

A NEAREST NEIGHBOR SEARCH METHOD

SUITABLE FOR LOW DIMENSIONS

AND LOCATION-DEPENDENT SPATIAL QUERIES IN MOBILE COMPUTING

PENG GONG

Bachelor of Engineering, Wuhan University of Technology, China, 2001

A Thesis

Submitted to the School of Graduate Studies

of the University of Lethbridge

in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science

University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

© Peng Gong, 2015

A NEAREST NEIGHBOR SEARCH METHOD

SUITABLE FOR LOW DIMENSIONS

AND LOCATION-DEPENDENT SPATIAL QUERIES IN MOBILE COMPUTING

PENG GONG

Date of Defence: December 16, 2015

Dr. Wendy K. Osborn

Supervisor Associate Professor Ph.D.

Dr. Yllias Chali

Committee Member Professor Ph.D.

Dr. John Zhang

Committee Member Associate Professor Ph.D.

Dr. Howard Cheng

Chair, Thesis Examination Committee Associate Professor Ph.D.

iii

Dedication

I dedicate this thesis to my wife Hui Sun, my mother Hongbin Hu, my father Benzhi

Gong, my mother-in-law Minzhu Bai, and my daughter Yetong Gong.

iv

Abstract

This thesis proposes a k-nearest-neighbor search method inspired by the grid

space partitioning and the compact trie tree structure. A detailed implementation based on

the Best-First-Nearest-Neighbor-Search scheme is presented and illustrated with sample

data. Then k-nearest-neighbor search performance comparison is carried out among the

proposed compact-trie-based method, the brute-force method, and the k-d tree based

method, with one million two-dimensional spatial points and k up to 1000. The result of

the comparison shows that the proposed method can perform up to 300 times better than

the other two methods when k is small, suggesting that the proposed method might be

suitable for low dimensions and location-dependent spatial queries in mobile computing.

v

Acknowledgements

I greatly appreciate Dr. Wendy Osborn’s kindness, patience, tolerance, and help

throughout my two years of struggle in pursuing my Master of Science degree in

Computer Science at the Department of Mathematics and Computer Science, University

of Lethbridge. I want to also thank my two committee members, Dr. Yllias Chali and Dr.

John Zhang, for their valuable input and help. I am fortunate to have unconditional

support from my beloved wife, Hui Sun, my parents, and my mother-in-law, as always.

And I must thank you all very much for everyone who helped me and accompanied me so

far. Last, I am indebted deeply to the Internet communities.

vi

Contents

Abstract .. iv
Acknowledgements... v
Contents ... vi

List of Tables ... vii
List of Figures ... viii
Chapter 1 Introduction .. 1

1.1 Background ... 1

1.2 Contribution... 3

1.3 Thesis Outline.. 3

Chapter 2 Background .. 5
2.1 Nearest Neighbor Search ... 5

2.2 Continuous Nearest Neighbor Search ... 13

2.3 Trie .. 19

2.4 Conclusions ... 25

Chapter 3 Compact-Trie-Based K-Nearest-Neighbor Search Method 26
3.1 Introduction ... 26

3.2 Step 1 Data Preparation ... 27

3.3 Step 2 Trie Construction.. 30

3.4 Step 3 Query Search .. 41

3.5 Summary ... 42

Chapter 4 Evaluations ... 44
4.1 Implementation of Benchmark K-Nearest-Neighbor Search Methods 44

4.2 K-Nearest-Neighbor Search Performance Comparison 48

4.3 Summary ... 51

Chapter 5 Conclusion and Future Directions.. 53
Bibliography ... 55

vii

List of Tables

3.1 The Set of 15 Purposefully Designed Two-Dimensional Spatial Points 26

3.2 The Data Output Text Strings of the 15 Points ... 30

3.3 The Two-Dimensional Array Representation of the Compact Trie for

the 15 Points .. 34

3.4 The Brief Summary for Each Column of Table 3.3 .. 34

4.1 K-Nearest-Neighbor Search Performance Comparison .. 49

viii

List of Figures

2.1 Nearest Neighbor Search and Conceptual Partitioning [28] 19

2.2 A trie for keys "A", "to", "tea", "ted", "ten", "i", "in", and "inn" [26] 20

2.3 An array-structured trie for bachelor, baby, badge, jar [14] 22

2.4 A list-structured trie for bachelor, baby, badge, jar [14] ... 24

3.1 The Compact Trie Constructed from the 15 Points .. 31

4.1 K-Nearest-Neighbor Search Performance Comparison Average Search Time 50

4.2 K-Nearest-Neighbor Search Performance Comparison Performance Ratio 50

1

Chapter 1

Introduction

1.1 Background

Along with the popularity of smart phones and tablets is the rising of mobile

computing. Location-aware-capable mobile devices demand location-dependent services.

The location-dependent spatial query is one of such services and draws intensive research

[33].

 A spatial query is a special kind of database query supported by a spatial database.

A spatial database is a database organized to store spatial data and optimized to facilitate

spatial query processing. Spatial data, which represent objects in space, can be as simple

as spatial points in arbitrary dimensions. For example, spatial data can be (Longitude,

Latitude) pairs, representing points of interest on a two-dimensional map. All points of

interest on the map can be organized in a spatial database, which is optimized to answer

spatial queries such as which point of interest is closest to a given query point on the map

[25].

 A spatial query can be ad-hoc and terminated once the search result is returned. A

spatial query can also be continuous if the query point is moving and the search result

needs to be constantly updated in response to the latest known location of the query point,

which is common in mobile computing. For example, one looks for the nearest gas station

while driving. Location-dependent spatial queries refer to spatial queries of which the

search result depends on the location of both the query point and spatial points stored in a

spatial database. Continuous location-dependent spatial queries are common service

2

demanded by location-aware-capable mobile devices and pose great challenge on

efficient spatial query processing [33].

 Not only can a query point be moving, but also spatial points stored in a spatial

database can be moving too, such as a spatial database of running taxis. It could require

both the content and the organizational structure of the spatial database be updated

constantly. The dynamic content and dynamic organizational structure ose great challenge

on efficient spatial data organization in a spatial database [33].

 In summary, because a query point can be static or mobile, and spatial points

stored in a spatial database can also be static or mobile, a spatial query can involve (1) a

static query point and a static spatial point database, (2) a static query point and a mobile

spatial point database, (3) a mobile query point and a static spatial point database, or (4) a

mobile query point and a mobile spatial point database. Furthermore, a spatial query can

be ad-hoc or continuous. To illustrate, if a person stands still and looks for the nearest taxi

while all taxis are parked, it is an ad-hoc spatial query involving a static query point and a

static spatial point database; if the taxis start moving while the person remains standing

still, it becomes a continuous spatial query involving a static query point and a mobile

spatial point database; if the person starts moving while all taxis remain parked, it

becomes a continuous spatial query involving a mobile query point and a static spatial

point database; if both the person and the taxis start moving, it becomes a continuous

spatial query involving a mobile query point and a mobile spatial point database.

 Efficient spatial query processing at least depends on the kind of spatial query, the

organization structure of the spatial database storing spatial data, and how a specific kind

of a spatial query is processed.

3

Nearest neighbor spatial queries are one fundamental family of spatial queries

important to many location-dependent services, such as in Geographic Information

Systems. All aforementioned examples are nearest neighbor spatial queries. The core of

nearest neighbor spatial queries, which is the nearest neighbor search, has applications far

beyond spatial queries.

1.2 Contribution

A k-nearest-neighbor search method inspired by the grid space partitioning and

the compact trie tree structure is proposed. Although the current implementation of the

proposed method is limited to two-dimensional data, the result of k-nearest-neighbor

search performance comparison shows significant improvement over the brute-force

based and the k-d tree based k-nearest-neighbor search methods. Because most location-

dependent mobile services rely on two-dimensional or three-dimensional geographic data,

the proposed method might be particularly suitable for nearest neighbor based location-

dependent spatial queries in mobile computing. Furthermore, the current implementation

adopts a simple array-based data structure and an intuitive Best-First-Nearest-Neighbor-

Search scheme.

1.3 Thesis Outline

 The remainder of this thesis is organized as follows:

Chapter 2 Background knowledge of the thesis, continuous k-nearest-

neighbor search and trie

4

Chapter 3 The detailed design and implementation of the proposed compact-

trie-based k-nearest-neighbor search method for a set of 15

purposefully designed two-dimensional spatial points

Chapter 4 K-nearest-neighbor search performance comparison among the

proposed compact-trie-based method, the brute-force based method,

and the k-dimensional tree based method

Chapter 5 Future research directions

5

Chapter 2

Background

2.1 Nearest Neighbor Search

 In the era of “Big Data,” how to derive information from the “Big Data” more

efficiently challenges and motivates us to develop better methods. Among them, nearest

neighbor search methods are one important family drawing intensive research because

they have wide applications and are foundational constituent for many methods [35].

Besides straightforward applications in spatial queries, nearest neighbor search has

applications in areas such as pattern recognition, marketing, and multimedia information

retrieval [35]. Nearest neighbor search is also frequently an integral part of clustering and

classification methods [35].

Nearest neighbor search is firstly proposed by Minsky and Papert in 1969 [34]. It

has also been referred to as the post office problem, proximity search, closest point search,

and best match file searching problem [35].

 The exact nearest neighbor search problem can be defined as: given a set of points

P in an n-dimensional space S and a metric to determine the distance between any two

points in S, how to most efficiently find the point in P which is nearest to an arbitrarily

given query point q in S [34]. A generalization of nearest neighbor search is the k-nearest-

neighbor search in which k points in P nearest to an arbitrarily given query point q in S

are found, where k can be 1, 2, ... Another common variant of the nearest neighbor search

is a range search, which finds all points in P in S that are within a pre-defined range of

arbitrary shape and with respect to an arbitrarily given query point q in S.

