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Abstract 

Damage to the medial prefrontal cortex (mPFC) often leads to problems characteristic of 

addiction, such as impulsivity and insensitivity to future consequences. To learn more about the 

role of this region, we studied the effects of mPFC lesions in rats on decision making processes 

related to behavioral addiction. We hypothesized that rodents with mPFC lesions would be less 

flexible when faced with changing task contingencies resulting in a diminished ability to obtain 

as much reward as comparable control animals and that this would be due to a deficit in the 

rats’ ability to generate appropriate expected values when presented with multiple choice 

options. To this end, we designed a rodent decision-making task, the N-Arm Bandit Task, to test 

these hypotheses. We found that damage to the mPFC decreased the ability of rats to obtain 

reward after a change in reward contingency and had a modest effect on the likelihood of rats 

to perseverate on ports that were previously rewarding. Finally, we found that PL lesions had a 

major impact on reward processing in that the reinforcement learning model used to fit the 

rats’ behaviour was unable to meaningfully describe the performance of the PL damaged rats, 

while the behaviour of the control animals was well described by the model.    
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The Role of the Rat Medial Prefrontal Cortex in Complex Decision-Making Impairments 

Chapter 1: Introduction and Overview 

Pathological gambling (PG) is classified as a mental illness whereby individuals will continue to 

engage in gambling behaviours despite accumulating costs, often involving the inability to 

maintain healthy relationships or stable finances, difficulties at work, and, in extreme cases, 

criminal behaviours such as theft in order to pay back debts and maintain their gambling habits. 

Additionally, PGs often display an inability or unwillingness to forgo immediate gratification 

even when it will lead to seriously unfavourable consequences in the future. In this way, the 

problems experienced by individuals with gambling addiction closely resemble many of the 

same problems experienced by individuals suffering from chemical dependence. The following 

document will explore many of the neurological underpinnings known to be associated with 

gambling and other addictions. Chapter 2 begins with an overview of the anatomical 

connections of regions that appear to be particularly dysfunctional in PGs. Then, the role of one 

of the principle neurotransmitter related to the addictive process, dopamine, is discussed and 

the characteristics of games of chance and their impact on dopamine-mediated learning and 

motivational processes are examined. Afterwards, several theoretical models related to the role 

of dopamine in reward learning and development of addiction are discussed. Then the findings 

from several studies investigating the effectiveness of pharmacological treatment on PG 

severity are reviewed. Finally, the Somatic Marker hypothesis and the different roles that 

regions in the prefrontal cortex play in behavioural flexibility are explored. Chapter 3 focuses on 

the role of the medial prefrontal cortex in poor decision-making and how processing 

impairment in this area can lead to the inflexible behaviour observed in pathological gamblers. 
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The majority of the chapter is devoted to our investigation of the role of prelimbic cortex in the 

ability of rats to flexibly adjust their behaviors in response to changing task demands using a 

variant of the N-arm bandit task, including the methodology used, results of our study, and 

discussion of our findings. Chapter 4 concentrates on the integration of several areas of 

research into a theoretical framework for the development of gambling addiction. The addictive 

process is described from the inheritance of vulnerabilities to addiction to compulsive/habitual 

behaviours as a result of long term problem gambling. The chapter then closes with overall 

conclusions and final remarks.        
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Chapter 2: The Neurobiological Substrates of Gambling Addiction 

2.1 Prefrontal Cortex and Striatum Anatomical Connections  

Medial prefrontal cortical (mPFC) and striatal (Str) regions are heavily involved in goal-

directed learning and dysfunction in these regions has been strongly implicated in behavioural 

and chemical addiction (de Greck et al., 2010; Gottheil, Winters, Neighbors, Grant, & el-

Guebaly, 2007; Grant, Brewer, & Potenza, 2006; Tanabe, et al., 2007; Vanderschuren, di Ciano, 

& Everitt, 2005). The mPFC projects heavily to the Str and is also interconnected with virtually 

every other part of the central nervous system; however different regions within the mPFC 

exhibit differences in afferent and efferent projections and a concomitant segregation of 

function.  

Medial prefrontal cortex (mPFC) regions follow a graded dorsoventral topographical 

organization (see Appendix A for a thorough discussion). Dorsal regions (dorsal prelimbic cortex 

and anterior cingulate cortex) primarily receive information from motor and sensory areas 

concerned with the external environment and send processed information back to output 

structures that effect change in the external environment as well as basal ganglia and limbic 

areas concerned with learning from prior experience in order to guide this behaviour. Likewise, 

ventral regions (ventral prelimbic cortex and infralimbic cortex extending into the orbitofrontal 

cortex) primarily receive information from visceromotor and sensory areas concerned with the 

internal environment and preferentially send processed information to output structures that 

effect change within the body in addition to basal ganglia and limbic areas concerned with 

learning from prior experience in order to guide these changes (Gruber & McDonald, 2012; 
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Heidbreder & Groenewegen, 2003; Hoover & Vertes, 2007; Klein, et al., 2010; Kolb, 1990; 

Kondo & Witter, 2014; Selemon & Goldman-Rakic, 1985). 

The striatum appears to be topographically organized in a similar way; with more dorsal 

areas receiving information from PFC, sensory and motor association areas concerned with the 

external environment, and ventral areas receiving input from PFC and limbic regions concerned 

with the internal environment (Chikama, McFarland, Amaral, & Haber, 1997; et al., 2000; 

Selemon & Goldman-Rakic, 1985; Gruber & McDonald, 2012; Goto & Grace, 2008; 

Groenewegen, Wright, Beijer, & Voorn, 1999).  

2.2 The Role of Dopamine in Decision-Making 

Research into the function of dopamine (DA) in the brain indicate that it is involved in 

reinforcement and learning (Schultz, 1997), and that abnormal dopaminergic functioning is 

implicated in the development of neurological and psychiatric disorders such as Parkinson’s 

disease, Huntington’s chorea, Tourette’s syndrome, addiction, and schizophrenia (Surmeier, 

Ding, Day, Wang, & Shen, 2007; Surmeier, Song, & Yan, 1996).Originally, it was hypothesized 

that DA in the striatum carried a hedonic pleasure signal in response to primary reward because 

of increases in striatal DA levels observed after cocaine administration, but careful study of 

dopaminergic activity in the striatum cast doubt on this original supposition (Kringelbach & 

Berridge, 2012). Namely, researchers discovered that the consumption of food was not 

impaired after nucleus accumbens (NAc) or striatal dopamine depletion using the neurotoxin 6-

hydroxydopamine (6-OHDA) or after the introduction of dopamine antagonists even though 

cocaine self-administration was severely limited (Aberman & Salamone, 1999; Salamone, 

Wisniecki, Carlson, & Correa, 2001); rather, the consumption of food and basic Pavlovian 
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approach and avoidance appeared to rely on hind brain and mid brain nuclei. So DA antagonists 

did not impair appetite to consume food but did impair motivation to engage in goal-directed 

behaviours in order to obtain food or drug-rewards (Salamone & Correa, 2002). The role that 

DA plays in reward and learning became clearer after a series of experiments yielded results 

indicating that the absence of an expected reward decreased DA efflux while presentation of an 

unexpected reward increased DA efflux (Schultz, 1997; Schultz, Dayan, & Montague, 1997; 

Schultz, 1998). Importantly, it was also discovered that DA neurons respond initially to a 

primary reward, then shift to firing in response to cues that predict the reward – the 

conditioned stimulus (CS) - and no longer fire when the reward is delivered (Day, Roitman, 

Wightman, & Carelli, 2007; Mirenowicz & Schultz, 1994; Takikawa, Kawagoe, & Hikosaka, 2004). 

Furthermore, it was also noted that a delay in the reception of reward after the (CS) 

presentation resulted in a corresponding DA signal depression during the period of time when 

reward was expected followed by a robust signal increase upon the unexpected presentation of 

the reward (Richardson & Gratton, 1996). Given that these studies determined that 

dopaminergic neuron firing is more clearly related to unpredictability, it was now hypothesized 

that dopaminergic neuronal projections - which are generated in the ventral tegmental area 

(VTA) and innervate PFC and basal ganglia structures - carry a reward prediction error signal (or 

teaching signal) regarding the difference in expected reward and the actual amount of reward 

received (Cromwell & Schultz, 2003; Hollerman & Schultz, 1998; Kawagoe, Takikawa, & 

Hikosaka, 1998; Mirenowicz & Schultz, 1994). This allows experience to alter the strength of 

medium spiny neuron synaptic connections within the striatum that ultimately biases the 

animal to choose one action over another (Jocham, Klein & Ullsperger, 2011; Schultz, 1997; 
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Surmeier, Plotkin, & Shen, 2009). Hence, this teaching signal is used to generate and 

maintain/update associations between rewards and actions that lead to the reward, and then 

ultimately connects those actions to environmental cues that are predictive of those rewards. 

However, the role that DA played in learning became more complicated when 

experiments utilizing aversive rather than appetitive stimuli yielded comparable results; this 

indicated that the teaching signal supplied by the VTA, rather than being limited to reward 

prediction error, also seems to encode errors in predicting negative outcomes. That is, 

increases in dopamine were related to a cue that predicted mild foot-shock and presentation of 

the cue after foot-shock or alone with no consequence produced no increase in dopamine 

levels (Young, Joseph, & Gray, 1993). This was unexpected considering that the prevailing DA 

theory at the time was that DA was released only in response to cues that predicted reward and 

that decreases in DA levels were supposed to indicate the response to an aversive cue. More 

recent research has indicated that separate populations of dopamine neurons (that are spatially 

segregated) encode appetitive and aversive events, while some respond to both (Bromberg-

Martin, Matsumoto, & Hikosaka, 2010; Matsumoto & Hikosaka, 2009). Thus, changes in DA 

efflux within the PFC and striatum relate information concerning a general difference between 

expectation and outcome. Moreover, this error prediction signal appears to have the effect of 

motivating behaviour toward (in the case of reward) or away (in the case of punishment) from 

these sources of unpredicted outcome – and eventually towards or away from the cues that 

predict the outcome. In support of this idea are results from several experiments that have 

found that dopamine depletion or antagonism in the NAc (or damage to the NAc) affects 

responding on: (1) fixed ratio schedules that are require high (but not low) amounts of operant 
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responding in order to obtain a reward (Aberman & Salamone, 1999; McCullough, Cousins, & 

Salamone, 1993), (2) fixed interval schedules that involve a large amount of time (but not a 

small amount) elapsing between reinforcements, (3) variable ratio (VR) schedules (where the 

amount of operant responding required to obtain a reward is varied), and (4) variable interval 

schedules (where the time elapse required to gain reward is variable; Nicola, 2007). 

Additionally, several experimenters found that as rats advanced through a progressive ratio 

schedule (i.e. the amount of operant responding required to receive reward increases as the 

session progresses), responding became more sensitive to dopamine antagonism (i.e. ratio 

strain; Aberman & Salamone, 1999; Nicola & Deadwyler, 2000; Salamone, et al., 2001). In all of 

these experiments, interfering with the ability of presynaptic DA to effect change in 

postsynaptic neurons resulted in a decrease in conditioned responding. What all of these 

schedules have in common is the increasing amount of unpredictability associated with the 

amount of work required or the amount of time that is required to pass in order to obtain 

reinforcement. And thus manipulation of DA when performing these tasks affects the amount 

of work (i.e. either physical work or, in the case of delay, work in the sense of sustained 

attention) that participants are willing to do in order to obtain the reward – with increases in 

DA resulting in increased motivation to work and decreases resulted in decreased motivation to 

work for unpredictable outcomes. 

The findings of these studies are of particular import to PG. Gambling games employ 

specifically designed variable ratio schedules which engender consistent fluctuations in phasic 

DA release, particularly in the NAc. Generally speaking the payoffs should not be so frequent 

that it becomes easy to predict how often a person is likely to win (e.g. coin tossing), but also 
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not be so infrequent that the player loses interest (Linnet et al., 2012). In order for a person to 

be persuaded to gamble on very remote odds, generally the payoff has to be very large (e.g. 

national lotteries). The release of DA in the NAc has been linked to an increased motivation to 

engage in goal-directed behaviours related to the source of the tonic fluctuation (Kringelbach & 

Berridge, 2012; Anselme, 2013). Moreover, it appears that reducing the time between action 

and outcome increases the strength of this effect, which may help explain why games 

characterized by a more immediate outcome are more frequent amongst PGs (da Silva Lobo, 

2009). Generally, the closer in time an action is to an unexpected but associated reward, the 

more reinforcing the effect (Balsam, Drew, & Gallistel, 2010). Therefore, an individual can learn 

the association between the two more rapidly. Additionally, the closer in proximity a 

conditioned stimulus is to a reinforcer, the larger the DA efflux (Bermudez & Schultz, 2014). In 

PGs, this increased reinforcing effect due to close proximity of action and outcome likely 

increases the motivation to gamble compared to games with delayed outcome (e.g. lotteries).   

2.3 Incentive Salience Model 

A prominent theory of the role of DA in learning and addiction was proposed by 

Robinson and Berridge in 1993. The Incentive Salience theory (also referred to as Incentive-

Sensitization theory) of addiction posits that all drugs of abuse possess the ability to effect 

mesotelencephalic dopaminergic neurotransmission. They proposed that increases in DA 

release linked to the consumption of a drug imbue related actions and contextual cues with 

motivational properties, making them attractive to the consumer and evoking Pavlovian 

approach behaviours. If consumed over a long period of time, these cues and actions become 

sensitized to the point that they will elicit such intense drug cravings that some individuals are 
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unable to inhibit their responses to these cues, even at great cost to themselves or those 

around them.  

Within this framework of addiction, Robinson and Berridge (1993) noted that, although 

highly correlated, there is a dissociation between wanting to gain a reward and liking the 

reward, and that DA neurotransmission appears to be an essential component of the former. A 

study by Berridge, Venier, & Robinson (1989) yielded findings indicating that rats were able to 

experience hedonic pleasure in the absence of dopamine neurotransmission. After injections of 

6-OHDA (a neurotoxin that selectively destroys dopaminergic and noradrenergic neurons 

resulting in a dramatic decrease of extracellular dopamine levels) into the substantia nigra of 

rats, the authors observed no change in taste reactivity to different sweet and bitter solutions 

in the treatment group compared to control animals. That is, rats that received 6-OHDA lesions 

displayed similar rhythmic or lateral tongue protrusions in response to pleasantly tasting 

solutions (a response that indicates “liking”) and gapes in response to unpalatable taste 

solutions (indicating “disliking”) when compared to the responses of the control animals. In 

agreement with this finding, genetically altered dopamine transporter knockdown mice (DAT 

KD; which has the effect of chronically increasing extracellular dopamine levels) resulted in an 

increased motivation to obtain reward (“wanting”), but did not increase the enjoyment of the 

reward (“liking”). Specifically, DAT KD mice had higher breakpoints when tested on a PR reward 

schedule (i.e. they were willing to make more instrumental responses in order to receive 

reward than control animals; Cagniard, Balsam, Brunner, & Zhuang, 2006), were found to 

consume more water and food reward, and were more focused on obtaining a goal on a 

runway task (i.e. they left the starting area more quickly, stopped less often on the runway, 
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were less distractible, had more direct pathways to the goal, and required less trials to learn the 

task compared to control animals). However, consistent with the idea that “liking” was not 

affected, these mice did not display a change in taste reactivity (rhythmic or lateral tongue 

protrusions) when they were observed while consuming the reward (Peciña, Cagniard, 

Berridge, Aldridge, & Zhuang, 2003).  

Given this evidence, the theory emerged that increased DA levels induced by the 

consumption of drugs of abuse causes uncontrollable drug craving “wanting” and seeking 

behaviours due to increased incentive sensitization in vulnerable individuals (Berridge, 2007). 

