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Abstract 

 

This thesis proposes a k-nearest-neighbor search method inspired by the grid 

space partitioning and the compact trie tree structure. A detailed implementation based on 

the Best-First-Nearest-Neighbor-Search scheme is presented and illustrated with sample 

data. Then k-nearest-neighbor search performance comparison is carried out among the 

proposed compact-trie-based method, the brute-force method, and the k-d tree based 

method, with one million two-dimensional spatial points and k up to 1000. The result of 

the comparison shows that the proposed method can perform up to 300 times better than 

the other two methods when k is small, suggesting that the proposed method might be 

suitable for low dimensions and location-dependent spatial queries in mobile computing.           
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Chapter 1                                                                                                          

Introduction 

 

1.1 Background 

Along with the popularity of smart phones and tablets is the rising of mobile 

computing. Location-aware-capable mobile devices demand location-dependent services. 

The location-dependent spatial query is one of such services and draws intensive research 

[33].  

 A spatial query is a special kind of database query supported by a spatial database. 

A spatial database is a database organized to store spatial data and optimized to facilitate 

spatial query processing. Spatial data, which represent objects in space, can be as simple 

as spatial points in arbitrary dimensions. For example, spatial data can be (Longitude, 

Latitude) pairs, representing points of interest on a two-dimensional map. All points of 

interest on the map can be organized in a spatial database, which is optimized to answer 

spatial queries such as which point of interest is closest to a given query point on the map 

[25]. 

 A spatial query can be ad-hoc and terminated once the search result is returned. A 

spatial query can also be continuous if the query point is moving and the search result 

needs to be constantly updated in response to the latest known location of the query point, 

which is common in mobile computing. For example, one looks for the nearest gas station 

while driving. Location-dependent spatial queries refer to spatial queries of which the 

search result depends on the location of both the query point and spatial points stored in a 

spatial database. Continuous location-dependent spatial queries are common service 
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demanded by location-aware-capable mobile devices and pose great challenge on 

efficient spatial query processing [33]. 

 Not only can a query point be moving, but also spatial points stored in a spatial 

database can be moving too, such as a spatial database of running taxis. It could require 

both the content and the organizational structure of the spatial database be updated 

constantly. The dynamic content and dynamic organizational structure ose great challenge 

on efficient spatial data organization in a spatial database [33]. 

 In summary, because a query point can be static or mobile, and spatial points 

stored in a spatial database can also be static or mobile, a spatial query can involve (1) a 

static query point and a static spatial point database, (2) a static query point and a mobile 

spatial point database, (3) a mobile query point and a static spatial point database, or (4) a 

mobile query point and a mobile spatial point database. Furthermore, a spatial query can 

be ad-hoc or continuous. To illustrate, if a person stands still and looks for the nearest taxi 

while all taxis are parked, it is an ad-hoc spatial query involving a static query point and a 

static spatial point database; if the taxis start moving while the person remains standing 

still, it becomes a continuous spatial query involving a static query point and a mobile 

spatial point database; if the person starts moving while all taxis remain parked, it 

becomes a continuous spatial query involving a mobile query point and a static spatial 

point database; if both the person and the taxis start moving, it becomes a continuous 

spatial query involving a mobile query point and a mobile spatial point database.  

 Efficient spatial query processing at least depends on the kind of spatial query, the 

organization structure of the spatial database storing spatial data, and how a specific kind 

of a spatial query is processed. 
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Nearest neighbor spatial queries are one fundamental family of spatial queries 

important to many location-dependent services, such as in Geographic Information 

Systems. All aforementioned examples are nearest neighbor spatial queries. The core of 

nearest neighbor spatial queries, which is the nearest neighbor search, has applications far 

beyond spatial queries.  

 

1.2 Contribution 

A k-nearest-neighbor search method inspired by the grid space partitioning and 

the compact trie tree structure is proposed. Although the current implementation of the 

proposed method is limited to two-dimensional data, the result of k-nearest-neighbor 

search performance comparison shows significant improvement over the brute-force 

based and the k-d tree based k-nearest-neighbor search methods. Because most location-

dependent mobile services rely on two-dimensional or three-dimensional geographic data, 

the proposed method might be particularly suitable for nearest neighbor based location-

dependent spatial queries in mobile computing. Furthermore, the current implementation 

adopts a simple array-based data structure and an intuitive Best-First-Nearest-Neighbor-

Search scheme. 

  

1.3 Thesis Outline 

 The remainder of this thesis is organized as follows: 

Chapter 2 Background knowledge of the thesis, continuous k-nearest-

neighbor search and trie 
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Chapter 3 The detailed design and implementation of the proposed compact-

trie-based k-nearest-neighbor search method for a set of 15 

purposefully designed two-dimensional spatial points 

Chapter 4 K-nearest-neighbor search performance comparison among the 

proposed compact-trie-based method, the brute-force based method, 

and the k-dimensional tree based method 

Chapter 5 Future research directions  
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Chapter 2                                                                                                           

Background 

 

2.1 Nearest Neighbor Search 

 In the era of “Big Data,” how to derive information from the “Big Data” more 

efficiently challenges and motivates us to develop better methods. Among them, nearest 

neighbor search methods are one important family drawing intensive research because 

they have wide applications and are foundational constituent for many methods [35]. 

Besides straightforward applications in spatial queries, nearest neighbor search has 

applications in areas such as pattern recognition, marketing, and multimedia information 

retrieval [35]. Nearest neighbor search is also frequently an integral part of clustering and 

classification methods [35].    

Nearest neighbor search is firstly proposed by Minsky and Papert in 1969 [34]. It 

has also been referred to as the post office problem, proximity search, closest point search, 

and best match file searching problem [35]. 

 The exact nearest neighbor search problem can be defined as: given a set of points 

P in an n-dimensional space S and a metric to determine the distance between any two 

points in S, how to most efficiently find the point in P which is nearest to an arbitrarily 

given query point q in S [34]. A generalization of nearest neighbor search is the k-nearest-

neighbor search in which k points in P nearest to an arbitrarily given query point q in S 

are found, where k can be 1, 2, ... Another common variant of the nearest neighbor search 

is a range search, which finds all points in P in S that are within a pre-defined range of 

arbitrary shape and with respect to an arbitrarily given query point q in S. 
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 The space S can be a metric space or a non-metric space. The nearest neighbor 

search in a non-metric space sometimes can be converted into a nearest neighbor search 

in metric space [35]. This thesis and the proposed methods here focus on the metric space 

and particularly on Euclidean space. 

 Ideally, an exact nearest neighbor or k exact nearest neighbors are being sought. 

In low dimensionality, an exact nearest neighbor search can be achieved in sub-linear or 

logarithmic time complexity [32]. However, the computational complexity of an exact 

nearest neighbor search can increase exponentially as the dimensionality increases. This 

phenomenon has been referred as the curse of dimensionality [1]. The efficiency of exact 

nearest neighbor search methods would degrade drastically as the dimensionality of space 

S increases [32].  

However, if approximate nearest neighbors are being sought, the computational 

complexity even in high dimensionality could remain polynomial [20]. The approximate 

nearest neighbor search problem can be defined as: given a set of points P in n-

dimensional space S and a metric to determine the distance between any two points in S, 

how to construct a data structure so that for an arbitrarily given query point q, it could 

most efficiently find all points whose distance to q is at most (1 + ε) times the distance 

from q to its nearest point in P, where ε is a positive number [20]. Locality-sensitive 

hashing, proposed by Piotr Indyk and Rajeev Motwani in 1998 [20], is one of the earliest 

approximate nearest neighbor search methods overcoming the curse of dimensionality 

and has received arguably the most attention in practical contexts [32].  

This thesis and the proposed methods here focus on exact nearest neighbor search. 

I hope the work presented here can contribute in overcoming the curse of dimensionality 

for exact nearest neighbor search methods. 
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Many methods have been developed for the nearest neighbor search. Besides 

empirical analysis, the quality of those methods can be evaluated by the time complexity 

of the algorithm, and the space complexity of any data structure which must be 

maintained for the search [35]. So far, to the best of our knowledge, there is no 

universally applicable method which can obtain an exact solution to nearest neighbor 

search in arbitrarily high dimensional space with polynomial or polylogarithmic time 

complexity [32]. 

Based on whether any data structure must be maintained for the search, nearest 

neighbor search methods can be classified into structural-search and structureless-search. 

Structureless-search methods require that no data structure be purposefully maintained for 

the search. Structural-search methods improve the search time complexity at the expense 

of both the space complexity of the data structure(s) which must be maintained for the 

search, and the time complexity of preprocessing the data in order to obtain the data 

structure(s). 

 One structureless-search method and the most straightforward exact nearest 

neighbor search method is by brute-force, which first calculates the distance between the 

query point q and every point in the set of points P, then sorts all calculated distances, and 

last identifies the shortest distance(s) and the corresponding point(s) in P nearest to q. 