6

 The space S can be a metric space or a non-metric space. The nearest neighbor

search in a non-metric space sometimes can be converted into a nearest neighbor search

in metric space [35]. This thesis and the proposed methods here focus on the metric space

and particularly on Euclidean space.

 Ideally, an exact nearest neighbor or k exact nearest neighbors are being sought.

In low dimensionality, an exact nearest neighbor search can be achieved in sub-linear or

logarithmic time complexity [32]. However, the computational complexity of an exact

nearest neighbor search can increase exponentially as the dimensionality increases. This

phenomenon has been referred as the curse of dimensionality [1]. The efficiency of exact

nearest neighbor search methods would degrade drastically as the dimensionality of space

S increases [32].

However, if approximate nearest neighbors are being sought, the computational

complexity even in high dimensionality could remain polynomial [20]. The approximate

nearest neighbor search problem can be defined as: given a set of points P in n-

dimensional space S and a metric to determine the distance between any two points in S,

how to construct a data structure so that for an arbitrarily given query point q, it could

most efficiently find all points whose distance to q is at most (1 + ε) times the distance

from q to its nearest point in P, where ε is a positive number [20]. Locality-sensitive

hashing, proposed by Piotr Indyk and Rajeev Motwani in 1998 [20], is one of the earliest

approximate nearest neighbor search methods overcoming the curse of dimensionality

and has received arguably the most attention in practical contexts [32].

This thesis and the proposed methods here focus on exact nearest neighbor search.

I hope the work presented here can contribute in overcoming the curse of dimensionality

for exact nearest neighbor search methods.

7

Many methods have been developed for the nearest neighbor search. Besides

empirical analysis, the quality of those methods can be evaluated by the time complexity

of the algorithm, and the space complexity of any data structure which must be

maintained for the search [35]. So far, to the best of our knowledge, there is no

universally applicable method which can obtain an exact solution to nearest neighbor

search in arbitrarily high dimensional space with polynomial or polylogarithmic time

complexity [32].

Based on whether any data structure must be maintained for the search, nearest

neighbor search methods can be classified into structural-search and structureless-search.

Structureless-search methods require that no data structure be purposefully maintained for

the search. Structural-search methods improve the search time complexity at the expense

of both the space complexity of the data structure(s) which must be maintained for the

search, and the time complexity of preprocessing the data in order to obtain the data

structure(s).

 One structureless-search method and the most straightforward exact nearest

neighbor search method is by brute-force, which first calculates the distance between the

query point q and every point in the set of points P, then sorts all calculated distances, and

last identifies the shortest distance(s) and the corresponding point(s) in P nearest to q.

This method has a time complexity of O(nd) where n is the number of the points in the

point set P and d is the dimensionality of the space S, and a space complexity of O(1)

because no data structure is required to be maintained for the search. Weber et al. showed,

from a theoretical perspective, that under the assumption that the data is uniformly

distributed and all dimensions are independent from one another, an exact nearest

neighbor search based on any partitioning scheme and clustering technique must

8

degenerate to a sequential scan through all data as dimensionality increases [36].

Therefore, this brute-force method provides a base benchmark.

 Arguably, more nearest neighbor search methods are structural-search. As early as

1973, Burkhard and Keller proposed three file structures for nearest neighbor search, and

the data structures are equivalent to multi-way trees [5]. In 1975, Fukunaga employed

recursive decomposition of search space and applied branch-and-bound methodology to

the resulting search data structure in nearest neighbor search [6]. The core of branch-and-

bound methodology is that while systematically accessing and evaluating all candidate

data, eliminate subset(s) of candidate data as early as possible and as much as possible

according to the continuously optimized bound(s) derived during the evaluation.

Recursive decomposition of search space is a recurring theme in space partition.

 Also in 1975, Friedman et al. introduced the k-dimensional (k-d) tree which is

produced by recursively bisecting the search space with a hyperplane perpendicular to

only one axis of the k dimensions [7]. A k-d tree is a binary tree where every non-

terminal tree node has two and only two child nodes. It is constructed as follows.

Strategically select a data point and a k-dimensional partition hyperplane that passes

through the data point to divide the search space represented by the non-terminal node

into two. The divided search space on one side of the hyperplane is represented by one of

the two child nodes. The divided search space on the other side of the hyperplane is

represented by the other of the two child nodes. The bisecting can be repeated at any non-

terminal node in any level of the hierarchical tree as long as there is more than one data

point in the search space represented by the non-terminal node.

The search time complexity of the k-d tree based method is improved to be

logarithmic [8]. The k-d tree has also been applied to range search [9] and moderate

9

dimensions [10]. The hyperplanes and bisecting strategy can be chosen in a way to

optimize the resulting k-d tree for a certain application [21].

Sproull proposed some ways to improve the k-d-tree-based nearest neighbor

search. The measure of distance is assumed to be Euclidean. Because the Euclidean

distance metric is invariant under rotation, Sproull proposed that the partition hyperplanes

can be arbitrary k-dimensional hyperplanes [13], rather than requiring the partition

hyperplanes be perpendicular to one coordinate axis as in the original algorithm proposed

by Friedman et al [7]. However, as Sproull pointed out in the paper, an arbitrary partition

hyperplane is feasible but not always more favorable than a perpendicular partition

hyperplane due to the additional cost of computing the distance between a point and the

arbitrary partition hyperplane [13]. Choosing an arbitrary partition hyperplane

perpendicular to an axis other than the coordinate axes could also incur additional costly

computation [13].

Sproull’s method operates in a top-down fashion starting from the root node. At

each non-terminal node, the search algorithm decides which one of its two child nodes

need to be accessed next by identifying which divided search space represented by the

child node encompasses the query point. Once the search reaches a terminal node, all data

points within the search space represented by the terminal node will be examined

exhaustively to find the nearest neighbor to the query point. However, the identified

nearest neighbor must be verified by checking whether the true nearest neighbor could be

on the other side of the partition hyperplane or the other divided search space, with

respect to the current one. Sproull proposed that the check can be done by comparing the

nearest distance identified so far with the distance between the query point and the

partition hyperplane [13].

10

 Arguably, the k-d tree based nearest neighbor search might be the oldest and most

established one. The R-tree based spatial partitioning and spatial access methods,

arguably, have received more applications in practice. Antonin Guttman proposed the R-

tree in 1984 [11]. The R-tree is especially suitable for indexing multi-dimensional

complex spatial data, such as polygons, because the key idea of R-tree is to group nearby

spatial objects within a Minimum Bounding Rectangle (MBR) [11]. R in R-tree stands for

Rectangle. The root node contains the MBRs of all spatial objects. A non-terminal parent

node contains the MBRs of its immediate descendant nodes. A terminal node contains the

MBRs of some spatial objects. If spatial data is organized into an R-tree, not only would

the spatial relationship between the query point and MBRs be used to decide whether to

search an MBR, and its descendant sub-trees, but also the k nearest neighbors can be

efficiently computed via spatial join [15].

The key difficulties of the R-tree are how to efficiently build an R-tree from

scratch, and how to best perform modification to an existing R-tree, such as insertion and

deletion operations because MBRs may cover too much empty space and may overlap

with one another too much. Most of the research and improvement for R-tree aim at

conquering these key difficulties. Among them, the mqr-tree developed in this research

group is a MBR based 2-dimensional spatial access method [30].

 Numerous ways to partition search space or to index spatial data result in various

hierarchical structures to facilitate nearest neighbor search. Two common branch-and-

bound hierarchical search schemes are Depth-First Nearest Neighbor Search (DFNNS)

and Best-First Nearest Neighbor Search (BFNNS) [24]. DFNNS can be traced back to

Fukunaga’s 1975 paper [6]. DFNNS systematically visits every element of the

hierarchical structure in a predetermined order. Starting from the root, it traverses as deep

11

as possible along every branch before backtracking, using the least qualified neighbor(s)

found to prune branches and bound the search. BFNNS has been popular since the 1990s

[16]. BFNNS starts from the root and then always visits the next best possible element by

creating and maintaining a visit list sorted by probability.

 Roussopoulos proposed a branch-and-bound tree traversal algorithm based on

DFNNS for k-nearest-neighbor search and the algorithm can be applied to any tree-like

data structure used for the purpose of indexing data [18]. A tree-like data structure

generally has only two kinds of tree nodes: non-terminal nodes and terminal nodes. Only

the terminal nodes store the data or references to the data, while the non-terminal nodes

store the information of space partitions represented by the non-terminal nodes. A parent

non-terminal node represents the space partition encompassing all space partitions

represented by its child non-terminal nodes and/or data represented by its child terminal

nodes. The root non-terminal node represents and encompasses the entire search space.

Two metrics are proposed and employed to help bound the search. One is the

minimum distance (MINDIST) between the query point and the data point/object. The

other is the minimum of the maximum possible distances (MINMAXDIST) from the

query point to the space partition encompassing the data point/object. The search operates

in a depth-first and top-down fashion starting from the root. If the node being accessed is

a non-terminal node, then all of its child nodes will be sorted into an Active Branch List

(ABL) by one of the two metrics, MINDIST or MINMAXDIST. If the node being

accessed is a terminal node, then each data point/object represented in the terminal node

will be evaluated to determine whether it is among the top k nearest neighbors to the

query point. If it is, then it will be inserted into the result list according to its distance

from the query point and the kth nearest distance will be updated accordingly. The

12

“branches” in the ABL will be constantly checked against one another by comparing their

two metrics MINDIST and MINMAXDIST, as well as comparing against the most

updated kth nearest distance. All unnecessary branches will be pruned. Then, the

algorithm will be applied to the next remaining branch in the ABL recursively until the

ABL becomes empty. The proposed pruning strategies are: (1) All branches whose

MINDIST is larger than the kth nearest distance will be pruned; and (2) a branch whose

MINDIST is larger than the MINMAXDIST of another branch will be pruned [18].