Because games of chance also increase DA release in an analogous fashion, it is likely that 

gambling addiction shares many of the same features as chemical addiction. Namely, ventral 

striatal (vStr; a region heavily implicated in reward learning and addiction; Everitt & Robbins, 

2005) dopamine manipulation by games of chance appear to affect desire more than hedonic 

pleasure and the actions and cues associated with gambling likely acquire incentive salience 

over time in vulnerable individuals, according to this theory. 

2.4 Frontostriatal Involvement in Reward Learning and Addiction 

Both the mPFC and vStr appear to play major roles in both reward learning and 

gambling addiction (see section 3.1 for a discussion of results from neuroimaging studies 

related to PG). Theoretically, the mPFC and vStr act in concert during learning so that an animal 

is able to maximize reward and avoid punishment. When observed using functional magnetic 

resonance imaging (fMRI), the mPFC typically displays increases in blood-oxygen-level 

dependent (BOLD) activity during tasks that involve the processing of uncertain rewards (Fukui, 

Murai, Fukuyama, Hayashi, & Hanakawa, 2005) and decreases in BOLD activity as the tasks are 
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learned and outcomes become predictable, a pattern which is mirrored in the vStr (Nicola & 

Malenka, 1998; Nicola & Deadwyler, 2000; Anselme, 2013). One hypothetical interpretation of 

this activation pattern is that the mPFC and vStr are involved in the processing of information 

early in learning, when outcome is uncertain, and are an integral part of a larger skill acquisition 

process linked to survival (Clark, Lawrence, Astley-Jones, & Gray, 2009). Specifically, the vStr is 

likely involved in goal-directed emotional-motivational processes that promote interaction with 

sources of unexpected/novel reward, while the mPFC processes complex contextual 

information that helps guide this motivated behaviour (which is primarily driven by the vStr). 

That is, when an animal encounters a novel source of reward or punishment in the 

environment, the vStr drives the motivation to either interact with the source of the reward or 

to avoid the source of punishment (Flagel et al., 2011; Mirenowicz & Schultz, 1994; 1996; 

Adriani et al., 2010; McCullough, et al., 1993). This in turn increases the exposure of the animal 

to sources of reward and provides opportunities for the animal to determine whether there are 

any stable predictors of reward in the environment (Shizgal & Arvanitogiannis, 2003), whether 

the animal needs to perform any behaviour(s) to procure the reward, and to practice any skills 

required to capture the reward (Clark, 2010).  

Different stages of the learning and skills acquisition process described above appear to 

be subserved by different areas of the Str with a shift from more ventral to more dorsal regions 

of the Str as learning progresses. A major theory concerning this shift suggests that vStr 

mediates early reward processing (when the relationship between action and outcome is 

uncertain) and preferentially recruits attentional systems in order to assist in the learning of 

reward associations; however,  
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Figure 2.1. From Gruber and McDonald (2012; Figure 1). A schematic illustrating PFC inputs into 
the Str. Regions are colour-coded to indicate the nature of the information being processed. 
Red/orange indicates emotional/motivational information, orange/yellow indicates goal-
directed information, and yellow/green indicates that habit-related information is processed in 
these areas. Abbreviations in this figure are as follows: infralimbic cortex (IL); prelimbic cortex 
(PL); orbitofrontal cortex (OF); anterior cingulate cortex (CG); posterior parietal cortex (PP); 
supplementary motor area (SMA); thalamus (THAL); pallidum (P); substantial nigra pars 
reticulate (SNr); substantia nigra pars compacta (SNc); subthalamic nucleus (STN); ventral 
tegmental area (VTA); nucleus accumbens shell (VSs); nucleus accumbens core (VSc); 
dorsomedial striatum (DMS), dorsolateral striatum (DLS); central nucleus of the amygdala (CN); 
basolateral nucleus of the amygdala (BLA); entorhinal cortex (ENT); dorsal hippocampus (dH); 
ventral hippocampus (vH); stimulus (S); context (C); affective outcome (Oa); response (R); 
specific outcome (O).   

maintaining this attention comes at a price, both in terms of overall energy consumed and in 

the amount of cognitive resources (i.e. visual/auditory attention, working memory, etc.) 
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devoted to this specific task which could be used to solve other problems (Gruber & McDonald, 

2012). So as the animal learns how to properly engage with the environment in order to gain 

more reward, the presentation of the reward becomes more predictable and control of those 

behaviours shifts from vStr to dorsomedial striatum (dmStr) and finally to dlStr (see Figure 2.1; 

Gruber & McDonald, 2012; van Holst, van den Brink, Veltman, and Goudriaan, 2010). Once 

under control of posterior regions of the dmStr and the dlStr late in the learning process, the 

reward associations are thought to become fairly inflexible (whereas they are quite malleable in 

early stages of learning) and automatic (Yin, Knowlton, & Balleine, 2004; Gerfen & Surmeier, 

2011). These associations are characterized by insensitivity to outcome, and behaviours 

associated with activity in these regions tend to be stereotypical and habit-like (Yin & Knowlton, 

2006; Yin, Ostlund, Knowlton, & Balleine, 2005). Not surprisingly, when dopamine (DA) 

receptors are activated in this area, animals display repetitive stereotypic behaviours (Nicola & 

Malenka, 1998). In this way, the more resource intensive brain regions utilized in early learning 

are free to be used to learn something new.  

Connectivity studies have lent support to the theory that learning involves a shift from 

ventral to dorsal areas of the striatum. Haber, Fudge, and McFarland (2000), by means of an 

analysis of anatomical connectivity of cortical-basal ganglia-thalamic circuits, proposed that the 

basal ganglia in conjunction with mesencephalic structures form an ascending spiral loop from 

the shell of the nucleus accumbens (NAcS) to the dorsolateral striatum (dlStr). Specifically the 

authors found that NAcS sends efferent projections down to the ventral tegmental area (VTA) 

and substantial nigra pars compacta (SNc), then the medial substantia nigra (SNm; right next to  
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Figure 2.2. From Haber, Fudge and McFarland (2000; Figure 12). An graphical representation of 
the pathways involved in the ascending striatonigrostriatal loop. Red arrows represent the 
NAcS to VTA/SNc projections, orange arrows represent the SNc to NAcC to SNm projections, 
yellow and green arrows represent the SNm to dmStr to SNp, and the blue arrows indicate the 
SNp to dlStr projections. Cortical input is also colour-coded to indicate connectivity with regions 
of the striatum. Abbreviations in this figure are as follows: orbitofrontal and medial prefrontal 
cortex (OMPFC); dorsolateral prefrontal cortex (DL-PFC); nucleus accumbens shell (S); internal 
capsule (IC); substantial nigra pars reticulate (SNr); substantia nigra pars compacta (SNc); 
ventral tegmental area (VTA).   

the SNc) neurons project back up to the nucleus accumbens core (NAcC) region, which then 

projects back down into the posterior SN (SNp), and finally the SNp projects back up to the 

dorsolateral striatum (see Figure 2.2). This ascending loop provides a neurobiological substrate 

for response-outcome (R-O; this describes the learned association between an action that is 

performed and a reward that is subsequently obtained) information in the NAc (which 
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processes unpredictable – DA dependent information) to flow and change via experience into 

the stimulus-response (S-R; this describes the association between a predictive stimulus and an 

action that is taken in response to stimulus presentation) associations characteristic of the dlStr 

(which processes highly predictable information and is relatively insensitive to DA modulation 

and reward outcome; Everitt, et al., 2008; Gruber & McDonald,2012; Horvitz, 2008).  

Research investigating addiction supports the idea that the vStr is involved in early 

learning, processes R-O associations and is sensitive to unpredictability, while the dlStr is 

involved in late learning, processes S-R associations and is unresponsive to deviations in 

expectation. For example, investigators in one study observed that DA release in the NAc will 

increase and accumulate in the extracellular space after cocaine administration in drug naive 

animals, but that DA release is attenuated in animals that had received repeated cocaine 

exposure prior to testing (Hurd, Weiss, Koob, And, and Ungerstedt, 1989). Furthermore, during 

early exposure to cocaine, DA release has been shown to increase in the NAcS, NAcC and 

caudate–putamen after self-administration (i.e. upon reception of reward, but only in the NAcC 

when cocaine-associated cues were presented unexpectedly); however, after long-term 

exposure, DA release evoked by a cocaine associated cue only occurred in the dStr (Ito, Dalley, 

Howes, Robbins, & Everitt, 2000; Ito, Dalley, Robbins, & Everitt, 2002). This shift in behavioural 

control from vStr/mPFC control early on in reward processing over to dmStr and finally to dlStr 

control late in reward processing is important in that, theoretically, if functioning in the 

vStr/mPFC areas is abnormal or disrupted, it stands to reason that behavioural control may 

become dominated by dlStr mediated activity in situations where vPFC-vStr signalling would 
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usually dominate behavioural output (e.g. situations where mPFC is needed to update reward 

associations based on important feedback). 

The mPFC has the capacity to change the activity in the vStr and dmStr and may provide 

contextual information (e.g., based on past experience) to guide future choices.  Numerous 

lines of evidence suggest that context can have a strong influence on decision making. For 

example, Tinklepaugh (1928), studied monkeys that were trained to discriminatively respond in 

order to receive reward. Early in the task, favoured food items such as pieces of bananas and 

grapes were used as rewards for responding correctly; however, later in the task,  unbeknownst 

to the monkeys, Tinklepaugh replaced the preferred food items with a less preferred food item, 

a piece of lettuce. The monkeys rejected the lettuce reward and became very agitated even 

though under other circumstances the lettuce would have been readily consumed.  This study 

established that the relative hedonic qualities of the reward can alter the emotional-

motivational response; although, more advanced follow-up research was required to establish 

the means by which this happens. Evidence suggests that the contextual information, such as 

comparative value, which influences decisions involves dopaminergic activity in both the NAc 

and mPFC.  For example, a study conducted by Ahn and Phillips (1999) found that during a 

satiety task, both motivation to consume food and DA activity in both the mPFC and vStr 

(specifically the NAc) were concurrently altered. Specifically, a group of rats were implanted 

with cannulae in either the mPFC (n=14) or NAc (n=14), and after which were trained on a 

sensory-specific satiety task. During testing, each rat was placed in a chamber and allowed 

access to one of two meals (Froot Loops® or Onion Rings®). After a recess, a second meal was 

presented in which half of the rats were presented with the same meal they had consumed 
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earlier (same food condition), while the other half received the other meal (different food 

condition; this was counterbalanced on the second day of testing). In vivo microdialysis samples 

were collected at 10 min intervals during testing over the two testing days. The experimenters 

observed that all animals exhibited decreased motivation (longer approach times) to consume 

the food in the same food condition and ate less of the food overall than when they were 

tested in the different food condition. Moreover, while a robust increase in DA efflux was 

present during anticipation of food reward in rats whose microdialysis samples were taken 

from the mPFC, and during food consumption in those rats whose samples were taken from the 

NAc during second phase of the different food condition; DA levels remained near baseline for 

both groups of animals in the same food condition. In sum, changes in relative hedonic qualities 

of these two food rewards was found to be related to changes in extracellular dopamine levels 

in both the mPFC (during anticipation) and NAc (during consumption). It remains unclear 

whether the changes in DA level in the mPFC directly influenced the changes in DA level 

observed in the NAc. However, findings from another study in conducted by King, Zigmond, & 

Finlay (1997), lend support to this idea. The authors observed that after a group of rats 

underwent mPFC DA depletion using 6-OHDA, basal DA levels in the NAcS increased by 30% 

compared to control animals. Additionally, the mPFC DA depletion potentiated responses to 

stress (tail pressure). These findings suggest that DA activity in the mPFC directly affects DA 

activity in the vStr and thus can effect emotional-motivational processing.  It is important to 

remember that different regions of the mPFC project to separate areas of the Str (see Figure 

2.1). Thus the mPFC is likely not only involved in the guidance of emotional-motivational 
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behaviours, but also that of “goal-directed” behaviours subserved by dorsomedial regions of 

the striatum (see section 3.1 for a discussion on the role of mPFC in “goal-directed” learning). 

Although Str regions appears to be more-or-less sufficient to process the more basic S-

R-O associations mentioned earlier in this section, it appears that the mPFC in conjunction with 

other prefrontal regions are required for more complex reward processing. In particular, the 

mPFC appears to process signals which combine reward/punishment information with 

contextual cues over time resulting in the recruitment of behavioural programs tailored to 

those specific contextual demands (Goudriaan, Oosterlaan, Beurs, & van den Brink, 2004; 

Heidbreder & Groenewegen, 2003; Kolb, 1990; Euston, Gruber, & McNaughton, 2012). For 

example, if a dog owner gives his new dog some treats, the dog will learn to associate the 

owner with the presentation of food rewards and will thus learn to approach the owner with 

the expectation of forthcoming reward. However, the owner is not likely to produce a treat for 

the dog every time it approaches him. It generally would not be wise for the dog to simply give 

up on trying to procure the reward immediately upon reward omission; rather, the dog would 

be better served to persist in trying to obtain the reward from the owner for a period of time. 

However, it is also disadvantageous to continue to approach or to behaviourally respond to the 

owner endlessly. An optimal strategy would be to respond for a period of time, and then 

disengage in order to seek out other possible rewarding situations. The amount of time spent 

seeking reward after reward ceases on any particular task appears to be an inherent 

characteristic, individual to each animal (generally measured by discounting curves of various 

kinds; Everitt et al., 2008; de Visser et al., 2011; Morrow, Maren, & Robinson, 2011). The mPFC 

appears to come into play primarily during engagement with these variable reward schedules 
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(Fukui, et al., 2005; Killcross & Coutureau, 2003). Knowledge acquired at this stage is generally 

not explicit, even in humans, and theoretically may be experienced more as an emotional 

biasing of behaviours in response to internal or external environmental cues (Goudriaan, et al., 

2004; Conversano et al., 2012; de Visser et al., 2011). Returning to our example, over time the 

dog may learn that the owner will give him treats more often if he produces certain behaviours 

for the owner such as sitting on his haunches or laying down on his stomach, and that he is 

more likely to gain reward in the evening than in the morning, or in the house rather than in the 

backyard. In other words, the mPFC will enable the dog to learn about the specific instrumental 

responses and contexts which predict reward. Subsequently, as the rewards become more 

predictable, activity in both the mPFC and vStr decreases and activity in the dStr increases 

(Everitt et al., 2008).  

In summary, the vStr regions subserve emotional-motivational processing as an 

individual learns to interact with a novel source of reward, increasing the desire to engage with 

the reward. As the individual learns how to act in order to obtain the reward, activity shifts to 

“goal-directed” regions (dmStr). This region subserves processes that allow for skills to be 

acquired. Regions of the mPFC connect to these areas of the striatum and help guide these 

processes by modulating activity so that it includes information such as past experience, 

somatic state, and error detection (see sections 2.2 and 3.1). Finally, late in associative learning, 

the individual learns to produce the response learned during the skills acquisition phase when a 

stimulus predictive of reward is presented. This association is mediated by dlStr activity and 

tends to be “habit”-like.    
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2.5 Somatic Marker Hypothesis and the Iowa Gambling Task 

The neural processes required to make good decisions are complex and involve not only 

the monitoring, attentional selection, and interpretation of external stimuli, but also similar 

operations concerning internal stimuli (Bechara, 2005; Lin, Chiu, Cheng, & Hsieh, 2008). 

Emotion-based signals which are thought to contain information arising from the body (e.g. 

heart rate, muscle tone, etc.), generally travel through subcortical regions and terminate in 

cortical structures (primarily the vmPFC, amygdala, insular, and somatosensory cortices) where 

they modulate complex decision-making processes (de Visser et al., 2011; van Holst, et al., 

2010). Damage to the vmPFC is thought to interrupt anticipatory related processing of this 

information (Bechara, Damasio, Tranel, & Damasio, 1997; Goudriaan, et al, 2004). 