This method has a time complexity of O(nd) where n is the number of the points in the 

point set P and d is the dimensionality of the space S, and a space complexity of O(1) 

because no data structure is required to be maintained for the search. Weber et al. showed, 

from a theoretical perspective, that under the assumption that the data is uniformly 

distributed and all dimensions are independent from one another, an exact nearest 

neighbor search based on any partitioning scheme and clustering technique must 
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degenerate to a sequential scan through all data as dimensionality increases [36]. 

Therefore, this brute-force method provides a base benchmark. 

 Arguably, more nearest neighbor search methods are structural-search. As early as 

1973, Burkhard and Keller proposed three file structures for nearest neighbor search, and 

the data structures are equivalent to multi-way trees [5]. In 1975, Fukunaga employed 

recursive decomposition of search space and applied branch-and-bound methodology to 

the resulting search data structure in nearest neighbor search [6]. The core of branch-and-

bound methodology is that while systematically accessing and evaluating all candidate 

data, eliminate subset(s) of candidate data as early as possible and as much as possible 

according to the continuously optimized bound(s) derived during the evaluation. 

Recursive decomposition of search space is a recurring theme in space partition.     

 Also in 1975, Friedman et al. introduced the k-dimensional (k-d) tree which is 

produced by recursively bisecting the search space with a hyperplane perpendicular to 

only one axis of the k dimensions [7]. A k-d tree is a binary tree where every non-

terminal tree node has two and only two child nodes. It is constructed as follows. 

Strategically select a data point and a k-dimensional partition hyperplane that passes 

through the data point to divide the search space represented by the non-terminal node 

into two. The divided search space on one side of the hyperplane is represented by one of 

the two child nodes. The divided search space on the other side of the hyperplane is 

represented by the other of the two child nodes. The bisecting can be repeated at any non-

terminal node in any level of the hierarchical tree as long as there is more than one data 

point in the search space represented by the non-terminal node. 

The search time complexity of the k-d tree based method is improved to be 

logarithmic [8]. The k-d tree has also been applied to range search [9] and moderate 
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dimensions [10]. The hyperplanes and bisecting strategy can be chosen in a way to 

optimize the resulting k-d tree for a certain application [21].  

Sproull proposed some ways to improve the k-d-tree-based nearest neighbor 

search. The measure of distance is assumed to be Euclidean. Because the Euclidean 

distance metric is invariant under rotation, Sproull proposed that the partition hyperplanes 

can be arbitrary k-dimensional hyperplanes [13], rather than requiring the partition 

hyperplanes be perpendicular to one coordinate axis as in the original algorithm proposed 

by Friedman et al [7]. However, as Sproull pointed out in the paper, an arbitrary partition 

hyperplane is feasible but not always more favorable than a perpendicular partition 

hyperplane due to the additional cost of computing the distance between a point and the 

arbitrary partition hyperplane [13]. Choosing an arbitrary partition hyperplane 

perpendicular to an axis other than the coordinate axes could also incur additional costly 

computation [13].  

Sproull’s method operates in a top-down fashion starting from the root node. At 

each non-terminal node, the search algorithm decides which one of its two child nodes 

need to be accessed next by identifying which divided search space represented by the 

child node encompasses the query point. Once the search reaches a terminal node, all data 

points within the search space represented by the terminal node will be examined 

exhaustively to find the nearest neighbor to the query point. However, the identified 

nearest neighbor must be verified by checking whether the true nearest neighbor could be 

on the other side of the partition hyperplane or the other divided search space, with 

respect to the current one. Sproull proposed that the check can be done by comparing the 

nearest distance identified so far with the distance between the query point and the 

partition hyperplane [13]. 
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 Arguably, the k-d tree based nearest neighbor search might be the oldest and most 

established one. The R-tree based spatial partitioning and spatial access methods, 

arguably, have received more applications in practice. Antonin Guttman proposed the R-

tree in 1984 [11]. The R-tree is especially suitable for indexing multi-dimensional 

complex spatial data, such as polygons, because the key idea of R-tree is to group nearby 

spatial objects within a Minimum Bounding Rectangle (MBR) [11]. R in R-tree stands for 

Rectangle. The root node contains the MBRs of all spatial objects. A non-terminal parent 

node contains the MBRs of its immediate descendant nodes. A terminal node contains the 

MBRs of some spatial objects. If spatial data is organized into an R-tree, not only would 

the spatial relationship between the query point and MBRs be used to decide whether to 

search an MBR, and its descendant sub-trees, but also the k nearest neighbors can be 

efficiently computed via spatial join [15]. 

The key difficulties of the R-tree are how to efficiently build an R-tree from 

scratch, and how to best perform modification to an existing R-tree, such as insertion and 

deletion operations because MBRs may cover too much empty space and may overlap 

with one another too much. Most of the research and improvement for R-tree aim at 

conquering these key difficulties. Among them, the mqr-tree developed in this research 

group is a MBR based 2-dimensional spatial access method [30]. 

 Numerous ways to partition search space or to index spatial data result in various 

hierarchical structures to facilitate nearest neighbor search. Two common branch-and-

bound hierarchical search schemes are Depth-First Nearest Neighbor Search (DFNNS) 

and Best-First Nearest Neighbor Search (BFNNS) [24]. DFNNS can be traced back to 

Fukunaga’s 1975 paper [6]. DFNNS systematically visits every element of the 

hierarchical structure in a predetermined order. Starting from the root, it traverses as deep 
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as possible along every branch before backtracking, using the least qualified neighbor(s) 

found to prune branches and bound the search. BFNNS has been popular since the 1990s 

[16]. BFNNS starts from the root and then always visits the next best possible element by 

creating and maintaining a visit list sorted by probability. 

 Roussopoulos proposed a branch-and-bound tree traversal algorithm based on 

DFNNS for k-nearest-neighbor search and the algorithm can be applied to any tree-like 

data structure used for the purpose of indexing data [18]. A tree-like data structure 

generally has only two kinds of tree nodes: non-terminal nodes and terminal nodes. Only 

the terminal nodes store the data or references to the data, while the non-terminal nodes 

store the information of space partitions represented by the non-terminal nodes. A parent 

non-terminal node represents the space partition encompassing all space partitions 

represented by its child non-terminal nodes and/or data represented by its child terminal 

nodes. The root non-terminal node represents and encompasses the entire search space.  

Two metrics are proposed and employed to help bound the search. One is the 

minimum distance (MINDIST) between the query point and the data point/object. The 

other is the minimum of the maximum possible distances (MINMAXDIST) from the 

query point to the space partition encompassing the data point/object. The search operates 

in a depth-first and top-down fashion starting from the root. If the node being accessed is 

a non-terminal node, then all of its child nodes will be sorted into an Active Branch List 

(ABL) by one of the two metrics, MINDIST or MINMAXDIST. If the node being 

accessed is a terminal node, then each data point/object represented in the terminal node 

will be evaluated to determine whether it is among the top k nearest neighbors to the 

query point. If it is, then it will be inserted into the result list according to its distance 

from the query point and the kth nearest distance will be updated accordingly. The 
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“branches” in the ABL will be constantly checked against one another by comparing their 

two metrics MINDIST and MINMAXDIST, as well as comparing against the most 

updated kth nearest distance. All unnecessary branches will be pruned. Then, the 

algorithm will be applied to the next remaining branch in the ABL recursively until the 

ABL becomes empty. The proposed pruning strategies are: (1) All branches whose 

MINDIST is larger than the kth nearest distance will be pruned; and (2) a branch whose 

MINDIST is larger than the MINMAXDIST of another branch will be pruned [18]. 

Hjaltason proposed an algorithm based on BFNNS suitable for the k-nearest-

neighbor search and the value of k need not be known or fixed ahead of time because the 

search operates in an incremental fashion [19]. The algorithm can be applied to any 

hierarchical data structure representing the search space, such as a quadtree. In addition to 

the hierarchical data structure, the search employs a priority queue. The priority is 

determined based on the distance between the query point and a terminal node or the 

minimum distance between the query point and the space partition represented by a non-

terminal node. If the minimum distance of a non-terminal node is equal to the distance of 

a terminal node, the search requires the non-terminal node take higher priority over the 

terminal node in the priority queue [19].   

The search operates in a top-down fashion starting from the root as the only 

element of the priority queue, then recursively runs as follows. First, dequeue the first 

element of the priority queue. If the dequeued element is a terminal node, then append the 

data represented by the terminal node to the end of the result list, the furthest of nearest 

neighbors found so far. If the dequeued element is a non-terminal node, then insert all of 

its child nodes into the priority queue. The search stops when k nearest neighbors have 

been procured or when the priority queue becomes empty. 
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2.2 Continuous Nearest Neighbor Search 

 Compared to the ad-hoc nearest neighbor search methods, continuous nearest 

neighbor search methods can face some exclusive challenges, such as unknown velocity 

and trajectory of the moving query point, constrained moving path and even obstacles on 

the moving path. However, efficient spatial data indexing schemes, access methods, and 

search strategies continue to be the centerpieces of continuous nearest neighbor search 

methods. Thus, the continuous nearest neighbor search methods surveyed here focus on 

these centerpieces rather than those exclusive challenges. 

