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Abstract 
 
Ribonuclease II (RNase II) is a bacterial enzyme responsible for 90% of the 

exonucleolytic degradation of mRNA in bacteria, and has bacterial homologues known to 

be involved in virulence. The goal of this project was to examine the structural dynamics 

of RNase II using fluorescence. Prior to the beginning of this project, little was known 

regarding the structural composition of RNase II – required information in the study of 

structural dynamics. Consequently, the structure of RNase II was studied by constructing 

a series of deletion mutants in order to map the domains. The publication of an atomic 

resolution structure of RNase II allowed the project to move directly into the study of 

RNase II structural dynamics as it degrades mRNA. As a step towards this, RNase II was 

fluorescently labeled, and preliminary binding studies of DNA – a competitive inhibitor – 

to RNase II using fluorescence were conducted. 
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Chapter 1: Introduction 

1.1 Ribonucleic Acid Hydrolysis 

There are two pathways for RNA hydrolysis in Escherichia coli (E.coli). The first is the 

processing of precursor RNA. Two examples of this are the endonucleolytic cleavage of 

the 30S precursor ribosomal RNA (rRNA) transcript by Ribonuclease III (RNase III) to 

generate mature 16S and 23S rRNA (Dunn and Studier, 1973; Young and Steitz, 1978) 

and the maturation of the 3’ end of 5S and 23S rRNA by exonucleolytic trimming by 

RNase T (Li and Deutscher, 1995; Li et al., 1999). The second major form of RNA 

hydrolysis is degradative. The purpose of degradative RNA hydrolysis is to reduce 

mature RNAs which have served their purpose to their nucleotide components.  

1.2 Inactivation of mRNA and the Initiation of mRNA Degradation 

Messenger RNA (mRNA) degradation in E.coli is initiated by an endonucleolytic 

cleavage. The identification of the enzyme responsible for this is currently a topic of 

debate (Kennell, 2002; Kushner, 2002). This can be attributed to the multiple 

endoribonucleases in E.coli which have been proposed to initiate mRNA degradation. It 

is widely believed that the 5’ end dependant endoribonuclease (Bouvet and Belasco, 

1992) RNase E is primarily responsible for this initial cut (Apirion, 1978). In his review 

on bacterial mRNA degradation (2002), David Kennell argues that RNase E is not 

responsible for the majority of mRNA inactivation, based on the works by Kuwano and 

Ono (1977; 1979). Kennell goes on to argue in favor of the less specific 

endoribonuclease RNase M as the protein responsible for the initiation of mRNA 

degradation. While it is at present not completely understood how mRNA degradation is 

initiated, it is clear that the first step in the degradation of mRNA in E.coli is the 
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inactivation of the message by an endonucleolytic cleavage. In eukaryotic cells, one of 

the first steps in message inactivation is the removal of the 5’ end cap (Weaver, 2002), an 

element vital for ribosome binding. In E.coli however, the initial inactivation by 

endonucleolytic cleavage does not prevent ribosomes from binding to the 

Shine-Dalgarno sequence; however, it does prevent ribosomes from translating the entire 

message, and in this way the message is functionally inactivated. From this point, the 

message fragments must be reduced to their individual nucleotide components.  

1.3 Exonucleolytic RNA degradation 

In contrast to the differences in the initiation of mRNA degradation between eukaryotic 

and prokaryotic systems, there are some similarities between these systems in the final 

steps of mRNA degradation. Both eukaryotes and prokaryotes have enzymes that can 

catalyze multiple turnovers of individual nucleotide removal from an RNA chain without 

dissociating. The vast majority of these enzymes remove individual nucleotides from the 

3’ end of RNA. The enzymes that have these properties are termed 3’-5’ processive 

exoribonucleases. A variety of 3’-5’ processive exoribonucleases are implicated in the 

breakdown of mRNAs to ribonucleoside 5’ monophosphates in eukaryotic, archaeal and 

prokaryotic systems (Gupta et al., 1977; Kivity-Vogel and Elson, 1968; Lorentzen and 

Conti, 2005; Mitchell et al., 1997; Navarro et al., 2008; Spahr and Schlessinger, 1963), 

often with multiple 3’-5’ processive exoribonucleases in the same organism. The specific 

function of each of these proteins is poorly understood aside from their role in degrading 

bulk mRNA and protecting against the devastating effect of a total loss of free 

nucleotides that would occur as a result of the inactivation of all mRNA degradation 

machinery. 
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1.3.1 Exonucleolytic RNA Degradation in Eukaryotes and Archaea 

In eukaryotic and archaeal organisms, 3’-5’ processive exoribonucleolytic degradation is 

primarily mediated by a multienzyme complex termed the exosome (Evguenieva-

Hackenberg et al., 2003; Mitchell et al., 1997). In some cases, the exoribonuclease 

activity of the exosome originates from its core components, while in others, the 

exosome is an apoenzyme termed the core exosome, and requires additional proteins in 

order to form the holoenzyme. 

Core exosomes that have been structurally characterized (Liu et al., 2006; Lorentzen and 

Conti, 2005; Lorentzen et al., 2007; Lorentzen et al., 2005; Navarro et al., 2008; Wang et 

al., 2007) have a number of features in common. In most organisms the core exosome is 

composed of a six-member protein ring with three capping proteins. The members of the 

ring, Rrp41-like and Rrp42-like proteins, are all RNase PH homologues (a 

phosphorolytic 3’-5’ processive exoribonuclease). The three capping proteins are RNA-

binding proteins and are located on the RNA entry side of the ring (Figure 1A). The 

hexameric ring can be more accurately described as a trimer of heterodimers, with each 

heterodimer composed of one Rrp41-like monomer and one Rrp42-like monomer 

arranged in an anti-parallel orientation. The dimer interface on the inside of the ring 

structure creates a positively charged channel to which the RNA strand is proposed to 

bind (Evguenieva-Hackenberg et al., 2003; Liu et al., 2006). Despite very similar 

structures among the organisms with identified core exosome complexes, the mode of 

degradation can differ significantly. In archaeal organisms – which have no known 

hydrolytic 3’-5’ processive exoribonucleases (Koonin et al., 2001) – the exonuclease 

activity of the core exosome is phosphorolytic and has been attributed to the three  
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Figure 1. X-ray Crystal Structure of the Human Core Exosome: The human core exosome is composed 
of nine elements. Panel A is a side view of the ring structure. The top is the RNA entry side and the bottom 
is the nucleotide release side. Panel A shows the three RNA binding proteins on top upper half of the 
protein labeled as follows: Rrp40 - Light Purple; Rrp4 - Light Green; Csl4 - Light Blue. Panel B is a 90o 
rotated view along the horizontal axis of Panel A. Panel B shows a view of the nucleotide exit side of the 
exosome and is labeled clockwise from the top as follows: Rpr42 - Red; Mtr3 - Orange; Rrp43 - Yellow; 
Rrp46 - Green; Rrp45 - Blue; Rrp41 - Purple.  

Rrp41-like proteins (Lorentzen et al., 2005). The Rrp41-like protomers are not active and 

require the presence of their cognate Rrp42-like protomer for activity (Lorentzen et al., 

2005) which adds biochemical evidence to support the importance of the dimeric 

interface. In addition, the publication of the crystal structure of the Pyrococcus abyssi 

exosome in complex with RNA shows such an interaction between RNA and the dimeric 

interface (Navarro et al., 2008). 

Eukaryotic organisms have provided the vast majority of the currently available 

information about the exosome. The core exosome of Saccharomyces cerevisiae 

(S.cerevisiae), unlike the archaeal exosome, has no exonuclease activity and requires the 

presence of an additional protein – termed Rrp44/Dis3 – for activity (Liu et al., 2006). 

Rrp44/Dis3 is a hydrolytic 3’-5’ processive exoribonuclease (Dziembowski et al., 2007), 

and although it is not constitutively bound to the S.cerevisiae exosome, they have been 
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visualized in complex in cryo-electron microscopy studies (Wang et al., 2007). The 

Rrp44/Dis3 protein, as the tenth member of the S.cerevisiae exosome is the sole source 

of exonuclease activity in vivo (Dziembowski et al., 2007). In addition to its activity as a 

member of the S.cerevisiae exosome, Rrp44/Dis3 is also active as a monomer.  

Interestingly, the human core exosome does have exonucleolytic activity, which is in 

contrast to the inactive S.cerevisiae core exosome (Liu et al., 2006). This phosphorolytic 

3’-5’ processive exoribonuclease activity has been attributed to a single Rrp41-like 

monomer in the ring complex. Human cells also have an Rrp44/Dis3 protein, which 

retains all the characteristic activity of the yeast Rrp44/Dis3 protein. However, the 

human Rrp44/Dis3 protein has not been observed to associate with the human exosome 

(Liu et al., 2006).  

1.3.2 Exonucleolytic RNA Degradation in Prokaryotes 

It is a well-established fact that in prokaryotic systems, the message fragments generated 

by endonucleolytic cleavage are exonucleolytically degraded exclusively in a 3’-5’ 

direction. E.coli, which is a model bacterial system used in the study of many cellular 

processes, has a number of exonucleases; however, only two of these – Polynucleotide 

phosphorylase (PNPase) and Ribonuclease II (RNase II) – have been implicated in the 

degradation of bulk RNA (Donovan and Kushner, 1986; Nossal and Singer, 1968). The 

remaining exonucleases function in the maturation of transfer RNAs (tRNAs) and rRNAs 

(Cudny and Deutscher, 1980; Deutscher et al., 1988; Kelly and Deutscher, 1992a; Kelly 

et al., 1992; Li and Deutscher, 1995; Li et al., 1999; Reuven and Deutscher, 1993; Zhang 

and Deutscher, 1988; Zhou and Deutscher, 1997). PNPase and RNase II are similar in 

that they are both 3’-5’ processive exoribonucleases; however, PNPase degrades RNA 
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phosphorolytically which generates 5’ nucleoside diphosphates, while RNase II degrades 

RNA hydrolytically, generating 5’ nucleoside monophosphates (Deutscher and Reuven, 

1991). A study of the degradation products of polyadenylic acid by crude E.coli extracts 

show that over 90% of the nucleotide products are monophosphorylated (Chaney and 

Boyer, 1972). As a result, RNase II is concluded to be responsible for the degradation of 

the majority of RNA in E.coli.  

The upper limit of the degree of processivity of RNase II (the number of nucleotides it 

can hydrolyze without dissociating) has not yet been established. Rather, the degree of 

processivity seems to be dictated by either the length of the substrate, or the presence of 

secondary structure, through which RNase II cannot degrade (Spickler and Mackie, 

2000). In both cases, RNase II dissociates from the mRNA molecule and is then free to 

associate with another mRNA molecule.  

There are two particles in E.coli that may be involved in the degradation of secondary 

structure. The first is RNase R (also known as the vacB gene product), a protein whose 

homologues in Shigella flexneri and Aeromonas hydrophila are known to be involved in 

virulence (Cheng et al., 1998; Erova et al., 2008; Tobe et al., 1992). RNase II and 

RNase R are 60% similar (Cheng et al., 1998), suggesting that they are members of the 

same superfamily (Cheng et al., 1998; Mian, 1997). In addition, RNase II and RNase R 

are both hydrolytic 3’-5’ processive exoribonucleases. However, RNase R has the ability 

to degrade secondary structure (Cheng and Deutscher, 2002). The second particle that is 

able to degrade secondary structure is the degradosome, a multienzyme mRNA 

degradation complex that appears to be structurally unrelated to the eukaryotic exosome. 

The core protein of the prokaryotic degradosome is RNase E, which contains a putative 
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scaffolding domain at its C-terminus on which the remaining components of the 

degradosome are thought to assemble (Vanzo et al., 1998). The other components of the 

degradosome are enolase, PNPase, and RhlB. The role of enolase, a glycolytic enzyme 

(Voet and Voet, 2004), in the degradosome is at present not understood. PNPase is the 

exonucleolytic component of the degradosome, while RhlB, an RNA helicase, is 

proposed to melt RNA duplexes.  

1.3.3 Other Roles for RNase II 

Aside from the degradation of mRNA, RNase II appears to play a role in the 3’ end 

maturation of stable RNA such as rRNA and tRNA (Cheng and Deutscher, 2002; Kelly 

and Deutscher, 1992b; Reuven and Deutscher, 1993). RNase II can generate 

ribonucleoside 5’ monophosphates when incubated with mature 23S, 16S and 5S rRNA 

as well as tRNA, albeit at a rate that is 3-4 orders of magnitude slower than the rate at 

which it degrades polyadenylate (Cheng and Deutscher, 2002) – its preferred substrate 

(Gupta et al., 1977; Singer and Tolbert, 1964; Spahr and Schlessinger, 1963; Spickler 

and Mackie, 2000). The true difference may not be this large. If there were Km values 

available for each of these reactions, it may be apparent why Cheng and Deutscher chose 

a concentration of rRNA/tRNA that is more than ten times lower than that of 

polyadenylate. This difference in initial substrate concentration of rRNA/tRNA and 

polyadenylate may account for some of the difference in apparent activity of RNase II on 

each substrate. An additional factor that probably influences the difference in rates is the 

difference in the number of nucleotides hydrolyzed from each substrate. RNase II can 

completely hydrolyze polyadenylate, which is on the order of several hundred 

nucleotides in length, while it will not degrade significantly into the mature tRNA and 
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rRNAs – less than ten nucleotides – (Kelly and Deutscher, 1992b). This inability of 

RNase II to degrade secondary structure makes it a good candidate for participating in 

the 3’ end maturation of stable RNA. Although RNase II is capable of processing 

precursor tRNA to the mature 3’ CCA end, it is not the preferred enzyme for this process. 

This is due to the lower fidelity of RNase II in leaving the mature CCA end compared to 

RNase T or RNase PH (Kelly and Deutscher, 1992b).  

A counterintuitive feature of RNase II is its role in the protection of mRNA transcripts 

from degradation. The polyadenylation of mRNA transcripts has been implicated as a 

factor which influences gene regulation (Joanny et al., 2007; Marujo et al., 2000). The 

termination of many bacterial messages is mediated by a process called Rho-independent 

termination (Weaver, 2002). In this process, the formation of a hairpin at the 3’ end of a 

transcript causes the message to be released by the RNA polymerase. In a process whose 

regulation and purpose is still poorly understood, the 3’ end of some mRNA transcripts 

are polyadenylated (Joanny et al., 2007; Marujo et al., 2000). In some cases, such as in 

the degradation of the rpsO transcript, RNase II removes the polyadenylate tail, but is 

stopped by the hairpin generated in Rho-independent termination (Marujo et al., 2000). 

The degradation of the polyadenylate tail by RNase II removes the 3’ overhang that is 

proposed to be targeted by the degradosome. This seems to be a mechanism that prevents 

premature degradation of mRNA (Marujo et al., 2000).  

1.4 Activity, Substrates and Inhibitors of RNase II 

RNase II is a single-stranded RNA (ssRNA) specific, hydrolytic 3’-5’ processive 

exoribonuclease (Cannistraro and Kennell, 1994, 1999; Nossal and Singer, 1968; Singer 

and Tolbert, 1964). It requires a divalent cation for activity, and works best with 
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magnesium ions (Gupta et al., 1977). RNase II retains its activity when manganese 

substitutes for magnesium, although to a slightly lower extent (Gupta et al., 1977). The 

chelating agent ethylene diamine tetraacetic acid (EDTA) is an inhibitor of RNase II by 

virtue of removing all freely available divalent cations from the environment (Gupta et 

al., 1977). RNase II also requires a monovalent cation for activity. Potassium ions are 

preferred, and ammonium ions cause RNase II to be slightly less active, while sodium 

ions have a deleterious effect on activity (Gupta et al., 1977; Kivity-Vogel and Elson, 

1968; Singer and Tolbert, 1965). In addition, RNase II requires a pH of between 7 and 8 

for optimal activity (Gupta et al., 1977).  

