz transformations to relate inertial frames. Special rel-

ativity is formulated in a four-dimensional spacetime with three spacelike coordinates

and one timelike coordinate known as Minkowski spacetime. If an event occurs at

13



P1 = (ct, x, y, z) and another event occurs at P2 = (ct + cdt, x + dx, y + dy, z + dz),

the interval between these two events is

ds2 = ηµνdx
µdxν = −c2dt2 + dx2 + dy2 + dz2, (2.6)

with η = diag(−1, 1, 1, 1) the metric of Minkowski spacetime and µ, ν = (0, 1, 2, 3). c

is a constant factor with the units of velocity which is known as the speed of light.

The factor of c fixes the units of cdt to be meters. Lorentz transformations are defined

as the transformations that leave this interval invariant, i.e.,

ds2 = ds′2 = −c2dt′2 + dx′2 + dy′2 + dz′2. (2.7)

If we denote our coordinate system by xµ = (t, x, y, z), with µ = (0, 1, 2, 3), then

x′µ = Λµ
νx

ν , (2.8)

where Λµ
ν are homogeneous Lorentz transformations and x′µ is the transformed co-

ordinate system. For the case of two inertial frames S1 and S2, where S2 is moving

with velocity v along the x-axis with respect to S1, the Lorentz transformations are

t2 =
t1 − (v/c2)x1√

1− v2/c2
, (2.9)

x2 =
x1 − vt1√
1− v2/c2

, (2.10)

y2 = y1, (2.11)

z2 = z1. (2.12)
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In this case Λµ
ν is the following matrix

Λµ
ν =



γ −βγ 0 0

−βγ γ 0 0

0 0 1 0

0 0 0 1


, (2.13)

where

β =
v

c
, (2.14)

and

γ =
1√

1− (v/c)2
. (2.15)

A set of linear Lorentz transformations form a group called the Lorentz group. The

group of transformations of a space with coordinates (y1, ..., ym, x1, ..., xn) which leaves

invariant the quadratic form (y2
1 + ...+ y2

m)− (x2
1 + ...+ x2

n) are called the orthogonal

group O(m,n) so, Lorentz group is SO(3, 1) since as we will see later the determinant

of the Lorentz transformation is one, [2]. Lorentz group is a group, since

1) The identity element does exist such that

if Λµ
ν = δµν → x′µ = δµνx

ν = xµ, (2.16)

this is the case where the two inertial frames are identical.

2) Inverse of Λµ
ν is defined as

(Λ−1)µν = Λν
µ, (2.17)

where Λν
µΛµ

σ = δνσ.

3) If Λµ
ν is a Lorentz transformation which takes xµ into x′µ = Λµ

νx
ν and Λµ

ρ
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is another Lorentz transformation which takes x′µ into x′′µ = Λµ
ρx′ρ, then we have

x′′µ = Λµ
ρΛρ

νx
ν , which means that Λµ

ρΛρ
ν is itself a Lorentz transformation, so the

group is closed.

By using Lorentz transformation we have:

ηµνx
′µx′ν = ηµν(Λ

µ
σx

σ)(Λν
ρx

ρ) = ησρx
σxρ (2.18)

since it must hold for any xµ, we conclude that

ησρ = ηµνΛ
µ
σΛν

ρ. (2.19)

In matrix notation xµ can be represented by a column vector and ηµν and Λµ
ν by

matrices, therefore equation (2.19) will change to

η = ΛTηΛ (2.20)

T is the symbol for the transpose of a matrix which is obtained by writing the rows of

the original matrix as the columns of the transpose matrix. Taking the determinant

of both sides, we get

1 = det ΛT det Λ (2.21)

since det ΛT = det Λ, we get

det Λ = ±1. (2.22)

Lorentz transformations with det Λ = +1 are proper Lorentz transformations and

those with det Λ = −1 are improper Lorentz transformations, [2], [3].

The most well known types of Lorentz transformations are boosts and rotations.

1. Boosts
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A boost along the x-axis is the following transformation

t′ = t cosh η − x sinh η (2.23)

x′ = −t sinh η + x cosh η (2.24)

y′ = y (2.25)

z′ = z (2.26)

where

η = tanh−1
(v
c

)
(2.27)

is called rapidity.

2.Rotations

The transformations

t′ = t (2.28)

X ′i = aijXj (2.29)

describe a rotation, where aij is an orthogonal matrix with det(a) = 1, [3]. For

example, the rotation matrix aij for a rotation around the z axis in 3-dimension is

aij =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (2.30)
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Infinitesimal Lorentz transformation

An infinitesimal Lorentz transformation has the form

Λµ
ν = δµν + ωµν (2.31)

if we substitute Λµ
ν into (2.19), we find that ωµν = −ωνµ. The Λµ

ν for the infinitesimal

Lorentz transformation is

Λµ
ν =



1 −β 0 0

−β 1 0 0

0 0 1 0

0 0 0 1


. (2.32)

Infinitesimal Lorentz transformations occur when γ ≈ 1.

Newtonian mechanics is valid to study dynamics of an object when the velocity

of object is not very high compared to the speed of light and when the object is not

close to a very strong gravitational field. In the limit of high speeds, special relativity

is the appropriate theory to study the dynamics of a system. Dynamics of an object

can be understood by having information about its mass, momentum and energy.

Mass is a central concept in mechanics. According to Newtonian theory two masses

can be defined which can indicate different properties of an object. These are inertial

mass and gravitational mass.

1)Inertial mass: is represented by mI and appears in the second law of Newton.

Inertial mass is a measure of a body’s resistance to change in its state of motion. If we

apply a force on an object, its inertial mass determines its acceleration. In the second

law of Newton force is directly proportional to the acceleration and the constant of
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proportionality is the inertial mass,

F = mIa. (2.33)

2)Gravitational mass: indicates the magnitude of the gravitational force that a

body can exert on other objects or can experience because of the presence of the other

objects. Gravitational mass is divided into two different types, passive gravitational

mass and active gravitational mass.

Active gravitational mass, mA, is the one that produces a gravitational field.

Objects with small active mass produce weak gravitational fields. If we place an

object with mass mA at the origin, the gravitational potential at distance r from the

origin is

φ =
−GmA

r
, (2.34)

therefore, the gravitational force that it applies on another object with mass mP

located at distance r from mA would be

F = −GmPmA

r2
r̂. (2.35)

Passive gravitational mass, mP , is a measure of a body’s reaction to a grav-

itational field. Within the same gravitational field, an object with a smaller passive

gravitational mass experiences a smaller force than an object with a larger passive

gravitational mass. This force is called the weight of the object.

F = −mP∇φ, (2.36)

where, ∇ = ( ∂
∂x
, ∂
∂y
, ∂
∂z

), in cartesian coordinates and φ is the gravitational potential

at some point of space.
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However, one can easily show that there is a unique mass in Newtonian mechanics

and there is no distinction between different definitions of mass, [4]. Thus,

m = mI = mP = mA. (2.37)

On the other hand, special relativity introduces two different ways to define mass

I) rest mass, m0, is equivalent to the Newtonian mass. Rest mass is the same in

all reference frames which are related by Lorentz transformations. It is measured by

observers that are moving with the object, i.e, observers in the comoving frame.

II) relativistic mass, m, is the mass which is observer-dependent. This mass is

not the same as measured by different observers. It is related to the rest mass as

m =
m0√

1− v2/c2
, (2.38)

v is the velocity of the mass with respect to the rest frame. Before we talk about

relativistic momentum and energy, we should introduce four-vectors. In special rela-

tivity, vectors live in a four-dimensional real space which is called Minkowski space.

Any vector in Minkowski space is called a four-vector. An arbitrary four-vector can

be written as

Aµ = (A0, A1, A2, A3). (2.39)

The squared norm of the four-vector Aµ is defined as the square of its length

A2 = gµνA
µAν = AµA

µ, (2.40)
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so, the four-vector is 
null if A2 = 0,

timelike if A2 > 0,

spacelike if A2 < 0.

The four-momentum for a massive object moving with velocity ~u is defined as

pµ = (
E

c
, ~p) (2.41)

~p is the relativistic three-momentum defined as

~p =
m0~u√

1− v2/c2
, (2.42)

and E is the total energy of the object. Einstein proposed that mass and energy are

equivalent and mass of a body is a measure of its energy. Energy and mass are related

by the following famous equation

E = mc2 = γm0c
2. (2.43)

Special relativity with Lorentz transformations as the proper transformation group

is successful theory when one just considers inertial frames. In the next section we

will see that a generalized theory is required to study physics in non-inertial frames.

We will study the motivations that helped Einstein to develop the general theory of

relativity.
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2.2 Appearance of general relativity

Special relativity deals with flat spacetime and therefore does not include gravity and

only applies to the inertial frames. If one is interested in studying curved spacetimes

or equivalently studying accelerated observers, then a generalization of SR is required.

General relativity is the result of efforts to find a theory which also includes gravity

or be appropriate to study accelerated frames of reference. General relativity which

was published by Einstein in 1916, can describe gravity as the geometric property of

spacetime. There were some guiding principles that motivated Einstein to develop

his general theory of relativity. These principles are:

1)Mach’s principle

2)Principle of equivalence

3)Principle of general covariance.

In the following, I will explain them briefly.

2.2.1 Mach’s principle

There has been debate within the physics community about the nature of space and

time for a long time. There are two different viewpoints about the nature of space,

the absolute view and the relative view. The advocates of absolute space believe that

space is like a container that includes all the material objects, in this view space is

an independent entity which is not influenced by its contents. Absolute view of space

introduces space as a background that material objects can move in. On the other

hand, relative view of space states that space has no meaning without matter in it.

So, if there is matter then there is space. One of the most well known opponents of

absolute space is Ernst Mach. He believed that the absolute view of space and time

that stems from Newton’s concept of absolute space and time should be modified.
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One famous observation that motivated Newton to introduce the notion of absolute

space is the bucket experiment:

if there is a bucket at rest which is filled with water and another bucket with same

shape and size and same amount of water in rotation, the surface of water in the

bucket at rest would be flat while for the bucket in rotation the surface of water will

be curved (Fig. 2.4).

Figure 2.4: a) Flat surface of water in a bucket at rest, b) curved surface of water in
a bucket in absolute rotation.

In order to justify this observation, Newton assumed that the rotation with respect

to the absolute space is the reason for the difference between these two cases. However,

Mach opposed Newton’s description for the bucket experiment. He stated that in a

universe which is filled with matter, the curved surface of water for the rotating bucket

is due to its rotation with respect to the frame of fixed stars. It implies that if one

tries to do the bucket experiment in an otherwise empty universe there must be no

difference between the two states of the bucket. According to Mach’s opinion, one

should consider motion of a body with respect to the masses of the universe rather

than the absolute space. One consequence of Machian viewpoint is that the concept

of inertia is also relative. For a sample mass, inertia is the tendency to maintain its
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state of motion and velocity. Hence, if we have a collection of masses the inertia for

each mass in the collection is its tendency to preserve the state of motion and velocity

with respect to the other masses in the collection. Consequently, for a body in an

empty universe, inertia has no meaning. The essence of Mach’s principle is:

• all the motions in nature are relative motions.

Mach’s principle has two versions, strong Mach’s principle and weak Mach’s principle,

[4]. The weak Mach’s principle says

• The distribution of matter determines the geometry.

The strong Mach’s principle states

• If there is no matter then there is no geometry.

2.2.2 Principle of equivalence

The principle of equivalence played an important role in the formation of general rela-

tivity. Newtonian mechanics proves that inertial mass is identical to the gravitational

mass, Einstein promoted this concept to the Principle of Equivalence which is one of

the fundamental motivations of formation of the general relativity.

There are two different versions of the principle of equivalence. One is the weak

form of the principle of equivalence and the other one is the strong form of the

equivalence principle. The strong form of the principle of equivalence says

• Motion of a gravitational test particle (a particle that just feels the gravitational

field and does not change the gravitational field) that moves in a gravitational

field, is independent of its mass.

The weak form of the principle of equivalence states
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• For all massive objects, the inertial mass and gravitational mass are equal.

One consequence of the principle of equivalence is that the motion of a freely falling

body in a gravitational field and an accelerating frame is indistinguishable if the

acceleration due to the gravity is equal to the acceleration of the accelerating frame.

