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ABSTRACT 

 

The present study sought for practical ways to improve the frying performance of 

oils without compromising the availability of the essential fatty acids and nutraceuticals. 

To this end, the influence of temperature, oxygen concentrations, and compositions of 

minor components on frying performance was investigated.   

A novel frying protocol, utilizing carbon dioxide blanketing, was developed and 

found to significantly improve the performance of the frying oil. Optimizing both the 

amounts and the compositions of endogenous minor components also improved the 

performance of the frying oil.  

Twenty one novel antioxidants were synthesized and evaluated under frying and 

storage conditions. Antioxidant formulations consisting of a combination of endogenous 

and synthesized antioxidants were developed and tested in an institutional frying 

operation.  

A rapid and effective frying test was developed to assess the frying performance 

of oils and applied antioxidants. Furthermore, a novel procedure for direct 

hydroxynonenal analysis in frying oil was developed.   
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Chapter 1 – Introduction  

Fried foods, whether deep-fried, pan-fried or stir-fried are one of the most popular 

culinary delights enjoyed by consumers throughout the world (Gupta, 2004). 

Institutionally, frying oils are commonly reused for several frying cycles before being 

discarded, unlike in the home frying where fats are usually used a few times. Such 

prolonged frying results in diminishing acceptability and nutritive value of the fried 

product owing it to the oxidative, hydrolytic and thermal degradation in the oil.  

At frying temperature, a large number of volatile and nonvolatile compounds is 

formed. Not only do these compounds adversely affect the stability of the frying oil, but 

the food fried in deteriorated oils also acquires decomposition products that may have 

adverse effects on food safety, flavour and stability. For instance, 4-hydroxy-2-nonenal 

(HNE), the oxidation product formed mainly from the n-6 fatty acid, linoleic acid, has 

been established to possess cytotoxic and mutagenic activities (Esterbauer, 1982; 

Esterbauer et al., 1991). Acrylamide, also a frying by-product formed by the reactions 

between sugars and specific amino acids, has been classified by the International Agency 

for Research on Cancer as “carcinogenic to humans and animals”. Acrylamide has also 

been considered as “neurotoxic to humans” (Granda and Moreira, 2005; Pedrischi et al., 

2006). Furthermore, the economic loss resulting from degradation of frying oil cannot be 

ignored. 

 The various factors affecting frying stability and performance of oil can be 

broadly categorized into two groups: (1) The external factors which include; frying 

temperature, frying time, presence of oxygen, and the type of fryer, and these factors can 

easily be manipulated by a frying operator. (2) The internal or endogenous factors are oil-
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specific and include fatty acid composition and their distribution on triacylglycerols, and 

the amounts and composition of the minor components. The external factors are as 

important as the internal factors in the optimization of frying performance of oils. 

 The influence of fatty acid and triacylglycerol composition on frying stability 

has been variously reported, and the search for more stable oil has led to several 

modifications of the fatty acid compositions (Fuller et al., 1966; Eskin et al., 1989; 

Wilson et al., 1989; Neff et al., 1992; Neff et al., 1993; Warner and Mounts, 1993; Neff 

et al., 1994; Neff and El-Agaimy, 1996; Martin et al., 2010). Warner and Mounts (1993) 

evaluated the frying stability of soybean and canola oils with fatty acid compositions 

modified by breeding and/or hydrogenation. They reported that modified oils with 

reduced linolenic acid contents ranging from 3.7 to 0.4% had less room odour intensity; 

lower free fatty acid, polar compounds contents, and foam heights; lower intensity of off-

odours; and they produced better quality fried food than the corresponding unmodified 

oils containing linolenic acid at contents ranging from 6.2 to 10.1%. According to Neff 

and El-Agaimy (1996), triacylglycerols containing linoleic acid located on glycerol 

position 2 (e.g., sn-1,3-dipalmitoyl-sn-2-linoleoyl, PLP) had lower oxidative stability 

than triacylglycerols containing linoleic acid located on glycerol position 1 or 3 (e.g. sn-

1,2(2,3)-dipalmitoyl-sn-1(3)-monolinoleoyl, PPL) as measured by the amounts of 

hydroperoxide and conjugated diene formed during heating at 60oC in the dark. In a 

related study, Hoshina et al. (2004) reported that PPL and the mixture of PPP/PLL (1:1, 

mol/mol) exhibited higher thermo-oxidative stability than PPP/LLL (2:1, mol/mol) as 

measured by the amounts of total polar compounds, polymeric compounds, carbonyl 

compounds, and free fatty acids formed during heating at 150 and 180oC for 12 h. 
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Similarly, PPO was more stable than the mixture of PPP/OOO (2.1, mol/mol) (Hoshina et 

al., 2004). 

However, the relative frying stability of an oil cannot always be accurately 

predicted based only on the composition of fatty acids (Normand et al., 2001), and a body 

of research attested to the significant roles of minor components on the frying stability of 

oils (Lampi et al., 1997; Abdalla, 1999; Normand et al., 2001; Abuzaytoun and Shahidi, 

2006; Shahidi et al., 2006; Romero et al., 2007). Normand et al. (2001) compared the 

frying stability of regular and three modified canola oils. At the end of a 72-h frying 

operation, regular canola oil with a linolenic acid content at 10.2% showed a significantly 

higher stability than low linolenic acid canola oil containing 3.0% linolenic acid, as 

measured by the rate of formation of free fatty acids and total polar components. 

Furthermore, no significant difference was observed in the frying stability of regular 

canola oil and a high oleic low linolenic canola oil despite the improved fatty acid 

composition of the latter. The authors concluded that the frying stability of the oils was 

affected far more by the rate of tocopherol degradation than by any changes in fatty acid 

composition.   

 This thesis reviews the literature related to chemistry of oil components during 

deep fat frying, the various factors affecting frying stability of oils and the methods used 

to assess frying performance. The experimental part is a summary of the procedures used 

and described in published or accepted papers, being an integral part of this thesis and 

covers studies on: (1) The effect of temperature; (2) a procedure for limiting oxygen 

availability during frying; (3) synthesis and evaluation of novel antioxidants; and (4) 

optimization of minor components to improve frying performance of PUFA oils. The 
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data from the various studies allowed design of a canola oil with significantly improved 

frying stability. 
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Chapter 2 – Literature review 

2.1 The frying operation 

 Deep fat frying is defined as the process of cooking foods by immersing them in 

edible fat or oil at a temperature above the boiling point of water, usually 150 – 200oC 

(Farkas et al., 1996). It is one of the oldest means of preparing food known to man. For 

instance, Egyptian wall paintings show dough being fried in oil, indicating that Europe 

and North Africa were using frying as a method of food preparation well before the new 

era (Stier, 2004). Although an ancient food preparation technique, frying has grown 

exponentially over the last fifty years, and the consumption of fried food continues to 

grow even in the midst of various campaigns against dietary fat consumption. For 

instance, more than 500,000 institutional and commercial restaurants are involved in deep 

fat frying in the U.S alone (Brooks, 1991).    

 Although deep fat frying is a relatively simple food preparation technique, the 

physical and chemical changes occurring during frying are very complex. Fritsch (1981) 

outlined the principal events and the mechanisms of the frying process (Figure 1). 

Basically, heat is transferred from the heat source to the food through the frying oil. Heat 

transfer from frying oil involves convective heat transfer while conductive heat transfer 

occurs through the food being fried (Orthoefer and List, 2006). The heat transfer usually 

instigates extensive mass transfer: Water in the interior of the food is heated and pumped 

from the food to the surrounding oil where it is transferred into steam; extraction and 

leaching of components from food to frying oil occurs; frying oil and all the components 

dissolved in it are also absorbed/adsorbed into the fried food. Ultimately, reactions 

between the frying oil and the food components are promoted. The leaching of food 
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components into the oil, the breakdown of the oil compounds, and oxygen absorption at 

the oil-air interface all contribute to changes in the make-up of the oil from almost pure 

triacylglycerols (>96%) to a mixture of literarily hundreds of compounds (Blumenthal, 

1987).    

 The intimate contact between the food and the oil, competently described by the 

popular Blumenthal’s Surfactant Theory of Frying (Blumenthal, 1987), makes frying a 

more efficient process than the dry oven or wet steam method. Absorption/adsorption of 

oil, surface dehydration of food with the consequent crust formation, development of 

surface colour, and generation of flavour cumulatively account for the universally 

desirable taste of fried food (Orthoefer and List, 2006). 
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Figure 1. Principal events during frying. Adapted from Fritsch, 1981 
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2.2 Chemistry of frying 

 Although deep fat frying is a relatively simple way of food preparation, the 

complex chemical reactions involved are yet to be fully understood. During repeated 

frying, such as is happening in institutional frying operations, the oil is continuously and 

repeatedly used at elevated temperature, often topped-up with fresh oil regularly. The 

high temperature, continuous exposure to oxygen, coupled with the presence of water 

from the food result in a series of chemical reactions with consequent degradation of the 

frying oil and food components. More than 500 different chemical compounds have been 

detected as a result of the complex reactions occurring during frying (Gertz, 2001).  

 The major chemical reactions occurring during frying can be classified into three 

groups, namely; hydrolytic, oxidative, and oligomerization reactions (Gutierrez et al., 

1988; Warner, 2004). The various chemical compounds arising from these reactions are 

responsible for the unique flavour, colour, texture, taste, and of course off-flavour of 

frying oil and food. 

 

2.2.1 Hydrolytic reaction 

 The main components of edible oils are esters of fatty acids with glycerol. 

During deep fat frying, water and steam hydrolyze triacylglycerols producing free fatty 

acids (FFA), diacylglycerol, monoacylglycerol, and eventually glycerol. A typical 

hydrolytic reaction is depicted in Figure 2. At the high temperature employed during 

frying, glycerol and free fatty acids will partially evaporate and the reaction equilibrium 

is shifted in favour of other hydrolysis products (Warner, 2004). Because short and 

unsaturated fatty acids are more soluble in water than long and saturated fatty acids, they 
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become more accessible to water from food (Nawar, 1969). Consequently, oils with short 

and unsaturated fatty acids are more susceptible to hydrolytic reactions. It has been 

reported that frequent top-up of frying oil with fresh oil during frying slows down the 

prevalence of the hydrolytic reaction (Romero et al., 1998), while the presence of alkali 

used for cleaning the fryer increases hydrolysis of oil (Choe and Min, 2007). Being an 

ionic reaction, hydrolysis can also be accelerated by cations and anions present in both 

the frying oil and the fried food (Pokorny, 1989).  

 Products from hydrolytic reactions seem to have no positive contribution to 

either the stability of the frying oil or the desirability of the fried food. Free fatty acids 

and their oxidized compounds produce off-flavour in both the oil and food fried in it. 

They can catalyze further oxidation of oils by solubilisation and activation of metal 

catalysts (Frankel, 2005). Additionally, as a surface-active substance, FFA lowers the 

surface tension of the oil thereby increasing oxygen accessibility during frying, 

promoting oxidative degradation of oil (Choe and Min, 2006; Choe and Min, 2007). The 

products from hydrolytic reactions are lower in molecular weight but higher in polarity 

than the original triacylglycerol (Dobarganes and Marquez-Ruiz, 2006). The level of the 

FFA in the oil is a measure of the degree of hydrolytic reaction. 

 From a nutritional or physiological point of view, the products from a hydrolytic 

reaction are of no consequence as they are also produced in the small intestine by 

pancreatic lipases prior to absorption (Dobarganes and Marquez-Ruiz, 2006).  
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Figure 2. Hydrolytic reaction and products formed during frying 

 

2.2.2 Oxidative reaction 

 The elevated temperature used during frying accelerates the reactions between 

atmospheric oxygen and the frying oil resulting in the formation of various degradation 

products (Peer and Swoboda, 1982; Houhoula et al, 2003). Thermo-oxidation, like 

autoxidation proceeds by a free radical mechanism, which can be described in terms of 

initiation, propagation, and termination processes. These processes often consist of a 

complex series of reactions (Frankel, 2005) 
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 At the initiation step, the hydrogen atom from the fatty acid is removed and a lipid 

alkyl radical is produced. The initiation step is usually catalyzed by an energy carrier 

such as temperature, and light, and by metal catalysis (Artman, 1969; St Angelo, 1996). 

The energy required to remove hydrogen atoms from fatty acids and initiate radical 

formation depends on the position of the hydrogen on the molecule. For instance, the 

energy required to abstract the bis-allylic hydrogen at C11 of linoleic acid is at 50 

kcal/mol while 75 kcal/mol is required to remove the hydrogen at C8 or C14 of the same 

fatty acid. On the other hand, the homolytic dissociation energy between a carbon-

hydrogen bond on the saturated carbon such as C17 or C18 of linoleic acid is about 100 

kcal/mol (Min and Boff, 2002). Thus, an oil’s propensity for oxidative reaction depends 

on how easy it is to initiate the formation of free radicals. 

 In the propagation step, a lipid radical reacts with triplet oxygen to produce 

peroxy radicals, which in turn abstract hydrogen from another lipid molecule to form 

hydroperoxide and next lipid radical (Choe and Min, 2006). Thus a chain reaction occurs 

at this stage when free radicals are continually produced. Oxidation reaction is terminated 

when free radicals react to form nonradical products. Lipid hydroperoxides are the 

primary products of the oxidative degradation. However, due to their instability, lipid 

hydroperoxides rapidly decompose at frying temperature into secondary products, such as 

aldehydes, ketones, alcohols, esters, lactones, acids, and hydrocarbons (Figure 1). Many 

of the secondary oxidation products are volatile and evaporate from the oil mainly by 

steam distillation, while others accumulate in the oil and are absorbed in the fried food. A 

typical example depicting each of these three steps in frying oil is presented in Figure 3.  
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Figure 3. Oxidative reaction and representative products 
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 Volatile oxidation products contribute significantly to the flavour of the oil and 

the fried food. For example, unsaturated aldehydes such as 2,4-decadienal, 2,4-

nonadienal, 2,4-octadienal, 2-heptenal, or 2-octenal, contribute to the desirable, 

characteristic deep fried flavour in oils and fried products (Warner, 2004). On the other 

hand, many saturated and unsaturated aldehydes are known to produce distinctive off-

flavour in the frying oil. For instance, the grass-like off-flavour in oxidized soybean oil 

has been attributed to the presence of 2t-hexenal while 2t,4c,7t-decatrienal and 1-octen-3-

one are responsible for its fish-like off-flavour (Min and Bradley, 1992). A list of 

common volatile oxidation products and the corresponding characteristic flavour 

impacted on oxidized frying oil and fried food are presented in Table 1 (Malcolmson et 

al., 1996).  

 Hexanal, pentanal, pentane, and 2,4-decadienal have been suggested and used as 

indicators for the degree of oxidative degradation (Jarvi et al., 1971; Warner et al., 1978; 

Warner and Frankel, 1985; Choe, 1997; Heinonen et al., 1997; Shiozawa et al., 2007; 

Toyosaki, et al., 2008; Toyosaki, 2010). In their study of the flavour stability of soybean, 

cottonseed and peanut oils oxidized for 16 h at 60oC, Warner et al. (1978) reported a 

significant correlation between hexanal and pentanal contents of oils and the flavour 

scores reported by a 20-member experienced panel. The authors then suggested the use of 

hexanal and pentanal contents for flavour stability of the oils. Jarvi et al. (1971) 

monitored pentane formation as an index of oxidative stability in soybean oil. The 

soybean was aged at 60oC for 24 h and analyzed by direct injection GC with a packed 

column, using n-octanol as internal standard. While it was not possible to separate 

pentane cleanly, the area under the pentane peak was measured, and the ratio of this area 



14 

 

to the height of the n-octanol peak was used to compute the so-called “Oxidative Value” 

(OV). The researcher found an excellent correlation between OV, peroxide value, and 

flavour. Warner and Frankel (1985) studied the oxidative and flavour stability of soybean 

oil by measuring the induction periods based on the time required for rapid formation of 

volatile compounds during storage at 60oC in a forced-air draft oven. The study showed 

that measurements of pentane and 2,4-decadienal were best related to deteriorative 

changes and could be used to predict flavour stability of oils. 

 Besides affecting the flavour, colour and nutritive value of frying oil and fried 

food, many oxidation products are known to possess detrimental health effects (LoPachin 

et al., 2008; Niki, 2009; Gueraud et al., 2010; Singh et al., 2010). Shiozawa et al. (2007) 

evaluated the cytotoxicity of several volatile oxidation products against two Chinese 

hamster cell lines (CHL/IU and CHO-KI) and two human cell lines (HeLa and MCF-7). 

The volatile oxidation products were added to the culture medium at a final ethanol 

concentration of 1%, and cytotoxicity was evaluated using the Pre-Mix WST-1 cell-

proliferation assay system. Although no significant cytotoxic activity was observed for 

the saturated alcohol and carboxylic acids (pentanol, pentanoic acid, hexanoic acid), and 

the saturated aldehydes (pentanal, hexanal, octanal, nonanal, decanal), significant 

cytotoxicity towards all the tested cell lines were reported for the unsaturated aldehydes 

(2-heptenal, 2-octenal, 2-decenal, 2-undecenal, and 2,4-decadienal).  Kimura et al. (2008) 

reported the cytotoxicity of oil fumes against rat hepatocytes. The oil fumes generated 

during a model frying by a blend of soybean and canola oils were trapped and the 

cytotoxicity was evaluated by the MTT (3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl 

tetrazolium bromide) assay. The researchers further analyzed the composition of the oil 
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fumes using TLC and HPLC and ascribed the observed cytotoxicity to the volatile 

carbonyl compounds, primarily 2,4-decadienal. 

 

Table 1. Characteristics of individual volatiles formed from oxidative degradation of 
oils. Adapted from Malcolmson et al. (1996) 

 
Volatile Reported odour 

threshold in oil 
(mg/kg) 

Reported odour descriptors 

Pentane 340 - 

Hexane - - 

Butanal 0.025 - 

Pentanal 0.070 Painty, herbal 

Hexanal 0.120 Fatty, green, fruity, cut grass, herbal, 
rancid, painty, crushed weeds 

Heptanal 0.055 Weeds, green, sour, sweaty, herbal, painty, 
rancid 

Octanal 1.50 Lime, grassy, citrus, sharp, heavy, candle-
like, crushed weeds 

Nonanal 1.00 Green, soapy, rubbery, beany 

Decanal - Fruity, candle-like 

2-pentenal 1.00 - 

3-Hexenal 0.003 Green, apple-like 

2-Heptenal 1.50 - 

2-Nonenal 0.15 Green, fatty, tallow 

2-Decenal 2.10 Metallic 

2,4-Hexadienal - - 

2,4-Heptadienal 0.04 Fatty, nutty 

2,4-Octadienal 2.40 - 

2,4-Decadienal 0.135 Waxy, fatty, green 
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 Recent epidemiological studies revealed a positive relationship between lung 

cancer and exposure to cooking fumes (Metayer et al., 2002; Yu et al., 2006; Wang et al., 

2009; Lee et al., 2010). In 2006, based on available evidence in both humans and 

experimental animals, emissions from frying were classified as Group 2A carcinogens 

(“probably carcinogenic to human”) by a working committee of the International Agency 

for Research on Cancer (IARC) (Straif et al., 2006). While further studies are required to 

establish the toxicity and carcinogenicity of volatile oxidation products to humans, the 

available data indicate that the development of methods to reduce their formation during 

frying is warranted.   

 

2.2.3 Oligomerization reaction 

 The initiation and propagation stages of an oxidative reaction can generate several 

alkyl radicals as previously noted. The alkyl radical, formed during the initiation reaction, 

the alkylperoxy radicals formed by the addition of oxygen, and the alkoxy radicals 

formed by the decomposition of hydroperoxides are precursors of oligomers produced at 

the termination stage (Dobarganes and Marquez-Ruiz, 2006).  

 At the high temperature employed during frying, the solubility of oxygen 

decreases dramatically. At this reduced amount of oxygen, the initiation reaction 

becomes more important where the ratio between alkyl radicals (R•) and alkylperoxy 

radicals (ROO•) increases. Accordingly, oligomers are formed through reactions 

involving mainly alkyl and alkoxy radicals (Scott, 1965). Dimers are formed between two 

fatty acids, either between or within triacylglycerols, and oligomers with high molecular 

weight are obtained as these molecules continue to cross-link.  
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 Oligomers can be polar or nonpolar depending on whether the monomers are 

connected by a -C-C-, -C-O-C, or a –C-O-O-C linkages. Formation of polar oligomers 

during deep frying is a free radical reaction (Figure 4). Nonpolar oligomers on the other 

hand, can be formed by both a free radical mechanism and Diels-Alder reactions as 

shown in Figures 4 and 5 (Perkins, 1992; Dobarganes and Marquez-Ruiz, 2006). 

Brütting and Spitteller (1994) also proposed a nonradical, cation initiated reaction 

mechanism for the dimerization of unsaturated fatty acids (Figure 6). A number of 

dehydrodimers, bicyclic, tricyclic, and Diels-Alder nonpolar dimers has been reported in 

fried or heated oils (Scharman et al., 1969; Christopoulou and Perkins, 1989). Ottaviani 

et al. (1979) reported the isolation of acyclic dimers with C-O-C linkages and 

tetrahydrofuran substituted dimers from soybean oil. 

 The amount and type of oligomers formed during frying depends mainly on the 

type of oil, concentration of oxygen, frying temperature and number of frying cycles 

(Choe and Min, 2006). For instance, oil rich in linoleic acid oligomerises easier during 

deep frying than oil rich in oleic acid (Takeoka et al., 1997; Tompkins and Perkins, 2000; 

Bastida and Sanchez-Muniz, 2001). Most of the physical changes observed in the frying 

oil during prolonged frying are related to the formation and accumulation of oligomers. 

For instance, increase in the amount of oligomers increases viscosity, darkening, and 

foaming of frying oil. Since amounts of oligomers steadily increase in the frying oil due 

to their nonvolatility, they have become reliable indicators of the fat abuse (Paradis and 

Nawar, 1981).  
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Adapted from Brütting and Spitteller (1994) 
 
 

 The nutritional and physiological effects of thermo-oxidized oils have been 

reviewed by Billek (2000) and Dobarganes and Marquez-Ruiz (2006). In a recent study, 

Leong et al. (2010) associated the elevated blood pressure and impaired vasorelaxation in 

experimental rats to the consumption of soybean oil heated to 180oC and up to 10 batches 

of potatoes intermittently fried in it. Sprague-Dawley rats were fed with commercial rat 

chow supplemented with the thermo-oxidized oil for 6 months. The researchers observed 

a significant elevation in blood pressure in all the rats fed with the thermo-oxidized oil 

compared to rats fed with fresh soybean oil. Similar results were reported earlier using 
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heated palm oil (Leong et al., 2008; Leong et al., 2009). A study by David et al. (2010) 

demonstrated that the ingestion of thermally oxidized sunflower oil by rats resulted in a 

significant increase of intestinal oxidative stress. The observed effect was attributed to 

the increased amounts of nonvolatile degradation products formed in the oil during 

frying.  

  Shuid et al. (2007) indicated that the level of toxicity observed in thermo-oxidized 

oils is dependent on the inherent stability of the oils. Palm oil and soybean oil were 

subjected to the same frying conditions. A mixture of the thermo-oxidized oils and rat 

chow (15:100, w/w) were fed to ovariectomised rats for 6 months and the effects on the 

bone histomorphometric parameters were assessed. The researchers observed that while 

no effect was seen in rats fed with thermo-oxidized palm oil, those that consumed the less 

stable soybean oil showed significantly deteriorated histomorphometric parameters. 

Indeed, the subsceptibility of polyunsaturated oils such as soybean and canola oils to the 

various thermo-oxidative reactions discussed above explains why they are considered 

unsatisfactory for extended frying operation (Stevenson et al., 1984). It becomes 

important therefore that measures be taken to improve the frying performance of such 

oils. 

 

2.3 Factors affecting frying stability of oil 

 The frying stability of an oil is a measure of its resistance to several of the 

degradative reactions occurring during frying. The various factors influencing the 

stability and performance of a frying oil can be categorized into external and internal 

factors depending on whether they are oil-dependent or operator-dependent.  
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2.3.1 External factors 

 As earlier mentioned, external factors are operator-dependent and are independent 

of the inherent quality of the frying oil. External factors include: frying temperature; 

accessibility to oxygen; duration of frying; size, dimension, and composition of food; 

design of fryer (shape, size relative to production requirements, surface to volume ratio, 

responsivenesss of heating element, and accuracy of temperature controllers); and frying 

management (debris removal and oil replenishment). Of these various factors, the 

influence of oxygen accessibility, frying temperature and time are the most significant 

and warrant a closer look. 

 

2.3.1.1 Oxygen 

 Lipid oxidation is arguably the single most important factor affecting the life of 

edible oil. As previously stated, the alkyl radical formed at the initiation step of oxidation 

reacts very rapidly with molecular oxygen to form peroxy radical. At oxygen pressures 

greater than 100 mm Hg, such as usually present in fats and oils at room temperature, the 

rate of oxidation is independent of the oxygen concentration (Frankel, 2005). However, 

during deep frying, when the oxygen supply is limited due to its poor solubility at high 

temperature, and a steam blanketing, the rate of oxidation becomes highly oxygen-

dependent (Andersson, 1998; Frankel, 2005). 

 Oxidation of oil increased with the amount of dissolved oxygen in the oil (Min 

and Wen, 1983). Przybylski and Eskin (1988) reported that the amount of oxygen 

dissolved in oil is sufficient to provide a peroxide value of 10 meq/kg. The total amount 

of volatile aldehydes emitted during thermal treatment of high oleic safflower oil was 
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found to increase with increased oxygen concentration in the oil (Fujisaki et al., 2002). 

Besides affecting the extent of oxidative degradation, concentration of oxygen also 

affects the type of degradation products formed during frying. For instance, in an 

atmosphere containing 2% oxygen, acetaldehyde was the dominant volatile carbonyl 

compound formed during oxidative degradation of high oleic safflower oil whereas 

hexanal and nonanal were the most abundant when 20% oxygen was present (Fujisaki et 

al., 2002). Because individual volatile carbonyl compounds possess characteristic flavour 

and threshold values, the concentration of oxygen during deep frying will also affect the 

flavour of fried food.  

 Despite the poor solubility of oxygen at frying temperatures and steam blanketing, 

several factors are known to increase the availability of oxygen in the frying medium. 

Introduction of fresh food and oil into a frying medium increases the level of oxygen in 

the oil (Warner, 2004). Thermal agitation accompanying boiling during frying of food 

breaks the oil surface and enhances accessibility of atmospheric oxygen by enlarging the 

surface area (Mezouari and Eichner, 2006). Furthermore, surface-active compound 

naturally occurring in oil or formed during frying can also enhance access of atmospheric 

oxygen during frying. Mistry and Min (1987) reported that free fatty acids decrease the 

surface tension of oil, thereby increasing the diffusion rate of oxygen into the oil to 

accelerate oil oxidation. A frying system with a large surface-to-volume ratio also 

increases the oxygen availability during frying. 

 Approaches aimed to reduce availability of oxygen during frying have been 

reported as ways of protecting oil from thermo-oxidative degradation. Przybylski and 

Eskin (1988) evaluated the efficacy of nitrogen and carbon dioxide flushing to prevent 
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canola oil oxidation under frying conditions. The oil samples were heated at 195oC in a 

variety of containers of differing dimensions through which the flow of nitrogen and 

carbon dioxide were regulated. Peroxide value, thiobarbituric acid value, and formation 

of volatile compounds were used to assess the level of thermo-oxidation in the oils. It was 

observed that oils heated without prior nitrogen or carbon dioxide flushing underwent 

more rapid oxidation compared to oils with prior nitrogen or carbon dioxide flushing. 

Based on their findings, the authors suggested that to prevent oxidation of oils and fats 

during thermal treatment, the following should be considered: (1) Flush oil with carbon 

dioxide rather than nitrogen; (2) the oil should be flushed with nitrogen for 15 minutes or 

carbon dioxide for 5 minutes prior to heating to eliminate any dissolved oxygen; (3) the 

linear flow of gas in the container should be at 50 cm/min; and (4) the vessel should not 

be filled to more than 70% of its height. The superior protection offered by carbon 

dioxide over nitrogen was attributed to its higher density and greater solubility in oil. 

Although this study indicated that nitrogen and carbon dioxide could inhibit thermo-

oxidative degradation of oils, their effectiveness during actual deep frying still remains to 

be verified.  

 Shyu et al. (1998) reduced the content of oxygen by conducting the frying under 

vacuum. For six consecutive days, carrot slices were fried in palm oil, lard and soybean 

oil at 105oC for 20 minutes each hour in an 8-hour shift. Peroxide value, acid value, 

viscosity, fatty acid composition, and total polar components were used to evaluate the 

extent of thermo-oxidative degradation. The authors concluded that vacuum frying 

imparted a lower thermo-oxidative degradation on the oils than the typical atmospheric 

frying. Although, the better stability of the oils during vacuum frying was attributed to 
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the lower content of oxygen, the lower frying temperature in the study (105oC) makes 

comparison with typical frying (temperature ~ 180oC) unrealistic. Thus, a study that 

investigates the effect on thermo-oxidative degradation of vacuum frying under a similar 

temperature to that used for standard frying is required to better evaluate effectiveness of 

this method.   

 

2.3.1.2 Temperature 

 The various reactions threatening oxidative stability of an oil require some level 

of energy to proceed. For instance, 50 kcal/mol of energy is required to break the carbon-

hydrogen bond on the carbon 11 of linoleic acid and to initiate free radical formation 

(Min and Boff, 2002). The oxygen-oxygen bond of alkyl hydroperoxide requires 44 

kcal/mol to break it (Hiatt et al., 1968). This energy requirement is more than fulfilled at 

the temperature employed during frying. Nawar (1984) reported a peroxide value of 1777 

meq/kg when ethyl linolenate was heated at 70oC for 6 h. However, only 13.3% of this 

value remained when the same oil was heated at 180oC for 5 h. At 250oC, tremendous 

degradation of hydroperoxide occurred and only 2.5% of the peroxide value was left after 

3 h of thermal treatment. Therefore, apart from accelerating the initiation step of 

oxidative degradation, elevated temperature enhances thermal degradation of 

alkylhydroperoxides, the primary oxidation product. Consequently, oxidative degradation 

proceeds more rapidly during deep frying than at room temperature (Fedeli, 1988; 

Blumenthal, 1991; Tyagi and Vasishtha, 1996).   

 Increase in frying temperature increases thermal oxidation and oligomerization 

reactions not only of the fatty acids or triacylglycerol molecules, but also of the 
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unsaponifiable minor components. Thus, antioxidant minor components in oil are either 

thermally inactivated during frying or have their levels severely reduced (Allam and 

Mohamed, 2002; Réblová, 2006; Rennick and Warner, 2006; Marmesat et al., 2010). 

While tocopherol in rice bran oil heated to 100oC in the absence of air showed a 

reduction by 29% at the end of 432 h of heating, its reduction was 100% when the oil was 

heated at 180oC for 240 h (Bruscatto et al., 2009). Oxidation and polymerization of 

phytosterols, consequent to increase in temperature has also been studied, and the 

formation of oligomers arising from thermo-oxidation of phytosterols has been reported 

(Rudzińska et al., 2009; Rudzińska et al., 2010).  

 The effect of temperature on isomerisation reactions has also been reported. Wolff 

(1993) studied the formation of linolenic acid geometrical isomers in flaxseed oils heated 

under vacuum at different temperatures. After 16 h of heating at 190, 220, and 245oC, the 

total trans linolenic acid increased from an initial 0.2% in fresh oil to 1.3, 9.5, and 28.8%, 

respectively. Tyagi and Vasishtha (1996) reported an increase in trans fat from 1.7 to 

2.6% in soybean oil when the frying temperature was increased from 170 to 190oC. 

Moreno et al. (1999) utilized FTIR spectroscopy to monitor the formation of trans 

isomers during heating of olive oil, sunflower oil, corn oil, and lard over a wide 

temperature range of 80 – 300oC. Their results showed that the amount of trans isomers 

consistently increased as a function of temperature irrespective of the type of oil. 

Fournier et al. (2006) evaluated the effect of deodorization temperature on the 

isomerisation of polyunsaturated fatty acids in fish oil. They reported that the amount of 

trans fatty acids increased from 0.2% in fresh oil to 0.3, 4.2, and 7.6% during 

deodorization at 180, 220, and 250oC. In a recent study, Tsuzuki et al. (2010) compared 



26 

 

the amounts of trans isomers formed when canola oil was heated at different 

temperatures (160, 180, and 200oC). They reported a statistically significant increase in 

the isomerisation rate of linolenic acid when the heating temperature was increased from 

180 to 200oC. In a similar experiment, 10 batches of potatoes were fried in canola oil 

every 10 minutes, and the amounts of trans fatty acids formed at the end of the frying 

period (100 minutes) were analyzed by gas chromatography. It was observed that at all 

tested temperatures, the amounts of trans isomers were higher in oils used for deep frying 

than the heated samples (Tsuzuki et al., 2010). Although the levels of trans isomers 

observed in the fried potatoes might not have any practical implications related to 

nutritional claims about “zero trans” content in a serving portion, the duration of the 

frying operation (1 hour, 40 minutes) was too short and can not be representative of a 

typical institutional frying operation.  

 

2.3.1.3 Duration of frying operation 

 Although deep frying is a fast method of food preparation and the contact time 

between food and oil is relatively short, the length of time spent using a frying oil is 

usually long, especially during continuous and repeated frying such as in industrial and 

institutional operations. All things being equal, thermo-oxidative degradation increases 

with increase in length of time for which the oil is used (Xu et al., 2000; Houhoula, 2003; 

Farhoosh and Tavassoli-Kafrani, 2010; Rani et al., 2010). In a study by Bansal et al. 

(2009), three different frying oils; palm olein, sunflower oil, and a blend of palm olein, 

sesame and peanut oils, were used to prepare French fries. The oils were heated for 6 h 

daily for 4 days and 10 batches of French fries were fried each day without oil 
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replenishment. The extents of isomerisation of the fatty acids were quantified by gas 

chromatography and infrared spectroscopy. Irrespective of the type of oil and the 

quantification method, the authors reported a direct relationship between the extent of 

isomerization and the number of frying cycles.  

 According to Rennick and Warner (2006), the content of α-tocopherol in 

sunflower oil decreased from 829 ppm at 0 h to 183 ppm at 5 h and to 0 ppm by 10 h of 

heating at frying temperature, indicating that the thermal stability of an oil’s natural 

antioxidants also depends on the duration of frying. 

 

2.3.2 Internal factors 

 Unlike the external factors affecting frying stability of an oil, internal factors arise 

from the inherent composition of the frying oil. Edible oils are composed of 

triacylglycerols (>96%) and endogenous minor components. It is generally agreed that 

the inherent composition of edible oils exerts significant influence on their frying stability 

(Shahidi, 2003; Shahidi and Zhong, 2010). 

 

2.3.2.1 Fatty acid composition and distribution 

The influence of fatty acid composition of oils on stability has been variously 

reported (Warner et al., 1989; Neff et al., 1992; Neff et al., 1993). In general, oils that are 

more unsaturated oxidize more readily than less unsaturated (Parker et al., 2003). Worded 

differently, as the number of double bonds in a fatty acid increases, both the rate of 

formation and the amount of primary oxidation compounds accumulated at the end of the 

induction period increase (Martin-Polvillo et al., 2004). This observation correlates with 
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the relative rate of the fatty acid alkyl radical formation (Table 2). On the basis of 

oxygen uptake, linoleate was 40 times more reactive than oleate; linolenate was 2.4 times 

more reactive than linoleate, and arachidonate was 2 times more reactive than linolenate 

(Holman and Elmer, 1947; Min and Bradley, 1992). The oxidizability of linoleic (18:2), 

linolenic (18:3), arachidonic (20:4) and cervonic (22:6) was linearly correlated to the 

number of bis-allylic bonds present in the fatty acid ester (Cosgrove et al., 1987). 