The picture that is emerging from biophysiological studies of PGs is that their somatic 

responses are exaggerated when anticipating gambling but blunted when actually engaging in 

gambling or risky decisions. For example, Labudda, Wolf, Markowitsch, & Brand (2007) found 

that when performing the Game of Dice Task, which involves choices involving both risk and 

reward, patients with PG who made particularly disadvantageous decisions exhibited no 

increase in salivary cortisol and alpha-amylase concentrations (sAA; an indirect marker of 

sympathetic nervous system activity), while both healthy control subjects and high performing 

PG patients did show an increase in sAA concentrations. Likewise, Goudriaan, Oosterlaan, de 

Beurs, & van den Brink (2006) found that PGs exhibited lower anticipatory skin conductance 

responses (SCRs) and heart rate decreases compared to normal control subjects before they 

made risky decisions during the IGT. Furthermore, they found that PGs exhibited a decrease in 

heart rate after wins while the normal controls experienced a heart rate increase. Further 
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supporting the idea that PG affects anticipation but not the actual act of gambling, A review 

paper by Goudriaan, et al. (2004) surveying abnormal physiological markers in PGs, reported 

that several studies yielded findings that indicated increased heart rate in PGs compared to 

both control subjects and recreational gamblers when exposed to gambling cues, especially 

when the cue related to their game of choice. However, when examining gamblers during 

actual play, a different pattern emerged. In one study, PGs (which were classified as such by the 

amount of money spent on gambling) exhibited lower blood pressure during slot machine play 

compared to non-pathological gamblers (Carroll & Huxley, 1994); and although the author of 

another study found that the heart rates of high frequency gamblers and low frequency 

gamblers increased from baseline to a similar level during slot machine play, the heart rates of 

high frequency gamblers returned to baseline more quickly than low frequency gamblers after 

the gambling session ended (Griffiths, 1993).  

One theoretical model that may shed some light on why PGs exhibit abnormal 

biophysiological responses when gambling or making risky decisions is the Somatic Marker 

Hypothesis. This theory was proposed by Damasio, Tranel, and Damasio (1991) in an attempt to 

explain the profound personality changes in a patient following bilateral ablation of the vmPFC 

to in order to remove a cancerous tumor. After surgery, this patient, EVR, was unable to 

maintain a job (due to unreliability), and continually made errors in judgment concerning other 

peoples’ social character and what behaviours were socially acceptable; although many other 

executive functions, such as memory and verbal IQ, remained intact. Additionally, EVR’s ability 

to plan for future events was severely disrupted and would often include peripheral concerns 

(e.g. what to wear) while internally debating which would paralyze his decision-making 
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processes, locking him into endless debate. Damasio theorized that EVR was unable to activate 

somatic states related to reward and punishment, thus disrupting his ability to quickly discern 

which matters were of import and incorporate those feelings into a timely action. 

In an effort to create an experimental task that would tap into the serious decision-

making impairments observed in patients with vmPFC damage, such as EVR,  Bechara, et al., 

(1997) designed the Iowa Gambling Task (IGT). In this task, participants are required to make a 

series of 100 choices from four decks of cards. Each deck offers consistent monetary rewards 

but also contains probabilistic monetary loss. Two of the decks (A and B) offer large rewards 

($100 per card) but also contain large occasional losses (-$1250 over ten cards) and so are 

disadvantageous (i.e., lead to a net loss). The other two decks (C and D) offer smaller rewards 

($50 per card), but smaller probabilistic losses (-$250 over ten cards) and yield an overall gain in 

reward if consistently chosen (Bechara, Damasio, Tranel, & Damasio, 2005; Yechiam, 

Busemeyer, Stout, & Bechara, 2005). Participants are told to try to maximize their profits, but 

are not made aware of the reward and punishment schedules of the decks and must learn to 

avoid the risky decks (A and B) and focus on the safe decks (C and D) through trial and error. 

Bechara, et al., (1997) demonstrated that vmPFC damaged patients are impaired at this task 

and are drawn to the risky decks (particularly deck B; Hartstra, Oldenburg, Leijenhorst, 

Rombouts, & Crone, 2010). The authors noticed that healthy control subjects were initially 

drawn to the risky decks, but then gradually switched over to the safe decks. Moreover, they 

discovered that after receiving a few losses from the risky decks, healthy participants started to 

generate skin conductance responses whenever they reached for cards from the risky decks. 

The vmPFC damaged participants failed to generate such responses.  
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Bechara (2005) proposed that vmPFC impairment may ultimately impact the balance 

between the brain’s impulsive system (which is controlled by the Str) and the reflective system 

(which is controlled by the PFC), favouring the former. Importantly, impairments similar to 

those exhibited by vmPFC patients have also been found when drug addicts and PGs perform 

the IGT (Tanabe, et al., 2007; Goudriaan et al., 2006). Bechara theorized that the vmPFC 

functioned as a convergence point for the top-down executive control network and the 

bottom-up limbic network, and that it is at this point where the two networks battle for control 

over behaviour. He suggested that dysfunction caused by addiction or trauma in this region 

would create an imbalance in the relationship between these two networks favouring the 

bottom-up impulsive network. Because a functional top-down reflective network appears to be 

necessary to compare present with past events, individuals that cannot integrate this 

information often exhibit myopia for future consequences (Conversano, et al, 2012, Fukui, et al. 

2005, Brogan, Hevey, & Pignatti, 2010; Hoover & Vertes, 2007). Bechara surmised that the 

critical function disrupted when vmPFC dysfunction is present is the biasing of emotional signals 

by body states. The SMH posits that the body produces biasing signals in response to 

reward/punishment outcomes and environmental cues and contexts.  

Disruption of somatic signal integration seriously impacts the ability to make timely, 

situation appropriate decisions. Biasing signals arising from the body generally emerge very 

quickly after experiencing the rewarding or punishing consequences of interacting with an 

object, or in response to environmental cues that have been previously linked to rewarding or 

punishing outcomes. As described earlier (see section 2.4), mesolimbic dopamine signals link 

outcomes with actions and predictive cues; when this happens, environmental stimuli that are 
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closely associated in time and space are also linked to the primary S-R-O associations (Everitt et 

al., 2008). So when a particular environmental situation arises that has been previously linked 

to an S-R-O association, the brain recruits attentional systems in an effort to monitor the 

environment for the predictive cue and then can respond accordingly in order to gain reward or 

avoid punishment. Furthermore, it stands to reason that not only do external environmental 

stimuli become linked to S-R-O associations, but internal stimuli as well. Like external stimuli, 

the interaction between the brain and internal somatic signals are bidirectional. For example, 

experiencing a rewarding outcome can cause the brain to signal an increase in heart rate, while 

an increase in heart rate (even when artificially induced) can affect changes in brain processes 

(e.g. alter the perception of a situation, increase the likelihood of one action being taken over 

another; Christianson, 1992). Within the context of the IGT, Bechara believed that the SCR 

present in the healthy subjects that participated in the IGT was an indicator of just such a signal 

and that vmPFC damage in the patient group prevented the R-O information processed in the 

vmPFC from affecting changes in their bodies (e.g. heart rate, blood pressure, and SCR). 

Without the input of these somatic markers, the vmPFC damaged patients had serious difficulty 

keeping track of reward and punishment over time, integrating their internal physiological 

states with salient environmental cues, and modulating their responses accordingly 

(Heidbreder & Groenewegen, 2003).  

In support of the SMH are findings from anatomical connectivity studies that indicate 

that the mPFC sends and receives information from regions of the brain that carry information 

to and from the body. As described in section 2.1 and Appendix A, both the PL and IL regions of 

the mPFC project massively to mesolimbic structures (particularly the NAc) and are 
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substantially interconnected with lower visceromotor regions in the brain (e.g. hypothalamus 

and brainstem nuclei; Hoover & Vertes, 2007; Vertes, 2004), so it stands to reason that 

dysfunction in the PL or IL regions may result in an inability of the lower visceromotor regions 

to both engender coordinated somatic activity (e.g. changes in gastric pressure and  vascular 

conductance; Heidbreder & Groenewegen, 2003) in response to learning (mediated by 

mesocorticolimbic dopamine signalling) and feed somatic information back to the mPFC.  

In regard to the poor IGT performance observed in PGs, it is possible that some of the 

dysfunction is due to a break in communication between the body and brain. Somatic 

information relating responses to stress (e.g. increased heart rate) or general excitation are not 

incorporated into the decision-making process and thus may result in an increased tolerance of 

risk and decreased responses to both punishment and reward. It stands to reason that this 

breakdown in communication may underlie some of the decision-making impairments and risk-

taking behaviours observed in PGs. 

2.6 The Dopamine-Deficiency Hypothesis of Addiction 

A prominent theory that has been put forth in an attempt to explain why some people 

are more susceptible than others to the motivational effects of gambling and addictive 

substances is the dopamine-deficiency hypothesis. This theory states that some individuals 

have reward systems that are chronically hypodopaminergic, decreasing their ability to become 

motivated by normal activities (Oberg, Christie, & Tata, 2011; Choi, et al., 2011; Conversano, et 

al., 2012; Gottheil, et al., 2007). Such individuals would be driven to seek out substances or 

engage in behaviours that are risky in order to ameliorate the shortage - a kind of homeostatic 

process (van Holst, et al., 2010; Goudriaan, et al., 2004). Several lines of research lend support 
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to the dopamine-deficiency theory of addiction. Firstly, researchers have suggested that the 

decreased activity observed in vStr and PFC in drug and behaviourally addicted individuals 

reflects this hypodopaminergic state (see section 3.1 for a more detailed discussion of imaging 

studies). Additionally, several imaging studies using positron emission tomography (PET) have 

yielded findings that suggest that there is decreased dopamine receptor binding (particularly D2 

and D3) in the reward systems of people with gambling and other addictions (Tanabe, et al., 

2007; van Holst, Goudriaan, Veltman, & van den Brink, 2010). This may indicate that PGs have a 

reduction in numbers of postsynaptic dopamine receptor sites. Furthermore, reduced D2/3 

receptor binding has been linked to a general impulsive profile in both rats and humans (Dalley 

et al., 2007; Everitt et al., 2008; Besson et al., 2010; Boileau et al., 2012). 

However, the picture become more complicated when considering that researchers in 

other studies found that PGs express increased DA receptor binding in the NAc when gambling 

compared to healthy controls (Joutsa et al., 2012; Linnet, Peterson, Doudet, Gjedde, & Møller, 

2010). And perhaps even more intriguing, Linnet, Møller, Peterson, Gjedde, & Doudet (2011) 

saw similar decreases in receptor binding bilaterally in the ventral striatum of PGs and healthy 

controls (indicating dopamine release) when performing the Iowa Gambling Task (IGT) 

compared to baseline; however, while higher levels of DA release were correlated with 

increased IGT performance in healthy controls, the opposite pattern was observed in the PG 

group, indicating a possible U-shaped effect of DA on risky decision-making. Additionally, the 

few studies that have investigated DA metabolite concentrations in cerebrospinal fluid (CSF) 

have found increased levels of homovanillic acid present in the CSF of both PGs and impulsive 

individuals indicating that increased levels of DA were present (Chambers & Potenza, 2003; 
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Conversano, et al., 2012; Cilia et al., 2010; Ibáñez, Blanco, de Castro, Fernandez-Piqueras, Sáiz-

Ruiz, 2003).  

Genetically driven changes in the activity of enzymes that degrade extracellular DA may 

help explain some of the inconsistencies related to how abnormal DA levels influence decision-

making in PGs. The aforementioned increase in CSF levels of DA metabolites may indicate 

abnormal activity of certain enzymes that breakdown extracellular DA into homovanillic acid 

(e.g. MAO, COMT). Indeed, certain manipulations that influence the expression MAO-B in the 

Str and of COMT in the PFC, and thus influence extracellular DA levels in these regions have 

been found to effect risky decision-making. Specifically, MAO-B knockout mice (which causes an 

increase in Str extracellular DA levels) were found to have a significantly more risk-taking 

behavioural profile compared to wild-type mice (Bortolato, Godar, Davarian, Chen, & Shih, 

2009). Similarly, the COMT Met158Met polymorphism (which is associated with increased 

extracellular DA levels in the PFC) has been found to increase risky decision-making compared 

to the COMT Val158Val polymorphism (Farrell, Tunbridge, Braeutigam, & Harrison, 2012). Both 

of these studies indicated that increased extracellular dopamine increases risky decision-

making, which appears to contradict the finding that increased levels of homovanillic acid are 

present in the CSF of PGs given that decreased MAO and COMT enzymatic activity should lead 

to a decrease in the degradation of extracellular DA. However, given that genetically 

determined baseline levels of MAO and COMT activity related to this impulsive/risk-taking 

profile are chronic in nature, homeostatic mechanisms may be in play that counteracts the 

long-term increase in extracellular DA levels, leading to an increase in DA metabolites. 
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However, this is speculative in nature and further experimentation would be needed to 

determine if this is the case.  

Taken together, the evidence suggests that PGs and other impulsive individuals may be 

experiencing a rapid turnover of DA in reward related areas rather than a simple dopamine 

deficiency. Additionally, efficiency of DA in the NAc and PFC may be described as an inverted U-

shaped function, that is, synaptic DA concentrations at either extremity may result in decision-

making impairments. So, when healthy people gamble, the increase in DA in the NAc leads to 

better decision-making, whereas the increase in DA levels in PGs leads to sub-optimal decision-

making (Linnet, et al., 2011).  

2.7 Pharmacological Treatment of PG 

Few approaches have been found to be effective in the treatment of gambling 

addiction. Although, there is some evidence of efficacy using behavioural treatment therapies 

(Potenza, et al., 2013), I will focus briefly on evidence related to the pharmacological treatment 

of PG, due to the role that neurochemicals appear to play in the aetiology of the disorder. 

Several studies investigating the effects of various pharmacological drugs on PG have 

been conducted. Most target dopaminergic, serotonergic, and opioidergic systems; however, a 

few also examined the effects of glutamatergic, γ-aminobutyric acid (GABA)ergic, 

noradrenergic, anticonvulsant, and mood stabilizers. PG patient groups in various studies 

prescribed selective serotonin reuptake inhibitor (SSRI) medications escitalopram and 

fluvoxamine, the noradrenaline/dopamine reuptake inhibitor (NA/DARI) medication 

buproprion, the opioid antagonist naltrexone, the glutamate antagonist drugs memantine and 

n-acetylcysteine, the GABA agonist /glutamate antagonist medication acamprosate, and the 
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anticonvulsant medication carbamazepine, all experienced improvements (Grant & Kim, 2003; 

Black, Shaw, Forbush, & Allen, 2007; Dannon, Lowengrub, Gonopolski, Musin, & Kotler, 2005; 

Grant & Potenza, 2006; Dannon, 2004; Dannon, Lowengrub, Musin, Gonopolski, & Kotler, 2005; 

Lahti, Halme, Pankakoski, Sinclair, & Alho, 2010; Bosco et al., 2012; Grant, Chamberlain, Odlaug, 

Potenza, & Kim, 2010; Grant, Kim, & Odlaug, 2007; Black, McNeilly, Burke, Shaw, & Allen, 2011; 

Black, Shaw, & Allen, 2008). Another study found that the GABA agonist /glutamate antagonist 

medications acamprosate and baclofen were ineffective at treating PG (Dannon, Rosenberg, 

Schoenfeld, & Kotler, 2011). However, none of the aforementioned studies were placebo-

controlled and so considering the wide range of neurochemical targets and the nearly 

ubiquitous positive outcomes, it stands to reason that the majority of the improvements 

observed were due to a placebo effect.  

A few placebo-controlled, double blind pharmacological studies have been conducted 

with PG patients testing the effectiveness of the SSRI medication paroxetine, the opioid 

antagonists naltrexone and nalmefene, the NA/DARI medication buproprion, or the 

anticonvulsant medication topiramate (Grant et al., 2003; Black et al., 2007; Berlin et al., 2013). 