Hjaltason proposed an algorithm based on BFNNS suitable for the k-nearest-

neighbor search and the value of k need not be known or fixed ahead of time because the

search operates in an incremental fashion [19]. The algorithm can be applied to any

hierarchical data structure representing the search space, such as a quadtree. In addition to

the hierarchical data structure, the search employs a priority queue. The priority is

determined based on the distance between the query point and a terminal node or the

minimum distance between the query point and the space partition represented by a non-

terminal node. If the minimum distance of a non-terminal node is equal to the distance of

a terminal node, the search requires the non-terminal node take higher priority over the

terminal node in the priority queue [19].

The search operates in a top-down fashion starting from the root as the only

element of the priority queue, then recursively runs as follows. First, dequeue the first

element of the priority queue. If the dequeued element is a terminal node, then append the

data represented by the terminal node to the end of the result list, the furthest of nearest

neighbors found so far. If the dequeued element is a non-terminal node, then insert all of

its child nodes into the priority queue. The search stops when k nearest neighbors have

been procured or when the priority queue becomes empty.

13

2.2 Continuous Nearest Neighbor Search

 Compared to the ad-hoc nearest neighbor search methods, continuous nearest

neighbor search methods can face some exclusive challenges, such as unknown velocity

and trajectory of the moving query point, constrained moving path and even obstacles on

the moving path. However, efficient spatial data indexing schemes, access methods, and

search strategies continue to be the centerpieces of continuous nearest neighbor search

methods. Thus, the continuous nearest neighbor search methods surveyed here focus on

these centerpieces rather than those exclusive challenges.

 In 2001, Song and Roussopoulos proposed a series of progressive methods to

tackle the k-nearest-neighbor search for a moving query point [22]. The data points are

assumed to be static, known beforehand and indexed by an R-tree-family structure. A

static branch-and-bound R-tree-based depth-first k-nearest-neighbor-search algorithm is

proposed to find the k nearest neighbors for a given location of the moving query point

whenever necessary.

The location of the moving query point is determined by periodic sampling [22].

Therefore, a continuous k-nearest-neighbor query is transformed into queries to retrieve

the k nearest neighbors of certain sampling points. The sampling may not address the

need of certain applications, which expect that the k nearest neighbors are updated

automatically and whenever necessary because the locations demanding update of k

nearest neighbors may not be known in advance. The sampled locations largely depend

on how the query point is moving without considering the static data points [22]. If the

path of the moving query point is not known beforehand, sampling cannot be performed

[22]. In this case, the “sampling” becomes a prediction based on current location and

14

velocity [22]. Therefore, the computed k nearest neighbors may not be an exact solution

but an approximate solution. However, given that there is always some latency in

communication, an exact solution to k-nearest-neighbor search might not be that

necessary and an approximate solution is adequate.

The proposed progressive methods focus on maximizing the usage of the

information obtained from the previous k-nearest-neighbor search and the distance

between the current search position and the previous search position to at least eliminate

unnecessary k-nearest-neighbor searches and to bound the search space [22]. One

observation is that the kth shortest distance to current search location must be less than or

equal to the sum of the kth shortest distance to the previous search location, and the

distance between the current search location and the previous search location [22].

Another observation is that if n nearest neighbors, where n is larger than k, have already

been computed, there is no need to perform another n nearest neighbor search if the

distance between the current search location and the previous search location is less than

or equal to the half of the difference between the nth and kth shortest distances to the

previous search location [22]. Therefore, the proposed methods can provide a more

bounded search space and reduce the frequency of needed k-nearest-neighbor searches.

However, they perform better when the number of static data points is small, the query

point moves slowly, and k is small [22].

 In a method proposed by Tao in 2002, a continuous nearest neighbor query is

defined as a query to retrieve k nearest neighbors of every point along a path q [23]. The

query result is presented by pairing the k nearest neighbors with the corresponding path

segment [23]. A series of “split” points are calculated along the path q. The starting point

and the ending point of the path q constitute the first split point and the last split point,

15

respectively. Every path segment between two consecutive split points corresponds to a

unique set of k nearest neighbors to that path segment [23].

In the proposed algorithm, given a known query path q and a continuous k-

nearest-neighbor query, a k-nearest-neighbor query result is returned for every split path

segment [23]. In terms of implementation, an R-tree is employed to index search space.

Either a depth-first or best-first traversal paradigm can be adopted to prune the R-tree

following the branch-and-bound methodology [23].

One limitation to the proposed algorithm is that the query path or trajectory must

be known beforehand with the starting and ending points clearly defined. In addition, the

path or trajectory seems to be composed of straight line segments only.

Instead of checking every point along the path q, only the split points need to be

checked when evaluating a data point [23]. Initially, there are only two split points, the

starting point and the ending point of the path q. By the definition of nearest neighbor, a

data point must have the shortest distance to at least one already identified split point in

order to be considered as a potential nearest neighbor [23]. Once a potential nearest

neighbor is found, a new split point will be determined on the path q and the already

identified set of split points may need adjustment, by eliminating some already identified

split points and/or adding some new split points [23].

 In 2005, Xiong proposed a general framework for processing a large number of

simultaneous continuous k-nearest-neighbor (CKNN) queries [27]. The efficient

concurrent processing is achieved by shared execution. All concurrent CKNN queries,

along with their associated search regions, are grouped by similarity into a common query

table [27]. Then, the problem of evaluating multiple CKNN queries is reduced to

performing a spatial join between the query table and the object table [27]. Having a

16

shared execution reduces the number of scans needed over the object table, and therefore

improves efficiency [27]. The output of the spatial join will be split and sent to the

corresponding queries [27].

Xiong also proposed a way to efficiently process a CKNN query by incremental

evaluation based on prior query results [27]. Any ad-hoc k-nearest-neighbor search

algorithm can be utilized to obtain the set of k nearest neighbors whenever necessary [27].

The proposed method for CKNN search has no restrictions on the movement of the query

and/or the objects. Both the query and the objects can move and nothing regarding their

movement, such as velocity or trajectory, must be known beforehand. The incremental

evaluation entails that only queries whose answers are affected by the movement of the

objects and/or the query are reevaluated [27].

After an initial k-nearest-neighbor search, a CKNN query is associated with a

circular search region, which is defined by the query as the center and the kth nearest

distance to the query as the radius [27]. The incremental evaluation provides a minimum

search region at next evaluation by taking the following three steps [27]:

1. Check if any objects that are originally outside the prior search region move into

the prior search region, or if any objects originally inside the prior search region

move within the prior search region. If there are such objects, the current search

region will be set to the prior search region. Otherwise, no reevaluation is needed

and the radius of the current search region would be set to 0.

2. Check if any objects originally inside the prior search region move out. If there

are such objects, then the radius of the current search region will be set to the

maximum distance between those objects and the prior query. Otherwise, the

current search region inherits the result from Step 1.

17

3. If the query moves and if the radius of the current search region inherited from

Step 2 is 0, then the radius of the current search region will be set to the sum of

the radius of the prior search region and the distance the query travels. If the query

moves and if the radius of the current search region inherited from Step 2 is not 0,

then the radius of the current search region will be updated by adding the distance

the query travels.

 Also in 2005, Mouratidis proposed a way to tackle continuous k-nearest-neighbor

queries by treating every query update as a new query with respect to the present location

of the query and spatial objects [28]. The proposed method has no restrictions on the

movement of the query and/or the spatial objects. Both the query and the spatial objects

can move and nothing regarding their movement, such as velocity or trajectory, must be

known beforehand.

The core k-nearest-neighbor-search proposed, conceptual partitioning [28], is

illustrated in Figure 2.1 and elaborated as follows. First, the search space is partitioned as

a grid consisting of uniform cells to group objects. Using two-dimensional Euclidean

space as an example, as shown in Figure 2.1, conceptually partition the search space. An

important observation is that the minimum distances of rectangles to the query point

differ by δ for consecutive rectangles in the same direction (e.g. U0 and U1, R1 and R2,

D2 and D3, and L0 and L1) [28]. Similar to the best-first nearest neighbor search, initially,

the cell containing the query point and its immediately adjacent rectangles in all

directions are inserted into an empty priority queue, which is sorted by their minimum

distance to the query point [28]. Then, keep dequeuing the first element of the priority

queue, which has the shortest minimum distance to the query point. If the dequeued

element is a cell, then examine all objects in the cell to identify candidates for k nearest

18

neighbors and update the kth nearest distance accordingly. If the dequeued element is a

rectangle, then insert all cells covered by the rectangle and the rectangle immediately

adjacent to it that is outward and in the same direction into the priority queue according to

their minimum distances to the query point [28]. Repeat until the minimum distance of

the dequeued element to the query point is larger than the kth nearest distance, or the

priority queue becomes empty. The proposed method does not address how to identify the

cell containing the query point initially.

To address moving objects, the proposed method maintains cross reference tables

for cells and queries [28]. What is kept include not only all prior search results, but also,

for each query, all cells accessed in its prior search sorted by their minimum distance to

the query point, and the remaining cells and rectangles in the priority queue at the end of

its prior search [28]. Then, k-nearest-neighbor updates in response to moving objects can

be evaluated with the aid of those additional information before a complete k-nearest-

neighbor search is re-computed. Lastly, moving objects can be handled in a

comprehensive way rather than independently [28].