RNase II can neither bind nor degrade double-stranded nucleic acids (RNA or DNA) 

(Singer and Tolbert, 1964; Spickler and Mackie, 2000); however, it can bind nucleic acid 

containing secondary structure if that nucleic acid has more than six unpaired bases at its 

3’ end (Cannistraro and Kennell, 1999; Spickler and Mackie, 2000). If the secondary 

structure is weak enough (approximately 5bp), RNase II is able degrade through that 

secondary structure (Spickler and Mackie, 2000). It can bind, but not degrade single-

stranded DNA (ssDNA), which a competitive inhibitor (Gorelic and Apirion, 1971; 

Singer and Tolbert, 1965; Spahr, 1964). When presented with secondary structure-free 

ssRNA substrate, RNase II will bind to the 3’ end and processively hydrolyze individual 

nucleotides until the substrate reaches a length of 4 nucleotides (Barbas et al., 2008; 

Frazao et al., 2006), at which point RNase II dissociates from the RNA, and cannot 

further degrade it (Coburn and Mackie, 1996b; Nossal and Singer, 1968; Singer and 

Tolbert, 1964; Spahr and Schlessinger, 1963). An interesting exception to the substrate 

specificity of RNase II is its ability to degrade single-stranded DNA/RNA chimeric 
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oligonucleotides. As long as there are RNA residues at positions 2-6 from the 3’ end of 

the oligomer, RNase II can remove a DNA residue from the 3’ end of a nucleic acid 

chain (Cannistraro and Kennell, 1994). Although the preferred substrate of RNase II is 

polyadenylic acid, it can degrade RNA independent of sequence (Gupta et al., 1977; 

Singer and Tolbert, 1964; Spahr and Schlessinger, 1963; Spickler and Mackie, 2000).  

Prior to the publication of the X-ray crystal structure of RNase II (Frazao et al., 2006; 

Zuo et al., 2006), little was known about the relationship between the structure and 

function of its processivity. One model that has been proposed to describe the 

processivity of RNase II is the inchworm, or caterpillar, model (Cannistraro and Kennell, 

1999). This model proposes that the translocation of an RNA chain into the RNase II 

active site is a result of a conformational change in either the RNA chain, RNase II itself, 

or a combination of the two. In examining conformational changes in RNase II, it is 

assumed that RNase II has an “anchor” region bound at some distance less than 27 bases 

from the 3’ end of the RNA chain (Cannistraro and Kennell, 1999). The “catalytic” 

region – also with binding capability – catalyzes hydrolysis of nucleotides from the 3’  

 
Figure 2. Model of RNase II Processive Degradation: A cartoon of the model of processivity termed the 
"Caterpiller" model. See text for description. 
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end of the RNA chain, until it encounters the part of the RNA chain where the anchor 

region of RNase II is bound. At this point, with the catalytic region still bound, the 

anchor region dissociates from the RNA and re-associates at a point less than 27 

nucleotides 5’ to its original position (Figure 2). 

1.5 RNase II Structure  

Attempts to identify structural domains prior to the publication of the crystal structure 

relied on sequence homology studies (Amblar et al., 2006). These studies identified two 

oligonucleotide/oligosaccharide binding (OB) domains; an N-terminal domain 

homologous to a cold-shock domain, and a C-terminal domain homologous to an S1 

domain. Located between these two domains and accounting for the majority of the 

primary sequence is a novel domain, termed the RNB domain, which contains four 

conserved sequence motifs (Amblar and Arraiano, 2005a, b). After further analysis, a 

region of the N-terminal portion of the RNB domain was identified as conserved among 

homologues but could not be attributed to any known fold (Amblar et al., 2006). When 

this region is subjected to the 3D-PSSM program-Fold recognition server, a five stranded 

β-barrel is predicted. Subsequent structural comparisons to known folds found this 

domain to be structurally similar to the cold-shock domain (Amblar et al., 2006), 

bringing the number of N-terminal cold-shock domains to two and the number of overall 

 
Figure 3. Linear Domain Arrangement of RNase II: A linear representation of RNase II's 
bioinformatically predicted domains. The OB domains CSD1, CSD2 and S1 flank the central RNB 
Domain, which contains the four conserved sequence motifs. 
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OB domains to three. An adaptation of the linear domain arrangement proposed by 

Amblar et al. (2006) is shown in Figure 3.  

Shortly after the identification of the second cold-shock domain, the crystal structure of 

RNase II was solved (Frazao et al., 2006: PDB ID 2IX0, 2IX1; and Zuo et al., 2006: 

PDB ID 2ID0) and confirmed the presence of the second cold-shock domain (Figure 4A). 

This structure also provide information used in structure-guided mutational studies 

(Barbas et al., 2008). The crystal structures (2IX0, 2IX1, 2ID0) confirmed the domain 

arrangement described above showing two OB domains (CSD1 and CSD2) occupying 

the N-terminal region, followed by the novel RNB domain, and a third OB domain (S1)  

 
Figure 4. X-ray Crystal Structure of RNase II: Panel A shows a cartoon view of RNA bound RNase II 
D209N mutant. OB domains CSD1, CSD2 and S1 are coloured orange, yellow and green respectively. The 
RNB domain is coloured blue, and the RNA is coloured red. Panel B shows a close-up of the catalytic 
pocket with the catalytic aspartates and the aromatic clamp shown. Panel C shows the RNA bound to the 
anchor region, made up primarily of residues from the CSD2 and S1 domains. 
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occupying the C-terminal region of RNase II. Co-published with the RNase II structure is 

a naturally occurring inactive RNase II mutant, originally identified in an E.coli strain 

with a mutation in the RNase II allele termed rnb296. The loss of activity resulting from 

the rnb296 mutation was traced to a single nucleotide change of G to A at position 624 

which changes residue 209 to an asparagine from an aspartate, (Amblar and Arraiano, 

2005a, b). The loss of activity of this mutant – referred to as D209N – is not 

accompanied by a loss of binding; in fact, the D209N mutant retains the same binding as 

the active, full-length RNase II. The D209N mutant co-crystallized with a short RNA 

oligomer, which was undoubtedly a result of its loss of activity (Frazao et al., 2006). This 

is a remarkable discovery which enabled the visualization of the static enzyme-substrate 

complex. 

1.5.1 Interactions Between RNase II and RNA 

The complex of the D209N mutant and the RNA oligomer shows two distinct binding 

regions between RNase II and RNA (Figure 4B/C). The anchor region is non-catalytic 

and is made up primarily of interactions between RNA residues 9-13 bases from the 3’ 

end of the RNA chain and residues of the S1 and CSD2 domains. This region appears to 

be vital for the processivity of RNase II, since oligomers known to be too small to 

contact both the anchor region and the catalytic domain dissociate following each round 

of hydrolysis in what is termed distributive degradation (Cannistraro and Kennell, 1994).  

The catalytic region is situated within the RNB domain and can more accurately be 

described as a catalytic pocket, which is formed by residues from each of the four 

conserved sequence motifs (Frazao et al., 2006). It is in this catalytic pocket where the 

RNA bases are stacked in preparation for hydrolysis (see Figure 6). Steric hindrance 
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around the entrance to this catalytic pocket precludes access by double-stranded nucleic 

acids and is thus responsible for single-strand specificity. The residues from the 

conserved sequence motifs appear to be directly responsible for the correct orientation 

and cleavage of RNA. In addition they participate in four protein-RNA hydrogen 

bonding interactions that involve the O2’ oxygen of the ribose ring. These interactions 

account for the specificity of RNase II for RNA over DNA. Approximately half of all 

hydrogen bonding interactions in the catalytic pocket involve RNA phosphates, 

indicative of sequence insensitivity.  

The active center of the RNase II D209N mutant is incomplete (Figure 5). However, 

Frazao et al (2006) propose a two-metal-ion catalysis mechanism based on the structural 

homology between D201, D210, D209N and D207 of the RNase II D209N mutant and 

E109, D132N, E183 and D192 of RNase H, an endonuclease that cleaves the RNA of a  

 
Figure 5. Active Site Interactions Between RNase II and RNA: Interactions between the catalytic 
aspartates of the RNase II D209N mutants and RNA phosphate mediated by a Magnesium ion (Green 
sphere) and water molecules (Grey spheres). It is proposed that a second Magnesium ion is co-ordinated by 
D209 and D207 in order to activate a water for nucleophilic attack on the phosphate. 



 Page 15 of 90 

RNA/DNA duplex which operates via a two-metal-ion catalysis mechanism. In the 

proposed mechanism, the hypothesized magnesium ion, which is co-ordinated by the 

side-chains of D207 and D209, activates a water which then acts as a nucleophile and 

attacks the phosphorus of the leaving nucleotide in an SN2 type reaction, with the O3’ of 

the penultimate nucleotide as the leaving group. The structure also shows an aromatic 

clamp (Figure 6), in which five RNA bases at the 3’ end of the RNA chain are 

base-stacked between Y253 at the 3’ end and F358 at the 5’ end. This aromatic clamp 

has been shown to be vital for binding in the catalytic pocket. Mutational studies have 

shown that both Y253 and F358 are equally interesting for binding in the catalytic 

pocket. The more highly conserved of the two, Y253, seems to be implicated in catalytic 

site binding. Mutation to an alanine results in an increase in size of the smallest observed 

end product from 4 nucleotides to 10 (Barbas et al., 2008). Barbas et al (2008) propose  

 
Figure 6. Base-Stacking Interaction of Nucleotide Bases in the Catalytic Pocket: A close-up view of 
six residues at 3' end of RNA chain bound to RNase II. The five residues at the 3' end of the chain are base-
stacked and clamped between Tyr253 and Phe358. The sixth residue from the 3' end does not participate in 
base-stacking interactions with its neighbouring bases or Phe358. 
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that this is due to the inability of the catalytic pocket of the Y253A mutant to bind 

substrates between 5 and 10 nucleotides in length that wild-type RNase II is able to 

degrade. Additionally, molecular dynamics simulations suggest that Y253 may be 

involved in a potential mechanism for removal of the cleaved nucleotide from the active 

site (Barbas et al., 2008). When the outgoing nucleotide residue shifts from an anti to syn 

conformation, the base-stacking interaction between the outgoing and penultimate 

nucleotide is eliminated. The Y253 side-chain maintains its base-stacking interaction 

with the outgoing nucleotide, and appears to pull it from the active site using base-

stacking interactions. The importance of Y253 is supported by the structural conservation 

of tyrosine in the S.cerevisiae Rrp44/Dis3 protein (Lorentzen et al., 2008). This is 

perhaps a more plausible explanation for the removal of the cleaved nucleotide than that 

proposed in the original report of the RNase II structure. The original hypothesis 

proposes that the E542 side-chain forms hydrogen bonds with N1 and N6 of the outgoing 

adenylate (Frazao et al., 2006). This mechanism is inconsistent with the sequence 

insensitivity of RNase II, as these interactions would not be present in other nucleotide 

bases, although it would account for the preference for polyadenylate. Experimental 

analysis is required to reveal the true mechanism of nucleotide removal from the active 

site. 

The 5’ end of the aromatic clamp, F358, appears to have a role in the advancement of the 

RNA chain towards the active site (Barbas et al., 2008). The F358A mutant generates a 

major breakdown product that is one nucleotide larger than the wild-type protein 

generates. This experimental evidence shows that the F358A mutant is impaired in its 

ability to move the substrate into the position required for the generation of the 4 
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nucleotide end product. This hypothesis is supported by Barbas et al. (2008) with 

molecular dynamics simulations of the D209N mutant in complex with the RNA 

oligomer. The crystal structure shows F358 base-stacking with the fifth nucleotide from 

the 3’ end of the RNA chain. However, the simulations show F358 rotating away from its 

position in the crystal structure. Barbas et al (2008) interpret this movement as the 

initiation of a propeller-like movement, which pushes the substrate into the catalytic 

pocket. F358 is not well conserved and is notably absent in the orthologous Rrp44/Dis3 

and paralogous RNase R (Lorentzen et al., 2008). Based on the conservation of F358, 

this type of advancement mechanism, should it turn out to be an accurate representation 

of the in vivo function, would seem to be unique to RNase II. 

1.5.2 Interactions Between RNA and the Active Center Aspartates of RNase II 

Sequence analysis of RNase II homologues performed by Barbas et al (2008) show that 

there are four aspartate residues (201, 207, 209, 210) that are completely conserved 

among the chosen homologues. In a more extensive analysis of RNase II homologues, 

D207, while highly conserved, does not share the same degree of virtually universal 

conservation as D201, D209 and D210. Interestingly, the majority of residues that differ 

from aspartate at these positions are glutamates, an amino acid with the same functional 

group. 

Although D207 is highly conserved, it is not functionally as important as the other 

aspartate residues (Barbas et al., 2008), which is suggested by its slightly lower 

conservation compared to D201, D109 and D210. This is supported by mutational 

studies, in which aspartate 207 is mutated to asparagine, resulting in a drop to 12% 

activity, a significant drop in activity, but not nearly as significant as the drop in activity 
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seen when the other aspartates are mutated. Additionally, despite the apparent 

importance of its side chain in the crystal structure and its high level of conservation, 

molecular dynamics simulations of the D209N mutant with bound RNA oligomer, show 

that the side chain of D207 moves away from the catalytic center, causing its main chain 

oxygen to reposition so as to co-ordinate the active site magnesium ion.  

The active site depicted in the crystal structure of the RNase II D209N mutant shows a 

magnesium ion co-ordinated by the oxygens of two waters, along with the side chains of 

D201 and D210 (Figure 5) (Frazao et al., 2006). Mutation of either of these two 

aspartates to asparagines does not completely abolish the activity of RNase II, but it does 

reduce the activity to 0.2% and 0.3% of the wild-type activity respectively (Barbas et al., 

2008). The change in binding affinity of these mutants is only 2-fold when binding to a 

25 residue RNA oligomer, indicating that these mutations do not affect overall binding. 

Rather, Barbas et al. (2008) propose that these residues are involved in catalytic activity. 

In addition to the drop in activity, each of these mutations generate larger end products of 

10 to 11 nucleotides from approximately 5 generated by wild-type RNase II. This 

product corresponds to the smallest RNA oligomer able to contact both the catalytic 

pocket and anchor region of RNase II. This is interpreted by Barbas et al. (2008) that in 

the absence of binding between RNA and the anchor region, the catalytic pocket is 

unable to maintain its grasp on the RNA, and as a result releases the substrate. So, in 

addition to a potential involvement in catalytic activity, these residues confer binding 

ability to the catalytic pocket. However, Barbas et al. (2008) do not consider the 

possibility that the loss of activity in the D201A and D210A mutants may simply be a 

result of the decreased affinity of the catalytic pocket for RNA, and that the relatively 
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unchanged overall binding may be a result of the strong binding in the anchor region 

masking a drastically reduced binding affinity in the catalytic pocket.  

The mutation that causes the greatest disruption of RNase II activity involves another 

aspartate residue. The mutation of residue 209 from an aspartate to an asparagine 

completely abolishes the ability of RNase II to hydrolyze RNA (Amblar and Arraiano, 

2005a, b). As noted earlier, this residue is thought to co-ordinate the magnesium that 

activates the nucleophilic water. In spite of this proposed catalytic importance, this 

mutation does not affect overall binding. Although the crystal structure shows RNA in 

the catalytic pocket of the D209N mutant, the possibility that unchanged anchor region 

binding is masking a decrease in the binding of RNA to the catalytic pocket cannot be 

eliminated. 