We can conclude that one can remove gravity locally by going to a freely falling

frame of reference. But, note that this statement is true if we consider a ‘small enough

region of spacetime’. In a big region of spacetime, the gravitational field changes from

one place to another place. If we place a big box in a gravitational field, we observe

that two freely falling bodies inside the box will move towards each other while they

are falling (Fig. 2.5).

Figure 2.5: Motion of two freely falling bodies in a big box in a gravitational field.

Imagine that we have two elevators, one is at rest in a gravitational field with

gravitational acceleration g and another one is accelerating with a constant acceler-

ation a = g with respect to an inertial frame of reference. If we let two balls fall

freely in these two elevators we will observe that the motions of the two balls are the

same. In other words, one can not distinguish between a gravitational field and an

accelerating frame by just studying the motion of a freely falling body. So, one can

produce gravity by going to an accelerated frame (Fig. 2.6).

Now consider that we have an elevator which is at rest in a location where there

is no gravitational field and another elevator is falling freely in a gravitational field

which produces gravitational acceleration equal to g. Again, the motions of two freely
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falling balls in these two elevators would be the same. Therefore, one can eliminate

gravity by going to a freely falling frame (Fig. 2.7).

Figure 2.6: The motions of two freely falling bodies are identical in an accelerating
frame and a frame at rest in a gravitational field if a=g.

Figure 2.7: The motions of two freely falling bodies are the same in a freely falling
frame of reference and a frame at rest in a location where there is no gravitational
field around.

After Einstein proposed the theory of special relativity, he tried to find something

more inclusive than the principle of equivalence. Finally, he found that

• All the physical experiments should have the same results in a gravitational

field and in a uniformly accelerated frame not just the free fall experiment.
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One outcome of this principle is that light must bend in a gravitational field. One

can justify this as follows:

based on the special theory of relativity mass and energy are equivalent, so, al-

though light has zero rest mass, it has energy. A flash of light in an accelerated frame

will have the same motion as a massive particle falling in the accelerated frame. If one

can not distinguish between a gravitational field and an accelerating frame, therefore

it must have the same trajectory in a gravitational field.

Light rays that are propagating in a strong gravitational field are bent more than

the light rays in a weaker gravitational field (Fig. 2.8), [4], [5], [6].

Figure 2.8: Path of a light beam in an accelerated frame.

2.2.3 Principle of general covariance

General covariance is also known as diffeomorphism covariance or general invariance.

It states that

• physical laws must have the same form in all frames of reference.

The main core of this principle is that laws of physics exist independent of the coor-

dinate systems. Special theory of relativity satisfies covariance but, special relativity

is just valid for inertial frames. According to the principle of equivalence accelerated

frames are indistinguishable from the frames in a gravitational field. Therefore, if
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there is a gravitational field it is the same as being in a non-inertial frame. Thus, in

the presence of a gravitational field a more comprehensive theory is required that can

explain physics in non-inertial frames as well. Einstein’s idea to solve this problem

was:

• the effects of gravity can be removed locally by going to a freely falling frame,

therefore, one can reduce the general metric of spacetime to the Minkowski

space time metric in a freely falling frame of reference.

Physical laws must be written in a form which would be the same in all frames

of reference. We will explain tensors later and will see that tensorial equations have

the same form in all coordinate systems. Einstein expressed the principle of general

covariance as

• all the equations of physics should have tensorial form, [4].

2.3 Einstein’s equation

Einstein’s field equations are a set of equations in general relativity to describe gravi-

tational interaction which is a result of curvature of spacetime. In order to introduce

these equations and understand them, first we should study some basic concepts.

Since gravity depends on the structure of spacetime under consideration, we have to

know how to characterize the spacetime. In the following, I will briefly explain some

required concepts to understand field equations.

Manifolds

A manifold M, is defined in differential geometry as a geometric entity which locally

looks like an n-dimensional Euclidean space Rn. So, it means that if we have a
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manifold with any complicated shape, a small enough part of the manifold resembles

the flat Euclidean space with the appropriate dimension. We can mention lots of

examples for manifolds. For instance, the plane (R2) , the 3-sphere (S3), the n-sphere

(Sn) are all manifolds since all of them locally resemble the Euclidean space, their

dimensions are 2, 3 and n respectively.

Topology of a manifold are properties that are unchanged under continuous de-

formations of the manifold such as stretching the manifold without tearing or gluing.

Topology talks about the global properties of manifolds and has nothing to do with

local properties. Therefore, different manifolds can have complicated topology or can

be curved, but all of them will locally look like Euclidean space.

Tensors and metric tensor

Tensors are geometric objects which live on manifolds. Lets consider an arbitrary

tensor Aµνρλ , the upper indices are called contravariant indices and the lower indices

are called covariant indices. A tensor with the covariant rank p and contravariant

rank m has type (m, p). So, Aµνρλ is a tensor of type (2, 2).

An arbitrary contravariant tensor Aµ (rank 1) is a set of geometric objects at point

P in the xµ-coordinate which transform as follows under the change of coordinates

xµ → x′µ

Aµ =
∂xµ

∂x′ρ
A′ρ (2.44)

where

∂xµ

∂x′ρ
=



∂x1

∂x′1
∂x1

∂x′2
... ∂x1

∂x′n

∂x2

∂x′1
∂x2

∂x′2
... ∂x2

∂x′n

...
...

...
...

∂xn

∂x′1
∂xn

∂x′2
... ∂xn

∂x′n


. (2.45)

In four-dimensional spacetime, this matrix is a 4× 4 matrix. The determinant of the
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matrix J , is called the Jacobian of the transformation

J =

∣∣∣∣ ∂xµ∂x′ρ

∣∣∣∣ . (2.46)

For a given tensor with one contravariant index the Lorentz transformation is

Aµ → Λµ
ρA
′ρ, (2.47)

By comparing (2.44) and (2.47), one concludes that

Λµ
ρ =

∂xµ

∂x′ρ
, (2.48)

Λµ
ρ is a 4×4 matrix. For an arbitrary covariant tensor Aµ (rank 1) the transformation

rule is

Aµ =
∂x′ρ

∂xµ
A′ρ = Λρ

µA
′
ρ, (2.49)

in this case, the Jacobian is,

J ′ =

∣∣∣∣∂x′ρ∂xµ

∣∣∣∣ , (2.50)

J and J ′ satisfy,

J =
1

J ′
. (2.51)

The interesting property of a tensor is that if you have a tensorial equation in one

coordinate system, it will remain the same in any other coordinate system. This is

the reason that the principle of general covariance implies that the laws of physics

must have tensorial form.

For example, if in a coordinate system we have Aµ = Bµ, after that we multiply
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∂xµ/∂x′ρ and sum over the indices we get

∂xµ

∂x′ρ
Aµ =

∂xµ

∂x′ρ
Bµ (2.52)

since Aµ and Bµ are covariant tensors with the same rank we conclude that A′µ = B′µ.

This proves that tensorial equations are observer-independent and remain the same

in all frames of reference, [4].

One crucial tensor in general relativity is the metric tensor gµν(x). The metric

tensor is a covariant tensor of rank 2 which includes information about the geometry

of the manifold and varies from point to point on the manifold. A line element on

the manifold, which is defined as the interval between two points with coordinates xµ

and xµ + dxµ, can be written in terms of the metric tensor as

ds2 = gµν(x)dxµdxν . (2.53)

The metric tensor is a symmetric tensor, i.e.,

gµν(x) = gνµ(x). (2.54)

We can put the metric in its canonical form, which means that the metric would be

a diagonal matrix and its components are 0, 1,−1. Therefore, the canonical metric is

gµν = diag(+1,+1,+1, ...,−1,−1,−1, ..., 0, 0, ..., 0). (2.55)

If n is the dimension of the manifold and t is the number of −1’s and s is the number

of +1’s in the canonical form of the metric, then, rank of the metric is s+ t and the

signature of the metric is s− t. In the case where t = 0, the positive definite metric

is called Euclidean or Riemannian, also when t = 1 the metric is called Lorentzian or
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pseudo-Riemannian. An indefinite metric occurs when we have some +1’s and some

−1’s in the canonical form of the metric, [5].

A manifold that is equipped with a Riemannian metric is called Riemannian

manifold and a manifold with a pseudo-Riemannian metric on it is called a pseudo-

Riemannian manifold.

For example, a line element in the Minkowski spacetime is

ds2 = ηabdx
adxb = −dt2 + dx2 + dy2 + dz2, (2.56)

where ηab = diag(−1,+1,+1,+1) is the Minkowski metric and we set c=1. The

signature of the Minkowski metric is +2 and rank of the metric is 4.

Since the metric is a covariant tensor, its transformation is like

g′µν(x
′) =

∂xµ

∂xρ′
∂xν

∂xλ′
gµν(x). (2.57)

A transformation that leaves the metric invariant is called an isometry. Suppose that

we have an infinitesimal coordinate transformation

xµ → x′µ = xµ + δζµ(x), (2.58)

δ is small and ζµ is a vector field. If this transformation is isometry, the metric gµν

must satisfy

g′µν(x) = gµν(x), (2.59)

the condition to have isometry is

Lζgµν = ∇νζµ +∇µζν = 0, (2.60)
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where L is the Lie derivative (directional derivative) which is defined as

LxYa = Xb∂bYa + Yb∂aX
b, (2.61)

and ∇ is known as covariant derivative which is defined as

∇µX
ν = ∂µX

ν + ΓνµλX
λ. (2.62)

Equation (2.60) is called Killing equation and any solution of it is called Killing vector

field ζa. Killing vectors identify the symmetries of the spacetime. If the spacetime

coordinates are xµ = (x0, x1, x2, x3) and if the metric of the spacetime is independent

of one of the coordinates, lets say x0, then X0 = δ0
a would be a Killing vector.

The determinant of the metric is given by

g = det(gµν). (2.63)

If g 6= 0, then the metric is said to be non-singular and therefore the inverse of the

metric can be defined as,

gµνg
νλ = δλµ. (2.64)

Einstein’s field equations

In order to study GR, we need to know more about the structure of the manifold

that models the spacetime. We can define a connection which is a function of the

metric and its first derivatives. The resultant connection, Γσµν , is called the metric

connection or Christoffel connection. It can be derived as the function of the metric

by using ∇µgνλ = 0

Γσµν =
1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν). (2.65)
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We mentioned before that the metric is symmetric, from the definition of the metric

connection one can easily see that the metric connection is also symmetric

Γσµν = Γσνµ. (2.66)

Now, we have enough information to introduce other important tensors in general

relativity.

The curvature tensor or Riemann-Christoffel tensor that includes information

about the curvature of the manifold is defined as a function of the metric connec-

tion and its first derivatives or equivalently as a function of the metric and its first

and second derivatives, namely,

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ. (2.67)

The curvature tensor is antisymmetric in its last pair of indices,

Rρ
σµν = −Rρ

σνµ, (2.68)

furthermore, it satisfies what are called Bianchi identities

∇λRρσµν +∇ρRσλµν +∇σRλρµν ≡ 0. (2.69)

Another important tensor which will be used to write down Einstein’s tensor is

the Ricci tensor. The Ricci tensor is defined as

Rµν = Rλ
µλν = gλρRρµλν . (2.70)
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The curvature scalar or Ricci scalar is given by the following contraction,

R = gµνRµν . (2.71)

Now, we are ready to define Einstein’s tensor Gµν ,

Gµν = Rµν −
1

2
gµνR. (2.72)

Einstein’s tensor also satisfies the Bianchi identities,(as Tµν is conserved)

∇µG
ν
µ ≡ 0. (2.73)

Einstein field equations are:

Gµν = Rµν −
1

2
gµνR = 8πTµν (2.74)

where, Tµν is the stress-energy tensor and we set G = c = 1. The stress-energy

tensor is the source of the gravitational field in general relativity, while mass is the

source of gravity in Newtonian theory. Einstein’s tensor depends on the geometry of

the spacetime, therefore, Einstein field equations relate the distribution of matter in

spacetime to the geometry of spacetime. One can describe field equations such that

given a stress-energy tensor, one can find the related metric tensor. This is similar

to Mach’s ideas since it states that if we have a distribution of matter we can specify

the proper metric and geometry of the manifold.

Also, if we know the metric of the spacetime which identifies the geometry, we

can find the stress-energy tensor by solving the field equations.
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Geodesics

In a flat spacetime, a geodesic is a straight line that connects two points of spacetime.