 In 2001, Song and Roussopoulos proposed a series of progressive methods to 

tackle the k-nearest-neighbor search for a moving query point [22]. The data points are 

assumed to be static, known beforehand and indexed by an R-tree-family structure. A 

static branch-and-bound R-tree-based depth-first k-nearest-neighbor-search algorithm is 

proposed to find the k nearest neighbors for a given location of the moving query point 

whenever necessary.  

The location of the moving query point is determined by periodic sampling [22]. 

Therefore, a continuous k-nearest-neighbor query is transformed into queries to retrieve 

the k nearest neighbors of certain sampling points. The sampling may not address the 

need of certain applications, which expect that the k nearest neighbors are updated 

automatically and whenever necessary because the locations demanding update of k 

nearest neighbors may not be known in advance. The sampled locations largely depend 

on how the query point is moving without considering the static data points [22]. If the 

path of the moving query point is not known beforehand, sampling cannot be performed 

[22]. In this case, the “sampling” becomes a prediction based on current location and 
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velocity [22]. Therefore, the computed k nearest neighbors may not be an exact solution 

but an approximate solution. However, given that there is always some latency in 

communication, an exact solution to k-nearest-neighbor search might not be that 

necessary and an approximate solution is adequate.  

The proposed progressive methods focus on maximizing the usage of the 

information obtained from the previous k-nearest-neighbor search and the distance 

between the current search position and the previous search position to at least eliminate 

unnecessary k-nearest-neighbor searches and to bound the search space [22]. One 

observation is that the kth shortest distance to current search location must be less than or 

equal to the sum of the kth shortest distance to the previous search location, and the 

distance between the current search location and the previous search location [22]. 

Another observation is that if n nearest neighbors, where n is larger than k, have already 

been computed, there is no need to perform another n nearest neighbor search if the 

distance between the current search location and the previous search location is less than 

or equal to the half of the difference between the nth and kth shortest distances to the 

previous search location [22]. Therefore, the proposed methods can provide a more 

bounded search space and reduce the frequency of needed k-nearest-neighbor searches. 

However, they perform better when the number of static data points is small, the query 

point moves slowly, and k is small [22]. 

 In a method proposed by Tao in 2002, a continuous nearest neighbor query is 

defined as a query to retrieve k nearest neighbors of every point along a path q [23]. The 

query result is presented by pairing the k nearest neighbors with the corresponding path 

segment [23]. A series of “split” points are calculated along the path q. The starting point 

and the ending point of the path q constitute the first split point and the last split point, 
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respectively. Every path segment between two consecutive split points corresponds to a 

unique set of k nearest neighbors to that path segment [23].  

In the proposed algorithm, given a known query path q and a continuous k-

nearest-neighbor query, a k-nearest-neighbor query result is returned for every split path 

segment [23]. In terms of implementation, an R-tree is employed to index search space. 

Either a depth-first or best-first traversal paradigm can be adopted to prune the R-tree 

following the branch-and-bound methodology [23].  

One limitation to the proposed algorithm is that the query path or trajectory must 

be known beforehand with the starting and ending points clearly defined. In addition, the 

path or trajectory seems to be composed of straight line segments only.  

Instead of checking every point along the path q, only the split points need to be 

checked when evaluating a data point [23]. Initially, there are only two split points, the 

starting point and the ending point of the path q. By the definition of nearest neighbor, a 

data point must have the shortest distance to at least one already identified split point in 

order to be considered as a potential nearest neighbor [23]. Once a potential nearest 

neighbor is found, a new split point will be determined on the path q and the already 

identified set of split points may need adjustment, by eliminating some already identified 

split points and/or adding some new split points [23]. 

 In 2005, Xiong proposed a general framework for processing a large number of 

simultaneous continuous k-nearest-neighbor (CKNN) queries [27]. The efficient 

concurrent processing is achieved by shared execution. All concurrent CKNN queries, 

along with their associated search regions, are grouped by similarity into a common query 

table [27]. Then, the problem of evaluating multiple CKNN queries is reduced to 

performing a spatial join between the query table and the object table [27]. Having a 
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shared execution reduces the number of scans needed over the object table, and therefore 

improves efficiency [27]. The output of the spatial join will be split and sent to the 

corresponding queries [27].  

Xiong also proposed a way to efficiently process a CKNN query by incremental 

evaluation based on prior query results [27]. Any ad-hoc k-nearest-neighbor search 

algorithm can be utilized to obtain the set of k nearest neighbors whenever necessary [27]. 

The proposed method for CKNN search has no restrictions on the movement of the query 

and/or the objects. Both the query and the objects can move and nothing regarding their 

movement, such as velocity or trajectory, must be known beforehand. The incremental 

evaluation entails that only queries whose answers are affected by the movement of the 

objects and/or the query are reevaluated [27].  

After an initial k-nearest-neighbor search, a CKNN query is associated with a 

circular search region, which is defined by the query as the center and the kth nearest 

distance to the query as the radius [27]. The incremental evaluation provides a minimum 

search region at next evaluation by taking the following three steps [27]:  

1. Check if any objects that are originally outside the prior search region move into 

the prior search region, or if any objects originally inside the prior search region 

move within the prior search region. If there are such objects, the current search 

region will be set to the prior search region. Otherwise, no reevaluation is needed 

and the radius of the current search region would be set to 0.  

2. Check if any objects originally inside the prior search region move out. If there 

are such objects, then the radius of the current search region will be set to the 

maximum distance between those objects and the prior query. Otherwise, the 

current search region inherits the result from Step 1.  
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3. If the query moves and if the radius of the current search region inherited from 

Step 2 is 0, then the radius of the current search region will be set to the sum of 

the radius of the prior search region and the distance the query travels. If the query 

moves and if the radius of the current search region inherited from Step 2 is not 0, 

then the radius of the current search region will be updated by adding the distance 

the query travels. 

 Also in 2005, Mouratidis proposed a way to tackle continuous k-nearest-neighbor 

queries by treating every query update as a new query with respect to the present location 

of the query and spatial objects [28]. The proposed method has no restrictions on the 

movement of the query and/or the spatial objects. Both the query and the spatial objects 

can move and nothing regarding their movement, such as velocity or trajectory, must be 

known beforehand.  

The core k-nearest-neighbor-search proposed, conceptual partitioning [28], is 

illustrated in Figure 2.1 and elaborated as follows. First, the search space is partitioned as 

a grid consisting of uniform cells to group objects. Using two-dimensional Euclidean 

space as an example, as shown in Figure 2.1, conceptually partition the search space. An 

important observation is that the minimum distances of rectangles to the query point 

differ by δ for consecutive rectangles in the same direction (e.g. U0 and U1, R1 and R2, 

D2 and D3, and L0 and L1) [28]. Similar to the best-first nearest neighbor search, initially, 

the cell containing the query point and its immediately adjacent rectangles in all 

directions are inserted into an empty priority queue, which is sorted by their minimum 

distance to the query point [28]. Then, keep dequeuing the first element of the priority 

queue, which has the shortest minimum distance to the query point. If the dequeued 

element is a cell, then examine all objects in the cell to identify candidates for k nearest 
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neighbors and update the kth nearest distance accordingly. If the dequeued element is a 

rectangle, then insert all cells covered by the rectangle and the rectangle immediately 

adjacent to it that is outward and in the same direction into the priority queue according to 

their minimum distances to the query point [28]. Repeat until the minimum distance of 

the dequeued element to the query point is larger than the kth nearest distance, or the 

priority queue becomes empty. The proposed method does not address how to identify the 

cell containing the query point initially.  

To address moving objects, the proposed method maintains cross reference tables 

for cells and queries [28]. What is kept include not only all prior search results, but also, 

for each query, all cells accessed in its prior search sorted by their minimum distance to 

the query point, and the remaining cells and rectangles in the priority queue at the end of 

its prior search [28]. Then, k-nearest-neighbor updates in response to moving objects can 

be evaluated with the aid of those additional information before a complete k-nearest-

neighbor search is re-computed. Lastly, moving objects can be handled in a 

comprehensive way rather than independently [28]. 
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Figure 2.1: Nearest Neighbor Search and Conceptual Partitioning [28] 

 

Only four continuous nearest neighbor search methods are surveyed here, ranging 

from an approximation sampling method to an exact exhaustive method, and from a 

conceptual partition best-first ad-hoc search to a comprehensive orchestrated batch search. 