19

Figure 2.1: Nearest Neighbor Search and Conceptual Partitioning [28]

Only four continuous nearest neighbor search methods are surveyed here, ranging

from an approximation sampling method to an exact exhaustive method, and from a

conceptual partition best-first ad-hoc search to a comprehensive orchestrated batch search.

They serve to enlighten and inspire readers to come up with better methods for nearest

neighbor search, k-nearest-neighbor search, continuous k-nearest-neighbor search, and

simultaneous multiple continuous k-nearest-neighbor queries.

2.3 Trie

 In computer science, the trie, also referred to as a prefix tree, is one kind of digital

search tree [4]. The term “trie” was coined by Edward Fredkin and abbreviated from

“retrieval” [2]. So, since day one, trie has been associated with information retrieval.

 As its other common name “prefix tree” indicates, trie is a tree data structure and

strongly associated with the prefix of strings. The root node of a trie is associated with an

empty string and all immediate descendants of any one trie node have a common prefix

20

string which would be associated with that trie node. As illustrated in Figure 2.2, a trie

can be an effective and efficient data structure for indexing strings. Strings are indexed in

a hierarchical structure according to their common prefixes and in an ascending order of

the length of their common prefixes. Every unique leaf (or terminal) node of a trie

uniquely corresponds to a unique string; and every unique string is uniquely represented

by a unique leaf node. Therefore, there is a one-to-one mapping between unique strings

and terminal trie nodes. Compared to imperfect hash-based indexing methods, there is no

“conflict” in trie indexing.

Figure 2.2: A trie for keys "A", "to", "tea", "ted", "ten", "i", "in", and "inn" [26]

Searching a string within a trie is by traversing trie nodes starting from the root

node. The trie node to be traversed next is determined by a match of the prefix of the

21

query string with the string associated with the trie node. The search would terminate at

the trie node whose associated string is the longest common prefix among the query string

and all strings indexed by the trie. Therefore, the time complexity of the search operation

is bound by O(k) where k is the maximum length of all strings indexed by the trie. So are

the insertion and deletion operations because before inserting or deleting a string, a search

of the string within the trie must be completed first. Only if the string is found within the

trie, a deletion can be completed. Also, only if the string cannot be found within the trie,

an insertion can be completed. Furthermore, the search provides where exactly to insert or

delete the string.

A compact trie is a space-optimized trie, which is organized by requiring all non-

terminal trie nodes to have more than one descendant [3]. The time complexity of search

operation within a compact trie is also bound by O(k), but is likely, on average, less than

its equivalent full trie because the compact trie would likely have fewer non-terminal

nodes than its equivalent full trie and searching within fewer non-terminal nodes would

on average take less time. Although insertion and deletion operations within a compact

trie can involve adding, splitting, and merging branches, as well as other additional

operations, besides search operation, the time complexity of insertion and deletion

operations within a compact trie remains to be bound by O(k). And insertion and deletion

operations are not always needed as in a read-only static trie.

The most naïve implementation of a trie is as illustrated in Figure 2.3. Each trie

node is an array of pointers. The number of pointers in the array is the number of possible

characters in the strings indexed by the trie. The pointer would point to a descendant trie

node. If all pointers in the array are null pointers, the trie node is a terminal leaf node. As

illustrated in Figure 2.3, even in non-terminal trie nodes, most pointers are null pointers.

22

Therefore, not only the space complexity of this naïve implementation is proportional to

the product of the number of trie nodes and the number of possible characters, but also

the space wasted by null pointers could be extravagant, which is especially true when the

trie is sparse.

Figure 2.3: An array-structured trie for bachelor, baby, badge, jar [14]

The arrays of pointers can be replaced by linked lists as illustrated by Figure 2.4.

In this implementation, every non-null pointer in the naïve implementation is represented

by a structure containing three elements: “arc label,” “next node,” and “other label.” “arc

23

label” signifies which character a non-null pointer stands for. “next node” points to the

first non-null pointer of the immediate descendant trie node, if any, or would be null (nil)

if there is no descendant trie node. “other label” points to the next non-null pointer in the

same trie node, if any, or would be null (nil) if there is no more non-null pointer in the

same trie node. A terminal trie node would have both “next node” and “other label” as

null (nil). The space complexity of this linked-list implementation could be much less

than its equivalent naïve implementation because this linked-list implementation wastes

no space on null pointers as its equivalent naïve implementation. However, due to the

linear search in a trie node for a particular non-null pointer, which, in the worse scenario,

could have to access all non-null pointers in the trie node, the time complexity of search

operation in this linked-list implementation of trie cannot be bound by O(k). Thus, the

improvement on the space complexity of this linked-list implementation is at the expense

of the time complexity.

24

Figure 2.4: A list-structured trie for bachelor, baby, badge, jar [14]

Naturally, it would be ideal if an implementation of trie could preserve the time

complexity of the naïve implementation and the space complexity of the linked-list

implementation. In 1989, Jun-Ichi Aoe proposed the double-array implementation of trie

which can guarantee the time complexity of search operation to be bound by O(k) and

reduce the space complexity from the product of the number of possible characters and

the number of trie nodes to their sum [12]. As its name indicates, in double-array

implementation, a trie is represented by two arrays, namely BASE and CHECK.

Constructing a double-array trie and performing basic operations within the double-array

25

trie, such as search, insertion, and deletion, must all conform the following rule:

traversing from a parent trie node S to its immediate child trie node T because of

character C must satisfy T = BASE[S] + CODE[C] and CHECK[T] = S. CODE[C]

represents a unique numerical code for character C. All trie nodes are mapped to the

indexes of BASE and CHECK. Special algorithms are developed to construct a double-

array trie and perform basic operations within the double-array trie according to the rule.

Various improvements to this double-array implementation of trie have been developed to

make the implementation more compact [31], space-efficient [17] and cache-conscious

[29].

2.4 Conclusions

 Inspired by the trie, its guaranteed search, insertion, and deletion performance in

constant time regardless the size of the data indexed by trie, its zero conflict in indexing

data, its compact, space-efficient, cache-conscious, array implementation, I developed a

method based on array-implemented trie to facilitate space partition and nearest neighbor

search suitable for low dimensions and location-dependent spatial queries in mobile

computing.

26

Chapter 3

Compact-Trie-Based K-Nearest-Neighbor Search Method

3.1 Introduction

In this chapter, a compact-trie-based k-nearest-neighbor search method is

proposed. The method can be divided into three steps: (1) data preparation, (2) trie

construction, and (3) query search. Inspired by the (Longitude, Latitude) pair of Global

Position System (GPS) data format, such as (47.644548, -122.326897), I designed a set of

15 two-dimensional spatial points whose coordinates are positive pure decimal numbers,

as listed in Table 3.1, to illustrate the proposed method in detail. The number of digits

after the decimal point is 6 in the present illustration and can be larger if higher spatial

resolution is needed for the application.

Table 3.1: The Set of 15 Purposefully Designed Two-Dimensional Spatial Points

Data Input

ID

Longitude

(X)

Latitude

(Y)

1 0.001251 0.563585

2 0.193304 0.808741

3 0.585009 0.479873

4 0.350291 0.895962

5 0.822840 0.746605

6 0.174108 0.858943

7 0.710501 0.513535

8 0.303995 0.014985

9 0.091403 0.364452

10 0.147313 0.165899

11 0.147313 0.165890

12 0.091403 0.374452

13 0.091403 0.374552

14 0.710501 0.514535

15 0.091403 0.365452

27

As shown in Table 3.1, each two-dimensional spatial point is given a unique ID

which is an integer ranging from 1 to 15 (in the first or the leftmost column). And each

two-dimensional spatial point is composed of Longitude (X) (in the second or the middle

column) and Latitude (Y) (in the third or the rightmost column) coordinates. The

coordinates are positive pure decimal numbers with 6 digits after the decimal point for

simplicity and uniformity. These positive pure decimal numbers were purposefully

designed to make the compact trie constructed based on them more generic or

representative.

3.2 Step 1 Data Preparation

 All spatial points are assumed unique. Therefore, a set of spatial points should be

preprocessed firstly to remove duplicate point(s), if any.

Secondly, all coordinate numbers shall be normalized to positive pure decimal

numbers between 0 and 1. The normalization can be achieved by first determining the

maximum number of digits before the decimal point among all coordinate numbers, and

then dividing all coordinate numbers uniformly by ten to the power of this maximum

number. If the only digit before the decimal point is 0, then the maximum number of

digits before the decimal point is deemed to be 0, rather than 1; if the only digit before the

decimal point is not 0, then the maximum number of digits before the decimal point is

deemed to be 1. For example, a series of four positive decimal numbers (2.3, 1, 0.835, 12)

can be normalized to (0.023, 0.01, 0.00835, 0.12) by dividing all four numbers by ten to

the power of 2 or 100 because the maximum number of digits before the decimal point

among all four numbers is 2.

28

Thirdly, determine the maximum number of digits after the decimal point among

all normalized positive pure decimal numbers, and then make all normalized positive pure

decimal numbers to have the same maximum number of digits after the decimal point by

appending trailing zero(s) if necessary. For example, a series of four positive decimal

numbers (2.3, 1, 0.835, 12) can be eventually transformed to (0.02300, 0.01000, 0.00835,

0.12000), all of which have 5 digits after the decimal point. The goal of such

transformation so far is to make all positive decimal numbers to become positive pure

decimal numbers of equal length before further processing. The spatial distance

relationship among every pair of points should be preserved after such transformation

because all coordinate numbers are uniformly scaled down.

Fourthly, the core of Step 1 Data Preparation is to, for each spatial point, assemble

a string composed of digits only, based on its preprocessed positive pure decimal number

coordinates, by interleaving the digits after the decimal point of all coordinates in an

orderly fashion. The complete numeric information of the multi-dimensional coordinates

of the spatial point will be preserved. Take spatial point 1 (0.001251, 0.563585) from

Table 3.1 for example to illustrate the assembling process. The first digits after the

decimal point of the two coordinates are 0 and 5. Interleave them to form a string “05”.