 

 

Table 2. Relative rates of formation of fatty acid alkyl radicals.  
Adapted from Frankel (2005) 

 

Fatty esters 
Number of allylic 

–CH2– 
Moles O2 
per 100 h 

Relative 
rates 

Oxidizability 
M-1/2sec-1/2 

Relative 
rates 

18:1 0 0.04 1   

18:2 1 1.63 41 0.020 1 

18:3 2 3.90 98 0.041 2.1 

20:4 3 7.78 195 0.058 2.9 

22.6 5   0.402 5.1 

Trilinolein 1 x 3 1.99 50 0.080 4.0 

 

  

The search for a more stable oil has led to several modifications to the fatty acid 

composition of edible oils. The newest and the most recent approach has been to modify 

fatty acid compositions of oilseeds to produce oils with greater frying stability, usually by 

decreasing the contribution of linoleic and linolenic acids and increasing that of oleic acid 

(Fuller et al., 1966; Eskin et al., 1989; Wilson et al., 1989). Almost all conventional oils 
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now have counterparts with modified fatty acid compositions (Table 3). Various high 

oleic sunflower oils containing from 75% to 90% oleic acid are now on the market. The 

amount of linolenic acid in conventional canola and soybean oils has been significantly 

reduced in low linolenic canola and soybean oils. Soybeans containing increased levels of 

oleic acid with reduced linoleic and linolenic acid levels have been developed or are 

being developed for commercialization (Wilkes, 2008). 
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Table 3. Oils with modified fatty acid compositions.  
                  Adapted from Hazebroek, 2000 

 

Oil type Crops Developers 

High oleate 

Sunflower Dow, DuPont, Instituto de la Grasa 

Canola Cargill, DuPont, Dow 

Soybean DuPont, Monsanto 

Corn DuPont 

Peanut Mycogen, Univ. FL 

Low linolenate 

Canola Cargill, DuPont, Dow 

Soybean DuPont 

Linseed CSIRO 

Low saturate 
Canola Cargill, DuPont 

Soybean DuPont, NC St. Univ. 

High Palmitate and /or 
stearate 

Sunflower Instituto de la Grasa 

Canola Cargill, Monsanto 

Soybean Monsanto 

High Laurate Canola Monsanto 

High medium-chain Canola Monsanto 

High erucate Rapeseed Various 

 

 Notable methods for lowering unsaturation in oils include: fractionation, 

hydrogenation, interesterification (chemical and enzymatic), conventional seed breeding, 

and genetic engineering. Several reviews up to 2011 covering some aspects of these 
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methods are available (Dijkstra, 2006; Holm and Cowan, 2008; Clemente and Cahoon, 

2009; Dijkstra, 2009; Jhala et al., 2009; Martin et al., 2010; Hayes and Pronczuk, 2010; 

Kontkanen et al, 2011).  The review by Dijkstra (2006) covered available modifications 

to the hydrogenation process which were geared towards reducing the formation of trans 

fat. The oxidative stability of vegetable oils with a modified fatty acid composition by 

interesterification, technically called structured lipids, compared to conventional oils was 

reviewed by Martin et al. (2010).    

 Blending of polyunsaturated oils with a more saturated or monounsaturated oils 

is also being used as a cost-effective way of reducing the amounts of linoleic and 

linolenic acids (Gupta et al., 2001; Su and White, 2004; Mariod et al., 2005; Farhoosh et 

al, 2009; Panghal et al., 2010; Khan et al., 2011). In the recent study by Khan et al. 

(2011), the contribution of linoleic acid to the total fatty acids was 50% lower in a blend 

of sesame and coconut oil, compared to the pure sesame oil. Panghal et al. (2010) 

prepared blends of soybean oil and palm oil lowering linolenic acid to 3.1%, compared to 

the 9.8% in soybean oil.  In the same study, a blend of sunflower and palm oil contained 

32.2% linoleic acid, lowered from 73.6% in pure sunflower oil. Although, oxidative and 

frying stability of vegetable oil blends are reported to be higher than the stability of the 

oils used in blending (Su and White, 2004; Farhoosh et al., 2009; Alireza et al., 2010; 

Serjouie et al., 2010), it is preposterous to attribute the increase in stability entirely to 

changes in fatty acid composition since the endogenous minor components from the 

constituent oils may also contribute.  

 Some of the methods currently used to modify fatty acid compositions of oils are 

also known to negatively affect the nutritional, functional and oxidative stability of the 
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oils. In a study by Lichtenstein et al. (2006), thirty subjects were fed experimental diets in 

random order for 35 days. The diets contained the same foods and provided 30% of 

energy as fat, of which two-thirds was either regular soybean oil or modified soybean 

oils. Evaluation of cardiovascular disease risk factors showed than LDL-cholesterol level 

was significantly higher in subjects fed with hydrogenated soybean oil, compared to 

subjects that consumed regular soybean oil. Furthermore, the ratio of total cholesterol to 

HDL-cholesterol was higher in subjects fed with hydrogenated soybean oil than those 

that consumed regular soybean oil. Hamam and Shahidi (2006) reported a significant 

reduction in tocopherol content during the synthesis of structured lipids by 

interesterification. Consequently, the modified oils were less stable than their unmodified 

counterparts despite an increase in the degree of saturation in the products. In a more 

recent study by Wang et al. (2010), sea blubber and menhaden oils were modified 

through chemical interesterification using sodium methoxide. The oxidative stability of 

the oils during accelerated storage at 60oC for 4 days was assessed by measuring 

conjugated dienes and thiobarbituric acid value. The authors reported a significant 

reduction in oxidative stability attributable to loss of endogenous minor components 

during the modification process. Their observations agreed with studies by Turan et al. 

(2007), Lee et al. (2008a), Maduko et al. (2008), and Jennings and Akoh (2009).  

Apart from reducing the availability of essential fatty acids (linoleic and 

linolenic), the use of genetic engineering for modifying edible oil is still plagued by 

suspicious attitudes of consumers towards GMO products (Matthäus, 2007). Therefore, 

research into development of methods to improve the stability of oils without 

compromising their nutritional and functional qualities becomes imperative.  
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The high frying stability of some conventional oils such as olive and palm oils, 

and the modified oils such as high oleic sunflower and soybean oils, high oleic low 

linolenic soybean and canola oils are often attributed to their fatty acid compositions 

(Smith et al., 2007; Matthäus, 2007; Ryan et al., 2008). However, as previously 

mentioned, the frying stability of an oil cannot be accurately predicted based only on 

composition of the fatty acids (Normand et al., 2001). 

 

2.3.2.2 Minor components 

 The minor components, also referred to as unsaponifiable matters, are the non-

triacylglycerol constituents of an oil and constitute up to 5% of the total lipid composition 

(Abuzaytoun and Shahidi, 2006). Different classes of compounds belonging to this 

important group are summarized in Table 4.  

 

Table 4. Classes of minor components and examples.  
Adapted from Shahidi, (2003) 

 

Class of compounds Examples 

Hydrocarbons Squalene 

Phytosterols β-Sitosterol, sigmasterol 

Tocochromanols α-, β-, γ-, δ-Tocopherol / Tocotrienols 

Ubiquinones Ubiquinone 9, ubiquinone 10  

Phenolic compounds Phenolic acids, flavonoids, and isoflavonoids 

Carotenoids Carotenes, xanthophylls 

Phospholipids Phosphatidylcholine, phosphatidylethanolamine 
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The composition of edible oil minor components, especially chromanols, sterols, 

phenolics and hydrocarbons is of great importance to oil stability both during storage and 

at frying. For instance, a statistical study showed that the phenolic compounds in olive oil 

contributed approximately 51% to its storage stability as compared to a 24% contribution 

arising from its fatty acid composition (Aparicio et al., 1999). Zambiazi and Przybylski 

(1998) estimated that only about half of the storage stability of an oil can be adequately 

explained by the fatty acid composition. Lampi et al. (1997) concluded that in canola oil, 

a concentration of γ-tocopherol as low as 11µg/g was sufficient to reduce hydroperoxides 

and secondary oxidation product formation by 46 and 39%, respectively. Even though 

there was no significant difference in their fatty acid profiles, a modified high oleic 

sunflower oil containing γ-tocopherol as the most abundant natural antioxidant minor 

component was more thermally stable under frying conditions than a sample containing 

α-tocopherol as the most abundant antioxidant, suggestive of the importance of the minor 

components (Marmesat et al., 2008a). 

Individual edible oil is naturally endowed with its own unique composition of 

minor components. For instance, soybean oil is rich in γ- and δ-tocopherol; sunflower oil 

contains predominantly α-tocopherol; palm oil is rich in tocotrienols and β-carotene; rice 

bran oil and sesame oil uniquely contain γ-oryzanol (a group of steryl ferulates) and 

lignans (sesamin and sesamolin), respectively. However, the stability-enhancing capacity 

of minor components differs one from another. Accordingly, research is being carried out 

to study the performance of some minor components in oils in which they are naturally 

absent. For instance, Lee et al. (2007) studied the effects of lignans (sesamol, sesamin, 

and sesamolin) isolated from roasted sesame seed oil on the oxidative and frying stability 
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of sunflower oil. In their study, Hemalatha and Ghafoorunissa (2007) evaluated the effect 

of sesame lignans on the thermal stability of sunflower, soybean and rice bran oils. The 

effect of γ-oryzanol on the Oxidative Stability at Elevated Temperature (OSET) index of 

sunflower and canola oils was studied by Gertz et al. (2000). Nystrom et al. (2007) 

assessed the effect of sitostanyl ferulate (a component of γ-oryzanol) on thermo-oxidative 

degradation of high oleic sunflower oil heated at 100 and 180oC.  Goulson and Warthesen 

(1999) evaluated the antioxidant activity of β-carotene in conventional and high oleic 

canola oil. Attempts are also being made by plant breeders to enhance the amount and 

composition of some minor components in oilseeds in which they are either naturally 

absent or are present in negligible amounts (Wang et al., 2007; Warner et al., 2008).  

Although endogenous minor components are important to the stability of frying 

oils, the applied processing steps such as degumming, refining, bleaching and 

deodorization often result in a significant portion of them being removed from the oils. 

For example, loss of sterols, tocopherols, carotenoids and related minor compounds 

during processing may range from 35 to 95% (Shahidi, 2003). In a recent study, Naz et 

al. (2011) reported an overall loss of 38% in tocopherol content during the neutralization, 

bleaching and deodorization of sunflower oil. 

 

2.4 Antioxidants 

 As the name implies, antioxidants are compounds possessing the ability to 

inhibit oxidation when present in food or biological systems. Depending on their 

structural features, antioxidants can scavenge free radicals, inactivate prooxidant metals, 

quench singlet oxygen, and inactivate sensitizers (Figure 7). Besides their structural 
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features, the effectiveness of antioxidants also depends on the concentration used, the 

applied temperature, exposure to light, and type of substrates (Yanishlieva and Marinova, 

2001). For frying applications, radical scavengers and metal inactivators are the most 

interesting group of antioxidants. A list of some approved antioxidants and their E 

numbers in the EU is presented in Table 5. 

 The standard one-electron reduction potentials of major lipid and tocopheryl 

radicals are presented in Table 6. Any compound with reduction potential lower than that 

of a free radical can quench the radical by proton donation to the radical, unless the 

reaction is kinetically unfavourable (Choe and Min, 2006). Radical scavenging 

antioxidants possess reduction potentials considerably lower than those of the free 

radicals generated during thermo-oxidation, thus can convert them to more stable 

nonradical products (Decker, 2002). The major radical scavenging antioxidants are 

monohydroxy or polyhydroxy phenolic compounds with various aromatic substitutions 

(Frankel, 2005). The antioxidant radical produced from the reaction with lipid alkyl or 

peroxy radicals are effectively stabilized by resonance (Shahidi and Wanasundara, 1992) 

(Figure 8).  

 Transition metals such as iron and copper are excellent initiators of free radicals; 

they react directly with lipids to produce alkyl radicals, and also catalyze the 

decomposition of alkyl hydroperoxides into the alkoxy or peroxy radicals (Benjelloun et 

al., 1991; Jadhav et al., 1996). Metal inactivators function by sequestering metals ions 

through chelation or by blocking the formation of complexes between metals and alkyl 

hydroperoxides, thus preventing hydroperoxide decomposition (Frankel, 2005).   
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Antioxidants in this group include citric acid, phosphoric acid, ethylenediaminetetraacetic 

acid (EDTA), and ascorbic acid.  

 A number of antioxidants occur naturally in food where they offer protection 

against oxidative damage. However, due to shortcomings in their performance and 

applicability, natural antioxidants are being modified and synthetic antioxidants are 

emerging. A number of synthetic (or semi-synthetic) antioxidants have been approved by 

appropriate authorities in several nations (Torres et al., 2008). For instance, fatty acid 

esters of vitamin C (ascorbyl palmitate, stearate, oleate and linoleate; E304) have been 

synthesized to enhance the lipophilicity of vitamin C for stabilization of lipids (LoNostro 

et al., 2000; Song, 2004).  



38 

 

Table 5. Approved antioxidants most commonly used in food.  
Adapted from Torres et al. (2008) 

 

Antioxidants E number* 

L-Ascorbic acid E300 

Sodium L-Ascorbate E301 

Calcium L-Ascorbate E302 

Potasium L-Ascorbate E303 

Ascorbyl Palmitate, Ascorbyl Stearate E304 

Mixed tocopherol concentrate (natural) E306 

Alpha-tocopherol (synthetic) E307 

Gamma-tocopherol (synthetic) E308 

Delta-tocopherol E309 

Propyl gallate E310 

Octyl gallate E311 

Dodecyl gallate E312 

Erythorbic acid E315 

tert-Butylhydroquinone (TBHQ) E319 

Butylated hydroxyanisole (BHA) E320 

Butylated hydroxytoluene (BHT) E321 

Lecithins E322 

Citric acid E330 

L-Tartaric acid E334 

*E numbers are number codes for food additives that have been assessed for use within 
the European Union
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Table 6. Standard one-electron reduction potentials for common free radicals.  
Adapted from Kim and Min (2008) 

 
 

Compounds Standard reduction 

potential (mV) 
•OH (hydroxyl radical) 2310 

RO• (alkoxy radical) 1600 

ROO• (peroxy radical) 1000 

R• (alkyl radical) 600 

α-Tocopheryl• 270 

β-Tocopheryl• 345 

γ-Tocopheryl• 350 

δ-Tocopheryl• 405 
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Figure 7. Type of antioxidants and respective point of antioxidant activity 
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Figure 8. Resonance stabilization of an antioxidant radical.  
(Shahidi and Wanasundara, 1992) 
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2.4.1. Natural antioxidants 

2.4.1.1 Tocochromanols 

 A number of naturally occurring minor components in edible oils possess 

antioxidant activity, and are of great importance to both storage and frying stability of 

oils. The most important and often studied antioxidants are the tocopherols and 

tocotrienols, collectively referred to as tocochromanols. The structural difference 

between tocopherols and tocotrienols is in the unsaturation of the phytyl side chain 

(Figure 9). Depending on the position and the number of a methyl substitution on the 

chromanol ring, four homologues, α, β, γ, and δ, are recognized for each tocopherol and 

tocotrienol. Of these, the α- and γ-tocopherols are the most abundant in frying oils 

(Seppanen et al., 2010). 

 More often than not, edible oils rely on tocochromanols for protection against 

oxidative degradation, mainly because of their excellent radical scavenging activity. It 

has been reported that lipid peroxy radicals react with tocopherols much faster (104 to 109 

M-1s-1) than with lipids (10 to 60 M-1s-1) (Choe and Min, 2006). According to Kamal-

Eldin and Appelqvist (1996), one tocopherol molecule can protect about 103 to 108 

polyunsaturated fatty acid molecules at low peroxide value. A very strong positive 

correlation was reported between the radical scavenging capacity of different refined oils 

and the total content of tocochromanols (Rossi, 2007). The oxidative stability of soybean 

oil (Jung and Min, 1990; Jung et al., 1991), sunflower oil (Fuster et al., 1998), canola oil 

(Lampi et al., 1999), corn oil (Huang et al., 1995), fish oil (Kulas and Ackman, 2001), 

egg yolk lipid (Rocha et al., 2010), lard (Parkhurst et al., 1968; King et al., 2009), and 
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butter oil (Kanno et al., 1970; Lampi and Piironen, 1998; Chawla et al., 2003) were 

significantly enhanced in the presence of tocopherols.  
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Figure 9. Structures of tocochromanols 

 

Although there appear to be no controversy regarding the ability of tocopherols 

to protect oil from oxidative degradation, conflicting reports do appear in the literature on 

the relative effectiveness of the homologues. The relative antioxidant activity of 

tocopherol isomers against autoxidation in butter oil at 50oC was reported to be γ > δ > β 

> α when applied at a concentration of 100 µg/g, while δ > γ > β > α at 500 µg/g 

concentration (Kanno et al., 1970). In a study by Fuster et al. (1998), sunflower oil 
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triacylglycerols containing different concentrations of α- and γ-tocopherol were 

autoxidized at 55oC in the dark for 7 days. The effectiveness of the tocopherols to inhibit 

oxidation was monitored by peroxide value. The authors concluded that α-tocopherol was 

more effective than γ-tocopherol at concentrations below 40 µg/g, while γ-tocopherol was 

a better antioxidant at concentrations above 200 µg/g. Yanishlieva et al. (2002) reported a 

relative antioxidant effectiveness as α- > γ-tocopherols at concentrations below 400 and 

700 µg/g during oxidation of sunflower and soybean oils, respectively. However, a 

reversed order, γ- > α-tocopherol, was observed above these concentrations. In a review 

of eight studies from the literature, Frankel (2005) reported that the most common order 

of relative antioxidant activity of tocopherol isomers was γ > δ > β > α. Thus, the 

oxidative stability of oils is affected by the isomeric distribution of the tocopherols. 

 Apart from the composition of isomers, the applied concentration also exerts 

remarkable influence on the antioxidant activity of tocopherols. For instance, reduction of 

tocopherol content in soybean oil from 1500 to 544 µg/g markedly increased oxidative 

stability at 60oC (Frankel et al., 1959). Similarly, Evans et al. (2002) reported that the 

antioxidant activity of tocopherol significantly diminished at concentrations above 660 

µg/g during accelerated storage of soybean oil at 60oC. Shishkov et al. (1979) studied the 

effects of tocopherol concentration on the oxidative stability of sunflower oil. They 

reported concentrations between 350 and 500 µg/g as the optimum levels for maximum 

stability of the oil. Above or below these levels, the observed antioxidant effect was 

significantly diminished (Shishkov et al., 1979).  

Although much study has been done assessing activity of tocopherols at 

temperatures <120oC, the results cannot correctly depict their performance under a frying 
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temperature of 185oC. For instance, in a study by Réblová (2006), the antioxidant activity 

of α- and δ-tocopherol on the stability of lard was evaluated at temperatures ranging from 

80 to 150oC. It was found that while both tocopherol isomers were active between 80 and 

110oC, none of them was effective at 150oC. On the contrary, Wagner et al. (2001) 

reported an increase in the Oxidative Stability Index assessed at 160oC for coconut oil 

fortified with α, γ, and δ tocopherol compared to coconut oil without added tocopherols. 

Therefore, it is worthwhile to obtain data on tocopherol antioxidant activity in various 

oils under thermo-oxidative conditions. While the antioxidant activity of tocopherols 

under oxidative conditions is readily ascribed to the donation of their phenolic hydrogen 

to lipid free radicals, their mode of action at high temperatures is not that simple (Steel et 

al., 2005). 

A number of studies has evaluated the ability of tocochromanols to protect oils 

under frying conditions. According to Nogala-Kalucka et al. (2005), the addition of 100, 

500, or 1000 µg/g of δ-tocopherol to Planta, a commercial blend of hydrogenated canola 

oil and palm oil resulted in a significant decrease in the peroxide value, p-anisidine value, 

and hexanal formation during heating at 160oC for 2 h in a Rancimat. Supplementing 

technical triolein with 100 or 400 µg/g of γ-tocopherol significantly inhibited polymer 

formation during frying of potato chips at 190oC for 6 h (Neff et al., 2003). The effect of 

α-tocopherol and α-tocotrienol on the performance of antioxidant stripped canola oil at a 

high temperature was reported by Romero et al. (2007). The pure canola oil 

triacylglycerols were supplemented with α-tocopherol and α-tocotrienol at various 

concentrations: 155 and 432 µg/g tocopherol; 138 µg/g tocotrienol; and a mixture of 66 

µg/g tocopherol and 72 µg/g of tocotrienol. The samples were heated at 180oC for 18 h in 
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a Rancimat apparatus, and performance assessed by measurement of the amount of total 

polar components. The authors reported a significant level of protection by both α-

tocopherol and α-tocotrienol, although the later was significantly less effective. They also 

observed that increasing the level of α-tocopherol from 155 to 432 µg/g did not improve 

its antioxidative activity. In a similar study, Lampi and Kamal-Eldin (1998) evaluated the 

antioxidant activity of α- and γ-tocopherol in purified high oleic sunflower 

triacylglycerols. The oil with or without α- and γ-tocopherol was heated for 24 h at 185oC 

in an oven. Thermo-oxidative changes in oil were measured by analysis of polymerized 

materials, and both tocopherols significantly inhibited polymerization of the oil; however, 

the γ-isomer was more effective. The authors did not observe any synergistic relationship 

between the two isomers when they were added as a mixture. On the contrary, Warner 

and Moser (2009) observed that samples of purified mid-oleic sunflower oil 

triacylglycerols containing a mixture of α, γ, and δ tocopherols accumulated significantly 

lower amounts of the total polar components compared to effectiveness of individual 

isomers during frying of tortilla chips. Similarly, Barrera-Arellano et al. (2002) reported a 

synergistic interaction between α, β, γ, and δ tocopherols during thermal treatment of 

purified palm olein and soybean oil triacylglycerols at 180oC for 10 h in a Rancimat as 

assessed by the amounts of polymers formed.  

Normand et al. (2001) compared the frying stability of regular and three modified 

canola oils during a 72-hour frying operation, and performance was assessed by the 

analysis of free fatty acids and total polar components. The rate of tocopherol degradation 

was reported as the major factor determining the frying stability of the oils. This was in 
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agreement with the conclusion by Petukhov et al. (1999) during frying of potato chips in 

regular, high oleic low linolenic, and hydrogenated canola oils. 

Majority of the studies on the antioxidant activity of tocochromanols was 

conducted by heating the oils to a frying temperature rather than during actual deep fat 

frying (Lampi and Kamal-Eldin 1998; Steel et al., 2005; Romero et al., 2007). However, 

the chemical reactions taking place during actual frying of food are different from those 

during continuous heating (Chang et al., 1978; Fritsch, 1981; Kalogianni et al., 2010). 

Thus, the activity of tocochromanols can be better assessed during an actual frying or in a 

frying test that truly mimics actual deep fat frying conditions.   

Tocochromanols are thermally unstable, and are known to be easily removed 

during frying by evaporation/distillation (Marmesat et al., 2010). The dispearance of 

tocopherols has been attributed to both oxidative and thermal degradation, with the rate 

being significantly slower in unsaturated oils than in saturated oils (Yuki and Ishikawa, 

1976; Yoshida et al., 1991; Jorge et al., 1996; Normand, 2001). A number of tocopherol 

degradation products notably, α-tocopherolquinone, 4a,5-epoxy-α-tocopheroxyquinone, 

5,6-epoxy-α-tocopheroxyquinone, and 7,8-epoxy-α-tocopheroxyquinone have been 

identified both in model systems and during actual deep fat frying (Murkovic et al., 1997; 

Verleyen et al., 2001; Rennick and Warner, 2006). However, despite the prevalence of 

oligomerization during frying, oligomers of tocopherols are rarely encountered 

(Marmesat et al., 2010), presumably because coupling of tocopheroxyl radicals with lipid 

peroxy and alkyl radicals predominates over the formation of tocopherol oligomers 

through self-coupling (Kamal-Eldin and Appelqvist, 1996). The prooxidant effect 

observed for tocopherols under thermo-oxidative conditions has been attributed to their 
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oxidation products. Rietjens et al. (2002) suggested that increased levels of oxidized α-

tocopherol could result in increased levels of intermediate radicals, which can initiate 

lipid oxidation. Jung and Min (1992) reported that the oxidative stability of soybean oil at 

55oC was significantly reduced in the presence of oxidized α, γ, and δ tocopherols. The 

observed prooxidant effect was more pronounced with oxidized α-tocopherol. According 

to Pokorny et al. (1973), tocopherol oxidation products can react with other food 

components such as protein to generate several other products.  

Apart from their antioxidant/prooxidant activity, little is known about biological 

activities of tocopherol degradation products. Therefore, to ensure high nutritional quality 

and the safety of fried foods, methods must be developed to discourage tocopherol 

degradation during deep frying. 

 

2.4.1.2 Phytosterols  

Phytosterols are the major constituents of unsaponifiables present in edible oils 

(Rudzińska, 2009). They are triterpenes, structurally different from cholesterols only in 

the side chain configuration. The most common phytosterols in edible oils are β-

sitosterol, campesterol, stigmasterol, ∆5-avenasterol, and brassicasterol (Figure 10). In 

vegetable oils, phytosterols are the dominant class of minor components and occur 

primarily as free sterols or steryl fatty acid esters (Piironen et al., 2000). 

There is a general agreement in publications that phytosterols offer no protection 

to oils under storage conditions or low temperature applications (<120oC) (Kochhar, 

2001; Cercaci et al., 2007). However, under frying conditions, phytosterols have been 

reported to inhibit thermo-oxidative alterations of frying oils. Sims et al. (1972) 
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investigated the ability of some phytosterols to inhibit thermo-oxidation of safflower oil 

by heating it to 180oC, and the extent of thermo-oxidation was assessed by iodine value. 

Fucosterol, ∆7-avenasterol, and vernosterol offered significant protection to the oil, while 

ergosterol, β-sitosterol, and sigmasterol were either ineffective or slightly prooxidant. In a 

similar study, Gordon and Magos (1983) reported that the addition of fucosterol and ∆5-

avenasterol to technical triolein and heating it to 180oC inhibited thermo-oxidation as 

measured by iodine value. According to Kochhar and Gertz (2004), a mixture of 

phytosterols isolated from canola or sunflower oils significantly increased value of the 

Oxidative Stability at Elevated Temperature (OSET) index of canola oil heated at 170oC, 

indicating antioxidant activity.  In a recent study, Winkler and Warner (2008a) observed 

an oil dependent activity of phytosterols. A mixture of phytosterols was added to purified 

soybean and high oleic sunflower oil triacylglycerols. The oils were heated at 180oC for 

up to 12 h, and formation of polymers was quantified by high performance size exclusion 

chromatography (HPSEC). The authors reported that the added phytosterols significantly 

decreased thermal polymerization of soybean oil triacylglycerols; however in high oleic 

sunflower oil triacylglycerols polymerization was significantly increased. Thus, the 

phytosterol mixture was effective in unsaturated oil but ineffective in the more saturated 

oil. 

White and Armstrong (1986) compared the antioxidant activity of pure β-

sitosterol and a purified oat sterol containing a mixture of ∆5-avenasterol and β-sitosterol 

using soybean oil heated to 180oC. Thermo-oxidative degradations were followed by 

changes in fatty acid, conjugated diene formation and polymerization. At all tested 

concentrations, samples containing ∆5-avenasterol were more stable than the control - 
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soybean oil without additives. In contrast, samples containing β-sitosterol were altered at 

the same rate as the control. Because observed antioxidant activity appeared to be 

restricted to sterols with ethylidene side chain configuration, such as avenasterol, 

fucosterol, vernosterol and citrostadienol, the mechanism of phytosterol antioxidant 

activity has been ascribed to the formation of an allylic free radical at C-29 followed by 

isomerisation to a relatively stable tertiary free radical at C-24 (Figure 11) (Sims et al., 

1972; Gordon and Magos, 1983; White and Armstrong, 1986). However, there is a lack 

of supporting experimental data, showing presence of phytosterol side chain oxidation 

products to support this mechanism. Furthermore, since the phytosterol mixtures 

evaluated by Kochhar and Gertz (2004), and Winkler and Warner (2008a) were mainly 

composed of β-sitosterol, stigmasterol, and campesterol, phytosterols without ethylidene 

side chain configurations, a more plausible explanation is required for their observed 

inhibitory activity. 
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Figure 10. Common phytosterols 
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A further study of the effect of structure on phytosterol antioxidant activity was 

undertaken by Winkler and Warner (2008b). Endogenous minor components were 

removed from soybean oil by molecular distillation. Various concentrations of pure 

phytosterols mixture containing β-sitosterol, sitostanol, stigmasterol, fucosterol, 

brassicasterol, and ergosterol were added back to the stripped oil, and the samples heated 

at 180oC for 8 h. As measured by the amounts of polymers formed at the end of the 

heating period, all phytosterols with two or more double bonds, regardless of the 

presence of an ethylidene group in the side chain, provided protection against 

polymerization of the oil. The best protection was offered by ergosterol with three double 

bonds. The authors concluded that the degree of phytosterol unsaturation was more 

important for its antioxidant activity than the presence of an ethylidene group.  

Like tocopherols, phytosterol can undergo thermo-oxidative degradation under 

the conditions employed during deep frying, leading to a variety of polar and nonpolar 

compounds. The formation of phytosterol oxidation products have been studied both in 

model heating systems and under actual deep frying conditions (Ghavami and Morton, 

1984; Dutta and Appelqvist, 1996; Dutta, 1997; Oehri et al., 2001; Soupas et al., 2004; 

Soupas et al., 2005; Tabee et al., 2008). Dutta et al. (1997) assessed the contents of 

phytosterol oxides in a hydrogenated canola/palm blend, sunflower, high oleic sunflower 

oils, and the French fries fried in the various oils. 7α-, and 7β-hydroxysterols, 7-

ketosterols, 5α,6α-epoxysterols, and dihydroxysterols were the major phytosterol oxides 

identified. Soupas et al. (2004) evaluated the effects of the degree of unsaturation of both 

the phytosterols and the lipid medium on the formation of phytosterol oxides under 

different temperatures (60 – 180oC). Stigmasterol (unsaturated phytosterol) and sitostanol 
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(saturated phytosterols) were added as model compounds to tripalmitin and canola 

triacylglycerols. The authors reported a significant influence of lipid matrices and 

temperature on the level and reaction pathway of phytosterol oxidation. For instance, 

after 3 h of heating at 180oC, the stigmasterol oxide contents were 24.2 and 7.4% in 

tripalmitin and purified canola oil, respectively. However, heating at 100oC yielded 0.3 

and 26.5% stigmasterol oxide in palmitin and canola oil, respectively. It was also 

observed that the level of oxidation products from the unsaturated phytosterol was 

significantly higher than the level from the saturated phytosterol. In a similar study, Oehri 

et al. (2001) monitored the formation of phytosterol oxidation products in canola, 

coconut, peanut, and soybean oils during heating at 100, 150, and 180oC for 20 h. The 

authors reported that the amounts and varieties of phytosterol oxidation products were 

significantly higher at 100 and 150oC than at 180oC, presumably due to their participation 

in oligomerization reactions at frying temperatures. 

Oxidized phytosterols have been identified as the precursors for oligomers at 

frying temperatures (Lampi et al., 2009; Rudzińska et al., 2009; Rudzińska et al., 2010). 

Rudzińska et al. (2009) heated phytosterol standards at 60, 120, and 180oC for up to 24 h 

in the presence of pure oxygen, and the level of oligomers monitored by HPSEC. It was 

observed that at frying temperatures, oligomers were the main products, accounting for 

60-74% phytosterol transformation. Several volatile degradation products of phytosterols 

were identified and quantified in the study.  In a recent study, Struijs et al. (2010) 

reported a broad range of dimers with different polarity during thermo-oxidation of 

stigmasterol at 180oC for 3 h and the most abundant dimers were found to be linked by 

carbon-carbon bonds. 
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Unlike tocopherol oxidation products, phytosterol oxidation products have been 

shown to exhibit negative biological effects such as cytotoxicity (Adcox et al., 2001; 

Maguire et al., 2003). Thus, with the growing use of phytosterols as functional 

ingredients in foods, it is important that measures be taken to inhibit their degradation 

during high temperature processing such as deep frying. Alpha-tocopherol has been 

reported to inhibit phytosterol thermo-oxidation (Rudzinska et al., 2004; Tabee et al., 

2008). A recent study by Kmiecik et al. (2009) showed that the formation of phytosterol 

oxidation products in canola oil heated for 4 h at 180oC was significantly inhibited by 

BHT and ethanolic extracts of rosemary and green tea. However, all of these studies were 

conducted by heating the oils in a Rancimat or an Oxidograph, where high levels of 

oxygen are available, and not by actual deep frying of food.    

   

2.4.1.3 Gamma-Oryzanol 

 Gamma-oryzanol, a mixture of ferulic acid steryl esters is a major antioxidant 

found in rice bran oil. At least 16 steryl ferulates have been identified (Nakayama et al., 

1987; Xu and Godber, 1999; Akihisa et al., 2000; Collins et al., 2002; Fang et al., 2003; 

Parrado et al., 2003; Gopala-Krishna et al., 2006; Miller and Engel, 2006). Major 

components in Figure 12 are presented.  
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Figure 12. Representative components of γ-oryzanol 

 

The antioxidant activity of γ-oryzanol has been demonstrated by various studies. 

Xu and Godber (2001) reported that cycloartenyl ferulate, 24-methylenecycloartenyl 

ferulate, and campesteryl ferulate, the major components of γ-oryzanol, significantly 

inhibited hydroperoxide formation in a linoleic acid model. Similar results were reported 

for linoleic acid in the presence of γ-oryzanol during storage at 40oC for 10 days (Cho et 

al., 2006). According to Wang et al. (2002), the addition of γ-oryzanol at a concentration 

of 6 µmol/5g significantly increased the OSI of both soybean FAME and soybean oil at 

100oC, and inhibited polymerization in both substrates as measured by viscosity of 

samples after the OSI end point. Steryl ferulates from rice, wheat and rye bran 

significantly inhibited hydroperoxide formation in methyl linoleate incubated at 40oC in 

the dark (Nyström et al., 2005). According to a recent study, the oxidative stability of 

soybean oil stored at 60oC for 15 days was significantly improved in the presence of a γ-
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oryzanol fraction isolated from rice bran, as measured by peroxide value, conjugated 

diene and p-anisidine value (Devi et al., 2007).    

Studies on the activity of γ-oryzanol during frying are scarce, and are conducted 

by heating the oils rather than assessing during actual deep frying. It was reported that the 

addition of γ-oryzanol to refined canola and sunflower oils resulted in lower 

accumulation of dimers and polymers during an OSET test at 170oC (Gertz et al., 2000; 

Kochhar and Gertz, 2004). Sitostanyl ferulate prevented polymerization in antioxidant 

stripped high oleic sunflower oil during heating at 180oC for 6 h (Nyström et al., 2007). 

The capacity of rice bran oil to improve the thermo-oxidative stability of its blends with 

other frying oils is usually attributed to the γ-oryzanol component (Kamal-Eldin et al., 

1998; Chotimarkorn and Silalai, 2008; Farhoosh and Kenari, 2009). However, rice bran 

oil also contains a number of other minor components like tocopherols and tocotrienols, 

and their influence cannot be neglected. Furthemore, the resulting changes in fatty acid 

and triacylglycerols composition arising from such blending will also affect thermo-

oxidative stability of the oils. According to Mezouari and Eichner (2007), raising the 

amount of rice bran oil from 10 to 50% in a sunflower/rice bran oil blend will increase 

OLO, OLP, PPL, OOO, OPO, oleic and palmitic acids, and decrease LLL, LLO and 

linoleic acid contents to a level that can significantly influence thermo-oxidative stability. 

Changes in the triacylglycerol composition have been reported to exert a strong influence 

on stability of frying oils (Kim et al., 1988; Neff et al., 1992; Neff et al., 1994; Neff and 

El-Agaimy, 1996). Indeed, according to Kim et al. (1988), the influence of changes in 

triacylglycerol composition on foaming of oils during frying exceeded that of the fatty 

acid composition.   
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There is no agreement in the available literature on the relative antioxidant 

effectiveness of γ-oryzanol and tocopherols in oils. According to Gertz et al. (2000), 

polymerization of canola and sunflower oils was better inhibited by γ-oryzanol than α-

tocopherol during heating at 170oC for 2 h. During accelerated storage of rice bran oil 

triacylglycerols at 60oC for 5 days, tocopherol was a better antioxidant than γ-oryzanol as 

assessed by the peroxide value and the level of conjugated diene (Deepam et al., 2010). 

Nyström et al. (2007) also reported a superior activity of α-tocopherol over sitostanyl 

ferulate during heating of high oleic sunflower triacylglycerols at 180oC for 6 h. 

However, unlike studies regarding antioxidant activity, all available data agreed that γ-

oryzanol possessed a higher thermal stability than tocopherols (Mezouari and Eichner, 

2007; Nyström et al., 2007; Chotimarkorn and Silalai, 2008; Jennings and Akoh, 2009). 

Although, the antioxidant activity of steryl ferulates is attributed to the radical scavenging 

activity of the ferulic acid moiety, their high thermal stability makes them a better 

antioxidant under frying conditions than ferulic acid (Marinova and Yanishlieva, 1994; 

Nyström et al., 2007). 