A straight line is the shortest path between two points that parallel transports its

tangent vector. However, in the presence of gravity the spacetime is no longer flat and

the notion of geodesic would be different from flat spacetime. Geodesics represent

the trajectory or world line of free particles moving in curved spacetime. There are

three different types of geodesics in curved spacetime

I) Timelike geodesics : are classes of curves whose tangent vectors are timelike

vectors. Given a curve xµ(λ) (λ is the parameter along the curve), the vector tangent

to it is dxµ/dλ. If the geodesic is defined as the path which parallel transports its

tangent, one can write the geodesic equation as

d2xµ

dλ2
+ Γµρν

dxρ

dλ

dxν

dλ
= 0, (2.75)

Γµρν are Christoffel symbols which are an indication of being in curved spacetime. In

the case of flat spacetime the Christoffel symbols vanish and the geodesic equation

would be

d2xµ

dλ2
= 0, (2.76)

which is the equation for a straight line. Physical free particles travel on timelike

geodesics.

II) Null geodesics : are curves which have null tangent vectors. Light rays (or

photons) travel on null geodesics. Null geodesics describe the situation where the

distance between two points is zero. The distance between two points P and P ′ is

s =

∫ P ′

P

ds

dλ
dλ =

∫ P ′

P

(gµν
dxµ

dλ

dxν

dλ
)1/2dλ, (2.77)
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in the case of the null geodesics, the geodesic equation is given by (2.77), where

gµν
dxµ

dλ

dxν

dλ
= 0, (2.78)

which is the consequence of the fact that the distance between the points is zero.

III) Spacelike geodesics : are geodesics with spacelike tangent vectors. Spacelike

geodesics do not explain the path of physical particles, [5].

2.4 Summary

In this chapter we reviewed Newton’s law of gravity and its dependence on inertial

frames. We observed that GR was proposed as an alternative to Newton’s expla-

nation of gravity. Finally, by mentioning some basic concepts about manifolds and

introducing essential tensors in GR we wrote down Einstein’s field equations. The

notations of GR tensors are similar to [5].
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Chapter 3

Black Holes

3.1 Black hole solution

Einstein published his field equations of general relativity in 1915. He postulated

that gravity is a result of the curvature of spacetime due to the presence of matter

and energy in spacetime. Karl Schwarzschild was the first person who would find an

exact vacuum solution for the field equations which is known as the ‘Schwarzschild

solution’. In GR, the Schwarzschild solution describes the gravitational field outside

a spherical, uncharged, non-rotating mass. Einstein equation in vacuum is for the

case where Tµν = 0, therefore according to Einstein field equations one gets

Rµν = 0. (3.1)

Schwarzschild made some assumptions to simplify the field equations. He tried to

solve the field equations in spherical coordinates (t, r, θ, φ).

In a spherical coordinate system, we can consider a general line element as

ds2 = −D(t, r)dt2 + 2F (t, r)dtdr + C(t, r)dr2 +K(t, r)(dθ2 + sin2 θdφ2), (3.2)
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where D, F, C, K are functions of t and r. As we mentioned before, GR has no

dependence on coordinate systems. Therefore, we can have a coordinate transforma-

tion which will not change the spherical symmetry of the line element. The desired

coordinate transformation is

F (t, r) = 0, K(t, r) = r2. (3.3)

The resulting metric is

ds2 = −D(t, r)dt2 + C(t, r)dr2 + r2(dθ2 + sin2 θdφ2), (3.4)

it is obvious that the above spherically symmetric metric is invariant under the trans-

formation

θ → θ′ = −θ, φ→ φ′ = −φ, r → r′ = −r. (3.5)

The Schwarzschild solution can be obtained if one tries to solve Einstein field equa-

tions in the vacuum for the (3.4) metric, [4], [5].

The Schwarzschild line element is

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (3.6)

for the following metric

gµν =



−(1− 2GM
r

) 0 0 0

0 (1− 2GM
r

)−1 0 0

0 0 r2 0

0 0 0 r2 sin2 θ


(3.7)

M is mass of the object and G is the universal gravitational constant and we have set
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c = 1. The Schwarzschild metric is time-independent and therefore is time-symmetric,

so, ∂
∂t

is a timelike Killing vector.

From the form of the Schwarzschild solution one can conclude:

• the metric is invariant under three-dimensional spatial rotations, so, the Schwarzschild

solution is spherically symmetric;

• the Schwarzschild metric satisfies

∂gµν
∂t

= 0, (3.8)

hence, it is time-independent and therefore stationary.

• the metric is invariant under time reversal, (t→ t′ = −t), and there is no cross

term of the form dx0dxα where α = 1, 2, 3; thus, the Schwarzschild solution is

static. The timelike Killing vector is orthogonal to the hypersurface t = const.

• in the limit r →∞ the solution is the same as the flat spacetime metric which

can be justified as due to the elimination of gravity at large distances from the

source of gravity. Therefore, it is asymptotically flat.

If one tries to find the solution of the vacuum field equations in any other coordi-

nate system, the solution would be the same as the Schwarzschild solution. There is

a theorem in GR called Birkhoff’s theorem which says:

• any spherically symmetric solution of the vacuum field equations must be static

and asymptotically flat. It follows that the Schwarzschild solution is the unique

solution of the vacuum field equations.
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Singularities

In general, a singularity is a point at which an equation, surface, etc., blows up or

becomes degenerate. We can write the metric components of the Schwarzschild metric

as

g00 = −
(

1− 2GM

r

)
, g11 =

(
1− 2GM

r

)−1

, g22 = r2, g33 = r2 sin2 θ. (3.9)

At r = 2GM which is called the Schwarzschild radius, the g11 component of the

metric is infinity and g00 component vanishes. However, at r = 0, g00 is infinity and

g11 is zero. We can define two different regions in Schwarzschild spacetime (Fig 3.1),

I. 0 < r < 2GM

II. 2GM < r <∞.

Figure 3.1: Two different regions of the Schwarzschild spacetime.

These two regions have different characteristics. If we denote the coordinate sys-

tem by xµ, the surface xµ = const is timelike if gµµ > 0 and is spacelike if gµµ < 0.

Hence in region I, t is spacelike and r is timelike, while in region II, t is timelike and
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r is spacelike. The Killing vector ∂
∂t

becomes a null vector at r = 2GM , therefore,

one concludes that r = 2GM is a Killing horizon. r = 2GM is a null horizon which

has a null Killing vector on it.

Some singularities are coordinate singularities that reveal the deficiencies of the

coordinate system to describe the manifold. One can remove coordinate singularities

by choosing an appropriate coordinate transformation. Other singularities are geo-

metric singularities which are not related to the choice of coordinate systems. The

geometric singularities are essential singularities that are not removable by coordi-

nate transformations. We should look for a way to distinguish between coordinate

singularities and singularities which are related to the geometry of the manifold.

When the curvature of the manifold is infinite it can not be removed by just a co-

ordinate transformation. Curvature scalar of the manifold is coordinate-independent,

so, if it is infinite in one coordinate system it will be infinite in any other coordi-

nate system. The best quantity that includes information about the curvature of the

manifold is the Ricci scalar. If the Ricci scalar is infinite for a value of r then it is

infinite in any coordinate system and the geometry of the manifold is degenerate. The

singularity at r = 2GM which is the Schwarzschild radius is a coordinate singularity,

because

RabcdR
abcd =

12(GM)2

r6
. (3.10)

At r = 2GM (3.10) is finite, therefore by a proper choice of coordinate transformation

one can remove the singularity at r = 2GM . However, at r = 0 (3.10) is infinite and

therefore this singularity is irremovable (Fig 3.2). r = 0 singularity has different

names such as intrinsic, curvature or real singularity.

As we mentioned before, the singularity at r = 2GM is a coordinate singularity

and is removable, so, if we apply an appropriate coordinate transformation the singu-

larity at r = 2GM will vanish. Now, our task is to find the coordinate transformation
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Figure 3.2: Spacetime diagram of collapsing matter with two singularities at r = 0
and r = 2GM .

to remove this singularity. The trajectory of a light ray is a null curve

ds2 = 0

while for a radial null curve

ds2 = 0 and dθ = dφ = 0.

For the Schwarzschild metric, radial null curves are

ds2 = −(1− 2GM

r
)dt2 + (1− 2GM

r
)−1dr2 = 0, (3.11)

so,

dt

dr
= ±(1− 2GM

r
)−1, (3.12)

this is the slope of the light cones on a spacetime diagram of the t− r plane. A light
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cone is made of all trajectories of light signals that are emanating from an arbitrary

point P in spacetime and propagate in all directions. Emission of light from point P

is an occurrence in spacetime therefore it indicates an event (Fig. 3.3).

Figure 3.3: Light cone for an event occurring at P. The cone consists of four regions:
future, past and two elsewhere regions. All the events in the future light cone occur
after P while the events in the past light cone occur before P. There is no causal
communication between P and points in elsewhere regions.

At r → ∞ the trajectory of light rays make an angle equal to 45 degree in the

t− r plane. However, as we get close to r = 2GM , the light cones become narrower.

Light rays asymptote to r = 2GM but they can not get to it (Fig. 3.4).

If we select the positive sign for the slope, (3.12) implies

r > 2GM ⇒ dr

dt
> 0, (3.13)

this means that r increases as t increases. Taking the integral gives

t = r + 2GM ln
∣∣∣ r

2GM
− 1
∣∣∣+ constant. (3.14)
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Figure 3.4: Light cones get narrower as they get closer to r=2GM.

These curves denote the outgoing radial null geodesics. We introduce a new coordinate

called ‘Regge-Wheeler tortoise coordinate’

r∗ = r + 2GM ln(
r

2GM
− 1), (3.15)

it implies

dr∗

dr
= (1− 2GM

r
)−1. (3.16)

Therefore (3.14) can be written as,

t = +r∗ + constant. (3.17)

Similarly, if we select the negative sign of the slope, we get

r > 2GM ⇒ dr

dt
< 0, (3.18)

45



after taking the integral, in tortoise coordinate we get

t = −r∗ + constant, (3.19)

which are congruence of ingoing radial null geodesics. Ingoing radial null geodesics

become outgoing and outgoing ones become ingoing by time reversal transformation,

t→ −t.

Now, we define a new null coordinate v as

v = t+ r∗, (3.20)

the ingoing radial null geodesics can be obtained by v = constant. From (3.15) we

know that r∗ is a function of r, so, if we write the Schwarzschild metric as a function

of v and r we get

ds2 = −(1− 2GM

r
)dv2 + (dvdr + drdv) + r2dΩ2, (3.21)

with

dΩ2 = r2(dθ2 + sin2 θdφ2). (3.22)

On the other hand, we can define another null coordinate

u = t− r∗, (3.23)

the outgoing radial null geodesics are given by u = constant (Fig. 3.5).

The resultant Schwarzschild line element in terms of u and r is

ds2 = −(1− 2GM

r
)du2 − (dudr + drdu) + r2dΩ2. (3.24)
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Figure 3.5: Outgoing and ingoing null geodesics.

(3.21) and (3.24) are known as Eddington-Finkelstein forms of the Schwarzschild

line element. These forms of the Schwarzschild metric are regular at r = 2GM , so,

we could remove the singularity by a coordinate transformation.

As a function of both v and u the metric has the form

ds2 = (1− 2GM

r
)(dvdu+ dudv) + r2dΩ2, (3.25)

which is again regular at r = 2GM . The Schwarzschild solution is regular for

2GM < r < ∞, however, Eddington-Finkelstein coordinates could extend the solu-

tion to 0 < r <∞ (Fig. 3.6). The singularity at r = 0 which is an intrinsic singularity

still exists. One can not remove it by coordinate transformations.

3.1.1 The Kruskal solution

The Eddington-Finkelstein solution in terms of both ingoing and outgoing null pa-

rameters is

ds2 = (1− 2GM

r
)(dvdu+ dudv) + r2dΩ2. (3.26)

47



Figure 3.6: Eddington-Finkelstein and Schwarzschild coordinates.

The Kruskal coordinates U and V are defined as a function of u and v such that

U = −e−u/4GM = −e−(t−r∗)/4GM , (3.27)

V = ev/4GM = e(t+r∗)/4GM . (3.28)

U and V satisfy

UV = (
r

2GM
− 1)e−r/2GM . (3.29)

The metric (3.26) in terms of Kruskal coordinates, (U, V, θ, φ), is

ds2 = −32(GM)3e−r/2GM

r
dUdV + r2dΩ2.