Next, the second digits after the decimal point of the two coordinates are 0 and 6.

Interleave them in the same order to form a string “06”. Append the string “06” to the

string “05” to form a string “0506”. Repeat the same interleaving and appending

procedures for the third, fourth, fifth, and last digits after the decimal point of the two

coordinates, ultimately resulting in the final string “050613255815” for spatial point 1

(0.001251, 0.563585). Data processing or preparation so far would result in the same

29

number of strings as the number of unique spatial points. All strings are equal in length.

Each string corresponds to one unique multi-dimensional spatial point.

Lastly, the equal-length strings are output in an ascending order according to their

numeric values, had they been converted to integers, along with their corresponding

spatial points. Such an ordered output naturally groups together strings sharing the

longest common prefix, as illustrated in Table 3.2 “Data Output” column. For example,

“039614440532” and “039615440532” are grouped together because they share the

common prefix “03961”; “039714440532” and “039714450532” are grouped together

because they share the common prefix “0397144”; “039614440532”, “039615440532”,

“039714440532” and “039714450532” are grouped together because they share the

common prefix “039”; “114675381930” and “114675381939” are grouped together

because they share the common prefix “11467538193”; “187548190483” and

“189038370441” are grouped together because they share the common prefix “18”; and

“751103550315” and “751104550315” are grouped together because they share the

common prefix “75110”. They also illustrate my intention to make the compact trie

constructed based on these data more generic and representative. The purpose of such an

ordered output is to facilitate the compact trie construction in Step 2. It is worth

mentioning that sorting strings in some way is frequently employed in the initial

construction of a trie out of a large number of strings.

Table 3.2 below presents the final “Data Output” of strings after Step 1 Data

Preparation based on the “Data Input” of spatial points. These strings will be the input for

Step 2 Trie Construction.

30

Table 3.2: The Data Output Text Strings of the 15 Points

Data Input

Data Output ID

Longitude

(X)

Latitude

(Y)

9 0.091403 0.364452 039614440532

15 0.091403 0.365452 039615440532

12 0.091403 0.374452 039714440532

13 0.091403 0.374552 039714450532

1 0.001251 0.563585 050613255815

11 0.147313 0.165890 114675381930

10 0.147313 0.165899 114675381939

6 0.174108 0.858943 187548190483

2 0.193304 0.808741 189038370441

8 0.303995 0.014985 300134999855

4 0.350291 0.895962 385905299612

3 0.585009 0.479873 548759080793

7 0.710501 0.513535 751103550315

14 0.710501 0.514535 751104550315

5 0.822840 0.746605 872426864005

 In terms of implementation, standard built-in string operators and functions can be

used to assemble the output strings. To guarantee performance, standard built-in sorting

functions can be employed to output the strings orderly.

3.3 Step 2 Trie Construction

 In this proposed compact-trie-based k-nearest-neighbor search method, the

compact trie is constructed from multi-dimensional spatial points (or data) via their

corresponding strings, for the purpose of indexing and accessing the spatial points (or

data) effectively and efficiently. The compact trie that is constructed from the strings in

Table 3.2 Column “Data Output” above is shown in Figure 3.1 below.

31

Figure 3.1: The Compact Trie Constructed from the 15 Points

32

As shown in Figure 3.1, the compact trie constructed from the set of 15

purposefully designed two-dimensional spatial points is composed of a total of 22 nodes,

each of which is represented by a rectangular box. There is always one and only one

depth-0 node, the root node, which is associated with an empty string according to the

definition of the trie. In this proposed method, every other node of the compact trie is

associated with one unique string. The unique string associated with any non-terminal

node (except for the root node) is the longest common prefix of all strings associated with

its immediate child nodes and the length of this longest common prefix must be an

integral multiple of the dimensionality of the spatial points. (The rationale behind such a

length will be elaborated upon later.) Every terminal node is associated with one unique

string corresponding to one unique spatial point. Therefore, there are 15 terminal nodes in

total. Every rectangular box, except for the one representing the root node, contains the

unique string associated with the node represented by the rectangular box, as well as one

unique “row #” indicating which row of a two-dimensional array, as shown in Table 3.3,

stores the information of that node. The detail of this two-dimensional array will be

elaborated upon shortly. The rectangular box representing a terminal node also contains

the unique “ID” associated with the spatial point uniquely corresponding to that terminal

node.

With respect to the arrows in Figure 3.1, an arrow in the compact trie points from

a parent node to its immediate child node. The directional arrow is not intended to suggest

that the traverse between a parent node and its immediate child node is only in one

direction. The directional arrow is used to indicate the parental-child relationship between

the two nodes. The traverse between a parent node and its immediate child node is bi-

directional. In other words, a tree traversing program would be able to traverse either

33

from a parent node to its immediate child node or from a child node to its immediate

parent node. A node can be accessed both from its immediate parent node and from its

immediate child node, if they do exist.

If there is no arrow between two nodes, accessing one node from the other node

must be via existing arrows or paths. For example, accessing node Row #0 from node

Row #9 can be achieved directly from node Row #9, and vice versa, because there is an

arrow or a path between node Row #0 and node Row #9. However, because there is no

arrow or path between node Row #0 and node Row #11, accessing node Row #0 from

node Row #11 must be via at least the path between node Row #11 and node Row #2,

then the path between node Row #2 and the root node, and last the path between the root

node and node Row #0, and vice versa.

In terms of implementation, such a bi-directional traverse can be achieved by

requiring the information of any node to include pointers to its immediate parent node and

all of its immediate child nodes. Any node, except for the root node, must have one and

only one immediate parent node. Any non-terminal node of the compact trie must have

more than one immediate child node according to the definition of the compact trie. All

terminal nodes do not have any child nodes and the root node does not have a parent node.

34

Table 3.3: The Two-Dimensional Array Representation of the Compact Trie for the 15

Points

A B C D E F G H I J

0 4 1 9 -1 -1 03 2 0.0 0.3

1 1 1 -1 -1 1 050613255815 12 0.001251 0.563585

2 2 1 11 -1 -1 1146753819 10 0.14731 0.16589

3 2 1 13 -1 -1 18 2 0.1 0.8

4 1 1 -1 -1 8 300134999855 12 0.303995 0.014985

5 1 1 -1 -1 4 385905299612 12 0.350291 0.895962

6 1 1 -1 -1 3 548759080793 12 0.585009 0.479873

7 2 1 15 -1 -1 7511 4 0.71 0.51

8 1 1 -1 -1 5 872426864005 12 0.822840 0.746605

9 2 2 17 0 -1 0396 4 0.09 0.36

10 2 2 19 0 -1 039714 6 0.091 0.374

11 1 2 -1 2 11 114675381930 12 0.147313 0.165890

12 1 2 -1 2 10 114675381939 12 0.147313 0.165899

13 1 2 -1 3 6 187548190483 12 0.174108 0.858943

14 1 2 -1 3 2 189038370441 12 0.193304 0.808741

15 1 2 -1 7 7 751103550315 12 0.710501 0.513535

16 1 2 -1 7 14 751104550315 12 0.710501 0.514535

17 1 3 -1 9 9 039614440532 12 0.091403 0.364452

18 1 3 -1 9 15 039615440532 12 0.091403 0.365452

19 1 3 -1 10 12 039714440532 12 0.091403 0.374452

20 1 3 -1 10 13 039714450532 12 0.091403 0.374552

Table 3.4: The Brief Summary for Each Column of Table 3.3

A Row ID or Row #, starting from 0

B The number of terminal nodes among itself and its child nodes

C The depth or level of a node

D

The Row # of the first row of consecutive rows occupied by the node's

immediate child nodes, if any

E

The Row # of the node's immediate parent node, or -1 if the node's immediate

parent node is the root node

F

The ID of the spatial point associated with the node if it is a terminal node, or

-1 if it is not

G The unique string associated with the node

H The length of the unique string associated with the node

I The restored X Cartesian coordinate

J The restored Y Cartesian coordinate

35

 The compact trie in Figure 3.1 can be represented by a simple two-dimension

array as shown in Table 3.3. Each column of Table 3.3 (A - J) represents a different

attribute of the compact trie node. A brief summary for each column is provided for in

Table 3.4.

This array representation of the compact trie is inspired by the double-array trie

implementation which implements a trie by two parallel arrays [12]. However, the

double-array trie implementation was not adopted because not all trie operations, such as

the insertion and deletion of nodes, are needed in this proposed method.

It is worth mentioning that not every column in Table 3.3 is essential to the k-

nearest-neighbor search. Exactly which column or what attribute is essential to the k-

nearest-neighbor search depends on the k-nearest-neighbor search algorithm and its

implementation. For example, for this proposed method, only columns D, E, I and J are

necessary. All the other columns in Table 3.3 are presented for the purpose of better

illustrating the method. The content and especially the order of rows in Table 3.3 dictate

the compact trie construction program which takes Table 3.2 as input and outputs Table

3.3.

In Table 3.3, each row of the two-dimensional array represents one unique

compact trie node in Figure 3.1, except for the root node. That is why there are only 21

rows in total, rather than 22, the number of nodes in Figure 3.1. For example, the first row

represents node Row #0.

Column A is the row ID or Row #. The first row ID or Row # is 0 due to the

convention of programming.

Column B is set to 1 if the node is a terminal node. If the node is not a terminal

node, Column B is set to the number of its terminal child nodes, which might not be its

36

immediate child nodes. For example, the first row Column B is 4 because node Row #0

has 4 terminal child nodes: node Row #17, node Row #18, node Row #19, and node Row

#20, as seen in Figure 3.1.