1.5.3 Structure of Homologous Proteins 

As RNase II is been proposed to be the model protein for the RNR family of 

exoribonucleases (Mian, 1997) two homologous proteins – RNase R and Rrp44/Dis3 – 

have been computationally modeled based on the structure of RNase II (Barbas et al., 

2008). However, the recently published crystal structure of the S.cerevisiae RNase II 

homologue, Rrp44/Dis3, shows a distinct difference in the arrangements of the 

oligonucleotide binding domains (Lorentzen et al., 2008). This difference is in spite of a 

common linear domain arrangement, 8-14% sequence identity and individual domain 

superposition of 70% of α-carbons between 2.2 and 2.8Å (Lorentzen et al., 2008). The 

authors of the paper suggest that the difference in domain arrangements enable RNase R 

and Rrp44/Dis3 to degrade secondary structures. 
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1.6 Project Overview 

In general terms, the goal of this project is to study the structure and function of RNase II 

in order to shed light upon mRNA degradation mechanisms. More specifically, the 

project is aimed at quantifying the structural dynamics of RNase II in order to understand 

its processive catalytic mechanism and function. 

Relatively few experimental techniques can directly quantify molecular movements. One 

such method is called Fluorescent Resonance Energy Transfer (FRET). FRET efficiency 

can be used to measure separation distances between dye pairs within a single molecule 

or complex. When measuring the distance between dye pairs in a complex, FRET signals 

can provide the basis for binding assays with little interfering background signal. 

Site-directed mutagenesis also provides the ability to label specific residues for 

separation distances within a single molecule. 

The strategic placement of dyes on the molecular surface of a protein that are predicted 

to move relative to each other allows for distance information to be gathered through the 

measured FRET efficiency. This provides a method of detecting events where the donor 

and acceptor fluorophores interact with each other over a distance on the order of tens of 

angstroms. Although it is possible to systematically label pairs of residues throughout the 

primary sequence of RNase II, structural information expedites the process of identifying 

suitable residues for labeling. 

At the beginning of this project, RNase II was structurally uncharacterized. Only two 

regions of the primary sequence were known to be homologous to characterized 

structural domains. In the absence of high resolution structural information, a domain 

map is sufficient for identifying potential targets for fluorescent labeling. In order to 
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generate a domain map, a series of C-terminal deletion mutants were generated based on 

predicted domain boundaries and assayed for activity. The publication of the high 

resolution structure (Frazao et al., 2006; Zuo et al., 2006) at the midpoint of the project 

helped to explain the behaviour of the mutants, and provided the starting point for 

fluorescent studies. The presence of a crystal structure in which all the domains are 

defined allows for a much more accurate labeling of domains.  

Since the fluorescent labeling of RNase II can effect its activity, a significant portion of 

the research project is identifying suitable fluorescent labels for subsequent 

experimentation. In order to confirm and complement initial fluorescent binding studies, 

binding was measured using a gel-shift assay, as well as with Isothermal Titration 

Calorimetry (ITC). ITC has the advantage of providing information that cannot be 

obtained in fluorescent binding experiments, such as the contribution of enthalpy and 

entropy to substrate binding.  
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Chapter 2: Materials and Methods 

2.1 Buffers and Reagents

Acrylamide Solution (30% (w/v)) 
29g  Acrylamide 
  1g  Bis-acrylamide 
Dilute to 100mL with deionized H2O 
 
Acrylamide Solution (20% (w/v)) 
19g  Acrylamide 
  1g  Bis-acrylamide 
Dilute to 100mL with deionized H2O 
 
SDS-PAGE Resolving Gel Premix 
(12% (w/v)) 
4.0mL  30% Acrylamide Solution 
2.5mL  Tris-HCl (1.5M pH8.8) 
0.1mL  SDS (10% (w/v)) 
3.4mL  Deionized H2O 
 
SDS-PAGE Stacking Gel Premix 
(5% (w/v)) 
0.65mL 30% Acrylamide Solution  
1.25mL Tris-HCl (0.5M pH6.8) 
0.05mL SDS (10% (w/v)) 
3.05mL Deionized H2O 
 
Tris-Glycine Buffer (1x) 
14.4g  Tris 
  3.0g  Glycine 
  1.0g  SDS 
Dilute to 1L with deionized H2O 
 
SDS-PAGE Sample Reducing Buffer 
(2x) 
1.80mL Glycerol (100%) 
2.16mL Tris-HCl (0.5M pH6.8) 
4.00mL SDS (10% (w/v)) 
1.00mL β-mercaptoethanol 
1.00mL Bromophenol blue 

(0.1% (w/v)) 
 
 
 
 

SDS-PAGE Staining Solution 
40% (v/v) Methanol 
10% (v/v) Acetic acid 
50% (v/v) Deionized H2O 
0.25% (w/v) Coomassie brilliant Blue 
 
SDS-PAGE Destaining Solution 
40% (v/v) Methanol  
10% (v/v) Acetic acid 
50% (v/v) Deionized H2O 
 
TAE Buffer (50x) 
242g  Tris 
57.1mL Glacial acetic acid 
100mL  EDTA (0.5M pH8.0) 
Dilute to 1L with deionized H2O 
 
TBE Buffer (5x) 
54.0g  Tris 
27.5g  Boric acid 
20mL  EDTA (0.5M pH8.0) 
Dilute to 1L with deionized H2O 
 
Agarose Gel Loading Buffer (Blue 
Juice) 
1.6mL  EDTA (0.25M pH8.0) 
1.0mL  Sarkosyl (20% (w/v)) 
10mg  Bromophenol blue 
15% (v/v) Glycerol 
13.4mL Deionized H2O 
 
Urea/Acrylamide Solution (15% (w/v)) 
4.8g  Urea 
5.625mL 20% Acrylamide Solution 
200.0µL TAE (50x) 
40.0µL  EDTA (0.5M pH8.0) 
1.875mL Deionized H2O 
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Urea PAGE Loading Buffer 
700µL  8M Urea 
20% (v/v) Glycerol 
100µL Bromophenol blue 

(0.1% (w/v)) 
Urea PAGE Staining Solution 
0.5% (v/v) Ethidium bromide in deionized 
H20 
 
Urea PAGE Destaining Solution 
Deionized H20 
 
Native PAGE Solution (5% (w/v)) 
2.5mL  20% Acrylamide Solution 
1.0mL  TBE (5x) 
6.5mL  Deionized H2O 
 
Native PAGE Loading Buffer  
100µL  TBE (5x) 
20% (v/v) Glycerol 
100µL  Bromophenol blue 
(0.1% (w/v)) 
 
Silver Stain Solution 1 
0.2% (w/v) AgNO3 
 
Silver Stain Solution 2 
0.36%  (w/v) NaOH 
0.9% (w/v) NH4OH 
 
Silver Stain Developing Solution 
0.005% (w/v)  Citric acid 
0.02% (w/v) Formaldehyde 
 
RNB Buffer 
1mM   MgCl2 
100mM  KCl 
20mM   Tris-HCl (pH 7.5) 
1mM   DTT 
5% (v/v) Glycerol 
 
 
 
 
 
 

Buffer A 
1mM   MgCl2 
100mM  KCl 
20mM   Tris-HCl (pH 7.5) 
1mM   DTT 
5% (v/v) Glycerol 
25mM   Imidazole (pH8.0) 
 
Buffer B 
1mM   MgCl2 
100mM  KCl 
20mM   Tris-HCl (pH 7.5) 
1mM   DTT 
5% (v/v) Glycerol 
250mM  Imidazole (pH8.0) 
 
Equilibration Buffer 
1mM   MgCl2 
100mM  KCl 
20mM   Tris-HCl (pH 7.5) 
10mM   β-mercaptoethanol 
 
Labeling Buffer 
1mM   MgCl2 
100mM  KCl 
20mM   Tris-HCl (pH 7.5) 
5% (v/v) Glycerol 
 
Elution Buffer 
1mM   MgCl2 
100mM  KCl 
20mM   Tris-HCl (pH 7.5) 
5% (v/v) Glycerol 
250mM  Imidazole (pH8.0) 
 
Fluorescein Solution  
12.5mg 5-IAF in 500µL DMSO 
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2.2 Detection Techniques 

2.2.1 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

SDS-PAGE followed the method of Laemmli (1970). Gels with a 12% resolving gel and 

a 5% stacking gel were assembled into a Mini-Protean 3 gel apparatus (Biorad, Hercules, 

CA, USA). The inner and outer reservoirs were filled with 1x Tris-glycine buffer and 

protein samples were mixed with an equal volume of 2x SDS-PAGE sample reducing 

buffer. A voltage of 30V/cm was applied to the gel for approximately 45min at 293K. 

Gels were immersed in SDS-PAGE staining solution and agitated for approximately 

10min at 293K, then transferred to an SDS-PAGE destaining solution and agitated for 

approximately 20min at 293K.  

2.2.2 Agarose Electrophoresis 

Agarose gels were made by heating 0.32g of Agarose B (Bio-Basic; Markham, ON, 

Canada) in 40mL of 1x TAE buffer to make a 0.8% (w/v) agarose gel. Once cooled to 

approximately 320K, but prior to casting, ethidium bromide was added to a final 

concentration of 0.5% (v/v). The cooled and solidified agarose gel was placed in a 

Mini-Sub Cell GT Cell (Biorad) and immersed in 1x TAE. DNA samples were mixed in 

an equal volume of agarose gel loading buffer and loaded into the agarose gel. A voltage 

of 6V/cm was applied to the gel for approximately 60min at 293K. The gels were placed 

on a transilluminator (VWR International; West Chester, PA, USA) so that bands could 

be visualized by ultraviolet illumination at 302nm.  

2.2.3 Urea PAGE 

900mL of 1x TAE buffer was heated to approximately 320K prior to use. A 

Mini-Protean 3 gel apparatus (Biorad) was assembled with polymerized 
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Urea/Acrylamide (15% acrylamide in 8M urea) gel in place. The inner and outer 

reservoirs of the gel apparatus were filled with the pre-heated 1x TAE buffer, and run 

without samples at 40V/cm for 5min in order to pre-heat the gel. Samples were mixed in 

an equal volume of urea gel loading buffer and heated at 368K for 5min prior to loading. 

Once samples were loaded, a voltage of 40V/cm was applied to the gel for approximately 

30min at 293K. Gels were immersed in a 0.5% solution of ethidium bromide and agitated 

for 20min. Following immersion in ethidium bromide, gels were placed on 

transilluminator so that bands could be visualized at 302nm and photographs taken for 

densitometric analysis with IMAGEJ software (Abramoff et al., 2004).  

2.2.4 Native PAGE 

A Mini-Protean 3 gel apparatus (Biorad) was assembled with polymerized 5% native 

PAG in place. The inner and outer reservoirs were filled with 0.5x TBE. Samples were 

mixed in an equal volume of native PAGE loading buffer and loaded into wells. A 

constant current of 20mA was applied to the gels for 30min at 277K. Protein bands were 

visualized using the silver staining protocol, as follows: Gels were soaked in 200mL of 

7% (v/v) acetic acid for 5min prior to being soaked in 200mL of 50% (v/v) methanol for 

40min, with an exchange of methanol solution after 20min. Gels were rinsed with 200mL 

deionized H2O for 20min with an exchange of deionized H2O after 10min. Gels were 

immersed in staining solution (silver stain solution 1 added dropwise to silver stain 

solution 2 and brought up to a volume of 100mL with deionized H2O) for 15min. Gels 

were then rinsed in 200mL deionized H2O for 10min with an exchange at 5min. Gels 

were then immersed in silver stain developing solution until bands were visible. 
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Developing reactions were quenched by immersion in 3 changes of 200mL deionized 

H2O. 

2.2.5 Spectroscopic Quantification of Protein Under Denaturing Conditions  

Protein was denatured in 6M guanidine HCl and its absorbance was measured at 280nm 

(Layne, 1957; Stoschek, 1990), except when measuring 5-IAF covalently bound to 

RNBec_N22, where the absorbance was measured at 492nm. Concentration values were 

calculated using the Beer Lambert equation. Extinction coefficients were obtained using 

the ExPASy server’s ProtParam tool (Gasteiger et al., 2005), except for 5-IAF (Kapakos 

and Steinberg, 1982); all are listed in table 1. 

Table 1: Extinction coefficient used in quantification of proteins and 5-IAF 
 

 

 

 

2.2.6 Spectroscopic Quantification of Protein Using the Bradford Assay  

800µL of deionized H2O was mixed with 200µL of 1x Bradford reagent (BioBasic) 

(Bradford, 1976; Stoschek, 1990) and incubated at room temperature for 5min, then the 

absorbance was measured at 595nm to obtain a zero reading. A standard curve was 

constructed by measuring A595 as described above, replacing 800µL of deionized water 

with 800µL of 2-10µg/mL Bovine Serum Albumin standard (Pierce Biotechnology; 

Rockford, IL, USA). The A595 of protein samples were measured as above, and compared 

to the standard curve to determine their concentration. 

 

 

Molecule Measured Extinction coefficient (M-1cm-1) 
RNBec_N22 ε280 = 66000 
RNBst_N22 ε280 = 68000 
RNBec_N22_c60 ε280 = 65000         
RNBec_N22_c170 ε280 = 49000 
RNBec_N22*5IAF ε492 = 77000 
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2.3 Generation of Recombinant RNase II Protein and its Variants 

2.3.1 Protein Purification 

All proteins were obtained using the following conditions. Escherichia coli BL21 (DE3) 

cells from glycerol stocks containing plasmids summarized in table 2 were streaked onto 

an LB agar plate containing 50µg/mL of the antibiotic Kanamycin and allowed to grow 

at 310K overnight. 3mL of LB liquid media containing 50µg/mL of Kanamycin was 

inoculated with cells from a single colony and allowed to grow at 310K overnight with 

agitation. 1L of LB liquid media containing 50µg/mL of Kanamycin was inoculated with 

1mL of the resulting culture and incubated at 310K with agitation. Overexpression was 

initiated by the addition of 0.5mM IPTG when OD600 reached 0.6. Cells were allowed to 

overexpress as described in table 3.  

Cells were pelleted by centrifugation at 5500xg in a TS-5.1-500 bucket rotor (Beckman 

Coulter; Fullerton, CA, USA) with an Allegra 25R benchtop centrifuge for 20min at 

277K and resulting cell pellets were resuspended in cold buffer A. Cells were lysed by 

sonication using a Sonic Dismembrator Model 100 (Fisher Scientific), with three 45s 

bursts, alternated with 30s pauses on ice. The cellular debris was pelleted at 21100xg in a 

TA-14-50 fixed angle rotor (Beckman Coulter) for 60min at 277K. The supernatant was 

applied to a NiNTA agarose LPLC (Biorad) column pre-charged with buffer A. Once 

A280 measurements had reached baseline, the protein was removed from the column by 

step elution with buffer B. The protein sample was then concentrated to approximately 

1mL using an Amicon 30kDa molecular weight cut-off centrifugal spin cell (Millipore; 

Billerica, MA, USA). The protein sample was then further purified on an SEC 200 

column (Pharmacia Biotech; Piscataway, NJ, USA) using a BioLogic DuoFlow HPLC 
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Table 2: Plasmids coding for RNase II and its variants. Bold letters in ‘Primers Used” column 
indicate residues targeted for mutation. 