They serve to enlighten and inspire readers to come up with better methods for nearest 

neighbor search, k-nearest-neighbor search, continuous k-nearest-neighbor search, and 

simultaneous multiple continuous k-nearest-neighbor queries.   

   

2.3 Trie 

 In computer science, the trie, also referred to as a prefix tree, is one kind of digital 

search tree [4]. The term “trie” was coined by Edward Fredkin and abbreviated from 

“retrieval” [2]. So, since day one, trie has been associated with information retrieval. 

 As its other common name “prefix tree” indicates, trie is a tree data structure and 

strongly associated with the prefix of strings. The root node of a trie is associated with an 

empty string and all immediate descendants of any one trie node have a common prefix 



20 
 

string which would be associated with that trie node. As illustrated in Figure 2.2, a trie 

can be an effective and efficient data structure for indexing strings. Strings are indexed in 

a hierarchical structure according to their common prefixes and in an ascending order of 

the length of their common prefixes. Every unique leaf (or terminal) node of a trie 

uniquely corresponds to a unique string; and every unique string is uniquely represented 

by a unique leaf node. Therefore, there is a one-to-one mapping between unique strings 

and terminal trie nodes. Compared to imperfect hash-based indexing methods, there is no 

“conflict” in trie indexing. 

 

 
Figure 2.2: A trie for keys "A", "to", "tea", "ted", "ten", "i", "in", and "inn" [26] 

 

Searching a string within a trie is by traversing trie nodes starting from the root 

node. The trie node to be traversed next is determined by a match of the prefix of the 
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query string with the string associated with the trie node. The search would terminate at 

the trie node whose associated string is the longest common prefix among the query string 

and all strings indexed by the trie. Therefore, the time complexity of the search operation 

is bound by O(k) where k is the maximum length of all strings indexed by the trie. So are 

the insertion and deletion operations because before inserting or deleting a string, a search 

of the string within the trie must be completed first. Only if the string is found within the 

trie, a deletion can be completed. Also, only if the string cannot be found within the trie, 

an insertion can be completed. Furthermore, the search provides where exactly to insert or 

delete the string. 

A compact trie is a space-optimized trie, which is organized by requiring all non-

terminal trie nodes to have more than one descendant [3]. The time complexity of search 

operation within a compact trie is also bound by O(k), but is likely, on average, less than 

its equivalent full trie because the compact trie would likely have fewer non-terminal 

nodes than its equivalent full trie and searching within fewer non-terminal nodes would 

on average take less time. Although insertion and deletion operations within a compact 

trie can involve adding, splitting, and merging branches, as well as other additional 

operations, besides search operation, the time complexity of insertion and deletion 

operations within a compact trie remains to be bound by O(k). And insertion and deletion 

operations are not always needed as in a read-only static trie. 

The most naïve implementation of a trie is as illustrated in Figure 2.3. Each trie 

node is an array of pointers. The number of pointers in the array is the number of possible 

characters in the strings indexed by the trie. The pointer would point to a descendant trie 

node. If all pointers in the array are null pointers, the trie node is a terminal leaf node. As 

illustrated in Figure 2.3, even in non-terminal trie nodes, most pointers are null pointers. 
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Therefore, not only the space complexity of this naïve implementation is proportional to 

the product of the number of trie nodes and the number of possible characters, but also 

the space wasted by null pointers could be extravagant, which is especially true when the 

trie is sparse. 

 

 
Figure 2.3: An array-structured trie for bachelor, baby, badge, jar [14] 

  

The arrays of pointers can be replaced by linked lists as illustrated by Figure 2.4. 

In this implementation, every non-null pointer in the naïve implementation is represented 

by a structure containing three elements: “arc label,” “next node,” and “other label.” “arc 
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label” signifies which character a non-null pointer stands for. “next node” points to the 

first non-null pointer of the immediate descendant trie node, if any, or would be null (nil) 

if there is no descendant trie node. “other label” points to the next non-null pointer in the 

same trie node, if any, or would be null (nil) if there is no more non-null pointer in the 

same trie node. A terminal trie node would have both “next node” and “other label” as 

null (nil). The space complexity of this linked-list implementation could be much less 

than its equivalent naïve implementation because this linked-list implementation wastes 

no space on null pointers as its equivalent naïve implementation. However, due to the 

linear search in a trie node for a particular non-null pointer, which, in the worse scenario, 

could have to access all non-null pointers in the trie node, the time complexity of search 

operation in this linked-list implementation of trie cannot be bound by O(k). Thus, the 

improvement on the space complexity of this linked-list implementation is at the expense 

of the time complexity.   
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Figure 2.4: A list-structured trie for bachelor, baby, badge, jar [14] 

 

Naturally, it would be ideal if an implementation of trie could preserve the time 

complexity of the naïve implementation and the space complexity of the linked-list 

implementation. In 1989, Jun-Ichi Aoe proposed the double-array implementation of trie 

which can guarantee the time complexity of search operation to be bound by O(k) and 

reduce the space complexity from the product of the number of possible characters and 

the number of trie nodes to their sum [12]. As its name indicates, in double-array 

implementation, a trie is represented by two arrays, namely BASE and CHECK. 

Constructing a double-array trie and performing basic operations within the double-array 
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trie, such as search, insertion, and deletion, must all conform the following rule: 

traversing from a parent trie node S to its immediate child trie node T because of 

character C must satisfy T = BASE[S] + CODE[C] and CHECK[T] = S. CODE[C] 

represents a unique numerical code for character C. All trie nodes are mapped to the 

indexes of BASE and CHECK. Special algorithms are developed to construct a double-

array trie and perform basic operations within the double-array trie according to the rule. 

Various improvements to this double-array implementation of trie have been developed to 

make the implementation more compact [31], space-efficient [17] and cache-conscious 

[29]. 

 

2.4 Conclusions 

 Inspired by the trie, its guaranteed search, insertion, and deletion performance in 

constant time regardless the size of the data indexed by trie, its zero conflict in indexing 

data, its compact, space-efficient, cache-conscious, array implementation, I developed a 

method based on array-implemented trie to facilitate space partition and nearest neighbor 

search suitable for low dimensions and location-dependent spatial queries in mobile 

computing.  
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Chapter 3                                                                                                                         

Compact-Trie-Based K-Nearest-Neighbor Search Method 

 

3.1 Introduction 

In this chapter, a compact-trie-based k-nearest-neighbor search method is 

proposed. The method can be divided into three steps: (1) data preparation, (2) trie 

construction, and (3) query search. Inspired by the (Longitude, Latitude) pair of Global 

Position System (GPS) data format, such as (47.644548, -122.326897), I designed a set of 

15 two-dimensional spatial points whose coordinates are positive pure decimal numbers, 

as listed in Table 3.1, to illustrate the proposed method in detail. The number of digits 

after the decimal point is 6 in the present illustration and can be larger if higher spatial 

resolution is needed for the application. 

Table 3.1: The Set of 15 Purposefully Designed Two-Dimensional Spatial Points 

Data Input 

ID 

Longitude 

(X) 

Latitude 

(Y) 

1 0.001251 0.563585 

2 0.193304 0.808741 

3 0.585009 0.479873 

4 0.350291 0.895962 

5 0.822840 0.746605 

6 0.174108 0.858943 

7 0.710501 0.513535 

8 0.303995 0.014985 

9 0.091403 0.364452 

10 0.147313 0.165899 

11 0.147313 0.165890 

12 0.091403 0.374452 

13 0.091403 0.374552 

14 0.710501 0.514535 

15 0.091403 0.365452 
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As shown in Table 3.1, each two-dimensional spatial point is given a unique ID 

which is an integer ranging from 1 to 15 (in the first or the leftmost column). And each 

two-dimensional spatial point is composed of Longitude (X) (in the second or the middle 

column) and Latitude (Y) (in the third or the rightmost column) coordinates. The 

coordinates are positive pure decimal numbers with 6 digits after the decimal point for 

simplicity and uniformity. These positive pure decimal numbers were purposefully 

designed to make the compact trie constructed based on them more generic or 

representative. 

 

3.2  Step 1 Data Preparation 

 All spatial points are assumed unique. Therefore, a set of spatial points should be 

preprocessed firstly to remove duplicate point(s), if any.  