Column C is the depth or level of a node and the root node is the only node of

depth 0. For example, the first row Column C is 1 or depth 1, as seen in Figure 3.1.

Column D is set to -1 if the node is a terminal node. If the node is not a terminal

node, Column D is set to the Row # of the first row of consecutive rows occupied by its

immediate child nodes. For example, the first row Column D is 9 because node Row #0

has two immediate child nodes, node Row #9 and node Row #10, which occupy the

consecutive rows Row #9 and Row #10, and the first row of those consecutive rows is

Row #9.

Column E is the Row # of the node’s immediate parent node, or set to -1 if the

node’s immediate parent node is the root node. For example, the first row Column E is -1

because node Row #0’s immediate parent node is the root node, as seen in Figure 3.1.

Column F is set to -1 if the node is not a terminal node. If the node is a terminal

node, Column F is set to the unique ID of the spatial point associated with the terminal

node. For example, the first row Column F is -1 because node Row #0 is not a terminal

node.

Column G is the unique string associated with the node. For example, the first row

Column G is “03” because the unique string associated with node Row #0 is “03”.

Column H is the length of the unique string associate with the node. For example,

the first row Column H is 2 because the length of the unique string “03” associated with

node Row #0 is 2.

37

Column I and Column J are the X and Y Cartesian coordinates restored from the

unique string associated with the node by reversing the assembling process in Step 1 Data

Preparation. For example, node Row #20 is a terminal node, the unique string associated

with it is “039714450532”, the ID of the spatial point associated with it is 13, and the X

and Y Cartesian coordinates of spatial point 13 are 0.091403 and 0.374552, which are

restored in Row #20 Column I and Column J, respectively. The first row Column I and

Column J are 0.0 and 0.3, respectively, which are restored from the unique string “03”

associated with node Row #0 by reversing the assembling process.

Last, I would like to connect all dots and elaborate on the rationale behind this

proposed compact-trie-based k-nearest-neighbor search method. The method is inspired

by the intrinsic relationship between grid partitioning and the Cartesian coordinates

composed of positive pure decimal numbers.

Partitioning an n-dimensional space by orthogonal lines into n-dimensional grids

is an intuitive space partitioning method. Take a simple square-shaped two-dimensional

space for example to illustrate grid partitioning. Applying the Cartesian coordinate system,

the original space before any grid partitioning can be defined by the Cartesian coordinates

of its four corners counterclockwise: the lower-left corner (0, 0), the lower-right corner (1,

0), the upper-right corner (1, 1), and the upper-left corner (0, 1). Further, the original

space can be denoted or labeled by the Cartesian coordinates of its lower-left corner (0, 0).

Then partition the original space into 10 by 10, 100 square-shaped, non-overlapping

regions evenly by orthogonal lines. Each region can be denoted or labeled by the

Cartesian coordinates of its lower-left corner, such as (0.0, 0.0), (0.0, 0.1), (0.0, 0.2) …

(0.9, 0.9). Any one region, such as the one labeled as (0.2, 0.3), can be partitioned further

into 10 by 10, 100 square-shaped, non-overlapping sub-regions evenly by orthogonal

38

lines. Each sub-region can be denoted or labeled by the Cartesian coordinates of its

lower-left corner, such as (0.20, 0.30), (0.20, 0.31), (0.20, 0.32) … (0.29, 0.39). Such

recursive partitioning of a space can be performed infinitely. The resulting space region

can be infinitely small so as to be deemed as a spatial point. Alternatively, any spatial

point can be deemed as a certain space region. For example, the spatial point (0.20, 0.31)

can be deemed as the space region labeled as (0.20, 0.31). So the Cartesian coordinates of

a spatial point composed of positive pure decimal numbers can be deemed as the label of

a certain space region resulted from such a grid partitioning.

 The labels of space regions at the same partitioning level and different partitioning

levels can be organized into a hierarchical structure by making some modifications to the

labels as follows. Continuing with the grid partitioning example, the labels of the space

regions at the first level of partitioning: (0.0, 0.0), (0.0, 0.1), (0.0, 0.2), …, (0.9, 0.9) can

be modified by removing the leading “0.” and then combining the remaining digits of all

coordinates to become 00, 01, 02, …, 99. Similarly, the labels of the space regions at the

second level of partitioning: (0.20, 0.30), (0.20, 0.31), (0.20, 0.32), …, (0.29, 0.39) can be

modified to become 2300, 2301, 2302 … 2399 (interleaving the remaining digits of all

coordinates in an orderly fashion rather than simply combining them together). The

common prefix “23” is the label of the first level space region encompassing the 100

second level space sub-regions which can be uniquely denoted by the rest suffixes “00”,

“01”, “02”, …, “99”, respectively. Similar modifications can be applied to any space

region at any level of partitioning.

Here are some benefit resulted from such modifications. The new labels are more

succinct. New labels different in length suggest their corresponding space regions are at

different levels of partitioning. The longer a new label is, the higher the partitioning level

39

of the corresponding space region is and the smaller the corresponding space region is.

New labels equal in length suggest their corresponding space regions are at the same level

of partitioning. New labels sharing a common prefix are within the same space region of

which the new label is the common prefix. Last, such modifications explain how and why

the Cartesian coordinates of spatial points composed of positive pure decimal numbers

are assembled into the strings in Step 1 Data Preparation.

 The grid partitioning described earlier would not result any partially overlapped

space regions. Space regions at the same level of partitioning are non-overlapping. A

space region at a lower level of partitioning would either encompass a space region at a

higher level of partitioning or not. A tree-type data structure is naturally fit for organizing

the space regions resulted from such a grid partitioning. The root node can represent the

entire space. Every other node can represent a certain space region. The level of a node

can indicate the partitioning level of the space region represented by the node. There is no

direct connection between any pair of nodes at the same level. The direct connection

between an upper level node and a lower level node can indicate the space region

represented by the upper level node encompasses the space region represented by the

lower level node.

 The compact trie is adopted to store, index, and search spatial points. The spatial

points can be deemed as space regions resulted from the grid partitioning described

earlier. Every node of the compact trie represents a certain space region and is associated

with the new label of the space region. The new label associated with any non-terminal

node, except for the root node, must be the longest possible common prefix of the new

labels associated with its immediate child nodes, and the length of the common prefix

must be an integral multiple of the dimensionality of the spatial points. The space region

40

denoted by such a new label is actually the smallest possible space region resulted from

the same grid partitioning that encompasses all space regions represented by the child

nodes of the non-terminal node. So, constructing a compact trie from spatial points

naturally groups certain spatial points and/or certain space regions together, and naturally

partitions the space, which is appealing to a search for a certain spatial point or space

region. It is worth mentioning that the level of a compact trie node does not indicate the

partitioning level of the space region represented by the node.

 Last, referring back to the grid partitioning example, it is worth noting that the

length of the new label of any space region at the first partitioning level is 2, or the

dimensionality 2 multiplied by the level of partitioning 1. The length of the new label of

any space region at the second partitioning level is 4, or the dimensionality 2 multiplied

by the level of partitioning 2. To generalize, the length of the new label of any space

region at the nth partitioning level is the dimensionality multiplied by the level of

partitioning n. That is why the length of the unique string associated with any compact

trie node, except for the root node, must be an integral multiple of the dimensionality. So,

the length of the longest possible common prefix referred in the previous paragraph must

also be an integral multiple of the dimensionality, rather than the length of the longest

common prefix. Thus, the compact trie constructed in this proposed method is not

literally following the compact trie definition because the string associated with a non-

terminal node (except for the root node) in the compact trie is not the longest common

prefix of all strings associated with its immediate child nodes.

41

3.4 Step 3 Query Search

 The Best-First-Nearest-Neighbor-Search (BFNNS) scheme [24] was adopted for

the proposed compact-trie-based k-nearest-neighbor search method. The core of the

BFNNS algorithm is to build and maintain a priority queue. Applicable to all nodes, the

shorter the minimum distance of a node to the query point is, the higher the priority of the

node in the priority queue is.

A terminal node represents one unique spatial point. Therefore, the minimum

distance of a terminal node to the query point is certain and fixed. A non-terminal node

represents one space region, as explained earlier. Therefore, the minimum distance of a

non-terminal node to the query point is the shortest distance from the boundary of the

space region to the query point. This minimum distance is also the minimum distance

possible between any point within the space region and the query point. There is no need

to differentiate their priority in the priority queue when a terminal node and a non-

terminal node have the same minimum distance to the query point; either one can be

processed first because both would have to be processed anyway in order to find all kth

nearest neighbors.

 After the priority queue is initialized with the root node, the k-nearest-neighbor

search starts by always removing the first item of the priority queue until either all kth

nearest neighbors have been found or the priority queue is depleted completely. If the

item removed from the priority queue is a non-terminal node, all of its immediate child

nodes are inserted into the priority queue first before any item is removed from the

priority queue. The insertion will follow the same principles described above. If an item

removed from the priority queue is a terminal node, the next nearest neighbor is found as

the unique spatial point represented by the terminal node.

42

 One advantage of the BFNNS scheme is that the next best or the next nearest

neighbor will always be the next terminal node or the next spatial point identified from

the priority queue. So, if a k-nearest-neighbor search needs to identify more nearest

neighbors, the search can resume from where it stops last time rather than start over again,

which might be significant in continuous k-nearest-neighbor search. In contrast, the

Depth-First-Nearest-Neighbor-Search (DFNNS) scheme [24] is largely based on branch-

and-bound and keeps pruning the branch determined to be outside the most updated

bound. Any additional nearest neighbor would likely demand the DFNNS to start over

again because the branch containing the next nearest neighbor may have been pruned and

cannot be recovered.