Plasmid Source Gene 
product 

Antibiotic 
Resistance Primers Used 

pET28b(+):: 
NheI: 

RNBec_ 
N22 

rnb gene was PCR 
amplified from pGC100 

(a gift (Coburn and 
Mackie, 1996b)) and 
inserted into the NheI 
site of the pET28b(+) 
multiple cloning site. 

RNBec_
N22 

 
Kanamycin 

F: 5’-GTC TAG 
CTA GCA TTA 
GTA CTG AAC 
CCG GTC C-3’ 
R: 5’-ATG ATG 
CTA GCT TAC 

GGG CGC GCA 
ATA ATA CT-3’ 

pET28b(+):: 
NheI: 

RNBec_ 
c60 

Modified inverse PCR 
mutagenesis of 

pET28b(+)::NheI:RNBe
c_N22 

RNBec_
N22_ 
c60 

 

Kanamycin 

F: 5’-TAA TGG 
TGG ACA GCA 

AAT GGG TC -3’ 
R: 5’-GGC TTT 
GTC TTT GAG 

GAA GCG TG-3’ 

pET28b(+):: 
NheI: 

RNBec_ 
c170 

Modified inverse PCR 
mutagenesis of 

pET28b(+):: 
NheI:RNBec_N22 

RNBec_
N22_ 
c170 

 

Kanamycin 

F: 5’-TAA TGG 
TGG ACA GCA 

AAT GGG TC -3’ 
R:5’-CAA ATG 
ACT GGA AGC 

GAC GAA TG -3’ 

pET28b(+):: 
NheI: 

RNBec_ 
N22_ 

D209N 

Quikchange 
mutagenesis of 

pET28b(+)::NheI: 
RNBec_N22 

RNBec_
N22_ 

D209N 
 

Kanamycin 

F: 5’-GCG AAA 
AGG GCG TTA 
TCC ATA TCT 
TCA GTA CTG 

GC -3’ 
R: 5’-GCC AGT 
ACT GAA GAT 
ATG GAT AAC 
GCC CTT TTC 

GC -3’ 

pET28b(+):: 
NheI:RNBst

_N22 

rnb gene PCR amplified 
from BAC 4027 of  

Salmonella enterica 
serovar Typhimurium 
LT2 obtained from the 

SGSC and inserted into 
the NheI site of the 
pET28b(+) multiple 

cloning site. 

RNBst_ 
N22 

 
Kanamycin 

F: 5’-ATA GCT 
AGC ATG TTT 
CAG GAC AAC 

CCG CTG-3’ 
R: 5’-AAA GCT 
AGC TTG AGT 
GAG CTA AGC 

GTG G-3’ 

 
Table 3: Overexpression conditions of Escherichia coli BL21(DE3) cells. 

Gene Product Overexpression conditions 
RNBec_N22 Overnight (~16h) at 310K 
RNBst_N22 Overnight (~16h) at 310K 
RNBec_c60 3h at 303K 
RNBec_c170 3h at 303K 
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(Biorad). The sample was again concentrated to obtain a concentration in excess of 

100µM (10mg/mL; typically about 500µL). In addition, the sample was quantified using 

the Bradford and denaturing methods, brought to 20% glycerol, and stored in small 

aliquots at 193K until needed. 

2.3.2 Fluorescent Labeling of RNase II with 5-IAF 

2.5mL of a 50% NiNTA sepharose was transferred to a 15mL conical tube. The resin was 

pelleted by spinning the slurry at 500xg in a TS-5.1-500 bucket rotor for 5min at 277K. 

The resin was then equilibrated by washing three times with 10mL of equilibration 

buffer. Following equilibration, the resin was pelleted as described above to remove 

excess buffer. Once equilibrated, 175nmol of RNBec_N22 and 6mL of equilibration 

buffer were added to the resin. The resin was resuspended and incubated for 5h at 277K 

with occasional agitation. Following incubation the resin was pelleted by centrifugation 

as described above. The resin was then equilibrated with labeling buffer by washing five 

times with 10mL volumes. The supernatant from all samples was retained and analyzed 

with SDS-PAGE. After the final wash with labeling buffer, the resin was resuspended in 

4mL of labeling buffer. Following resuspension, 3.6µmol of 5-IAF (112µL of 30mM 

5-IAF in DMSO) was added dropwise to the resin for a 20-fold excess of dye over 

protein. The resin was incubated for 3h at 293K with agitation. Following incubation, the 

resin was washed with labeling buffer until supernatant was colourless. The resin was 

pelleted by centrifugation as described above, the supernatant was removed, and 1.5mL 

elution buffer was added to the resin which was then resuspended and incubated on ice 

for 30min. The resin was pelleted as described above and the supernatant – containing 

labeled RNase II – was removed and retained in light proof container. Elutions were 
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repeated until the supernatant was colourless. Imidazole was removed from sample by 

buffer exchange using an Amicon 30kDa molecular weight cut-off centrifugal spin cell 

(Millipore) as follows. 10mL of sample was added to an Amicon 30kDa molecular 

weight cut-off centrifugal spin cell and centrifuged at 3405xg in an Allegra 25R benchtop 

centrifuge using a TS-5.1-500 bucket rotor until the sample volume was reduced to 

approximately 1mL, with occasional stops to mix the sample in order to avoid 

precipitation. Once the volume reached 1mL, 9mL of RNB buffer was added and 

centrifugation was repeated. This procedure was repeated until a 1:1000 dilution of 

imidazole was achieved. The sample was concentrated to a final volume of 2mL, 

removed to microcentrifuge tubes and subsequently spun at maximum speed (>10000xg) 

in an Eppendorf 5415C microcentrifuge (Eppendorf; Westbury, NY, USA) at 277K for 

10min to pellet any precipitate. The protein and 5-IAF concentrations were determined 

independently by denaturing absorbance spectroscopy at 280nm and 492nm respectively. 

Glycerol was added to a final concentration of 20%, and samples were aliquoted into 

small volumes and stored at 193K for future use. 

2.3.3 Site-directed Mutagenesis to Generate RNase II D209N mutant 

The Quikchange mutagenesis protocol from Stratagene (La Jolla, CA, USA) was 

followed to generate an inactive mutant by mutating aspartate 209 to an asparagine. The 

template DNA used was pET28b(+)::NheI:RNBec_N22, obtained by purification from 

E.coli DH5α cells. Primers are described in table 2 and introduce three nucleotide 

changes. One of the nucleotide changes results in an asparagine residue to be coded 

rather than an aspartate. The other two changes are silent mutations, not affecting the 
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protein primary sequence, but introducing a novel endonuclease cleavage site. The PCR 

reaction and cycling conditions are described in tables 4 and 5.  

Following amplification, the parental DNA was removed by digestion with DpnI 

endonuclease for 3h at 310K. The amplification products were transformed into 

Escherichia coli (DH5α) cells. 3mL of LB liquid media containing 50µg/mL of 

Kanamycin was inoculated with cells from the resulting single colonies and incubated 

overnight at 310K with agitation. Once the gene was sequenced to confirm mutations, 

cells were stored at 193K in 30% glycerol for future use. Plasmid DNA containing the 

RNBec_N22_D209N gene from E.coli DH5α was transformed into E.coli BL21(DE3) 

cells and tested for overexpression. The BL21(DE3) cells that overexpress 

RNBec_N22_D209N were also stored at 193K in 30% glycerol. 

Table 4: Reaction conditions for Quikchange mutagenesis generating RNBec_N22_D209N 
mutant 

Reaction Component Volume (µL)
Template DNA (50ng/µL) 20.0 
Deionized H2O 12.8 
Forward Primer (5µM) 5.0 
Reverse Primer (5µM) 5.0 
dNTP (10mM) 1.0 
MgSO4 (100mM) 1.0 
10x ThermoPol Buffer 5.0 
RNA Polymerase 0.2 

 
Table 5: Thermocycler settings for Quikchange mutagenesis generating RNBec_N22_D209N 

mutant 
 
 
 

 

 

 

 

Action Temperature (K) Time (s) 
Initial Denature 368 300 
Denature 368 30 
Anneal 333 30 
Extend 345 480 
Final Extend 345 300 
Storage 277 Indefinite 
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2.4 RNA Degradation Assay 

A 16µL reaction mix was prepared containing 30nM MS2 RNA in RNB buffer. Various 

concentrations of RNBec_N22 (0.5-5µM) were added to the reaction mix to initiate the 

assay. A time zero sample was immediately removed and quenched with an equal volume 

of Urea Gel Loading Buffer. The reaction mix was incubated at 310K, with 2µL aliquots 

drawn at 10min intervals over a period of 60min. Aliquots were pipetted into an equal 

volume of Urea Gel Loading Buffer and stored at 293K prior to analysis with Urea 

PAGE. Immediately following the removal of the final aliquot, all samples were heated 

at 368K for 5min, after which they were immediately loaded on the Urea/Acrylamide gel 

for analysis. 

2.5 Measurement of Binding by Fluorescence 

All fluorescence measurements were obtained from a Cary Eclipse fluorimeter (Varian; 

Palo Alto, CA, USA). In order to prevent adsorption of protein to the cuvette wall, the 

cuvette walls were blocked by adding 300µL of 10mg/mL BSA to the 3mm x 3mm 

cuvette and incubating for 20min at 293K. Measurements were taken in triplicate at slow 

speed (120nm/min; 1nm increments) with 5nm excitation and emission slit widths at 

293K after a 2min equilibration period following injection of titrant. All data sets were 

corrected for dilution values and background fluorescence. Fluorescence data points were 

obtained by averaging data from fluorescent emission across 10nm, centered on the 

fluorescence emission maxima. This data was plotted as a function of titrant 

concentration. Dissociation rate constants were obtained by fitting a curve to the data (see 

Appendix A for equation) (Goodrich and Kugel, 2007). 
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Table 6: A summary of fluorophores used in fluorescent binding experiments and their maximum 
absorbance wavelengths and measured emission wavelengths. 

Experiment Type of 
Experiment 

Excited Fluorophore 
(Absorbance Maxima) 

Emitting Fluorophore(s) 
(Wavelengths measured) 

1 Direct 
Excitation Tryptophan (280nm) Tryptophan (280-500nm) 

2 Direct 
Excitation 5-IAF (492nm) 5-IAF (502-600nm) 

3 Direct  
Excitation 2-AP (310nm) 2-AP (325-500nm) 

4 FRET Tryptophan (280nm) Tryptophan/5-IAF 
(280-600nm) 

 

The excitation and measured emission wavelengths for different experiments are 

summarized in table 6. 

2.5.1 Measurement of Intrinsic Protein Fluorescence 

After blocking, approximately 290µL of RNB buffer was added to the cuvette. 

RNBec_N22 was added to the cuvette to give a final concentration of 500nM and excited 

according to table 6, experiment 1 to measure the background fluorescence. A total of 11 

2µL individual injections of an 1892µM dA(30) solution were added to the RNBec_N22 

sample; each addition of dA(30) increased its concentration in the sample by 

approximately 12µM, to a final concentration of approximately 120µM. After each 

addition, the intrinsic tryptophans of RNBec_N22 were directly excited and the resulting 

tryptophan fluorescence was measured according to table 6, experiment 1. 

2.5.2 Measurement of Non-Natural Protein Fluorescence 

After blocking, approximately 290µL of RNB buffer was added to the cuvette. 

RNBec_N22*5IAF was added to the cuvette to give a final concentration of 500nM and 

excited according to table 6, experiment 2 to measure the background fluorescence. A 

total of 6 2µL individual injections of an 1892µM dA(30) solution were added to the 

RNBec_N22 sample; each addition of dA(30) increased its concentration in the sample 
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by approximately 12µM, to a final concentration of approximately 70µM. After each 

addition, the fluorescein molecules bound to RNase II were directly excited and 

fluorescein’s resulting fluorescence was measured according to table 6, experiment 2. 

2.5.3 Measurement of Non-Natural Ligand Fluorescence 

2.5.3.1 Titration of Fluorescent Ligand into Protein 

After blocking, approximately 295µl of RNB buffer was added to the cuvette. 

RNBec_N22 was added to give a final concentration of 1.5µM or 5.0µM and excited 

according to table 6, experiment 3 to measure the background fluorescence. A total of 10 

2µL individual injections of a 500µM dA(30)-2-AP solution was added to the 

RNBec_N22 sample; each addition of dA(30)-2-AP solution increased its concentration 

in the sample by approximately 3µM, to a final concentration of approximately 30µM. 

After each addition, the 2AP residue in dA(30)-2-AP was excited and its resulting 

fluorescence was measured according to table 6, experiment 3. 

2.5.3.2 Titration of Protein into Fluorescent Ligand 

After blocking, approximately 275µL of RNB buffer was added to the cuvette. dA(30)-2-

AP was added to a final concentration of 5µM and excited according to table 6, 

experiment 3 to measure the background fluorescence. A total of 36 1µL individual 

injections of a 625µM RNBec_N22 solution was added to the dA(30)-2-AP sample; each 

addition of RNBec_N22 increased its concentration in the sample by approximately 

4µM, to a final concentration of approximately 70µM. After each addition, the 2AP 

residue in dA(30)-2-AP was excited and its resulting fluorescence was measured 

according to table 6, experiment 3. 
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2.5.3.3 Protection of Ligand Fluorescence from Quenching  

In a protection assay, dA(30)-2-AP was incubated in the presence of acrylamide, a 

quenching agent. After blocking, 242µM of RNB buffer was added to the cuvette. 

dA(30)-2-AP was added to a final concentration of approximately 2µM and its 

unquenched fluorescence measured according to table 6, experiment 3. Acrylamide was 

then added to a final concentration of approximately 300mM acrylamide and the 

quenched 2-AP fluorophore was excited according to table 6, experiment 3 to establish a 

baseline measurement. A total of 13 2µL individual injections of a 266µM RNBec_N22 

solution was added to the dA(30)-2-AP sample; each addition of RNBec_N22 increased 

its concentration in the sample by approximately 2µM, to a final concentration of 

approximately 20µM. After each addition, the 2AP residue in dA(30)-2-AP was excited 

and its resulting fluorescence was measured according to table 6, experiment 3. 

2.5.4 Measurement of Fluorescence Resonance Energy Transfer (FRET)  

After blocking, approximately 290µL of RNB buffer was added to the cuvette. 