Secondly, all coordinate numbers shall be normalized to positive pure decimal 

numbers between 0 and 1. The normalization can be achieved by first determining the 

maximum number of digits before the decimal point among all coordinate numbers, and 

then dividing all coordinate numbers uniformly by ten to the power of this maximum 

number. If the only digit before the decimal point is 0, then the maximum number of 

digits before the decimal point is deemed to be 0, rather than 1; if the only digit before the 

decimal point is not 0, then the maximum number of digits before the decimal point is 

deemed to be 1. For example, a series of four positive decimal numbers (2.3, 1, 0.835, 12) 

can be normalized to (0.023, 0.01, 0.00835, 0.12) by dividing all four numbers by ten to 

the power of 2 or 100 because the maximum number of digits before the decimal point 

among all four numbers is 2. 
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Thirdly, determine the maximum number of digits after the decimal point among 

all normalized positive pure decimal numbers, and then make all normalized positive pure 

decimal numbers to have the same maximum number of digits after the decimal point by 

appending trailing zero(s) if necessary. For example, a series of four positive decimal 

numbers (2.3, 1, 0.835, 12) can be eventually transformed to (0.02300, 0.01000, 0.00835, 

0.12000), all of which have 5 digits after the decimal point. The goal of such 

transformation so far is to make all positive decimal numbers to become positive pure 

decimal numbers of equal length before further processing. The spatial distance 

relationship among every pair of points should be preserved after such transformation 

because all coordinate numbers are uniformly scaled down. 

Fourthly, the core of Step 1 Data Preparation is to, for each spatial point, assemble 

a string composed of digits only, based on its preprocessed positive pure decimal number 

coordinates, by interleaving the digits after the decimal point of all coordinates in an 

orderly fashion. The complete numeric information of the multi-dimensional coordinates 

of the spatial point will be preserved. Take spatial point 1 (0.001251, 0.563585) from 

Table 3.1 for example to illustrate the assembling process. The first digits after the 

decimal point of the two coordinates are 0 and 5. Interleave them to form a string “05”. 

Next, the second digits after the decimal point of the two coordinates are 0 and 6. 

Interleave them in the same order to form a string “06”. Append the string “06” to the 

string “05” to form a string “0506”. Repeat the same interleaving and appending 

procedures for the third, fourth, fifth, and last digits after the decimal point of the two 

coordinates, ultimately resulting in the final string “050613255815” for spatial point 1 

(0.001251, 0.563585). Data processing or preparation so far would result in the same 
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number of strings as the number of unique spatial points. All strings are equal in length. 

Each string corresponds to one unique multi-dimensional spatial point. 

Lastly, the equal-length strings are output in an ascending order according to their 

numeric values, had they been converted to integers, along with their corresponding 

spatial points. Such an ordered output naturally groups together strings sharing the 

longest common prefix, as illustrated in Table 3.2 “Data Output” column. For example, 

“039614440532” and “039615440532” are grouped together because they share the 

common prefix “03961”; “039714440532” and “039714450532” are grouped together 

because they share the common prefix “0397144”; “039614440532”, “039615440532”, 

“039714440532” and “039714450532” are grouped together because they share the 

common prefix “039”; “114675381930” and “114675381939” are grouped together 

because they share the common prefix “11467538193”; “187548190483” and 

“189038370441” are grouped together because they share the common prefix “18”; and 

“751103550315” and “751104550315” are grouped together because they share the 

common prefix “75110”. They also illustrate my intention to make the compact trie 

constructed based on these data more generic and representative. The purpose of such an 

ordered output is to facilitate the compact trie construction in Step 2. It is worth 

mentioning that sorting strings in some way is frequently employed in the initial 

construction of a trie out of a large number of strings.  

Table 3.2 below presents the final “Data Output” of strings after Step 1 Data 

Preparation based on the “Data Input” of spatial points. These strings will be the input for 

Step 2 Trie Construction. 
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Table 3.2: The Data Output Text Strings of the 15 Points 

Data Input 

Data Output ID 

Longitude 

(X) 

Latitude 

(Y) 

9 0.091403 0.364452 039614440532 

15 0.091403 0.365452 039615440532 

12 0.091403 0.374452 039714440532 

13 0.091403 0.374552 039714450532 

1 0.001251 0.563585 050613255815 

11 0.147313 0.165890 114675381930 

10 0.147313 0.165899 114675381939 

6 0.174108 0.858943 187548190483 

2 0.193304 0.808741 189038370441 

8 0.303995 0.014985 300134999855 

4 0.350291 0.895962 385905299612 

3 0.585009 0.479873 548759080793 

7 0.710501 0.513535 751103550315 

14 0.710501 0.514535 751104550315 

5 0.822840 0.746605 872426864005 

 

 In terms of implementation, standard built-in string operators and functions can be 

used to assemble the output strings. To guarantee performance, standard built-in sorting 

functions can be employed to output the strings orderly. 

 

3.3  Step 2 Trie Construction 

 In this proposed compact-trie-based k-nearest-neighbor search method, the 

compact trie is constructed from multi-dimensional spatial points (or data) via their 

corresponding strings, for the purpose of indexing and accessing the spatial points (or 

data) effectively and efficiently. The compact trie that is constructed from the strings in 

Table 3.2 Column “Data Output” above is shown in Figure 3.1 below. 
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Figure 3.1: The Compact Trie Constructed from the 15 Points 
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As shown in Figure 3.1, the compact trie constructed from the set of 15 

purposefully designed two-dimensional spatial points is composed of a total of 22 nodes, 

each of which is represented by a rectangular box. There is always one and only one 

depth-0 node, the root node, which is associated with an empty string according to the 

definition of the trie. In this proposed method, every other node of the compact trie is 

associated with one unique string. The unique string associated with any non-terminal 

node (except for the root node) is the longest common prefix of all strings associated with 

its immediate child nodes and the length of this longest common prefix must be an 

integral multiple of the dimensionality of the spatial points. (The rationale behind such a 

length will be elaborated upon later.) Every terminal node is associated with one unique 

string corresponding to one unique spatial point. Therefore, there are 15 terminal nodes in 

total. Every rectangular box, except for the one representing the root node, contains the 

unique string associated with the node represented by the rectangular box, as well as one 

unique “row #” indicating which row of a two-dimensional array, as shown in Table 3.3, 

stores the information of that node. The detail of this two-dimensional array will be 

elaborated upon shortly. The rectangular box representing a terminal node also contains 

the unique “ID” associated with the spatial point uniquely corresponding to that terminal 

node. 

With respect to the arrows in Figure 3.1, an arrow in the compact trie points from 

a parent node to its immediate child node. The directional arrow is not intended to suggest 

that the traverse between a parent node and its immediate child node is only in one 

direction. The directional arrow is used to indicate the parental-child relationship between 

the two nodes. The traverse between a parent node and its immediate child node is bi-

directional. In other words, a tree traversing program would be able to traverse either 
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from a parent node to its immediate child node or from a child node to its immediate 

parent node. A node can be accessed both from its immediate parent node and from its 

immediate child node, if they do exist.  

If there is no arrow between two nodes, accessing one node from the other node 

must be via existing arrows or paths. For example, accessing node Row #0 from node 

Row #9 can be achieved directly from node Row #9, and vice versa, because there is an 

arrow or a path between node Row #0 and node Row #9. However, because there is no 

arrow or path between node Row #0 and node Row #11, accessing node Row #0 from 

node Row #11 must be via at least the path between node Row #11 and node Row #2, 

then the path between node Row #2 and the root node, and last the path between the root 

node and node Row #0, and vice versa. 

In terms of implementation, such a bi-directional traverse can be achieved by 

requiring the information of any node to include pointers to its immediate parent node and 

all of its immediate child nodes. Any node, except for the root node, must have one and 

only one immediate parent node. Any non-terminal node of the compact trie must have 

more than one immediate child node according to the definition of the compact trie. All 

terminal nodes do not have any child nodes and the root node does not have a parent node. 
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Table 3.3: The Two-Dimensional Array Representation of the Compact Trie for the 15 

Points 

A B C D E F G H I J 

0 4 1 9 -1 -1 03 2 0.0 0.3 

1 1 1 -1 -1 1 050613255815 12 0.001251 0.563585 

2 2 1 11 -1 -1 1146753819 10 0.14731 0.16589 

3 2 1 13 -1 -1 18 2 0.1 0.8 

4 1 1 -1 -1 8 300134999855 12 0.303995 0.014985 

5 1 1 -1 -1 4 385905299612 12 0.350291 0.895962 

6 1 1 -1 -1 3 548759080793 12 0.585009 0.479873 

7 2 1 15 -1 -1 7511 4 0.71 0.51 

8 1 1 -1 -1 5 872426864005 12 0.822840 0.746605 

9 2 2 17 0 -1 0396 4 0.09 0.36 

10 2 2 19 0 -1 039714 6 0.091 0.374 

11 1 2 -1 2 11 114675381930 12 0.147313 0.165890 

12 1 2 -1 2 10 114675381939 12 0.147313 0.165899 

13 1 2 -1 3 6 187548190483 12 0.174108 0.858943 

14 1 2 -1 3 2 189038370441 12 0.193304 0.808741 

15 1 2 -1 7 7 751103550315 12 0.710501 0.513535 

16 1 2 -1 7 14 751104550315 12 0.710501 0.514535 

17 1 3 -1 9 9 039614440532 12 0.091403 0.364452 

18 1 3 -1 9 15 039615440532 12 0.091403 0.365452 

19 1 3 -1 10 12 039714440532 12 0.091403 0.374452 

20 1 3 -1 10 13 039714450532 12 0.091403 0.374552 

 

 

Table 3.4: The Brief Summary for Each Column of Table 3.3 

A Row ID or Row #, starting from 0 

B The number of terminal nodes among itself and its child nodes 

C The depth or level of a node 

D 

The Row # of the first row of consecutive rows occupied by the node's 

immediate child nodes, if any 

E 

The Row # of the node's immediate parent node, or -1 if the node's immediate 

parent node is the root node 

F 

The ID of the spatial point associated with the node if it is a terminal node, or 

-1 if it is not 

G The unique string associated with the node 

H The length of the unique string associated with the node 

I The restored X Cartesian coordinate 

J The restored Y Cartesian coordinate 
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 The compact trie in Figure 3.1 can be represented by a simple two-dimension 

array as shown in Table 3.3. Each column of Table 3.3 (A - J) represents a different 

attribute of the compact trie node. A brief summary for each column is provided for in 

Table 3.4.  