At r = 2GM , we have

u→ +∞⇒ U = 0, (3.30)
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and

v → −∞⇒ V = 0, (3.31)

therefore, the metric is regular at r = 2GM . V = 0 is called the past horizon and

is a surface that just emits radiation. Also, the surface U = 0 is known as the

future horizon which is a surface that can just absorb particles. Future null infinity

surface I+, is defined as (r → ∞, t = +∞) and past null infinity surface I− is

(r →∞, t = −∞). If one takes

T =
(U + V )

2

X =
(V − U)

2
, (3.32)

the Kruskal line element will be

ds2 =
32(GM)3e−r/2GM

r
(−dT 2 + dX2) + r2(dθ2 + sin2 θdφ). (3.33)

The above form of the Schwarzschild metric was found by Kruskal in 1960 (Fig 3.7).

3.1.2 Penrose diagram

The aim of introducing the Penrose diagram is to study the causal structure of infinite

points. The points at infinity can come to finite positions by choosing a proper

transformation. Penrose found a way to study the asymptotic infinities of Minkowski

spacetime. The Minkowski line element in polar coordinates is given by

ds2 = −dt2 + dr2 + r2dΩ2. (3.34)
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Figure 3.7: The Kruskal diagram.

In terms of the null coordinates u and v the Minkowski line element is

ds2 = dvdu− 1

4
(v − u)2(dθ2 + sin2 θdφ2), (3.35)

where u and v are defined as

v = t+ r

u = t− r, (3.36)
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the coordinate range is

−∞ < v < +∞

−∞ < u < +∞ (3.37)

From (3.36) it is obvious that

r =
1

2
(v − u), (3.38)

therefore,

if r ≥ 0⇒ v − u ≥ 0⇒ v ≥ u. (3.39)

The appropriate transformation that can bring the infinities of u and v coordinates

to finite positions is

p = tan−1 v

q = tan−1 u, (3.40)

thus from (3.37) we have

−1

2
π < p <

1

2
π

1

2
π < q <

1

2
π. (3.41)

The Minkowski line element in terms of p and q is

ds2 =
1

4
sec2 p sec2 q

[
4dpdq − sin2(p− q)(dθ2 + sin2 θdφ2)

]
. (3.42)

The main idea to study the infinities by using the Penrose diagram is based on

conformal transformation of the spacetime metric. If we denote the physical metric
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of the Minkowski spacetime by gµν , the conformal transformation of the mentioned

metric is

ḡµν = Ω2(x)gµν , (3.43)

Ω(x) is a continuous, non-zero function of spacetime which is called conformal fac-

tor and ḡµν is the unphysical metric conformally related to the physical metric of

spacetime.

The unphysical line element for (3.42) is

ds̄2 = 4dpdq − sin2(p− q)(dθ2 + sin2 θdφ2), (3.44)

with Ω2(x) = 1
4

sec2 p sec2 q. One can compactify the whole Minkowski spacetime by

defining new coordinates t′ and r′ such that

t′ = p+ q, (3.45)

and

r′ = p− q. (3.46)

In terms of t′ and r′, the unphysical line element (3.44) is

ds̄2 = dt′2 − dr′2 − sin2 r′(dθ2 + sin2 θdφ2), (3.47)

where, according to (3.41), the coordinate ranges are

−π < t′ + r′ < π

π < t′ − r′ < π, (3.48)
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where

r′ ≥ 0. (3.49)

Hence, the physical metric that describe the whole Minkowski spacetime is

ds2 =
1

4
sec2

[
1

2
(t′ + r′)

]
sec2

[
1

2
(t′ − r′)

] (
dt′2 − dr′2 − sin2 r′(dθ2 + sin2 θdφ2)

)
.

(3.50)

Therefore, the whole Minkowski spacetime is placed in a finite region which is given

by (3.48) and is called compactified Minkowski spacetime. The Penrose diagram is a

two-dimensional diagram of the compactified Minkowski spacetime (Fig. 3.8). Time

is the vertical axis and space is the horizontal axis in the two-dimensional Penrose

diagram. Infinities of the Minkowski spacetime are the boundaries of the compactified

Minkowski spacetime. One can define the future and past null infinities in terms of

the coordinates of the compactified Minkowski spacetime as the following surfaces

I+ = future null infinity

(
p =

1

2
π

)
, (3.51)

I− = past null infinity

(
q = −1

2
π

)
. (3.52)

Also, the future timelike infinity i+ and past timelike infinity i− are the following

points

i+ = future timelike infinity

(
p =

1

2
π, q =

1

2
π

)
, (3.53)

i− = past timelike infinity

(
p = −1

2
π, q = −1

2
π

)
. (3.54)

i0 = Spacelike infinity

(
p =

1

2
π, q = −1

2
π

)
. (3.55)

Kruskal solution can also be conformally compactified by defining new coordinates
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Figure 3.8: Penrose diagram of Minkowski spacetime with one set of asymptotic
infinities.

in terms of the Kruskal coordinates U and V as

V ′ = tan−1
[
V/(2GM)1/2

]
U ′ = tan−1

[
U/(2GM)1/2

]
. (3.56)

The coordinate ranges are

−π
2
< V ′ <

π

2
,

−π
2
< U ′ <

π

2
,

−π < U ′ + V ′ < π.

The Penrose diagram consists of four regions. In regions I and I ′ the ingoing and

outgoing radial null geodesics end up at future null infinity I+. The future singularity

at r = 0 originates from the future timelike infinity of one asymptotic region and ends
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at the future time like infinity of the other one (Fig. 3.9). For past singularity r = 0

the end points are the past timelike infinities of the two asymptotic regions.

Figure 3.9: Penrose diagram of the Kruskal extension of Schwarzschild solution.

An interesting aspect of this diagram is that the structure of infinity is the same as

for the Minkowski spacetime. This proves that the Schwarzschild solution is asymp-

totically flat.

3.2 Black hole thermodynamics

Black hole thermodynamics emerged when physicists tried to assign the laws of ther-

modynamics to the black holes. Before we start talking about the thermodynamics

of black holes we should introduce what is called ‘surface gravity’ of a black hole, κ.
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Surface gravity is defined for black holes which possess a Killing horizon. A Killing

horizon is a null hypersurface that has a null Killing vector on it. Based on Newtonian

mechanics, the surface gravity of an astronomical object indicates the gravitational

acceleration on its surface. More clearly, for a test particle with negligible mass close

to the surface of an astronomical object , surface gravity is its acceleration due to the

gravitational field of the astronomical object. For a black hole which has a Killing

horizon the surface gravity is defined as the acceleration which is required to keep a

test particle at the horizon. If Xa is a Killing vector, we have

Xa∇aX
b = κXb, (3.57)

[8], surface gravity at the horizon is obtained by evaluating (3.57) at the horizon. To

find the surface gravity for the Schwarzschild black hole, we write (3.57) in another

form

κ2 = −1

2
(∇aXb)(∇aXb). (3.58)

At the horizon of a Schwarzschild black hole, the Killing vector is ∂
∂t

. Since

we are evaluating the surface gravity at the horizon, the Killing vector would be

Xa = (1, 0, 0, 0). Therefore, Xa = gabX
b = [−(1 − 2GM

r
), 0, 0, 0]. The Schwarzschild

radius is a Killing horizon since Xa is literally a null Killing vector at r = 2GM

XaXa = 1.[−(1− 2GM

r
)]|r=2GM = 0. (3.59)

The only non-zero terms for ∇aXb are ∇rX t and ∇tXr. So,

κ2 = −1

2
(∇tXr∇tXr +∇rX t∇rXt) =

1

16G2M2
, (3.60)
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hence, for Schwarzschild black hole

κ =
1

4GM
. (3.61)

Surface gravity is constant for the Schwarzschild solution which describes a stationary

black hole. Therefore, one can imagine that the surface gravity for a stationary black

hole is analogous to the temperature of a body in thermal equilibrium.

The zeroth law of thermodynamics says that

• for a system in thermal equilibrium, the temperature is constant throughout

the system.

The respective zeroth law for the black hole horizon is

• The surface gravity κ is constant at the horizon of a stationary black hole.

The first law of thermodynamics is a statement of conservation of energy which says

• If the amount of heat supplied to an isolated system is dQ, the change in internal

energy of the system is dU and the work done by the system is dW , then they

satisfy

dQ = dU + dW.

The first law of black hole thermodynamics is also about conservation. For a rotating,

charged black hole the first law states

• Change of mass of a black hole is related to the change of its area, angular

momentum and charge as follows

dM =
κ

8π
dA+ ωdJ + φdq, (3.62)

ω is the angular velocity, J is the angular momentum and q is the electric charge of

the black hole and φ is the electric potential.
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In classical thermodynamics, entropy S is a fundamental concept which is defined

in terms of the temperature T and the heat supplied to the system dQ such that

dQ = TdS. (3.63)

Entropy is a measure of the disorder of an isolated system. The second law of ther-

modynamics states

• the change in entropy is greater than or equal to zero, therefore, entropy of an

isolated system always increases

dS

dt
≥ 0. (3.64)

The black hole event horizon has an interesting property that its surface area always

increases when the black hole absorbs matter or radiation. The surface area of the

horizon can be a measure of the entropy of the black hole. Stephen Hawking and

Jacob Bekenstein defined the entropy of a black hole as

SBH =
kA

4l2P
, (3.65)

A is the surface area of the horizon, k = 1.380648 × 10−23(JK−1) is the Boltzmann

constant and lP = (G~
c3

)1/2 = 1.616× 10−35m is the Planck length. The second law of

black hole thermodynamics expresses that

• The surface area of the horizon always increases, i.e,

dA

dt
≥ 0. (3.66)

The third law of black hole thermodynamics says

• It is not possible to have a black hole with zero surface gravity. It means that

κ = 0 is not achievable.
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This law is not the exact analogue of the third law of the classical thermodynamics.

The third law of thermodynamics says that

• the entropy of a system goes to zero when the temperature goes to zero.

Therefore, the exact analogue of the third law implies that the surface area of the

black hole goes to zero when the surface gravity is zero which does not make sense.

3.3 Hawking radiation

There is an important theorem about black holes known as the ‘no hair theorem’ [4]

which states that

• A black hole solution of Einstein field equations can be specified by three prop-

erties which are: mass, angular momentum and electric charge of the black

hole.

It implies that a group of black holes with the same mass, angular momentum and

electric charge are identical and one can not distinguish between them. If a distribu-

tion of matter is undergoing a collapse to form a black hole all information about the

distribution will be lost behind the event horizon. After the formation of the black

hole the only observable characteristics will be mass, angular momentum and charge.

The rest of the properties are hidden behind the event horizon. Therefore, a black

hole with specific mass, charge and angular momentum could have been formed from

the collapse of any one of the different distributions of matter. In statistical ther-

modynamics the logarithm of the number of microstates that correspond to a single

macrostate is proportional to the entropy of the system. If N denotes the number of

microstates, entropy is defined as

S = k lnN, (3.67)
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where k is the Boltzmann’s constant. Since the number of microstates is finite,

entropy is finite and therefore the black hole must have a finite temperature. From

thermodynamics we know that any object with temperature higher than absolute

zero must radiate, hence, black holes should radiate. Based on the classical theory of

black holes, nothing can escape the strong gravitational field of a black hole. However,

when we take into account quantum effects, black holes can radiate. So, black holes

are no longer black!

In 1974, Stephen Hawking proved that black holes radiate what is called ‘Hawking

radiation’, [7]. The temperature of the Hawking radiation in natural units where G,

c and ~ are equal to 1, is

TH =
1

8πM
≈ 10−8(

M

M�
)−1K, (3.68)

where

M� ≈ 1033g, (3.69)

is the solar mass. In terms of the surface gravity of the black hole κ, the temperature

of the Hawking radiation is

TH =
κ

2π
. (3.70)

From (3.68) one can deduce that the temperature of the Hawking radiation emitted

from small mass black holes is higher than those emitted from large black holes. The

temperature of the Hawking radiation that is emitted from a black hole with the

solar mass is much less than the temperature of the cosmic microwave background

(CMB) which is 3◦K. The rate of radiation absorption for these black holes is much

higher than the radiation emission rate, hence, their masses will increase gradually.

Small mass black holes radiate more than whatever they absorb, so, they will become

smaller and consequently hotter. When the temperature is above 1012K, the mass
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of the black hole is approximately about 1014g, at this point, black hole will emit a

great amount of different species of particles and radiate away its whole mass in about

10−23 seconds, [7]. In the next chapter we will study how one can justify Hawking

radiation as a result of vacuum polarization in the vicinity of the black hole horizon.