 

2.4.1.4 Lignans 

 Lignans are compounds with a dibenzylbutane skeleton formed by coupling of 

two coniferyl alcohol residues that are present in the plant cell wall (Touré and Xueming, 

2010). Sesamin, sesamol, sesamolin, sesaminol and sesamolinol (Figure 13) are lignan 

compounds naturally present in sesame oil, and have been implicated in the oil’s high 

stability (Yoshida, 1994; Namiki 1995). The ability of sesamol, sesamin and sesamolin to 

inhibit lipid oxidation in model systems has been reported. Sunflower oil containing 
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sesamol, sesamin, and sesamolin extracted from roasted sesame seed oil was heated at 

180oC for 10 h, and thermo-oxidative degradation assessed by conjugated diene contents, 

p-anisidine value, and fatty acid composition. Samples containing sesame lignans showed 

significantly higher stability compared to sunflower oil without them (Lee et al., 2007). 

The effects of sesame lignans on oxidation of methyl linoleate during accelerated storage 

at 60oC for 18 h, and under frying conditions during heating at 180oC for 1 h were 

assessed by Lee and Choe (2006) and Lee et al. (2008b). The contents of conjugated 

dienes and the p-anisidine value were significantly lower when lignans were added to oil 

than samples without lignans. The storage and frying stability of soybean oil also 

increased after addition of sesamin and sesamolin (Hemalatha and Ghafoorunissa, 2007). 

Sesamol and sesaminol acted as synergistic compounds with tocopherols during thermal 

oxidation of oils (Fukuda et al., 1994).  

Due to the higher antioxidant activity and thermal stability of sesame lignans, 

conventional oils such as canola, soybean and sunflower are blended with sesame oil to 

improve their frying stability (Chung et al., 2004; Chung et al., 2006; Nasirullah and 

Rangaswamy, 2005; Farhoosh and Kenari, 2009; Alireza et al., 2010; Serjouie et al., 

2010). For instance, Farhoosh and Kenari (2009), Alireza et al. (2010), and Serjouie et al. 

(2010) attributed the improved frying stability of blends of sesame and canola oils over 

pure canola oil to the activity of sesame oil lignans. Similarly, Chung et al. (2004, 2006) 

ascribed the superior frying performance of a blend of soybean and sesame oils over 

unblended soybean oil to the presence of sesame oil lignans. 

 Secoisolariciresinol diglycoside (SDG) and matairesinol (Figure 13) are the 

main flaxseed oil lignans (Touré and Xueming, 2010). Literature reports on the 
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antioxidant activity of flaxseed lignans in oils are rather scarce, and there is no data on 

their antioxidant activity under frying conditions. However, available data showed that 

SDG inhibited linoleic acid peroxidation during accelerated storage at 40oC for up to 48 h 

(Kitts et al., 1999). SDG, and its aglycone, secoisolariciresinol, significantly improved 

the Oxidative Stability Index of canola oil at 110oC (Hosseinian et al., 2006).    
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Figure 13. Antioxidant lignan compounds from sesame and flaxseed oils 

 

2.4.1.5 Carotenoids 

 Carotenoids are a group of naturally occurring tetraterpenoids, consisting of 

isoprenoid units (Choe and Min, 2006). They are lipid-soluble pigments that contribute to 

the yellow or deep orange colour of oils. Depending on source and variety, crude palm oil 
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may contain up to 0.5% carotenoids (Kochhar, 2001). β-Carotene is the most widespread 

carotenoid present in vegetable oils (Achir et al., 2010). Although the antioxidant activity 

of carotenoids against photo-oxidation has been recognized, their antioxidant activity 

during storage without light exposure or at elevated temperature remains controversial 

(Fakourelis et al., 1987; Lee and Min, 1988; Miller et al., 1996). Yanishlieva et al. (2001) 

observed a prooxidant effect when β-carotene was added to antioxidant free sunflower oil 

triacyglycerols during accelerated storage at 100oC. However, in the same study, an 

antioxidant activity was reported for regular sunflower oil. The observed activity was 

attributed to a synergistic action between β-carotene and the endogenous α-tocopherol in 

the sunflower oil. According to Schroeder et al. (2006), the addition of 100 – 1000 µg/g 

β-carotene to antioxidant depleted palm olein did not extend the induction period in a 

Rancimat stability test at 120oC. In a recent study, Zeb and Murkovic (2010) evaluated 

the effects of β-carotene on the oxidation of triacylglycerols. They observed that addition 

of β-carotene significantly increased the peroxide value of model triacylglycerols during 

oxidation at 110oC in a Rancimat apparatus. Procida et al. (2009) reported that β-carotene 

inhibited the formation of some deleterious carbonyl compounds such as pentanal during 

frying in olive oil. It was also reported that β-carotene protected α-tocopherol and 

tocotrienols during deep frying using palm olein, thus improving the frying performance 

of the oil (Schroeder et al., 2006). Edge et al. (1998) observed that a 7, 7´-dihydro-β-

carotene derivative of β-carotene, was able to regenerate α-tocopherol from the 

tocopheroxyl radical. 

 With regard to antioxidant activity of carotenoids during high temperature 

processing of lipids, there are two major possible mechanisms proposed for their reaction 
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with lipid radical species: (1) According to Burton and Ingold (1984), a lipid peroxy 

radical (ROO•) can add at any place across the carotenoid (CAR) polyene chain, resulting 

in the formation of a resonance stabilized carbon centered radical, ROO-CAR•. Because 

this reaction interferes with the propagation step of lipid oxidation, it is being used to 

explain some of the reported antioxidant effect of carotenoids (Palozza and Krinsky, 

1992). However, it has been suggested that the carotenoid-peroxy addition radical, ROO-

CAR• could react reversibly with molecular oxygen to form a new peroxy radical, ROO-

CAR-OO• which is believed to be responsible for some of the reported prooxidant 

activity of carotenoids at high oxygen concentrations (Krinsky and Yeum, 2003); (2) 

Depending on the chemical structure of the carotenoids and the reduction potential of the 

free radicals, carotenoids can donate hydrogen to free radicals, exhibiting antioxidant 

activity (Woodall et al., 1997; Choe and Min, 2006). Lee et al. (2003) reported that β-

carotene with a high reduction potential of 1060 mV had great difficulty donating 

hydrogen to alkyl and peroxy radicals with reduction potentials of 600 and 1000 mV, 

respectively (Table 6). However, β-carotene can donate hydrogen to hydroxyl and 

alkoxyl radicals formed from the decomposition of hydroperoxides, because of their 

relatively higher reduction potentials.  

     

2.4.1.6 Squalene 

Squalene is a triterpene hydrocarbon widely distributed in vegetable oils, with 

olive (10 – 1200 mg/kg) and rice bran oils (100 – 330 mg/kg) containing the highest 

amounts. The capacity of squalene to protect oils against oxidative degradation has been 

evaluated by Rao and Achaya (1968), Boskou and Katsikas (1979), Psomiadou and 
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Tsimidou (1999), Shahidi and Wanasundara (1999), Dessi et al. (2002), Psomiadou and 

Tsimidou (2002a), and Mateos et al. (2003). Literature reports, however, on squalene 

antioxidant activity remain controversial. In an early study by Rao and Achaya (1968), 

addition of 0.02% squalene to methyl oleate and methyl linoleate significantly inhibited 

hydroperoxide formation during accelerated storage at 63oC for 10 days. At equivalent 

concentrations, the activity of squalene was reportedly higher than that of mixed 

tocopherols isolated from sunflower oil within the first 6 days of storage. According to 

Dessi et al. (2002), the addition of squalene decreased hydroperoxide formation by up to 

50% in a model system containing polyunsaturated fatty acids incubated at 37oC for up to 

14 h. Psomiadou and Tsimidou (1999) reported a concentration dependent moderate 

antioxidant activity when purified olive oil triacylglycerols containing squalene were 

stored at 40oC for 7 days. A lack of antioxidant activity, however, was observed at 

elevated temperatures of 100 and 120oC using the Rancimat assessment.  In a similar 

study, Mateos et al. (2003) reported a negligible antioxidant effect for squalene during 

accelerated oxidation of olive oil triacylglycerols in a Rancimat apparatus at 100oC. On 

the other hand, Shahidi and Wanasundara reported a prooxidant effect of squalene during 

accelerated storage of purified corn, menhaden, and chicken oils when stored at 65oC for 

up to 7 days. Oxidative changes were assessed by the levels of conjugated dienes and 

thiobarbituric acid values.   

Although all available data on the antioxidant activity of squalene under frying 

conditions are obtained by heating the oils and not during actual deep fat frying, it is 

generally agreed that squalene inhibits thermo-oxidative degradation of frying oils. 

Addition of squalene at 0.5% significantly reduced the thermo-oxidative degradation of 
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safflower oil during intermittent heating at 180oC for 7 h per day for 4 days (Sims et al., 

1972). Malecka (1991, 1994) reported a significant increase in thermo-oxidative stability 

of canola oil heated at 170oC for 35 h in the presence of different concentrations of 

squalene (0.1 – 1.0%). Addition of squalene isolated from shark and olive oils at a 

concentration of 0.25% also increased the frying stability of sunflower and canola oils as 

evaluated by an OSET index (Gertz et al., 2000). A synergistic interaction between 

tocopherols and squalene has been suggested by Kochhar (2001) and Psomiadou and 

Tsimidou (2002a, 2002b). 

 

2.4.1.7 Phospholipids 

 Phospholipids such as phosphatidylcholine (PC), phosphatidylethanolamine 

(PE), phosphatidylserine (PS), phosphatidylinositol (PI), and phosphatidic acid (PA) are 

endogenous minor components of oils. The addition of a soybean phospholipid mixture 

called soy lecithin, at concentrations of 0.25 to 1% significantly increased the oxidative 

stability of olive oil during a Rancimat test at 120oC (Koprivnjak et al., 2008). The 

formation of hydroperoxides and propanal was significantly inhibited in the presence of 

lecithin during storage of fish oil at 20oC for 28 days (Drusch et al., 2008). Ramadan 

(2008) reported that addition of soy lecithin at a concentration of 0.25% inhibited the 

formation of hydroperoxides and conjugated dienes in a triolein model system during 

accelerated storage at 60oC for 15 days. According to Murano et al. (2008), fish fed with 

diets containing soy lecithin at concentrations of 1 and 2.5% for 4 weeks contained more 

stable meat than fish raised without a lecithin diet when stored at 4oC under fluorescent 

lights for 3 days. Utilizing a higher purity soybean phospholipid mixture consisting of 
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26% PC, 25% PI, 23% PS, and 23% PA, Chu and Hsu (1999) reported a significant 

increase in the Oxidative Stability Index of peanut oil supplemented with it at 

concentrations of 0.05 to 0.35%.  

The relative antioxidant activity of individual phospholipids such as PC, PE, and 

PI was assessed during accelerated storage of soybean oil at 60oC for 18 days. While 

protection by PI was marginal, PE and PC offered significant protection, with PC being 

the most effective (Hidalgo et al., 2005). Bandarra et al., 1999 reported that addition of 

0.5% PC was more efficient than an equivalent amount of PE in preventing oxidation of 

refined sardine oil during storage at 40oC for 1 month. Similarly, Nwosu et al. (1997) and 

Boyd et al. (1998) reported a superior antioxidant activity of PC over PE during 

accelerated oxidation of salmon oil at 100oC in a Rancimat apparatus.  On the other hand, 

Kashima et al. (1991) reported that oxidative stability of perilla oil was significantly 

enhanced by PS and PE, but not by PC during accelerated storage at 37oC. While both PC 

and PE protected soybean oil against oxidation during accelerated storage at 60oC, only 

PE offered protection during accelerated oxidation of olive oil at 110oC (Hidalgo et al., 

2005; 2006). Khan and Shahidi (2000) evaluated the effects of PC and PE on the 

oxidative stability of borage and evening primrose triacylglycerols at 60oC for 168 h. PC 

was more effective than PE in protecting borage TAG while the reverse was observed for 

evening primrose TAG. Thus, the relative activity seems to depend on the type of oil and 

the applied temperature. It has also been reported that the antioxidant activity of 

phospholipids depends on the presence of trace metals such as copper, iron, and 

manganese in the oil where potentially they work as chelating agents (Yoon and Min, 

1987; Pokorny et al., 1992).  
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Saito and Ishihara (1997) observed that while choline and ethanolamine inhibited 

hydroperoxide formation in sardine oil during storage, phosphatidic acid and glycerols 

showed no antioxidant activity. Thus, they concluded that the activity of PC and PE are 

attributable to the amine head groups. Pokorny et al. (1992) also reported that the 

decomposition of hydroperoxide was enhanced when nitrogen containing phospholipids 

were used as compared to phosphatidic acid. In a recent study, Pan et al. (2010) observed 

that choline, ethanolamine, and soybean phospholipids decompose linoleic and linolenic 

acid hydroperoxides to corresponding hydroxides at a higher rate than observed for α-

tocopherol and BHT. 

Unlike studies describing the antioxidant activity of phospholipids under 

accelerated storage conditions, rather fragmented information is available on their 

application under frying conditions, probably because of their adverse effects on colour 

and foaming of oils (Dobarganes et al., 2000a). The addition of 0.1% soy lecithin 

remarkably inhibited thermo-oxidative alteration of oils during frying (Chu, 1991; 

Kourimska et al., 1994; Gordon and Kourimska, 1995b). The thermo-oxidative stability 

of salmon oil heated at 180oC was significantly improved in the presence of a 

phospholipid fraction isolated from bluefish (King et al., 1992). The antioxidant effect of 

egg yolk during frying of flour dough containing different amounts of egg yolk powder 

was attributed to phospholipids present in this ingredient (Kim and Choe, 2008). 

According to Kourimska et al. (1994), addition of soy lecithin in an amount not higher 

than 0.2% had no negative effect on foaming of the oil and the quality of the prepared 

French fries.  
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The observed antioxidant activity of phospholipids has been attributed to: (1) their 

synergistic activity with phenolic antioxidants such as tocopherols (Dziedzic and Hudson, 

1984; Weng and Gordon, 1993; Lambelet et al., 1994; Koga and Terao, 1995; Bandarra 

et al., 1999; Khan and Shahidi, 2000; Judde et al., 2003; Ramadan, 2008); (2) the ability 

of the phosphate group to chelate prooxidant metals (Pokorny, 1991; Pokorny et al., 

1992; Drusch et al., 2008); (3) the formation of non enzymatic browning reaction 

products between amino phospholipids and sugar or lipid oxidation products (Husain et 

al., 1984; Hidago et al., 2005; 2006; 2007; Zamora et al., 2011); and (4) the ability of 

phospholipids to form an oxygen barrier between the oil and air interface (Porter, 1980; 

Calvo et al., 1994).  

 

2.4.1.8 Polyphenolics 

 A recent trend in the search for natural antioxidants is the application of extracts 

and isolates from different plants. The most prominent compounds present in those 

extracts are polyphenols (Shahidi and Naczk, 1995). The structures of common simple 

phenolic and polyphenolic compounds are presented in Figure 14. The isolation of 

polyphenolic compounds, their antioxidant activities and applications in biological and 

food systems has been extensively reviewed by Moure et al. (2001), Schieber et al. 

(2001), Yao et al. (2004), Shi et al. (2005), Balasundram et al. (2006), Pandey and Rizvi 

(2009), Perron and Brumaghim (2009), Raederstorff (2009), Serrano et al. (2009), Valls 

et al. (2009), Nichols and Kaliyar (2010), and Xia et al. (2010). Polyphenols extracted 

from sea buckthorn protected soybean oil against thermal and photochemical oxidation 

(Papuc, 2010). Barley seed methanol extracts stabilized sunflower oil during extended 
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accelerated storage (Anwar et al., 2010). Addition of olive leaf extract enhanced the 

oxidative stability of olive, sunflower and palm oils, and the observed enhancement was 

attributed to the presence of polyphenols added to the oils (Salta et al., 2007). During 

deep frying of corn oil, a crude extract from tea inhibited thermo-oxidative degradation 

(Naz et al., 2005). Addition of oregano extract significantly enhanced the frying stability 

of cottonseed oil (Houhoula et al., 2004). Extracts from rosemary, sage and rosa 

mosqueta shell, to mention just a few, have been used to enhance the oxidative and frying 

stability of oils (Jaswir et al., 2000; Man and Jaswir, 2000; Romero et al., 2007). 

Nevertheless, a major set-back to the applications of polyphenolic compounds is their 

poor solubility in oils.  
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Figure 14. Some phenolic and polyphenolic antioxidants 
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2.4.2 Synthetic antioxidants 

 A broader application of natural antioxidants in the protection of oils against 

thermo-oxidative degradation is hampered by some inherent shortcomings. For instance, 

the poor thermal stability of tocopherols and carotenoids limits their applications for 

extended institutional frying operations. The poor solubility of phenolic and polyphenolic 

compounds and variability in composition, and hence variable activity of the extracts 

limit their applications in fats and oils (Pokorny, 2007). Consequently, synthetic 

antioxidants have been developed, and a number of these have been approved for food 

applications (Table 5). 

 Synthetic antioxidants are often added to processed oils to retard oxidative 

degradation during storage and frying (Warner, 2004). The most widely used synthetic 

antioxidants include: butylated hydroxyanisole (BHA); butylated hydroxytoluene (BHT); 

propyl gallate (PG); and tert-butylhydroquinone (TBHQ) (Figure 15). Transition metal 

chelators such as citric acids are also used to counteract the deleterious effects of metals 

such as iron and copper. Although BHT and BHA are effective antioxidants at ambient 

and accelerated storage temperatures (Gordon and Kourimska, 1995a; Khan and Shahidi, 

2001; Nenadis et al., 2003; Yeo et al., 2010), they offer no protection during frying of 

food. They are known to evaporate and thus do not remain in the frying oil long enough 

to provide protection against thermo-oxidative degradation (Peled et al., 1975; Augustin 

and Berry, 1983; Tsaknis et al., 2002; Warner, 2004). For instance, 75% of the added 

BHT and 86% of the original BHA were lost after 6 h of intermittent frying of potato 

chips in palm olein (Augustin and Berry, 1983). TBHQ, on the other hand, has been 

reported to possess better thermal stability and effectiveness during frying (Gordon and 
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Kourimska, 1995a). Che Man et al. (1999) found that TBHQ was more efficient than α-

tocopherol in inhibiting thermo-oxidative degradation during frying in palm olein. 

Nevertheless, Asap and Augustin (1986) reported a 95% loss of the intial amount of 

TBHQ after 5 h of frying in palm olein. The loss of TBHQ was attributed to steam 

distillation, thermal decomposition, and absorption of TBHQ by the fried food.  

 Aside from poor protection, especially under frying conditions, use of common 

synthetic antioxidants has also been limited due to their perceived detrimental effect on 

human health (Frankel, 2007). Consequently, there is a growing interest in development 

of new antioxidants with improved antioxidant activity and thermal stability, but prepared 

from natural precursors. The new trend in this direction is leading to modification of 

existing natural antioxidants. 
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 In addition to commercially available tocopherol derivatives such as α-

tocopheryl acetate, α-tocopheryl succinate and racemic trolox (Figure 16), a number of 

tocopherol derivatives have been synthesized. These are excellently reviewed by 

Cerecetto and López (2007). Koufaki et al. (2004) reported the synthesis of a series of 

chromanol analogues of lipoic acid exhibiting strong inhibition of lipid peroxidation in 

rat liver microsomal membranes induced by ferrous ions and ascorbate. A novel “twin-

chromanol” derivative (Figure 16) was reported to exhibit twice the radical scavenging 

activity and reducing power of α-tocopherol (Rosenau et al., 2002). The reported synergy 

between tocopherols and carotenoids prompted the development of synthetic antioxidants 

incorporating these antioxidant substructures (Larsen et al., 1998; Naalsund et al., 2001; 

Palozza et al., 2002). FeAOX-6 (Figure 16) is an example of such a group of 

antioxidants reportedly possessing potent radical scavenging activity (Palozza et al., 

2002). Likewise, the reported synergistic activity between ascorbic acid and α-tocopherol 

prompted the development of a series of novel antioxidants derived from molecular 

combination of ascorbic acid and tocopherol analogues (Figure 16) (Morisaki and Ozaki, 

1996; Manfredini et al., 2000). Although no improvement in inhibitory activities against 

tyrosinase-catalyzed melanin formation, active oxygen species, and free radicals were 

observed from these molecular combinations, the ascorbic acid-α-tocopherol hybrid 

exhibited significantly higher thermal stability than the parent components (Morisaki and 

Ozaki, 1996). Similarly, Voisin-Chiret et al. (2007) reported the synthesis of a series of 

thermally stable ascorbic-ferulic acid hybrids.   

 Available literature on the chemical and enzymatic syntheses and modification 

of polyphenolic compounds have been recently reviewed by Chebil et al. (2006), Boudet 
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(2007), Fernandez-Bolanos (2008), Viskupicova et al. (2009), and Augustyniak et al. 

(2010). Recently, Hamdi et al. (2008) reported the synthesis of a series of dicoumarol and 

epoxydicoumarin derivatives exhibiting good radical scavenging activity against the 

ABTS radical. Rajan et al. (2001) described the synthesis of new caffeic acid amides 

exhibiting good antioxidant activity. Jung et al. (2002) also reported the synthesis of 4-

hydroxyphenylacetic acid amide possessing potent analgesic and antioxidant activities. 

The synthesis of caffeic acid amides possessing antimicrobial activities was recently 

reported by Fu et al. (2010). The syntheses of several gallic and ferulic acid derivatives 

with enhanced lipophilicity and radical scavenging activity have also been reported by 

Belin et al. (2003) and Zheng et al. (2010). In a recent study, Lorentz et al. (2010) 

reported a lipase catalyzed synthesis of two new 4-O- and 3-O-palmitoyl chlorogenic 

acids; however, the new chlorogenic acid derivatives exhibited weaker radical 

scavenging activities against the stable DPPH radical, compared to the original 

chlorogenic acid.  

 Although syntheses and performance evaluation of over a hundred 

(semi)synthetic antioxidants have been reported in literature, only a small fraction have 

been specifically designed and/or evaluated under frying conditions.  
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Figure 16. Synthetic antioxidants derived from structural modifications of natural 
antioxidants 

 

 

2.5 Assessing performance of oil during frying 

 Traditionally, the frying operator employs experience to decide when to halt 

frying and change oil and often it is based on physical changes such as colour, odour, 

excessive foaming and smoking. Assessing oil degradation using visual indicators, 

however, is inadequate and often unreliable due to its subjective nature. Thus, simple and 

objective parameters should be used to assess quality and performance of frying oil; with 

time, many reliable analytical methods based on quantification of a specific group of 

degradation products have been developed (Paradis and Nawar, 1981; Melton et al., 

1994). 
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 Standard methods based on quantification of primary oxidation products such as 

peroxide value, free fatty acid content, and conjugated dienes are usually unreliable 

because products measured are thermally unstable (Fritsch, 1981; Gertz and Matthäus, 

2008). Generally, methods based on nonvolatile degradation products are more reliable 

and dependable indicators of oil degradation than those based on volatile or unstable 

degradation products (Table 7)  (Melton et al., 1994; Gertz and Matthäus, 2008). 

 

2.5.1 Total polar components (TPC) 

 As previously mentioned, chemical reactions occurring during frying generate 

several groups of compounds with higher polarity than the original triacylglycerols. Polar 

compounds formed in oils during frying include oxidized and oligomerized 

triacylglycerols, free fatty acids, mono- and diacylglycerols, oxidized and oligomerized 

sterols, and degradation compounds of antioxidants and other constituents of oil and 

food. These compounds are nonvolatile and their amounts in oil are usually steadily 

increasing as frying progresses.  

The analysis of total polar components (TPC) offers the best indicator of frying 

oil degradation because it measures directly all the degraded products present in the oil. 

Thus, many European countries have set a maximum permissible level for TPC in frying 

oil as a way of regulating the level of abuse in commercial and institutional frying 

operations (Firestone, 2006). There are differences among the European countries, 

however, in the discarding level of TPC as follows: Austria at 27%; Belgium, France, and 

Spain at 25%; while Germany allows not more than 24% of TPC (Firestone, 2006). 

According to Gertz (2000), the value of 24 – 25% of TPC should be taken as borderline 
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in the assessment of the quality of frying oils. Presently, there is no specific regulation in 

Canada or the US defining maximum level of TPC. 

Official methods for assessing TPC involve a gravimetric procedure which 

utilizes chromatographic separation of polar and nonpolar components on silica gel with 

adjusted water content to 5% (AOAC 982.27; AOCS Cd 20-91; IUPAC 2.507). TPC 

represents the components remaining on the column after elution of unaltered 

triacylglycerols, and is expressed in weight percent of the starting sample.  Collaborative 

tests conducted by IUPAC and AOCS showed that the method is exact and reproducible, 

with a coefficient of variation lower than 5% (Dobarganes et al., 2000b; Firestone, 2009). 

For rapid analysis, and to reduce consumption of solvents and silica gel, use of 

miniaturized columns requiring a small sample size has been proposed (Schulte, 2004; 

Marmesat et al., 2007). However, the level of accuracy and precision is expected to 

decrease for such small sample amounts, especially in samples with low levels of TPC. In 

a recent study, Zainal and Isengard (2010) suggested the use of an automated accelerated 

solvent extraction to replace the manual chromatographic step for quicker analysis and to 

reduce experimental effort.  

To eliminate the use of chemicals, the determination of TPC by nuclear magnetic 

spectroscopy (NMR), near infrared spectroscopy (NIR), and differential scanning 

calorimetry (DSC) has been proposed as a substitute for the adsorption chromatographic 

method (Sun and Moreira, 1996; Hein et al., 1998; Tan and Che Man, 1999; Gerde et al., 

2007). Hein et al. (1998) evaluated total polar components in thermo-oxidized soybean, 

peanut, and palm oils using a Fourier transformed near-infrared (FTNIR) spectroscopic 

method. The authors reported correlation coefficients from 0.990 to 0.998 between TPC 
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determined by adsorption chromatography and the values obtained by NIR spectroscopy 

at the wavenumber range specific for hydroxyl and carbonyl groups (4700 – 4940 cm-1). 

Sun and Moreira (1996) reported a correlation coefficient of 0.985 for TPC determined 

by adsorption chromatography and NMR proton relaxation time of thermo-oxidized 

soybean oils. Similarly, TPC obtained by DSC linearly correlated at r2 = 0.956 - 0.999 to 

values obtained using an adsorption chromatographic method for fresh and thermo-

oxidized corn oil, palm olein, and soybean oil (Tan and Che Man, 1999). Although 

instrumental methods offer some advantages, it is unlikely that they will replace the 

adsorption chromatographic method for routine laboratory analysis of TPC; because 

besides its simplicity, materials required for adsorption chromatography are affordable 

and readily available in most laboratories. 

As shown in Table 7, several of the observed changes in physical parameters 

occurring in oils during frying, including increase in conductivity, viscosity, specific 

heat, and decrease in surface tension and dielectric coefficient are caused by the 

formation of polar compounds (Gertz and Matthäus, 2008). The direct relationship 

between these physical changes and the amounts of total polar components are explored 

in a number of the available commercial quick test kits and equipment used for 

monitoring thermo-oxidative degradation (Table 8). 
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Table 7. Changes in physical and chemical parameters during deep frying; main causes 
and correlation with oil deterioration. Adapted from Gertz and Matthäus (2008) 

 
Parameter Changes during  

deep frying 

Mainly caused by Correlation with 

oil deterioration  

UV Increases Conjugated fatty acids Yes 

Refractive index Increases Polar compounds Yes 

Density Increases Polymerized TAG  Yes 

Dielectric coefficient Decreases Polar-oxidized components – 

affected by FFA and water 

Yes 

Colour Becomes more 

intensive and 

darker  

Maillard reaction products of 

amino acids, protein, sugar, 

and carbonyl compounds 

Yes 

Conductivity Increases Polar compounds Yes 

Surface tension Decreases Polar compounds Yes 

Smoke point Decreases Volatile oxidized products Yes 

Specific heat Increases Polar compounds Yes 

Viscosity Increases Polymerized TAG Yes 

Anisidine value Increases Non-volatile aldehydes Yes 

Iodine value Decreases Formation of oxidized fat Yes 

Peroxide value Flunctuates Hydroperoxides No 

TPC Increases Oxidized and polymerized 

degradation products  

Yes 

Polymerized TAG Increases Oxidized and not oxidized 

polymerized TAG 

Yes 

Free fatty acid/Acid 

value 

Flunctuates Hydrolysis & oxidation 

products with free carboxyl 

groups 

No 

Petroleum ether-

insoluble oxidized 

fatty acids 

Increases Oxidized polymerization 

products 

Yes 
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Table 8.  Commercial test providing high correlations with TPC.  
                        Adapted from Bansal et al. (2010a) 

 
Test Kit Principle Manufacturers Specifications 

Fri-check® Viscosity Measurement time: 5 min. 

Operating temperature: 20 – 

180oC 

Capsens5000 (FOS) Dielectric constant Accuracy: ±1.4% 

Resolution: 1% 

Range of TPC: 0 – 35% 

Operating temperature: 50oC 

Food Oil Monitor (FOM 

310) 

Dielectric constant Accuracy: ±2% 

Resolution: 0.5% 

Range of TPC: 0 – 40% 

Measurement time: <2 min 

Operating temperature: 50-

200oC 

Testo 265 Dielectric constant Accuracy: ±2% 

Resolution: 0.5% 

Range of TPC: 0.5 – 40% 

Measurement time: <10 min 

Operating temperature: 40 - 

200oC 

TPM Very Fry Patented gel reacts with 

the polar compounds to 

give specific colour 

Range of TPC: 3 – 30% 

Measurement time: 10 – 15s 

Operating temperature: 65oC 
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2.5.2 Composition of polar materials (CPM) 

 Although percent of TPC is an excellent indicator of oil degradation, it only 

determines the total level of polar materials without distinguishing specific compounds 

(Paradis and Nawar, 1981). A measure of the specific group of degradation products is, 

however, important as it provides information about the types and level of reaction 

occurring in the frying oil, and its potential toxicity. For example, the amount of 

diglycerides and FFAs are indicative of the level of hydrolytic alteration which has 

occurred, and although they contribute to the level of TPC, from a nutritional and 

physiological point of view, they are not as important as polar components arising from 

thermo-oxidative and oligomerization reactions (Dobarganes and Marquez-Ruiz, 2006).  

 High performance size exclusion chromatography (HPSEC) is usually used to 

separate and quantify molecules by their molecular weight (Christopoulou and Perkins, 

1989). HPSEC method can be applied directly to used oil or isolated polar fractions 

(Dobarganes and Marquez-Ruiz, 2006). Polar materials are separated into several groups 

of compounds such as oligomers, oxidized monomeric triglycerides, diglycerides and free 

fatty acids (Dobarganes and Marquez-Ruiz, 2006). HPSEC is an invaluable technique 

and complements the TPC method. Lending credence to the importance of TPC and CPM 

analyses, the delegates at the 3rd International Symposium on Deep Fat Frying 

recommended these analyses as the best indicators of oil degradation (DGF, 2000). 

Regulators in European countries required that the total amount of oligomeric 

triglycerides be less than 10% (Firestone, 2006). 
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2.5.3 p-Anisidine value (AV) 

 Thermal decomposition of hydroperoxides during frying generates a number of 

secondary oxidation products, with carbonyl compounds being the most prominent. 

Although some of the aldehydes produced are volatile and lost by evaporation during 

frying, a significant amount remains and is assessed by AV (Chang et al., 1978; Perkins, 

1996). p-Anisidine value is defined by convention as 100 times the optical density 

measured at 350 nm in a 1 cm cuvette of a solution containing 1.00 g of the oil in 100 mL 

of a mixture of solvent and reagent (Firestone, 2009). Official procedures for determining 

an anisidine value utilize the reaction between aldehydes, principally 2-alkenals and 2,4-

dienal, and p-anisidine reagent in glacial acetic acid solution (ISO 6885; AOCS Cd 18-

90; IUPAC 2.502). The resulting Schiff bases possess a characteristic UV absorption at 

350 nm, and the absorbance increases with the amount of relevant nonvolatile carbonyl 

compounds retained in the oil (White, 1995). The contribution of carbonyl compounds is 

expressed as absorbance units per 1 g of fat and is arbitrary. 

The use of Fourier transformed infrared-analysis (FTIR) for the determination of 

AV was described by Dubois et al. (1996). Using a partial least square calibration (PLS) 

as the chemometric method, the authors reported a strong correlation (r2 = 0.998) 

between the AV values for thermo-oxidized canola oil determined by FTIR and the 

official chemical method. In a recent study, Szabó et al. (2009) reported a very good 

correlation (r2 = 0.912) between  AV values determined for thermo-oxidized lard by the 

chemical method and the values obtained by NIR spectroscopy using a wavenumber 

range from 4000 to 5000 cm-1. These spectroscopic analytical methods offer the 
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possibility for a rapid, automated, and solvent-free alternative to the current official 

chemical method.    

 

2.5.4 Changes in fatty acid composition 

 Polyunsaturated fatty acids such as linoleic and linolenic are the main 

components affected by the various chemical reactions occurring during frying (Warner, 

2004). The observed changes in the amount and configuration of the fatty acids increase 

with the temperature and length of frying.  Thus, assessment of changes in fatty acid 

composition can be used to monitor thermo-oxidative degradation occurring during deep 

frying. Official methods for analyzing fatty acid composition involves transforming the 

fatty acids into the methyl esters, followed by separation and quantification using gas 

chromatography (AOCS methods Ce 1-62, Ce 1f-96, Ce 2-66, ISO method 5509, IUPAC 

method 2.301). Methods for preparing the methyl ester derivatives have been reviewed 

by Liu (1994), Eder (1995), Seppanen-Laakso et al. (2002), and Dijkstra et al. (2007).  

For routine analysis, the gas chromatogram peak area is normally used to 

calculate the content of each fatty acid (Dijkstra et al., 2007). However, the gas 

chromatograms must be interpreted with caution since they only refer to standard fatty 

acids and exclude degradation products such as oxidized and oligomerized fatty acids. In 

addition, because in GC analysis the total fatty acid content is set by default to 100%, any 

decrease in the polyunsaturated fatty acids by thermo-oxidation is automatically 

counterbalanced by an increase in the more stable monounsaturated and saturated fatty 

acids to maintain the sum despite the fact that some materials are not eluted. Thus, the 

increase in oleic, palmitic, and stearic acid contents often reported by some authors 
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during deep frying gives an erroneous impression that these fatty acids are formed during 

thermal treatment of the oil. By using an internal standard (e.g. C17:1) the misconception 

can be overcome, and it becomes evident that the saturated fatty acid content does not 

increase and that the sum indeed falls below 100%. 

The observed loss in fatty acids during frying is due to formation of several 

oxidized and oligomerized degradation products. Hydroxy, keto, and epoxy are the major 

functional groups identified in oxidized fatty acids of frying oils; GC methods for 

analyzing them have been reported by Schawrtz et al. (1994), Berdeaux et al. (1999), 

Velasco et al. (2002), and Marmesat et al. (2008b). Generally, methyl ester derivatives of 

the fatty acids (FAMEs) are obtained by base-catalyzed transmethylation of the 

triacylglycerols; the isolated FAMEs are then fractionated by adsorption chromatography 

on silica gel to separate the nonpolar FAMEs from the polar FAMEs containing fatty 

acids with at least one extra oxygen; polar FAMEs are subsequently subjected to GC 

analysis. Hydrogenation is often applied to the polar FAMEs in order to achieve a better 

GC separation of the keto- and hydroxyl-FAMEs (Marmesat et al., 2008b). For analysis 

of the various groups of thermo-oxidatively altered fatty acids, Márquez-Ruiz et al. 

(1995) utilized HPSEC to separate the nonpolar FAMEs into monomers and dimers; the 

polar FAMEs were further separated into oxidized fatty acid polymers, oxidized fatty 

acid dimers, and the oxidized fatty acid monomers.    

 

2.5.5 Colour analysis 

 In actual practice, the colour of the oil becomes unacceptable first, well before 

the flavour and odour of the oil become objectionable (Paul et al., 1997). According to 
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Orthoefer (1988), the colour of the frying oil is one of the major parameters of acceptance 

to be evaluated on a daily basis. Indeed, regulations in many countries stipulate that 

colour must be one of the criteria for discarding frying oils (Bansal et al., 2010a). For 

instance, the Manufacturing Process Inspection document published by the U.S. 

Department of Agriculture, stipulates that the darkening of oil is evidence of unsuitability 

of a frying oil and requires rejection of the oil (USDA, 1985).   

 Many products arising from thermo-oxidative alteration of oil components 

contribute to colour change during frying. The colour intensity of a frying oil increases as 

the amount of polymeric materials increases (Stevenson et al., 1984; Blumenthal, 1991). 