This array representation of the compact trie is inspired by the double-array trie 

implementation which implements a trie by two parallel arrays [12]. However, the 

double-array trie implementation was not adopted because not all trie operations, such as 

the insertion and deletion of nodes, are needed in this proposed method.  

It is worth mentioning that not every column in Table 3.3 is essential to the k-

nearest-neighbor search. Exactly which column or what attribute is essential to the k-

nearest-neighbor search depends on the k-nearest-neighbor search algorithm and its 

implementation. For example, for this proposed method, only columns D, E, I and J are 

necessary. All the other columns in Table 3.3 are presented for the purpose of better 

illustrating the method. The content and especially the order of rows in Table 3.3 dictate 

the compact trie construction program which takes Table 3.2 as input and outputs Table 

3.3.    

In Table 3.3, each row of the two-dimensional array represents one unique 

compact trie node in Figure 3.1, except for the root node. That is why there are only 21 

rows in total, rather than 22, the number of nodes in Figure 3.1. For example, the first row 

represents node Row #0.  

Column A is the row ID or Row #. The first row ID or Row # is 0 due to the 

convention of programming.  

Column B is set to 1 if the node is a terminal node. If the node is not a terminal 

node, Column B is set to the number of its terminal child nodes, which might not be its 
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immediate child nodes. For example, the first row Column B is 4 because node Row #0 

has 4 terminal child nodes: node Row #17, node Row #18, node Row #19, and node Row 

#20, as seen in Figure 3.1.  

Column C is the depth or level of a node and the root node is the only node of 

depth 0. For example, the first row Column C is 1 or depth 1, as seen in Figure 3.1.  

Column D is set to -1 if the node is a terminal node. If the node is not a terminal 

node, Column D is set to the Row # of the first row of consecutive rows occupied by its 

immediate child nodes. For example, the first row Column D is 9 because node Row #0 

has two immediate child nodes, node Row #9 and node Row #10, which occupy the 

consecutive rows Row #9 and Row #10, and the first row of those consecutive rows is 

Row #9.  

Column E is the Row # of the node’s immediate parent node, or set to -1 if the 

node’s immediate parent node is the root node. For example, the first row Column E is -1 

because node Row #0’s immediate parent node is the root node, as seen in Figure 3.1.  

Column F is set to -1 if the node is not a terminal node. If the node is a terminal 

node, Column F is set to the unique ID of the spatial point associated with the terminal 

node. For example, the first row Column F is -1 because node Row #0 is not a terminal 

node.  

Column G is the unique string associated with the node. For example, the first row 

Column G is “03” because the unique string associated with node Row #0 is “03”.  

Column H is the length of the unique string associate with the node. For example, 

the first row Column H is 2 because the length of the unique string “03” associated with 

node Row #0 is 2.  
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Column I and Column J are the X and Y Cartesian coordinates restored from the 

unique string associated with the node by reversing the assembling process in Step 1 Data 

Preparation. For example, node Row #20 is a terminal node, the unique string associated 

with it is “039714450532”, the ID of the spatial point associated with it is 13, and the X 

and Y Cartesian coordinates of spatial point 13 are 0.091403 and 0.374552, which are 

restored in Row #20 Column I and Column J, respectively. The first row Column I and 

Column J are 0.0 and 0.3, respectively, which are restored from the unique string “03” 

associated with node Row #0 by reversing the assembling process. 

Last, I would like to connect all dots and elaborate on the rationale behind this 

proposed compact-trie-based k-nearest-neighbor search method. The method is inspired 

by the intrinsic relationship between grid partitioning and the Cartesian coordinates 

composed of positive pure decimal numbers.  

Partitioning an n-dimensional space by orthogonal lines into n-dimensional grids 

is an intuitive space partitioning method. Take a simple square-shaped two-dimensional 

space for example to illustrate grid partitioning. Applying the Cartesian coordinate system, 

the original space before any grid partitioning can be defined by the Cartesian coordinates 

of its four corners counterclockwise: the lower-left corner (0, 0), the lower-right corner (1, 

0), the upper-right corner (1, 1), and the upper-left corner (0, 1). Further, the original 

space can be denoted or labeled by the Cartesian coordinates of its lower-left corner (0, 0). 

Then partition the original space into 10 by 10, 100 square-shaped, non-overlapping 

regions evenly by orthogonal lines. Each region can be denoted or labeled by the 

Cartesian coordinates of its lower-left corner, such as (0.0, 0.0), (0.0, 0.1), (0.0, 0.2) … 

(0.9, 0.9). Any one region, such as the one labeled as (0.2, 0.3), can be partitioned further 

into 10 by 10, 100 square-shaped, non-overlapping sub-regions evenly by orthogonal 
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lines. Each sub-region can be denoted or labeled by the Cartesian coordinates of its 

lower-left corner, such as (0.20, 0.30), (0.20, 0.31), (0.20, 0.32) … (0.29, 0.39). Such 

recursive partitioning of a space can be performed infinitely. The resulting space region 

can be infinitely small so as to be deemed as a spatial point. Alternatively, any spatial 

point can be deemed as a certain space region. For example, the spatial point (0.20, 0.31) 

can be deemed as the space region labeled as (0.20, 0.31). So the Cartesian coordinates of 

a spatial point composed of positive pure decimal numbers can be deemed as the label of 

a certain space region resulted from such a grid partitioning. 

 The labels of space regions at the same partitioning level and different partitioning 

levels can be organized into a hierarchical structure by making some modifications to the 

labels as follows. Continuing with the grid partitioning example, the labels of the space 

regions at the first level of partitioning: (0.0, 0.0), (0.0, 0.1), (0.0, 0.2), …, (0.9, 0.9) can 

be modified by removing the leading “0.” and then combining the remaining digits of all 

coordinates to become 00, 01, 02, …, 99. Similarly, the labels of the space regions at the 

second level of partitioning: (0.20, 0.30), (0.20, 0.31), (0.20, 0.32), …, (0.29, 0.39) can be 

modified to become 2300, 2301, 2302 … 2399 (interleaving the remaining digits of all 

coordinates in an orderly fashion rather than simply combining them together). The 

common prefix “23” is the label of the first level space region encompassing the 100 

second level space sub-regions which can be uniquely denoted by the rest suffixes “00”, 

“01”, “02”, …, “99”, respectively. Similar modifications can be applied to any space 

region at any level of partitioning.  

Here are some benefit resulted from such modifications. The new labels are more 

succinct. New labels different in length suggest their corresponding space regions are at 

different levels of partitioning. The longer a new label is, the higher the partitioning level 
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of the corresponding space region is and the smaller the corresponding space region is. 

New labels equal in length suggest their corresponding space regions are at the same level 

of partitioning. New labels sharing a common prefix are within the same space region of 

which the new label is the common prefix. Last, such modifications explain how and why 

the Cartesian coordinates of spatial points composed of positive pure decimal numbers 

are assembled into the strings in Step 1 Data Preparation. 

 The grid partitioning described earlier would not result any partially overlapped 

space regions. Space regions at the same level of partitioning are non-overlapping. A 

space region at a lower level of partitioning would either encompass a space region at a 

higher level of partitioning or not. A tree-type data structure is naturally fit for organizing 

the space regions resulted from such a grid partitioning. The root node can represent the 

entire space. Every other node can represent a certain space region. The level of a node 

can indicate the partitioning level of the space region represented by the node. There is no 

direct connection between any pair of nodes at the same level. The direct connection 

between an upper level node and a lower level node can indicate the space region 

represented by the upper level node encompasses the space region represented by the 

lower level node. 