RNBec_N22*5IAF was added to a final concentration of 500nM and excited according 

to table 6, experiment 4 to establish a baseline measurement. A total of 9 2µL individual 

injections of an 1892µM dA(30) solution were added to the RNBec_N22 sample; each 

addition of dA(30) increased the concentration of dA(30) in the sample by approximately 

12µM, to a final concentration of approximately 95µM. After each addition, the intrinsic 

tryptophan of RNase II was excited, and the resulting fluorescence from the intrinsic 

tryptophans as well as from the bound 5-IAF molecules were measured according to 

table 6, experiment 4.  
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2.6 Measurement of Binding by Isothermal Titration Calorimetry (ITC) 

Precipitates were removed from protein and ligand samples by centrifugation at max 

speed (>10000xg) in an Eppendorf 5414C microcentrifuge (Eppendorf) at 277K for 

5min. Samples were then degassed and thermoequilibrated in a ThermoVac device 

(MicroCal; Northampton, MA, USA). Approximately 1.3mL of 25.5µM RNBec_N22 

was loaded into the sample cell of a VP-ITC MicroCalorimeter (MicroCal) and 

thermoequilibrated at 303K. From the excess sample loaded into the sample cell, a small 

sample (50µL) was removed and quantified by denaturing absorbance spectroscopy at 

280nm. Approximately 350µL of 106µM dA(30) (ligand) was loaded into the injection 

syringe. After two purge-refill cycles of the injection syringe, a small sample of dA(30) 

(10µL) was removed and quantified by measuring absorbance at 260nm. The injection 

syringe was inserted into the sample cell and a reference power baseline was established 

at 0.055J/s during which the injection syringe was in stirring mode at 450RPM. Once the 

reference power baseline was established, the experiment began. Following the baseline 

data collection, 10µL of dA(30) was titrated into the sample cell over a period of 20s 

followed by 240s during which no sample was injected. A total of 30 injections were 

performed for the experiment. The resulting data was analyzed in Origin software 

(MicroCal). Peaks corresponding to the power required to keep the sample cell at the 

same temperature as the reference cell during each injection were integrated and plotted 

as a function of DNA concentration. Binding constants were obtained by curve fitting the 

data (See Appendix A) (Fersht, 1999).  
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2.7 Measurement of Binding by Electrophoretic Mobility Gel Shift Assay 

(EMSA) 

40µM of RNBec_N22 was incubated with 400µM of dA(30) in 20µL RNB buffer for 

approximately 10min before loading onto a Native PAG to separate bound RNase 

II/DNA complexes from free RNase II. Protein was detected with the silver staining 

method as described in 3.3.1.4. 
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Chapter 3: Experimental Results 

3.1 Domain Mapping by Studying the Effect of Domains on Processivity and 

Exoribonucleolytic Activity  

3.1.1 Background – C-terminal Deletion Mutants 

Work in the Mosimann lab with RNase II deletion mutants lacking small portions of the 

C-terminus (c10 and c25, illustrated in figure 7) shows an accumulation of degradation 

intermediates not present in assays with full-length RNase II (data not shown). These 

degradation intermediates suggest that the RNase II mutants remove a specific number of 

nucleotides – fewer than the full-length protein removes – prior to dissociation from the 

rnb transcript. Following dissociation, the deletion mutants bind a new rnb transcript and 

begin degradation. Full-length RNase II degrades the chain to completion, leaving as 

products a small oligoribonucleotide and mononucleotides, with no degradation 

intermediates. This full-length RNase II activity shows up on a gel simply as a 

disappearance of full-length RNA. The small C-terminal deletions may be disrupting the 

processive activity of RNase II by causing misfolding of the bioinformatically predicted 

C-terminal S1 oligonucleotide/oligosaccharide binding (OB) domain. Following the 

publication of the crystal structure of RNase II, this S1 domain was found to be a part of 

the putative anchor region of RNase II that binds RNA, proposed by Cannistraro and 

Kennell (1999).  

The secondary structure of the rnb transcript was analyzed with GENEBEE RNA 

secondary structure prediction software (Brodsky et al., 1995; Brodsky et al., 1992). The 

stability of secondary structure elements suggest that full-length RNase II should have 

little trouble degrading the entire rnb transcript. The maximum melting temperature of 
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secondary structure predicted by GENEBEE in the rnb transcript is 313.4K according to 

Integrated DNA Technology’s (IDT) Oligoanalyzer tool. This is the single melting 

temperature that exceeds the reaction conditions of 310K, and therefore it is likely to be 

the single region of secondary structure at this temperature. The accumulation of 

degradation products may be a result of the inability of the C-terminal deletion mutants to 

degrade through the secondary structure through which full-length RNase II is known to 

degrade. However, this secondary structure is predicted to include nucleotides 1718-

1725, approximately 200 nucleotides from the 3’ end; the size of the degradation 

intermediate is not in this range. 

In order to generate a domain map of RNase II, a series of C-terminal deletion mutants 

was constructed (Figure 7), and their activity analyzed. The C-terminal deletions were 

generated using as guides either known or predicted inter-domain linkers. An alignment 

of the RNase II primary sequence to primary sequences with known structural domains 

predicts homology between a region of the C-terminus and an S1 OB domain. The c60 

deletion mutant was based on the removal of this S1 domain. The remaining three 

deletion mutants were constructed by analyzing the primary protein sequence with the 

Scooby Domain inter-domain linker prediction Java applet using the Eisenberg option 

(George et al., 2005; Pang et al., 2008). With the publication of the structure of RNase II 

(Frazao et al., 2006; Zuo et al., 2006), the C-terminal deletion mutants can be evaluated 

for their accuracy in the prediction of interdomain linkers. The crystal structure of the 

protein confirms the presence of the three bioinformatically predicted OB domains. 

These domains include two cold-shock domains (CSD) at the N-terminus and an S1 
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domain at the C-terminus (See figure 3 and 4 in introduction). The remainder of the 

protein is a 

 
Figure 7. Linear Representation of the C-terminal Deletion Mutants: Numbers at the C-terminus 
indicate the terminal amino acid. The black boxes at the N-terminus of c60, c170, c278 and c360 represent 
a 22-residue Histidine affinity tag. The grey shaded area in all constructs represent the region of the 
sequence termed RNB by Frazao et al (2006) that is unique to RNase II-like proteins. Black boxes at the C-
terminus of WT, c10 and c25 indicate an S1 oligonucleotide/oligosaccharide binding (OB) domain. 

sequence unique to RNase II-like proteins. The domains present in this region (as shown 

by the crystal structure) are composed of non-contiguous sequences. Inter-domain linker 

prediction programs only identify domains composed of contiguous sequences. As a 

result, the removal of entire domains using the Scooby Domain inter-domain linker 

prediction program was inaccurate. The c60 mutant is the most soluble of the deletion 

mutants, however, it is not as hardy as the wild-type, requiring modified overexpression 

conditions using a reduced temperature of 303K. These milder overexpression conditions 

result in far smaller quantity of overexpressed protein from a 1L preparation than can be 

obtained with wild-type protein. The c60 mutant has a truncation that is closest to the 

removal of a full domain with nearly the entire S1 domain removed. According to the 

crystal structure, however, there are still approximately 25 residues of the S1 domain left. 
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Figure 8. Residues Removed from RNB Domain in C-terminal Deletion Mutants: RNB domain 
showing the structure that has been removed as a result of C-terminal deletion mutants. In each panel, the 
black structure is absent in that panel's respective mutant; A- c170; B- c278; C- c360 

It is likely that the removal of the majority of the S1 domain effectively eliminates any 

function of the S1 domain related to its structure. The c170 mutant is only sparingly 

soluble; overexpression conditions are similar to c60, but not as much protein is 

produced. The c170 mutant removes an α-helical inter-domain linker and approximately 

twenty-five additional residues that are a component of the complex multi-domain 

structure termed the RNB domain (Figure 8) (Amblar et al., 2006). The absence of these 

twenty-five residues likely causes some misfolding, but not complete denaturation, of the 

RNB domain. In addition, there is an independent folding unit within the RNB domain 

between residues 418 and 472 that is not affected by the truncation. Both the c278 and 

c360 mutants terminate in the middle of a β-sheet and are insoluble. In the c278 mutant, 

the folding unit between residues 418 and 472, as well as nearly one third of the residues 

of the RNB domain, is absent (Figure 8B). In the c360 mutant an additional third of the 

residues from the RNB domain are removed (Figure 8C). It is likely that these deletion 

mutants cause significant denaturation of the RNB domain.  
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3.1.2 RNase Assay 

In order to assess the activity of the C-terminal deletion mutants, a novel degradation 

assay was developed. The results of the non-radioactive assay are visualized by staining 

with ethidium bromide after electrophoretic separation. The RNA genome of the 

bacteriophage MS2 is used as a substrate. MS2 RNA is easy to visualize by staining with 

ethidium bromide (see figures 9A and 9B) due to its large size – 3569 nucleotides (Fiers 

et al., 1976). The size and nearly random nucleotide distribution of MS2 RNA provides 

the potential for the formation of secondary structure. Using IDT’s OligoAnalyzer tool, 

MS2 is predicted to have only two secondary structures that are stable above 310K. 

Secondary structure is an inevitability, and a substrate with secondary structure more 

accurately represents a substrate that RNase II must degrade in vivo. An increase in 

sensitivity to secondary structure by RNase II C-terminal deletion mutants would be 

detectable when using MS2 RNA. Additionally, the length of MS2 RNA provides an 

opportunity to study the number of nucleotides over which RNase II remains processive.  

Homoribopolymeric RNAs of less than one hundred nucleotides are not suitable for the 

purpose of studying the effect of secondary structure. In addition, it does not provide 

nearly the same length as MS2 RNA does to study how long RNase II maintains 

processivity. In these ways, MS2 RNA is better suited as a substrate that would provide 

results that more accurately reflect the in vivo function of RNase II.  

Finally, the assay can provide crude kinetic data relating the disappearance of full-length 

RNA to protein concentration, providing association rate constants and turnover 

numbers. 
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Figure 9. RNase Assay of RNBec_N22 and RNBst_N22: Numbers indicate the time in minutes the MS2 
RNA sample was incubated at 310K. A: 1µM RNBec_N22; B: 1µM RNBst_N22. Note the absence of 
bands at higher mobility in Panel B. 

Although the action of RNase II on other physiological substrates has been studied 

(Amblar and Arraiano, 2005a, b; Coburn and Mackie, 1996a; Kaplan and Apirion, 1974; 
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Marujo et al., 2000; Mohanty and Kushner, 2000, 2003), it has largely been for the 

identification of RNase II specific substrates; little to no kinetic data has been generated 

using physiological substrates. 

 
Figure 10. RNase Assay of RNBec_c60: Typical degradation profile of MS2 RNA by 10µM RNBec_c60.  
Numbers indicate the time in minutes the sample was incubated at 310K. C indicates unincubated RNA. 

 
Figure 11. RNase Assay of RNBec_N22*5IAF: Comparison of MS2 RNA degradation by RNBec_N22 
(10µM) and RNBec_N22*5IAF (10µM). Numbers indicate the time in minutes the sample was incubated 
at 310K. Control reactions were incubated without any enzyme. In lanes with doublets, the top band is 
RNBec_N22*5IAF and the bottom is MS2 RNA. 

 

Figure 12. Kinetics of Association Between RNBec_N22 and MS2 RNA. A- Association curve obtained 
by measuring the fraction of MS2 RNA remaining in degradation assay with 4µM RNBec_N22. B- Plot of 
apparent rate constants as a function of RNBec_N22 concentration. 
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Degradation of MS2 RNA by 1µM RNBec_N22 (Figure 9A) was studied on a qualitative 

scale, and compared to 1µM RNBst_N22 (Figure 9B), 10µM RNBec_c60 (Figure 10) 

and later, 10µM RNBec_N22*5IAF (Figure 11). RNBec_c60 and RNBec_N22*5IAF 

were studied at higher concentrations because there was no apparent degradation of MS2 

RNA when using 1µM protein. As figures 10 and 11 illustrate, even at elevated 

concentrations these two variants are impaired in their ability to degrade MS2 RNA. 

RNBec_N22 is slightly better at degrading MS2 RNA than RNBst_N22. A striking 

feature of this assay is the absence of any intermediate band sizes (see figure 9B). If there 

is any dissociation of RNase II from the MS2 RNA at sites of secondary structure, there 

would be an accumulation of a smaller band as the larger band loses intensity. Although 

there is no accumulation of a smaller band, assays using RNBec_c60 show some 

smearing below the main MS2 RNA. This suggests that the deletion of the C-terminal 60 

residues causes RNase II to become distributive. The appearance of distributive activity 

could be a result of a decrease in affinity. This agrees with the study by Amblar et al 

(2006), in which the deletion of the S1 domain causes a decrease in affinity between 

RNase II and a 30 nucleotide RNA oligomer. The degradation of MS2 RNA by 

RNBec_N22 was studied on a quantitative scale over 60min, using 0.75µM to 4.0µM 

protein. To analyze kinetic properties, results were densitometrically quantified in 

IMAGEJ software (Abramoff et al., 2004). A hyperbolic curve (Goodrich and Kugel, 

2007) was fit through the resulting plot to obtain an apparent rate constant (see 

Appendix A). 

A typical degradation curve is seen in figure 12A. A plot of the observed association 

constant as a function of RNase II degradation (Figure 12B) yields an association 
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constant of 0.02M-1min-1. In addition, analysis of the initial rates of the degradation curve 

in figure 12A gives a turnover rate of approximately 6nt/s. To date there have been no 

published association rate constants, but the published turnover rate of RNase II on 

polyadenylate RNA (the preferred substrate) is 70nt/s (Cannistraro and Kennell, 1994), 

approximately 10-fold higher than determined here. 

3.2  Progress Towards a Fluorescent Binding Assay 

One of the goals of this project is to use fluorescence to observe the structural dynamics 

of RNase II during hydrolysis. A prerequisite for these studies is the development of a 

fluorescence-based binding assay. This fluorescent binding assay will not only confirm 

and quantify binding interactions of mutant RNase II proteins, it will also provide a 

starting point for measuring the kinetics of hydrolysis, provided the fluorescence changes 

during a hydrolysis or translocation event. In these binding studies, DNA – a known 

competitive inhibitor and non-hydrolysable analogue (Cannistraro and Kennell, 1994, 

1999; Gorelic and Apirion, 1971; Spahr, 1964) – was used in place of RNA in order to 

simplify the system by eliminating the steps of RNA hydrolysis and translocation, which 

would complicate signal interpretation.  

Experiments were designed in an attempt to identify binding events by following the 

changing fluorescent intensity of fluorophores on RNase II as a function of increasing 

substrate concentration. It is known that a change in the quantum yield of a fluorophore – 

a value relating the number of emitted photons to the number of absorbed photons (see 

Appendix A) – results in a change in fluorescent intensity. In addition, quantum yield can 

be affected by a change in the local electronic environment of a fluorophore (Lakowicz, 

1999). This sensitivity to changes in the local environment of a fluorophore can be 
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exploited to follow binding interactions. These changes may be located either at the site 

of binding or a site distal from the binding site, induced by conformational changes in 

connecting structure.  

3.2.1 Measurement of Natural Protein Fluorescence 

With 9 tryptophan residues (a naturally fluorescent amino acid) in the 644 amino acid 

RNase II, the probability of at least one tryptophan residue experiencing a change in its 

local environment upon binding of DNA is reasonably good. In order to test this 

hypothesis, dA(30) was titrated into a solution containing RNBec_N22, and the intrinsic 

protein fluorescence was measured as a function of dA(30) concentration. The 

fluorescent intensities at wavelengths 5nm below to 5nm above the emission maximum 

of tryptophan (340nm) were averaged and plotted as a function of dA(30) concentration, 

and generates a binding curve yielding a dissociation constant of approximately 30µM 

(Figure 13) (see Appendix A). This value is three orders of magnitude higher than the 

published binding constant obtained with a 30nt RNA oligomer as a ligand (Amblar et 

al., 2006; Frazao et al., 2006). 

 
Figure 13. Measurement of Binding by Direct Excitation of Tryptophan: Binding of dA(30) oligomer 
to RNBec_N22 observed by illuminating sample at 280nm and measuring fluorescence at 290-450nm. A - 
Spectra of RNBec_N22 when titrated with dA(30) oligomer; B Titration curve of dA(30) DNA oligomer 
into RNec_N22. 
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3.2.2 Measurement of Non-Natural Protein Fluorescence 

In order to confirm the dissociation constant measured above, an alternative method to 

measure binding was tested by following the change in fluorescence of a non-natural, 

protein-associated fluorophore as a function of substrate concentration.  

A common method of fluorescently labeling proteins is to covalently modify the thiol 

group of a cysteine residue with thiol-reactive fluorescent dyes. The targeting of cysteine 

residues allows for more selective labeling, as cysteine residues appear relatively rarely 

in proteins. In extreme cases where a protein has a single cysteine residue, this can be 

advantageous. Labeling of a single cysteine in the presence of a second fluorophore 

allows for FRET interactions to take place, allowing a study of dynamic interactions. 