There is a famous paradox associated with the loss of information in black hole

physics. As we mentioned, the no hair theorem states that a specific black hole could

have been formed from the collapse of many possible distributions of matter. If we

consider a black hole as a physical final state and some distributions of matter (before

they collapse) as initial state, according to the no hair theorem one can conclude

that many physical states can evolve into the same final physical states. Quantum

mechanics describes physical states by wave functions which are functions of time.

The evolution of quantum states is explained by unitary operators. If we denote the

initial state of a physical system by |ψ(0) >, it evolves into the final state |ψ(t) > as

|ψ(t) >= e−iHt|ψ(0) >, (3.71)

where we set ~ = 1 and H is the Hamiltonian (energy operator) of the system. The

operator that denotes the evolution of the system is e−iHt which is a unitary operator

e−iHteiHt = 1. (3.72)

Equation (3.71) shows that by having information about the initial state of a system

one can find the final state by the action of the unitary operator e−iHt on the initial

state. Inversely, if we know about the final state of a system the unitary operator

gives us information about the initial state of the system. These two statements

imply the uniqueness of the initial and final states of a physical system. Therefore,

it is not in agreement with the no hair theorem since information must be preserved

61



if a unitary operator describes the evolution of a system and if a physical system is a

result of unitary evolution of just one state.

The density matrix in quantum mechanics is defined as

ρ = |ψ〉〈ψ|, (3.73)

a state is called a pure state if it satisfies

ρ2 = ρ. (3.74)

If |ψ(0)〉 → e−iHt|ψ(0)〉 one can write

ρ = e−iHt|ψ(0)〉〈ψ(0)|e+iHt = |ψ(t)〉〈ψ(t)|. (3.75)

One can conclude from (3.75) and (3.76) that a pure state remains a pure state

under unitary transformations. Therefore, if a matter field which is described by a

pure state falls into the black hole it must remain pure. Thus, one should be able to

get information about the matter field since its evolution is described by a unitary

operator. Hence, if information loss is valid then non-unitary operators must explain

the evolution of states. Hawking radiation is a result of a semiclassical quantum

gravity approach which considers gravity as a classical field and matter fields are

quantum fields, however, based on the above discussion one has to invent a new

theory to justify Hawking radiation.
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3.3.1 Summary

In this chapter we obtained a solution of Einstein field equations in the vacuum called

the Schwarzschild solution. The Schwarzschild solution has two singularities. One of

the singularities is a coordinate singularity and is removable by choosing a proper

coordinate transformation. We mentioned the procedure to remove the coordinate

singularity of the Schwarzschild solution. We introduced the Kruskal coordinate and

then a method to compactify the Minkowski spacetime and the Kruskal solution

known as the Penrose diagram. We finished the chapter by reviewing black hole

thermodynamics and Hawking radiation. Hawking radiation can be explained by

studying the interaction of a scalar field with the gravitational field of the black

hole close to the horizon. Since the scalar field is a quantum field, one has to know

quantum field theory to understand the procedure of Hawking radiation emission. In

the following chapter we will describe the physics of quantum fields in Minkowski

and in curved spacetime. By understanding the physics of quantum fields in curved

spacetime we will have enough information to realize the process of Hawking radiation

emission. We mainly followed references [4], [5], [6], [7], [8],[9], [10] , [11], [12], [13],

[14], [15].
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Chapter 4

Quantum Fields in Minkowski and

in Curved Spacetime

4.1 Quantum field theory in Minkowski spacetime

As we mentioned before, the special theory of relativity assumes that all inertial ob-

servers are equivalent. Since inertial observers are related to each other by Lorentz

transformations, it means that all laws of physics are invariant under Lorentz trans-

formations or in other words they have Lorentz symmetry. However, quantum field

theory requires the invariance of physical laws under spacetime translations as well

as the Lorentz transformations. The transformation that is the result of both space-

time translations and Lorentz transformations is called the Poincaré transformation.

Poincaré transformations are defined as

xµ = Λµ
νx

ν + aµ, (4.1)

and

aµ ∈ R. (4.2)

64



R is a symbol for real numbers including integers and fractions. aµ are four parame-

ters(for four-dimensional spacetime) that identify the spacetime translations.

The basic constituents of QFT are quantum fields which are functions of space

and time and obey appropriate commutation relations. As we said, quantum field

theory is invariant under Poincaré transformations. Since quantum fields are defined

in different points of spacetime, the interactions of these fields must be local. Hence,

the equations of motion and commutation relations that explain the evolution of a

given quantum field at a given point in spacetime and depend only on the behavior

of the field and its derivatives at that point.

In this section we study the action principle and the way to find equations of

motion for classical fields. Then we review scalar field theory which includes real

scalar fields and complex scalar fields. Then we continue the study of Minkowski

spacetime field theory by talking about fermionic fields. Finally, we will describe the

concept of vacuum in flat spacetime.

4.1.1 The action principle

One important subject in classical mechanics is the Lagrangian formalism. In order

to study a classical system with N degrees of freedom, one can use a set of generalized

coordinates xi(t), with i = 1, 2, ..., N . The Lagrangian L is a function of xi’s and their

first derivatives with respect to the time ẋi’s, and of course a function of time, i.e.,

L = L(xi, ẋi, t). (4.3)

The Lagrangian is defined as kinetic energy minus the potential energy,

L(xi, ẋi, t) =
∑
i

(mi/2)ẋ2
i − V (xi), (4.4)
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where the potential energy V (x) is just a function of coordinates. The action S is

given by

S =

∫
L(xi, ẋi, t)dt. (4.5)

There is an important principle related to the action called the action principle which

states:

• if one considers two points A and B, a classical particle at A can take several

different paths to go to B. However, the correct physical path is the one that

extremizes the action.

If the particle is at A at initial time tA and at B at final time tB, the extremum of

the action can be found by setting the variation of the action equal to zero

δS = δ

∫ tB

tA

L(x, ẋ, t)dt = 0, (4.6)

xi’s are denoted collectively by x and the boundary conditions are fixed while we

are performing the variation. Solutions of (4.6) are the Euler-Lagrange equations

∂L

∂xi
− d

dt

∂L

∂ẋ
= 0. (4.7)

Since the action principle talks about paths and not about coordinate systems, one

can conclude that the Euler-Lagrange equations hold in any coordinate system.

In quantum field theory we deal with fields which are functions of spacetime. To

describe the classical dynamics of a generic field φ(x) where x refers to the spacetime,

one can generalize the Lagrangian method. The Lagrangian for a given field is a

function of spacetime coordinates.
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In the case of a classical field, the Lagrangian is a function of the field and its first

derivative,

L =

∫
d3xL(φ, ∂µφ), (4.8)

where L is called the Lagrangian density and ∂µ = ∂/∂xµ. The action is defined as

S =

∫
Ldt =

∫
d4xL(φ, ∂µφ). (4.9)

The same as for point particles, the action is stationary for the fields, i.e.,

δS = δ

∫
d4xL(φ, ∂µφ) = 0. (4.10)

Therefore, the equations of motion which are found by equating zero the variation of

the action are

∂L
∂φi
− ∂µ

∂L
∂(∂µφi)

= 0, (4.11)

these equations are Euler-Lagrange equations for a classical field.

4.1.2 Real scalar fields

In QFT fields are categorized based on their spins. The spin of an object comes from

how it transforms under spatial rotations. Scalar fields are spin zero fields; if φ(x) is

a real scalar field, it assigns a real numerical value to each point in spacetime.

Since, QFT must be invariant under Lorentz transformations, scalar fields should

be the same for all inertial observers. If we have a scalar field φ(x) in coordinates xµ,

and φ̃(x̃) in coordinates x̃µ which is related to xµ by

x̃µ = Λµ
νx

ν , (4.12)
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we must have

φ(x) = φ̃(x̃). (4.13)

It means that the numerical value of a scalar field at a point is Poincaré invariant.

Consider a set of scalar fields φi(x) and a Lagrangian density L(φi(x), ∂µφi(x)), if

we make an infinitesimal change to φ field

φi(x)→ φi(x) + δφi(x)

the Lagrangian density will also change

L(x)→ L(x) + δL(x)

where,

δL(x) =
∂L

∂φi(x)
δφi(x) +

∂L
∂(∂µφi(x))

∂µδφi(x). (4.14)

If the equations of motion are satisfied we get

δS

δφi(x)
= 0, (4.15)

therefore (4.14) would be

0 =
∂L(x)

∂φi(x)
− ∂µ

∂L(x)

∂(∂µφi(x))
(4.16)

now, the Noether current is defined as

jµ(x) =
∂L(x)

∂(∂µφi(x))
δφi(x) (4.17)

from (4.16) it is manifest that the Noether current is conserved for a set of infinitesimal
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transformations that leave the Lagrangian invariant, so,

δL(x) = 0 −→ ∂µj
µ(x) = 0. (4.18)

The action that explain dynamics of a field must contain ∂µφ which shows the change

in φ(x). In order to have a Lorentz invariant action the index µ must be saturated

and, for a scalar field, the only possibility is to contract it with another factor ∂µφ,

[2]. The action for a free real scalar field in a 4-dimensional Minkowski spacetime is,

S =

∫
d4x

[
1

2
∂µφ∂

µφ− 1

2
m2φ2

]
(4.19)

with

∂µ = ηµν∂ν , (4.20)

and m is mass of the field quanta.

The Lagrangian density for a real scalar field is given by

L =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2. (4.21)

Equations of motion are obtained by taking the variation of the action with respect

to the φ field and setting it equal to zero; the resultant equation is called Klein-Gordon

equation

ηµν∂µ∂νφ+m2φ = (� +m2)φ = 0, (4.22)

where � = ∂µ∂
µ.

One set of normal modes that are solutions of the Klein-Gordon equation are

plane waves ui(x), where x denotes the spacetime coordinates.
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ui(x) ∝ ei(k·x−ωt), (4.23)

k is an arbitrary real vector [17] and in the Cartesian coordinates its magnitude is

k = |k| = (k2
x + k2

y + k2
z)

1/2. (4.24)

ω is the frequency of the wave which is given by

ω = (k2 +m2)1/2 > 0, (4.25)

The solutions (4.23) are positive frequency modes with respect to t since they

satisfy

∂ui(x)

∂t
= −iωui(x). (4.26)

Another set of solutions are the complex conjugates of the ui modes, i.e.,

u∗i (x) ∝ e−i(k·x−ωt), (4.27)

these are negative frequency modes with respect to t, since

∂u∗i (x)

∂t
= +iωu∗i (x). (4.28)

The complete set of solutions, ui and their complex conjugates u∗i satisfy the

orthonormality condition

< ui, uj >= δij

< u∗i , uj >= 0, (4.29)
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if the scalar product is defined as,

< ui, uj >= −i
∫ [

ui(x)∂tu
∗
j(x)− [∂tui(x)]u∗j(x)

]
d3x. (4.30)

One can expand the φ field in terms of the ui(x) modes and their complex conjugates,

u∗i (x) such that

φ(x) = Σi

[
aiui(x) + a†iu

∗
i (x)

]
, (4.31)

In order to quantize the φ field, one has to promote it to operator and apply the

following equal time canonical commutation relations

[φ(t,x), φ(t,x′)] = 0 [π(t,x), π(t,x′)] = 0 [φ(t,x), π(t,x′)] = iδ3(x−x′). (4.32)

π(t,x) is the conjugate momentum for the φ field which is defined as

πi(x) =
∂L

∂(∂0φi(x))
, (4.33)

and in the last commutation relation δ(x− x′) is the Dirac delta function which is,

δ(x− x′) =

 ∞ if x = x′

0 if x 6= x.′

If we substitute φ(x) from (4.31) into (4.32), we get that ai and a†i satisfy the following

commutation relations,

[ai, aj] = 0 [a†i , a
†
j] = 0 [ai, a

†
j] = δij. (4.34)

These are commutation relations for creation and annihilation operators, hence,
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a†i and ai are creation and annihilation operators respectively.

If we look at the expansion of φ(x) in (4.31), we see that φ(x) is equal to its

Hermitian conjugate. Hermitian conjugation occurs when

ai ↔ a∗i , and ui(x)↔ u∗i (x). (4.35)

It implies that scalar fields describe particles that are equal to their antiparticles.