Only treatment using the opioid antagonist medications naltrexone and nalmefene resulted in a 

significant improvement in PGs compared to placebo, however drop-out rates tended to be 

high (>50%) in most studies (Grant, Odlaug, Potenza, Hollander, & Kim, 2010; Grant, Potenza, 

Hollander, Kim, & Cunningham-Williams, 2004; Grant et al., 2006; Grant, Kim, & Hartman, 

2008). One of the studies investigating the effectiveness of opioid antagonists found that 

significant improvement over placebo was only observed when the PGs had a family history of 

alcoholism (Grant, Kim, Hollander, & Potenza, 2008). This is noteworthy because these 
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medications are primarily used to treat alcohol addiction. Importantly, significant 

improvements in gambling severity were found in one placebo-controlled study investigating 

the effectiveness of the mood stabilizer lithium on PGs with comorbid bipolar disorder 

(Hollander, Pallanti, Allen, Sood, & Baldini Rossi, 2005). The key finding in this study was that 

the main effect of lithium was to alleviate the symptoms of the comorbid bipolar disorder, 

which in turn helped to lessen the gambling severity.  

Altogether, pharmacological treatment appears to be mostly ineffective in treating PGs 

other than to provide a placebo effect, which by itself appears to be fairly effective in the short 

term. There is some evidence that opioid antagonists help to alleviate PG symptom severity, 

however it may be partially due to the amelioration of comorbid alcohol addiction symptom 

severity in a similar manner to the effect lithium has on PGs with comorbid bipolar disorder. 

Therefore, it may be more beneficial to focus on the pharmacological treatment of any 

comorbid disorders (that are known to respond to medication) that a PG may have rather than 

trying to treat the PG itself.     

2.8 The Role of the PFC in Reversal Learning and Perseveration 

Different regions of the PFC are involved in different aspects of modification of 

behaviour in response to changes in reward and rules. This section will highlight several studies 

which provide insight into dissociable roles of regions within the PFC in tasks that examine 

responses to rule or reward changes.  

A study by Windmann et al. (2006), found that activity in the medial orbitofrontal cortex 

(MO) was involved in maintaining a behavioural strategy while activity in the lateral 

orbitofrontal cortex (LO) was related to the ability to shift from an initially preferred choice 
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option to an alternative after performing experiments using both the original and inverted 

versions of the IGT (see section 2.5 for an explanation of the original IGT; the inverted version 

contains steady losses with occasional gains) in healthy controls.  

The OFC and mPFC are both involved in the ability to shift behavioural strategies in 

response to a change in the cues that predict reward, and damage to either of these regions 

will produce perseverative behaviours. Rivalan, Coutureau, Fitoussi, & Dellu-Hagedorn, (2011) 

noted that lesions or drug infusions in the OFC, which alter its normal functioning, impact 

animals’ ability to learn reversal tasks which require the animal to first respond to one set of 

stimuli in order to gain reward (e.g. press a lever in response to a green light and not respond 

upon presentation of a red light), then to shift behavior towards another set of stimuli while 

inhibiting the previously learned behavioural response pattern (e.g. press the lever in response 

to the red light and inhibit responding upon presentation of the green light); ultimately, the 

disruption of normal OFC functioning resulted in large increases of perseverative responding, 

possibly due to its integral role in signaling the value of an outcome (Daw, O’Doherty, Dayan, 

Seymour, & Dolan, 2006). Moreover, while perseverative behaviours are related to OFC 

dysfunction, mPFC dysfunction (particularly when activity in the PL region is abnormal) also 

produces perseverative behaviours, but likely because the animals are no longer able to adapt 

their behaviour in response to both outcome value (i.e. signals from the OFC could no longer 

influence activity in the PL region) and reward contingency changes (i.e. environmental cue – 

reward outcome associations could no longer be processed efficiently) after original 

associations had been established (Seamans, Floresco, & Phillips, 1995).  
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In summary, different regions of the PFC subserve different aspects of responses to 

changes in task contingencies, and likely work in conjunction with one another to achieve 

successful performance and obtainment of reward. The purpose of this section was primarily to 

provide background and context to role of mPFC in behavioural flexibility that will be discussed 

in Chapter 3. Additionally, I found during my research that many studies included the OFC when 

describing changes in mPFC activity during several tasks (e.g. IGT, reversal learning tasks, set-

shifting tasks), so it is my hope that this section has helped clarify some of these convolutions.   
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Chapter 3: The N-Arm Bandit Task 

3.1 Introduction and Background 

PG can be conceptualized as a deficit in decision-making. The majority of individuals 

with PG can be characterized as impulsive, risk-seeking, and having a greater preference for 

strong arousal compared to the general population (Conversano, et al., 2012; Goudriaan, et al., 

2006; but see Slutske, Cho, Piasecki, & Martin, 2013). Additionally, PGs have difficulty thinking 

of future consequences of their actions, instead preferring immediate gratification (Albein-

Urios, Martinez-González, Lozano, Clark, & Verdejo-García, 2012; Andrade & Petry, 2012). For 

example, Alessi and Petry (2003) found that when PGs were tested on a delay discounting 

paradigm where participants must choose between small immediate rewards or larger delayed 

rewards; high scores on the South Oaks Gambling Screen (SOGS; a gambling questionnaire 

which is often used to identify individuals with gambling problems – higher scores indicate 

higher severity) was the single best predictor of impulsive choice. Furthermore, psychological, 

neuroimaging, and physiological (see section 2.5) evidence suggests that PGs process reward 

and punishment differently than healthy persons; a dysfunction that has also been observed in 

people with chemical addictions (Balodis, et al., 2012; de Greck, et al., 2010; Hewig, et al, 2010; 

Reynolds, 2006). 

PGs consistently show abnormalities in several brain networks, principally in reward 

learning circuits (see section 2.4 for a discussion on reward learning), when compared to 

healthy individuals. Specifically, research into neurological dysfunctions in PGs have indicated 

abnormal activity in ventral Str, PFC (ventromedial, ventrolateral, and dorsolateral, and 

orbitofrontal), insular, anterior cingulate cortical, and posterior parietal cortical areas. (Potenza, 
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2013; Iancu, Lowengrub, Dembinsky, Kotler, & Dannon, 2008; de Greck et al., 2010; van Holst, 

et al., 2010; Dannon et al., 2011; Goudriaan, Ruiter, van den Brink, Oosterlaan, & Veltman, 

2010; Clark, 2010; Grant, Brewer, & Potenza, 2006; Hollander, Pallanti, Baldini Rossi, Sood, 

Baker, & Buchsbaum, 2005). Imaging studies investigating risky decision-making or the 

anticipation and reception of reward/punishment of PGs compared to healthy control subjects 

typically produce results indicating that PGs have diminished activity in these regions 

(particularly the vStr and vmPFC; Tanabe, et al., 2007; Reuter, et al., 2005; but see Linnet et al., 

2010). Yet, studies investigating cue reactivity (e.g. images or video of people gambling at a 

casino) have yielded findings that show the opposite pattern (i.e. increased vStr and vmPFC 

activity; Reuter et al., 2005; Crockford, Goodyear, Edwards, Quickfall, & el-Guebaly, 2005). 

Although, these findings may appear to be contradictory, this pattern likely reflects the 

dissociation between “liking” and “wanting”. The increased fMRI BOLD activity induced by the 

presentation of gambling cues, may reflect the increased desire (“wanting”) to engage in 

gambling; whereas, the decreased BOLD activity during process of gambling may reflect 

decreased pleasure (“liking”) experienced by the PGs. Importantly, similar findings have been 

noted in studies of chemical addiction (see section 2.3; Goudriaan, et al., 2010). Alternatively, it 

has been suggested that reward networks of PGs may be hypersensitive during those tasks 

which most closely resemble naturalistic gambling (e.g. participants gamble with their own 

money, gamblers who prefer slot machines are tested on tasks that use slot machines) and 

hyposensitive during other decision-making tasks (van Holst, et al., 2010; van Holst, Veltman, 

Büchel, van den Brink, & Goudriaan, 2012). However, regardless of whether PGs are hyper- or 
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hyposensitive to reward; there is a clear consensus that they process risk and reward differently 

compared to healthy individuals.  

Because the imaging studies investigating neuropathology in PG have primarily 

implicated regions involved in reward processing, we decided to focus our research on the 

mPFC, an area intimately involved in processes related to reward learning. In particular, this 

region appears to play a key role in the guidance of “goal-directed” learning, which contrasts 

with the “habit”-like behavioural processing that typically occurs in the later stages of learning. 

When first attempting to ascertain mPFC function, Corbit and Balleine (2003) ran a series of 

experiments which examined the effects of damage to the PL region of the mPFC on ‘goal-

directed’ action in rats.  After receiving either an excitotoxic lesion or sham surgery, the food-

deprived rats were trained to press two different levers in order to receive food reward; one 

lever delivered a sucrose solution while the other delivered food pellets. Once this R-O 

association was learned, the rats were tested on a satiety/extinction protocol where they were 

allowed free access to either the sucrose solution or food pellets for 1 h prior to testing. During 

the extinction testing period, rats were again allowed access to the two levers; however 

pressing the levers no longer resulted in reward. During this phase the experimenters recorded 

the number of lever-presses made by each of the animals on both of the levers. They observed 

that not only did PL damaged rats learn the task more slowly overall, but they also reduced 

lever-press responding non-selectively during extinction testing. That is, while the control 

animals more rapidly reduced the number of presses on the lever that previously been known 

to deliver the food reward that they had access to during the satiation period (e.g. rats that had 

access to food pellets rapidly stopped pressing the lever that used to deliver food pellets); the 
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rats with PL lesions reduced responding on both of the levers at the same rate. Importantly, the 

authors discovered that this effect was specific to extinction; when tested in situations where 

the levers continued to produce reward when pressed, sham and PL damaged animals 

responded similarly to specific reward devaluation due to satiation (i.e. both sham and PL 

damaged rats that were given free access to food pellets before the task pressed the lever that 

was associated with receiving food pellets less often – and at a similar rate - than the lever that 

was associated with the sucrose water reward). The authors theorized that while the basic 

ability to learn and update R-O associations remained intact (although retarded) after injury to 

the PL region; a specific deficit emerged when multiple R-O associations needed to be held in 

working memory and used in order to guide behaviour. That is, the PL damaged rats were 

unable to hold the different R-O associations online in order to predict the specific outcomes of 

their actions, and subsequently were unable to combine these predicted outcomes with the 

information related to their specific satiety state. In contrast, the intact animals were able to 

incorporate the incentive properties of the R-O associations into specific predicted outcomes in 

an effort to produce the precise behaviours required to reach the goal of obtaining the more 

valued of the two food rewards; thus actions that led to reception of the devalued reward were 

more easily extinguished in this group. In sum, the mPFC appears to be necessary for 

integrating information concerning body states related to past experiences into behaviour, and 

specifically when that information needs to be held in an online state. 

Gambling and other addictions have been linked to dominance of a habit-based brain 

circuits over goal-directed circuits.  As discussed in section 2.4, both the mPFC and dmStr 

(regions involved in goal-directed learning processes) are sensitive to changes in outcome, 
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display increases in activity when acquiring and updating R-O associations, and are thought to 

work together to produce behaviours that lead to goal obtainment. Supporting the relationship 

between these two regions are the dense anatomical projections from the mPFC (particularly 

the PL region) to the dmStr (see Appendix A for a full discussion). These “goal-directed” regions 

contrast with the dlStr, which tends to show increases in activity when S-R associations are 

utilized, and is thought to be involved in controlling “habit”-like behavioural processes, which 

are insensitive to changes in outcome. In a seminal paper, Everitt & Robbins (2005) theorized 

that the change from controlled to compulsive drug use experienced by drug addicts may 

reflect a shift from dmStr “goal-directed” control of drug-seeking behaviour to dlStr control, 

resulting in habitual drug-seeking behaviours. Subsequently, this domination of behavioural 

output by the “habit” system is thought to underlie the perseverative/inflexible kinds of 

behaviours often observed in drug addicts (Clark, Cools, & Robbins, 2004; Everitt, Dickinson, & 

Robbins, 2001). Because chemical and behavioural addictions likely share similar neuropathic 

aetiologies (Gottheil, et al, 2007), it is reasonable to suppose that this theory would also apply 

to PG.  

Many of the cognitive deficits observed in PG may reflect hypo-activity in goal-related 

regions, including the mPFC. PGs - like drug addicts - frequently exhibit numerous cognitive 

deficits, particularly on measures of self-control and impulsivity (Potenza, 2013; Leeman & 

Potenza, 2012). These deficits often manifest in perseverative behaviours which involve the 

inability to flexibly alter behavioural strategies when reward contingencies change. The inability 

to maintain an optimal reward strategy supports the suggestion that the “habit” system in PGs 

is dominant which may be due to an ineffectual “goal-directed” system (possibly due to mPFC 
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impairment and a resulting inability to incorporate all of the information relevant to reward 

acquisition and the generation of behavioural responses that reflect the integration of this 

information). So, even though an individual may be able to initially determine an optimal 

strategy under one set of conditions, he may be unable to change his behaviour when those 

conditions are altered – a function that is typically tested using reversal and alternation learning 

tasks.  

Several studies have provided evidence that intact ventral PFC functioning is necessary 

for an individual to be able to shift behavioural strategies based on changes in reward 

contingencies. An fMRI study of pathological gambling in humans by de Ruiter et al. (2009) 

attempted to establish whether ventral frontostriatal dysfunction is associated with the 

perseverative behaviour commonly observed in PG patients. The authors found that when 

tested on a reversal learning task in which participants could win or lose money; PG subjects 

displayed marked impairment in ability to shift behavioural response patterns, a deficit not 

seen in healthy control subjects. They theorized that this was due to loss of sensitivity to both 

punishment and reward evidenced by significant decreases in vlPFC activation when money was 

lost or gained. Another fMRI study investigating reversal learning in PGs was conducted by 

Dannon, Kushnir, Aizer, Gross-Isseroff, Kotler, & Manor (2011). The researchers observed 

increased BOLD activity in both lateral and medial PFC regions (particularly in orbitofrontal 

cortex) during performance of an alternation learning task and that this increase positively 

correlated with the PGs scores on the SOGS. Finally, an animal study by Seamans, et al. (1995) 

found that after rats received lesions to the PL region of their mPFC, they exhibited a severely 

impaired ability to adapt to a change in task rules. The rats (n = 14) were initially trained on a 
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Delayed Spatial Win-Shift paradigm; where rats initially collected food from 4 of the arms on an 

8-arm radial maze, and after being removed from the maze for 30 min, were again allowed to 

forage for food. However, at this time only the other 4 (previously unbaited) arms delivered 

food reward, thus the rats needed to be able to remember which of the arms had previously 

been baited and adjust their strategy to exclude those arms when foraging after the 30 min 

delay. After this training phase, the PL regions of 8 animals were inactivated via a lidocaine 

injection, while the remaining 6 animals received a saline injection (sparing PL function). After 

receiving their injection (same-day) the rats were tested on their ability to perform a random 

foraging task in which 4 of the 8-arms of the radial maze were baited randomly. The 

experimenters observed that rats with PL inactivations were unable to flexibly adapt to the new 

rules, and displayed large increases in arm re-entry errors (i.e. perseveration) compared to 

control animals. These studies highlight the role of the mPFC in reversal learning and the ability 

to flexibly shift behavioural strategies in response to changes in reward outcome. It then 

follows that the impaired functioning of this area observed in PGs plays a major role in the 

impaired behavioural flexibility seen in PGs.  