However, as the number of cysteines, and thus the number of fluorescent dyes, increases 

so too does the complexity of the signal that must be interpreted. In addition, cysteine 

 
Figure 14. Molecular Surface of RNase II: Cysteine residues accessible to the solvent are identified in 
black. A - Identifies cysteine 112; B; Identifies cysteine 603; C - Identifies cysteines 344 and 450. 
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residues tend to be functional, and modification of a functional thiol group negatively 

impacts activity. As these functional cysteines tend to be conserved among homologues, 

an analysis of conservation may be directive in identifying functional cysteines. Three of 

the cysteines (271, 284, 399) in RNase II appear in at least 50% of the 115 bacterial 

RNase II homologues, with one (271) present in 70% of homologues. The remaining four 

cysteines (112, 344, 450, and 603) appear in fewer than 40% of the homologues, 

suggesting that the functional importance of these cysteines is limited. Prior to the 

publication of the RNase II crystal structure, no information was available about the 

location of the cysteines, making it difficult to determine the location of functional 

cysteines. However, following the publication of the RNase II crystal structure, it was 

possible to identify cysteines that are likely to be accessible to the solvent, and therefore 

susceptible to targeting with fluorescent dyes. Analysis of the RNase II surface residues 

shows that the four cysteines with the least conservation appear on the surface of 

RNase II (Figure 14), making them good targets for fluorescent labeling. RNase II was 

labeled with 5-IAF, a thiol-reactive fluorescein derivative that is very sensitive to 

changes in its local environment. Typically, 63% of the RNase II subjected to the 

labeling reaction was recovered. This sample was spectroscopically quantified under 

denaturing conditions at 280nm and 492nm (the latter value is the absorbance λmax of 

5-IAF), and was found to be labeled in a 0.6:1 ratio of dye to protein. This ratio suggests 

that there is a large portion of the RNase II population that is not fluorescently labeled. 

Of the labeled RNase II molecules, it cannot be determined with the techniques used here 

the population of RNase II molecules bearing a single 5-IAF molecule. This is due to the 

presence of more than one solvent accessible cysteine and the resulting possibility that 
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some RNase II molecules may bear more than one 5-IAF molecule. A plot of the 

fluorescence at the emission maximum of 5-IAF (525nm; data points are the average 

fluorescence of 520-530nm) revealed no change in fluorescence as a function of 

increasing dA(30) concentration (Figure 15). Lack of change in the fluorescent signal 

may be reporting one of three results. First, there may be no binding events taking place 

under these conditions. It is unlikely that no binding is occurring, as DNA oligomer has 

been reported to have a Ki of approximately 30µM (Cannistraro and Kennell, 1994). 

Second, it is possible that the fluorescence of bound 5-IAF simply does not reflect 

binding events. Figure 14 shows that there are three cysteine residues that are located on 

parts of RNase II that are nowhere near the binding site. It is possible that binding does 

not alter the local environment of residues 112, 344 or 450. Third, it is possible that 

labeling interferes with binding. For example, cysteine 603 is located in the S1 domain, 

which is known to be important for binding (Frazao et al., 2006). As a result, labeling of 

cysteine 603 may prevent binding of nucleic acid to RNase II. Clearly, another 

fluorescent binding assay is required to confirm the initial binding results. 

 
Figure 15. Measurement of Binding by Direct Excitation of 5-IAF: A- Spectra of RNBec_N22*5IAF 
when titrated with dA(30) oligomer and excited at 492nm. B- Structure of 5-IAF. 
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3.2.3 Measurement of Fluorescence Resonance Energy Transfer (FRET)  

FRET occurs when a pair of fluorophores come into molecular proximity and transfer 

energy through a resonance mechanism. In FRET, a pair of fluorescent dyes is selected 

based on the spectroscopic properties of each dye. The dyes are chosen so that the 

emission spectrum of one fluorophore – called the donor – overlaps with the absorbance 

spectrum of the second dye – called the acceptor. This is described by the overlap 

integral. In this type of system, the donor fluorophore can be excited, and when in 

molecular proximity to the acceptor fluorophore, transfers energy to the acceptor in a 

radiationless process, causing acceptor dye fluorescence. The extent to which energy is 

transferred can be quantified by a value known as the FRET efficiency, which is 

described in Appendix A. A unique property of a particular dye pair that is intrinsically 

related to the FRET efficiency is a value called the Förster distance. The Förster distance 

is the distance at which the transfer of energy between the two fluorophores is 50%. 

When the distance between the fluorophores reaches a critical distance of approximately 

twice the Förster distance, the transfer efficiency reaches 1.56% (Lakowicz, 1999). If the 

dyes are any further apart than twice the Förster distance they effectively cease their 

transfer of resonance energy. The interaction between the two fluorophores over a range 

of twice their Förster distance is very sensitive; the FRET efficiency can be directly 

related to the distance separating the fluorophores (Lakowicz, 1999). 

In the case of RNase II, the two fluorophores are intrinsic tryptophans and a 5-IAF 

molecule. A change in FRET efficiency as a function of increasing ligand concentration 

will report conformational changes associated with ligand binding. The overlap integral 

of L-tryptophan and 5-IAF was evaluated in order to determine the suitability of 
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tryptophan and 5-IAF as a FRET dye pair (Figure 16A). The small overlap integral 

indicates that FRET may occur. Although an experiment with these fluorophores would 

not be designed for the sole purpose of FRET, their presence on RNase II provides an 

opportunity to observe a relative movement between 5-IAF and one or several tryptophan 

residues, reflecting the conformational changes that may occur during binding. 

The availability of the RNase II crystal structure during these experiments allowed the 

measurements of distances between RNase II’s intrinsic tryptophan residues and 

cysteine. This analysis revealed numerous distances less than 40Å (Table 7), a distance 

over which this pair of fluorophores has been shown to interact (Zukin et al., 1977). The 

presence of fluorescence at the emission maximum of 5-IAF (525nm) when 

RNBec_N22*5IAF was excited at 280nm indicated that there is a resonance energy 

transfer between tryptophan and 5-IAF. The addition of dA(30) caused a change in 

fluorescence intensity of both tryptophan and 5-IAF (Figure 16).Titration curves were 

obtained by plotting the average fluorescence across 10nm centered on the emission 

maximum of both tryptophan (340nm) and 5-IAF (525nm) as a function of increasing 

dA(30) concentration. Curve-fitting of the data (see Appendix A) results in nearly 

identical Kd values of 32µM when measured by tryptophan emission and 29µM when 

measured by fluorescein emission (Figure 16C). These values match very well with the 

dissociation constant obtained by measuring tryptophan fluorescence (30µM). However, 

both Plots show a decrease in fluorescence. This type of correlation between 

fluorophores is not consistent with a typical change in FRET efficiency as a result of a 

change in distance between two fluorophores. Rather than a reciprocal relation between 

donor and acceptor fluorescence typically seen when the distances between the  
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Figure 16. Measurement of Binding by FRET Between Tryptophan and 5-IAF: Binding of dA(30) 
DNA oligomer to RNBec_N22*5IAF observed by illuminating sample at 280nm and reading fluorescence 
at 290-550nm. A - Absorbance and Emission spectra of L-tryptophan and 5-iodoacetamidofluorescein; B - 
Spectra of RNBec_N22*5IAF when titrated with dA(30) oligomer; C - Titration curves of dA(30) DNA 
oligomer into RNBec_N22*5IAF measured using 5IAF fluorescence (top curve) and tryptophan 
fluorescence (bottom curve); D - Titration curve of dA(30) DNA oligomer into L-tryptophan. 

Table 7: Distances (in angstroms) separating the Sγ of cystidyl residues from the Cδ of tryptophyl 
residues in RNase II. Distances in grey cells are distances under 40 angstroms. 

 Trp127 Trp161 Trp162 Trp234 Trp319 Trp326 Trp350 Trp495 Trp548 
Cys112 13 25 21 48 62 58 59 50 21 
Cys344 45 32 40 33 14 19 14 17 38 
Cys450 47 37 44 41 33 38 12 21 39 
Cys603 34 34 40 60 53 54 45 29 47 

 
fluorophores change, there is a direct relation between donor and acceptor fluorescence. 

This is most likely reporting that the fluorescein is receiving less energy from tryptophan 

not because fluorescein is further away, but because tryptophan fluorescence is being 

quenched by another process. Studies on the interaction of tryptophan mono- and 
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tripeptides show that tryptophan fluorescence can be quenched by the adenine bases of 

oligomeric adenylate (Toulme et al., 1974). To test the hypothesis that tryptophan is 

quenched by adenine bases in these experiments, free L-tryptophan was titrated with 

dA(30) under the same conditions as in the FRET experiment. Analysis of the data with 

an equation used to obtain binding constants gives a value of 29µM (Figure 16D). This 

change in fluorescent signal obtained in from these experiments is a result of a quenching 

event. That the values of the previous fluorescence binding experiments are the same 

suggest that these data are also reporting quenching.  

3.2.4 Measurement of Non-Natural Ligand Fluorescence 

Experiments using fluorescently labeled protein did not generate any dissociation 

constants. An alternative to using a fluorescently labeled protein as a reporter of binding 

events is to use a fluorescently labeled ligand.  

2-aminopurine (2-AP) is a fluorophore that is structurally similar to adenine (Ward et al., 

1969) and has previously been used in studies of nucleic acid conformation (Malta et al., 

2006). A particularly useful property of 2-AP relates to its fluorescence in different local 

environments; 2-AP is less fluorescent when it is base-stacking with another aromatic 

compound, such as an adenine base, than when it is not base-stacking. This property has 

been exploited in a study of nucleotide excision repair proteins (Malta et al., 2006) to 

identify bases that have been flipped out of a DNA duplex. In addition, 2-AP is almost 

two orders of magnitude more fluorescent when in free nucleotide form than when it is a 

part of a nucleotide chain (Ward et al., 1969), a useful property that may be exploited to 

monitor cleavage events. Based on the currently available crystal structure of RNase II in 

complex with RNA, we designed a binding assay that would exploit the effect of 
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Figure 17. Measurement of Binding by Direct Excitation of 2-AP: Binding of dA(30)-2-AP to 
RNBec_N22 observed by illuminating sample at 310nm and measuring fluorescence at 325-475nm. A, C - 
Difference spectra of RNBec_N22 when titrated with dA(30)-2-AP for three individual experiments; B, D - 
Titration curve of dA(30)-2-AP into RNBec_N22 for A and C respectively; E - Typical experimental 
fluorescence spectra; F - Titration curve combining data from B and D. 

conformation on fluorescence. The RNase II structure shows 5 nucleotides at the 3’ end 

of the RNA chain clamped into a base-stacked arrangement by a phenylalanine side-

chain at the 5’ end and a tyrosine side-chain at the 3’ end. The sixth nucleotide from the 

extreme 3’ end however, is not participating in any base-stacking interactions (Figure 6). 

With the assumption that a 30 nucleotide, single-stranded DNA molecule in an aqueous 
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environment adopts a helical conformation where all bases are stacked, a substrate – 

hereafter referred to as dA(30)-2-AP – was designed with a 2-AP residue at the sixth 

position from the 3’ end. This would take advantage of the change in the fluorescence of 

2-AP when it shifts from base-stacked conformation (unbound) to non-base-stacked 

conformation (bound). With wild-type RNase II in the sample cuvette, dA(30)-2-AP was 

titrated into the RNase II solution. Only a small fluorescent change was observed (Figure 

17; compare panel E with panels A and C), and the signal to noise ratio is not favorable 

for determining binding. In an attempt to reduce the signal to noise ratio of the binding 

assay, the system was reversed so the titrant does not add significant fluorescence to the 

system. In order to do this, the dA(30)-2-AP was in the cuvette, and was titrated with the 

RNase II, which does not fluoresce at the excitation wavelength used (310nm). A plot of 

the data revealed a nearly linear plot of fluorescence as a function of increasing protein 

concentration with what appears to be the beginning of a saturation point at higher 

protein concentrations. The Kd of this curve is 180µM with a standard deviation of 40µM 

 
Figure 18. Measurement of Binding by Direct Excitation of 2-AP: Reversal of Experimental Set-Up: 
Binding of dA(30)-2AP to RNBec_N22 observed by illuminating sample at 310nm and measuring 
fluorescence at 325-475nm. A - Spectra of dA(30)-2AP when titrated with RNBec_N22; B - Titration 
curve of RNBec_N22 into dA(30)-2AP. 
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 (Figure 18B).This titration was performed to a maximum protein concentration of 

70µM. Beyond this concentration, no information can be gathered, as the C-terminal 

deletion mutants cannot be purified to this concentration. 

3.2.5 Protection of Ligand Fluorescence from Quenching  

As seen in figure 18 above, there is an indication of saturation at higher concentrations. 

However, the binding constant obtained from this curve is inaccurate as indicated by the 

large standard deviation. In order to amplify the change in fluorescence upon binding, an 

assay was designed to exploit the quenching of 2-AP by acrylamide. In this quenching 

assay, the fluorescence of unbound dA(30)-2-AP would be reduced by acrylamide, a 

quenching agent. Binding of RNase II to dA(30)-2-AP would protect 2-AP from the 

acrylamide, thus increasing the fluorescence of the system. Based on the study by Malta 

et al (2006), RNase II was titrated into 1.5µM dA(30)-2-AP in the presence of 300mM 

acrylamide. As seen in the experiments where RNase II was titrated into dA(30) in the 

absence of a quenching agent, a linear plot was observed (Figure 19). Unfortunately, the  

 
Figure 19. Measurement of Binding by Protection of 2-AP from a Quenching Agent: Binding of 
dA(30)-2AP to RNBec_N22 in the presence of 300mM acrylamide, observed by illuminating sample at 
310nm and reading fluorescence at 325-450nm. (a) - Spectra of dA(30)-2AP when titrated with 
RNBec_N22, corrected for presence of dA(30)-2AP and protein; (b) Titration curve of RNBec_N22 into 
dA(30)-2AP in the presence of 300mM acrylamide. 
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increase in fluorescence intensity upon addition of RNase II is no greater than in the 

same experiment without a quenching agent. A binding constant was not determined 

because the curve did not show any indication of saturation, which is required for the 

determination of a binding constant. This experiment was intended to increase the values 

of the difference spectra; its inability to do so makes it no more useful than those in 

section 3.2.4. 

3.3 Measurement of Binding by Isothermal Titration Calorimetry  

Concurrent with the fluorescence studies, non-radioactive, non-fluorescent ITC 

experiments were conducted to provide an additional verification of any binding results 

generated with the fluorescent assays. In addition to its usefulness in confirming binding 

results, it is also useful in providing thermodynamic data regarding binding events. To 

date, there have been no thermodynamic investigations into the binding between RNase 

II and nucleic acids. Under conditions where a binding event generates a strong thermal 

signal, isothermal titration calorimetry is a very effective and sensitive method for 

studying not only binding events, but also the thermodynamic properties of binding 

events. Using a series of experiments conducted at different temperatures, a heat capacity 

can be generated. From these experimentally determined heat capacities and binding 

constants, enthalpic and entropic values can be inferred.  

The main adiabatic chamber of an ITC instrument contains a sample cell and reference 

cell. The sample cell contains the experimental sample while the reference cell contains a 

solution identical to that in the sample cell minus the macromolecule being studied. The 

cells are connected to an extremely sensitive heat monitoring system and a power cell. 