 Last, it is worth mentioning that distance square is used for distance comparison

because the true distance calculation would require the calculation of square root, which

is costly in terms of CPU time, but is unnecessary and of zero significance in terms of

distance comparison. The coordinates associated with a node is used to calculate its

Euclidean distance to a given query point rather than the string associated with the node,

which is used to construct the compact trie only.

3.5 Summary

 Spatial points can be deemed as space regions resulted from grid partitioning.

Then the Cartesian coordinates of the spatial points composed of positive decimal

numbers can be converted into labels of the corresponding space regions, respectively. A

slightly modified compact trie constructed from the labels not only stores and indexes

those labels but also naturally partitions the space. A Best-First-Nearest-Neighbor-Search

43

based k-nearest-neighbor search method is devised to exploit the space partition and

index resulted from the compact trie.

44

Chapter 4

Evaluations

 In Chapter 3, a set of two-dimensional spatial points is used to elaborate on the

design and implementation of the compact-trie-based k-nearest-neighbor search method.

Theoretically, the method can apply to higher dimensions. However, considering that

most location-dependent spatial queries in mobile computing involve only two-

dimensional spatial data, such as the (Longitude, Latitude) pair of GPS data, the k-

nearest-neighbor search performance test was limited to two-dimensional spatial points.

But the number of spatial points was increased to a million (1,000,000).

 In order to evaluate how well the compact-trie-based method performs k-nearest-

neighbor search, two classic methods were chosen as the benchmarks for comparison.

One is the brute-force method because it provides the absolute base line performance and

any other method arguably must surpass it, especially in low-dimensional applications.

The other is the k-dimensional (k-d) tree based method because it is so classic that every

new method is developed with the goal to surpass it, especially with respect to point data.

4.1 Implementation of Benchmark K-Nearest-Neighbor Search Methods

 I implemented both the brute-force based and the k-d tree based k-nearest-

neighbor search methods, rather than adopted some well-recognized and well-established

standard libraries, so that the evaluations can be carried out using the programs I can

control inside out, especially with respect to input and timekeeping.

The brute-force search method is while calculating the distance to the query point

for every spatial point, identify the minimum distance (or the kth minimum distance) and

45

record the corresponding spatial point(s). Distance square is used for distance comparison

for the same reason as explained in Chapter 3. And the nearest neighbor search will not

stop until all spatial points with the same minimum distance to the query point are found.

So if there is more than one spatial point having the same minimum distance to the query

point, the nearest neighbor search will not stop when the first such a spatial point is found,

but will continue until all such spatial points are found. The same principle applies to the

k-nearest-neighbor search and all three methods.

 The implementation of the k-d tree based method is much more complicated than

that of the brute-force based method because the former requires the construction of the

k-d tree before the k-nearest-neighbor search can perform, while the latter does not need

any search structure. Referring back to Section 2.1, the k-d tree is constructed by

recursively bisecting the search space with a hyperplane. The choice of hyperplanes and

bisecting strategy can affect the resulting k-d tree, as well as its performance in a certain

application, including the k-nearest-neighbor search application. Ultimately, I

implemented the k-d tree following the sliding-midpoint rule as presented by

Maneewongvatana:

“Sliding-midpoint: First a midpoint split is attempted, by considering a

hyperplane passing through the center of the cell and bisecting the cell’s

longest side. If the data points lie on both sides of the splitting plane then

the splitting plane remains here. However, if all the data points lie to one

side of the splitting plane, then splitting plane “slides” towards the data

points until it encounters the first such point. One child is a leaf cell

containing this single point, and the algorithm recurses on the remaining

points.” [21]

Compared with two classic bisecting strategies, the median-split rule and the midpoint-

split rule, the k-d tree constructed based on the sliding-midpoint rule has been proven to

46

provide relatively more efficient nearest neighbor search both in theory and in practice

[21].

The resulting k-d tree is a binary tree. If the k-d tree is constructed from n unique

spatial points and each terminal node of the k-d tree represents only one unique spatial

point, then the k-d tree would have (n X 2 – 1) nodes in total. Among the (n X 2 – 1)

nodes, there is one and only one root node, n terminal nodes, and (n – 1) non-terminal

nodes, including the root node. Each non-terminal node represents certain search space

region and carries the information about how the search space region is further bisected

by a hyperplane into two sub-regions, which are represented by its two immediate child

nodes, respectively.

It is worth mentioning that the compact trie is not a binary tree. Any non-terminal

node of the compact trie has more than one child nodes and could have more than two

child nodes. Therefore, theoretically, under the same condition, if the compact trie is

constructed from n unique spatial points and each terminal node of the compact trie

represents only one unique spatial point, then the lower and upper bounds of the number

of its nodes in total are (n + 1) and (n X 2 - 1), respectively. The lower bound would

achieve when all terminal nodes of the compact trie are immediate child nodes of the root.

The upper bound would achieve when the compact trie is a binary tree. Thus, constructing

from the same set of spatial points, the number of nodes in total for the k-d tree will

always be the upper bound of the number of nodes in total for the compact trie. For

example, constructing from the same test set of one million randomly generated two-

dimensional spatial points, the compact trie has 1,277,610 nodes in total, while the k-d

tree has 2,000,000 nodes in total. If the number of nodes in total corresponds to the

47

storage space for tree structures, the compact trie seems more space efficient than the k-d

tree constructed from the same set of data.

The Depth-First-Nearest-Neighbor-Search (DFNNS) scheme [24] is adopted in

implementing the k-d tree based k-nearest-neighbor search method. The search always

starts from the root node of the k-d tree and keeps traversing downwards first. When

encountering a non-terminal node, the search will choose one of its two immediate child

nodes depending on which child node represents the search space region encompassing

the query point. The initial downward traverse will not stop until the search reaches the

first terminal node. The unique point represented by this terminal node will be the first

candidate for the nearest neighbor of the query point and its distance to the query point

will be used to bound the search afterwards by pruning unnecessary “branches.” Then the

search will traverse upwards and downwards. Whenever the search reaches a new

terminal node, if the distance between the unique point represented by the new terminal

node and the query point is smaller than the current bound, then this point will be the new

candidate for the nearest neighbor of the query point and this distance will be the new

bound. The search will stop till no more nodes or branches need to be visited and the

search is back to the root node. The final candidate point at the end of the search is the

nearest neighbor of the query point.

At each initial visit of a non-terminal node, the minimum distance from the query

point to the hyperplane splitting the search space region represented by the non-terminal

node is calculated and recorded. Then at the initial visit and revisit of this non-terminal

node, if this minimum distance is larger than the most updated bound, there is no need to

visit its immediate child node representing the search space region not encompassing the

48

query point, because no point in that region would have a distance to the query point

shorter than this minimum distance and therefore shorter than the bound.

4.2 K-Nearest-Neighbor Search Performance Comparison

 After making sure the three programs can produce the same result given the same

input, the k-nearest-neighbor search performance comparison was carried out using a

personal laptop (Lenovo ThinkPad T420, Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz

2.50 GHz, 8.00 GB (7.89 GB useable) RAM, 64-bit Windows 7 Professional Service

Pack 1 Operating system). The test is that for a given two-dimensional query point, search

for its k nearest neighbors in a fixed set of one million randomly generated two-

dimensional points. For a given k value ranging from 1 to 1000, each program run the test

one thousand times, each time with a different query point randomly generated. But all

three programs run the one thousand tests with the same set of one thousand randomly

generated query points in the same order, which was achieved by using the same seed for

the random number generator. The average running time (in microseconds) of the

program to complete one test for a given k value is used to measure the k-nearest-

neighbor search performance of the program, as shown below in Table 4.1.

49

Table 4.1: K-Nearest-Neighbor Search Performance Comparison

The K used in the

K-Nearest-Neighbor

Search

Average Search Time (Microseconds)

Brute-Force

K-Dimensional

Tree Trie-Based

1 9376.35 12933.4 40.892

2 9254.21 12940.3 42.993

3 9509.63 13074.1 43.366

4 9604.11 13029.6 45.855

5 9629.72 13030.6 45.265

6 9674.87 13081.4 48.818

7 9708.6 13259 50.515

8 9797.95 13263.8 47.958

9 9780.33 13254.7 49.925

10 9856.04 13276.9 53.894

20 10191.1 13480.7 58.141

30 10561.6 13626.9 65.319

40 10679 13621 72.306

50 11250.6 13818.3 82.49

60 11558.5 14137.3 86.471

70 11909.4 14257.1 95.037

80 12206.3 14180 101.133

90 12523 14521.3 102.3

100 12945.1 14619.9 112.13

200 15879.7 15885.5 177.425

300 20020.1 17269.3 239.514

400 23545 18619.4 315.307

500 27448.9 20271.3 394.564

600 32086.5 21696 479.805

700 36580.2 23271.1 555.646

800 42045.4 25522.2 636.696

900 47275.1 27311.7 777.944

1000 52118.9 29147.2 826.533

50

Figure 4.1: K-Nearest-Neighbor Search Performance Comparison Average Search Time

Figure 4.2: K-Nearest-Neighbor Search Performance Comparison Performance Ratio

0

10000

20000

30000

40000

50000

60000

A
v

er
a

g
e

S
ea

rc
h

 T
im

e
(M

ic
ro

se
c
o

n
d

s)

The K used in the K-Nearest-Neighbor Search

K-Nearest-Neighbor Search Performance

Brute-Force k-d Tree Trie-Based

0

50

100

150

200

250

300

350

P
er

fo
rm

a
n

ce
 R

a
ti

o

The K used in the K-Nearest-Neighbor Search

K-Nearest-Neighbor Search Performance Ratio

Brute-Force / Trie-Based k-d Tree / Trie-Based

51

 As the average search time shown in Figure 4.1, the compact-trie-based k-nearest-

neighbor search method performed consistently better than both the k-d tree based

method and the brute-force based method. As the performance ratio shown in Figure 4.2,

for k up to 1000, the compact-trie-based method performed at least 25 times better than

the other two methods. For k less than 100, the compact-trie-based method performed at

least 175 times better than the other two methods. The smaller the k is, the higher the

performance ratio is, up to 300 times better, which suggests the compact-trie-based

method might have more advantage in k-nearest-neighbor search applications where k is

less than 100.