In classical mechanics the Hamiltonian of a system of point particles is a central

quantity that one should know in order to study the dynamics of the system. The

Hamiltonian of a system corresponds to the total amount of energy that the system

includes. Since in quantum field theory we are interested in dynamics of quantum

fields, we should know about the Hamiltonian of the φ fields.

The Hamiltonian of a φ field is defined in terms of the stress-energy tensor of the

field which is given by

Tµν = ∂µφ∂νφ−
1

2
ηµνη

λρ∂λφ∂ρφ+
1

2
m2φ2ηµν , (4.36)

for µ, ν = 0, 1, 2, 3. The above equation can be obtained by using Tµν = 1√
−g

δS
δgµν

,

and for the Minkowski spacetime we have gµν = ηµν . One can write the Hamiltonian

density H(x) as,

H(x) = T00 =
1

2

[
(∂0φ)2 + Σn−1

i=1 (∂iφ)2 +m2φ2
]
. (4.37)

The total Hamiltonian is

H =

∫
H(x)d3x, (4.38)
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by using (4.31) and taking the integral over all space, we get

H =
1

2
Σi

(
a†iai + aia

†
i

)
ω. (4.39)

From the commutation relations of ai and a†i , the Hamiltonian can be written as [17],

H = Σi

(
a†iai +

1

2

)
ω. (4.40)

In QFT the operator that counts the number of particles in a specific quantum state

is the number operator Ni defined in terms of the creation and annihilation operators

such that

Ni = a†iai, (4.41)

as we can see, it is the first term in (4.40), hence

H = Σi

(
Ni +

1

2

)
ω, (4.42)

using (4.42) one can show that H and Ni commute, i.e.,

[Ni, H] = 0. (4.43)

4.1.3 Complex scalar fields

Complex scalar fields are functions of spacetime coordinates that assign complex

numbers to each point of spacetime. A combination of two real scalar fields φ1 and

φ2 with the same mass m can form a complex scalar field such that

φ =
(φ1 + iφ2)√

2
. (4.44)
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The action for the complex field is the sum of the actions of the two real scalar fields.

In terms of the φ(x), the action is given by

S =

∫
d4x(∂µφ

∗∂µφ−m2φ∗φ), (4.45)

and the Lagrangian density is

L = ∂µφ
∗∂µφ−m2φ∗φ. (4.46)

The equations of motion are obtained by taking the variation of the action with

respect to the φ∗ and setting it equal to zero while φ is fixed. Since φ1 and φ2 satisfy

the Klein-Gordon equation separately, φ also satisfies Klein-Gordon equation.

φ can be expanded in terms of the orthonormal modes which are solutions of

Klein-Gordon equation

φ(x) = Σi

[
biui(x) + c†iu

∗
i (x)

]
. (4.47)

The same as real scalar field case, ui(x) are plane waves and u∗i (x) are their complex

conjugates. bi and ci obey the following commutation relations

[bi, bj] = [ci, cj] = [bi, cj] = [bi, c
†
j] = 0. (4.48)

b†i and c†i are two independent creation operators. They create two different types

of spin zero particles which possess the same mass. They are known as particles and

antiparticles. Thus, a complex scalar field is not its own Hermitian conjugate.

The current for the complex scalar field is defined as

jµ = −i (φ∂µφ
∗ − φ∗∂µφ) = iφ∗

←→
∂µφ, (4.49)
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and the scalar product of two complex scalar fields is given by

< φ1|φ2 >= i

∫
d3xφ∗1

←→
∂0 φ2. (4.50)

4.1.4 Fermionic fields

Fermionic fields are spin 1
2

fields. Quanta of a fermionic field is a fermion. Electrons

and protons are examples of fermions. One famous fermionic field is the Dirac field

ψ(x). Dirac spinor is represented as a four-component spinor

ψ =



ψ1

ψ2

ψ3

ψ4


, (4.51)

or in terms of the Weyl spinors, ψL and ψR

ψ =

 ψL

ψR

 , (4.52)

this representation of the Dirac field is called chiral representation. ψL is the left-

handed Weyl spinor which is (0, 1
2
) representation. The right-handed Weyl spinor ψR,

is (1
2
, 0) representation, (see [2] for more details).

The Lagrangian density for the Dirac field is defined as

LD = iψ†Lσ̄
µ∂µψL + iψ†Rσ

µ∂µψR −m(ψ†LψR + ψ†RψL), (4.53)

σµ = (1, σi) and σ̄µ = (1,−σi), 1 is the 2 × 2 identity matrix and σi are the Pauli
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matrices

σ1 =

 0 1

1 0

 (4.54)

σ2 =

 0 −i

i 0

 (4.55)

σ3 =

 1 0

0 −1

 . (4.56)

σ̄µ are the Hermitian conjugates of the Pauli matrices. The Pauli matrices are

used to define Dirac gamma matrices in three dimensions as

γi = iσi. (4.57)

By using the chiral representation for the Dirac field in the Lagrangian, the equations

of motion are obtained as

(iγµ∂µ −m)ψ = 0. (4.58)

The γµ matrices are Dirac gamma matrices in four dimensions

γ0 =

 0 1

1 0

 γi =

 0 σi

−σi 0

 , (4.59)

for i = 1, 2, 3. Or, briefly

γµ =

 0 σµ

σ̄µ 0

 (4.60)

Dirac gamma matrices obey the Clifford algebra,

{γµ, γν} = 2ηµν . (4.61)
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4.1.5 Vacuum in Minkowski spacetime

In quantum field theory vacuum state or zero-particle state |0 >, is the state with

the lowest possible energy and zero physical particles in it. Vacuum is the state that

can be annihilated by the annihilation operator

ai|0 >= 0, ∀i, (4.62)

or equivalently

< 0|a†i = 0, ∀i. (4.63)

In QFT, the space of quantum states is called Fock space and a basis in this space

is called the Fock representation. Fock space can be constructed by operating on the

vacuum with the creation operator a†

a†i |0 >= |1i > (4.64)

where the state |1 > is called the one-particle state. As we mentioned before, vacuum

is the state that includes zero physical particles. One can prove this by finding the

vacuum expectation value of the number operator

< 0|Ni|0 >=< 0|a†iai|0 >, (4.65)

from (4.62) and (4.63), one can conclude that

< 0|Ni|0 >= 0. (4.66)

It means that the number of particles in the vacuum state is zero which is simply the

definition of the vacuum state. If the number of particles in the vacuum state is zero,
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the energy of the state must be zero as well. For example, we can find the vacuum

expectation value of the Hamiltonian operator (4.42) as

< 0|H|0 >=< 0|Σi(Ni +
1

2
)ω|0 >=< 0|Σi

1

2
ω|0 >, (4.67)

and orthonormality condition requires

< 0|0 >= 1, (4.68)

the vacuum expectation value of the Hamiltonian would be

< 0|H|0 >=
1

2
Σiω. (4.69)

So, the energy of the vacuum state is non-zero though there are no physical particles

in the state. The term 1
2
ω is the zero-point energy of the harmonic oscillator modes

of the φ field, [17]. Since there is no limit for the value of the ω, it can be very large

or even infinite. It implies that the energy of the vacuum state can be infinite. One

way to solve this problem of the vacuum is to define normal ordering operation. If

one has an operator which is a mixture of creation and annihilation operators, the

normal ordered version of the operator is obtained by placing all creation operators

to the left of the annihilation operators. So, the normal ordering implies

: aia
†
i := a†iai →: H := Σia

†
iaiω. (4.70)

The vacuum expectation value of the normal ordered Hamiltonian is therefore

< 0| : H : |0 >=< 0|Σia
†
iaiω|0 >= 0, (4.71)
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which is consistent with the zero amount of the energy of the vacuum state.

4.2 Quantum field theory in curved spacetime

At present, gravity is described by Einstein’s field equations. In the presence of

gravity, the spacetime is no longer the flat Minkowski spacetime. Thus, the theory

of quantum fields in Minkowski spacetime should be modified. However, gravity is a

classical field though matter fields are quantized. So, the problem is that if there is no

quantum theory of gravity, how can one study the effects of a classical gravitational

field on quantum matter fields? One can consider a classical background gravitational

field and examine its effects on quantum matter fields. It can be an approximation

of a more generalized theory in which spacetime is quantized. This approximation

works very well except in spacetime singularities. This approximation is valid for our

universe after the timescale 10−43 s, [7].

In the following, we will study the physics of scalar fields and fermionic fields in

curved spacetime and we show that vacuum is not unique in curved spacetime and

is observer dependent. We introduce Bogoliubov transformations which are used to

relate different mode expansions of the quantum fields.

4.2.1 Real scalar fields

The Lagrangian for a real scalar field in curved spacetime is given by

L(x) =
1

2
[−g(x)]1/2

[
gµν(x)∂µφ(x)∂νφ(x)− [m2 + ξR(x)]φ2(x)

]
, (4.72)

where, m is the mass of the field, R(x) is the Ricci scalar which is an indication of

the curved spacetime. ξ is a constant that shows the coupling between the scalar field

and curvature of spacetime. There are two important cases based on different values
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of ξ,

1) Conformally coupled case:

it occurs when ξ = 1
4
[(n−2)/(n−1)] = ξ(n), where n is the dimension of spacetime.

For example, for a four-dimensional spacetime ξ = 1
6
.

Under a conformal transformation

gµν → ḡµν = Ω2(x)gµν(x) (4.73)

φ(x) will transform as

φ̄(x) = Ω(2−n)/2(x)φ(x). (4.74)

If m = 0, the action and the equations of motion will be invariant under conformal

transformations, [27]. Equations of motion for the conformally coupled case are

(
� +m2 +

1

4
[(n− 2)/(n− 1)]R(x)

)
φ(x) = 0, (4.75)

with

�φ = gµν∇µ∇νφ = (−g)−1/2∂µ[(−g)1/2gµν∂νφ]. (4.76)

2) ξ = 0 or minimally coupled case:

for a two-dimensional spacetime, the minimally coupled case and conformally

coupled case would be the same since for both of them ξ = 0.

For minimally coupled case the Lagrangian is,

L(x) =
1

2
[−g(x)]1/2

{
gµν(x)∂µφ∂νφ−m2φ2

}
. (4.77)
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We get the equations of motion as follow,

δS = δ

∫
L(x)d4x = 0→ [� +m2]φ(x) = 0, (4.78)

with � is the same as (4.76). If we consider our coordinate system as x = xµ, there

exists a complete set of orthonormal modes ui(x) which are solutions of the equations

of motion and satisfy

< ui, uj >= δij < u∗i , uj >= 0 < u∗i , u
∗
j >= −δij. (4.79)

With the inner product defined as

< u1, u2 >= −i
∫

Σ

u1(x)∂µu
∗
2(x)[−g(x)]1/2dΣµ, (4.80)

where Σ is a spacelike Cauchy surface, [15]. The φ field can be expanded in terms of

these normal modes

φ(x) = Σi

(
aiui(x) + a†iu

∗
i (x)

)
. (4.81)

φ fields satisfy the same equal time canonical commutation relations as the Minkowski

spacetime case and from them one can get

[ai, a
†
i ] = δij [ai, aj] = 0 [a†i , a

†
j] = 0. (4.82)

The above commutation relations are the same as for the creation and annihilation

operators in Minkowski spacetime, therefore we can conclude that they are creation

and annihilation operators.

The ui(x) normal modes are not the only set of normal modes in terms of which

φ field can be expanded. Since we can solve the Klein-Gordon equation in different
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coordinate systems, we can find different normal modes as the solution. If we select

another coordinate system x̄ = x̄µ(x), we can take another set of normal modes ūj(x)

and write φ in terms of them, so,

φ(x) = Σj

(
ājūj(x) + ā†jū

∗
j(x)

)
. (4.83)

Since both ui and ūj are complete sets, one can write

ūj = Σi (αjiui + βjiu
∗
i ) , (4.84)

and

ui = Σj

(
α∗jiūj − βjiū∗j

)
. (4.85)

These relations are called Bogoliubov transformations and the matrices αij and βij

are Bogoliubov coefficients. The Bogoliubov coefficients are defined as

αij =< ūi, uj > (4.86)

−βij =< ūi, u
∗
j > . (4.87)

The definition for the Noether current is the same as the Minkowski spacetime,

jµ(x) =
∂L(x)

∂(∂µφa(x))
δφa(x). (4.88)

Since the Lagrangian density L(x), for the φ field in the curved spacetime is not the

same as the Minkowski spacetime, the Noether current would be different.
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4.2.2 Complex scalar fields

The definition of the complex scalar field is the same as what we mentioned for the

Minkowski spacetime. The action for a complex scalar field in a four-dimensional

curved spacetime is given by,

S =

∫ √
−g(∂µφ

∗∂νφg
µν − 1

6
Rφ∗φ)d4x, (4.89)

with R the Ricci scalar [16]. For the φ and φ∗ fields, the conjugate momenta π and

π∗ are defined as

π =
∂L

∂(∂0φ)
=
√
−gg0µ∂µφ

∗ (4.90)

and

π∗ =
∂L

∂(∂0φ∗)
=
√
−gg0µ∂µφ. (4.91)

The equations that describe the complex φ field are

∇ν [(∂µφ)gµν ] +
1

6
Rφ = 0. (4.92)

A complex scalar field can be expanded in terms of the solutions of (4.92), [14].