Leaching of pigments from the food into the frying oil, and the presence of Maillard 

reaction products, formed during frying by the reaction of carbohydrates and some lipid 

oxidation products with amines, amino acids, and proteins also affects the colour 

development (Gutierrez et al., 1988; Lalas et al., 2006; Delgado-Andrade et al., 2010). 

Furthemore, particles from food being fried can become caramelized and release some 

fat-soluble pigments into the oil (Vijayan et al., 1996). According to Min et al. (1975), 

products with a molecular weight 300 – 551 Daltons and containing double bonds, 

carboxyl, ester, peroxide or hydroxyl functions contribute to the darkening of oil during 

frying. 

 Wesson (AOCS method Cc 13b-45), Lovibond (AOCS method Cc 13e-92) and 

spectrophotometric (AOCS method Cc-13c-50) procedures are official methods 

recognized for the measurement of colour in frying oils (Firestone, 2009). The Wesson 

and Lovibond are colorimetric methods that determine the colour of the oil by 

comparison with coloured glasses of known characteristics. In the spectrophotometric 
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method, the absorbance of the oil is measured at 460, 550, 620, and 670 nm, and the 

photometric colour index (PCI) is computed according to the equation: PCI = 1.29(A460) 

+ 69.7(A550) + 41.2(A620) – 56.4(A670). Where A460, A550, A620, and A670, are absorbances 

at 460, 550, 620, and 670 nm, respectively.  

In a study on the spectrophotometric method for the assessment of frying oils, 

Xu (2000) reported that the highest correlation was observed between the absorbance 

measured at 490 nm and the TPC value (r = 0.953). The results of a recent study by 

Bansal et al. (2010b), however, showed that any wavelength in the range of 400 – 500 nm 

could be utilized to provide a good correlation between TPC and the spectrophotometric 

absorbance. Irrespective of the methods used, results obtained on colour formation during 

frying must be interpreted with caution as the rate of colour development differs from oil 

to oil and also depends on the initial colour of the oil and the type of the food fried in it 

(Gertz 2000). Furthermore, oil components, such as tocotrienols and phenolics cause 

faster darkening of oil due to chemical changes in the molecules and by oligomerization.     

 

2.5.6 Volatile carbonyls 

 A number of excellent reviews on the formation of volatile compounds has been 

published by Schieberle and Grosch (1981), Przybylski and Eskin (1995), Kiritsakis 

(1998), Frankel (2005), Valet et al. (2007). It is known that variety and different amounts 

of volatile compounds are generated during thermo-oxidative degradation of oil 

components and they relate to the nature and stability of the fatty acids involved, and to 

the frying conditions applied (Przybylski and Eskin, 1995; Malcolmson et al., 1996; 

Fullana et al., 2004; Katragadda et al., 2010). Thus, the amount and rate of formation of 
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volatile compounds during frying can be used as an indicator of an oil’s performance. 

Among the volatile compounds formed during thermo-oxidative degradation of oils, the 

carbonyls are the major component, and account for more than 60% of total volatiles 

depending on the conditions applied (Przybylski and Eskin, 1995). 

 Gas chromatography (GC) is the most common method for analyzing volatile 

compounds formed during thermal alteration of oils. The volatile samples are often 

introduced into the gas chromatograph by static headspace analysis, dynamic headspace 

analysis, or by direct injection. These methods are thoroughly reviewed by Przybylski 

and Eskin (1995), and Frankel (2005). In the direct injection method, an oil is injected 

directly into a GC injector special glass liner. The injector is maintained at a high 

temperature (>200oC) and a carrier gas purges the generated volatile compounds to the 

column. Static headspace analysis (SHS) consists of analyzing an aliquot of the vapours 

in equilibrium with the sample heated in a hermetically sealed vial. Although this method 

is relatively simple, the sensitivity is rather poor (Cert at al., 2000). However, Snyder and 

Mounts (1990) reported improved sensitivity and reproducibility by using a multiple 

headspace extraction technique (MHE). The headspace over oil heated at 90oC was 

sampled three times, and each sample was injected consecutively onto the gas 

chromatograph. Furthermore, solid-phase microextraction (SPME) also presents a more 

sensitive and convenient alternative to traditional static headspace analysis (Gromadzka 

and Wardencki, 2010). However, the SPME method has limitations, including difficulties 

in inter-fiber comparisons and diagnosis of fiber performance (Escuderos et al., 2007). 

Dynamic headspace analysis (DHS) has been the most used concentration technique for 

GC analysis and consists of sweeping the volatile compounds from the headspace sample 
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with an inert gas; the volatile compounds are then trapped on a solid absorbent such as 

activated charcoal, tenax, poparak, chromosorb or amberlite (Cert al., 2000; Escuderos et 

al., 2007). 

The combination of GC and mass spectrometry (GC-MS) is also a versatile 

technique for analyzing volatile degradation products formed during frying. Snyder et al. 

(1986) evaluated the oxidative and thermal stability of soybean oil by measuring the 

amounts of volatile compounds with static headspace-gas chromatography-mass 

spectrometry (SHS-GC-MS). Carbonyl compounds generated during thermal treatment of 

canola and olive oils at 180 and 240oC for up to 15 h were adsorbed unto tenax and 

analyzed by GC-MS after thermal desorption (Fullana et al., 2004). In a similar study, 

Katragadda et al. (2010) evaluated the variety and the amounts of volatile compounds 

formed during heating of coconut, extra virgin olive, safflower, and canola oils at 180, 

210, 240, and 270oC for 6 h by DHS-GC-MS. In a recent study, Uriarte and Gullén, 

(2010) evaluated the formation of volatile alkylbenzenes in extra virgin olive, sunflower, 

and virgin linseed oils heated at 190oC for 8 h by SPME-GC-MS. Jeleń et al. (2000) 

evaluated the efficiency of different types of fibers for their capacity to absorb the 

headspace volatile compounds generated during accelerated storage of canola oil at 60oC 

for 10 days. Divinylbenzene/carboxene/poly(dimethylsiloxane) (DVB/CAR/PDMS) 

offered the best performance compared to other tested fibers, namely, polyacrylate (PA), 

poly(dimethylsiloxane) (PDMS), and carbowax/divinylbenzene (CW/DVB).     

  As previously mentioned, carbonyls constitute the major group of volatile 

compounds formed during frying, and are the most important, qualitatively (Przybylski 

and Eskin, 1995). For instance, while the reported odour threshold value of pentane in oil 
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was 340 µg/g, the threshold value for pentanal, the corresponding aldehyde was 0.07 µg/g 

(Table 1). For the analysis of volatile carbonyl compounds, reversed phase HPLC is a 

viable alternative to GC analysis. The major advantage of HPLC compared to GC is that 

it operates at ambient temperatures; thus limiting the risk of artefact formation 

(Kolanowski et al., 2007). Typically, the volatile carbonyl compounds are trapped on a 

silica cartridge impregnated with 2,4-dinitrophenylhydrazine, after which the 2,4-

dinitrophenylhydrazones of carbonyls are eluted and quantified by HPLC-UV at 360 nm 

(Possanzini and DiPalo, 1995; Katsuta et al., 2008). In a recent study, Bastos and Pereira 

(2010) utilized HPLC-MS for the quantification of the 2,4-dinitrophenylhydrazones 

obtained after derivatization of the volatile aldehydes generated during thermal treatment 

of canola oil at 180oC for 8 h. 

 

2.5.7 Changes in antioxidants 

 Under thermo-oxidative conditions, endogenous or applied antioxidants are lost, 

either through direct antioxidant activity, evaporation or by thermal oxidation and 

polymerization of the antioxidants. It is well known that the observed decrease in 

antioxidant concentration increases with temperature and time (Gordon and Kourimska, 

1995a; Normand et al., 2001; Warner and Moser, 2009). Accordingly, monitoring the 

level of antioxidants during frying can be used as an indicator of frying performance of 

oils. Analytical methods for assessing major lipid antioxidants have been reviewed by 

Cert et al. (2000), Abidi (2000), Ruperez et al. (2001), Carrasco-Pancorbo et al. (2005), 

Ladislav et al. (2005), Bendini et al. (2007), Jensen and Laurisen (2007), Liu et al. 

(2008), and Tarascou et al. (2010). 
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Tocochromanols are the most important natural antioxidants in vegetable oils, and 

the most widely used method for their quantification is the direct normal-phase HPLC 

analysis of the oil. A fluorescence detection, with an excitation wavelength set at 290 nm 

and emission wavelength at 330 nm is the most common approach, being the most 

sensitive for these compounds (Chase et al., 1994; Cert et al., 2000). Indeed, the AOCS 

official method requires that a UV detector be used only in the absence of fluorescence 

detector, and the UV detector should be set at 292 nm (Firestone, 2009). Although, 

analysis of tocochromanols by reversed-phase HPLC presents the advantage of shorter 

equilibrium and analysis time, and higher reproducibility than the normal-phase HPLC 

method, this method is limited by its inability to resolve β- and γ-isomers of both 

tocopherols and tocotrienols, and plastochromanol-8 (Cert et al., 2000; Ruperez et al., 

2001). In addition, because normal-phase HPLC operates with organic solvents in which 

frying oils are easily soluble, higher loads of samples can be tolerated as they are easy to 

wash off the column by the nonpolar solvents (Ruperez et al., 2001).  

There are discrepancies regarding the best column for the normal-phase HPLC 

analysis of tocochromanols. Kamal-Eldin et al. (2000) evaluated six silica, three amino, 

and one diol columns for the separation of tocochromanols in oat extracts and palm oil. 

Although the tested columns offered equally good separation depending on the mobile 

phase used, silica columns were reportedly more stable than diol column. Diol column, 

on the other hand, has been reported to offer more reproducible and consistent results 

than silica columns (Piironen et al., 1984; Rammel and Hoogenboom, 1985; Pocklington 

and Diefenbacker, 1988; Kramer et al., 1997). It was also mentioned by Abidi and 

Mounts (1996) that amino columns offer better selectivity than diol-bonded columns. 
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Unlike the diol columns that have no ionizable groups, however, the amino groups of 

amino-bonded columns ionize with the use of polar organic solvents, resulting in 

increased retention times and peak broadening (Kramer et al., 1997). 

Other natural and synthetic polar phenolic antioxidants are usually analyzed by a 

reversed-phase HPLC, utilizing either isocratic or gradient elution methods with a UV-

Vis detector operated at 225, 240, or 280 nm (Cert et al., 2000; Carrasco-Pancordo et al., 

2005; Bendini et al., 2007; Harbaum-Piayda et al., 2010; Lafka et al., 2011). However, 

some phenolic compounds show several absorption maxima and the use of simultaneous 

multiple UV detection is recommended for quantification (Montedoro et al., 1992; Pirisi 

et al., 1997; Esti et al., 1998). Furthermore, use of a photodiode array detector allows the 

spectrum to be obtained at different wavelengths, and enables a peak identification and 

purity test (Ruperez et al., 2001). Due to its versatility, HPLC has been, and will remain a 

vital analytical technique for quantifying lipid antioxidants. 

 

2.5.8 Formation of toxic components  

 As previously mentioned, a number of toxic compounds are produced under the 

conditions employed during deep frying. If the frying operation is not well controlled 

and/or the frying oil efficiently stabilized, the toxic compounds can be produced at a 

concentration that warrants health and safety concerns. Oxygenated α,β-unsaturated 

aldehydes are the most prominent toxic degradation products formed during frying, and 

include: 4-hydroxyhexenal (HHE); 4-hydroxyoctenal (HOE); 4-hydroxynonenal (HNE); 

4-hydroperoxynonenal (HPNE); 4-oxononenal (ONE); and 4,5-epoxynonenal (ENE), 

among others (Guillén and Goicoechea, 2008). While formation of other degradation 
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products, such as acrylamide, may depend on the type of food being fried, the formation 

of oxygenated α,β-unsaturated aldehydes is essentially oil-dependent, and may be used to 

assess the frying performance of an oil. With regard to the amounts and the degree of 

toxicity, 4-hydroxynonenal (HNE) is the most important, and remains the most studied of 

the oxygenated α,β-unsaturated aldehydes formed during frying (Niki, 2009). Indeed, the 

August-October 2003 issue (Volume 24, Issues 4-5) of Molecular Aspects of Medicine 

was entirely dedicated to reports on HNE. The chemistry and biochemistry of HNE has 

been extensively reviewed by Esterbauer et al. (1991). Guillén and Goicoechea, (2008) 

comprehensively reviewed the nature, reactivity, biological acitivity, formation pathways, 

and available detection and quantification methods for HNE and other oxygenated α,β-

unsaturated aldehydes. More recent reviews of the chemistry, biochemistry and analytical 

methods for HNE and other oxygenated α,β-unsaturated aldehydes are provided by 

Gueraud et al., 2010; Huang et al. (2010), Negre-salvayre et al. (2010), Roede et al. 

(2010), and Spickett et al. (2010). Because of its great reactivity, HNE can modify 

proteins, nucleic acids and other biomolecules leading to several diseases and medical 

conditions. HNE has been shown to exhibit mutagenic, cytotoxic and genotoxic 

properties, which are related to pathogenesis of several human diseases such as 

Alzheimer’s and atherosclerosis. It inactivates various enzymes, inhibits proliferation of 

cells and acts as a chemotaxin (LoPachin et al., 2008; Niki, 2009; Gueraud et al., 2010; 

Spickett et al., 2010).       

Most of the methods described for the determination of HNE in frying oils are 

derived from those originally developed for biological systems (Guillén and Goicoechea, 

2008). The first method applied to oils was reported by Lang et al. (1985), and involves 
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extraction of a sample with distilled water containing an antioxidant such as BHT; the 

water extract was then centrifuged for clarification; the supernatant was applied to an 

octadecyl silica gel column for clean up; and HNE was detected and quantified by HPLC-

UV. Liu et al. (1996) evaluated the amounts of HNE in several samples of soybean and 

sesame oils by direct HPLC analysis of its derivatives with 4-(2-carbazoylpyrrolidin-1-

yl)-7-nitro-2,1,3-benzoxadiazole (NBD-ProCZ). The resultant HNE-NBD-ProCZ 

hydrazone was detected using laser-induced fluorescence detector.  Seppanen and 

Csallany (2006) evaluated the amount of HNE in thermooxidized soybean oil using the 

method described by Esterbauer et al. (1982) for biological samples which involves the 

following steps: (1) the direct derivatization with 2,4-dinitrophenylhydrazine (DNPH) in 

the oil; (2) extraction of the hydrazones with methanol/water mixture; (3) centrifugation 

and subsequent extraction of the supernatant with dichloromethane; (4) separation of 

extract on a silica gel TLC plate using dichloromethane; (5) removal of the bands 

corresponding to HNE; (6) elution of HNE by methanol; (7) centrifugation to remove 

residual silica gel; (8) concentration of the supernatant under nitrogen; and (9) 

quantification by HPLC-UV.  

Gas chromatographic analysis of HNE formed in oxidized arachidonic and 

linoleic acids model systems was reported by Tamura and Shibamoto (1991). 

Hydroxynonenal was reacted with N-methylhydrazine, and the resultant 5(1’-

hydroxyhexyl)-1-methyl-2-pyrazoline was analyzed on a fused silica capillary column 

using a nitrogen-phosphorus detector. In a more recent study by Surh and Kwon (2003), 

HNE was extracted from oil using distilled water containing 0.1% BHT; the aqueous 

phase was clarified by centrifugation, and the supernatant was subsequently extracted 
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with chloroform; the extracted HNE was reduced to the corresponding diols; and the 

ortho-esters, obtained by reacting the diols with trimethylorthoformate, were analyzed by 

GC-MS in a selected ion monitoring (SIM) mode. 

The poor solubility of HNE in water, and its loss arising from the elaborate clean-

up steps (derivatization, multiple extractions and purifications) involved in many of the 

methods described for HNE usually result in inefficient recovery of HNE. For instance, 

the recovery of HNE from sunflower oil spiked with 2.35 nM of HNE using the method 

by Lang et al. (1985) was 68%. Using a variation of the HNE-DNPH method, Uchida et 

al. (2002) reported HNE recovery rates of 88 and 76% from soybean oil spiked with 2.91 

and 0.29 nM standard HNE, respectively. Thus, development of a simplified HNE 

extraction and clean-up protocol that eliminates lengthy, error-prone derivatization and 

multiple extraction and purification steps involved in the current methods is imperative.    
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Chapter 3 – Materials and methods 

This chapter presents the materials and methods used in the study. They are 

presented in more detail in the relevant original publications and accepted manuscripts  

(I – X) which are an integral part of this thesis.  

 

3.1 Materials 

3.1.1 Oils and French fries 

 Commercially refined, bleached and deodorized regular canola oil (CO) was 

donated by Richardson Oilseed Processing (Lethbridge, Canada). High oryzanol rice bran 

oil (RBO) was supplied by Rito, Inc. (Stuttgard, Arkansas, USA) and crude palm oil was 

a gift from Golden Jomalina Food Industries (Kuala Langat, Malaysia). Frozen, par-fried 

French fries in an institutional pack, and sesame oil were obtained from a local store.  

 

3.1.2 Chemicals 

Standards of tocopherol were obtained from Calbiochem-Novabiochem (San 

Diego, CA). Standards of β-carotenes and γ-oryzanol were purchased from Sigma-

Aldrich (St. Louis, USA) and Oryza Oil and Fat Chemical Co. Ltd. (Ichinomiya-City, 

Japan), respectively. Phytosterol standards were obtained from Steraloids (Newport, 

USA). Standards of fatty acid methyl esters were purchased from Nu-Chek-Prep 

(Elysian, USA).  

Alumina (neutral Al2O3, 70 – 230 mesh), alumina 58Å (~150 mesh), silica gel 60 

(70 – 230 mesh), celite 512 medium, hydrolyzed starch, and potato starch were obtained 

from Sigma-Aldrich (St. Louis, MO). Unless otherwise stated, all solvents and chemicals 
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of analytical grade used in the study were purchased from Sigma-Aldrich (St. Louis, 

USA). 

Aldehydes for preparing standards for the analysis of volatile carbonyl 

compounds (VCC) were purchased from Bedoukian Research (Danbury, USA). The 

dinitrophenylhydrazone derivatives of the aldehydes were subsequently prepared 

according to method by Possanzini and DiPalo (1995). A saturated solution of 

dinitrophenylhydrazine (DNPH) in 2M HCl was reacted with the corresponding 

carbonyls, the solid dinitrophenylhydrazones were filtered, washed with 2M HCl and 

water, dried and stored in a capped glass vial. 

 

3.1.3 Instruments 

 1H and 13C NMR spectra were recorded on a 300 MHz Bruker Avance II 

spectrometer (Bruker Biospin Corporation, Billerica, MA, USA).  

HPLC analyses were performed on Finnigan Surveyor LC system (Thermo 

Electron Corp., Waltham, MA, USA) equipped with a Finnigan Surveyor Autosampler 

Plus, FL Plus fluorescence detector, photo-diode-array detector, UV-Vis Plus detector, 

and Sedex 75 evaporative light scattering detector (Sedere, Alfortville, France).  

GC analyses were carried out using a Trace GC Ultra (Thermo Electron 

Corporation, Rodano, Italy) or a Hewlett-Packard 6890 gas chromatograph (J & W 

Scientific, Folsom, CA, USA).  

Spectrophotometric analyses were done on a Beckman DU-65 

spectrophotometer (Beckman Instruments, Inc., Fullerton, CA, USA) for UV-Vis data, a 
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Cary Eclipse fluorescence spectrophotometer (Varian, Palo Alto, CA, USA) for 

fluorescence. 

Melting points were measured with an Electrothermal MEL-TEMP 3.0 

(Barnstead, Dubuque, IA, USA).  

High-resolution mass spectra were obtained with a QSTAR Elite mass 

spectrometer (AB SCIEX, Concord, ON, Canada). 

Evaporation of solvents and concentration under vacuum was achieved using a 

BÜCHI rotary evaporator (BÜCHI Labortechnik AG, Flawil, Switzerland). 

 

3.2 Methods  

3.2.1 Frying procedures and oil samples 

3.2.1.1 Standard frying conditions (I, III, IV)  

 Frying under standard conditions was performed in an 8-L capacity restaurant 

style stainless-steel fryer (General Electric Company, Niskayuna, USA). Canola oil (4 L) 

was heated at 185 or 215oC ± 5oC for 7 h daily for 7 days. A batch of frozen French fries 

was fried for 5 min for a total of eight batches daily. At the end of each frying day, the 

fryer was shut off and left to cool down overnight. Two 25 mL samples of oil and the last 

batch of French fries were collected daily and kept frozen at -20oC until analyzed. Before 

commencing frying each day, the oil was filtered to remove debris and replenished every 

second day with 500 mL of fresh oil.  
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3.2.1.2 Carbon dioxide blanketing (III, IV) 

The frying procedure and sampling described above for standard frying condition 

(SFC) was used for frying under carbon dioxide blanketing (CDB). The carbon dioxide 

was delivered through stainless-steel tubing (2 mm i.d.) with 0.6-mm holes placed 

equally alongside of the fryer and at flow rate of 2.5 L/min. The tubing was attached to 

the upper edge of the fryer, and the gas outlets were 1 cm above the oil surface. Oil was 

purged with CO2 for 10 min prior to commencing frying and at the end of each frying 

day; the flow of carbon dioxide was continued until the temperature of the oil dropped 

below 100oC.  

 

3.2.1.3 Vacuum frying (III)  

 Vacuum frying was done using a BT-1 Industrial Vacuum Deep Fryer (Sakuma 

Corporation, Chiba, Japan). Canola oil (9.5 L) was placed in the 10 L capacity industrial 

vacuum fryer. A batch of 400 g of frozen French fries was fried under 9.7 kPa vacuum at 

180 ± 5oC for 2.5 min. A total of eight batches of French fries were fried daily for 7 days. 

At the end of each day, the frying oil was allowed to cool overnight under vacuum. Two 

25 mL samples of oil were taken daily and kept frozen at -20oC until analyzed. As in 

other frying protocols, oil was replenished every second day of frying with 500 mL of 

fresh oil. 

 

3.2.2 Rapid frying test (V) 

 Silica gel, alumina and celite were placed in an oven preset at 160oC and heated 

for 24 h. The materials were then transferred into a desiccator and allowed to cool down. 
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An appropriate quantity of distilled water was added to adjust the water content to 10, 20 

and 40%. The water-conditioned adsorbents were mixed and kept overnight. Formulated 

additives were added to 12.0 g of oil in an acid-washed glass vessel (Pyrex, USA; outer 

diameter 35 mm, capacity 30 mL). Clean octagonal stir bar (9.5 × 25 mm, Fischer 

Scientific, USA) was placed into the glass vessel, altering the final surface-to-volume 

ratio at 0.42. The oil was heated at 185 ± 5oC with stirring and the level of degradation 

assessed.  

 

3.2.3 Isolation, processing and purification of minor components (VI, VII) 

3.2.3.1 Column chromatography 

A slurry of 1 kg of alumina (activated at 103oC for 16 h and 200oC for 8 h) in 2 L 

of hexane was loaded to a glass chromatography column (950 × 50 mm i.d.) and the 

hexane allowed to flow through the column until the solid phase was evenly packed. Oil 

(500 g) dissolved in 500 mL hexane was applied into the packed column. The first 800 

mL of the eluting hexane was discarded. Purified triacyglycerols were eluted with 3.7 L 

of hexane (Scheme 1). The minor components were recovered from the column by 

eluting with 2.5 L of 10% methanol in methyl tert butyl ether. Both the column and 

collection vessels were wrapped in aluminum foil to prevent photo-oxidation (Scheme 1). 

The purified triacylglycerols were stored as hexane solutions at -16oC until used in the 

experiments. 

The recovered minor components were further separated into two fractions by 

adsorption chromatography (Scheme 1). Conditioned silica gel was prepared by heating 

it for 24 h at 160oC, and the water content adjusted to 5% by addition of stoichiometric 
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amount of water. A slurry of 120 g of the conditioned silica gel in 150 mL of hexane was 

loaded into a glass chromatography column (600 × 45 mm i.d.) allowing constant flow of 

hexane until the packing was evenly packed. Minor components (20 g) dissolved in 30 

mL hexane were introduced into the column. Tocopherol fraction was eluted with 750 

mL of 5% methyl tert butyl ether (MTBE) in hexane while sterol fraction with the same 

volume of 50% MTBE in hexane. The purity of fractions was monitored by thin layer 

chromatography. Collected fractions were concentrated in vacuo at 35oC. Both the 

column and collection vessels were wrapped in aluminium foil to prevent photo-

oxidation. The fractions were stored in hexane at -16oC until used in the experiments.  

 

3.2.3.2 Preparative thin layer chromatography 

 The tocopherol and sterol fractions obtained by column chromatography were 

further purified by preparative thin layer chromatography (PTLC) on a 20 cm × 20 cm, 

250 µm layer silica gel (Whatman, Piscatway, NJ, USA) (Scheme 1). The tocopherol 

fraction was developed using 20% MTBE in hexane. Bands corresponding to tocopherols 

were carefully scraped off the plate and subsequently eluted three times with 10 mL of 

MTBE. Combined extracts were concentrated in vacuo at 35oC, flushed with nitrogen and 

kept at -16oC until used in the experiments. The sterol fraction was similarly purified 

using 65% MTBE in hexane as developing solvent (Scheme 1). 
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Scheme 1. Schematic of isolation and purification of concentrated endogenous 
minor components from canola and rice bran oils. CC – Column 
chromatography; PTLC – preparative thin layer chromatography; 

MTBE – methyl-tert-butyl ether; CO – canola oil; RBO – rice bran oil; 
TAG – triacylglycerols; CMC, RBMC – minor components isolated 

from canola and rice bran oil by column chromatography, respectively; 
TCAN, TRBO – tocopherol fractions isolated from canola and rice bran 

oil by column chromatography, respectively; SCAN, SRBO – sterol 
fractions isolated from canola and rice bran oil by column 

chromatography, respectively. 
 
 

3.2.3.3 Solvent extraction 

 Oil (200 g) was placed in a 500 mL capacity separatory funnel and 200 mL 

methanol was added followed by agitation for 5 min with periodic venting. The mixture 

CO/RBO 

TAG CMC/RMBC 

Tocopherols Sterols 

TCAN/TRBO SCAN/SRBO 

CC on alumina 

Hexane 10% methanol in MTBE 

CC on conditioned silica gel 

5% MTBE in hexane 50% MTBE in hexane 

PTLC; 20% MTBE in hexane PTLC; 65% MTBE in hexane 
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was kept at room temperature until layers separated, then the methanol portion was 

removed into round bottom flask. The extraction was repeated 12 times with the same 

volume of fresh methanol, and the combined extracts evaporated in vacuo at 35oC. The 

concentrated fraction was flushed with nitrogen and stored at -16oC until used in the 

experiments.  

 

3.2.4 Isolations 

3.2.4.1 Lipids (II, IV)  

Lipids were isolated according to the Folch et al. (1957) procedure. French fries 

(50 g) were chopped into small pieces and homogenized with 400 mL of 

chloroform:methanol (2:1, v/v). The solvent/lipid mixture was filtered through filter 

paper (Whatman #2, 24.0 cm) into a separatory funnel. Distilled water (100 mL) was 

added, and after mixing, the mixture was allowed to separate into two layers. The lower 

lipid-chloroform layer was collected in a round bottom flask, and the solvent removed 

under reduced pressure on a rotary evaporator at 35oC. The oil samples were transferred 

with iso-octane to appropriately labelled vials, flushed with nitrogen and stored at -16oC 

until analyzed.  

 

3.2.4.2 Acrylamide (IV) 

 French fries (10 g) were ground using a Grindomax GM200 mill (Haan, 

Germany). To 4 g of ground sample 50 µL of deuterated acrylamide solution 

(150 µg/mL) was added as an internal standard and the mixture extracted with 50 mL of 

distilled water utilizing sonication at 60°C. The extract was centrifuged at 4500 g and the 
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supernatant defatted by extraction with petroleum ether and afterwards clarified with 5 

mL of each Carrez I and II solution. For separation of the precipitate the solution was 

centrifuged and then acrylamide was salted out with sodium chloride. Thereafter, 

acrylamide was extracted three times from the aqueous phase with 30 mL ethyl acetate. 

The combined extracts was filtered using water-repellent filters (MN 616 wa ¼; 

Macherey-Nagel GmbH & Co. KG, Düren Germany), and evaporated under nitrogen to 

0.5 mL. 

 

3.2.4.3 4-hydroxy-2-nonenal (IV) 

After removal of the nonpolar fraction (triacylglycerols) during polar components 

assessment, the polar fractions were recovered by eluting the column four times with 5 

mL of methanol. The combined eluants were subsequently evaporated under stream of 

nitrogen to the final volume of 5 mL. The cloudy solution was then centrifuged at 1000 g 

for 5 min, and the clear supernatant transferred with a Pasteur pipette into a clean vial and 

analyzed by HPLC. 

 

3.2.5 Volatile carbonyl compounds (VI – VII)  

 Volatile carbonyl compounds generated during the frying experiments were 

trapped on a Sep-Pak DNPH-Silica cartridge (Waters, Milford, MA) where they were 

converted to the stable dinitrophenylhydrazones. The cartridge was connected to a pump 

through a flow-meter. The wider end of the cartridge was suspended about 0.5 cm above 

the upper edge of the beaker used for frying test, and the samples of vapours were drawn 

through the cartridge at a flow rate of 350 mL/min for 2 h. The resulting 
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dinitrophenylhydrazones were eluted from cartridge with 5 mL of acetonitrile at a flow of 

2 mL/min. 

 

3.2.6 Synthesis of novel antioxidants (VIII – X) 

3.2.6.1 Preparation of chromanol derivatives (VIII, IX)  

 Benzoic esters 5a, 5b (IX), and 3a – 3d (VIII) were prepared according to a 

procedure reported by Tranchimand et al. (2006). Potassium carbonate (77.2 mmol, 3.0 

equiv) and benzyl bromide (77.2 mmol, 3.0 equiv) were added to a solution of the desired 

carboxylic acid (25.7 mmol) dissolved in 10 mL dry DMF under an argon blanket. The 

mixture was stirred for 15 h and transferred into 150 mL distilled water. The compound 

of interest was extracted three times with 100 mL diethyl ether. The combined extracts 

were washed with 100 mL distilled water, dried on magnesium sulfate and concentrated 

under vacuum using a rotary evaporator (Schemes 2 and 3). 

 The carboxylic acids 4a – 4d (VIII) and 6a – 6c (IX) were prepared according 

to the procedure described by Tranchimand et al. (2006). Potassium hydroxide (72.0 

mmol, 5.0 equiv) was added to a solution of the corresponding benzoic ester (14.4 mmol) 

in a mixture of 53 mL distilled water and 210 mL ethanol. The mixture was refluxed for 2 

h and the solvent evaporated under a vacuum using a rotary evaporator. The residue 

obtained was dissolved in 200 mL distilled water. The aqueous solution was washed 

twice with 50 mL diethyl ether and acidified with concentrated sulfuric acid until the 

formation of a white solid suspension. The suspension was then extracted thrice with 200 

mL ethyl acetate. The combined extracts were washed with distilled water, dried on 

magnesium sulfate and finally concentrated under a vacuum using a rotary evaporator.  
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Scheme 2. Reactions, reagents, and conditions for the synthesis of benzoic acid    
                           derivatives. (i) BnBr, K2CO3, DMF; (ii) KOH, H2O/MeOH, reflux.  

For details see the text. 
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Scheme 3. Reactions, reagents, and conditions for the synthesis of cinnamic acid    
                           derivatives. (i) BnBr, K2CO3, DMF; (ii) KOH, H2O/MeOH, reflux.  

For details see the text. 
 

 

For the preparation of the esters 8a – 8e (VIII) and 9a – 9c (IX), N,N'-

dicyclohexylcarbodiimide (DCC; 3.06 mmol, 2.0 equiv) and 4-dimethylaminopyridine 

(DMAP; 0.23 mmol, 0.15 equiv) were added under an argon blanket to an alcoholic 

solution of  (6'-benzyloxy-2',5',7',8'-tetramethylchroman-2'-yl)methanol (1.53 mmol) and 

the desired carboxylic acid (3.06 mmol, 2.0 equiv) in 40 mL dry dichloromethane (DCM) 

(Schemes 4 and 5). The mixture was stirred for 15 h at room temperature and 50 mL 

distilled water was added. The organic layer was removed and washed once more with 20 
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mL distilled water, dried over anhydrous magnesium sulfate and concentrated using a 

rotary evaporator. Finally, the crude product was purified by flash column 

chromatography on silica gel to give the desired ester. 

Antioxidants 1a – 1e (VIII), 2a – 2c (IX), and 3 (IX) were prepared according to 

the following procedure (Schemes 4, 5 and 6): palladium on charcoal (10% wt) was 

added to a solution of the desired benzylated compound (0.7 mmol in 8 mL of dry THF). 

The mixture was stirred at room temperature under an atmosphere of hydrogen for 24 h, 

then filtrated on celite, and concentrated on a rotary evaporator under reduced pressure. 

The residue was purified by flash column chromatography on silica gel to give the 

desired antioxidant.  
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6 7

 

Scheme 4. Reagents and conditions used for the synthesis of antioxidants 1a – 1e. 
(i) BnBr, K2CO3, DMF; (ii) LiAlH4, THF, 0 °C; (iii) 4a-4e, DCC, 

DMAP, DCM; (iv)  H2, Pd/Charcoal 10%, THF. For details see the text. 
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Scheme 5. Reagents and conditions used for the synthesis of antioxidants 2a – 2c. 
(i) BnBr, K2CO3, DMF; (ii) LiAlH4, THF, 0 °C; (iii) 6a-6c, DCC, 

DMAP, DCM; (iv)  H2, Pd/Charcoal 10%, THF. For details see the text. 
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Scheme 6. Reagents and conditions used for the synthesis of antioxidant 3. (i) 
KOH, H2O/EtOH, reflux; (ii) 8, DCC, DMAP, DCM; (iii) H2, 

Pd/Charcoal 10%, THF. For details see the text. 
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3.2.6.2 Preparation of dihydrocaffeic acid derivatives (X) 

 General procedure for the synthesis of amines 2a – 2L (X): The aldehyde (10 

mmol) and the aliphatic amine (15 mmol, 1.5 equiv) were dissolved in 10 mL methanol  

and the mixture was stirred for 3 h, then NaBH4 (10 mmol, 1.0 equiv) was added in  

small portions (Scheme 7). The mixture again was stirred for 3 h followed by solvent 

removal under reduced pressure using a rotary evaporator. Then 10 mL distilled  

water was added and the solution extracted three times with  

10 mL ethyl acetate. The organic layers were combined and dried on magnesium sulfate. 

Subsequent removal of solvent under reduced pressure using a rotary evaporator provided 

the desired crude product. 

 For the synthesis of the new dihydrocaffeic acid amides 3a – 3L (X), 

dihydrocaffeic acid (1.1 mmol) and triethylamine (1.1 mmol, 1.0 equiv) were added to 2 

mL dimethylformamide and the mixture was stirred at 0oC for 30 min (Scheme 7). Then 

an amine (2.2 mmol, 2.0 equiv), dissolved in a minimum amount of DCM, and BOP (1.1 

mmol, 1.0 equiv.), dissolved in 2 mL of DCM were added and stirred for 2 h at room 

temperature. The solution was concentrated under reduced pressure using a rotary 

evaporator. To the residue, 10 mL water was added and the solution extracted three times 

with 10 mL ethyl acetate. The organic layers were combined, dried on magnesium sulfate 

and the solvent removed under reduced pressure using a rotary evaporator. The crude 

product was further purified by flash column chromatography on silica gel. 
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Scheme 7. Reagents and conditions used for the synthesis of antioxidant 3a – 3L. 
(i) MeOH, NaBH4; (ii) Dihydrocaffeic acid, Et3N, DMF, BOP.  