One research area that can possibly shed light on specific functional roles of the mPFC in 

reward learning and behavioural flexibility is foraging theory. In a foraging environment, an 

animal must search in order to find food or water. Once discovered, the animal should take 

advantage of the reward available for some optimal amount of time. If the animal leaves the 

reward source too soon, it runs the risk of losing that resource to other animals, changes in the 

weather (e.g. storms or frost), or simply because it is unable to find it again. Alternatively, if the 

animal continues to exploit that source of food or water for long periods of time, it may 
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become a target for predators, or it may give up opportunities to find new sources of food or 

water. This example represents the exploitation/exploration dilemma that animals face when 

having to decide between gathering resources and gathering information that could lead to 

more resources. In order for an animal to act optimally in the environment, it must be able to 

persist in gathering resources when they are available, but also be able to shift into exploratory 

behavioural strategies when necessary.  

To study the neural mechanisms of exploitation/exploration decisions in humans, Daw, 

O’Doherty, Dayan, Seymour, & Dolan (2006) conducted an fMRI study where 14 healthy 

participants repeatedly chose between four slots which offered varying rewards in a simulated 

“Four-arm Bandit” Task. The subjects had to sample the four choices in order to determine 

which offered the best reward. Over time the amount of reward offered by each arm changed 

gradually so that an arm with a high pay off initially would gradually decrease in value and vice-

versa. The participants had to balance the need to occasionally choose arms where payout was 

uncertain (exploration) with choosing the slot they thought at that time had the highest payoff 

(exploitation) in order to figure out which arm was best overall. In addition to recording fMRI 

BOLD activity during exploration and exploitation phases of the task, the experimenters also fit 

several reinforcement learning models (RL) to the participants’ performance with the intention 

of better understanding the internal mathematical processes taking place and the potential 

roles of certain brain regions in these processes.  

Reinforcement learning describes the problem of how an agent adjusts its behaviour in 

the external world in order to maximize reward. RL models are computer algorithms which seek 

to solve this problem.  Most rely on a training signal which is the difference between expected 
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and actual reward (i.e. an error prediction signal; see section 2.2 for a discussion on the 

possible role of dopamine as an error prediction signal). The equations used in the 

computational model include a basic action-outcome reinforcement learning equation (1); 

where Q(c)t+1 represents the predicted value of the choice (c) reward for the next trial (t+1), 

Q(c)t equals the expected value of the choice (c) for trial (t),  rt represents the actual reward 

received on the trial (t), and α represents the learning rate parameter, and a softmax 

probabilistic decision rule (2); where P(ct) equals the probability of selecting choice (c) on trial 

(t),  Q(c)t again equals the calculated value of the choice (c) for trial (t), and β represents the 

inverse temperature parameter which determines the randomness of the choice. 

 

                Q(c)t+1   =  Q(c)t + α(rt  - Q(c)t)                           (1) 

P(ct)  =   exp(β∙Q(c)t)      (2) 
∑(exp(β∙Q(c)t)) 

 

The α value (which varies between a range of 0 and 1) determines to what extent the 

newly acquired information will override the old information. An agent with an α value of 0 will 

not learn anything, while a value of 1 would make the agent consider only the last trial (and 

thus totally disregard all previous information). Both extremes are hazardous in the real world, 

where an animal with a very low α  0 would not be able to retain any information and could 

never adapt its behaviour to exploit a reward source, and an animal with a very high α  1 

could not adapt its behaviour to probabilistic information derived over time. For example, 

woodpeckers often have to peck a tree many times to obtain an insect hidden within. These 

birds would likely peck at a tree until the number of times pecked per insect gained becomes 
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too high (represented by a standard discounting curve) and would abandon that tree in search 

for one with potentially more insects within it. A wood pecker with a learning rate where α  

1, would peck the tree as long as it is receiving insects and conclude that the tree always offers 

rewards when pecked (high expected value), but upon the first peck where no reward was 

obtained the bird may conclude that the tree offers no reward (zero expected value) and would 

fly away to try another tree. 

The β value represents the propensity of an agent to choose the option with the highest 

represented value (Q(c)t). If the inverse temperature is low (β  0+), all actions have nearly the 

same probability (i.e. the agent would produce random behaviours); thus the larger the inverse 

temperature becomes, the more expected values affect the probability (i.e. when the inverse 

temperature is very high [β  ∞], the probability that the agent will choose the option with the 

highest expected reward approaches 1). For example, a participant playing the “4-arm Bandit” 

Task who had a very low β value would display a fairly random pattern of selection; whereas a 

participant with a β value  ∞ would persist at whichever particular arm he thought contained 

the highest expected value and would never explore any of the other options, unless the value 

of the arm he was persisting at was devalued to the point where the other arms contained a 

higher expected reward; at which point he would immediately switch to persisting at which 

ever other arm had the highest expected value (i.e. a “winner take all” kind of scenario). 

After computational analysis, Daw, et al. (2006) determined that the “softmax” decision 

rule, detailed above, best described the subjects’ performance. In this model, decisions to 

explore and the choice of which suboptimal arm from which to choose are determined 

probabilistically on the basis of the choices’ relative expected values. This differs from the 
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simpler ε-greedy RL model (which they also fit to participants’ behaviour) in which the option 

with the highest represented value is chosen almost all of the time, but occasionally (with 

probability ε) selects a random alternative choice. For this reason, we decided to use the 

“softmax” decision rule in conjunction with the action-outcome reinforcement learning 

equation to model the behaviours of the animals in our experiment. 

Finally, it is import to note that when analyzing the fMRI data, Daw, et al., found that: 

activity in the medial orbital region was correlated with the magnitude of the reward received 

(rt), activity in medial and lateral orbital regions - extending into the vmPFC - was related to the 

probability assigned by the model to the action actually chosen on a given trial (P(c)t), and vStr 

as well as dStr activity were correlated with the prediction error (i.e. the difference between 

the expected reward and the actual reward received (rt  - Q(c)t)). Furthermore, right anterior 

frontopolar cortex (FPC) and intraparietal sulcus (IPS) were significantly more active during 

exploratory than exploitative trials; whereas, no regions were significantly more active during 

exploitative trials compared to exploratory trials (although as mentioned above, striatal and 

mPFC activity were increased compared to baseline activity during exploitative trials). 

Therefore, based on the finding that vmPFC activity was related to the (P(c)t) values assigned by 

the softmax RL model, we concluded that the processing related to such activity needs to 

incorporate information relating to both the learning rate (α) and inverse temperature (β) 

parameters described above.  

Taking into consideration all of the aforementioned research, that is, PGs frequently 

exhibit mPFC dysfunction, which likely relates to problems with perseveration, and that mPFC 

activity relates to the value assigned to a chosen action; we predicted that, if a reinforcement 
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learning model were fit to rats’ behaviour, the learning rate and inverse temperature 

(randomness) parameters would also be abnormal. Therefore, we designed a novel rodent 

experiment based on the “4-arm Bandit” design used in the Daw, et al. (2006) study, in which 

rats were required to adaptively respond to changing task contingencies in order to maximize 

food reward. Rodent subjects were randomly selected to receive either an excitotoxic lesion in 

the mPFC region of their brain or a sham surgery before training on our task. Based on the 

findings of previous studies discussed earlier, we chose to specifically damage the PL region of 

the mPFC. As mentioned earlier, the PL region is associated with shifting behavioural strategies 

in response to changing task demands, and damage to this region has been found to produce 

perseverative behaviours in rats (Seamans, et al., 1995). Additionally, based on evidence from 

neuroconnectivity studies (see Appendix A); the PL region appears to be expressly placed to 

influence activity the “goal-directed” regions of the striatum. Thus, we theorized that damage 

to the PL region would chiefly affect the ability of the rats to engage in “goal-directed” 

behaviours in response to reward devaluation. Our experiment endeavored to answer several 

questions: (1) are intact PL regions of the mPFC necessary for  animals to make optimal 

decisions in changing environments? (2) Are PL regions involved the ability of animals to switch 

behavioural strategies and would this inability of the animals to flexibly adapt manifest in 

increased rates of perseverative responding? (3) If so, does it come at the expense of the ability 

to engage in exploratory behaviour? And finally, (4) if a “softmax” RL model was fit to the task-

related behaviour of animals with PL damage, would differences in learning rate (α) and/or 

choice randomness (β) be present when compared to intact animals?  

We hypothesized that, because damage to a rats PL region would likely disrupt its ability 
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to properly generate expected values for each of the choice options; when compared with 

intact animals, rats with PL damage would: (1) not be able to procure as much food reward as 

intact animals evidenced by control animals returning to maximum reward consumption more 

quickly than PL damaged animals after a change in reward location; (2) PL damaged animals 

would display more perseverative-type behaviour, indicated by a propensity to sample from the 

same choice arm for many trials after reward devaluation, and that this would come at the 

expense of the number of trials determined to be exploratory compared to intact animals; and 

finally that (3) because the general ability of the rats to generate appropriate expected values 

would become compromised, the “softmax” RL model would be unable to accurately describe 

the choice patterns of PL damaged rats resulting in much more variable values of alpha and 

beta across animals. This contrasts with the healthy controls, whose behaviours should be well 

described by the “softmax” RL model, and so we therefore expect that both the α and β values 

predicted by the model should be more tightly clustered in healthy animals.  

It is our hope that a better understanding of how mPFC dysfunction affects decision-

making abilities in rats will help us explain how the abnormalities observed in mPFC activity in 

PGs may influence the tendency of this group of individuals to make poor life decisions, and 

that this understanding will provide a foundation from which to work in the attempt to 

ameliorate such deficits in future research. 

3.2 Materials and Methods 

3.2.1 Subjects 

Subjects were male Long–Evans rats (n = 26; all rats from Charles River Laboratories); 3 

animals were excluded from analysis, one due to poor performance during pre-training, and 
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two due to incomplete bilateral lesions discovered upon histological analysis of brain tissue, 

bringing the total to n = 23. Animals weighed 380–450 g and were ~3.5 – 4.5 months old (x ̄= 

130.6 days; SD = 11.5 days) at the start of the experiment. Animals were singly housed in a 

temperature-controlled colony room under a 12h reverse light cycle (lights off at 10:00 A.M.). 

Testing took place between 11:00 A.M. and 6:00 P.M. four to six days per week. Water was 

available ad libitum. Animals were food restricted to ~85% of their free-feeding weight and 

maintained on an at-need amount of standard rat chow per day to maintain their 85% weight, 

available at the end of each day after all behavioural testing was completed (i.e. all rats within a 

cohort were fed at the same time after clean-up). All experiments were performed in 

accordance with the ordinances set by Canadian Council of Animal Care, and experimental 

protocols were approved by the Animal Care Committee of the University of Lethbridge. 

3.2.2 Surgery 

Subjects were randomly assigned to receive either bilateral lesions of the prelimbic 

region of the mPFC (n = 10) or sham surgeries (n = 13) for which a craniotomy was performed 

and the injection needle was lowered to the appropriate stereotaxic coordinates.  Animals were 

injected with 0.03 mg/kg buprenorphine (concentration: 0.3mg/mL, 10x diluted), 30 min prior 

to being anesthetized with 1-3% isoflurane (2-chloro-2-(difluoromethoxy)-1,1,1-trifluoro-

ethane) (Abbott Laboratories, Abbott Park, IL) and then secured in a stereotaxic frame. Lesions 

were performed by infusing the excitotoxin N-methyl-D-aspartate (NMDA, 15mg/mL) into the 

area of interest. Infusions of the NMDA were made manually using a 33 gauge stainless steel 

injector (Hamilton Company USA, Reno, NV). The location of infusion sites and rates of 

infusions were based on previous studies (Birrell & Brown, 2000). The coordinates (Paxinos & 
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Watson, 2007) and rates of infusion for prelimbic lesions were as follows: site 1: anterior–

posterior (AP), +3.5; medial-lateral (ML), ±0.75; dorsoventral (DV), -3.3, three 0.1 μl infusions 

over 2 min each and a final 0.1 μl infusion over 4 min for a total of 0.4 μl over 10 min; site 2: AP, 

+2.5; ML, ±0.75; DV, -3.2, three 0.1 μl infusions over 2 min each and a final 0.1 μl infusion over 4 

min for a total of 0.4 μl over 10 min. The AP coordinate was taken from bregma, the ML 

coordinate from location of the central sinus, and the DV coordinate from the surface of the 

dura. After removing the injector, the craniotomy was filled with gel foam and a topical 

antibiotic was applied after suturing to prevent infection. All rats were treated with 1mg/kg 

Metacam (meloxicam, concentration: 5mg/mL) for three days post-surgery at 24 h intervals. 

Animals remained in their home cages for at least 9 days following surgery to allow the animals 

to recover. During this time, food was available ad libitum for 5 days after which the rats were 

food restricted; water was available ad libitum for the entire duration. All animals included 

within this study recovered well post-surgery.  

3.2.3 Behavioral Apparatus 

Behavioral testing took place on a six arm radial maze (see Figure 3.1) which was built 

in-house. Each arm contained a food port at the end of the arm that dispensed a liquid food 

reward (i.e. liquid chocolate Ensure® in our task). The food well in each port was attached via 

surgical tubing to a syringe which was mounted to the back wall of each arm at a consistent 

height (128 cm). The syringes contained a reservoir of liquid Ensure® which would pass via the 

surgical tubing through a solenoid valve and into the food well. The valve remained closed until 

the rat nose poked an available port at which time the valve would open for a set amount of 

time (i.e. 300 ms, 750 ms, or 1200 ms). Every port was fitted with a stimulus LED light to cue 
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port availability and a horizontal infrared sensor beam that was used to detect rodent nose 

pokes into the food well. Custom-written Labview software on a standard Windows-based 

computer in an adjacent control room was used for both data collection and to control the 

maze. Video was recorded and fed into the control room using a ceiling mounted video camera 

which utilized Cheetah software (Neuralynx, Inc., Bozeman, MT) for video data collection. 

3.2.4 Experimental Design  

A timeline of the experimental procedure is available in Table 3.1. To assess the role of 

the prelimbic region in the ability of rats to flexibly shift their behaviour in response to changing 

environmental demands, the performance of animals that received prelimbic lesions was 

compared to animals that received sham surgery prior to N-arm Bandit Task training. 

3.2.5 Behavioral Testing 

3.2.5.1 Prior testing.  

All animals were participants in a suite of studies investigating the role of mPFC in 

behavioural shifting and had been exposed to a discrimination task prior to testing on the N-

arm Bandit Task when they were ~60 days old (9-17 days after surgery [x ̄= 11.7 days]). Briefly, 

this three part study required rats to detect a food reward (i.e. round shaped toasted oat 

cereal) that was hidden within one of two scented bowls covered either by corncob bedding 

material or silica sand. The location of the food reward was cued either by the scent in the bowl 

(e.g. coffee vs. blueberry) or by the digging media (e.g. corn cob vs. sand). In the first part of the 

experiment, the rat learned by trial-and-error which scented cue accurately predicted the 

location of the food reward (e.g. blueberry). In the second part of the experiment the scent 

which predicted reward was reversed (inter-dimensional shift) and the rat now had to respond  
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Table 3.1. N-Arm Bandit Training Schedule. Total sessions performed by each rat ranged from 
41 – 48 (x ̄= 45.3) days depending upon the amount of time taken in Stage 2 pretraining. 

to the other scent (e.g. coffee). In the final part of the experiment, the odour no longer 

predicted food reward location, rather the type of digging media (corncob vs. sand) now cued 

reward location (extra-dimensional shift). Again, via trial-and-error, the rats had to determine 

which digging media was linked to reward location. 

 

Stage Type Number of Days Objective 

1. Explore Pretraining 1 Familiarize the rat with 
the maze. 

2. Light Reward 
Association 

Pretraining To Criteria – Rat must 
obtain 100 rewards 
within 20 minutes or 
complete ten 20 min 
sessions. 

Train the rat to 
associate a lit LED light 
with reward 
availability. 