4.2.3 Fermionic fields

For a manifold M, the set of all possible vectors which are tangent to the manifold

at a point P will form the Tangent space TP at point P and the set of all possible

tangent spaces of a manifold is called a tangent bundle T (M). The geometry of the

manifold and the tangent space are different. Also, the basis vectors on the manifold

and on the tangent space are not the same. The basis vectors of the tangent space

TP at point P are
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ê(a) =
∂

∂xa
, (4.93)

where, xa denotes the coordinate system on the tangent space. If the basis vectors

on the manifold are ê(µ), we have

ê(µ) = eaµê(a), (4.94)

where eaµ are n×n invertible matrices which are known as tetrads. Tetrads are crucial

to relate the tangent space variables to the variables on the manifold. Tetrads are

used to relate the metric of the flat spacetime ηµν(can be the tangent space), and the

metric of the curved spacetime gµν(or the manifold), as

gµν = eaµe
b
νηab. (4.95)

We will need the tetrads in order to study fermionic fields in curved spacetime. They

will be required to find the proper expression for the Dirac gamma matrices in curved

spacetime.

The action for a spin 1
2

field in the curved spacetime is

S =

∫
i
√
−g(ψ̄gµνγν∇µψ)d4x, (4.96)

where ψ̄ is defined as, [16]

ψ̄ = ψ†α, (4.97)

and α obeys

αγµ − γµ†α = 0. (4.98)
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The Dirac gamma matrices satisfy the generalized Clifford algebra

{γµ, γν} = 2gµν . (4.99)

Since we are in curved spacetime we have to write gµν , the metric of the curved

spacetime instead of the Minkowski metric ηµν .

The equations of motion for the Dirac field are

γµ(∂µ − ωµ)ψ = 0. (4.100)

The spin connection components ωµ, are

ωµ = ωµabσ
ab (4.101)

where

ωaµb = eaνe
λ
bΓ

ν
µλ − eλb∂µeaλ (4.102)

and

σab =
i

2
[γa, γb]. (4.103)

Spin connection is a connection which is defined on the tangent bundle of a manifold.

γµ are Dirac gamma matrices in curved spacetime

γµ = eµaγ
a. (4.104)

Therefore, to solve the equations of motion for fermionic fields in curved spacetime

one has to find the Dirac gamma matrices in curved spacetime and the spin connection

components and substitute them in (4.100) and solve for ψ.
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4.2.4 Vacuum in curved spacetime

The procedure to construct the Fock space from the vacuum state is the same as the

Minkowski spacetime. The main difference is that the vacuum is not unique in curved

spacetime since each creation and annihilation operator defines a new vacuum. So,

we have

ai|0 >= 0, ∀i, (4.105)

and

āj|0̄ >= 0 ∀j. (4.106)

|0 > and |0̄ > are two different vacua. By acting on different vacuum states by

respective creation operators one can get one-particle states

a†i |0 >= |1i > (4.107)

and

ā†j|0̄ >= |1̄j > . (4.108)

The orthonormality conditions give the two annihilation operators ai and āj as

ai =< φ, ui >= Σj

[
āj < ūj, ui > +ā†j < ū∗j , ui >

]
, (4.109)

and

āj =< ūj, φ >= Σi

[
ai < ūj, ui > +a† < ūj, u

∗
i >
]
. (4.110)

The Bogoliubov transformations give

ai = Σj

(
αjiāj + β∗jiā

†
j

)
, (4.111)
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and

āj = Σi

(
α∗jiai − β∗jia

†
i

)
. (4.112)

It is evident that a vacuum that can be annihilated by āj will not be annihilated by

ai, since

ai|0̄ >= Σj

(
αjiāj + β∗jiā

†
j

)
|0̄ >= Σj|β∗ji|1̄j >6= 0. (4.113)

Therefore, the two Fock spaces based on the two different modes ui and ūj would be

different as long as βji 6= 0. The vacuum expectation value of the operator N = a†iai

that gives the number of ui-mode particles in the state |0̄ > is

< 0̄|Ni|0̄ >= Σj|βij|2, (4.114)

it states that vacuum of the ūj contains Σj|βij|2 particles in the ui mode. Therefore,

the vacuum depends on the observer. If an observer observes a state as being a vacuum

state, another observer can see that the observed state contains some particles.

In the case of the Minkowski spacetime, it was easy to determine the positive and

negative frequency modes. In Minkowski spacetime, we could identify positive fre-

quency modes and negative frequency modes by simply taking the partial derivatives

of the modes with respect to the time. However, in the case of curved spacetime we

do not have a unique time coordinate. For the curved spacetime, one should find the

Lie derivative of the modes with respect to a timelike Killing vector ∂
∂t

, so,

L∂tui = −iωui, ω > 0, (4.115)

are positive frequency modes. Negative frequency modes are

L∂tu
∗
i = iωu∗i , ω > 0. (4.116)
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4.2.5 Summary

This chapter was devoted to study the main aspects of quantum field theory in

Minkowski spacetime and curved spacetime. Concepts such as the equations of mo-

tion for different classes of fields, and the vacuum in flat and curved spacetime were

explained. In this chapter we mainly followed the following references: [2], [3], [11],

[15], [16], [18], [21], [22], [23] and [27].
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Chapter 5

Vacuum Decay in a Quasi-Local

Region

5.1 Vacuum polarization

Vacuum polarization is an outcome of definition of the vacuum in modern quantum

field theory. One of the first suggested models of the vacuum was proposed by Dirac.

However, his model had some problems. In this section we will review the Dirac model

and then we will talk about vacuum polarization in modern quantum field theory. We

will see that Hawking radiation can be described as a result of vacuum polarization

in the Schwarzschild spacetime and in the vicinity of the black hole horizon.

5.1.1 Dirac sea and negative energy states

The equation that relates energy, momentum and mass of a particle in special rela-

tivity is

E2 = p2c2 +m2c4 (5.1)
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E is the energy, p is the momentum and m is the mass of the particle. For massless

particles like photons, the equation changes to

E2 = p2c2 (5.2)

and for particles at rest it will be

E2 = m2c4. (5.3)

If we take the square root of (5.1), we get

E = ±
√
p2c2 +m2c4, (5.4)

this shows that if there is a state with energy +E, there exists a state with energy

−E. Quantum mechanics assigns operators to physical observables such as energy,

momentum, angular momentum and so on. For example, the energy operator is

Ê = i~
∂

∂t
, (5.5)

and the momentum operator is

p̂ = −i~∇ = −i~(
∂

∂x
,
∂

∂y
,
∂

∂z
). (5.6)

Furthermore, particles are described by wave functions which are functions of space

and time, ψ(r, t). The Schrodinger equation for a massive free particle is

− ~2

2m
∇2ψ = i~

∂

∂t
ψ, (5.7)
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by using (5.5) and (5.6) one writes

p̂2

2m
ψ = Êψ. (5.8)

Energy, momentum and mass satisfy (5.4), so, if we substitute the operators of energy

and momentum in (5.4) we get

(− 1

c2

∂2

∂t2
+∇2)ψ =

m2c2

~2
ψ, (5.9)

which is the relativistic Klein-Gordon equation. This equation could explain the

electron dynamics pretty well. So, (5.4) implies that negative energy electrons are

allowed. The Pauli exclusion principle says

• no two fermions can occupy a single energy state within an atom.

Electrons are spin 1/2 particles and therefore they obey Pauli exclusion principle. In

1930, Paul Dirac postulated what is known as ‘Dirac sea’ to explain the negative-

energy quantum states. Dirac postulated that the state in which all the negative

energy states are filled is the vacuum state. This definition of the vacuum is known

as the ‘Dirac sea’. So, a single electron must be in positive energy state since all

the negative energy states are filled. In the case that all the negative energy states

are filled except one, there would be a hole in the sea. This occurs when a negative

energy electron gets energy by absorbing a photon and become positive energy (Fig.

5.1).

The total charge of the Dirac sea is the charge of the vacuum minus the charge of

the electron,

Q = Qvac − (−e) = Qvac + |e|, (5.10)
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Figure 5.1: A negative energy electron can absorb a photon and become a positive
energy electron. The required energy for this procedure is 2m0c

2.

thus, the charge of the hole is

Qhole = Q−Qvac = +|e|. (5.11)

This hole can be interpreted as a positive energy particle which possesses the same

mass as the electron. The Dirac hole has same properties as the positron which is

the antiparticle of the electron.

The Dirac sea was not accepted by several physicists due to infinite negative charge

of the vacuum. Infinite positive charge is required to form a neutral vacuum. As we

mentioned in previous chapter, modern QFT describes the vacuum as the state with

zero particles. The positron is a real particle in modern QFT not just the absence of

a real particle.
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5.1.2 S-matrix and vacuum polarization

In quantum field theory, the S-matrix is an operator that determines the evolution

of a state. States are functions of time in the Schrodinger picture of the quantum

mechanics. A state A|t > evolves as

|A > (t) = e−iH(t−Ti)/~|A >, (5.12)

where |A >= |A > (Ti) and H is the Hamiltonian. If |A > (t) at final time Tf is

denoted by |A′ >, we can write

|A′ >= e−iH(Tf−Ti)/~|A > . (5.13)

The process of evolution of the initial state |A > to the final state |A′ > has the

following amplitude

< A′|e−iH(Tf−Ti)/~|A > . (5.14)

In the limit Tf − Ti →∞ the evolution operator e−iH(Tf−Ti)/~ is called the S-matrix,

[2]. S is a unitary operator, since

SS† = S†S = 1. (5.15)

According to modern QFT, the virtual particle-antiparticle pairs are created out of

the vacuum spontaneously and annihilate each other very shortly thereafter. This

process shows that the vacuum is active. The decay rate of the vacuum can be

computed from the vacuum expectation value of the S matrix of the interaction

| < 0|S|0 > |2 = exp(−
∫
d4x w(x)) = exp(−W ), (5.16)
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w(x) is the rate of pair creation per unit time per unit volume and W =
∫
d4x w(x)

is the net rate of the decay of the vacuum. If W is non-zero and positive it manifests

a ‘decay’.

Some of the virtual pairs which are created out of the vacuum are charged. In the

presence of an external electromagnetic field, these pairs will be displaced from their

original positions. As a result of the displacement of the pairs, the electromagnetic

field will be different from the one before the displacement. In this case it is said that

the vacuum is polarized. Vacuum polarization is defined as the reorientation of the

short lived particle-antiparticle pairs due to the presence of an external field. In the

case of an external electromagnetic field the S-matrix of the interaction is

S = exp

(
i

~

∫
d4xjµAµ

)
, (5.17)

Aµ is the vector potential which is defined by

F µν = ∂µAν − ∂νAµ (5.18)

F µν is known as the electromagnetic field tensor which is defined in terms of

electric field E and magnetic induction B as

F µν =



0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0


(5.19)

jµ is the operator scalar/fermion matter field current given by

∂νF
µν = jµ. (5.20)
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After expanding (5.16) we get

W =
2Im

~
< 0|

∫
d4xjµAµ|0 > (5.21)

which gives the net rate of vacuum decay in the presence of an external electromag-

netic field. This was computed in [26] and it was crucial that the vacuum expectation

of the interaction term had an imaginary term for the vacuum to decay

Gravity can also force particle-antiparticle pairs to be separated. In the presence

of a background gravitational field, particle-antiparticle pairs will be separated under

the influence of gravity and if the gravitational field is strong enough real particles

can emerge. General relativity suggests the stress-energy tensor Tµν , as the source

of gravity. Therefore, the coupling between matter fields and gravity is described by

the stress-energy tensor. The S matrix of the interaction is

S =

∫
d4x
√
−ggµνTµν . (5.22)

gµν is the metric of the spacetime and g is its determinant. So, the exact decay rate

of the vacuum is given by

Wgrav =
2Im

~
< 0|

∫
d4x
√
−ggµνTµν |0 > . (5.23)

5.1.3 Vacua of the Schwarzschild spacetime

In the presence of a background gravitational field or equivalently for an observer

in an accelerated reference frame there is not a unique Fock space vacuum. As we

mentioned before, vacuum would be different from the point of view of different

observers in curved spacetime. It implies different vacuum expectation values for

different vacua.
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The Schwarzschild spacetime consists of two regions

 interior region if r < 2GM ,

exterior region if r > 2GM .