For details see the text 
 

 

3.2.7 Radical scavenging activity (VIII – X) 

3.2.7.1 DPPH assay 

 The DPPH assay was performed according to Nenadis and Tsimidou (2002). To 

2960 µL of 0.1 mM ethanolic solution of DPPH 40 µL of synthesized antioxidant 

solution in ethanol was added at: 0.37, 0.74, 1.11, 1.85, 3.7, and 5.2 µM forming the 

ratios between the molar amounts of antioxidant to the molar amount of DPPH at 0.05, 

0.10, 0.15, 0.25, 0.5 and 0.7, respectively. The decrease of absorbance at 516 nm was 

2a, 3a: n=2; R1 = R2 = R3 = H  2b, 3b: n=5; R1 = R2 = R3 = H 

2c, 3c: n=9; R1 = R2 = R3 = H  2d, 3d: n=2; R1 = R3 = H; R2 = OH 

2e, 3e: n=5; R1 = R3 = H; R2 = OH  2f, 3f: n=9; R1 = R3 = H; R2 = OH 

2g, 3g: n=2; R1 = OMe; R2 = OH; R3 = H 2h, 3h: n=5; R1 = OMe; R2 = OH; R3 = H 

2i, 3i: n=9; R1 = OMe; R2 = OH; R3 = H 2j, 3j: n = 2; R1 = R3 = OMe; R2 = OH 
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measured at 25°C after 20 min of reaction where the blank solution contained the same 

amount of DPPH and 40 µL of ethanol. The results are expressed as the %DPPH 

inhibition calculated according to the following equation:  

 

Where Ac and At are the absorbances of the control sample and the test sample, 

respectively. The IC50 represents the concentration of antioxidant required to decrease the 

initial amount of DPPH by 50%. 

 

3.2.7.2 ORAC assay 

 ORAC assays were performed according to Szydlowska-Czerniak et al. (2008). 

Fluorescein disodium salt and AAPH solutions were prepared in 75 mM phosphate buffer 

(pH 7.4). Antioxidant solutions consisting of 1 mM of each compound were dissolved in 

methanol and a specific volume of each dissolved in the buffer to provide the required 

amount of antioxidant within a range of 3.125 - 25.00 µM. Four different concentrations 

were tested for each antioxidant. A solution of fluorescein, 3.0 mL (0.0816 µM) was 

mixed with 0.5 mL of antioxidant solution directly in a quartz cuvette. The mixture was 

kept at 37°C for 10 min and 0.5 mL of the AAPH solution (153.0 µM) added. The 

fluorescence was measured at 37°C for 30 min at 30 s intervals. The emission and 

excitation were set at 525 nm and 485 nm, respectively. For a blank, phosphate buffer 

replaced the antioxidant solution.  Each antioxidant solution was prepared in duplicate 

and three measurements were performed for each sample. A calibration curve was 

generated using trolox as the reference antioxidant. 

The area under the fluorescence decay curve (AUC) was calculated as follows: 
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Where ft  is the fluorescence at time t (min). 

The net AUC corresponding to the sample was calculated using the following equation: 

AUCnet = AUC – AUCblank 

For each antioxidant, a regression between AUCnet and the compound concentrations was 

calculated and the results are expressed in µmol trolox equivalents per litre (TEq). 

 

3.2.8 Accelerated storage 

 To 1 g of pure canola triacylglycerols 350 µg/g of the tested antioxidant was 

added in a vial (National Scientific Target DP Vials; 2 mL, 12 × 32 mm). The samples 

were stored in the dark for up to seven days at 60oC, providing the surface area to volume 

ratio at 0.78. Samples were examined at 24 h intervals for peroxide value (PV). 

 

3.2.9 Analysis by GC / GC-MS 

3.2.9.1 Fatty acid composition (I – III)  

Fatty acid methyl esters (FAME) were analyzed on Trace GC Ultra gas 

chromatograph using a Trace TR-FAME fused silica capillary column (100 m x 0.25 mm 

x 0.25 µm). Hydrogen was used as carrier gas with a flow rate of 1.5 mL/min. The 

column temperature was programmed from 70 to 160oC at 25oC/min and held for 30 min, 

and further programmed to 210oC at 3oC/min. Starting and final temperatures were held 

for 5 and 30 min, respectively. Splitless injection was made using a PTV injector. 

Detector temperature was set at 250oC. FAME samples, 1 µL were injected with AS 3000 
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autosampler. Fatty acids were identified by comparison of retention time with authentic 

standards. 

For the preparation of FAME, 25 mg of oil was weighed directly into a screw-

capped tube and 0.5 mL of methyl heptadecenoate (internal standard) in isooctane (2 

mg/mL) added. Then 5 mL of 0.5 M solution of sodium methoxide in methanol was 

added, vortexed and kept at 50oC in a heating block for 2 h. After the solution had cooled 

down to room temperature, 0.3 mL glacial acetic acid, 3 mL isooctane, and 3 mL distilled 

water were added and the solution was thoroughly mixed and centrifuged. The clear 

upper layer (FAME) was transferred into a dry chromatographic vial and submitted to 

GC analysis. 

 

3.2.9.2 Phytosterols (VI, VII) 

Compositions of phytosterols were analyzed using the procedure described by 

Rudzińska et al. (2003). Lipid samples were saponified with 1 M KOH in methanol at 

room temperature for 18 h, then water was added and unsaponifiables extracted with 

diethyl ether. Dry residues were silylated with BSTFA containing 1% TMCS. Derivatives 

of the sterols were separated on a Hewlett-Packard 6890 gas chromatograph with an HP-

5 capillary column (30 m × 0.32 mm × 0.25 µm). Split injection with split ratio 1:25 was 

used. Separation was done isothermally at 290oC, with a helium flow rate of 1.6 mL/min. 

The injector and detector temperatures were set at 310oC. An internal standard, 5-α-

cholestane, was used for quantification. Phytosterols were identified by comparison of 

retention data and by GC–MS using a Finnigan Trace 2000 gas chromatograph coupled 

to a Finnigan Polaris Q quadrupole ion-trap mass spectrometer after separation on a DB-5 
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capillary column (50 m × 0.2 mm × 0.32 µm). Helium was used as carrier gas at a flow 

rate of 0.6 mL/min. All mass spectra were recorded using electron-impact ionization 

mode at 70 eV and scanning mass in the range of 100–650 D. 

 

3.2.9.3 Acrylamide (IV) 

GC-MS analysis was carried out using the electron ionization mode (EI, 70 eV) 

on a Hewlett Packard instrument Model 5890 Series II/5989 A. For the determination of 

acrylamide the SIM-mode (selected ion monitoring) was used and the identification 

achieved by using characteristic ions with masses (m/z) 74, 71, 58 and 55. The 

quantification was carried out using ions with masses 71 and 74. The separation was 

achieved with a DB-23 capillary column (30 m x 0.25 mm, 0.25 µm; J&W Scientific 

Products GmbH, Köln, Germany). The carrier gas was helium at a flow rate of 

1.0 mL/min. The column temperature was initially kept at 80°C for 2 min and then 

programmed to 220°C at 10°/min. The final temperature was held for 1 min.  

 

3.2.10 Analysis by HPLC/HPLC-MS 

3.2.10.1  Composition of polar material (I, III, V) 

 The composition of polar components was analyzed using high-performance size-

exclusion chromatography (HPSEC) following the ISO Method 16931:2007. 

Components were separated on three size exclusion columns connected in series 

(Phenogel 500A, 100A and 50A; 5 µm, 300 × 4.6 mm; Phenomenex, Torrance, CA), with 

tetrahydrofuran (THF) as the mobile phase at a flow rate of 0.3 mL/min, and column 
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temperature of 30oC. A 10 µL sample was injected, and components were detected with 

an evaporative light scattering detector, operated at 35oC with air pressure of 2.5 bar. 

 

3.2.10.2 Composition of minor component (VI, VII) 

 Isolated minor components were separated into lipid classes according to 

Silversand and Haux (1997). Analysis was performed on a Finnigan Surveyor LC system 

and components were separated on a normal phase Diol column (250 × 4.6 mm; 

MonoChrom, Varian, CA). The binary gradient was used consisting of: (A) hexane–

acetic acid (99:1.0, v/v) and (B) hexane–isopropanol–acetic acid (84:15:1.0, v/v) 

solvents. The samples of 20 µL were injected and the gradient changed from 0% to 100% 

of the solvent B within 40 min. The final gradient was kept for 2 min and then returned to 

initial composition within 3 min followed by 5 min of equilibration. The flow rate was 

0.6 mL/min and the column was kept at 45oC. Components were detected with an 

evaporative light scattering detector operated at 30oC with an air pressure of 1.5 bar. 

Triolein, diolein, monoolein, oleic acid, and stigmasterol linolenate were used as 

standards for external calibration to assess the amount of triacylglycerols, 

diacylglycerols, monoacylglycerols, free fatty acids, and sterol esters, respectively.     

 

3.2.10.3  Tocopherols 

 Tocopherols were analyzed using high-performance liquid chromatography 

(HPLC) based on the AOCS Official Method Ce 8-89 (Firestone, 2009). Oil sample (50 

mg) was weighed directly into a 1.5 mL vial and mixed with 1 mL hexane. Analysis was 

performed on a Finnigan Surveyor LC system. The detector was set for excitation at 292 
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nm and emission 325 nm. Separation of tocopherols was carried out on a normal phase 

Diol column (250 × 4.6 mm; MonoChrom). Injection volume was 10 µL. Mobile phase 

consisted of 7% methyl-tert-butyl-ether in hexane and with a flow of 0.6 mL/min. The 

amounts of tocopherols were quantified using external calibration for each isomer 

separately. 

 

3.2.10.4  Synthetic antioxidants (VIII – X) 

 The new chromanol derivatives were analyzed similarly to tocopherols. However, 

the mobile phase contained 65% methyl-tert-butyl-ether in hexane and the fluorescence 

detector emission was set at 394 nm. For BHT, dihydrocaffeic acid and dihydrocaffeic 

acid amides, the mobile phase consisted of 50% methyl-tert-butyl-ether in hexane with a 

flow rate of 0.3 mL/min. Detection was at 281 nm using a photodiode-array detector 

(PDA).  

 

3.2.10.5  γ-Oryzanol (VI) 

 A 20 µL sample was injected onto a C18 column (4 µm; 300 × 3.9 mm; Novapak, 

Waters, MA) held at 30oC (Przybylski et al., 2009). Separation was achieved by using 

acetonitrile-water (65:35, v/v). Detection was at 325 nm using a Finnigan Surveyor 

photodiode-array detector. Total amounts of γ-oryzanols are expressed as a group of 

esters and quantified by using the external calibration with γ-oryzanol standard. 
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3.2.10.6  Carotenoids (VI) 

 Carotenoids analyses were carried out according to the method of Khachik et al. 

(1992) with slight modifications. Analysis was carried out on Finnigan Surveyor Plus 

HPLC system. A 10 uL sample was injected onto a C18 column (4µm; 300 × 3.9 mm; 

Novapak) held at 25oC. Separation was achieved by the following gradient: 

Time (min) Methanol Acetonitrile Dichloromethane Hexane 

0 15 75 5 5 

2 15 75 5 5 

20 17 60 11.5 11.5 

35 15 40 22.5 22.5 

40 15 75 5 5 

45 15 75 5 5 

 

The flow rate was 0.5 mL/min. Quantifications of carotenoids were carried out by using 

external calibration with a β-carotene standard. 

 

3.2.10.7  Volatile carbonyl compounds (VI, VII) 

 Dinitrophenylhydrazones of volatile carbonyl compounds were detected and 

quantified by HPLC (Katsuka et al., 2008). A 20 uL sample was injected onto a C18 

column (4 µm; 300 × 3.9 mm; Novapak) held at 30oC. Separation was achieved by the 

following gradient: (1) 40% acetonitrile and 60% water was held for 5 min; (2) followed 

by 100% acetonitrile within 40 min and maintained for an additional 5 min; (3) during a 5 

min period, the mobile phase was returned to its initial composition followed by 5 min 
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equilibration. The flow rate was 0.5 mL/min. Detection was at 360 nm, and volatile 

carbonyl compounds were identified by comparison of retention data with standards and 

by HPLC-MS (Exactive Bench-Top; Thermo Fischer Scientific, West Palm Beach, FL). 

The HPLC conditions were similar to the above. The mass spectrometer was equipped 

with an atmospheric pressure chemical ionization (APCI) ion source operated in the 

negative mode. Spectra were collected using a mass scan range from 100 to 1000 Da. 

 

3.2.10.8  Analysis of 4-hydroxynonenal (IV, VI, VII) 

 A 20 µL sample was injected onto a C18 column (4 µm; 300 × 3.9 mm; Novapak), 

and HNE was detected at 223 nm after elution with acetonitrile/water (30:70 v/v) at a 

constant flow of 0.75 mL/min (Lang et al., 1985). Identification of HNE was done by 

comparison of retention data and by co-elution of HNE standard with selected samples. 

To further verify the identity of HNE, identification was carried out on a QSTAR Elite 

mass spectrometer equipped with an APCI interface operated in a positive mode. Analyst 

QS 2.0 software was used for data acquisition and analysis. The conditions of mass 

spectrometric analysis were optimized for HNE as follows: The APCI source temperature 

was set at 450oC; the curtain gas at 25; the declustering potential at 45V; the focus 

potentials at 150V; and the ion source gas 1 and 2 at 20 and 60 psi, respectively. 

Quantification of HNE was carried out using external calibration. 
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3.2.11 Analysis by spectrophotometry 

3.2.11.1  Anisidine value (I, III) 

 Anisidine values (AV) were determined according to ISO Method 6885 (2004). 

The oil was weighed directly into a 25 mL volumetric flask, dissolved, and made up to 

the mark with isooctane. The oil solution (5 mL) was pipetted to a clean screw-capped 

test tube, and 1 mL of anisidine reagent (0.25% solution of anisidine in glacial acetic 

acid) was added. Thereafter, the tube was closed, vortexed and kept in the dark at room 

temperature for 8 min. Within a further 2 min, the solution was transferred to a clean, dry 

spectrophotometer cell, and the absorbance was read at 350 nm. The experiment was 

repeated with an adjusted amount of oil whenever the measured absorbance was outside 

of the range 0.2 to 0.8. Unreacted test solution was similarly prepared but instead of 

anisidine reagent, glacial acetic acid (1 mL) was added. For the blank, the oil solution 

was replaced with isooctane (5 mL).  

The anisidine value was calculated using the following formula: 

 

Where: A0 is the absorbance of the unreacted test solution, A1 is the absorbance of the 

reacted solution, A2 is the absorbance of the blank, and m is the mass of the oil in grams. 

 

3.2.11.2  Colour analysis (I, III) 

 The colour of oils was assessed according to AOCS Official method Cc 13c-50 

(Firestone, 2009). Oil (1 g) was weighed into a 2 mL volumetric flask. The oil was 

dissolved, made up to the mark with isooctane, and the absorbance at 490 nm was read 

against an isooctane blank. 
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3.2.11.3  Peroxide value (VIII – X) 

 The method originally published by Hornero-Mendez et al. (2001) and modified by 

Shantha and Decker (1994) was used. Oil (200 mg) was dissolved in 5 mL of hexane; to 

200 µL of the sample solution 5 mL of methanol/chloroform/HCl solution (1:1:0.012 

v/v), then 100 µL of NH4SCN (30% w/w in water), and 100 µL of ferrous chloride (0.4% 

water solution) were added. After 5 min of incubation at room temperature, the 

absorbance at 480 nm was measured. 

 

3.2.12 Data analysis 

  Data were analyzed by single factor analysis of variance (ANOVA) and regression 

analyses using Minitab 2000 statistical software (Minitab Inc., PA, ver. 13.2). 

Statistically significant differences between means were determined by Duncan’s 

multiple range tests. Statistically significant differences were determined at the P < 0.05 

level. 
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Chapter 4 – Results 

4.1 Influence of temperature on the frying stability of oils (I) 

4.1.1 Total polar compounds (TPC) 

 TPC is one of the most reliable indicators of frying oil quality, providing 

information on the total amount of degradation compounds formed from triacylglycerols 

(Dobarganes et al., 2000b). The amount of total polar compounds increased consistently 

with time of frying at a rate dependent on temperature. At the end of the 7th day, the TPC 

was at 19.8 and 37.9% for frying at 185 and 215oC, respectively. The rate of polar 

compounds formation was 2.6 times faster during frying at 215oC compared to 185oC 

(Figure 17). 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Formation of total polar compounds during frying at  
different temperatures 
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4.1.2 Composition of polar materials 

 In Figures 18 and 19), the relative contributions of the different groups of polar 

materials in oils used for frying at 185 and 215oC are presented. The contribution of 

polymers increased consistently with frying time at both frying temperatures, peaking at 

8.0 and 15.6% for frying at 185 and 215oC, respectively. During frying at 185oC, the 

amount of dimers increased steadily from the initial 2% in the fresh oil to 33.6% at the 

end of the frying period (Figure 18). At 215oC, however, after the initial 16-fold increase 

at the end of the 1st day of frying, followed by a slight increase for the next two days, the 

amount of dimers consistently decreased for the rest of the frying time (Figure 19). The 

contribution of oxidized triacylglycerides steadily decreased from the initial 72.6 to 

41.3% during frying at 185oC, and to 23.4% during frying at 215oC. 
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Figure 18. Changes in composition of polar materials during frying at 185oC. DG - 

diacylglycerols, OTG – oxidized triacylglycerols, dimers – dimers of 
triacylglycerols, polymers – polymers of diacylglycerols. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 19. Changes in composition of polar materials during frying at 215oC. See 
Figure 18 for abbreviation. 
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4.1.3 Fatty acid composition 

 The fatty acid compositions of the fresh canola oil and the resultant changes 

during the 7-day of frying at 185 and 215oC in Table 9 are presented. A progressive 

decrease in the contributions of major polyunsaturated fatty acids was observed 

throughout the entire frying time. The contribution of linoleic acid (C18:2) decreased 

significantly from 18.9% in the fresh oil to 17.3% during frying at 185oC, and to 15.6% at 

215oC. The deterioration of linolenic acid (C18:3) was more pronounced and showed a 

significant decrease of 24 and 57% at 185 and 215oC, respectively.  

 The amount of trans fatty acids formed during frying increased when temperature 

and time increased (Figures 20 and 21). During frying at 185oC, the contribution of total 

trans fatty acids significantly increased from the initial value of 2.4% to 3.3% at the 7th 

day of frying. Over the same period during frying at 215oC, the amount of trans isomers 

in oil increased 2.5 fold, from 2.4 to 5.9% (Figure 20). Regarding isomerisation of 

individual unsaturated fatty acids, the amount of trans 18:3 significantly increased from 

1.6 to 2.0% during frying at 185oC, and to 2.8% at 215oC. Contribution from trans 18:2 

increased from 0.1% in the initial oil to 0.4 and 1.0% at 185 and 215oC, respectively. The 

formation of trans 18:1 was also statistically significant, increasing from 0.7 to 0.9% at 

185oC, and to 2.0% at 215oC over the 7 days of frying (Figure 21). 

 Analysis of the oxidized short-chain fatty acids as a group revealed a consistent 

increase in the contribution of oxidized fatty acids for the first 5 days of frying at 185oC, 

reaching a maximum at 1.8% (Figure 22). For the oil heated at 215oC, however, a 

considerable increase in the amount of oxidized fatty acids was observed in the first 3 
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days of frying with the maximum at 2.2%. Thereafter, the observed contribution 

decreased for the next 3 days of frying, lowering its contribution to 1.3% (Figure 22). 

 

 

Table 9. Changes in contribution of canola oil fatty acid at different frying temperatures 
 

Frying time (h) Contributiona (relative percentage) 

C16:0 C18:0 C18:1 C18:2 C18:3α 

185
o
C      

0 4.00 ± 0.01 1.82 ± 0.02 60.03 ± 0.72 18.91 ± 0.16 8.40  ± 0.09 

7 4.14 ± 0.03 1.91 ± 0.06 61.15 ± 0.61 18.10 ± 0.10 7.46  ± 0.05 

14 4.22 ± 0.02 2.01 ± 0.03 61.35 ± 0.86 18.01 ± 0.16 7.16  ± 0.13 

21 4.24 ± 0.07 2.01 ± 0.04 61.78 ± 0.64 17.90 ± 0.21 7.11  ± 0.11 

28 4.25 ± 0.08 2.02 ± 0.08 61.96 ± 0.95 17.84 ± 0.21 6.85  ± 0.09 

35 4.27 ± 0.06 2.02 ± 0.03 61.97 ± 0.91 17.85 ± 0.18 6.78  ± 0.08 

42 4.30 ± 0.08 2.02 ± 0.04 61.98 ± 0.84 17.81 ± 0.22 6.56  ± 0.11 

49 4.46 ± 0.05 2.03 ± 0.04 61.98 ± 0.68 17.27 ± 0.17 6.39  ± 0.10 

215
o
C      

7 4.19 ± 0.03 1.93 ± 0.04 61.20 ± 0.78 17.92 ± 0.19 6.79  ± 0.08 

14 4.27 ± 0.05 1.99 ± 0.05 61.77 ± 0.97 17.32 ± 0.17 5.68  ± 0.06 

21 4.34 ± 0.10 2.02 ± 0.03 62.37 ± 1.01 17.03 ± 0.18 5.13  ± 0.08 

28 4.37 ± 0.09 2.04 ± 0.06 62.43 ± 0.77 16.43 ± 0.19 4.47  ± 0.05 

35 4.45 ± 0.11 2.06 ± 0.05 63.16 ± 0.63 16.25 ± 0.17 4.37  ± 0.07 

42 4.61 ± 0.06 2.11 ± 0.06 63.46 ± 0.72 15.90 ± 0.18 3.84  ± 0.05 

49 4.81 ± 0.09 2.18 ± 0.09 63.50 ± 0.98 15.54 ± 0.23 3.59  ± 0.04 

a All values are averages of triplicate analysis 
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Figure 20. Changes in total and linolenic acid trans isomers contributions during 
frying at different temperatures. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21. Changes in oleic and linoleic acid trans isomers contributions during 
frying at different temperatures. 
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Figure 22. Changes in oxidized fatty acids content during frying at different 
temperatures. 

 

 

4.1.4 Anisidine value 

 At the two frying temperatures, the anisidine value was not well-correlated with 

the frying time (Figure 23). The maximum value was achieved at the 3rd day of frying, 

increasing its value from 4.2 in the fresh oil to 129 at 185oC, and to 110 at 215oC.  

Thereafter, a consistent decrease until the end of frying time was observed, with the 

minimum value being at 110 and 79 for frying conducted at 185 and 215oC, respectively 

(Figure 23).  
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Figure 23. Changes in anisidine values during frying at different temperatures 

 

4.1.5 Colour 

 The amount and rate of formation of colour components in the oils increased with 

frying time and frying temperatures. At the end of the 7th day of frying, the absorbance of 

the oil increased from the initial value of 0.001 to 0.397 during frying at 185oC, and to 

0.888 for frying at 215oC. The rate of formation of colour components was 2.2 times 

faster during frying at 215oC compared to frying conducted at 185oC  

(Figure 24). 
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Figure 24. Formation of colour components during frying at  

different temperatures 
 

 

4.1.6 Residual tocopherols 

 The concentration of tocopherols in the frying oils decreased when frying 

temperature and time increased. At the end of the 7th day of frying, the total amounts of 

tocopherols decreased from an initial amount of 561 µg/g in the fresh oil to 175 µg/g 

during frying at 185oC. The entire tocopherols were, however, completely spent at the 

end of 6th day of frying at 215oC. At 185oC frying temperature, γ-tocopherol degraded 

faster than α-tocopherol whereas at 215oC, the order was reversed (Figure 25).  
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Figure 25. Changes in α- and γ-tocopherol isomers during frying at  
different temperatures 
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respectively (Figure 26). At this rate, the oils will attain the 24% TPC discard level 

within 10, 21, and 83 days of frying under SFC, CDB, and VF, respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. Formation of TPC during frying under different conditions 
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at a rate affected by frying protocol. At the end of frying period, 15, 70, and 90% of the 

initial amounts of tocopherols was detected in oils used for frying under SFC, CDB, and 

VF, respectively. The average rate of tocopherol degradation was 82, 17, and 7 µg/g per 

frying day for SFC, CDB, and VF, respectively (Figure 27). 

 

Frying time [days]

0 1 2 3 4 5 6 7

T
o

ta
l 

p
o

la
r 

co
m

p
o

n
en

ts
 [

%
]

0

5

10

15

20

25
Control
CDB
Vacuum

y = 2.36x + 6.73;   r2 = 0.9277 

y = 1.15x + 2.44;   r2 = 0.9781 

y = 0.29x + 3.15;   r2 = 0.9335 



127 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Tocopherol degradation during frying under different conditions 

 

 

4.2.3 Concentrations of HNE in French fries (IV) 

 Irrespective of the frying protocol, HNE concentrations in prepared fries 

increased consistently throughout the entire frying time (Figure 28). At the end of the 
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CDB, respectively (Figure 28). 
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Figure 28. Formation of hydroxynonenal during frying under standard frying    
conditions (control) and carbon dioxide blanketing (CDB) 
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Figure 29.

 Formation of acrylamide during frying under standard frying    
conditions (control) and carbon dioxide blanketing (CDB) 
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presented in Table 11. Solvent extraction with methanol-water resulted in 0, 51, 68 and 

71% recovery when assessed for the following levels of the compound: 0.1, 1, 5 and 10 

µg/g, respectively. The developed procedure offered recovery of 82, 103, 91 and 93%, 

respectively. The most commonly used procedure utilizing DNPH derivatives provided 

accordingly recovery at 0, 72, 80 and 85% for the same concentration of standard.  

 

 

Table 10. Recovery of HNE using different eluants 

HNE added 
(µg/g) 

Recovery (µg/g) 

Methanol 
Methanol + 
Formic acid 

(99.9:0.1, v/v) 
Acetonitrile 

15 mL 20 mL 25 mL 20 mL 20 mL 

5 4.28 ± 0.21 4.54 ± 0.23 4.58 ± 0.14 4.63 ± 0.31 4.38 ± 0.28 

10 8.71 ± 0.35 9.31 ± 0.48 9.25 ± 0.23 9.40 ± 0.57 9.07 ± 0.41 
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Table 11. Recovery of isolated HNE from spiked canola oil samples by different 
methods 

 

Method HNE added 

(µg/g) 

HNE found 

(µg/g) 

HNE recovery 

(%) 

Solvent Extractiona 

0.1 0.00 ± 0.00 0 

1 0.51 ± 0.03 51 

5 3.47 ± 0.19 68 

10 7.09 ± 0.58 71 

HNE-DNPHb 

0.1 0.00 ± 0.00 0 

1 0.72 ± 0.07 72 

5 3.98 ± 0.40 80 

10 8.50 ± 0.88 85 

Developed Method 

 

0.1 0.08 ± 0.00 80 

1 1.03 ± 0.05 103 

5 4.54 ± 0.23 91 

10 9.31 ± 0.48 93 
a Method by Lang et al. (1985); b Method by Seppanen and Csallany (2006) 

 

4.4 Development of a frying test (V) 

 The large number of frying experiments that was required to evaluate the effects 

of minor components on frying performance, and the limited amount of synthesized 

novel antioxidants demanded the development of a reliable and fast fying test to assess 

frying performance in small sized samples of oils (V). Preliminary results showed that 

there was no difference in the amount of total polar compounds formed at the end of 2 h 

of heating with silica gel, alumina and celite as additives (Table 12). Likewise, water 

content of the additives did not lead to an appreciable difference in the amount of TPC, 

although the contribution of diacylglycerides in polar materials increased when the water 
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content increased to 40% (Table 13). Similarly, the amount of TPC increased when the 

surface-to-volume ratio and rate of oil stirring increased (Table 12). 

 

 
Table 12. Effect of selected compounds and parameters on the formation of polar 

components during the frying test 
 

Additives Water 
content 

(%) 

S/V Stirring at (rpm)  

0 400 450 500 600 

Silica gel 

10% 

0.75 14.1±0.9 17.7±1.6 21.1±1.9 27.1±2.0 34.9±3.2 

0.42 10.9±0.7 15.7±0.8 17.8±1.3 22.3±1.9 28.7±1.9 

0.27 7.5±0.5 8.8±0.4 11.9±1.0 13.8±1.1 18.3±1.6 

20% 

0.75 13.3±1.1 18.4±1.1 20.0±1.5 25.2±1.1 32.1±2.4 

0.42 10.3±0.8 14.9±1.3 16.5±1.6 23.9±1.9 31.3±1.9 

0.27 7.5±0.5 9.1±0.8 11.5±0.9 14.1±0.9 17.5±1.5 

40% 

0.75 15.3±1.2 18.2±1.3 21.9±1.8 26.9±1.9 32.9±3.1 

0.42 10.7±0.8 15.2±1.3 17.5±1.5 21.8±2.1 29.1±1.3 

0.27 7.3±0.6 8.9±0.7 12.1±1.1 15.9±1.3 18.0±1.3 

Alumina 

10% 

0.75 13.9±1.3 17.9±1.5 20.1±1.8 26.1±2.0 33.9±2.2 

0.42 11.1±1.0 14.8±1.4 16.1±1.3 22.1±1.9 29.7±2.9 

0.27 7.8±0.4 8.5±0.6 11.6±0.8 15.1±1.7 17.3±1.6 

20% 

0.75 14.8±0.9 17.0±1.5 21.1±1.4 27.7±2.4 32.3±2.9 

0.42 11.0±0.9 15.5±0.9 16.9±1.5 21.2±1.7 28.3±2.1 

0.27 8.6±0.7 9.9±0.7 12.4±0.6 14.3±1.1 17.7±1.7 

40% 

0.75 15.7±1.3 18.0±1.5 20.7±0.8 26.9±2.3 31.5±2.7 

0.42 10.9±0.8 14.9±0.8 16.9±1.4 20.9±1.9 27.1±2.1 

0.27 7.0±0.4 9.2±0.5 11.7±0.9 15.1±0.5 17.7±1.4 

Samples were heated for 2 h at 185 ± 5oC; S/V – Ratio of oil surface area to volume 
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 The effects of various additives on the thermo-oxidative degradation of oil under 

optimized conditions: heating time; stirring rate; surface-to-volume ratio; food-to-oil 

ratio; and water contents are reported in Table 13. At the end of the 2nd h of heating, the 

amount of TPC increased from 3.8% in the fresh oil to 24.5 and 26.7% when CuSO4 and 

FeSO4 was used, respectively. Although, the TPC in oils heated with silica gel and a 

potato starch mixture were only marginally higher compared to the control, the 

composition of different groups of the polar materials was significantly different. 

Generally, oils heated with salts showed a significantly lower amount of residual 

tocopherols (5.1 – 7.3%) compared to samples without salts. The optimal mimicking food 

formulation to reproduce standard frying was found to be a mixture of gelatinized potato 

starch, glucose and silica gel (4:1:1, w/w) (Table 13). 
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Table 13. Formation of polar components and degradation of tocopherols during 
frying and the frying test using canola oil and various formulations 

mimicking food (%) 
 

Componenta TPC Polymer Dimers OxTAG DG RTOC 

Canola oilb 20.8±1.7 6.4±0.4 29.8±1.9 61.2±3.9 2.3±0.2 18.3±2.0 

Silica (10% water) 22.2±2.4 8.8±0.3 33.2±2.4 54.7±3.1 2.4±0.1 14.8±1.2 

Silica (20% water) 22.9±1.9 8.1±0.2 32.9±3.0 56.1±3.7 2.7±0.2 10.9±1.0 

Silica (40% water) 21.8±2.0 7.9±0.4 35.3±2.1 52.2±4.0 3.9±0.2 15.1±1.3 

CuSO4 (50µg/g) 24.5±2.1 6.1±0.5 32.2±2.1 60.1±4.2 1.6±0.1 6.3±0.5 

FeSO4 (50µg/g) 26.7±2.5 6.9±0.2 37.8±3.0 52.5±2.8 1.9±0.1 5.1±0.5 

Silicac + CuSO4 (50µg/g) 24.9±2.3 7.7±0.5 34.1±3.1 55.8±2.1 2.1±0.1 5.8±0.3 

Silicac + FeSO4 (50µg/g) 25.6±2.0 8.1±0.5 38.4±2.5 51.8±3.0 1.7±0.1 7.3±0.4 

Potato starch  22.1±1.9 7.6±0.3 32.1±2.9 57.5±3.3 2.5±0.1 14.1±1.4 

Hydrolyzed starch  20.2±1.8 8.9±0.6 32.0±2.7 56.3±2.7 2.8±0.2 15.2±1.1 

(Starch+glucose+silica)d 23.7±1.5 13.3±0.9 36.4±2.1 44.7±3.0 4.5±0.2 12.0±1.1 

Institutional fryinge 24.9±2.0 15.6±1.2 32.6±1.6 41.1±2.9 9.6±0.4 13.3±0.8 

Testing conditions: temperature 185 ± 5oC; time 2h; the ratio of oil surface to volume at 
0.42. a Apart from the salts, all components were added at 10% of the oil weight. b Canola 
oil heated at the frying test conditions. c Added silica gel containing 40% water. d A 
formulated food containing gelatinized starch, glucose, silica gel and water at 4:1:1:65 
w/w. e Values from the 7th day of actual frying using canola oil.   
 

 

4.5 Influence of minor components on frying stability (VI, VII) 

4.5.1 Isolation, processing, and purification of minor components 

 The amount of respective minor components, and those of the corresponding 

fractions isolated from canola, rice bran, sesame, and palm oils are presented in Table 14.  
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With alumina as adsorbent, separation of 500 g of canola and rice bran oils provided 51.7 

and 56.2 g of minor components, respectively. When 200 g of rice bran, sesame and palm 

oils were extracted with solvent, 9.4, 6.7 and 4.3 g of minor components were obtained, 

respectively (Table 14).  

 Using silica gel as an adsorbent for separation of minor components, 20 g of 

canola oil minor components provided 2.5 and 15.3 g of tocopherol and sterol fractions, 

respectively. The same amount of rice bran oil minor components yielded 1.8 and 14.1 g 

of tocopherol and sterol fractions, respectively. Further purification of the tocopherol 

fraction (1 g) by preparative thin layer chromatography (PTLC) provided 0.16 and 0.31 g 

of tocopherol fractions from canola and rice bran oils, respectively. Similarly, PTLC 

purification of the sterol fraction yielded 0.22 and 0.40 g of canola and rice bran sterol 

fractions, respectively. 

 

Table 14. Amount of non-triacylglycerides isolated from different oils (g) 

Isolated method Oil 

 

Minor  

components 

Tocopherol 

Fraction 

Sterol  

Fraction 

chromatographya 
Canola 51.7 ± 3.8 1.0 ± 0.1 8.7 ± 0.6 

Rice bran 56.2 ± 4.1 1.6 ± 0.1 15.9 ± 1.3 

Solvent 

extractionb 

Rice bran 9.4 ± 0.8 na na 

Sesame 6.7 ± 0.5 na na 

Palm 4.3 ± 0.4 na na 

a Weight of oil used  = 500 g; b Weight of oil used = 200 g; na = not applicable 
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4.5.2 Composition of isolated fractions 

 HPLC indicated that the canola tocopherol fraction (TCAN) was composed of 

3.7% steryl esters, 4.8% triacylglycerols, 2.3% diacylglycerols, 82.2% tocopherols, and 

7.0% other components (Table 15). The composition of the TCAN tocopherol 

homologous mixture was: 27.0, 50.5, and 4.7% α-, γ-, and δ-tocopherols, respectively 

(Figure 30, Table 15). GC analysis of the TCAN fatty acid composition showed that it 

contained 4, 2, 61, 21, and 10% palmitic, stearic, oleic, linoleic, and linolenic acids, 

respectively (Table 16). The tocopherol fraction from rice bran oil (TRBO) consisted of 

7.6, 5.2, 3.7, 79.1, and 4.1% steryl esters, triacylglycerols, diacylglycerols, tocopherols, 

and other components, respectively. The HPLC and HPLC-MS analyses of the TRBO 

showed that it contained 13.9, 1.0, 17.9, 3.5, 8.4, 31.7, and 2.8% α-tocopherol, β-

tocopherol, γ-tocopherol, δ-tocopherol, α-tocotrienol, γ-tocotrienol, and δ-tocotrienol, 

respectively (Figure 31, Table 15). The fatty acid composition of TRBO was typical of 

rice bran oil, being 11, 2, 50, 33, and 2% palmitic, stearic, oleic, linoleic, and linolenic 

acids, respectively (Table 16).  