4.3 Summary

 The k-nearest-neighbor search performance comparison based on one million

randomly generated two-dimensional spatial points did show the compact-trie-based k-

nearest-neighbor search method performed at least 25 times better than the brute-force

based method and the k-d tree based method for k up to 1000. And the smaller the k is,

the higher the performance ratio is, up to 300.

 The different search schemes, Best-First and Depth-First, employed in the

compact-trie-based method and the k-d tree based method, respectively, may be

responsible for the performance difference to some extent. In the classic Depth-First k-d

tree based nearest-neighbor-search method, node traversing is completely restricted by

the tree structure and must be from one node to its immediate parent node or immediate

child node; if two nodes have no such “immediate” relationship, traversing directly from

one to the other is impossible. By contrast, node traversing following the Best-First

search scheme in the compact-trie-based method is largely controlled by the priority

52

queue, rather than the tree structure. The two nodes traversed successively can have no

such “immediate” relationship between them. The node traversing is like jumping around.

The tree structure only limits the group of candidate nodes needed to be considered next,

which includes every immediate child node of the visiting non-terminal node.

 The current implementation of the compact-trie-based method adopting the Best-

First search scheme does have its own limitation. For example, if the number of the

visiting non-terminal node’s immediate child nodes is large, creating and maintaining the

priority queue could be computationally expensive.

53

Chapter 5

Conclusion and Future Directions

 In this thesis, a compact-trie-based k-nearest-neighbor search method is proposed.

Through the k-nearest-neighbor search performance comparison against the brute-force

based and the k-d tree based methods, the compact-trie-based method did show consistent

performance superiority. The intrinsic relationship between the grid partitioning and the

Cartesian coordinates of spatial points composed of positive decimal numbers, and the

natural space partitioning by a compact trie constructed from the modified Cartesian

coordinates of spatial points composed of positive decimal numbers inspired me to devise

the compact-trie-based method.

In this pilot project so far, it has been shown that the compact-trie-based method

performed better than the brute-force based and the k-d tree based methods in tests,

searching the k nearest neighbors for a given two-dimensional spatial point within one

million two-dimensional spatial points. More theoretic work needs to be done to prove the

better performance of the compact-trie-based method in theory. And the k-nearest-

neighbor search performance comparison result needs to be verified with more robust

tests and using well-established and well-recognized standard libraries.

It is worth mentioning that the different search schemes employed in the compact-

trie-based method and the k-d tree based method may have a significant role responsible

for the performance difference. It would be ideal if the performance comparison was

carried out while the two methods employed the same search scheme. Applying the best-

first search scheme to the k-d tree based method seems promising, though maintaining the

priority queue for the non-terminal nodes traversed seems not computationally cost-

54

effective at the first sight because the k-d tree is a binary tree and any non-terminal node

of the k-d tree has two and only two child nodes. Applying the best-first search scheme to

the compact-trie-based method seems relatively not that promising because for each non-

terminal node traversed, a list of its child nodes sorted by their minimum distances to the

query point may need to be created, which could be computationally expensive. It might

be quite worthwhile to implement both and find out how they actually turn out.

So far, the implementation of the compact-trie-based method has limited the input

to positive decimal numbers. Expanding the input to negative decimal numbers may just

be a matter of conversion. And other numeral systems might be worthwhile exploring,

especially the binary system because any information can be represented by bits or binary

numbers, and bit-based storage and/or computing may be more efficient.

Last, it is more significant to explore the potential applicability of the compact-

trie-based method to high-dimensional data, to tackle the curse of dimensionality.

55

Bibliography

[1] R. E. Bellman. Dynamic programming. Princeton University Press, 1957.

[2] E. Fredkin. Trie memory. Communication of the ACM, 3(9):490-499, 1960.

[3] D. R. Morrison. PATRICIA - practical algorithm to retrieve information coded in

alphanumeric. Journal of the ACM, 15(4):514-534, 1968.

[4] D. E. Knuth. The art of computer programming volume 3, sorting and searching.

Addison-Wesley, 1972.

[5] W. A. Burkhard and R. M. Keller. Some approaches to best-match file searching.

Communications of the ACM, 16(4):230-236, 1973.

[6] K. Fukunaga. A branch and bound algorithm for computing k-nearest neighbors.

IEEE Transactions on Computers, 24(7):750-753, 1975.

[7] J. H. Friedman, F. Baskett, and L. J. Shustek. An algorithm for finding nearest

neighbors. IEEE Transactions on Computers, 24(10):1000-1006, 1975.

[8] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best

matches in logarithmic expected time. ACM Transactions on Mathematical

Software, 3(3):209-226, 1977.

[9] J. L. Bentley, and J. H. Friedman. Data structures for range searching. ACM

Computing Surveys, 11(4):397-409, 1979.

[10] J. L. Bentley. Multidimensional divide-and-conquer. Communications of the ACM,

23(4):214-229, 1980.

[11] A. Guttman. R-trees: a dynamic index structure for spatial searching. Proceedings

of the 1984 ACM SIGMOD international conference on Management of data, 47-

57, 1984.

[12] J.-I. Aoe. An efficient digital search algorithm by using a double-array structure.

IEEE Transaction on Software Engineering, 15(9):1066-1077, 1989.

[13] R. F. Sproull. Refinements to nearest-neighbor searching in k-dimensional trees.

Algorithmica, 6:579-589, 1991.

[14] J.-I. Aoe, K. Morimoto, and T. Sato. An efficient implementation of trie structures.

Software-Practice and Experience, 22(9):695-721, 1992.

56

[15] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient processing of spatial joins

using R-trees. Proceedings of the 1993 ACM SIGMOD international conference

on Management of data, 237-246, 1993.

[16] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, A. Y. Wu. An optimal

algorithm for approximate nearest neighbor searching. Proceedings of the fifth

annual ACM-SIAM symposium on Discrete algorithms, 573-582, 1994.

[17] H. Shang. Trie methods for text and spatial data of secondary storage. Ph.D.

Dissertation, School of Computer Science, McGill University, 1995.

[18] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries.

Proceedings of the 1995 ACM SIGMOD international conference on management

of data, 71-79, 1995.

[19] G. R. Hjaltason, and H. Samet. Ranking in spatial databases. Proceedings of the

4th International Symposium on Advances in Spatial Databases, 83-95, 1995.

[20] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the

curse of dimensionality. Proceedings of the Symposium on Theory of Computing,

604-613, 1998.

[21] S. Maneewongvatana and D. M. Mount. It’s okay to be skinny, if your friends are

fat. Center for Geometric Computing 4th Annual Workshop on Computational

Geometry, 1999.

[22] Z. Song and N. Roussopoulos. K-nearest neighbor search for moving query point.

Proceedings of the Seventh International Symposium on Advances in Spatial and

Temporal Databases, 79-96, 2001.

[23] Y. F. Tao, D. Papadias, and Q. M. Shen. Continuous nearest neighbor search.

Proceedings of the 28th international conference on Very Large Data Bases, 287-

298, 2002.

[24] G. R. Hjaltason and H. Samet. Index-driven similarity search in metric spaces.

ACM Transactions on Database Systems, 28(4):517-580, 2003.

[25] S. Shekhar and S. Chawla. Spatial databases: a tour. Prentice Hall, 2003.

[26] "Trie." Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. 22 July

2004. Web. 10 Aug. 2004. <https://en.wikipedia.org/wiki/Trie>

[27] X. P. Xiong, M. F. Mokbel, and W. G. Aref. SEA-CNN: scalable processing of

continuous k-nearest neighbor queries in spatio-temporal databases. Proceedings

of the 21st International Conference on Data Engineering, 643-654, 2005.

57

[28] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou. Conceptual partitioning: an

efficient method for continuous nearest neighbor monitoring. Proceedings of the

2005 ACM SIGMOD international conference on Management of data, 634-645,

2005.

[29] N. Askitis and R. Sinha. HAT-trie: a cache-conscious trie-based data structure for

strings. Proceedings of the thirtieth Australasian conference on Computer science,

62:97-105, 2007.

[30] M. Moreau and W. Osborn. mqr-tree: a 2-dimensional spatial access method.

Journal of Computer Science and Engineering, 15(2):1-12, 2012.

[31] M. Fuketa, H. Kitagawa, T. Ogawa, K.Morita and J.-I. Aoe. Compression of

double array structures for fixed length keywords. Information Processing and

Management: an International Journal, 50(5):796-806, 2014.

[32] M. R. Abbasifard, B. Ghahremani, and H. Naderi. A survey on nearest neighbor

search methods. International Journal of Computer Applications, 95(25):39-52,

2014.

[33] S. Ilarri, E. Mena, and A. Illarramendi. Location-dependent query processing:

where we are and where we are heading. ACM Computing Surveys, 42(3):1-73,

2010.

[34] M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, Mass., 1969.

[35] A. Andoni. Nearest neighbor search: the old, the new, and the impossible. Ph.D.

Dissertation, Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, 2009.

[36] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance

study for similarity-search methods in high-dimensional spaces. Proceedings of

the 24th VLDB Conference, 194-205, 1998.