The spacetime at r > 2GM is described by the Schwarzschild metric

ds2 = −(1− 2GM

r
)dt2 + (1− 2GM

r
)−1dr2 + r2dΩ2. (5.24)

In terms of the tortoise coordinate r∗ the metric is

ds2 = −(1− 2GM

r
)[dt2 − dr∗2] + r2dΩ2. (5.25)

However, r < 2GM region is accessible using the Kruskal coordinates

ds2 = −32(GM)3

r
e−r/2GMdUdV + r2dΩ2, (5.26)

where

UV = (
r

2GM
− 1)e−r/2GM . (5.27)

The vacua in the interior and exterior regions are not the same. Therefore, in order

to expand a scalar field in terms of normal modes in these two regions one has to

find the orthonormal modes in both regions. To do so, one has to solve (4.78) in

Schwarzschild spacetime. In the region r > 2GM , the spacetime is described by the

Schwarzschild metric while in the region r < 2GM the spacetime is characterized by

the Kruskal metric. One has to substitute the metric coefficients in (4.76) for the

two regions inside and outside the horizon and then solve (4.78). As we mentioned

before, positive frequency modes are not obtained like the Minkowski spacetime by
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taking the partial derivatives of the normal modes with respect to time. One has to

find the appropriate parameter in curved spacetime to define the positive frequency

modes with respect to it. Based on the different ways to define positive frequency

modes, one can define different vacua in curved spacetime.

There are three well defined vacua for the Schwarzschild spacetime, [24], as follows

(i) The Boulware Vacuum |B >

This vacuum is defined by requiring normal modes that are incoming from I− to

be positive frequency with respect to the Killing vector ∂
∂t

,

modes ∝ e−iωt. (5.28)

(ii) The Hartle-Hawking Vacuum |H >

For the Hartle-Hawking vacuum, modes incoming from future horizon are positive

frequency with respect to the Kruskal coordinates V , the canonical affine parameter

on the future horizon,

modes ∝ e−iωV . (5.29)

Also, outgoing modes from past horizon are taken to be positive frequency with

respect to U the affine parameter on the past horizon,

modes ∝ e−iωU . (5.30)

(iii) The Unruh Vacuum |U >

The Unruh vacuum is defined by taking modes that are incoming from I− to be

positive frequency with respect to ∂
∂t

,

modes ∝ e−iωt, (5.31)
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furthermore, modes that emanate from the past horizon are taken to be positive

frequency with respect to U , the canonical affine parameter on the past horizon

modes ∝ e−iωU . (5.32)

If we consider a scalar field in Schwarzschild spacetime, based on the choice of the

vacuum the mode expansion of the scalar field would be different. We will select the

Unruh vacuum in this thesis since it is the most appropriate one for our computations,

[30].

Figure 5.2: Three different vacuua of Schwarzschild spacetime.
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5.1.4 Vacuum polarization in the vicinity of the horizon

We introduced Hawking radiation in chapter three as radiation from the black hole

horizon, however, it has not been detected in the lab yet. In the initial derivation

of Hawking [7] , a geometric approximation at the time of horizon formation in a

collapsing situation was used to show a net flux of particles emergent at asymptotic

future, [30].

Hawking radiation can also be interpreted as the result of the vacuum fluctuations

in the vicinity of the horizon. Vacuum fluctuation refers to the spontaneous pair

creation in the vacuum.

If a particle-antiparticle pair is created near the horizon, one member of the pair

may fall into the hole while the other member escapes into infinity. The flux of

outgoing particles is detected as Hawking radiation. The member that escapes into

infinity carries positive energy, therefore, in order to satisfy the conservation of energy

law the other member must have negative energy or equivalently negative mass. Also,

if we consider the particle-antiparticle pair and the hole as an isolated system, one

can say that the hole loses mass.

In this part our aim is to find the net rate of the vacuum decay in the background

geometry of a black hole. The rate of vacuum decay close to the black hole horizon

can give us the rate of particle production which is interpreted as Hawking radiation.

The (5.23) amplitude has been computed by several physicists before [17], however,

we compute a modified version of that. We consider a quasi-local region that includes

the horizon. Previous computations were based on computing the vacuum expectation

value of the scalar energy-momentum tensor and the answers were infinite, [24]. It

was then renormalized using a particular prescription of subtracting the expectation

value in Boulware vacuum from say the Unruh vacuum, and in the asymptotic limit

it yielded the Hawking flux, [30]. The desired quasi-local region for our computation
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is a hollow cylinder that has two boundaries. One boundary is inside the horizon at

rA = 2GM − δ and the other boundary is outside the horizon at rB = 2GM + δ.

Figure 5.3: A hollow cylinder with two boundaries at rA = 2GM − δ and rB =
2GM + δ.

We like to study the interaction of a massless scalar field with the background

gravitational field in this quasi-local region. The action for a scalar field is found

over the quasi-local volume that we assumed around the horizon. The action for the

massless scalar field is

S =

∫
d4x
√
−ggµν∂µφ∂νφ. (5.33)

The boundary term of the action that can be found by doing partial integration is

Squasi =

∫ rB

rA

d3x
√
−ggµνφ∂µφην =

∫
rB

d3x
√
−ggµνjµην−

∫
rA

d3x
√
−ggµνjµην (5.34)

ην is the unit vector normal to the surface of the cylinder and jµ = φ∂µφ is the

current. Hence, the vacuum decay would be

W = 2Im < 0|Squasi|0 > . (5.35)
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We are interested in computing the vacuum expectation value of the quasi-local action

for the scalar field in an appropriate vacuum. For our purpose the Unruh vacuum is

the most appropriate vacuum. We should find the appropriate expansion of the scalar

field in terms of the normal modes inside and outside the horizon. After that, we

can find the current jµ in these two regions and then we can compute the quasi-local

action.

At rB, the Schwarzschild metric is the proper metric to study the spacetime. The

scalar field equations are

1√
−g

∂µ(
√
−ggµν∂ν)φ = 0 (5.36)

∂2
t φ− ∂2

r∗φ+ (1− 2GM

r
)Lθ,φφ = 0 (5.37)

Lθ,φ is the angular momentum operator with eigenfunctions being the spherical har-

monics Ylm(θ, φ). At rB according to the definition of the Unruh vacuum, the modes

incoming from I− are positive frequency with respect to the Killing vector ∂
∂t

. These

modes are named uωlm [11], where ω is the frequency of the mode and l and m are

angular momentum quantum numbers. However, since our boundary conditions are

different from [11], we redefine the normal modes, so

uωlm =
1

(4πω)1/2r
e−iωte+iωr∗Ylm. (5.38)

The scalar field can be expanded in terms of these normal modes and their complex

conjugates as

φ(rB) = Σωlm

[
arBuωlm + a†rBu

∗
ωlm

]
, (5.39)

uωlm shows the flux of outgoing particles at rB.

For the boundary at rA, we take the vacuum corresponding to modes of the scalar
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field which are positive frequency with respect to the null generators of the past

horizon, as these are the modes which emerge from behind the horizon even in a

collapsing case [16].

Figure 5.4: Penrose diagram of a gravitational collapse.

These modes are named as pωlm

pωlm =
1

[2 sinh(4πMω)]1/2
[
e2πMωuωlm + c.c

]
, (5.40)

these modes are the Bogoliubov transformations of uωlm modes and satisfy

∂pωlm
∂U

pωlm = −iωpωlm. (5.41)

The scalar field inside the horizon can be expanded in terms of pωlm modes and their

complex conjugates as

φ(rA) = Σωlm

[
arApωlm + a†rAp

∗
ωlm

]
. (5.42)
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Thus, our purpose is to find

< U |Squasi|U > (5.43)

for the desired quasi-local region. So, in the limit rA = rB → 2GM or δ → 0 one gets

W = Limδ→02Im

[∫
rB

d3x
√
−ggrrΣωlmuωlm∂ru

∗
ωlm −

∫
rA

d3x
√
−ggrrΣωlmpωlm∂rp

∗
ωlm

]
.

(5.44)

Hence, the net rate of the decay of the vacuum could be found as

W =

∫
d3x sin θ

1

2π
Σωlm

1

eω/TH − 1
|Ylm|2, (5.45)

where TH = 1
8πM

is the Hawking temperature. This is precisely the rate of particle

emission expected and predicted in [7]. Thus the flux naturally emerges as in a Bose-

Einstein spectrum and is of the form as expected at the horizon. A fraction of this

will emerge at infinity due to scattering from the exterior geometry of the black hole.

This computation of vacuum polarization amplitude is a new insight in the method

of particle creation at the horizon, as we show a finite result by using a quasi-local

volume.
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5.1.5 Summary

In the previous section we considered a quasi-local volume which is enclosed by two

cylindrical membranes, one inside the horizon and the other one outside the horizon.

The net rate of the decay of the vacuum due to the interaction of the scalar field with

the background classical gravitational field in this volume will give us the Hawking

radiation rate. The references for this chapter are: [7], [16], [11], [24], [25], [26], [17]

and [30].

104



Chapter 6

Conclusions

The aim of this thesis was to obtain the flux of Hawking radiation using the concept of

vacuum polarization in a quasi-local region. Our approach was slightly different from

previous calculations. We presented a chapter to introduce general relativity that

assigns gravity to geometric properties of the spacetime. In order to comprehend the

Hawking radiation emission procedure one has to know about quantum field theory

in curved spacetime besides general relativity. Therefore, we devoted a chapter to

study the physics of quantum fields.

We defined a quasi-local volume which is enclosed by two cylindrical membranes,

one inside the horizon and the other one outside the horizon. The interaction of the

scalar field in the background geometry of the black hole is the desired term for us.

The interaction just includes the boundary term of the scalar field action. We showed

how the expectation value of a quasi-local action at the horizon of a black hole shows

that the scalar vacuum decays into a flux of particles at a thermal temperature. The

net rate of the decay of the vacuum due to the interaction of the scalar field with

the background classical gravitational field in this volume will give us the Hawking

radiation rate. We could get finite answers by simply finding the difference of the net
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rate of the flux at the inner surface and the outer surface of the timelike cylinder.

However, this derivation still does not answer the question of how gravity reacts to

the escaping flux.

This method is applicable for fermionic fields. We computed the interaction term

of the action for a fermionic field in the background geometry of a black hole. The

action for a fermion in the presence of a gravitational field is

S =

∫
d4x
√
−gψ̄eµνγa(∂µ − ωµ)ψ.

The boundary term of the action is given by

Squasi =

∫
rA,rB

d3x
√
−gψ̄γµψηµ.

In order to find ψ inside and outside the horizon one has to solve the Dirac equation,

γµ(∂µ − ωµ)ψ = 0, inside and outside the horizon. We defined γµ and ωµ in chapter

four, one has to find these quantities outside the horizon which is described by the

Schwarzschild metric and inside the horizon which is explained by the Kruskal metric.

After that one can compute the interaction term of the action at rB and rA. The

vacuum expectation value of the interaction term of the action in the quasi-local

volume around the horizon should give us the flux of Hawking radiation, however,

this work is not complete yet.

As we mentioned before, Hawking radiation has not been detected in the lab yet.

However, some physicists hope they can simulate similar effects in the lab. One of the

recent suggestions is to simulate the horizon using a curved Graphene sheet. Graphene

is a sheet of carbon atoms. By simulating the horizon one can see Hawking radiation

emerging from the graphene sheet. However, there is still debate among physicists

whether it can be done practically. These are some of the projects in progress based
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on this thesis, [31], [32].
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