 As analyzed by HPLC, minor components isolated from rice bran oil by solvent 

extraction (RBOS) were composed of 7.4% steryl esters, 12.5% triacylglycerols, 5.6% 

diacyglycerols, 1.4% free fatty acids, 13.9% tocopherols, 43.3% sterols, 10.5%  

γ-oryzanol, and 5.4% other components (Table 15). The major components of the  

γ-oryzanol in RBOS were identified as cycloartenyl ferulate, 24-methylenecycloartenyl 

ferulate, stigmasteryl ferulate, campesteryl ferulate, sitosteryl ferulate, and sitostanyl 

ferulate (Figure 32). GC analysis of RBOS fatty acid methyl esters (FAMEs) showed 

that it contained 7, 2, 44, 43, and 3% palmitic, stearic, oleic, linoleic, and linolenic acids, 
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respectively (Table 16). The minor components from palm oil, POS consisted of 3.8% 

steryl esters, 18.9% triacylglycerols, 9.5% diacylglycerols, 1.6% monoacylglycerols, 

2.7% free fatty acids, 28.5% tocopherols, 20.9% sterols, 2.7% carotenoids, and 11.4% 

other components (Table 15). POS tocopherol homologous mixture consisted of 2.5, 4.9, 

6.0, 9.7, and 5.4% α-tocopherol, δ-tocopherol, α-tocotrienol, γ-tocotrienol, and  

δ-tocotrienol, respectively. Campesterol and β-sitosterol were the major sterols detected 

in POS, accounting for 17.9 and 81.2% of the total sterols, respectively (Table 15). POS 

contained 33, 3, 44, 15, and 1% palmitic, stearic, oleic, linoleic, and linolenic acids, 

respectively, compared to 43, 4, 41, 10, and 0% respective amounts in the original palm 

oil (Table 16). 
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Figure 15. Composition of endogenous minor components isolated  
from canola, rice bran and palm oils 

  

Components Concentration (mg/g) 

TCAN TRBO SCAN SRBO RBOS POS 

α-tocopherol 269.8±19 139.1±11 ND ND 18.1±1.5 25.4±2.3 

β-tocopherol ND 9.8±0.5 ND ND 0.4±0.1 ND 

γ-tocopherol 505.1±39 178.9±11 ND ND 37.2±1.4 ND 

δ-tocopherol 47.3±3 34.5±2.5 ND ND 10.7±0.4 48.6±1.9 

α-tocotrienol ND 83.5±4.4 ND ND 17.5±1.6 59.8±4.3 

β-tocotrienol ND ND ND ND ND ND 

γ-tocotrienol ND 317.4±24 ND ND 51.8±5.0 97.4±5.4 

δ-tocotrienol ND 27.9±2.1 ND ND 3.6±0.2 53.8±3.7 

TOTAL 822.2±57 791.1±40   139.3±7.2 285.0±15 

Brassicasterol 4.9±0.3 ND 115.0±9.3 ND ND ND 

Campesterol 11.9±1.0 7.9±0.4 264.1±16 143.5±10 63.8±4.1 44.7±2.3 

Stigmasterol 1.8±0.1 6.0±0.4 14.5±1.2 157.2±11 78.1±4.9 1.5±0.1 

β-Sitosterol 16.0±1.2 29.1±1.3 488.5±38 476.2±24 262.3±18 202.8±12 

∆5-Avenasterol 1.9±0.1 3.3±0.2 10.3±0.7 10.8±0.6 13.5±0.9 0.6±0.1 

∆7-Avenasterol ND 3.5±0.2 5.1±0.6 17.5±1.4 16.0±1.3 ND 

24-MCAa ND 7.5±0.6 ND 22.9±2.1 27.5±1.8 ND 

Cycloartenol ND 6.7±0.5 ND 8.3±0.6 10.4±0.8 ND 

Citrostadienol ND 7.5±0.3 ND 18.0±1.3 15.6±1.2 ND 

Unknown  4.9±0.3  8.2±0.5 10.7±0.9  

TOTAL 36.5±2.1 76.4±3.7 897.5±70 862.6±51 497.9±30 249.3±12 

Total γ-Oryzanol ND ND ND ND 105.4±7.4 ND 

Total Carotenoids ND ND ND ND ND 27.3±1.8 

Triacylglycerols 48.3±3.9 51.6±3.3 ND ND 125.1±12 186.8±19 

Diacyglycerols 23.1±1.8 37.4±2.4 13.9±1.0 20.9±3.2 56.4±4.5 94.6±8.1 

Monoacyglycerols ND ND 1.1±0.1 5.9±0.3 8.5±3.2 15.8±2.7 

Free fatty acids ND 2.8±0.2 6.3±0.6 8.7±1.1 13.9±1.4 27.2±1.9 

Others 69.9±5.4 40.7±2.6 81.2±4.7 101.9±8.4 53.5±4.8 114.0±11 
 a Methylenecycloartanol; ND – not detected. See text for abbreviation.  
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Table 16. Fatty acid composition of isolated minor components used in the study 
 
 

Minor 

components 

Fatty acids [mg / 100 mg] 

C16:0 C18:0 C18:1 C18:2 C18:3 

TCAN 4.01 ± 0.10 2.11 ± 0.07 60.69 ± 1.23 20.91 ± 0.94 10.21 ± 0.09 

TRBO 11.41 ± 0.41 2.42 ± 0.04 49.80 ± 2.21 33.27 ± 1.01 2.05 ± 0.07 

RBOS 7.84 ± 0.32 1.81 ± 0.08 43.72 ± 1.51 43.12 ± 1.12 3.32 ± 0.06 

POS 32.89 ± 1.12 2.83 ± 0.10 43.93 ± 1.83 14.80 ± 0.19 1.33 ± 0.02 

Canola oil 4.21 ± 0.20 2.18 ± 0.06 63.11 ± 2.01 18.24 ± 0.51 9.01 ± 0.18 

Rice bran oil 13.78 ± 0.48 2.07 ± 0.05 41.90 ± 1.81 37.12 ± 1.22 2.11 ± 0.09 

Palm oil 42.52 ± 1.77 4.11 ± 0.10 40.83 ± 1.12 9.58 ± 0.11 0.43 ± 0.01 
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Figure 30. Chromatogram of tocopherols fraction isolated from canola oil (TCAN). 
See text for HPLC conditions. a – α-tocopherol; b – γ-tocopherol;  

c – plastochromanol; d – δ-tocopherol 
 

 

 

 

  

 

 
 
 
 
 
 
 
 

Figure 31. Chromatogram of tocopherols fraction isolated from rice bran oil (TRBO). 
See text for HPLC conditions. a – α-tocopherol; b – α-tocotrienol;  

c – β-tocopherol; d – γ-tocopherol; e – γ-tocotrienol;  
f – δ-tocopherol; g – δ-tocotrienol 
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Figure 32. Chromatogram of γ-oryzanols isolated by solvent extraction from rice bran 
oil. Retention time (min) 13.84 – Cycloartenyl ferulate; 19.65 – 24-

Methylenecycloartenyl ferulate; 21.29 – Stigmasteryl ferulate; 23.36 – 
Campesteryl ferulate; 28.37 – Sitosteryl ferulate; 30.76 – Sitostanyl 

ferulate. See text for HPLC conditions. 
 

  

4.5.3 Formation of polar components, volatile carbonyl compounds and 

hydroxynonenal (VI, VII) 

 In Figures 33 – 35, the effects of endogenous minor components on the TAG 

degradation as described by amount of total polar components (TPC) are presented. At 

the end of the frying test, the amount of TPC was at 24.3% in pure TAG, compared to 

17.5, 18.0, 14.2, 13.8, 14.2, 14.5, 18.4, 9.9, and 10.5% in TAG containing TCAN, TRBO, 

SCAN, SRBO, RBOS, SOS, POS, PC and PE, respectively. Both SCAN and SRBO 

resulted in a significant reduction in the amount of TPC when applied at 3000 µg/g, 
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whereas only SRBO was effective when applied at 500 µg/g (Figure 33). At the end of 

the frying test, the amount of TPC was 18.4, 18.0, and 17.4% in TAG when 

supplemented with the following tocopherol homologous mixture: 450α + 450γ + 100δ; 

450α + 100γ + 450δ; and 100α + 450γ + 450δ µg/g, respectively (Figure 36). Irrespective 

of the composition of the homologous mixture, increasing the concentration of 

tocopherols above 1000 µg/g did not result in further reduction in the amount of TPC at 

the end of the frying test (Figure 36). Similarly, the amount of TPC was at 15.9, 16.8, 

15.4, 17.0, 17.8, and 18.8% when TAG were fortified with ethyl ferulate (EF), caffeic 

acid (CA), dihydrocaffeic acid (HCA), ferulic acid (FA), gallic acid (GA), and vanillic 

acid (VA), respectively (Figure 37).    
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Figure 33. Formation of polar components during test frying of antioxidant-free 
canola triacylglycerols containing different amounts of tocopherol and 

sterol fractions isolated from canola and rice bran oils.  
See text for abbreviations 
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Figure 34. Formation of polar components during test frying of antioxidant-free 
canola triacylglycerols containing 5000 µg/g of endogenous minor 
components isolated from different oils. See text for abbreviations. 
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Figure 35. Formation of polar components during test frying of antioxidant-free 
canola triacylglycerols containing different amounts of 

phosphatidylcholine and phosphatidylethanolamine.  
See text for abbreviations 
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Figure 36. Formation of polar components during test frying of antioxidant-free 
canola triacylglycerols containing different combinations and amounts 

of tocopherol isomers. Tocopherol concentrations are in µg/g. 
See text for abbreviations 
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Figure 37. Formation of polar components during test frying of antioxidant-free 
canola triacylglycerols containing different phenolic acids and minor 

components isolated from canola oil. Phenolic acid concentrations - 500 
µg/g; SCAN – 3000 µg/g; TCAN – 1000 µg/g. 

See text for abbreviations 
 

 

 

C
h

a
n

g
e
 i

n
 t

o
ta

l 
p

o
la

r
 c

o
m

p
o

n
e
n

ts
 [

%
]

0

2

4

6

8

10

12

14

16

18

20

22

24
TAG
HCA 
CA 
GA 
VA 
EF 

Heating time [min]

0 20 40 60 80 100 120

0

2

4

6

8

10

12

14

16

18 FA 
SCAN
TCAN
FA + SCAN
CA + SCAN
FA + TCAN



148 

 

 In Table 17, the rate of emission of volatile carbonyl compounds (VCC) formed 

during frying in TAGs with and without endogenous minor components are presented. At 

the end of the frying test, the rates of emission of volatile carbonyl compounds from pure 

TAG and TAG fortified with TCAN, TRBO, SRBO, SCAN, POS, RBOS, and SOS were 

426, 190, 210, 178, 190, 226, 159, and 180 µg/g/h, respectively. Within the same period, 

the rate of VCC emission was 122 and 138 µg/g/h for TAG supplemented with 

phosphatidylethanolamine (PE) and phosphatidylcholine (PC), respectively (Table 17). 

Compared to pure TAG, the rate of emission of VCC was reduced by 42, 58, 54, 52, 57, 

and 56% when the CTG was supplemented with vanillic acid (VA), ethyl ferulate (EF), 

gallic acid (GA), ferulic acid (FA), caffeic acid (CA), and dihydrocaffeic acid (HCA), 

respectively (Table 17). The VCC profile was independent of the composition of 

tocopherol isomers, sterols and the type of phenolic acids present in the mixture; in all 

cases, propanal was the most abundant volatile carbonyl compound, followed by 2-

propenal and pentanal (Table 17).  
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Table 17. Rate of volatile carbonyl compounds emission (µg/g/h) during test 
frying with antioxidant-free canola triacylglycerols fortified with 

various minor components 

 

VCC TAG 

22
5α

+
22

5γ
+

50
δ 

45
0α

+
45

0γ
+

10
0δ

 

45
0α

+
10

0γ
+

45
0δ

 

10
0α

+
45

0γ
+

45
0δ

 

90
0α

+
90

0γ
+

20
0δ

 

90
0α

+
20

0γ
+

90
0δ

 

20
0α

+
90

0γ
+

90
0δ

 

Ethanal  20.1b 21.4b 13.2e 15.8cd 15.1c 19.2b 22.1b 19.9b 

Propanal 257.0b 137.0d 96.9c 101.2c 102.0cf 125.1e 124.0e 99.9c 

2-propenal 40.9b 33.6c 19.7df 24.3e 23.9e 33.1c 36.1c 21.7f 

2-butenal 0.3b 0.3b 0.1c 0.1c 0.2d 0.1c 0.1c 0.2d 

Butanal 1.0bd 1.0b 0.9d 1.1b 1.3e 1.1b 1.0b 0.7cd 

2-pentenal 15.4b 8.9c 6.2de 6.8d 7.0cd 7.6cd 7.0cd 7.2cd 

Pentanal 39.2b 30.0df 29.4d 30.1df 34.0e 42.6b 33.4e 30.1df 

2-hexenal 3.9b 2.1d 1.1e 1.1e 1.4c 1.8f 1.7f 1.3c 

Hexanal 20.6b 14.9d 9.6c 10.1cg 10.9cg 15.8d 10.3cg 10.0c 

2,4-heptadienal 1.6 b 0.8 d 0.6ce 0.7 e 0.6ce 0.9d 0.5c 0.6ce 

2-heptenal 2.2b 1.1c 0.9de 1.0cd 1.0cd 1.4f 1.0cd 1.1cd 

Heptanal 4.2b 1.9d 1.6c 1.8d 1.9d 2.6e 1.8d 1.8d 

2-octenal 0.3b 0.2c 0.4d 0.2e 0.2e 0.8f 0.3b 0.3b 

2,4-nonadienal 0.1b 0.1b 0.0c 0.1b 0.1b 0.1b 0.0c 0.1b 

Octanal 1.9b 1.7de 1.8e 1.8e 1.6cd 2.9f 1.5cg 1.6cd 

2-nonenal 0.4b 0.6df 0.6df 0.7d 0.4b 1.1e 0.7d 0.4b 

Nonanal 15.1b 8.9d 5.9c 7.1eg 10.1f 10.3f 7.8e 6.7g 

2,4-decadienal 0.6b 0.5b 0.3e 0.2c 0.2c 0.5b 0.2c 0.3e 

2-decenal 0.5b 0.2d 0.4e 0.4e 0.3c 0.4e 0.4e 0.4e 

Decanal 0.2b 0.2b 0.1c 0.1c 0.1c 0.2b 0.1c 0.1c 

undecenal 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 

Unidentified 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 

Total Carbonyl 425.7b 265.8d 189.9c 204.9ce 212.6eh 267.8d 250.2d 204.7ce 
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Table 17 cont’d 
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00
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P
C

 (
20

00
 µ

g/
g)

 

P
E

 (
20

00
 µ

g/
g)

 

Ethanal  12.1e 17.4d 13.2e 15.0c 15.8cd 16.0cd 8.8f 7.1g 

Propanal 80.1gh 110.4f 99.7c 91.8c 111.9f 93.9c 74.7hi 68.2i 

2-propenal 19.9df 30.1c 17.7g 14.3h 20.0df 19.2dg 14.0h 12.2i 

2-butenal 0.1c 0.3b 0.2d 0.1c 0.2d 0.1c 0.2d 0.3b 

Butanal 1.0b 1.1b 0.9b 1.1b 0.8d 1.1b 0.8d 0.9bd 

2-pentenal 6.7df 6.9df 6.4d 6.2d 6.1de 5.8e 4.7g 3.3h 

Pentanal 22.6g 33.7e 27.6cf 27.0cf 28.9f 29.3f 18.1h 15.6i 

2-hexenal 1.3c 1.2e 1.4c 1.2e 2.0d 1.1e 1.1e 1.3c 

Hexanal 5.5f 11.1g 9.8c 9.0c 10.0c 8.4e 6.8fh 5.7f 

2,4-heptadienal 0.4f 0.5c 0.6ce 0.7e 0.6ce 0.6ce 0.4f 0.4f 

2-heptenal 0.8e 1.0cd 1.1d 0.9de 1.1cd 0.8e 0.8e 0.8e 

Heptanal 1.5f 1.8d 1.5cf 1.1g 1.7cd 1.8d 1.4ef 1.1g 

2-octenal 0.3b 0.4d 0.3b 0.3b 0.2e 0.3b 0.2c 0.2c 

2,4-nonadienal 0.0c 0.1b 0.0c 0.1b 0.1b 0.1b 0.0c 0.0c 

Octanal 1.4g 1.6cd 1.5cg 1.2h 1.5cg 1.6cd 1.2h 1.0i 

2-nonenal 0.4b 0.5f 0.4b 0.4b 1.1e 0.5f 0.1g 0.1g 

Nonanal 3.8h 7.4eg 6.7g 7.3eg 7.1eg 7.8e 3.8h 3.1j 

2,4-decadienal 0.2b 0.2b 0.2b 0.1c 0.4d 0.4d 0.2b 0.2b 

2-decenal 0.3c 0.3c 0.3c 0.2d 0.3c 0.4e 0.2d 0.2d 

Decanal 0.1c 0.1c 0.1c 0.0d 0.2b 0.2b 0.0d 0.0d 

undecenal 0.1b 0.1b 0.1b 0.1b 0.1b  0.1b 0.1b  0.1b 

Total Carbonyls 158.8f 226.2g 189.7c 178.1cf 210.1ce  189.5c 137.6i 121.5j 
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Table 17 cont’d 

Values with the same superscript in the same row are not significantly different at  
p < 0.05. See text for abbreviations 
 

 

 

VCC 
SOS 

0.5% 
VA EF GA FA CA HCA SC TC 

Ethanal  15.3c 18.6bd 15.0c 19.2bd 18.9bd 17.6de 16.3ce 13.2f 16.0ce 

Propanal 93.1c 127.1d 91.9eh 101.8cf 107.2cf 97.1ch 94.8ce 99.4ch 93.9ce 

2-propenal 18.1dg 30.6c 14.3h 17.1ef 20.1d 16.2ef 16.1ef 17.7e 19.2de 

2-butenal 0.1c 0.3b 0.1c 0.1c 0.2d 0.2d 0.1c 0.2d 0.1c 

Butanal 0.9bd 1.1b 1.1b 1.0b 1.1b 0.7c 0.9d 0.9d 1.1b 

2-pentenal 6.8df 8.6c 6.2d 7.2f 6.1de 5.5e 5.8de 6.4d 5.8de 

Pentanal 24.5cg 31.0d 27.0c 27.0c 25.5ce 25.0ce 24.5ce 27.6ce 29.3cd 

2-hexenal 1.1e 2.1c 1.2d 1.4e 1.7f 1.3de 1.2d 1.4e 1.1dg 

Hexanal 6.2f 13.1c 9.0dg 10.9e 9.0dg 8.1g 7.2f 9.8d 8.4g 

2,4heptadienal 0.4f 0.8 c 0.7d 0.7d 0.7d 0.7d 0.4e 0.6f 0.6f 

2-heptenal 0.8e 1.1c 0.9d 0.9d 0.6e 0.8f 0.8f 1.1c 0.8f 

Heptanal 1.4ef 1.9c 1.1d 1.1d 1.4e 1.1d 1.4ef 1.5f 1.8cg 

2-octenal 0.3b 0.2c 0.3b 0.3b 0.3b 0.3b 0.3b 0.3b 0.3b 

2,4nonadienal 0.0c 0.1b 0.1b 0.0c 0.1b 0.1b 0.1b 0.1b 0.1b 

Octanal 1.3gh 1.7c 1.2d 1.2d 1.3d 1.2d 1.3d 1.5e 1.6e 

2-nonenal 0.4b 0.6c 0.4b 0.4b 0.5d 0.4b 0.4d 0.5d 0.5d 

Nonanal 4.0h 9.1c 7.8d 6.3eg 7.9d 6.3eg 5.7e 6.7g 7.8d 

2,4decadienal 0.2b 0.3c 0.1d 0.1d 0.1d 0.2e 0.2e 0.2e 0.4f 

2-decenal 0.2c 0.2c 0.2c 0.2c 0.3d 0.2c 0.2c 0.3d 0.4e 

Decanal 0.1c 0.2b 0.0c 0.1d 0.1d 0.1d 0.1d 0.1d 0.2b 

Undecenal 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 

Total  175.5cf 248.9d 178.8cf 197.2e 203.2ce 183.3c 178.0cf 189.7ce 189.5ce 
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 All the phenolic acids significantly reduced the amount of HNE formed during the 

frying test. At the end of the frying test the following amounts of HNE were found: 11.2 

µg/g for pure TAG; 5.9, 7.1, 6.0, 5.7, 6.0, and 6.3 µg/g while TAG were supplemented 

with EF, VA, CA, HCA, FA, and GA, respectively (Figure 38). Thus, the amount of 

HNE found in TAG fortified with VA was significantly higher than those detected in 

TAG containing any of the other phenolic acids. However, effects of FA, CA, EF, HCA 

and GA were not significantly different. TAG containing tocopherol homologous 

mixtures contained significantly lower amount of HNE compared to pure TAG (Figure 

38). At the end of the frying test, the amount of HNE accumulated in TAG without 

tocopherols was at 11.7 µg/g, compared to a maximum of 6.2 µg/g in TAG fortified with 

combination of tocopherol isomers. However, different tocopherol homologous mixtures 

affected HNE formation in the same manner (Figure 38). Compared to pure TAG, the 

rate of HNE formation was reduced by 64, 48, 57, 57, and 51% in TAG supplemented 

with RBOS, POS, SRBO, SCAN, and TCAN, respectively (Figure 39).  
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Figure 38. Formation of hydroxynonenal during test frying of antioxidant-free 
canola triacylglycerols containing different phenolic acids and minor 

components isolated from canola oil. Phenolic acid concentrations - 500 
µg/g; SCAN – 3000 µg/g; TCAN – 1000 µg/g. 

See text for abbreviations 
 

 

 

 

H
y

d
r
o

x
y

n
o

n
e
n

a
l 

[ µµ µµ
g

/g
]

0

1

2

3

4

5

6

7

8

9

10

11

12

TAG
HCA 
CA 
GA 
VA 
EF 

Heating time [min]

0 20 40 60 80 100 120

0

1

2

3

4

5

6 FA 
SC
TC
FA + SCAN
CA + SCAN
FA + TCAN



154 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39. Formation of HNE during test frying in canola triacylglycerols 
containing the following additives: POS, RBOS at 5000 µg/g; SCAN,  
SRBO at 3000 µg/g; TCAN at 1000 µg/g. See text for abbreviations. 

 

 

4.6 Novel antioxidants (VIII – X) 

4.6.1 Synthesis 

 In Table 18, the physical descriptions, melting point and experimental yields of 

the synthesized antioxidants are presented. The calculated molecular mass agreed very 

well with the mass established by mass spectroscopy (Table 18). The 1H and 13C NMR 
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data for the novel antioxidants and their precursors are presented in the corresponding 

published/accepted manuscripts (VIII – X). 

 

 

Table 18. Some characteristics of the synthesized antioxidants 

Antioxidant Description Mp (oC) Yield 
(%) 

[M + H]+ Rotamers 
ratio Calculate

d 
Found 

1a  white solids 139 – 140  90 357.1697 357.1696 NA 

1b  white solids 171 – 172  70 387.1802 387.1781 NA 

1c  white solids 144 – 145  81 417.1908 417.1902 NA 

1d  white solids 182 – 183  76 373.1646 373.1663 NA 

1e  white solids 212 – 213  77 389.1595 389.1580 NA 

2a  colourless oil NA 78 415.2115 415.2117 NA 

2b colourless oil NA 83 445.2221 445.2208 NA 

2c colourless oil NA 80 401.1959 401.1939 NA 

3  white solids 79 – 81 57 469.2585 469.2587 55:45 

3a colourless oil NA 58 314.1751 314.1754 55:45 

3b  yellow oil NA 68 356.2220 356.2231 55:45 

3c  yellow oil NA 56 412.2846 412.2854 57:43 

3d white solids 62 – 64 64 330.1700 330.1706 55:45 

3e  green oil NA 55 375.2169 372.2168 55:45 

3f yellow oil NA 47 428.2795 428.2785 60:40 

3g  white solids 59 – 61 60 360.1805 360.1805 59:41 

3h  orange oil NA 56 402.2275 402.2286 60:40 

3i  orange oil NA 53 458.2901 458.2907 60:40 

3j  white solids 60 – 62 54 390.1911 390.1909 57:43 

3k  orange oil NA 54 432.2381 432.2378 59:41 

3L  orange oil NA 61 488.3007 488.3020 60:40 

NA = Not Applicable; Mp = Melting point 
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4.6.2 Antioxidant evaluation under storage conditions (VIII – IX) 

 The ability of the novel antioxidants to protect polyunsaturated oil from 

oxidation was determined utilizing Schaal oven test. All the novel antioxidants 

significantly inhibited TAG oxidative degradation under accelerated storage conditions 

(Figure 40 – 42). After 5 days of storage, peroxide value of TAG was at 111 meq/kg, 

whereas for TAG fortified with antioxidants 1a – 3L were between 5.7 – 44.4 meq/kg. 

No significant difference (P ≥ 0.12) was observed in the protective capacities of novel 

antioxidants 1a (44.4 meq/kg), 1b (41.0 meq/kg), 1c (40.1 meq/kg), 1d (39.4 meq/kg), 2a 

(39.9 meq/kg), 2b (39.3 meq/kg) and α-tocopherol (45.6 meq/kg), whereas antioxidants 

1e (9.4 meq/kg), 2c (15.9 meq/kg), 3 (14.0 meq/kg), and 3a – 3L (5.3 – 8.9 meq/kg) were 

significantly more efficient (P ≤ 0.001) than α-tocopherol (Figure 40 – 42). Compared to 

BHT (8.9 meq/kg), the following antioxidants: 3g (6.8 meq/kg), 3h (6.8 meq/kg), 3i (7.0 

meq/kg), 3j (5.3 meq/kg), 3k (5.6 meq/kg), and 3L (5.7 meq/kg) were significantly more 

effective at protecting TAG under accelerated storage conditions. The dihydrocaffeic acid 

amides, 3a – 3L (X) were significantly more efficient than the trolox derivatives 1a – 1e, 

2a – 2c, and 3 (VIII, IX). 

 

 

 

 

 

 

 



157 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40.         Changes in peroxide formation during the storage of canola 
                                     triacylglycerols with antioxidants 1a – 1e added at 300 µg/g. 
 

 

 

 

 

 

 

 

 

 

Figure 41. Changes in peroxide formation during the storage of canola 
          triacylglycerols with antioxidants 2a – 2c, 3 added at 300 µg/g. 
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Figure 42. Changes in peroxide formation during the storage of canola 
                             triacylglycerols with antioxidants 3a – 3L added at 300 µg/g. 

                               DCA – dihydrocaffeic acid; BHT – butylated hydroxytoluene;  
                              α-T – α-tocopherols. See text for abbreviations. 
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4.6.3 Antioxidant evaluation under frying conditions 

 The effectiveness of the novel antioxidants to protect TAG from thermo-

oxidative degradation was evaluated under frying conditions using the frying test 

developed in this study. All the novel antioxidants significantly protected TAG against 

thermo-oxidative degradation (Figure 43 – 45). At the end of the frying test, the amount 

of total polar compounds accumulated in pure TAG was 25.7%, while the amounts 

accumulated in TAG fortified with the new antioxidants ranged from 14.6% to 18.6%. 

Furthermore, the novel antioxidants were significantly better (P ≤ 0.004) at protecting 

TAG during frying than α-tocopherol and BHT, the natural and synthetic reference 

antioxidants, respectively. No significant difference was observed, however, in the 

protective capacities of the following novel antioxidants: 1d (17.3%), 2b (17.8%), 3d 

(17.0%), 3e (17.0%), 3f (16.8%), 3g (17.9%), 3h (17.8%), 3i (16.9%), 3j (17.1%), 3k 

(16.9%), and 3L (17.5%). Among the novel antioxidants, compounds 1e (16.0%), 2c 

(15.8%), 3a (15.0%), 3b (14.7%), and 3c (14.6%) were the most effective. 
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Figure 43. Formation of polar components during test frying of canola 
                             triacylglycerols containing antioxidants 1a – 1e added at 500 µg/g. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 44. Formation of polar components during test frying of canola 
                             triacylglycerols containing antioxidants 2a – 2c and 3 added at 500 

µg/g. See text for abbreviations. 
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Figure 45. Formation of polar components during test frying of canola 
                             triacylglycerols containing antioxidants 3a – 3L added at 500 µg/g. 

                               DCA – dihydrocaffeic acid; BHT – butylated hydroxytoluene;  
                              α-T – α-tocopherols. See text for abbreviations. 
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  4.6.4 Antioxidant stability 

 The amounts of antioxidant retained in the oil at the end of the accelerated 

storage and frying tests were analyzed as a measure of their stability. All the novel 

antioxidants exhibited significantly higher thermal stability (P ≤ 0.001) than α-tocopherol 

and BHT (Figures 46 – 51). At the end of the 5th day of storage, 35 and 49% of 

tocopherol and BHT, respectively remained in the TAG, while the amounts of novel 

antioxidants retained ranged from 60% to 75%. BHT and α-tocopherol were completely 

depleted at the end of the frying period, whereas up to 28% of the novel antioxidants still 

remained. 

 

 

 

 

 

 

 

 

 

 

 

Figure 46. Percentage of remaining antioxidant during the accelerated storage of    
                                  canola  triacylglycerols containing α-tocopherols and antioxidants      

                        1a – 1e added at 300 µg/g. See text for abbreviations 
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Figure 47. Percentage of remaining antioxidant during test frying of    
                                  canola  triacylglycerols containing α-tocopherols and antioxidants      

                        1a – 1e added at 500 µg/g. See text for abbreviations 
 

 

 

 

 

 

 

 

 

 

 
Figure 48. Percentage of remaining antioxidant during the accelerated storage of    
         canola  triacylglycerols containing α-tocopherols, antioxidants 2a – 2c 

and 3 added at 300 µg/g. See text for abbreviations 
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Figure 49. Percentage of remaining antioxidant during test frying of    
                               canola  triacylglycerols containing α-tocopherols, antioxidants  

              2a – 2c and 3 added at 500 µg/g. See text for abbreviations 
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Figure 50. Percentage of remaining antioxidant during the accelerated storage of    
                           canola  triacylglycerols containing antioxidants 3a – 3L added at 300 

µg/g. See text for abbreviations. 
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Figure 51. Percentage of remaining antioxidant during test frying of    
                               canola  triacylglycerols containing antioxidants 3a – 3L 

      added at 500 µg/g. See text for abbreviations. 
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4.7 Formulation of antioxidants to enhance frying stability 

To design frying oil with improved frying stability, combinations of the best 

performing natural endogenous minor components (VI: PC and RBOS) and synthetic 

antioxidants (VIII – X: Compounds 1e, 3a, 3) were formulated. The formulated 

antioxidants were added to refined, bleached and deodorized canola oil, as opposed to 

purified triacylglycerols (TAG) which was used during the preliminary investigations (VI 

– X). The amount of TPC formed at the end of the 2 h test frying in canola oil, and the 

fortified canola oil in Figure 52 is presented. Canola oil containing the synthetic 

dihydrocaffeic acid amide antioxidant (X: 3a) showed the lowest amount of TPC among 

the tested synthetic antioxidants, although the result was not significantly different from 

the sample containing the di-chromanol antioxidant (IX: 3). On the other hand, the 

synthetic gallic acid derivative (VIII: 1e) offered no additional stability compared to 

canola oil without added antioxidants. Furthermore, several combinations of the synthetic 

antioxidants offered no synergistic advantage over individual antioxidants 3a and 3 

(Figure 52). Compared to canola oil alone, the amount of TPC was reduced by 2, 14, 16, 

11, 15, 7, and 13% when synthetic antioxidants 1e, 3, 3a, 3+1e, 3+3a, 3a+1e, and 

3+3a+1e were applied, respectively.    

At the end of the frying test, canola oil fortified with solvent-extracted minor 

components from rice bran oil (VI: RBOS) and phosphatidylcholine (VI: PC) showed no 

significant difference in TPC values at 15.7 and 16.1%, respectively; however, the TPC 

in the sample containing a mixture of PC and RBOS was significantly lower (P ≤ 0.04). 

Canola oil fortified with the quaternary mixture containing PC, RBOS, 3, and 3a, or the 

ternary mixture consisting of PC, RBOS, and 3a offered the lowest level of TPC at 
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13.7% among all the tested combinations. No significant difference (P > 0.05) was 

observed, however, between these antioxidant mixtures and the binary systems consisting 

of PC and RBOS (14.0%) and PC and 3a (14.3%). Generally, antioxidant combinations 

containing compound 1e showed higher TPC values compared to combination of 

antioxidants containing 3 or 3a. At the end of the frying test, the amount of TPC in 

canola sample was 19.1%, compared to 16.3, 15.5, 15.6, 15.3, 14.3, and 15.7% in canola 

oil fortified with RBOS+1e, RBOS+3, RBOS+3a, PC+3, PC+3a, and PC+1e, 

respectively (Figure 52) 
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Figure 52. Formation of polar components during test frying in canola oil 
containing different combination of antioxidants: PC at 1000 µg/g; 

RBOS at 5000 µg/g; 1e, 3, 3a, at 350 µg/g. See text for abbreviations. 
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4.8 Effects of formulated antioxidants during actual frying 

4.8.1 Total polar components 

 As shown in Figure 52, antioxidant mixtures: (1) PC+RBOS+3+3a; (2) 

PC+RBOS+3a; (3) PC+RBOS; and (4) PC+3a, were the most effective among the 

possible other combinations of the best performing individual natural and synthetic 

antioxidants, namely, 1e, 3, 3a, PC, and RBOS. Although the developed frying test 

offered a reliable prediction of frying performance (V), actual frying still remains the 

most reliable method for assessing frying stability of oils and accordingly, the 

effectiveness of one of the most promising formulation of antioxidants (FA) was tested. 

In Figure 53 is presented the total amount of polar compounds formed during a 6-day 

frying in control canola oil and oil containing the formulated antioxidant PC+3a. At the 

end of the frying period the TPC formed in canola oil was 34.1% compared to 20.2% 

found in fortified canola oil. Compared to fortified canola oil, the rate of total polar 

compounds formation was 1.7 times higher in control oil (Figure 53). 
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Figure 53.  Formation of polar components during frying in canola oil fortified 
with formulated antioxidant, PC+3a (PC, 1000 µg/g; 3a, 350 µg/g).  

FA - formulated antioxidant. See text for abbreviations. 
 

 

4.8.2 Anisidine value 
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higher than in fortified canola oil.  
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Figure 54. Changes in anisidine values during frying in canola oil fortified with 

formulated antioxidant, PC+3a (PC, 1000 µg/g; 3a, 350 µg/g).  
FA - formulated antioxidant. See text for abbreviations. 
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Figure 55. Pigments formation during frying in canola oil fortified with formulated 
antioxidant, PC+3a (PC, 1000 µg/g; 3a, 350 µg/g). FA - formulated 

antioxidant. See text for abbreviations. 
 

 

4.8.4 Changes in fatty acids composition 

 Table 19 shows the changes in the composition of major fatty acids during 

frying in canola oil and the fortified canola oil. In unfortified canola oil, the amount of 

linoleic acid decreased from 18.3 mg/100 mg in the fresh oil to 14.6 mg/100 mg at the 

end of the 6-day frying. Within the same period, the amount of linolenic acid decreased 

from 9.0 to 4.9 mg/100 mg. The decrease in linoleic and linolenic acids in fortified canola 

oil was significantly less pronounced: At the end of the frying, the amount of linoleic and 

linolenic acids decreased from 18.4 and 9.1 mg/100 mg in the fresh oil to 16.2 and 6.4 

mg/100 mg, respectively. At the end of the 6th day of frying, the ratio of linoleic acid to 

palmitic acid (C18:2/C16:0) decreased from 4.7 to 3.7 and 4.2 in canola and fortified canola 
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oils, respectively (Figure 56). The decrease in the ratio of linolenic acid to palmitic acid 

(C18:3/C16:0) was more pronounced, and was 1.4 times greater during frying in canola oil 

as compared to fortified canola oil.   

 
Table 19  Change in fatty acids composition during frying in canola oil and 

canola oil fortified with formulated antioxidant, PC+3a.  
 