3. Task Training Training 21 Rat learns task 
contingencies – some 
ports deliver more food 
than others and the 
location of this port is 
not stable over time. 
He learns that he must 
explore in order to find 
the best one. 

4. N-Arm Bandit Task Testing 16 Rat must obtain as 
much reward as 
possible within the 20 
minute sessions by 
exploiting the high 
reward port once he 
has found it, disengage 
from that port once it 
becomes devalued, and 
search for the new 
location of the high 
reward port. 
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3.2.5.2 Habituation and pre-training.  

Each animal was given a small amount of chocolate Ensure® one or two days before 

pretraining began to allow the rat to overcome their neophobia. Animals were habituated to 

the radial maze one at a time in a single pre-training session (18-59 days post-surgery [x ̄= 30.7 

days]), during which all six ports were illuminated. Each port delivered 750 ms of food reward 

when nose-poked. Animals were then trained to make a nose-poke response into a single 

illuminated port (i.e. light-reward association training). The spatial location of the stimulus light 

varied randomly between trials across arms. Each session contained 150 trials and lasted 

approximately 20 min. Rats were moved onto the training stage either after they had 

completed 150 trials within a 20 min pre-training session or after completing ten pre-training 

sessions. Twenty rats achieved 150 trials within 20min and three rats (1 lesion; 2 sham) had to 

be forced onto the training phase after ten sessions. 

3.2.5.3 Training.  

Animals were then trained over 21 sessions to flexibly seek out the port that offered the most 

reward. Each session lasted 20 min for all training sessions and all rats. Three of the six arms 

were assigned to be choice arms (arms 1, 2, and 3) and one arm was designated as the base 

arm (base 5; see Figure 3.1). The two remaining arms were unlit and unrewarded. During the 

piloting stage for this task, we found three choice arms to be optimal for testing rodent 

switching performance; four arms appeared to overtax the rats’ ability to distinguish between 

the choices causing most of the pilot animals to ignore several of the choice arms.  

Animals were always placed in the centre of the maze at the beginning of each session 

(for all experimental phases) facing away from the base arm. Each trial required the animal to  
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Figure 3.1. N-arm Bandit Task maze. The task was conducted using a six-arm radial maze. Arms 
1, 2, and 3, served as choice arms, while Base 5 served as the return to base arm. Arms 0 and 4 
were not lit and did not deliver any reward. 

first nose poke the port at the end of the base arm; collect the 300 ms reward there, then turn 

around and travel to the middle of the maze (i.e. the decision zone). At this point the rat could 

freely choose one of the three choice arms to travel down from which he collected his reward. 

Each port offered a different amount of food (300 ms, 750 ms, or 1200 ms) and time-out 

punishment (20 s, 10 s, or 0 s). The high reward arm (HRA) always offered a large amount (1200 

ms) of reward with no (0s) time-out, the medium reward arm (MRA) offered a moderate 

amount (750 ms) of reward and a moderate (10 s) time-out, and finally the low reward arm 

 (LRA) offered a small amount (300 ms) of food reward and a large (20 s) time out. Through 

trial-and-error the rat determined which of the three choice ports offered the most food per 

unit time and began to persist at that arm. Once the animal had chosen the HRA ten times in a 

Arm 1 

Arm 2 

Arm 3 

Base 5 
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row, the experimenter would initiate a new trial block in which the locations of the HRA, MRA, 

and LRA were switched – this was done the HRA, arm 2 the MRA, and arm 3 the LRA; after the 

rat had chosen arm 1 ten times in a row, the reward locations would switch and arm 1 would 

now be the MRA, arm 2 the LRA, and arm 3 the HRA. New HRA, MRA, and LRA locations were 

chosen pseudo-randomly in that every arm had to change food amount (i.e. one arm could not 

continue to offer the same amount of reward and punishment for multiple trial blocks). At this 

point, the rat had all three arms, the experimenter helped train the rats manually to explore the 

different options. This involved the experimenter coming into the testing room and leading the 

rat to the HRA with her hand ~4-5 times and exiting the room. Care was taken to ensure that all 

rats received similar amounts of intervention and most of the interventions took place during 

the first half of training and were tapered off in the latter half. No interventions were allowed 

during the testing phase. This succeeded in increasing the rats’ overall propensity to search 

more of the ports more quickly after a switch, and consequently allowed for more switches to 

take place per session. After the 21 training sessions were completed, the rats were moved 

onto testing. 

3.2.5.4 The N-arm Bandit Task. 

 The design of the N-arm Bandit Task is similar to the training phase described above in 

that rats had to attempt to obtain the largest amount of food reward possible by being able to 

persist at the HRA and then flexibly adapt to a change in HRA location when the arm becomes 

devalued after a switch. The main differences in this stage were that switches were no longer 

tailored to rodent performance and experimenter interventions were not permitted. Sessions 

are set up in such a way that switches occur automatically after 35 (± 5) trials. This block size 
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was determined in our piloting experiments to be long enough for the rats’ to determine that a 

switch had taken place, explore other options, and persist at the preferred arm for a number of 

trials, while also providing several switch events per session (providing more switch data for 

analysis). The timing of each switch was varied (i.e. between trials 30 and 40 of each block), so 

that the rats would not be able to predict exactly when a switch was going to occur. Each rat 

completed 16 days of testing and each session was 20 min in length. Rats completed as many 

trials as possible in each session within the allotted 20 min time limit. 

3.2.6 Data analysis 

The main measures analyzed included (1) switch performance, (2) behavioural 

breakdown, as well as parameter estimates from fitting a reinforcement learning model, (3) α 

and (4) β values (see Equations 1 and 2 in section 3.1). The rate of recovery after a switch 

(switch performance) was determined by dividing the trials after every switch into three sets of 

10 trials (we chose thirty trials because every block had at least thirty trials contained within it). 

We then calculated the average amount of reward obtained by each rat within each of the 

three trial sets. This measure provided information on whether PL lesions affected the rate at 

which rats were able to adjust to devaluation of a choice arm. The behavioural breakdown was 

determined using a simple algorithm; if the rat chose the HRA then the trial was designated a 

reward-driven trial (RDT), if the rat did not choose the HRA and the arm chosen was the same 

arm as the rat chose on the previous trial it was designated as a perseverative trial (PT), lastly if 

the rat did not choose the HRA and the arm chosen was not the same arm as the rat chose on 

the previous trial then it was named an exploratory trial (ET) (see Figure 3.2). Every trial over 
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the 16 testing sessions was designated as a RDT, PT, or an ET and the percentage of the total 

amount of trials was calculated for each type. In this way we were able to determine whether 

 

Figure 3.2. Choice breakdown algorithm. Every trial performed by every rat was designated as 
either a reward-driven trial (RDT), a perseverative trial (PT), or an exploratory trial (ET). 

potential group differences in choice type could be explained by an inability to break away from 

interacting with previously rewarding stimuli in search of something new (and potentially 

better). Finally, the α and β values were calculated by fitting a softmax reinforcement learning 

model to the choice data.  For all choices from each rat, the “likelihood” was computed as the 

sum of the log of the probabilities of all choices.   A non-linear optimization routine (fminsearch 

in Matlab, the Mathworks, Natick, MA) was then used to minimize the negative log likelihood, 

yielding the optimal values of α and β for that animal (Daw, et al., 2006). Group comparisons of 

these variables may help explain whether group differences in the ability to maximize reward 

were due to differences in overall learning rates (α) or randomness of choices (β). 
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Figure 3.3. Superimposed images of lesion extent mapped onto standardized sections of the rat 
brain for all lesion animals. Darkest areas indicate the largest overlap of damage in lesion 
animals. The standardized sections reference Bregma and follow the AP axis.  Damage extends 
from Bregma +4.68 to +2.04.  

+4.68 mm 

+3.72 mm 

+3.00 mm 

+2.52 mm 
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3.3 Results 

3.3.1 Histology and Lesion analysis 

Following completion of behavioral testing, animals were sacrificed via an overdose of 100 

mg/kg sodium pentobarbital, then transcardially perfused with 1x phosphate-buffered saline 

(PBS) and 4% paraformaldehyde (PFA). The brains were removed and postfixed in 4% PFA for 24 

h before being stored in a 30% sucrose solution. Brains were sliced into 40 μm sections with a 

cryostat (Leica Biosystems Nussloch GmbH [Nussloch, Baden-Württemberg, Germany]) 

throughout the area of interest and stained with 0.5% Cresyl violet.  

3.3.2 Data Analysis 

Sections were imaged using a parallel microscope (Nanozoomer, Hamamatsu Photonics K. K. 

[Hamamatsu, Honshu, Japan]). The extent of the lesions were determined and mapped onto 

standardized sections of the rat brain (Paxinos & Watson, 1998). Superimposed images 

illustrating the extent of the lesions for all lesion animals are provided in Figure 3.3. Damage 

was fairly extensive and principally affected the PL region for all lesion animals. Lesions 

extended somewhat into the infralimbic cortex (IL), medial orbital cortex (MO), and the anterior 

portions of both the secondary motor cortex (M2) and cingulate cortex (CG1) in most rats. 

Slight damage to the ventral orbital cortex (VO), the cingulate cortex (CG2), was observed in a 

minority of animals. As mentioned earlier in section 3.2.1, two animals were excluded from 

analysis because the lesions were either incomplete or unilateral.  

Data were analyzed using a mixed method analysis of variance (ANOVA) for switch 

performance and independent t-tests for the behavioural breakdown choice arm bias, as well 
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as α and β values. Statistical significance was set at p < 0.05. All statistical analyses were 

conducted using IBM SPSS Statistics (version 20). 

3.3.2.1 Effects of PL lesions on switch performance.  

A mixed design ANOVA was used to determine whether the amount of reward obtained 

significantly differed between the first ([Lesion: x ̄= 776.12, SD = 63.99]; [Control: x ̄= 806.71, SD 

= 32.7]), second ([Lesion: x ̄= 870.12, SD = 121.99]; [Control: x ̄= 934.35, SD = 37.36]), and third 

([Lesion: x ̄= 907.95, SD = 117.14]; [Control: x ̄= 992.57, SD = 51.5]) set of ten trials after a switch 

and also, whether the amount of reward obtained by the rats differed as a consequence  of 

receiving PL lesions. The between-subjects factor was treatment (lesion vs. sham) and the 

within-subjects factors was trial set (three levels, Trials 1-10, Trials 11-20, and Trials 21-30). 

 

Figure 3.4. Effects of PL damage on switch performance. Control animals maintained an overall 
higher level of average reward acquisition prior to and after a switch, although this was found 
to be marginally non-significant. Acquisition of reward in lesion animals increased significantly 
more slowly across time compared to control animals. Error bars represent the standard error 
of the mean (SEM). 
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There were no covariates and no significant skewness or kurtosis was present. A graphical 

representation of these results is shown in Figure 3.4. The between subjects effect of 

Treatment was not statistically significant, F (1, 21) = 4.03, p = 0.058, although there was 

evidence that the effect of PL lesion on reward acquisition trended towards significance. A 

larger sample size with more statistical power may be able to confirm whether this null finding 

was the result of a Type II error. The within subjects effect of Trial Set was statistically 

significant, F (1.39, 29.27) = 157.16, p < 0.001 (Greenhouse-Geisser corrected), which simply 

indicates that the rats were able to learn and adapt to the new reward locations over time. The 

most interesting result emerged from the interaction effect of Treatment x Trial Set, F (1.39, 

29.27) = 4.42, p = 0.033 (Greenhouse-Geisser corrected). This significant result suggests that the 

acquisition of reward in lesion animals increased more slowly across time compared to control 

animals. 

3.3.2.2 Effects of PL lesions on reward-driven choices, perseveration and exploration.  

T-tests were conducted to establish whether the percentage of RDTs, PT, and ETs observed in 

animals given PL lesions ([RDT: x ̄= 0.46, SD = 0.12]; [PT: x ̄= 0.35, SD = 0.19]; [ET: x ̄= 0.19, SD = 

0.11]) differed significantly from the percentage of RDTs, PT, and ETs observed in control 

animals ([RDT: x ̄= 0.52, SD = 0.06]; [PT: x ̄= 0.26, SD = 0.11]; [ET: x ̄= 0.22, SD = 0.07]). No 

significant skewness or kurtosis was present. The t statistic was not significant for any of the 

three behaviours: RDT: t (21) = -1.65, p = 0.113 (2 tailed, equal variance assumed); PT: t (21) = 

1.49, p = .152 (2 tailed, equal variance assumed); ET: t (21) = -0.75, p = .462 (2 tailed, equal 

variance assumed), indicating that PL lesions did not significantly alter the distribution of RDTs, 

PT, and ETs. Results are illustrated in Figure 3.5. 
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Figure 3.5. Breakdown of choice behaviour. Each pie chart represents 100% of trials completed 
by the testing animals in each experimental group. The charts are broken down by the type of 
trial assigned by the algorithm illustrated in Figure 3.2. Blue represents reward driven trials, red 
represents exploratory trials, and green represents perseverative trials. No significant group 
differences were found during statistical analysis, although a trend towards increased 
perseveration in the lesion group was present. 

3.3.2.3 Effects of PL lesions on choice arm bias.  

After initial analysis of group differences in the proportions of reward-driven trials, 

perseverative trials, and exploratory trials, we determined that some of the perseverative trials 

may have been categorized as reward-driven trials due to the algorithm used to parse the trials. 

Each choice arm offered the high reward for approximately one third of all of the trials; so if a 

rat was perseverating at one of the arms, he would obtain the high reward approximately one 

third of the time and those trials would have been classified as reward-driven trials, obfuscating 

the underlying decision-making process taking place for that rat. With this in mind, we 

conducted a more sensitive analysis of perseveration for each of the treatment groups. A 

percentage was calculated for each choice arm that indicated how often each arm offered the  

 

Control Lesion 

RDT

PT

ET



60 
 

 

Figure 3.6. Effects of PL damage on choice arm bias. Each column represents the difference 
between the number of high reward trials offered by a choice arm and the number of trials the 
animals actually chose that arm. The graph is broken down by choice arm preference for each 
animal within each treatment group. Columns in the 1st section represent the choice arm that 
the rats chose from the most and thus had the highest preference for, columns in the 2nd 
section represent the rats’ second highest preference, and columns in the 3rd section represent 
the magnitude of avoidance for the least preferred choice arm. Large positive deviations from 
zero in the section labeled 1st, particularly in conjunction with large negative deviations from 
zero in the section labeled 3rd, indicate that large amounts of perseveration were present. Error 
bars represent the SEM. 

high reward for each rat. Then a percentage was calculated for each choice arm that indicated 

how often each rat chose each arm; then the difference between the two was calculated for 

each animal (deviation from optimal choice). Using this deviation measure, we collated the data 

for each treatment group according to choice arm preference (i.e. the largest positive deviation 

for each rat was designated the 1st preference, the middle deviation was designated the 2nd 

preference, and the lowest was designated the 3rd preference). The spatial location of the 

preferred choice arm differed for each rat (i.e. some rats preferred choice arm 1 while others 

preferred choice arm 3). This gave us a more sensitive measure of perseveration in that it 
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clearly showed whether an animal was interacting primarily with only one choice arm. Results 

are illustrated in Figure 3.6. 

Statistical analyses were then performed to determine whether the PL lesion group had 

an increased tendency to prefer one of the choice arms (at the expense of the others) 

compared to the control group. T-tests were conducted to establish whether the deviation 

from optimal choice for the 1st preference, 2nd preference, and 3rd preference calculated for 

animals given PL lesions ([1st: x ̄= 0.27, SD = 0.14]; [2nd: x ̄= 0.02, SD = 0.12]; [3rd: x ̄= -0.29, SD = 

0.09]) differed significantly from the deviation from optimal choice for the 1st preference, 2nd 

preference, and 3rd preference calculated for control animals ([1st: x ̄= 0.20, SD = 0.11]; [2nd: x ̄= 

0.02, SD = 0.08]; [3rd: x ̄= -0.23, SD = 0.13]). No significant skewness or kurtosis was present. The 

t statistic was not significant for any of the three categories: 1st: t (21) = -1.36, p = 0.188 (2 

tailed, equal variance assumed); 2nd: t (21) = -0.005, p = .996 (2 tailed, equal variance assumed); 

3rd: t (21) = 1.31, p = .205 (2 tailed, equal variance not assumed), indicating that PL lesions did 

not significantly alter the rodents’ bias towards one choice arm, although again a trend towards 

more perseveration in the lesion group was present.  