The instrument responds to a loss or gain of heat in the sample cell by adjusting the 
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Figure 20. Measurement of Binding by ITC: ITC binding assays using RNBec_N22 in A/B and 
RNBst_N22 in C/D titrated with dA(30). The panels on the left (A and C) are the raw data and represent 
the amount of power required to equilibrate temperature in the sample cell with that in the reference cell. 
The data points in the right panels (B and D) are the integrated power of the peaks in panels A and C, 
plotted as a function of the concentration of dA(30) in the sample cell. 

power output to maintain a sample cell temperature equal to that of the reference cell. 

The dissociation constant defined for RNBec_N22 using ITC is 1.6µM, however, it also 

generates a standard deviation of 1.7µM (Figure 20A, B). Data obtained for RNBst_N22 

revealed weaker binding, with a dissociation constant of 22.5µM with a standard 

deviation of 4.3µM (Figure 20C, D); this weaker affinity supports the qualitative data 

obtained from the RNase assays suggesting that RNBst_N22 is not as efficient as 

RNBec_N22 in degrading MS2 RNA. While these binding values are plausible, the 

magnitude of the error for RNBec_N22, is the same as the value obtained for the binding 
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constant, and means that this value is not as accurate a value as ITC can provide. 

Although the standard deviation for the dissociation constant of RNBst_N22 is smaller 

relative to the dissociation constant, in absolute terms, it is greater than that obtained 

from RNBec_N22. To maximize the power of ITC to generate accurate binding values, 

the standard deviation needs to be reduced. It is possible to increase the signal to noise 

ratio; however, the resources required to pursue this course of action limit this method’s 

applicability. 

3.4 Measurement of Binding by Electrophoretic Mobility Gel Shift Assay 

A commonly used method for quantifying the binding of DNA/RNA to RNase II is 

monitoring a change in electrophoretic mobility of nucleic acid upon binding of substrate 

to RNase II. EMSA studies following binding of nucleic acids to RNase II typically use 

nucleic acids synthesized in the presence of [32P]dUTP[αP], and the nucleic acid shift is 

visualized by autoradiography. One study in particular used SL9A, an 83nt synthetic, 

secondary structure containing RNA oligomer, and the naturally occurring malE-malF 

transcript (375nt), also containing secondary structure (Amblar et al., 2006). As this 

project was intended to avoid radioactivity, another sensitive method was needed in order 

to visualize a band shift. The band shift was followed by visualizing the protein shift 

using silver stain. After incubating 40µM RNBec_N22 with 400µM dA(30) for 10min in 

a 20µL sample volume, different volumes of the reaction sample were simultaneously 

analyzed using Native PAGE. In both the 2.5µL and 5µL loads, a faint band appears in 

the RNase II+dA(30) lane that has a lower mobility than the RNase II only lane (Figure 

21). Although the new band indicates a binding event, there is not enough separation 

between the major and minor bands to accurately quantify densitometrically. 
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Figure 21. Visualization of Binding by EMSA: Binding of RNase II to dA(30) oligomer visualized by 
electrophoretic mobility gel shift assay. All lanes are loaded with 40µM RNase II, with different amounts 
loaded. Lanes A and B have 100pmol RNase II, lanes C and D have 200pmol and lanes E and F have 
400pmol. Plus and minus symbols indicate presence or absence of 400µM dA(30) ligand respectively. 
Asterisk at left of figure shows a shift in RNase II mobility.  

3.5 Site-Directed Mutagenesis to Generate RNase II D209N Mutant 

In a system where binding and catalysis are difficult to separate it is useful to have a 

catalytically inactive but otherwise unchanged mutant protein to remove the complication 

of catalytic steps from the measurement of binding events. In the case of RNase II, an 

inactive mutant has been reported, sequenced and purified (Amblar and Arraiano, 2005a, 

b), with the residue responsible for the loss of catalytic activity identified as 209. Residue 

209 is an aspartate in wild-type RNase II and an asparagine in the catalytically inactive 

mutant. Despite the inability of the mutant – hereafter referred to as D209N – to degrade 

typical RNase II substrates, it retains the ability to bind these substrates with the same 

efficiency as wild-type RNase II. This mutant was generated to study the binding 

characteristics of RNase II. 
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Chapter 4: Discussion  

4 Overview 

The goal of this project is to improve the current model of RNase II structure and 

function. In particular, we aimed to use fluorescent methods to study the structural 

dynamics of RNase II as it degrades RNA in an effort to elucidate its processive catalytic 

function and mechanism. To this end, a series of RNase II C-terminal deletion mutants 

was generated and assayed for activity in order to establish a domain map. The 

information regarding the domain composition obtained from this approach would 

greatly facilitate the specific fluorescent labeling of sites in each domain in order to 

provide insight into the structural dynamics of RNase II using FRET. 

The publication of three papers in rapid succession describing the domain composition 

and three dimensional structure of RNase II provided the opportunity to move directly 

into the development of a fluorescent system for studying structural dynamics. The paper 

by Amblar et al (2006) describes significant work with a C-terminal deletion mutant 

similar to RNBec_c60, and implicates the C-terminal S1 domain in RNA binding, while 

identifying a previously uncharacterized structural domain. The papers by Frazao et al 

(2006) and Zuo et al. (2006), describe the structure of RNase II at high resolution. These 

crystal structures show that the C-terminal deletion mutants generated here terminate at 

regions that are not inter-domain linkers, as predicted by the Scooby Domain server, but 

rather at various points within a complex multi-domain structure. The development of 

non-fluorescent assays was pursued concurrently in order to support and validate the 

results obtained using fluorescence. 
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4.1 C-Terminal Deletion Mutants 

In order to generate a domain map of RNase II, a series of C-terminal deletion mutants 

was generated and assayed. The results of the activity assays were analyzed and the 

success of the prediction algorithm in selecting inter-domain regions was assessed. The 

publication of the X-ray crystallographic structure at the midpoint of the project allowed 

us to evaluate the initial set of C-terminal deletion mutants and carry on with the 

development of a FRET based system to study RNase II structural dynamics.  

The C-terminal deletion mutants were generated by analyzing the output of the Scooby 

Domain inter-domain prediction server. The Scooby Domain successfully predicted the 

inter-domain region that was used when generating RNBec_c60. The design of this 

mutant was greatly facilitated by the presence of a structurally characterized domain that 

is homologous to the 60 C-terminal residues. Unlike RNBec_c60, the Scooby Domain 

server was not as successful at predicting inter-domain regions used when generating the 

larger C-terminal deletions. RNBec_c170 can fold and has been purified, in contrast, 

RNBec_c278 is only slightly soluble, and RNBec_c360 cannot be purified. According to 

the crystal structure, these mutants lack large sections of the RNB domain, likely 

contributing to their insolubility (see figure 8A-C).  

The approach taken in designing these deletion mutants is reliable when considering that 

the majority of proteins have simple, contiguous domains. However, RNase II has 

complex domains and significant inter-domain interfaces. Due to these significant 

inter-domain interfaces, it is difficult to remove single, complete domains from these 

types of proteins. 



 

 Page 64 of 90 

In spite of the vast inter-domain interfaces, the crystal structure shows a domain 

composed of residues 418-472 and located within RNB domain. Zuo et al. – who 

published the crystal structure of RNase II one month after Frazao et al. (2006) – note 

that although this domain does not contain any of the conserved sequence motifs, it does 

form one wall of the catalytic pocket. It would be interesting to see if a deletion of this 

domain affects the exonucleolytic activity of RNase II. Additionally, Zuo et al. (2006) 

identify several positively charged residues (R535, R536, R539, R543) on the long 

α-helix that spans the distance between the RNB domain and the S1 domain that 

completes a basic ladder started by R500 and K501 of motif IV in the RNB domain. The 

effect of this helix on the processive mechanism of RNase II could be studied with 

RNBec_c170, the mutant in which this helix and motif IV (in which R500 and K501 are 

located) are absent, by another mutant that removes only the S1 domain and this helix, or 

by site-directed mutagenesis. 

4.2 RNase Assays 

In order to work towards generating a domain map of RNase II, the entire C-terminal S1 

domain was targeted for deletion as described in the previous section. MS2 RNA 

hydrolysis by RNBec_c60 was analyzed using this RNase assay. The degradation of MS2 

RNA by RNBec_c60 is significantly impaired compared to degradation by RNBec_N22. 

In order to degrade MS2 RNA to a similar extent as RNBec_N22, RNBec_c60 is 

required at a concentration ten times higher than RNBec_N22. Although there were no 

discrete degradation intermediates, the results of the RNase assay for RNBec_c60 show 

smearing directly beneath the main band that is not seen with the MS2 RNA degraded by 

either RNBec_N22 or RNBst_N22 (see figures 9A and 9B in results). This smearing is 
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likely caused by a decrease in the number of hydrolytic turnovers over which 

RNBec_c60 remains processive. Binding studies of a deletion mutant similar to 

RNBec_c60 shows that the binding of the deletion mutants is two to ten times weaker 

than the binding of the full-length RNase II (Amblar et al., 2006). Consequently, this 

impaired processivity is likely a result of a decrease in binding affinity. 

The degradation of MS2 RNA by RNase II from two different organisms (Salmonella 

typhimurium – RNBst_N22; Escherichia coli – RNBec_N22) is largely similar; each 

enzyme processively degrades MS2 RNA molecules to completion at the same 

concentration over the same time. However, this RNase assay shows that RNBec_N22 

converts full-length MS2 RNA to a species that is electrophoretically distinct from 

full-length MS2 RNA approximately two times faster than RNBst_N22. Over one hour, 

RNBec_N22 converts 75% of full-length MS2 RNA to a species electrophoretically 

distinct from full-length MS2 RNA compared to 40% converted by RNBst_N22. The 

source of this difference is unclear. 

In addition to describing the qualitative properties of different RNase II proteins, a series 

of RNase assays using varying RNase II concentrations provide an association rate 

constant of 0.02M-1min-1 for the binding of MS2 RNA to RNase II. This is the first rate 

constant obtained for the association of RNase II to any nucleic acid to our knowledge; as 

a result it cannot be compared to any other values in the literature. Additionally, it 

provides an RNA turnover rate of approximately 6nt/s. The experimental design and 

assumption inherent in this calculation are likely to underestimate this turnover rate. 

Cannistraro and Kennell (1994) obtained a turnover rate of 70nt/s using polyadenylic 

acid, a synthetic homoribopolymer, as their substrate. Polyadenylic acid has no secondary 
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structure and is the preferred substrate of RNase II. Stretches of polyadenylate occur 

naturally in the cell, where they are synthesized at the 3’ end of some mRNAs in a 

process which appears to play a role in gene regulation (Marujo et al., 2000). It is not 

presently clear whether polyadenylation increases or decreases gene expression as there 

have been conflicting reports that polyadenylation both destabilizes mRNA by targeting 

mRNA for degradation (Dreyfus and Regnier, 2002; Joanny et al., 2007), and stabilizes 

mRNA by RNase II-mediated removal of the 3’ tail to which mRNA degradation 

machinery is proposed to bind (Marujo et al., 2000). Although polyadenylic acid is 

interesting when studying gene regulation, MS2 RNA, a physiological substrate and the 

target substrate in our RNase assay is interesting in that it more accurately represents the 

bulk RNA that RNase II would encounter in vivo. MS2 RNA does not have a 3’ 

polyadenylate tail and has a relatively even distribution of the four ribonucleotides. The 

lack of a polyadenylate tail provides a sub-optimal binding target, while the distribution 

of the four ribonucleotides generates secondary structures through which RNase II must 

degrade. Each of these characteristics provides barriers to RNase II activity, leading to a 

lower RNA turnover rate than described by Cannistraro and Kennell (1999). 

The rate of 6nt/s is nearly an order of magnitude lower than the rate at which mRNA is 

synthesized in vivo, which is 20-50nt/s (Voet and Voet, 2004). It is important that the rate 

of mRNA synthesis and exonucleolytic degradation closely balance each other, as a 

depletion of free nucleotides in the cell delays the production of gene products required 

by the cell at any given moment. This implies that the crude value obtained from our 

RNase assay is an underestimation while suggesting that the turnover rate of 70nt/s 

reported by Cannistraro and Kennell (1994) is an upper limit. Another enzyme that may 
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aid in balancing the synthesis and degradation of RNA in E.coli is Polynucleotide 

phosphorylase (PNPase), a phosphate dependant 3’-5’ exoribonuclease. An additional 

factor in the slower RNA turnover rate measured here may have to do with the absence of 

an endoribonucleases in the system. It has been proposed that the endoribonuclease 

RNase E makes several cuts in an mRNA transcript during its degradation (Carpousis et 

al., 1999). It is to the 3’ ends generated by this endonucleolytic cleavage that RNase II is 

proposed to bind and subsequently degrade (Carpousis et al., 1999). Endoribonucleolytic 

cleavage of mRNA 5’ to secondary structure elements would increase the RNA turnover 

rate by moving secondary structure to the 5’ end of mRNA fragments, the point at which 

RNase II typically dissociates. The absence of an endoribonucleases likely slows the 

RNA turnover rate by forcing RNase II to degrade through secondary structure through 

which RNase II would not normally have to degrade. 

Another factor leading to an underestimation of the RNA turnover rate compared to the 

previously published value is an assumption made in the analysis of the data. This 

assumption relates to the inability of this assay to observe dissociation. As a result, only 

binding events that result in degradation of MS2 RNA are measured. It is unlikely, 

however, that there is not dissociation in this system.  

4.3 Binding Assays 

4.3.1 Fluorescence Binding Assays 

The development of a fluorescent binding assay was pursued by following the fluorescent 

emission of tryptophan, 5-IAF (thiol-specific label) and 2-AP (substrate) as well as by 

following the FRET between tryptophan and 5-IAF. 
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The binding assay following the tryptophan fluorescent upon addition of dA(30) to 

RNBec_N22 generates a dissociation constant of approximately 30µM. Subsequent 

experiments measuring the FRET between tryptophan and 5-IAF covalently linked to 

RNase II also generates a dissociation constant of around 30µM. A second look at the 

FRET results however, suggests that this value is an artifact.  

Typically in FRET, there is an inverse correlation between the fluorescence of the donor 

and acceptor fluorophores; an increase in donor fluorescence accompanied by a decrease 

in acceptor fluorescence is characteristic of a decrease in FRET efficiency and is 

generally accepted to report an increase in distance between the fluorophores. 

Conversely, a decrease in donor fluorescence accompanied by an increase in acceptor 

fluorescence is characteristic of an increase in FRET efficiency, reporting a decrease in 

distance between the fluorophores. The FRET experiment conducted in this work reports 

neither of these events. Both the donor and acceptor fluorophores show a decrease in 

fluorescence upon addition of ligand to the system. In the FRET experiment conducted 

here the fluorescence of tryptophan is decreased by an alternative quenching event in the 

presence of dA(30).  

Because the quenching appears as a function of increasing dA(30) concentration, the 

quenching must be related to the presence of dA(30). A search of the literature for 

adenylate-mediated quenching reveals that the quenching of tryptophan by adenine is a 

known phenomenon (Toulme et al., 1974). Titration of free L-tryptophan amino acids 

with dA(30) generates a dA(30) dependant change in tryptophan fluorescence nearly 

identical to that obtained by titrating dA(30) into RNase II. Therefore, the binding curves 

obtained in these experiments are due to the non-specific binding of dA(30) to RNase II, 
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which quenches tryptophan fluorescence, meaning that specific binding likely has a 

lower binding constant. 

The results obtained from fluorescently labeling RNase II suggest that RNase II will not 

be susceptible to labeling with thiol-reactive fluorophores following the removal of a 

single cysteine residue (residue 603). A survey of the surface of RNase II suggests that 

there are four cysteines accessible to the solvent. When RNase II is shotgun labeled, the 

ratio of 5-IAF molecules to RNase II molecules is 0.6:1, suggesting that, on average, only 

one cysteine is accessible for covalent modification. Upon removal of this cysteine, other 

cysteines can be engineered into the RNase II sequence at discrete locations, allowing for 

fluorescent labeling and subsequent structural dynamic studies. 