Frying time [days] 
Fatty acids [mg / 100 mg] 

C16:0 C18:0 C18:1 C18:2 C18:3 

Canola oil  

0 3.90 ± 0.10 1.81 ± 0.04 63.69 ± 0.97 18.26 ± 0.16 9.00 ± 0.12 

1 3.82 ± 0.08 1.78 ± 0.03 63.51 ± 0.99 17.10 ± 0.33 8.10 ± 0.09 

2 3.81 ± 0.10 1.80 ± 0.07 62.88 ± 0.87 16.16 ± 0.28 7.36 ± 0.11 

3 3.74 ± 0.04 1.85 ± 0.03 62.89 ± 0.79 15.56 ± 0.35 6.52 ± 0.09 

4 3.77 ± 0.05 1.79 ± 0.03 63.29 ± 0.88 15.31 ± 0.34 5.99 ± 0.08 

5 3.98 ± 0.09 1.91 ± 0.01 62.72 ± 0.64 14.71 ± 0.27 5.12 ± 0.09 

6 3.96 ± 0.07 1.91 ± 0.03 63.70 ± 0.83 14.58 ± 0.42 4.90 ± 0.10 

Fortified canola oil   

0 3.91 ± 0.10 1.81 ± 0.07 63.83 ± 1.13 18.36 ± 0.29 9.10 ± 0.10 

1 3.84 ± 0.09 1.80 ± 0.04 62.94 ± 1.07 17.41 ± 0.51 8.31 ± 0.10 

2 3.78 ± 0.06 1.81 ± 0.07 62.11 ± 0.99 16.53 ± 0.22 7.48 ± 0.09 

3 3.75 ± 0.10 1.79 ± 0.03 61.91 ± 0.78 16.46 ± 0.30 6.96 ± 0.11 

4 3.79 ± 0.09 1.79 ± 0.05 63.24 ± 0.91 16.34 ± 0.29 6.67 ± 0.08 

5 3.82 ± 0.13 1.89 ± 0.05 63.16 ± 0.79 16.20 ± 0.47 6.49 ± 0.06 

6 3.85 ± 0.07 1.85 ± 0.04 63.46 ± 0.92 16.18 ± 0.63 6.40 ± 0.09 
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Figure 56. Changes in the ratios of linoleic:palmitic and linolenic:palmitic acids 
during frying in canola oil fortified with formulated antioxidant, PC+3a 

(PC, 1000 µg/g; 3a, 350 µg/g). FA - formulated antioxidant.  
See text for abbreviations. 
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4.8.5 Residual Antioxidants 

 In Table 20 the decrease in the amount of the following antioxidants: 

tocopherols, dihydrocaffeic acid amide, and phosphatidylcholine, during frying in canola 

and fortified canola oil is presented. The amount of total tocopherols decreased from 604 

µg/g in the initial oil to 27 and 204 µg/g in unfortified and fortified canola oils, 

respectively. The rate of tocopherol degradation was 91.8 µg/g per frying day for 

unfortified canola oil while 67.6 µg/g per frying day was observed for canola oil 

containing the formulated antioxidant (Figure 57). At the end of the 6th day of frying, 51 

and 20% of the respective initial amount of dihydrocaffeic acid amide and 

phosphatidylcholine remained in the oil.   
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Table 20. Changes in the amounts of antioxidants during frying in canola and 

fortified with formulated antioxidant, PC+3a canola oils.  
See text for abbreviations. 

 
Frying time 

[days] 

Canola oil (µg/g) Fortified canola oil (µg/g) 

α-Toc 

 

γ-Toc 

 

Total 

 

α-Toc 

 

γ-Toc 

 

Total 

 

3a 

 

PC 

 0 195±10 409±21 604±15 195±10 409±21 604±15 350±12 1031±35 

1 127±9 319±11 446±18 180±12  341±12 521±20 316±20 825±20 

2 102±8 262±14 364±12 179±12 332±10 511±18 293±9 557±12 

3 63±5 196±10 259±12 150±10 311±8 461±13 269±10 371±19 

4 45±3 130±10 175±14 148±8 209±14 357±14 244±12 302±10 

5 18±1 78±4 96±17 117±6 139±10 256±11 212±12 263±13 

6 0±0 27±2 27±2 101±6 103±7 204±8 179±10 209±11 
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Figure 57. Tocopherol degradation during frying in canola oil fortified with 

formulated antioxidant, PC+3a (PC, 1000 µg/g; 3a, 350 µg/g).  
FA - formulated antioxidant. See text for abbreviations. 

 

 

4.8.6 Formation of 4-hydroxynonenal 

 The amount of 4-hydroxynonenal (HNE) formed during frying in canola and 

fortified canola oils is presented in Figure 58. No detectable amount of HNE was 

observed in the fresh oil. However, at the end of the frying period, the amount of HNE 

detected in canola oil and canola oil with the formulated antioxidant was at 5.7 and 2.5 

µg/g, respectively.  
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Figure 58. Formation of 4-hydroxynonenal during frying in canola oil fortified 

with formulated antioxidant, PC+3a (PC, 1000 µg/g; 3a, 350 µg/g).  
FA - formulated antioxidant. See text for abbreviations. 
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Chapter 5 – Discussion 

5.1 Effect of external frying factors (I – IV) 

 Thermo-oxidative degradation of vegetable oils is more pronounced during 

frying than when other cooking methods such as baking and stir-frying are employed (II). 

Thus, protecting oils against thermo-oxidative degradation during frying is of paramount 

importance. As previously mentioned, extending the fry-life of polyunsaturated (PUFA) 

oils involves conscious optimization of both the external and internal factors affecting 

frying performance of oils.  

In the present study, the investigated indices describing frying performance 

showed that the fry-life of PUFA oils can be significantly prolonged by frying at 

temperature lower than 190oC (1), and under reduced oxygen atmosphere (III). Under the 

frying protocol employed in the present study, the oil used for frying at 185oC would 

require 13 days of frying before attaining the 24% TPC level, which is used as oil 

discarding level in EU countries (Gertz, 2000). On the other hand, frying at 215oC 

shortened utilization of oil to 5 days using the same TPC discarding level (Figure 17). 

Thus, the increase in the frying temperature accelerated hydrolytic, oxidative, and 

oligomerization reactions, leading to increase in the amount and rate of polar compounds 

formation. As frying progressed, the oxidized triacylglycerols formed at the onset of 

oxidation are degraded or converted to higher molecular weight oligomers, hence the 

consistent decrease in the contribution of oxidized triacylglycerols to total polar 

compounds (Figures 18 and 19). Arroyo et al. (1992) also reported a consistent decrease 

in the contribution of oxidized triacylglycerols to the total polar compounds during frying 

in sunflower oil. Similar explanation can be applied for the observed decrease in the 
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contribution of dimers to TPC at the later stage of frying at the higher temperature 

(Dobarganes and Marquez-Ruis, 2003). The results from our study are in agreement with 

those of Houhoula et al. (2003) who reported an increase in TPC as a function of frying 

temperature during the frying of potato chips in cottonseed oil in the temperature range 

155 – 195oC.  

According to Blumenthal (1991), the higher the amount of polar compounds in 

the oil, the higher the surfactants content, and the higher fat absorption by the fried food. 

Thus, apart from shortening the fry-life of oils, frying at elevated temperature will result 

in fried products with high fat contents which contain more degradation products. In most 

countries, diseases associated with high fat consumption are a major health burden, hence 

the recent global campaign against high fat intake (Mehta and Swinburn, 2001).    

The health benefits attributed to polyunsaturated fatty acids (PUFA) such as 

linoleic and linolenic make the consumption of polyunsaturated oils very desirable. It is 

important, however, that these fatty acids are protected during food processing. This is 

particularly important in institutional frying operation where the oil is repeatedly used, 

with high turnover and minimal control of frying conditions (Mehta and Swinburn, 

2001). The observed loss in the fatty acids during frying is due to oxidation, 

oligomerization, scission, cyclization, isomerization, and other side reactions, which were 

accelerated at the higher frying temperature; hence the significantly higher amount of 

short-chain glycerol-bound oxidized fatty acids observed at the higher temperature 

(Figure 22). The consistent decrease in the amount of these oxidized fatty acids after the 

3rd day of frying at 215oC can be attributed to thermal degradation and involvement in 

oligomerization reaction (Dobarganes and Marquez-Ruis, 2003). Velasco et al. (2004) 
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observed that the amount of polar fatty acids decreased drastically as compared to the 

amount of total polar compounds in used frying fats.  Short-chain glycerol-bound 

oxidized fatty acids are of particular chemical and nutritional interest since they remain in 

the frying oil, and are absorbed and subsequently ingested.  

According to Tsuzuki (2011), heat induced cis/trans isomerisation of 

unsaturated fatty acids occurs mainly via the formation of radical species. Christy et al. 

(2009), on the other hand, proposed a heat induced double bond migration accompanied 

by hydrogen transfer. Because these reactions are energy-dependent, isomerisation rate 

increases with temperature; hence the observed significant increase in trans isomers 

content of the oil heated at the higher temperature. Increasing amounts of trans isomers 

during frying at a higher temperature can have practical implications related to nutritional 

zero trans content claims. When the amount of these isomers increased 2.5-fold during 

frying at the higher temperature, then the amount of trans isomers in fried products will 

exceed the specified by definition limit, making the claim for zero trans fat invalid. Our 

results agree with those of Tyagi and Vasishtha (1996) and Tsuzuki et al. (2010) 

regarding the effect of frying temperature on trans formation in soybean and canola oils, 

respectively. 

Anisidine value (AV) measures the amount of nonvolatile aldehydes, principally 

2-alkenal and 2,4-dienal formed during thermo-oxidative degradation of oils, and has 

been shown to be negatively correlated with the flavour scores of the frying oils (Frankel, 

2005). Regardless of the general knowledge that the decomposition of hydroperoxides 

and subsequent formation of carbonyl compounds increases with increasing temperatures 

(Houhoula et al., 2003), AV observed in the present study followed an opposite trend. 
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This trend can be explained by the high chemical reactivity, involvement in the formation 

of other compounds, and thermal decomposition of the carbonyl compounds formed 

during the frying, effects which were more pronounced at the higher frying temperatures. 

A similar explanation can be offered for the observed decrease in AV after the 3rd day of 

frying at both frying temperatures.   

 Apart from the immediate effects on the frying oils, frying above the optimum 

temperature can also affect the nutritional quality, storage stability and thermo-oxidative 

degradation products of the prepared food. Tocopherols are the major antioxidants 

present in oils and offer protection against thermo-oxidative degradation principally by 

donating hydrogen atoms to lipid peroxy radicals thereby interfering with either chain 

propagation or initiation (Frankel, 2005; Seppanen et al., 2010). The faster rate of 

tocopherol depletion at the higher temperature can be attributed to the increase in the rate 

of oxidative initiation and propagation, producing higher concentrations of lipid peroxy 

radicals, which in turn placed an increasing demand on the number of tocopherol 

molecules participating in the antioxidant activity. According to Verleyen et al. (2002), 

the degradation of tocopherols could also be due to the non-selective oxidation of 

unsaturated fatty acids and tocopherols by the highly reactive alkoxyl and hydroxyl 

radicals generated by decomposition of hydroperoxides. The rate of hydroperoxide 

decomposition increases with temperature (Frankel, 2005). The higher temperature can 

further accelerate the rate of self oligomerization of the tocopheroxyl radicals arising 

from the chain breaking mechanism, causing more tocopherol loss (Kamal-Eldin and 

Appelqvist, 1996). A similar observation was reported by Verleyen et al. (2001) during 

heating of α-tocopherol in a triolein model system in the temperature range of 180 to 
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260oC. Furthermore, at the higher temperature, the rate of tocopherol removal by 

evaporation/distillation would also increase (Marmesat et al., 2010).  

According to Sebedio et al. (1990) and Dobarganes et al. (2000a), and also 

observed in our study, there was lack of a significant differences in the compositions 

between fried products and the frying oils, indicating extensive exchange of lipids during 

frying. Thus, with complete depletion of tocopherols at the higher temperature (Figure 

25), food processed at the optimum temperature will show better storage stability. 

 The results from this study clearly emphasize the importance of controlling 

frying temperature. When frying is carried out at a temperature above the optimum, either 

due to a faulty temperature controller or deliberately, to increase turnover at the peak 

hours, the rate of oil degradation will significantly increase, shortening the fry-life of the 

oil (Mehta and Swinburn, 2001). For instance, a 1999 national survey of fast food outlets 

in New Zealand reported a wide range of frying temperatures used in institutional frying 

operations, ranging from 112 to 233oC, with 26% of the surveyed outlets operating above 

190oC (Mehta and Swinburn, 2001). According to Collin (1993), the actual oil 

temperature could be up to 30oC higher than the temperature controller setting, and 

unfortunately, only a small percentage of institutional frying operators are consciously 

making effort to calibrate and ascertain the correctness of their fryers’ temperature 

controllers. For instance, a survey in Australia showed that only 56% of the fast food 

outlets had correctly calibrated temperature controllers (Mehta and Swinburn, 2001).    

 The main degradation process during frying is related to oxidation. Thus, apart 

from moderating the frying temperature, frying performance of PUFA oils can also be 

enhanced by controlling availability of oxygen during frying (publication III). In this 
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study, the amount and availability of oxygen during frying was reduced either by frying 

under carbon dioxide blanketing (CDB), or by frying under vacuum (VF), using canola 

oil as the frying medium. A superior frying performance of oil was observed when a 

reduced amount of oxygen was used, evident from the amount of TPC formed. The 

propagation steps of thermo-oxidative degradation involve a rapid reaction between alkyl 

radicals and molecular oxygen forming alkylperoxy radicals, followed by a rate 

determining hydrogen transfer reaction between the alkylperoxy radicals and unsaturated 

lipids to form hydroperoxides (Frankel, 2005). By limiting the amount and availability of 

oxygen through CDB and VF, the propagation steps of thermo-oxidation, and the 

subsequent formation of lipid hydroperoxides was effectively hindered. Lipid 

hydroperoxides are the precursors of the thermo-oxidative degradation products 

measured by TPC, AV, and other stability indices, hence the observed higher frying 

stability of the oils used for frying under CDB and VF, compared to SFC.     

In addition, by hindering the propagation, the rate determining steps, thermo-

oxidative degradation of polyunsaturated fatty acids such as linoleic and linolenic was 

inhibited during CDB and VF, hence the higher amounts of these fatty acids remaining in 

the oils under these conditions, compared to SFC. In the same manner, the reduction in 

the amounts of molecular oxygen, lipid peroxy and alkyl radicals during CDB and VF 

significantly reduced the amount of tocopherols lost to oxidative degradation. Verleyen et 

al. (2001) observed that degradation of α-tocopherol in a triolein model heating was 

markedly inhibited even at 240oC under constant nitrogen flow, and concluded that the 

loss of tocopherols under frying conditions could be both thermal and oxidative. 

Accordingly, the average rates of tocopherol degradation were 82, 17, and 7 µg/g per 
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frying day during frying under SFC, CDB, and VF, respectively (Figure 27). At this rate, 

it would take 8, 39, and 96 days to completely consume the tocopherols in the oils used 

for frying under SFC, CDB, and VF, respectively. Thus, apart from extending the fry-life 

of the oil, food produced under the developed frying protocol would have a much higher 

nutritional value.    

Many toxic degradation products have been identified in frying fats and fried 

foods, and the list keeps growing. Among them, acrylamide and 4-hydroxy-2-nonenal 

(HNE) have attracted much attention not only because of their unusually high toxicity, 

but also because they could be formed at concentrations that pose health concerns 

(Taubert et al., 2004; Niki, 2009). According to Mucci and Wilson (2008), more than 

one-third of the calories consumed by U.S. and European populations contain acrylamide. 

Because of their reactivity, acrylamide and HNE are known to modify proteins, nucleic 

acids and other biomolecules leading to several diseases and medical conditions 

(LoPachin et al., 2008; Niki, 2009). In the present study, the amount of HNE and 

acrylamide accumulated in the French fries were significantly reduced when the frying 

was conducted under the novel CDB instead of the traditional frying (Figures 28 and 

29). The interaction between asparagine and reducing sugar is the most widely 

recognized acrylamide formation mechanism in foods (Zhang et al., 2009); however, the 

significant reduction in the amounts of HNE and acrylamide consequent to decrease in 

the oxygen amount observed in the present study evidently showed that oxidation is 

involved in the reaction mechanism for the formation of these compounds. Thus, results 

from this study support observations from model studies by Zamora and Hidalgo (2008) 
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and Hidalgo et al. (2009) that oxidation of fatty acids is producing precursors required for 

acrylamide formation. 

 Methods suggested in the literature for reducing acrylamide formation during 

frying include: (1) frying at lower temperature; for instance, regulations in Germany 

require that frying operations be carried out at a temperature not higher than 165oC to 

limit formation of acrylamide (Gupta, 2004); (2) Decreasing the amounts of reducing 

sugar, asparagine, and other acrylamide precursors in the raw potatoes either by breeding 

or through appropriate treatment of the potatoes before frying (Matthäus, 2009); and (3) 

frying under vacuum (Granda and Moreira, 2005). Breeding new varieties of potatoes 

low in acrylamide precursors is costly, time consuming, and success cannot be 

guaranteed (Matthaus, 2009). Furthermore, application of vacuum system in institutional 

frying is costly and operationally labour intensive and probably impossible at the current 

state of technology. Conversely, results from this study showed that CDB is an efficient 

method for impeding the formation of acrylamide during frying, offering a cost-effective 

alternative to vacuum frying and other proposed method to reduce acrylamide content of 

fried foods. 

 

5.2 Effect of internal factor (V – X) 

 Generally, PUFA oils are inherently unstable due to their high susceptibility to 

oxidative degradation (Parker et al., 2003; Martin-Polvillo et al., 2004). In agreement 

with published reports by Lampi and Kamal-Eldin (1998) and Warner (2005), the 

observed higher frying stability of regular canola oil over the minor components stripped 

canola oil (Figure 34) indicated that minor components exert significant influence on 



188 

 

frying performance of oils. Consequently, manipulation of the composition and 

concentration of minor components should enhance the frying performance of PUFA oils.  

To use the typical actual frying protocol (section 3.2.1.1) for a detailed study of 

the effects of individual groups of minor components on frying performance would be 

uneconomical both in materials and time. Consequently, an effective, economical and fast 

frying test was developed for this purpose (V). The developed frying test was specifically 

designed to effectively mimic an actual frying protocol used in the present study and 

institutional frying. With this frying test, the effects of different concentrations and 

combination of the various groups of minor components isolated from canola (TCAN, 

SCAN), rice bran (TRBO, SRBO, RBOS), sesame (SOS), and palm oils (POS) on the 

frying performance of typical PUFA oil were assessed (VI). In this part of the study, pure 

triacylglycerols (TAG) isolated from canola oil were utilized as a test frying medium. 

Utilization of TAG allowed us to assess how individual groups of endogenous minor 

components affect frying performance. Further, using this model, we were able to 

eliminate and assess interaction of different components. 

As expected, tocopherols, irrespective of source (pure or isolated as a fraction 

from oils) offered significant protection to TAG under frying conditions. As measured by 

the amount of total polar compounds formed during the frying test, tocopherol fractions 

isolated from canola, rice bran and palm oils, despite the diversity in isomer composition, 

offered a similar level of protection (Figures 33 and 34). Rice bran and palm oils are rich 

sources of tocotrienols, however, these tocochromanols did not add to the frying 

performance. Indeed, Romero et al. (2007) did not find an increase antioxidant activity 

when a mixture of α-tocopherol and α-tocotrienol was added to stripped canola oil as 
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compared to when added individually. The similar antioxidant mechanism of tocopherol 

and tocotrienol protection may account for this observation (Seppanen et al., 2010). 

Tocochromanols (tocopherols and tocotrienols) are chain-breaking antioxidants, 

interfering with either chain propagation or initiation by readily donating hydrogen and 

inactivating lipid peroxy radicals. According to Frankel (2005), significant synergism is 

generally observed when the individual antioxidants operate by different mechanisms.   

Using pure tocopherols, to remove any interference from other minor components 

in the oils, three combinations of isomers were set up as described in the table below:  

 

Table 21. Compositions of pure tocopherol homologues assessed in the study 

High α, High γ, Low δ 

 (µg/g) 

High α, Low γ, High δ 

(µg/g) 

Low α, High γ, High δ 

(µg/g) 

225α + 225γ + 50δ 225α + 50γ + 225δ 50α + 225γ + 225δ 

450α + 450γ + 100δ 450α + 100γ + 450δ 100α + 450γ + 450δ 

900α + 900γ + 200δ 900α + 200γ + 900δ 200α + 900γ + 900δ 

 

All of the indices for stability measured in this part of the study indicated that the 

differences in protection observed among the isomeric systems were not of practical 

importance (VI). Results by Warner and Moser (2009) also showed that varying the ratio 

of tocopherol homologues has no significant impact on their antioxidant activity when the 

α-, γ-, δ- homologues were present in an oil. Furthermore, results from our study showed 

that increasing tocopherol concentration above 1000 µg/g did not result in concomitant 

improvement in frying stability of TAG, despite the increase in residual tocopherols. The 
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inefficiency of tocopherols at higher concentrations could be explained as follows: (1) 

Above the optimum concentration, tocopheroxyl radicals became prooxidant and chain 

carriers, regenerating alkyl and peroxy radicals through hydrogen abstraction from fatty 

acids and lipid hydroperoxides, respectively (Frankel, 2005); (2) Higher concentration of 

tocopheroxy radicals resulted in the formation of higher amounts of oxidized and 

oligomerized tocopherols possessing prooxidant activity (Rietjens et al., 2002; Chapman 

et al., 2009); (3) A number of tocopherol oligomers, such as the α-tocopherol ethane 

dimer and the γ-tocopherol diphenol dimer still possess antioxidant activity, and could 

have moderated the prooxidant effect as stated above in (1) and (2), resulting in the 

reduced efficiency, rather than the prooxidant effect observed for tocopherols at 

concentrations higher than the optimum (Kamal-Eldin and Appelqvist, 1996). According 

to Burton et al. (1985) and Mukai et al. (1993), however, the rates of tocopheroxyl 

radicals bimolecular couplings were 104 – 106 times higher than those of hydrogen 

abstractions from fatty acids or lipid hydroperoxides by tocopheroxyl radicals. Thus, the 

observed inefficiency of tocopherols at higher concentrations might as well be due to a 

balance between the amounts of prooxidant and antioxidant oxidized and oligomerized 

tocopherols. 

Interestingly, a significant protection of TAG was observed when the a sterol 

fraction from either canola (SCAN) or rice bran oil (SRBO) was applied as the principal 

minor component (Figure 33). This result is consistent with a published report by Gertz 

et al. (2000), and may be due to the ability to donate hydrogen to alkyl or peroxy radicals 

by those sterols with ethylidene side chain, thereby inhibiting the propagation step of 

thermo-oxidation (Sims et al., 1972; Gordon and Magos, 1983; White and Armstrong, 
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1986). The higher amount of such sterols in SRBO may explain the effectiveness of this 

fraction even at the lower concentration (500 µg/g) used, compared to SCAN. 

Unfortunately, the protection offered by sterols was lost whenever tocopherols were 

present in the mixture, indicating a lack of a synergistic interaction between these 

components. Although the antioxidant mechanism of sterols is not well understood, these 

results indicated that they are less efficient than tocopherols as a chain-breaking 

antioxidant, and are not the primary antioxidant in a mixture with tocopherols. Indeed, 

the thermo-oxidative loss of sterols has been reported to be significantly lower in the 

presence of tocopherols by Rudzinska et al. (2004) and Tabee et al. (2008). Thus, in the 

real system, the antioxidant activity of sterols during frying might not be realized since 

they coexist with tocopherols in the oil.  

When minor components isolated from palm oil, POS, were applied to canola oil 

triacylglycerols as the exclusive minor components, frying stability was not significantly 

better than that of regular canola oil (Figure 34). This result indicates that characteristic 

minor components from palm oil, carotenoids and tocotrienols, may not contribute to the 

frying performance of PUFA oil already containing tocopherols. The carotenoids to 

tocochromanols ratio in TAG containing the POS was 1:10 (Table 15), thus, the much 

higher concentration, coupled with the better hydrogen donating potency of 

tocochromanols could have made them the primary antioxidants in the mixture. 

Incidentally, in their study on the oxidative stability of phosphatidylcholine liposomes at 

120oC in a Rancimat, a carotenoids to tocochromanols ratio of 1:10 was suggested by 

Schroeder et al. (2006) as the optimum ratio for synergistic interactions between these 

classes of antioxidants. The widely different thermo-oxidative conditions and lipid 
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substrates used in this study, however, make comparison with our results impossible.  On 

the contrary, and in agreement with the present study, Romero et al. (2007) found no 

significant difference in the amount of TPC formed during the heating of canola oil and 

canola TAG containing a mixture of carotenoids and tocopherols for up to 18 h.  

Addition of solvent-extracted minor components from rice bran (RBOS) or 

sesame oil (SOS) significantly enhanced the frying performance of polyunsaturated TAG 

(Figure 34). The significant antioxidant activity of RBOS is presumably due to the high 

concentration of γ-oryzanol in addition to tocochromanols or potential synergistic effect 

between these components (Table 15). This deduction became plausible considering the 

fact that RBMC, the minor components isolated from rice bran oil by chromatography 

(Scheme 1) did not show similar effectiveness as RBOS, the major difference in the 

compositions of RBMC and RBOS being the large amount of γ-oryzanol in RBOS, a 

component not detected in RBMC (Table 15). According to Gertz et al. (2000) and 

Kochhar and Gertz (2004), the addition of γ-oryzanol to canola and sunflower oils 

significantly increased their thermo-oxidative stability. Although Nystrom et al. (2007) 

did not observed any synergy between α-tocopherol and sitostanyl ferulate, a component 

of γ-oryzanol, during the heating of high oleic sunflower oil triacylglycerols, the thermo-

oxidative conditions and the compositions of the components examined were very 

different from those used in our study, making comparison impossible.  

The significant protection offered by SOS was likely due to the activity of the 

sesame lignans such as sesamol, sesaminol, sesamin, and sesamolin. Farhoosh and Kenari 

(2009), Alizera et al. (2010), and Serjouie et al. (2010) attributed the improved frying 

stability of blends of sesame and canola oils over the canola oil alone to the sesame oil 
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lignans. In a related study, the improved stability of a blend of soybean and sesame oils, 

and the food fried in it over soybean alone was assigned to the sesame oil lignans (Chung 

et al., 2004; Chung et al., 2006).   

Among assessed minor components, the best protection was offered by 

phospholipids (Figure 35). The fry-life of TAG containing 0.2% phosphatidylcholine 

was nearly twice that of regular canola oil as measured by the amount of polar materials 

formed during the frying test. These results are consistent with previous reports by Chu 

(1991), Kourimska et al. (1994), and Gordon and Kourimska (1995b) regarding the 

antioxidant activity of phospholipids during frying. The observed activity of the tested 

phospholipids, namely PC and PE may be attributed to the formation of non enzymatic 

browning reaction products between these phospholipids and the sugar molecules or with 

some oxidation products produced during frying (Husain et al., 1984; Hidago et al., 2005; 

2006; 2007; Zamora et al., 2011). It may also be due to the ability of the phospholipids to 

form an oxygen barrier between the oil and air interface, limiting the amount of oxygen 

penetrating the frying medium (Porter, 1980; Calvo et al., 1994).  

The present study (VI) showed that phospholipids at a concentration up to 0.1% 

would significantly enhance the frying performance of PUFA oils. Unfortunately, most of 

the phospholipids are specially removed from oils during processing, leaving the 

protection of refined oils against thermo-oxidative degradation exclusively at the mercy 

of tocopherols (Shahidi, 2003; Gunstone, 2004). However, the inefficiency of tocopherols 

to protect polyunsaturated oils during frying is clearly demonstrated in the present study 

(VI), presumably due to their poor thermal stability, thermal deactivation, and tendency 

for prooxidant activity at concentrations higher than the optimum (Frankel, 2005; 
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Marmesat et al., 2010). As shown in Figures 34 and 36, none of the tocopherol isomer 

combinations resulted in additional protection for antioxidant stripped canola oil over the 

regular canola oil, suggesting that the tocopherol concentration in this oil is close to the 

optimum. Evidently, to enhance the frying performance of PUFA oils at a practical level, 

there is the need to look beyond tocochromanols.  

Looking beyond tocopherols, syntheses of several phenolic antioxidants were 

undertaken and their abilities to protect TAG during storage and frying were evaluated 

(VIII – X). All the synthesized antioxidants (nine chromanol derivatives and twelve 

dihydrocaffeic acid amides) provided significant protection for TAG both under storage 

and frying conditions, with the gallic acid derivative of trolox (VIII: 1e), the 

dichromanol (IX: 3), and the group of dihydrocaffeic acid amides in which the benzyl 

amine moiety was not hydroxylated (X: 3a – 3c) being the most active. The high thermal 

stabilities of the new compounds definitely enhance their potential as antioxidants for 

high temperature applications of PUFA oils. The radical scavenging mechanism of 

phenolic antioxidants is well established: they break the free radical chain forming a 

stable phenoxyl radical, which is effectively stabilized by delocalization of unpaired 

electrons on the aromatic ring (Scott, 1963; Frankel, 2005). Compared to tocopherol and 

BHT, the higher radical scavenging activity of the novel antioxidants, and the observed 

superior antioxidant activity during storage was likely due to the increase in the number 

of hydroxyl functional groups and the presence of electron donating groups in ortho 

position to the hydroxyl group (Scott, 1963; Saito and Kawabata, 2005). Conversely, the 

activity of the antioxidants under frying conditions is not that simple, and presumably 

involves radical scavenging, net effect of the degradation products of the original 
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antioxidants, interactions with the food components, and removal of secondary thermo-

oxidative products such as aldehydes through condensation reaction, among others 

(Frankel, 2005; Hidalgo et al., 2008).    

It is well known that antioxidant compounds can reinforce each other by 

cooperative effects known as synergism. This is particularly significant when radical 

scavenging antioxidants such as phenolic compounds are used together with metal 

chelators such as phospholipids (Frankel, 2005). To this end, all possible combinations of 

the best performing natural endogenous minor components (PC and RBOS) and 

synthetic antioxidants (Compounds 1e, 3a, 3) were formulated to maximize synergistic 

relationships among them. Furthermore, to understand the possibility of interactions 

between added antioxidants and endogenous minor components, regular canola oil was 

used as the frying medium instead of the antioxidant stripped canola oil used in the 

preliminary studies (V – X).  

The fact that antioxidant 1e was effective during the frying test in canola TAG 

(VIII), whereas it is ineffective in regular canola oil suggested the possibility of a 

destructive interaction between the synthetic antioxidant and some canola oil endogenous 

minor components. The interaction between lipid hydroperoxides and added antioxidants 

has been reported to decrease antioxidant efficiency (Kamal-Eldin et al., 2002). 

Kortenska et al. (1991) reported that the antioxidant efficiency of p-methoxy phenol was 

reduced 2.3 fold in the presence of 1-palmitoylglycerol during oxidation of sunflower oil. 

The strong reducing power of gallic acid has also been used to explain the prooxidant 

activity of gallic acid and its derivatives (Murakami et al., 2000; Yen et al., 2002). The 

lack of synergy observed for all the possible combinations of the synthetic antioxidants, 
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1e, 3, and 3a (Figure 52) may be due to a similar mechanism of antioxidant activity, 

radical scavenging mechanism (Frankel, 2005). Conversely, the observed synergy 

between phosphatidylcholine (PC) and solvent extracted rice bran minor components 

(RBOS) may be related to an interaction between PC and γ-oryzanol or other phenolic 

compounds present in RBOS. Ramadan (2008) observed an increase in the antioxidant 

activity of soy lecithin when quercetin was present. This synergistic interaction between a 

metal chelator and radical scavengers may also be applied to explain the effectiveness of 

the following antioxidant mixtures: PC+RBOS+3+3a and PC+RBOS+3a (Figure 52).  

Although the developed frying test offered a reliable level of prediction of the 

frying performance of oils (V), actual frying still remains the most reliable method for 

assessing frying performance of oils. Consequently, the effectiveness of one of the most 

promising formulated antioxidant mixtures (Figure 52) was tested in a standard frying 

condition during a 6-day actual frying of French fries in canola oil. For simplicity, and to 

remove the additional variable that might be introduced from an increased amount of 

tocopherols due to the presence of RBOS in the mixture, the binary antioxidant, PC with 

3a, was used for the study. All the indices of frying performance indicated that canola oil 

containing the added formulated antioxidant (FA) was significantly more stable than the 

unfortified regular canola oil. Thus, the components of the applied formulated 

antioxidant, PC and 3a, working synergistically and were able to inhibit the formation of 

polar components, protecting the PUFA frying oil against thermo-oxidative degradation.  

Aldehydes are major products formed during thermo-oxidative degradation of oil. 

Although some of the aldehydes produced are lost by evaporation during frying, a 

significant amount of nonvolatile compounds remains in an oil and is assessed by 
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anisidine value (AV). The higher the AV, the more prevalent the degradative reactions 

occurring in the frying oil. The significant antioxidant activity of the formulated 

antioxidant was evident from the significantly lower AV of the canola oil fortified with it, 

compared to unfortified canola oil (Figure 54). Aldehydes are secondary oxidation 

products formed by the decomposition of hydroperoxides. Hydroperoxides formation 

during frying proceeds via a free radical mechanism, thus the low AV value in the 

fortified canola oil could be due to the ability of the phenolic antioxidant, 3a, to donate 

hydrogen atoms to lipid peroxy radicals thereby interfering with either chain propagation 

or initiation (Frankel, 2005). The high radical scavenging activity of 3a has been 

established in a part of this study, being significantly better than α-tocopherol and BHT 

(X). The antioxidant 3a could also be removing aldehydes from the oil through a 

condensation reaction between amine and carbonyl group (Hidalgo et al., 2008). The 

synergy between PC and the phenolic antioxidant, 3a further enhanced the activity of the 

formulated antioxidant (Khan and Shahidi, 2000; Judde et al., 2003; Ramadan, 2008). 

PUFA, notably linoleic and linolenic acids are the primary targets of thermo-

oxidative degradation. As previously mentioned, the extent of degradation of these fatty 

acids could be a reliable indicator of frying performance of the oil (Dijkstra et al., 2007). 

Because of its higher radical scavenging activity, compound 3a might have inhibited the 

propagation step of thermo-oxidative degradation by donating hydrogen to lipid peroxy 

radicals more effectively than the endogenous tocopherols, protecting the fatty acids from 

being attacked by these radicals. The metal ion mediated decomposition of 

hydroperoxides to alkoxy and hydroxyl radicals might have been prevented by the PC 

component, further reducing the number of radicals available to initiate and propagate 
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fatty acid degradation.  These two components working synergistically evidently ensured 

that the essential fatty acids, linoleic and linolenic acids were better protected in canola 

oil containing the formulated antioxidant. 

The presence of phosphatidylcholine in the antioxidant mixture is responsible for 

the increased colour formation observed in canola oil fortified with the formulated 

antioxidant, and this is due to its well documented non enzymatic browning reactions 

(Pokorny, 1981; Hidalgo et al., 1990). It is well known that the presence of surfactant 

materials such as phospholipids enhances foaming during frying (Blumenthal, 1991; 

Dobarganes et al., 2000a). Contrary to expectations, however, no significant foaming was 

observed in the canola oil containing the formulated antioxidant throughout the entire 

frying period. In contrary, canola oil without FA showed excessive foaming at the 

beginning of the 4th day of frying. Thus, this observation suggested that the effect of 

degradation products on foaming was more effective than the emulsifying effect of 

phosphatidylcholine. Indeed a number of degradation products such as monoglycerides, 

diglycerides, and polar polymers are surface active compounds and can contribute to 

foaming, according to Blumenthal’s surfactant theory of frying (Blumenthal, 1991). 

Kourimska et al. (1994) found no significant increase in foaming of olive oil and no 

noticeable effect on the sensory quality of prepared French fries when lecithin was 

applied at 0.1%.  

Tocopherols are the principal endogenous antioxidants in frying oils. The rate of 

tocopherol degradation has been related to the stability of the frying oil (Normand et al., 

2001; Normand et al., 2003; Normand et al., 2006). The slower rate of tocopherol 

degradation in fortified canola oil (Figure 57) indicated that tocopherols were protected 
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by the formulated antioxidant used in the study. The observed protection of tocopherols 

could be due to the fact that the phenolic compound 3a was a more effective chain 

breaking antioxidant than α-tocopherol, thus sparing the latter (X). It could also be due to 

synergism between tocopherols and the components of the formulated antioxidant 

containing PC and 3a (Khan and Shahidi, 2000; Judde et al., 2003; Pazos et al., 2007). 

Some phenolic acids and phospholipids have been reported to regenerate α-tocopherol 

from the tocopheroxyl radical and oxidized tocopherols (Weng and Gordon, 1993; Facino 

et al., 1998; Jia et al., 1998; Pazos et al., 2007). Indeed, supplementing tocopherols with 

phenolic antioxidants has been recommended as a way to delay tocopherol degradation 

during frying (Sánchez-Muniz and Bastida, 2006). The significantly higher residual 

amount of tocopherols and the applied antioxidants in the fortified canola oil means that 

food processed in this oil will possess higher nutritional quality and a better storage 

stability compared to normal canola oil (Sebedio et al., 1990; Dobarganes et al., 2000a).     

Hydroxynonenal (HNE) is one of the most toxic α,β-unsaturated aldehydes 

formed during lipid oxidation (Esterbauer et al., 1988; Seppanen and Csallany, 2006). 