3.3.2.4 Effects of PL lesions on α and β values.  

T-tests were employed to determine whether α and β values obtained from animals 

receiving PL lesions ([α: x ̄= 0.26, SD = 0.38]; [β: x ̄= 14.61, SD = 15.34]) differed significantly 

from α and β values obtained from control animals ([α: x ̄= 0.19, SD = 0.09]; [β: x ̄= 5.92, SD = 

2.37]). No significant skewness or kurtosis was present. The t statistic was not significant for 

either α or β values: α: t (9.83) = 0.52, p = 0.617 (2 tailed, equal variance not assumed); β: t 

(9.33) = 1.78, p = 0.108 (2 tailed, equal variance not assumed), indicating that PL lesions did not  
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Figure 3.7. Effect of PL lesions on learning rate (α). Comparison of learning rate in lesion versus 
control animals. Lesion animals did not have a significantly different α values compared to 
control animals. Error bars represent the SEM. 

  
Figure 3.8. Effect of PL lesions on inverse temperature (β). Comparison of inverse temperature 
values in lesion versus control animals. Lesion animals did not display significantly different β 
values compared to control animals. Error bars represent the SEM. 
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Figure 3.9. Distribution of α and β values. A scatter plot illustrating the distribution of α and β 
values for individual animals categorized by surgical treatment. Values obtained from control 
animals tend to cluster together in the bottom left hand corner, while values obtained from PL 
damaged animals are widely distributed. 

significantly alter either learning rate or temperature. Results are illustrated in Figures 3.7, 3.8, 

and 3.9. 

3.4 Discussion 

Results of the experiment indicate that in rats, damage to the PL region of the mPFC does 

alter the ability of rats to adjust to changing task requirements in order to obtain reward.  

Specifically, rats with mPFC lesions were slower to switch to a high reward arm after a switch in  

reward contingencies. However, this effect was not striking, as the difference in the overall 

amount of reward obtained did not reach significance, although a trend toward significance 

was present. Furthermore, we did not find any statistically significant differences between 

groups when investigating changes in the proportion of reward-driven trials, perseverative 
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trials, exploratory trials , choice arm bias, or in the learning rates (α) or inverse temperature (β) 

values predicted by the “softmax” RL model. 

Although the statistical analyses did not indicate an overall change in either learning 

rate or randomness of choices in animals that received PL lesions, important dissimilarities 

were present (see Figure 3.9). Most tellingly, when examining how well the softmax RL model 

fit the rats’ behavioural data, obvious group differences were present. While behaviours in 

control animals were described quite well by the softmax RL model, it tended to break down 

when trying to describe those behaviours present in rats that received PL lesions. For, example, 

several lesion animals were assigned very extreme values for both learning rate and 

temperature parameters, in one instance assigning an α value of 1.15 for one of the lesion 

animals, which is an impossible number considering that α values range between 0 and 1. 

Likewise, several lesion animals were assigned very large β values (25, 28 and 50) when most 

animals were assigned values between 3 and 10. This finding suggests that the RL model is not 

providing a good description of lesioned animals performance.  Hence, a genuine difference in 

decision related neural processing may exist. This difference in neural processing may have 

manifested in the increased variance observed in both the α and β values calculated by the 

model for PL damaged rats.  

Similarly, statistical analyses indicated no differences in the distribution of decisions. A 

closer inspection of the way choice trials were parsed was undertaken in ordered to further 

explore why this was the case. We found that the algorithm used to parse the trials into three 

categories (RDT, PT, and ET) designates all choices that yielded a high reward as a reward-

driven trial, implying that every time a rat obtained a high reward outcome, that outcome was a 
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result of a calculated decision by the rat to choose that arm because it represented the best 

chance of obtaining a good reward. However, if the rat was perseverating at one of the choice 

arms because his behaviour had become inflexible, the rat would be able to procure high 

rewards simply because the arm the rat was perseverating at happened to be the HRA, which 

was the case during approximately one third of the trial blocks. Therefore, in all those trials 

where the animal was receiving high rewards, a RDT labels were assigned when in fact PT labels 

may have been more accurate descriptors. A more accurate measure of perseveration was 

designed to calculate the percentage of trials in which each arm was the HRA arm for each 

animal, and then to determine the percentage of trials in which each rat chose each arm. For 

example, if each arm offered the highest reward one third of the time, high performing rats 

should have their choices spread evenly over the three choice arms (~ 33% time spent at each 

arm); however, if the rat was perseverating heavily, then the amount of rewards obtained 

should be skewed heavily in the direction of the preferred arm. As indicated in the Figure 3.6, 

the PL lesion group exhibited no obvious increase in perseveration compared to control, 

although a trend in this direction was present. Therefore, we conclude that damage to rats’ PL 

region does not lead to considerable increases in stereotyped behaviours in our task. This 

finding opposes the theory that dysfunction of the mPFC may result in a shift of behavioural 

control from frontostriatal to dorsostratial regions resulting in a prevalence of habitual actions.  

Interestingly, both groups displayed similar rates of exploration (each group devoted 

about 20% of their total choices to exploration) implying that PL damage does not impact the 

propensity of an animal to occasionally choose a non-optimal arm in order to obtain 

information rather than reward. This may reflect the finding in the Daw, et al. (2006) paper that 
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exploratory decisions, at least in humans, appear to be correlated with increases in activity in 

the anterior FPC and IPS. So damage to the PL region may not affect this particular process. 

However, considering that rats lack a region homologous to the human FPC, exploratory 

processes are likely subserved by other areas. The finding that both groups devoted ~20% of 

their choices to exploration may not reflect rates of exploration in other operant settings. This 

task likely exaggerated the rats’ innate propensity to explore in that an unusual degree of 

behavioural flexibly was required in order to perform this task well. As mentioned in the 

Materials and Methods section (section 3.2.5.3), all rats were extensively trained to increase 

behavioural flexibility in order to gain more switch data per session. Therefore, it is reasonable 

to speculate that this training may have increased the rats’ overall inclination to explore 

considering that, in this kind of task (i.e. a non-binary task where reward is not stable across 

time), exploration is essential to the ability of rats to optimize reward over time. In binary tasks, 

the rats need only to learn two behavioural strategies and then inhibit one or the other 

depending on reward feedback, while this task requires rats to rapidly forage anew after each 

switch. Although humans performing this task may employ a strategy based on a process of 

elimination, we did not see any evidence that rats were able to make use of this kind of 

strategy as rats generally had to sample from several of the arms multiple times before settling 

into an exploitative strategy after a switch. It may be of use to determine in future analyses; 

whether groups differed in when exploratory behaviours were observed in relation to a switch. 

It is possible that although control animals explore at the same rate as PL damaged animals, 

they may cluster their exploratory trials close to the switch whereas animals with PL lesions 

explore more evenly throughout the trial block.  
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That being said, in keeping with other studies which indicate that PL lesions do not 

affect either the acquisition or reversal learning of discrimination tests requiring 

extradimensional shifts, but rather disrupts learning when rats are required to inhibit one 

strategy and intradimensionally shift to using a new strategy (Ragozzino, 2007); the rats that 

received PL lesions in our study may have been equally as likely as control rats to explore other 

arms in response to a switch but then quickly reverted back to their old exploitation strategies. 

On the other hand, our examination of differences in perseveration yielded insignificant 

differences between the two treatment groups, so it is unlikely that this type of behavioural 

strategy was taking place or at least it wasn’t taking place more so in the PL lesion group.  

The idea that the extensive training may have increased the rats’ propensity to explore 

also raises the possibility that such a regimen may have ameliorated some of the deficits 

produced by the PL lesions. It is well known that, although not universal, partial function can 

generally be recovered after a brain region has been damaged, particularly when rigorous 

rehabilitative therapy is undertaken (Ward & Cohen, 2004; Schlaug, Marchina, & Norton, 2009).  

For example, Johansen-Berg et al. (2002) found that after undergoing a movement therapy 

program that combined constraint therapy and graded exercises, patients that had lost motor 

function after a stroke were able to recover some movement in the hand affected. Patients’ 

brains were imaged using fMRI and a correlation between patient recovery and increases in 

activity in the premotor cortex and secondary somatosensory cortex was revealed. 

Furthermore, a meta-analysis of twenty studies involving 2686 stroke patients conducted by 

Kwakkel, et al. (2004) revealed that, although not overwhelming, a reliable increase in motor 

function was observed in stroke patients that underwent augmented exercise therapy. They 
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also found that recovery of function was heavily dependent upon prolonged therapy (at least 

16 hours) in order to reach significance and importantly, only therapy programs employed 

within the first 6 months after a stroke yielded significant findings, whereas those after 6 

months did not. So considering that our rodent subjects not only underwent extensive flexibility 

training in preparation for the task, but were also trained in an post-surgical odour 

discrimination task (described in section 3.2.5.1; although extradimensional in regard to our 

task, still included an element of reversal learning) prior to participation in the N-arm Bandit 

task; a rehabilitative effect similar to that described above may be influencing our results. 

However, because no PL damaged rats were assigned to run the task without flexibly training, it 

cannot be confirmed that the neuroplastic changes observed are in excess of recovery that may 

occur without any intervention. Additionally, the large amount of time that elapsed between 

surgery and testing (~1.5 - 3 months) may have allowed for considerable cortical reorganization 

to take place in and around the damaged area. In support of this idea, Wishaw and Oddie 

(1989) found that after rats received either sham surgery, unilateral medial frontal or bilateral 

frontal cortex lesions, behaviours related to foraging (i.e. the way rats chose to consume newly 

discovered food) were seriously impacted in a time-dependent fashion (see Figure 3.10). That 

interest to see whether group comparisons of behavioural testing data accrued closer to the 

time of surgery would reveal more definitive differences between treatment groups. Similarly, 

it would be prudent to also determine the effects of post-training PL inactivation or temporary 

inactivations on N-arm Bandit task performance as differences in rodent performance on goal-

directed tasks, as a result of when mPFC inactivation occurred in relation to training (pre vs.  
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Figure 3.10. From Wishaw and Oddie (1989; Figure 3). The number of food pellets per day that 
rats with control, unilateral medial frontal or bilateral frontal cortical lesions chose to horde, 
rather than eat immediately is displayed above. Frontal cortical lesions appear to effect 
foraging behaviour in a time dependent manner with the largest change in behaviour observed 
within 5 days post-surgery. 

post), have been reported (Ostlund & Balleine, 2005). 

Finally, it is quite likely that the ability to detect differences between the two groups 

was seriously limited by the small number of animals that participated in the task, particularly 

because large amounts of individual variation were present (especially in lesion animals). 

Therefore, it would be beneficial to replicate this study with more animals in order to either 

confirm the present finding that PL lesions influence the rate of recovery after a change in task 

contingency and engenders an increase in behavioural variance (in virtually all of the factors 

measured), but otherwise have no statistically significant effects or provide evidence that 

supports a specific directional effect (particularly on measures of perseveration). 
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3.5 Conclusion 

Taken together, evidence from our task supports the idea that mPFC dysfunction 

impairs the ability of rats to make optimal decisions in complex environments. However, the 

effect appears to be modest and limited to the rate at which an agent is able to adapt to 

changes in reward outcome and precludes an overall inability to make carefully planned 

decisions, and modify behaviours accordingly. So in consideration of the serious decision-

making problems present in PG individuals, the role of mPFC dysfunction is likely secondary to 

dysfunction observed in other areas, particularly the striatum. Furthermore, the evidence 

obtained from our study does not support the idea that mPFC dysfunction, at least in isolation, 

increases the ability of the dStr to dominate behavioural output. However, the effect of a 

potential interaction between mPFC dysfunction and other impairment regions (e.g. vStr) on 

dStr behavioural dominance cannot be ruled out. Importantly, the “softmax” RL model was able 

to describe the control animals’ behaviour quite well, whereas it tended to break down when 

describing the behaviours of the lesion animals. This could indicate that; even though the lesion 

group was able to adapt to changing task contingencies, the processes by which they were able 

to do this may be quite different than those employed by healthy animals.  Finally, although 

obvious differences in the variance of learning rates and decision randomness were present in 

animals that received PL lesions, this did not statistically alter the groups’ overall ability to 

maximize reward when compared to healthy animals (although this measure was also more 

variable in the PL group compared to controls). It is then possible that in humans with mPFC 

impairment, this increased variance in learning rate and temperature may manifest in goal-

directed behaviours that are more variable/less predictable.  
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Chapter 4: Pathological Gambling as a Behavioural Manifestation of Abnormal Reward 

Learning 

4.1 Synthesis and Discussion  

PG is a multifaceted disorder characterized by impulsivity and excessive risk taking which 

involves impairments in long term decision-making, flexible behaviour, and somatic feedback. 

These impairments appear to be related to abnormal informational processing in the mPFC and 

Str regions. I have surmised that due to some trait vulnerabilities obtained via specific 

combinations of genetic polymorphisms, trauma, or exposure to certain pathogens or 

substances, some individuals possess a brain that is sensitive to the addictive effects of some 

games of chance. These individuals generally are characterized as having novelty-seeking, risk-

taking, and impulsive personality profiles and appear to process risk and reward differently 

than the majority of people. Particularity they appear to have shifted basal levels of 

extracellular DA which influences processes related to reward learning and increases 

susceptibility to the reinforcing and motivating effects of probabilistic reward (other 

neurochemicals are certainly involved, but DA appears to be especially important in the 

aetiology of addiction). Although the exact mechanism remains unclear (but may involve 

homeostatic regulatory mechanisms to compensate for altered tonic levels of extracellular DA), 

this change in reward processing appears to render these individuals insensitive to common, 

everyday rewards. And in compensation they seek out situations that are risky, and offer a 

chance at obtaining large unexpected reward, which elicit large phasic increases in extracellular 

DA. Games of chance offer this type of experience consistently.  
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 These large fluctuations in phasic dopamine experienced while gambling would further 

increase the individuals’ motivation to gamble, tapping into a learning mechanism that 

mediates a processes of acquisition of skills in order to obtain sources of reward. In normal 

circumstances, the unpredicted reward would invoke emotional-motivational processes that 

would facilitate the learning of motor skills and recognition of predictive stimuli that would 

increase the likelihood of obtaining the reward over time. Once the associations between the 

motor responses and predictive stimuli are established and reward becomes predictable, 

emotional-motivation subsides. However, in games of chance increases in probability of 

outcome can never be established, and so although the associations between the motor 

responses and predictive stimuli are still being established, the emotional-motivational input 

does not disengage. 

 On its own, the effect of gambling on reward systems does not appear to be sufficient to 

cause individuals to cross the threshold into addiction. This appears to require a concomitant 

impairment in PFC function, particularly impairment in the mPFC. Crucially, those individuals 

described earlier that have risk-seeking, impulsive personality profiles, generally also exhibit 

impaired mPFC functioning. Unsurprisingly, the relationship between mPFC impairment and 

impulsive decision-making is supported by numerous studies (Ding, et al., 2014; George & Koob, 

2010; Qiu, et al., 2013). The mPFC processes information related to the expectation and 

anticipation of a reward, combining input containing information from all sensory modalities, 

somatic states, and memory of past events. This highly processed contextual information is 

transmitted to the Str which then selects the appropriate action to obtain the reward. 