 The compact trie is adopted to store, index, and search spatial points. The spatial 

points can be deemed as space regions resulted from the grid partitioning described 

earlier. Every node of the compact trie represents a certain space region and is associated 

with the new label of the space region. The new label associated with any non-terminal 

node, except for the root node, must be the longest possible common prefix of the new 

labels associated with its immediate child nodes, and the length of the common prefix 

must be an integral multiple of the dimensionality of the spatial points. The space region 
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denoted by such a new label is actually the smallest possible space region resulted from 

the same grid partitioning that encompasses all space regions represented by the child 

nodes of the non-terminal node. So, constructing a compact trie from spatial points 

naturally groups certain spatial points and/or certain space regions together, and naturally 

partitions the space, which is appealing to a search for a certain spatial point or space 

region. It is worth mentioning that the level of a compact trie node does not indicate the 

partitioning level of the space region represented by the node. 

 Last, referring back to the grid partitioning example, it is worth noting that the 

length of the new label of any space region at the first partitioning level is 2, or the 

dimensionality 2 multiplied by the level of partitioning 1. The length of the new label of 

any space region at the second partitioning level is 4, or the dimensionality 2 multiplied 

by the level of partitioning 2. To generalize, the length of the new label of any space 

region at the nth partitioning level is the dimensionality multiplied by the level of 

partitioning n. That is why the length of the unique string associated with any compact 

trie node, except for the root node, must be an integral multiple of the dimensionality. So, 

the length of the longest possible common prefix referred in the previous paragraph must 

also be an integral multiple of the dimensionality, rather than the length of the longest 

common prefix. Thus, the compact trie constructed in this proposed method is not 

literally following the compact trie definition because the string associated with a non-

terminal node (except for the root node) in the compact trie is not the longest common 

prefix of all strings associated with its immediate child nodes.  
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3.4  Step 3 Query Search  

 The Best-First-Nearest-Neighbor-Search (BFNNS) scheme [24] was adopted for 

the proposed compact-trie-based k-nearest-neighbor search method. The core of the 

BFNNS algorithm is to build and maintain a priority queue. Applicable to all nodes, the 

shorter the minimum distance of a node to the query point is, the higher the priority of the 

node in the priority queue is. 

A terminal node represents one unique spatial point. Therefore, the minimum 

distance of a terminal node to the query point is certain and fixed. A non-terminal node 

represents one space region, as explained earlier. Therefore, the minimum distance of a 

non-terminal node to the query point is the shortest distance from the boundary of the 

space region to the query point. This minimum distance is also the minimum distance 

possible between any point within the space region and the query point. There is no need 

to differentiate their priority in the priority queue when a terminal node and a non-

terminal node have the same minimum distance to the query point; either one can be 

processed first because both would have to be processed anyway in order to find all kth 

nearest neighbors.  

 After the priority queue is initialized with the root node, the k-nearest-neighbor 

search starts by always removing the first item of the priority queue until either all kth 

nearest neighbors have been found or the priority queue is depleted completely. If the 

item removed from the priority queue is a non-terminal node, all of its immediate child 

nodes are inserted into the priority queue first before any item is removed from the 

priority queue. The insertion will follow the same principles described above. If an item 

removed from the priority queue is a terminal node, the next nearest neighbor is found as 

the unique spatial point represented by the terminal node.  
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 One advantage of the BFNNS scheme is that the next best or the next nearest 

neighbor will always be the next terminal node or the next spatial point identified from 

the priority queue. So, if a k-nearest-neighbor search needs to identify more nearest 

neighbors, the search can resume from where it stops last time rather than start over again, 

which might be significant in continuous k-nearest-neighbor search. In contrast, the 

Depth-First-Nearest-Neighbor-Search (DFNNS) scheme [24] is largely based on branch-

and-bound and keeps pruning the branch determined to be outside the most updated 

bound. Any additional nearest neighbor would likely demand the DFNNS to start over 

again because the branch containing the next nearest neighbor may have been pruned and 

cannot be recovered. 

 Last, it is worth mentioning that distance square is used for distance comparison 

because the true distance calculation would require the calculation of square root, which 

is costly in terms of CPU time, but is unnecessary and of zero significance in terms of 

distance comparison. The coordinates associated with a node is used to calculate its 

Euclidean distance to a given query point rather than the string associated with the node, 

which is used to construct the compact trie only.  

 

3.5 Summary 

 Spatial points can be deemed as space regions resulted from grid partitioning. 

Then the Cartesian coordinates of the spatial points composed of positive decimal 

numbers can be converted into labels of the corresponding space regions, respectively. A 

slightly modified compact trie constructed from the labels not only stores and indexes 

those labels but also naturally partitions the space. A Best-First-Nearest-Neighbor-Search 
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based k-nearest-neighbor search method is devised to exploit the space partition and 

index resulted from the compact trie.  
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Chapter 4                                                                                                             

Evaluations 

 

 In Chapter 3, a set of two-dimensional spatial points is used to elaborate on the 

design and implementation of the compact-trie-based k-nearest-neighbor search method. 

Theoretically, the method can apply to higher dimensions. However, considering that 

most location-dependent spatial queries in mobile computing involve only two-

dimensional spatial data, such as the (Longitude, Latitude) pair of GPS data, the k-

nearest-neighbor search performance test was limited to two-dimensional spatial points. 

But the number of spatial points was increased to a million (1,000,000). 

 In order to evaluate how well the compact-trie-based method performs k-nearest-

neighbor search, two classic methods were chosen as the benchmarks for comparison. 

One is the brute-force method because it provides the absolute base line performance and 

any other method arguably must surpass it, especially in low-dimensional applications. 

The other is the k-dimensional (k-d) tree based method because it is so classic that every 

new method is developed with the goal to surpass it, especially with respect to point data. 

 

4.1 Implementation of Benchmark K-Nearest-Neighbor Search Methods 

 I implemented both the brute-force based and the k-d tree based k-nearest-

neighbor search methods, rather than adopted some well-recognized and well-established 

standard libraries, so that the evaluations can be carried out using the programs I can 

control inside out, especially with respect to input and timekeeping. 

The brute-force search method is while calculating the distance to the query point 

for every spatial point, identify the minimum distance (or the kth minimum distance) and 
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record the corresponding spatial point(s). Distance square is used for distance comparison 

for the same reason as explained in Chapter 3. And the nearest neighbor search will not 

stop until all spatial points with the same minimum distance to the query point are found. 

So if there is more than one spatial point having the same minimum distance to the query 

point, the nearest neighbor search will not stop when the first such a spatial point is found, 

but will continue until all such spatial points are found. The same principle applies to the 

k-nearest-neighbor search and all three methods.  

 The implementation of the k-d tree based method is much more complicated than 

that of the brute-force based method because the former requires the construction of the 

k-d tree before the k-nearest-neighbor search can perform, while the latter does not need 

any search structure. Referring back to Section 2.1, the k-d tree is constructed by 

recursively bisecting the search space with a hyperplane. The choice of hyperplanes and 

bisecting strategy can affect the resulting k-d tree, as well as its performance in a certain 

application, including the k-nearest-neighbor search application. Ultimately, I 

implemented the k-d tree following the sliding-midpoint rule as presented by 

Maneewongvatana: 

 

“Sliding-midpoint: First a midpoint split is attempted, by considering a 

hyperplane passing through the center of the cell and bisecting the cell’s 

longest side. If the data points lie on both sides of the splitting plane then 

the splitting plane remains here. However, if all the data points lie to one 

side of the splitting plane, then splitting plane “slides” towards the data 

points until it encounters the first such point. One child is a leaf cell 

containing this single point, and the algorithm recurses on the remaining 

points.” [21] 

 

Compared with two classic bisecting strategies, the median-split rule and the midpoint-

split rule, the k-d tree constructed based on the sliding-midpoint rule has been proven to 
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provide relatively more efficient nearest neighbor search both in theory and in practice 

[21].  

The resulting k-d tree is a binary tree. If the k-d tree is constructed from n unique 

spatial points and each terminal node of the k-d tree represents only one unique spatial 

point, then the k-d tree would have (n X 2 – 1) nodes in total. Among the (n X 2 – 1) 

nodes, there is one and only one root node, n terminal nodes, and (n – 1) non-terminal 

nodes, including the root node. Each non-terminal node represents certain search space 

region and carries the information about how the search space region is further bisected 

by a hyperplane into two sub-regions, which are represented by its two immediate child 

nodes, respectively.  

It is worth mentioning that the compact trie is not a binary tree. Any non-terminal 

node of the compact trie has more than one child nodes and could have more than two 

child nodes. Therefore, theoretically, under the same condition, if the compact trie is 

constructed from n unique spatial points and each terminal node of the compact trie 

represents only one unique spatial point, then the lower and upper bounds of the number 

of its nodes in total are (n + 1) and (n X 2 - 1), respectively. The lower bound would 

achieve when all terminal nodes of the compact trie are immediate child nodes of the root. 