The use of 2-AP as a fluorophore was predicated on the properties of 2-AP in different 

conformational states. The substrate that was designed based on information from the 

crystal structure, containing a 2-AP base in the sixth residue from the 3’ end, does not 

generate usable results. This outcome however, is not due to a conceptual flaw in the 

experimental setup, but rather indicates that optimization of this system is still required. 

There are still many positions within the RNA chain at which the 2-AP can be positioned. 

It is likely that the presence of 2-AP at one of these positions will generate usable results. 

4.3.2 Isothermal Titration Calorimetry (ITC) 

In order to complement the fluorescence binding studies, the binding of dA(30) to 

RNase II was also studied using ITC. This technique does not require a reporter group 

that may adversely affect enzyme activity and provides additional information regarding 

the thermodynamic properties associated with binding events. 
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RNase assays show that RNBec_N22 is able to convert full-length MS2 RNA to a 

species that is electrophoretically distinct from full-length MS2 RNA slightly faster than 

RNBst_N22. The ITC experiments show that the binding constant of RNBst_N22 

(22.5µM) is approximately five times higher than that of RNBec_N22 (4.3µM), 

supporting the finding from the RNase assay. Although it is difficult to directly compare 

the results of ITC to the results of the RNase assay, the trend is the same.  

Additionally, ITC experiments with RNBec_c60 show no binding at the same 

concentrations used with RNBec_N22 and RNBst_N22. This is also consistent with the 

results of the RNase assay, where RNBec_c60 is unable to degrade MS2 RNA at the 

same concentration that the full-length RNase II can. Again, this may be explained by 

two to tenfold drop in affinity between RNA and an RNase II mutant lacking its S1 

domain (Amblar et al., 2006). 

Although this technique will provide evidence to which the results from fluorescent 

binding studies can be compared, a full scale thermodynamic study of RNase II using 

ITC would be prohibitively expensive. 

4.3.3 Electophoretic Mobility Gel Shift Assay (EMSA) 

The results of the EMSA studies provide additional support that there is binding at the 

concentrations used. Despite its extensive use in the literature, EMSA is not a true 

equilibrium technique, and is not ideal for the quantitative analysis of binding. Rather it 

is useful for obtaining an estimate of the range of concentrations in which binding occurs. 

This is not a true equilibrium technique because electrophoresis separates the complex 

from unbound RNase II and RNA. The shift of the system away from equilibrium 
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presents the opportunity for complex dissociation, therefore underestimating the binding 

constant. 

4.4 Future Directions 

Following the goal of this project, work will be continued to develop a system to measure 

the structural dynamics of RNase II using fluorescence. By utilizing a combination of 

intramolecular and intermolecular FRET dye pairs, it will be possible to describe binding, 

hydrolysis and translocation at a molecular level. The knowledge garnered from the 

publication of the high resolution structure of RNase II provides a valuable starting point 

in designing proteins that can be labeling at positions for the study of a variety of 

RNase II properties.  

4.4.1 Binding Assay 

The development of a fluorescent binding assay can continue by utilizing currently 

available materials. At present, RNase II labeled with 5-IAF and dA(30) labeled with 

2-AP are available. FRET between these dyes would provide a low background binding 

assay, and would be the next system to test, however, time constraints prevented a study 

of this system.  

As is the case in the spectral overlap between tryptophan and 5-IAF, the spectral overlap 

between 2-AP and 5-IAF is not optimal (Figure 22). However, the results from the FRET 

experiments suggest that there may be sufficient energy transferred to measure through 

acceptor fluorescence. In this experiment, the dA(30)-2-AP can be excited, and only 

when it is bound to RNBec_N22*5IAF, will it transfer energy, resulting in 

RNBec_N22*5IAF fluorescence. As the transfer of energy will only happen when the 

ligand is bound to RNase II, fluorescein emission will be a more sensitive reporter of 
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binding events. Additionally, the issue of background fluorescence will not complicate 

the data, as the measurement of the light emitted at the emission maxima of 5-IAF will 

not detect the fluorescence of the increasing concentrations of 2-AP. As is the case with 

tryptophan and 5-IAF, the overlap integral between 2-AP and 5-IAF is not optimal, 

however it does provide a potential method for detecting the binding of nucleic acid to 

protein by only providing a change in signal when the two fluorophores come into close 

proximity to one another (under 100Å). 

 5-IAF bound to RNase II is not sensitive to the addition of dA(30), and the overlap 

integral with tryptophan required for FRET is very small. An alternative dye that is more 

frequently used in FRET studies in conjunction with tryptophan is 

5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS). 

IAEDANS has an absorbance maximum of 356nm, which provides a larger overlap 

integral when paired with tryptophan. However, it has already been shown that 

tryptophan fluorescence is quenched by dA(30). Rather than using the compromised 

tryptophan fluorescence, an alternative donor fluorophore may be used. As dA(30)-2-AP 

 
Figure 22. Spectra of 2-AP and 5-IAP: Spectral overlap between 2-aminopurine and 
5-iodoacetamidofluorescein 
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is already available, it would be a suitable choice as a donor fluorophore. In addition, this 

type of system will provide the benefit of visualizing acceptor fluorescence only in cases 

where the donor fluorophore is within molecular proximity of the acceptor, which in this 

case is a binding event.  

Another alternative binding assay is to analyze data obtained in quenching experiments 

with modified Stern-Volmer plots (Lakowicz, 1999). These plots measure the fractional 

accessibility of fluorophores in solution, and if the concentrations are known, can be 

extended to determine the number of fluorophores that are unquenched. A series of 

experiments at increasing dA(30)-2-AP concentrations, measuring the effects of a 

quenching agent on the fluorescence of dA(30)-2-AP in the presence of RNase II and its 

mutants, can potentially describe the quantity of dA(30)-2-AP bound to RNase II, and 

may provide sufficient data to describe the binding affinity for each of these variants  

The binding may be observed using a property of fluorescence that is distinct from its 

intensity. This property, fluorescence anisotropy is a measure of how fast a molecule 

tumbles in solution. This value is obtained by measuring the polarization of emitted light 

from a fluorophore that has been excited by polarized light. The fluorescence anisotropy 

of dA(30)-2-AP could be measured before and after binding to RNase II. A binding event 

between the relatively small dA(30)-2-AP and the larger RNase II would decrease the 

freedom dA(30)-2-AP has to tumble, significantly increasing the anisotropy of the 

fluorophore. 

Once an appropriate fluorescent binding assay has been developed, the project can move 

forward to study the structural dynamics of RNase II. 
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4.4.2 Kinetics 

Following the development of a fluorescence based binding assay and subsequent 

confirmation with non-fluorescent methods, the next goal in this project would be to 

characterize the kinetics of binding, such as association and dissociation rate constants. 

The kinetics of association and dissociation to a variety of substrates, ranging from 

polyadenylate, the preferred substrate of RNase II, to precursor tRNAs and rRNAs will 

provide insight into the in vivo function of RNase II. Specifically, these values may help 

in elucidating the role of RNase II in processing and degradative RNA hydrolysis. 

Association and dissociation events can be followed by utilizing the fluorescent system 

previously developed for the binding studies in a stopped-flow apparatus.  

In addition, the project will move towards the study of RNA degradation, and the 

mechanisms associated with degradation, by RNase II. The literature presents little data 

regarding the rates at which RNase II hydrolyzes RNA. There is even less data regarding 

the rates of binding, translocation and dissociation between RNase II and physiological 

substrates. RNase II has been shown to remove nucleotides from an RNA chain at a rate 

of 70nt/s (Cannistraro and Kennell, 1994). Another study suggests that the binding, 

translocation and dissociation events add up to a time of 1.46s (Coburn and Mackie, 

1996b). The fluorescent system will allow us to assess the contribution of binding, 

translocation and dissociation to the 1.46s value. 

Next to binding, the kinetics of RNA hydrolysis will be the simplest mechanism to 

visualize. 2-AP promises to be a very powerful probe in visualizing RNA hydrolysis. 

2-AP is reported to be 100 times more fluorescent as a part of a ribonucleoside 

monophosphate than when it is a member of an RNA chain (Ward et al., 1969). 2-AP can 
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be incorporated into different positions in RNA, and the time required for an increase in 

fluorescent signal could be quantified.  

RNase II can bind, but not degrade ssDNA (Gorelic and Apirion, 1971; Singer and 

Tolbert, 1965; Spahr, 1964). This property of RNase II makes the study of translocation 

possible. By incorporating ssDNA into a chimeric polynucleotide consisting of 

ribonucleotides at the 3’ end, the processive hydrolysis can be arrested, allowing for a 

study of translocation once the kinetics of hydrolysis have been defined. In addition to 

the kinetics of binding, hydrolysis, and translocation, the dynamic movements of 

RNase II associated with each of these steps can be studied, and will be the subject of 

long-term studies. 

4.4.3 Outstanding Long-Term Questions 

The binding and kinetics studies suggested in the previous two sections will eventually 

address some of the large scale questions regarding the structure and function of 

RNase II. Some of these unanswered questions lingering in the literature include the 

mechanism whereby RNA is translocated into the catalytic pocket and the interactions 

between RNA and RNase II at the anchor region during RNA hydrolysis.  

The number of domains in RNase II allows for a number of mutants to be generated in 

which the relative movement of two domains can be studied through FRET. For example, 

it has been proposed that a catalytic region and an anchor region move relative to one 

another (Cannistraro and Kennell, 1999) during RNA hydrolysis. The crystal structure 

shows two regions of contact with RNA. By specifically labeling domains within 

RNase II, these proposed intramolecular movements can be characterized. Not only can 

the movement of the catalytic region relative to the anchor region be compared, the 
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movement between the domains composing the anchor region can be studied. This will 

allow us to determine if the domains in the anchor region move together in a concerted 

mechanism, or separately in a sequential mechanism to advance RNA into the catalytic 

pocket.  

In these types of studies, it is unlikely that RNase II’s intrinsic tryptophans will be 

appropriate as a partner in a FRET dye pair due to the relatively high number of 

tryptophans (nine) in RNase II. The movement of some tryptophans towards the acceptor 

dye and some away from the acceptor dye will greatly complicate the signal 

interpretation. Instead, the introduction of a pair of cysteines into RNase II following the 

removal of C603 will allow RNase II to be labeled with a common FRET pair such as 

Cy3/Cy5, simplifying the interpretation of FRET signals. This type of system is ideal in 

studying the translocation of RNA into the RNase II active site. Additionally, this will 

help to uncover which of two types of interactions proposed by Cannistraro and Kennell 

(1999) are occurring at the anchor region of RNase II during hydrolysis. The first 

interaction is a sliding movement, where, as nucleotides are removed from the 3’ end of 

the RNA chain, the RNA chain slides through the anchor region. The alternative proposal 

suggests that the RNA remains bound to the anchor region of RNase II while nucleotides 

are being removed from the 3’ end. During these progressive removals, the RNA not 

bound between the catalytic region and anchor region stretch until they reach a critical 

point, where they briefly lose contact with the anchor region and re-associate 5’ to its 

original binding position. 

In addition to the intramolecular questions posed above, translocation can be studied 

using intermolecular interactions. There are reports that RNase II has vital contacts with 
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RNA at a site that is 17-27 nucleotides from the 3’ end (Cannistraro and Kennell, 1999). 

However, the crystal structure of an inactive RNase II shows a 13 nucleotide RNA 

oligomer bound to RNase II (Frazao et al., 2006). The presence of 13 nucleotides was not 

by design; the RNA fortuitously co-purified with the inactive RNase II mutant. If, as 

suggested by Cannistraro and Kennell, there are important contacts 17-27 nucleotides 

from the 3’ end of the RNA, why are they not present in the structure? This question can 

be addressed by incorporating 2-AP a fluorescent adenine analogue into an RNA 

oligomer. By placing the 2-AP dye at a point greater than 27 nucleotides from the 3’ end, 

and an appropriate acceptor dye on the anchor region, the proximity of these dyes can be 

monitored through FRET efficiency.  

4.5 Conclusion 

In this work, we have used an RNase assay with a previously unstudied substrate to 

generate information about RNase II, an orthologue of RNase II and a deletion mutant of 

RNase II. In addition, we have completed work towards developing a fluorescently based 

binding assay to be used in future studies of structural dynamics. 

The RNase assay generated an association rate constant of 0.02M-1min-1, which is the 

first association rate constant to be generated for RNase II. In addition, the RNase assay 

has shown that RNBec_N22 degrades MS2 RNA faster than RNBst_N22, which is likely 

a result of a lower binding affinity, as shown by ITC studies. Furthermore, we have 

shown that RNBec_c60, while active, has a greatly reduced binding affinity, which 

aggress with the previously published information that the removal of the C-terminal 

domain reduces the affinity of RNase II to RNA two to tenfold (Amblar et al., 2006). 
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We have made progress towards developing a fluorescence based binding assay for use 

in future structural dynamic studies. We have attempted to use intrinsic protein 

fluorescence, shotgun labeled protein fluorescence, and substrate fluorescence to observe 

binding between RNase II and an RNA analogue. Although none of these alone was able 

to generate a reliable binding curve, it appears that a fluorescent binding assay is 

imminent.  

The structural dynamics studies will also benefit from information gathered from the 

shotgun labeling of RNase II. The results from shotgun labeling RNase II suggest that on 

average, only one cysteine is labeled. An examination of the solvent accessible surface of 

RNase II suggests that this residue is C603. With this information, we know that we only 

need to remove a single cysteine residue (out of seven total) before we are able to 

engineer cysteines into specific locations on RNase II for use in structural dynamic 

studies. 

The work described here, along with the X-ray crystal structures of RNase II has allowed 

us to take a significant step towards studying the structural dynamics of RNase II. 
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Appendix A – Equations 
 
Curve-fitting of Association Rate Data – Used in Section 3.1.2 
 
     y = A·(1-exp(-B·x))+C 
 
 Where:  y is the fraction of substrate remaining 

x is time 
A is the amount of substrate at time = 0 
B is the apparent rate constant 
C is the amount of substrate at time = ∞ 
 

 
Curve-fitting of Binding Curves – Used in Sections 3.2.1, 3.2.3, 3.2.4, 3.3 
 
     y = (A+(B·x))/(C+x) 
 
 Where:  y is the signal generated (fluorescence or power) 
   x is the substrate concentration 
   A is the fluorescence (or power) when substrate concentration = 0 
   B is the fluorescence (or power) when substrate concentration = ∞ 
   C is the binding constant 
 
Quantum Yield – Referenced in Section 3.2 
 
     Q = Γ/(Γ+knr) 
 
 Where:  Q is the quantum yield 
   Γ is the emissive rate of the fluorophore 
   knr is the rate of nonradiative decay 
      
FRET Efficiency – Referenced in Section 3.2.3 
  
     E = 1/(1+(r6/Ro

6)) 
 

Where:  E is the FRET efficiency 
r is the distance separating the fluorophores  
Ro is the Förster distance 
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Förster Distance (Ro) – Referenced in Section 3.2.3  
 
     Ro = (9000·(ln10)·κ2·Qd·J)/(128·π5·n4·Nav) 
 
 Where:  κ2 is the orientation factor of the fluorophores (set at 2/3 in FRET) 

Qd is the quantum yield of the donor fluorophore 
J is the overlap integral  
Nav is Avogadro’s number 
n is the refractive index of the medium. 
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