Importantly, only by tracking and processing reward data over time, can actions be shaped to 



73 
 

optimize reward in the future (non-proximal). However, when the mPFC is impaired this 

processing appears to become distorted. That is, the mPFC is no longer able to provide the Str 

with accurate information regarding expectation of reward over time and makes it difficult for 

the mPFC (and other related PFC regions) to enact situation-appropriate inhibitory control over 

the striatum. This shifts the decision-making process in the direction of acting upon 

opportunities for immediate reward, even when there is serious risk of long term loss of reward 

or punishment; which ultimately effects the individuals’ ability to make appropriate life choices.  

 The convergence of compromised long-term decision-making abilities, increased 

impulsivity, and a source of unpredictable reward that engenders large fluctuations of DA (e.g. 

gambling or drugs of abuse) in individuals with abnormal tonic DA levels (e.g. due to genetic 

inheritance) are much more likely to pass the threshold into a state of addiction. In this state, 

actions and predictive cues associated with the source of the large fluctuations in DA (e.g. the 

lights and sounds of a slot machine) may become imbued with incentive salience. Although 

simply conjecture at this point, I think it also stands to reason that the repeated pairings of 

unpredictable rewards with different environmental and contextual cues increases the 

generalization of situations and cues that have the ability to invoke a craving state. This 

increases the desire to gamble and due to the decreased ability of mPFC to inhibit these actions 

in favour of alternative ones, the individuals decide to gamble. Finally, after many many 

experiences like this, the control of behaviour shifts from “goal-directed” regions of the 

striatum to “habit” related regions. At this point, responses to cues start to become 

subconscious/automatic and thus very difficult to control. It is at this point where PGs are likely 

to exhibit perseverative behaviours when exposed to changes in reward outcome. 
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4.2 Conclusions 

Damage to the mPFC appears to disrupt complex decision-making processes involving 

the updating of reward histories with new data concerning unexpected reward or punishment 

(particularly when there are protracted delays between response and outcome), and 

coordinating external goal-directed learning processes with internal goal-directed processes in 

order to direct behaviours in uncertain environments. Intact mPFC functioning is especially 

important in situations where behaviour must be altered in response to a shift in reward 

patterns and no concurrent change in environmental cues is apparent. That is, when fixed 

responses to environmental cues have been previously established, and the animal must alter 

its behaviour even though the same cues are in place. The inability to inhibit these old 

behavioural responses to the environmental cue manifests in perseverative patterns of 

response, which are common in both mPFC damaged humans and animals. PL damaged rats 

were unable to adjust as quickly as control animals after encountering similar shifts in rewards 

patterns in our task. Additionally, we found that this impairment in reward obtainment was 

connected to an obvious change in reward processing reflected in the breakdown of the ability 

of the “softmax” RL model to meaningfully describe the behaviours of PL lesioned rats.  

Otherwise the effect of PL damage was modest. Initial and follow-up analysis of perseverative 

behaviour indicates that PL lesions only modestly affect the ability of rats to flexibly modify 

their behaviour on our task. Thus, our data does not strongly support the idea that dysfunction 

in PFC regions leads to a hijacking of behaviour by dorsal areas of the striatum. However, due to 

the extensive pre-training of our animals, the possibility exists that perseverative biases in 

lesioned animals were masked by training-induced adaptions.   
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Abnormal dopaminergic processing in the mPFC likely plays a significant role in the 

impaired decision-making processes underlying PG. However, the precise nature of how 

gambling addiction interacts with DA-mediated learning and how it effects long-term changes 

in mPFC dopaminergic neurotransmission remains elusive. Considering that the efficacy of PG 

treatment is, so far, quite modest; it is important to increase our knowledge base concerning 

the genesis, progression, and maintenance of these neurological processing impairments. 

Therefore, it is our intention that the information gathered from our studies concerning the 

role of the mPFC in optimal decision-making will be used to increase the understanding of PG 

neuropathology and inform other research going forward.  
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Appendix A 

A.1 Afferent and Efferent Projections of the Medial Prefrontal Cortex and Striatum 

This section will review and aggregate the findings of several connectivity studies aimed 

at delineating the anatomical underpinnings of prefrontal cortex (PFC) and Str function. For the 

sake of brevity, only the connectivity of core regions in the mPFC, namely the anterior cingulate 

cortex (ACC), prelimbic (PL), and infralimbic (IL) regions will be discussed in depth – major and 

moderate, but not weak, connections will be reported. The afferent and efferent projections of 

other regions of interest; namely, the orbitofrontal cortex (OFC), dorsolateral prefrontal cortex 

(dlPFC; in primates), and Str regions, will be described briefly focusing only on major 

connections. For the purposes of this discussion, connections to and from the medial agranular 

region (FR2) and frontal eye fields (FEF) will be combined with ACC and dlPFC projections 

respectively. Most studies reviewed investigated afferent and efferent projections in rats, so 

the following overview of connectivity will refer to the rat brain unless specifically stated 

otherwise.  

A.1.1 dlPFC afferent and efferent projections  

In primates, the dlPFC receives input chiefly from PFC regions and sensory association 

cortices. Specifically, significant afferent connections can be observed coming from: frontopolar 

cortex (FPC), dlPFC, ACC, OFC, somatosensory cortex (SS), visual cortex (V), superior temporal 

gyrus (STG), and posterior parietal cortex (PPC). Outgoing dlPFC projections terminate primarily 

in PFC regions, Str, and in temporal cortex; expressly the FPC, dlPFC, ACC, OFC, dorsomedial 

striatum (dmStr), temporal pole (TP), and STG (Selemon & Goldman-Rakic, 1985; Kolb, 1990). 
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A.1.2 ACC afferent and efferent projections  

The ACC receives input from other PFC regions, sensory and motor association regions, 

caudal cingulate areas, the claustrum (CLA), limbic regions, the basal ganglia, the basal 

forebrain, thalamic and hypothalamic nuclei, and mesencephalic regions. Specifically afferent 

projections can be observed coming from: FPC (primate), dlPFC (primate), ACC, PL, IL, OFC, 

supplementary motor area (SMA), secondary somatosensory cortex (SS2), agranular insular 

cortex (AI), PPC, secondary auditory cortex (AU2), secondary visual cortex (V2), lateral agranular 

cingulate area (AGl), retrosplenial cortex (RSP), CLA, the basolateral (BLA) and basomedial 

(BMA) nuclei of the amygdala, the hippocampus (HF), subiculum (SUB), perirhinal cortex (PRC), 

entorhinal cortex (EC), ectorhinal cortex (ECT), ventral pallidum (VP), bed nucleus of the stria 

terminalis (BST) and substantia innominata (SI) of the basal forebrain, (paraventricular (PV), 

rhomboid (RH), reuniens (RE), paratenial (PT), paracentral (PC), central medial (CM), 

anteromedial (AM), ventral medial (VM), central lateral (CL)) nuclei of the thalamus, lateral 

preoptic (LPO) and magnocellular preoptic (MA) nuclei of the hypothalamus, taenia tectum 

(TT), and ventral tegmental area (VTA; Selemon & Goldman-Rakic, 1985; Heidbreder & 

Groenewegen, 2003; Kolb, 1990; Hoover & Vertes, 2007). 

ACC efferent projections terminate in PFC regions, sensory and motor regions, Str, 

caudal cingulate areas, CLA, limbic regions, thalamus, hypothalamus, as well as portions of the 

mesencephalon and metencephalon. Specifically, when injections are made in ACC anterograde 

labeling is present in: FPC (primates), ACC, PL, IL, OFC, premotor cortex (PMC), motor cortex 

(M), SS, V, temporal cortex (TC), AI, dmStr, ventral striatum (nucleus accumbens core (NAcC)), 

AGl, RSP, CLA, amygdala nuclei (BLA and BMA), PRC, thalamic nuclei (PV, RH, PT, RE, AM, and 
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anteroventral (AV)), zona incerta (ZI), posterior hypothalamus (PH), superior colliculus (SC), 

periaqueductal gray (PAG), and the reticular formation (RF). Efferent projections to ACC, dmStr, 

RE, AM and AV are particularly massive (Selemon & Goldman-Rakic, 1985; Gruber & McDonald, 

2012; Heidbreder & Groenewegen, 2003; Kolb, 1990). 

A.1.3 PL afferent and efferent projections.  

The PL region receives input from other PFC regions, gustatory and olfactory areas, 

caudal cingulate areas, CLA, limbic regions, the basal forebrain, thalamic and hypothalamic 

nuclei, as well as portions of the mesencephalon and metencephalon. Specifically, anterograde 

tracing studies have shown PL efferents to: FPC (primate), ACC, PL, IL, OFC, AI, endopiriform 

nucleus (EN), RSP, CLA, amygdala nuclei, (BLA, BMA, and cortical (COA)) nuclei of the amygdala, 

amygdalo-piriform transition zone (TR), PRC, EC, ECT, lateral mammillary nucleus (LM) of the 

mammillary bodies, horizontal limb of the diagonal band of Broca (DBh), thalamic nuclei (PV, 

RH, RE, PT, CM, and CL), PH and supramammillary nuclei (SUM) of the hypothalamus, VTA, 

pedunculopontine tegmental nucleus (PPT), interpeduncular nucleus (IP), PAG, locus coerulus 

(LC), and raphe nucleus (RN; Selemon & Goldman-Rakic, 1985; Heidbreder & Groenewegen, 

2003; Kolb, 1990; Hoover & Vertes, 2007). 

The PL sends efferent projections to PFC regions, Str, gustatory and olfactory areas, CLA, 

limbic regions, the basal forebrain, lateral habenula (LH), thalamic and hypothalamic nuclei, as 

well as portions of the mesencephalon, metencephalon, and medulla.  Specifically, after 

injections in PL, anterograde labeling has been shown in: FPC, ACC, PL, IL, OFC, dmStr, NAcC, 

nucleus accumbens shell (NAcS), AI, anterior olfactory nucleus (AON), olfactory tubercle (OT), 

piriform nucleus (PIR), TT, CLA, PRC, EC, (BLA and central (CEA)) amygdala nuclei, septum (SEP), 
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DBh, BST, SI, LH, (PV, RH, RE, PT, AM, central medial (CEM) and parafascicular (PF)) thalamic 

nuclei, (lateral (LHy) and premammillary (PM)) nuclei of the hypothalamus, subthalamic nucleus 

(STN), substantia nigra pars compacta (SNc), VTA, lateral dorsal tegmental nucleus (LDT), IP, 

PAG, LC, RN, supralemniscal nucleus (SLN), and the solitary nucleus of the medulla (SNM). 

Efferent projections to PL, IL, dmStr, NAcC, PT, and RE are particularly massive (Selemon & 

Goldman-Rakic, 1985; Gruber & McDonald, 2012; Heidbreder & Groenewegen, 2003; Kolb, 

1990; Vertes, 2004). 

A.1.4 IL afferent and efferent projections 

The IL region receives input from other PFC regions, gustatory and olfactory areas, CLA, 

limbic regions, the basal forebrain, thalamic and hypothalamic nuclei, as well as portions of the 

mesencephalon and metencephalon. Specifically, tracing studies have shown that IL receives 

input from: ACC, PL, IL, OFC, AI, AON, PIR, TT, CLA, amygdala nuclei, (BLA, BMA, and COA) nuclei 

of the amygdala, TR, HF, SUB, PRC, EC, ECT, SEP, DBh, SI, thalamic nuclei (PV, RH, RE, PT), (SUM, 

LHy, and medial (MHy)) nuclei of the hypothalamus, VTA, LDT, PAG, LC, RN, and nucleus 

incertus (NI; Selemon & Goldman-Rakic, 1985; Heidbreder & Groenewegen, 2003; Kolb, 1990; 

Hoover & Vertes, 2007). 

IL efferent projections terminate in PFC regions, Str, gustatory and olfactory areas, 

limbic regions, the basal forebrain, thalamic and hypothalamic nuclei, as well as portions of the 

mesencephalon, and metencephalon.  Specifically, the IL region projects to: FPC, ACC, PL, IL, 

OFC, NAcC, NAcS, AI, EN, AON, OT, PIR, TT, EC, (BLA, BMA, CEA, and medial (MEA)) amygdala 

nuclei, SEP, DBh, BST, SI, (PV, RH, RE, PT, AM, CEM, PF) thalamic nuclei, ZI, (LHy, SUM, PH, 

paraventricular (PVH), preoptic (PO), anterior (AH), dorsomedial (DM), and perifornical (PFx)) 
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nuclei of the hypothalamus, SNc, VTA, LDT, IP, PAG, LC, RN, (SNM, solitary (NTS), parabrachial 

(PB), Barrington’s (BAR), paragigantocellular (PGN)) nuclei of the medulla. Efferent projections 

to PL, IL, NAcS, OT, PT, and RE are particularly massive (Selemon & Goldman-Rakic, 1985; 

Gruber & McDonald, 2012; Heidbreder & Groenewegen, 2003; Kolb, 1990; Vertes, 2004). 

A.1.5 OFC afferent and efferent projections 

In primates, OFC receives input from PFC regions (FPC, dlPFC, ACC, PL, IL, OFC), all 

sensory association cortices, CLA, limbic regions (amygdala (AMG) and HF), and SNM. Outgoing 

OFC projections terminate in PFC regions (FPC, dlPFC, ACC, PL, IL, OFC), Str, (dmStr, NAcC), AI, 

lateral amygdala (LA), PRC, EC, SUB, HF, mediodorsal thalamic nuclei (MD), PH, LDT, and PAG. 

Efferent projections to dlPFC, ACC, dmStr, AI, LA, SUB, HF, MD, PH, and PAG are particularly 

large (Selemon & Goldman-Rakic, 1985; Klein, et al., 2010; Gruber & McDonald, 2012; Kondo & 

Witter, 2014; Kolb, 1990). 

A.1.6 dlStr afferent and efferent projections 

The dlStr receives input primarily from motor and sensory association cortices (most 

heavily from motor) and projects principally to the globus pallidus (GP), substantia nigra pars 

reticulata (SNr), and the STN (Chikama, McFarland, Amaral, & Haber, 1997; Haber, et al., 2000; 

Selemon & Goldman-Rakic, 1985; Gruber & McDonald, 2012). 

A.1.7.dmStr afferent and efferent projections 

The dmStr receives input primarily from motor and sensory association cortices (most 

heavily from sensory), PFC regions (dlPFC, ACC, PL, and OFC), BLA, HF, EC, and PPC. In turn, the 

dmStr sends projections principally to the GP, SNr, and the STN (Chikama, et al., 1997; Haber et 

al., 2000; Selemon & Goldman-Rakic, 1985; Gruber & McDonald, 2012). 
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A.1.8 NAcC afferent and efferent projections 

NAcC efferent projection originated primarily from PFC regions (dlPFC, ACC, PL, IL, and 

OFC), AI, BLA, HF, EC and STG. The NAcC projected principally to the GP, SNr, and the STN 

(Chikama, et al., 1997; Haber et al., 2000; Selemon & Goldman-Rakic, 1985; Gruber & 

McDonald, 2012; Goto & Grace, 2008; Groenewegen, et al., 1999). 

A.1.9 NAcS afferent and efferent projections 

The NAcS received input primarily from PFC regions (PL and IL), AI, BLA, HF, EC, and STG; 

while projecting principally to the GP, SNr, and the STN (Chikama, et al., 1997; Haber et al., 

2000; Selemon & Goldman-Rakic, 1985; Gruber & McDonald, 2012; Goto & Grace, 2008; 

Groenewegen, et al., 1999). 
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 Figure A1. Schematic of PFC and Str afferent and efferent projections. mPFC connections are described in particular detail. Large arrows and 
grey-filled boxes denote particularly large efferent projections. Dotted boxes indicate that the data comes from primate literature. 
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Figure A1 (continued). 
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Figure 1 (continued). 
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