The upper bound would achieve when the compact trie is a binary tree. Thus, constructing 

from the same set of spatial points, the number of nodes in total for the k-d tree will 

always be the upper bound of the number of nodes in total for the compact trie. For 

example, constructing from the same test set of one million randomly generated two-

dimensional spatial points, the compact trie has 1,277,610 nodes in total, while the k-d 

tree has 2,000,000 nodes in total. If the number of nodes in total corresponds to the 
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storage space for tree structures, the compact trie seems more space efficient than the k-d 

tree constructed from the same set of data. 

The Depth-First-Nearest-Neighbor-Search (DFNNS) scheme [24] is adopted in 

implementing the k-d tree based k-nearest-neighbor search method. The search always 

starts from the root node of the k-d tree and keeps traversing downwards first. When 

encountering a non-terminal node, the search will choose one of its two immediate child 

nodes depending on which child node represents the search space region encompassing 

the query point. The initial downward traverse will not stop until the search reaches the 

first terminal node. The unique point represented by this terminal node will be the first 

candidate for the nearest neighbor of the query point and its distance to the query point 

will be used to bound the search afterwards by pruning unnecessary “branches.” Then the 

search will traverse upwards and downwards. Whenever the search reaches a new 

terminal node, if the distance between the unique point represented by the new terminal 

node and the query point is smaller than the current bound, then this point will be the new 

candidate for the nearest neighbor of the query point and this distance will be the new 

bound. The search will stop till no more nodes or branches need to be visited and the 

search is back to the root node. The final candidate point at the end of the search is the 

nearest neighbor of the query point.   

At each initial visit of a non-terminal node, the minimum distance from the query 

point to the hyperplane splitting the search space region represented by the non-terminal 

node is calculated and recorded. Then at the initial visit and revisit of this non-terminal 

node, if this minimum distance is larger than the most updated bound, there is no need to 

visit its immediate child node representing the search space region not encompassing the 
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query point, because no point in that region would have a distance to the query point 

shorter than this minimum distance and therefore shorter than the bound. 

 

4.2 K-Nearest-Neighbor Search Performance Comparison  

 After making sure the three programs can produce the same result given the same 

input, the k-nearest-neighbor search performance comparison was carried out using a 

personal laptop (Lenovo ThinkPad T420, Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz 

2.50 GHz, 8.00 GB (7.89 GB useable) RAM, 64-bit Windows 7 Professional Service 

Pack 1 Operating system). The test is that for a given two-dimensional query point, search 

for its k nearest neighbors in a fixed set of one million randomly generated two-

dimensional points. For a given k value ranging from 1 to 1000, each program run the test 

one thousand times, each time with a different query point randomly generated. But all 

three programs run the one thousand tests with the same set of one thousand randomly 

generated query points in the same order, which was achieved by using the same seed for 

the random number generator. The average running time (in microseconds) of the 

program to complete one test for a given k value is used to measure the k-nearest-

neighbor search performance of the program, as shown below in Table 4.1. 
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Table 4.1: K-Nearest-Neighbor Search Performance Comparison 

The K used in the 

K-Nearest-Neighbor 

Search 

Average Search Time (Microseconds) 

Brute-Force 

K-Dimensional 

Tree Trie-Based 

1 9376.35 12933.4 40.892 

2 9254.21 12940.3 42.993 

3 9509.63 13074.1 43.366 

4 9604.11 13029.6 45.855 

5 9629.72 13030.6 45.265 

6 9674.87 13081.4 48.818 

7 9708.6 13259 50.515 

8 9797.95 13263.8 47.958 

9 9780.33 13254.7 49.925 

10 9856.04 13276.9 53.894 

20 10191.1 13480.7 58.141 

30 10561.6 13626.9 65.319 

40 10679 13621 72.306 

50 11250.6 13818.3 82.49 

60 11558.5 14137.3 86.471 

70 11909.4 14257.1 95.037 

80 12206.3 14180 101.133 

90 12523 14521.3 102.3 

100 12945.1 14619.9 112.13 

200 15879.7 15885.5 177.425 

300 20020.1 17269.3 239.514 

400 23545 18619.4 315.307 

500 27448.9 20271.3 394.564 

600 32086.5 21696 479.805 

700 36580.2 23271.1 555.646 

800 42045.4 25522.2 636.696 

900 47275.1 27311.7 777.944 

1000 52118.9 29147.2 826.533 

  

 

 

 

 

 

 

 

 



50 
 

 
Figure 4.1: K-Nearest-Neighbor Search Performance Comparison Average Search Time 

 

 

 

 
Figure 4.2: K-Nearest-Neighbor Search Performance Comparison Performance Ratio 
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 As the average search time shown in Figure 4.1, the compact-trie-based k-nearest-

neighbor search method performed consistently better than both the k-d tree based 

method and the brute-force based method. As the performance ratio shown in Figure 4.2, 

for k up to 1000, the compact-trie-based method performed at least 25 times better than 

the other two methods. For k less than 100, the compact-trie-based method performed at 

least 175 times better than the other two methods. The smaller the k is, the higher the 

performance ratio is, up to 300 times better, which suggests the compact-trie-based 

method might have more advantage in k-nearest-neighbor search applications where k is 

less than 100. 

 

4.3 Summary 

 The k-nearest-neighbor search performance comparison based on one million 

randomly generated two-dimensional spatial points did show the compact-trie-based k-

nearest-neighbor search method performed at least 25 times better than the brute-force 

based method and the k-d tree based method for k up to 1000. And the smaller the k is, 

the higher the performance ratio is, up to 300. 

 The different search schemes, Best-First and Depth-First, employed in the 

compact-trie-based method and the k-d tree based method, respectively, may be 

responsible for the performance difference to some extent. In the classic Depth-First k-d 

tree based nearest-neighbor-search method, node traversing is completely restricted by 

the tree structure and must be from one node to its immediate parent node or immediate 

child node; if two nodes have no such “immediate” relationship, traversing directly from 

one to the other is impossible. By contrast, node traversing following the Best-First 

search scheme in the compact-trie-based method is largely controlled by the priority 
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queue, rather than the tree structure. The two nodes traversed successively can have no 

such “immediate” relationship between them. The node traversing is like jumping around. 

The tree structure only limits the group of candidate nodes needed to be considered next, 

which includes every immediate child node of the visiting non-terminal node. 

 The current implementation of the compact-trie-based method adopting the Best-

First search scheme does have its own limitation. For example, if the number of the 

visiting non-terminal node’s immediate child nodes is large, creating and maintaining the 

priority queue could be computationally expensive.  
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Chapter 5                                                                                                             

Conclusion and Future Directions 

 

 In this thesis, a compact-trie-based k-nearest-neighbor search method is proposed. 

Through the k-nearest-neighbor search performance comparison against the brute-force 

based and the k-d tree based methods, the compact-trie-based method did show consistent 

performance superiority. The intrinsic relationship between the grid partitioning and the 

Cartesian coordinates of spatial points composed of positive decimal numbers, and the 

natural space partitioning by a compact trie constructed from the modified Cartesian 

coordinates of spatial points composed of positive decimal numbers inspired me to devise 

the compact-trie-based method. 

In this pilot project so far, it has been shown that the compact-trie-based method 

performed better than the brute-force based and the k-d tree based methods in tests, 

searching the k nearest neighbors for a given two-dimensional spatial point within one 

million two-dimensional spatial points. More theoretic work needs to be done to prove the 

better performance of the compact-trie-based method in theory. And the k-nearest-

neighbor search performance comparison result needs to be verified with more robust 

tests and using well-established and well-recognized standard libraries.  

It is worth mentioning that the different search schemes employed in the compact-

trie-based method and the k-d tree based method may have a significant role responsible 

for the performance difference. It would be ideal if the performance comparison was 

carried out while the two methods employed the same search scheme. Applying the best-

first search scheme to the k-d tree based method seems promising, though maintaining the 

priority queue for the non-terminal nodes traversed seems not computationally cost-
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effective at the first sight because the k-d tree is a binary tree and any non-terminal node 

of the k-d tree has two and only two child nodes. Applying the best-first search scheme to 

the compact-trie-based method seems relatively not that promising because for each non-

terminal node traversed, a list of its child nodes sorted by their minimum distances to the 

query point may need to be created, which could be computationally expensive. It might 

be quite worthwhile to implement both and find out how they actually turn out. 

So far, the implementation of the compact-trie-based method has limited the input 

to positive decimal numbers. Expanding the input to negative decimal numbers may just 

be a matter of conversion. And other numeral systems might be worthwhile exploring, 

especially the binary system because any information can be represented by bits or binary 

numbers, and bit-based storage and/or computing may be more efficient. 

Last, it is more significant to explore the potential applicability of the compact-

trie-based method to high-dimensional data, to tackle the curse of dimensionality.   
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