Thus, the marked inhibition of HNE by the formulated antioxidant is of significant 

importance to the safety of prepared French fries considering the extensive mass 

exchange occurring between the food and the frying oil (Dobarganes et al., 2000a). Like 

most products of thermo-oxidative degradation, HNE formation from linoleic acid is by 

free radical reactions and proceeds via initial formation of 13-hydroperoxides (Pryor and 

Porter, 1990; Schneider et al., 2001). The higher radical scavenging potency of 

compound 3a in the formulated antioxidants was probably responsible for the lower 

formation of HNE in the fortified canola oil. The formulated antioxidant could also have 
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inhibited HNE formation by preventing or influencing the mechanism of decomposition 

of the 13-hydroperoxide precursors. Pan et al. (2010) observed that choline, 

ethanolamine, and soybean phospholipids decompose linoleic and linolenic acids 

hydroperoxides to the corresponding hydroxides at a higher rate than observed for α-

tocopherol and BHT. 
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Chapter 6 – Conclusions and future research perspectives 

 Polyunsaturated (PUFA) oils are generally considered unsuitable for institutional 

frying operations because they are prone to thermo-oxidative degradation reactions 

occurring during frying. The major factors that determine frying performance of 

polyunsaturated oils can be broadly grouped into two – internal and external factors. The 

present study clearly demonstrated that by a careful control of some of these factors, the 

fry-life of PUFA oils can be significantly extended.  

Results from the present study demonstrated that the effects of conducting a 

frying operation above 195oC are far reaching: (1) The fry-life of the PUFA oil will be 

dramatically shortened; (2) the food prepared under such conditions will not achieve 

optimal nutritional quality and storage stability; and (3) the food may accumulate large 

amounts of components with potential detrimental health effects.  Moreover, the 

threshold level described by the “zero trans” definition found on a food label may be 

annulled by frying above the optimum temperature. Therefore, to improve the frying 

performance of PUFA oils it is of utmost importance that the frying operation be 

consciously carried out at a temperature below 195oC.  

Furthermore, the present study demonstrated that the frying performance of 

PUFA oils will be significantly enhanced by frying under an atmosphere of reduced 

oxygen concentration. The study showed that frying under carbon dioxide blanketing can 

double the fry-life of PUFA oils and deliver healthier fried food possessing better 

nutritive quality and storage stability by impeding the formation of toxic compounds such 

as HNE and acrylamide, and protecting essential fatty acids and endogenous antioxidants.  
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An effective, economical and fast frying test was developed, making it possible to 

rapidly assess the frying performance in small samples of oils, covering a large number 

of tests in one working day. The influence of minor components on the frying 

performance of PUFA oils was extensively evaluated utilizing the developed frying test. 

The results from this study clearly revealed the limitation of tocopherols, the primary 

antioxidant in oils, to offer protection under frying conditions. The frying performance of 

PUFA oils, however, can be significantly improved by the addition of minor components 

from rice bran oil or the right amounts of phosphatidylethanolamine or 

phosphatidylcholine.  

Looking beyond tocopherols, twenty one novel phenolic antioxidants were 

synthesized and evaluated as potential antioxidants for storage and frying applications. 

The results from the study evidently showed that the fry-life of PUFA oils and the storage 

stability of the fried food will be significantly enhanced in the presence of the new 

antioxidants.   

Exploiting antioxidant synergism, formulations containing effective natural and 

synthetic antioxidants were developed.  The results from this study clearly showed that 

the application of the formulated antioxidant containing phosphatidylcholine and N-

propyl-N-benzyl-3-(3,4-dihydroxyphenyl)propanamide can double the frying 

performance of PUFA oils. Furthermore, the application of this formulated antioxidant 

will significantly inhibit the formation and subsequent accumulation in foods, of toxic 

thermo-oxidative degradation products such as 4-hydroxy-2-trans-nonenal (HNE), 

offering healthier fried products. Although, several other promising antioxidant mixtures 

established in the present study were not evaluated in an actual frying protocol, however, 
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as predicted by the developed frying test a similar level of effectiveness is expected from 

any of these antioxidant mixtures. 

In this study, a simple, reliable and efficient novel procedure for HNE analysis 

was developed. The developed method eliminates derivatization and multiple extractions 

and purification steps in available methods in the literature. Furthermore, the novel 

method makes it possible to prepare in a single run, multiple samples within one working 

day for testing the amount and composition of polar components, and accurate 

quantification of HNE.  

 Overall, the present study showed that the frying performance of PUFA oils can 

be significantly improved by controlling important external factors such as frying 

temperature and oxygen concentration, and by enhancing the antioxidant potency of the 

endogenous minor components. 

 The stringent conditions employed during frying exert excessive pressure on 

both endogenous and applied antioxidants. Consequently, a majority of conventional 

antioxidants fail to perform under frying conditions. In the present study, antioxidants for 

frying applications were sought for within edible oils minor components, and by 

synthesis. However, much more attention needs to be given to other vegetal sources, 

particularly those possessing medicinal qualities.  

The present study established the effectiveness of the novel antioxidants in a bulk 

oil system; however, their antioxidant activities in multiphase systems such as oil-in-

water, water-in-oil, micelles and liposomes are subjects for further investigations. 

Toxicological studies on these antioxidants will also need to be undertaken before any 

practical applications in foods can be guaranteed. In addition, further studies should be 
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carried out to better understand the antioxidant mechanisms of the new compounds. 

Further studies on possible modifications of natural antioxidants such as tocopherol 

isomers should still continue to be explored as a way to improve their efficiencies and 

stabilities under frying conditions.    
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Abstract  

The changes in regular canola oil as affected by frying temperature were studied. In seven 

consecutive days regular canola oil was heated at 185 ± 5 oC and at 215 ± 5 oC for seven hours 

daily with French fries fried intermittently. The thermo-oxidative alterations were measured by 

total polar compounds (TPC), anisidine value (AV), color components formation and changes 

in fatty acid composition. Results showed that TPC, AV, color and trans fatty acid content 

increased significantly (p < 0.05) as a function of frying temperature and time. The 

contribution of polyunsaturated fatty acids (PUFA) decreased in direct proportion to frying 

temperature and time. After 7 days of frying, the amount of PUFA was reduced by half during 

frying at 215 oC . Of the parameters assessed, total polar component and color showed the best 

correlation with correlation coefficients of 0.9650 and 0.9302 for frying at 215 oC and 185 oC, 

respectively. TPC formation correlated inversely with the reduction of tocopherols. 

 

Keywords: Canola oil, Frying performance, Total polar component, Anisidine value, Color, 

Frying temperature, Tocopherols, French fries, Fatty acids. 
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Introduction 

Deep-fat frying is probably one of the most dynamic processes in all of the food processing. 

Essentially, the process involves immersing a food item in a large quantity of heated oil or 

fat, which is normally topped up and reused several times before being disposed. Deep-fat 

frying produces a product with desired sensory characteristics including fried food flavor, 

golden brown color, and a crisp texture [1]. 

Most frying operations are conducted at temperature of 175–195 oC, nevertheless 

German regulation allows maximal frying temperature to 175 ºC, to limit formation of 

acrylamides [2]. Extruded products and pellets are typically fried at 190 to 215 oC [3]. This 

high temperature requirement and the presence of air and moisture, from the food, initiate 

several chemical and physical changes affecting oxidative degradation of oil used. Published 

studies described chemical reactions involved and various volatile and non-volatile oxidation 

products were identified [4–6]. The chemical changes in the frying fats also affect physical 

characteristics of oil and fried product [7]. For instance, the color of frying oil was reported 

to darken as a result of oxidation and the formation of browning pigments when  potato chips 

were fried [8, 9]. 

 A  number of studies have been undertaken to assess various chemical reactions and 

extent of oxidative deterioration as affected by frying temperature, but many of the published 

data were obtained using heating an oil and not during actual frying [10–12]. Meanwhile, it 

has been observed that the chemical reactions that take place during deep-fat frying are 

different from those during continuous heating [13, 14]. Besides, different oils have been 

found to behave differently regarding the rate of formation of polar components and 

secondary oxidation products. Guillen and Cabo [15] reported that secondary products were 

formed immediately after hydroperoxide formation in olive and rapeseed oils, whereas in 

sunflower and safflower oils, secondary products were formed when the concentration of 

hydroperoxides reached level of 180 and 270 meq/kg, respectively. Consequently, the need 

to study the frying performance of individual oil as a function of frying temperature during 

actual frying of food becomes imperative. 
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 Oxidized short-chain fatty acids are secondary oxidation products formed through 

thermal degradation of lipids hydroperoxides. Recently, much concern has been on the 

biological effects of oxidized lipids, and there is increasing evidence that they may be 

detrimental to health, especially in connection with the development of atherosclerosis, liver 

damage, and promotion of intestinal tumor [16].  

 The objective of this study is to evaluate the effect of frying temperature on degradation 

of canola oil by monitoring the accumulation of total polar components, oxidized short-chain 

fatty acids, polymers formation, p-anisidine value, color components formation, changes in 

fatty acid composition, and change in tocopherol contents. According to our observation of 

some institutional operation, temperatures applied in this study are realistic in frying 

processes. We selected canola oil for this study due to the presence of more prone to 

oxidative degradation unsaturated fatty acids, such as oleic, linoleic and linolenic. 

 

Materials and Methods 

Oil and French fries  

Commercially refined regular canola oil was obtained from Canbra Foods (Lethbridge, 

Canada). Frozen par-fried French fries in institutional pack were obtained from a local food 

store. 

 

Frying procedure and oil sampling 

The frying was simultaneously conducted in two 8 L capacity restaurant style stainless steel 

deep fryers (General Electric Company, New York, USA). Regular canola oil (3.75 L) was 

heated at 185 ± 5 oC and 215 ± 5 oC for 7 h daily for 7 days. A batch of 200 g of frozen 

French fries was fried for 5 minutes for a total of eight batches per frying day. At the end of 

each frying day, fryers were shut off and left to cool overnight. Two 25 mL samples of oil 

from each of the fryers were taken daily and kept frozen at -16 oC until analyzed. Before 

commencing frying each day, oils were filtered to remove solid debris. Oil was replenished 

every second day of frying with 500 mL of fresh oil. 
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Fatty acid analysis  

Fatty acids were methylated following the AOCS Official Method Ce 1-62 [17]. The 

resulting fatty acid methyl esters (FAME) were analyzed on Trace GC Ultra gas 

chromatograph (Thermo Electron Corporation, Rodano, Italy) using a Trace TR-FAME fused 

silica capillary column (100 m × 0.25 mm × 0.25 µm; ThermoFisher Scientific, Waltham, 

MA, USA). Hydrogen was used as carrier gas with flow rate of 1.5 mL min-1. Column 

temperature was programmed from 70 oC to 160 oC at 25 oC min-1 and held for 30 minutes, 

and further programmed to 210 oC at 3 oC min-1. Starting and final temperatures were held 

for 5 and 30 minutes, respectively. Splitless injection was used utilizing PTV injector. 

Detector temperature was set at 250 oC. FAME samples, 1 µL, were injected with AS 3000 

autosampler (Thermo Electron Corporation, Rodano, Italy). Fatty acids were identified by 

comparison of retention time with authentic standards (Nu-Chek-Prep, Elysian, MN). 

 Oxidized short-chain fatty acids methyl esters (OFAME) were identified by comparison 

with standards and quantified as a group [18] 

 

Total polar compounds (TPC) 

TPC were determined by gravimetric method after column chromatography separation of 

non-polar fraction following AOAC Method 982.27 [19]. Polar components were eluted 

from the column with diisopropyl ether and further analyzed for composition by size 

exclusion chromatography. 

 

Anisidine values (AV) 

AV, a measure of secondary oxidation products, was determined according to ISO Method 

6885:2004 [20].  

 

Tocopherols 

Tocopherols were analyzed by the AOCS Official Method Ce 8-89 [17]. Briefly, oil samples 

(75 mg) were weighed directly into vial and dissolved in 1.5 mL hexane. Analysis was 

performed on a Finnigan Surveyor LC (Thermo Electron Corporation, Rodano, Italy) with a 

Finnigan Surveyor Autosampler Plus and Finnigan Surveyor FL Plus fluorescence detector, 
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set for excitation at 292 nm and emission 394 nm. The column was a normal-phase 

Microsorb 100-5 Si column (3 µm; 250 × 4.60 mm; Varian, CA). Of each sample, 10 µL was 

injected. Mobile phase consisted of 7% methyl-tert-butyl-ether in hexane with a flow rate of 

0.6 mL/min. The amounts of tocopherols were quantified using calibration curves for each 

isomer separately. 

 

Size exclusion chromatography 

The composition of polar components was analyzed using high performance size exclusion 

chromatography (HPSEC) according to ISO Method 16931-2007 [21]. Separation was 

performed on a Finnigan Surveyor liquid chromatograph (Thermo Electron Corporation, 

Rodano, Italy). Components were separated on three size exclusion columns in series 

(Phenogel 500A, 100A and 50A, 5µ, 300 x 4.60 mm; Phenomenex, Torrance, CA), with 

tetrahydrofuran (THF) as the mobile phase at a flow rate of 0.3 mL/min, and column 

temperature of 30 oC. A 10 µL sample was injected, and components were detected with a 

Sedex 75 evaporative light scattering detector (Sedere, Alfortville, France), operated at 40 oC 

with air pressure of 2.5 bar. 

 

Color analysis 

Color of the frying oils was determined according to AOCS Official method Cc 13c-50 [17] 

using a DU®-65 spectrophotometer (Beckman, Fullerton, CA). 

 

Statistical analysis 

Data were evaluated by analysis of variance (ANOVA, single factor). Statistical significance 

is expressed at the p < 0.05 level unless otherwise indicated. 

 

Results and Discussion 

 

The fresh oil has 0.06% of free fatty acids (FFA), 1.0 meq/kg of peroxide value (PV), 4.2% 

of polar components and anisidine value at the level of 4.2, indicating good quality oil [22].  
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Total polar compounds  

The determination of TPC in frying oil provides the most reliable measure of the extent of 

oxidative degradation [14, 23]. In this study, the contents of TPC increased almost linearly 

with the frying time at a rate affected by frying temperature (Fig. 1). Total polar content of 

the oil heated at 185 oC at the end of frying time was 19.8% which was still below 25% oil 

discarding level set up in many European countries [24]. However, when frying was done at 

215 oC the total amount of polar components reached  discarding level after 4 days of frying 

with polars amount close to 40% at the end of frying. The extent of deterioration as measured 

by TPC for the oil heated at 185 oC at the end of the 7 days frying period was only 

comparable to the third day of frying at 215 oC.  These results are not unexpected; rate of 

oxidation is temperature dependent and roughly increasing by factor of two with each 10 

degree increase in temperature [25].  Activity of tocopherols as antioxidant has been reported 

to decrease with the increase of frying temperature above 110 oC [26, 27].  

 

Composition of polar components 

The composition of polar compounds formed during frying was analyzed using HPSEC and 

components separated on diglycerides (DG), oxidized triglycerides (OTG), dimers and 

polymers, and their contribution calculated on the basis of peak areas. The contribution of 

polymers in total polar material increased consistently with frying time at both frying 

temperatures achieving maximum at 8% for frying at 185 oC (Fig. 2), and 15.6% at 215 oC 

(Fig. 3). The amount of polymers generated at 185 oC at the end of the 7 days frying period 

was comparable to third day of frying at 215 oC, similar trend was observed for the amount 

of total polar compounds (Fig. 1).  Comparable increase in the amount of dimers for oil fried 

at 185 oC was observed throughout the frying period (Fig. 2). However, at 215 oC, after the 

16-fold increase at the end of first day of frying, and slight increase for the next 2 days of 

frying, the contribution of dimers decreased until the end of the frying period (Fig. 3). This is 

probably due to the conversion of the dimers to polymers by reaction with degradation 

products of hydroperoxides [16]. Marquez-Ruiz et al. [28] reported a considerable 

contribution of dimeric linkages to the structures of polymeric components. As expected, the 
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contribution of OTG decreased consistently over the frying period at both tested 

temperatures, as a consequence of thermal degradation [25]. However, a more pronounced 

decrease in the amount of OTG was observed at the higher frying temperature used 215 oC 

(Fig. 3). 

 

Anisidine values 

Aldehydes formed during oxidative degradation are secondary decomposition products, and 

non-volatile portion of carbonyls remains in the frying oil [4, 13]. At the two testing 

temperatures, AV was not well correlated with frying time (Fig. 4). The maximum was 

reached at the third day of frying for both frying temperatures and then decreased 

consistently until the end of frying time, apparently oil replenishment play some role in the 

changes in carbonyls content but elevated temperatures was the main cause that affected 

amount of these labile and reactive components [29, 30]. An average of 20% decrease in AV 

for the 30 oC increase in temperature was observed. This result could be explained by the 

thermal degradation of the aldehydes formed at higher temperature which results in a lower 

accumulation in the oil at the higher frying temperature, 215 oC. These compounds may also 

be involved in polymers formation due to their high reactivity [25]. Houhoula et al. [30] 

reported a significant increase in AV as a function of temperature during frying of potato 

chips in cottonseed oil.  

 

Fatty acid composition 

The fatty acid compositions of the fresh canola oil and the resulted changes during the 7 days 

of frying at 185 oC and 215 oC in Table 1 are presented. The result indicates a progressive 

decrease in both linoleic and linolenic acids contributions throughout the frying period. 

These changes are comparable with previous reports [23, 31]. A significant decrease (p < 

0.05) was observed for the oil used for frying at 215 oC. The contribution of linoleic acid 

decreased by 8.5% and 17.5% during frying at 185 oC, and 215 oC, respectively. The 

deterioration of linolenic acid was more pronounced and showed a decrease by 24.0% and 

57.3% during frying at 185 oC and 215 oC, respectively. White et al. [23] reported decrease 

by 7–11.5% in linoleic acid and 27–46% in linolenic acid when soybean oils were heated at 

180 oC for 40 hrs. 
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The amount of trans fatty acids formed during frying increased when temperature and 

time increased (Figs. 5 and 6). At standard frying temperature the amount of trans isomers 

increased from 2.4% to 3.3%. This is relatively small increase for the 7 days of frying, 

slightly above analytical error of measurement. The increase in frying temperature to 215 oC 

caused very extensive trans isomerization of fatty acids (Figs. 5 and 6).  The total 

contribution of trans isomers in oil increased 2.5 fold, from 2.4% to 5.9% (Fig. 5). This 

indicates how important temperature is to the formation of trans isomers during frying, and 

explains the amount of trans isomers observed in the initial oil (Fig. 5). Deodorization step of 

canola oil processing is usually performed at temperature above 200 oC under vacuum, where 

the main amount of trans isomers is formed [32]. Regarding individual fatty acid trans 

isomers formation, the amount of these isomers formed from fatty acids decreased in the 

following order: linolenic > linoleic > oleic (Figs. 5 and 6).  The quantity of trans isomers 

formed at elevated temperature indicates that specific amount of energy is required to transfer 

double bond from cis to trans configuration. Data from this work are supported by published 

results, confirming that activation energy for isomerization decreases when the numbers of 

cis double bonds increases.  [33].  

Increase in the amount of trans isomers during frying at higher temperature, can have 

practical implications related to nutritional claim about “zero trans content in serving portion 

of fried products”. When the amount of these isomers is increasing 2.5 fold during frying at 

the higher temperature, then the amount of trans isomers in fried products will increase by 

the same amount and easily exceed specified by definition limit, making claim for the 

product annulled. These data clearly indicates importance of the frying temperature control 

and keeping it below 190ºC.    

 The ratio of linoleic acid to palmitic acid (C18.2/C16:0) has been suggested as a valid 

indicator of the level of PUFA deterioration [34]. Our result showed the decrease in this ratio 

from 4.74 to 3.87 and 4.74 to 3.23 during frying at 185 oC and 215 oC, respectively. This 

implies that the decrease in this ratio was 1.2 times greater in oil heated at 215 oC as 

compared to 185 oC.  Ornal and Ergin [35] fried a batch of potato per day in canola oil for 10 

days at 190 oC and reported a decrease in the ratio from 4.04 to 3.49 at the end of frying time. 

Houhoula et al. [30] reported a reduction of the ratio from 2.39 to 2.03 for cottonseed oil 
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heated at 185 oC for 12 h. The decrease in the ratio of linolenic acid to palmitic acid 

(C18.3/C16:0) was more pronounced, reducing it  1.9 times faster in oil heated at 215 oC 

compared to 185 oC. 

 Short-chain glycerol-bound aldehydes, acids, ketones and alcohols are non-volatile 

secondary oxidation products formed during oxidative degradation of lipids [18]. They are of 

particular chemical and nutritional interest since they remain in the frying oil, and are 

absorbed and subsequently ingested. Analysis of the oxidized short-chain fatty acid methyl 

esters (OFAME) as a group revealed a consistent increase in their contribution for the first 5 

days of frying at 185 oC, reaching a maximum at 1.83% (Fig. 7). However, for the oil heated 

at 215 oC, a significant increase in the amount of oxidized fatty acids was observed in the 

first 3 days of frying with the maximum at 2.20%. Thereafter, a decrease for the next 3 days 

of frying was observed. This result suggests prevalence of degradation reactions such as 

dehydration and polymerization, which may not be unexpected at this frying temperature, 

especially considering the reactive nature of this group of polar compounds. Velasco et al. 

[36] observed that the amount of polar fatty acid methyl esters decreased drastically as 

compared to the amount of total polar compounds in used frying fats. 

 Peers and Swoboda [37] suggested the quantification of methyl octanoate as an 

oxidation index since octanoic acid is formed during the oxidation of linoleic acid and 

remains bound to the parent triacylglycerols. In this study, the accumulation of octanoic acid 

in the frying oil was specifically monitored. The amount increased significantly (p < 0.05) as 

a function of frying temperature (Fig. 8). The increase in frying temperature from 185 oC to 

215 oC resulted in 2-fold increment in the contribution of octanoic acid at the end of frying 

time. Slope of regression line shows that oxidative degradation of linoleic acid is happening 

2.5 times faster at the higher frying temperature, compared to lower frying temperature 

assessed.  

 

Color analysis 

A significant (p < 0.05) effect of frying temperature on formation of color components in the 

oil was observed. The 30 oC increase in frying temperature produced an over 100% increase 

in the optical density of frying oil (Fig. 9). The result indicated that the color at the seventh 
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day of frying at 185 oC was comparable to the color of the oil at the fourth day of frying at 

215 oC. After 70 hrs of frying at 170, 180 and 190 oC in different oils, it was observed that 

color changes were influenced by frying temperature rather than frying medium [31]. 

Increase in frying temperature also stimulates formation of polymers by non-enzymatic 

browning which can be the main coloring agent in the oil [9, 38]. 

 

Tocopherols 

Tocopherols are important minor constituents in oils, acting as natural antioxidants. The 

tocopherols profile of the fresh canola oil used in this study was found to be: 214 ± 10 ppm 

α-tocopherol, and 347 ± 18 ppm γ-tocopherol. The extent of tocopherols degradation 

increased significantly (p < 0.05) as a function of frying temperature. At the end of the 

seventh day of the frying period, approximately 31% of the total tocopherols present in the 

fresh oil still remained when the oil was heated at 185 oC (Fig. 10). For oil heated at 215 oC, 

however, the entire tocopherols were completely spent at the end of sixth day of frying. The 

calculated half life of tocopherols for oil heated at 185 oC was 8 hrs while for frying at 215 
oC 5.3 hrs. Consistent with previously published results [39], a strong inverse relationship 

was observed between TPC formation and the reduction of tocopherol at both frying 

temperatures. Thus, the different degradation rate of tocopherols can be partially accountable 

for the significant differences observed in oil deterioration at tested temperatures. In this 

study, γ-tocopherol degraded at the faster rate than α-tocopherol at the lower frying 

temperature, but the order was reversed during frying at 215 oC (Data not shown). 

 

Correlation between assessment parameters 

Although TPC remains the best assessment parameter for evaluating frying oil performance 

and oxidative stability, a faster and yet objective alternative is desirable. In that case, 

assessment methods that correlate well with TPC may provide the much needed alternative. 

In this study, poor correlation was found between AV and TPC, and AV and color at both 

frying temperatures (Table 2). However, a good correlation was observed between color and 

TPC at both frying temperatures (Table 2). Lopez-Varela et al. [40] reported a correlation 

coefficient of 0.885 between color and TPC for sunflower oil used in 75 successive frying of 
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potatoes. Stevenson et al. [41] also concluded that the color development parallels the 

development of polar component. 

In general, the effect of temperature on frying performance of canola oil as measured 

by TPC, AV, fatty acid composition and color was significant. Furthermore, despite the 

general knowledge that the decomposition of hydroperoxides and consequent generation of 

secondary oxidation products increase with temperature [10, 30], a decrease in AV was 

observed as the frying temperature increased from 185 oC to 215 oC. Although the 

disappearance of non-volatile aldehydes as a consequence of their reactive nature at higher 

frying temperature could have been responsible for lowering of AV. This study showed that 

increasing frying temperature above 200 oC can cause intensive isomerization of PUFA and 

the amount of these isomers can increase above threshold level described by “zero trans 

definition” annulling the nutritional claim for fried product.   
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Fig. 1 Changes in polar components during frying at different temperatures 
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Fig. 2 Changes in composition of polar components during frying at 185 °C  
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Fig. 3 Changes in composition of polar materials during frying at 215 °C . 
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Fig. 4 Changes in anisidine values during frying at different temperatures. 
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Fig. 5 Changes in total and linolenic acid trans isomers amounts during frying at different 

temperatures 
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Fig. 6 Changes in oleic and linoleic acids trans isomers contribution during frying at 

different temperatures 
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Fig. 7 Changes in oxidized fatty acids content during frying at different temperatures.  
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Fig. 8 Changes in octanoic acid content during frying at different temperatures. 
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Fig. 9 Changes in oil color during frying at different temperatures. 
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Fig. 10 Total tocopherols remaining over frying time at different temperatures. 
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Table 1 Changes in contribution of canola oil fatty acid at different frying temperatures  

Frying 

time 

[h] 

Temperature 

[°C] 

Contribution a (Relative Percentage) 

C16:0 C18:0 C18:1 C18:2 C18:3 α C18:2/C16:0 C18:3/C16:0 

0 - 4.00±0.01 1.82±0.02 60.03±0.72 18.91±0.16 8.40±0.09 4.73±0.04 2.10±0.02 

7 185 4.14±0.03 1.91±0.06 61.15±0.61 18.10±0.10 7.46±0.05 4.37±0.02 1.80±0.04 

14 185 4.22±0.02 2.01±0.03 61.35±0.86 18.01±0.16 7.16±0.13 4.26±0.05 1.70±0.03 

21 185 4.24±0.07 2.01±0.04 61.78±0.64 17.90±0.21 7.11±0.11 4.22±0.08 1.68±0.02 

28 185 4.25±0.08 2.02±0.08 61.96±0.95 17.84±0.21 6.85±0.09 4.20±0.05 1.61±0.03 

35 185 4.27±0.06 2.02±0.03 61.97±0.91 17.85±0.18 6.78±0.08 4.18±0.08 1.59±0.02 

42 185 4.30±0.08 2.02±0.04 61.98±0.84 17.81±0.22 6.56±0.11 4.14±0.08 1.53±0.03 

49 185 4.46±0.05 2.03±0.04 61.98±0.68 17.27±0.17 6.39±0.10 3.87±0.06 1.43±0.02 

         

7 215 4.19±0.03 1.93±0.04 61.20±0.78 17.92±0.19 6.79±0.08 4.28±0.05 1.62±0.03 

14 215 4.27±0.05 1.99±0.05 61.77±0.97 17.37±0.17 5.68±0.06 4.07±0.06 1.33±0.04 

21 215 4.34±0.10 2.02±0.03 62.37±1.01 17.03±0.18 5.13±0.08 3.93±0.04 1.18±0.02 

28 215 4.37±0.09 2.04±0.06 62.43±0.77 16.43±0.19 4.47±0.05 3.76±0.09 1.01±0.01 

35 215 4.45±0.11 2.06±0.05 63.16±0.63 16.25±0.17 4.37±0.07 3.65±0.05 0.98±0.01 

42 215 4.61±0.06 2.11±0.06 63.46±0.72 15.90±0.18 3.84±0.05 3.44±0.06 0.83±0.01 

49 215 4.81±0.09 2.18±0.09 63.50±0.98 15.54±0.23 3.59±0.04 3.23±0.03 0.75±0.01 

         

         aAll values are averages of triplicate analyses 
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Table 2 Correlation coefficient for some assessment parameters at frying temperatures 

 TPC 

185°°°°C 

AV 

185°°°°C 

Polymers 

185°°°°C 

C18:2 

185°°°°C 

C18:3 

185°°°°C 

TPC 

215°°°°C 

AV 

215°°°°C 

Polymers 

215°°°°C 

C18:2 

215°°°°C 

C18:3 

215°°°°C 

Color 
0.9302 

0.6281 0.9688   0.9650 0.8350 0.9818   

AV 0.8609  0.7226   0.5554  0.5719   

Tocopherol 

reduction 
0.9540  0.8728   0.9313  0.9600   

C8    0.9388 0.9928    0.9596 0.9987 
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ABSTRACT 

Purpose: The aim of this study was to investigate how typical cooking procedures such 

as baking, stir-frying used in food preparation affect trans fats formation. 

Methods: Canola oil was used as the main fat ingredient. Zucchini cake and ginger 

cookies were baked at 180 and 200oC while stir-fry chicken was prepared at 200 and 

275oC. The lipids from the food were extracted following the Folch procedure, and 

analyzed for trans fatty acids according to ISO Official Method 15304. 

 Results: A minimal changes in the amount of trans fats during baking were observed. 

Application of extreme temperatures during the baking which caused carbonization of the 

outer layer of products yielded insignificant increase in the amount of trans isomers. As 

in baking, stir-frying did not result in significant isomerization of the fatty acids, even 

when the oil was heated to 275oC and smoking heavily prior to placing the food in it. 

Irrespective of the cooking procedure, linolenic acid was the most prone to isomerization 

with the highest amount of trans isomers formed.  

Conclusion: Baking and stir-frying at normal and/or extreme temperatures do not affect 

significantly the amounts of trans fats. Likewise, heating oil to the smoking point during 

stir-frying may decrease the amount of polyunsaturated fatty acids (PUFA) due to 

oxidative degradation. 
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INTRODUCTION 

Naturally occurring unsaturated fatty acids mostly contain cis-configuration of double 

bonds, with the lesser amounts of trans conjugated isomers occurring mainly in 

ruminants. However, treatment of foods and food ingredients at high temperatures, such 

as deodorization of vegetable oils, are known to initiate isomerization of PUFA (1). It is 

well established that processing temperature above 1900C are the main cause of PUFA 

isomerization, where time plays the major role (2,3)  

Consistently, metabolic and epidemiological studies indicate that trans fats are 

more harmful than any other type of fat (4-6). Besides increased risk of developing 

cardiovascular diseases, the level of low density lipoprotein (LDL) is increasing, 

concurrently decreasing the high density lipoprotein (HDL). This type of fat was 

implicated with breast cancer, poor fetal and early infant development and affecting 

linoleic acid metabolism (7-9). Consequently, maximum limits for daily intake of trans 

fats have been set by World Health Organization and the instituted regulatory bodies in 

the most developed countries. Such interest has raised consumer’s fear and skepticism 

related to the potential formation of trans isomers in polyunsaturated oils when food is 

prepared using high temperature procedures (10,11).  

Thermo-oxidative degradation of lipids during food preparation utilizing elevated 

temperatures have been studied extensively (12-15), however data on the effect of these 

cooking methods on the formation of trans fats are rather limited (15,16). Currently, 

baked goods are the main source of trans fats in our diet and reformulation of baking fats 

is directed into implementation of liquid oils containing higher amounts of PUFA and 

with it potential of trans fat formation during baking (15,17).  

 

 

PURPOSE 

In the current study, we investigated the effect of standard and extreme temperatures used 

in typical food cooking procedures such as baking, stir-frying on trans fat formation. 
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METHODS 

Materials: Refined, bleached and deodorized canola oil without antioxidants was 

obtained from Richardson Oilseed Processing (Lethbridge, Canada). All reagents of 

analytical or HPLC purity were purchased from Sigma–Aldrich (St.Louis, MO, USA). 

Standards of tocopherols were obtained from Calbiochem-Novabiochem (San Diego, CA, 

USA) while standards of fatty acid methyl esters were purchased from Nu-Chek-Prep, 

Inc. (Elysian, MN, USA). 

 

Food preparation: Zucchini cake, Betty’s gingersnaps cookies and stir-fried oriental 

chicken were prepared following the recipes available on the Canola Council webpage 

using ingredients specified in Table 1. 

 

Lipids Extraction: Lipids were extracted from foods following the Folch procedure (18).  

 

Fatty acid composition: Fatty acids were analyzed following the ISO method 15304 and 

as previously reported (3,19). 

  

Statistical analysis: Results were analyzed by single factor analysis of variance 

(ANOVA) using Minitab 2000 statistical software (Minitab Inc, PA, ver. 13.2). Statistical 

differences between means were determined by Duncan’s test at p < 0.05. 

 

RESULTS 

Canola oil 

Typical canola fatty acids composition was found in fats extracted from products (Table 

2). The initial amounts of trans fat in canola oil was usual for processed oil and will not 

affect “zero trans” claim when the amount is calculated per serving portion of any 

product where the oil is used as ingredient (1). 

  

Baking 

The oil extracted from the dough exhibited the same profile of trans fatty acids as found 

in the fresh oil, indicating that ingredients used in the dough did not have trans isomers 
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(Table 2). Zucchini cake baked at 200oC had crust carbonized to about 2 cm in depth, 

while the cookies were black to about one third of their depth with only small portion 

having lighter colour. Baking at 200oC showed a slight but statistically insignificant 

increase in the amount of trans fat above the initial amount observed in the oil. The major 

changes occurred for linolenic acid, and its trans isomers contribution was at 70% of all 

trans fat (Figure 1A). Similar trends in trans fat formation were observed for gingersnap 

cookies (Figure 1B and Table 2).  

 

Stir-frying 

Statistically insignificant increase in the amount of trans isomers was observed during 

stir-frying at both temperatures, 200oC and 275oC (Figure 1C and Table 2). Application 

of temperature well above smoking point of oil did not promote isomerization, however 

caused oxidative degradation of PUFA (Data not included).  

 

DISCUSSION 

The data presented in this paper clearly validates that preparation of food by baking and 

stir-frying did not accelerate isomerization of PUFA, no additional amounts of trans fats 

were observed. Applying elevated temperatures accidentally or intentionally also did not 

produced additional amount of trans fat in the baked products. The main factors affecting 

trans isomers formation are temperature and time (2,3). During stir-frying the oil was 

heated at elevated temperature was short time. In baking and stir-frying the fat was 

protected by water present in a prepared food which lowers temperature to a maximum of 

100oC. Maga et al (16) observed similar and insignificant changes in trans fat formation 

during potatoes baking. The activation energy for PUFA isomerization decreases when 

the number of cis double bonds increases (2,20), hence the linolenic acid trans isomers 

dominated among trans fat.  

 In conclusion, baking and stir-frying at normal or/and extreme temperatures did not 

cause formation of trans fats. However, during deep-fat frying, where oil is used for 

extended period of time and multiple batches of food are fried, as is happening in 

institutional frying, with passing time the amount of formed trans fats is increasing. 
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During this process extensive exchange between frying fat and fat in fried product occurs 

and all degradation products including trans fat are incorporated into fried foods (3).  

 

RELEVANCE TO PRACTICE 

The results from this study verify that the preparation of food by baking, stir-frying and 

deep-fat frying at standard conditions did not lead to the formation of trans fats (3). In 

addition, baking and stir-frying when carried out at abusive conditions did not alter the 

amount of trans fats. However, deep-fat frying where the same oil is used for long time, 

can be a source of trans fat during food preparation, particularly when operational frying 

temperature is above the optimal range of 180 -190oC (3). Thus proper temperature and 

time control during frying and baking is the most important parameter to minimize 

formation of the trans fatty acids.  
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Table 1 Ingredients used for zucchini cake, gingersnap cookies and oriental stir-fry 

chicken preparation. 

South Pacific Zucchini Loaf Gingersnaps cookies Oriental Chicken Stir-fry 

3 cups all purpose flour (750 mL) Canola oil (125 mL) Chicken breast strips (450 g) 

2 tsp baking soda (10 mL) 1.25 cup granulated sugar (125 1 tsp canola oil (15 mL) 

1.5 tsp baking powder (7 mL) Egg (1 piece) 1 tsp minced gingerroot (5 mL) 

1.5 tsp ground cinnamon (7 mL) 0.25 cup molasses (50 mL) 4 cups assorted oriental 

1 tsp ground nutmeg (5 mL) 1.75 cups all purpose flour (425 0.5 cup chicken broth (125 

1 tsp salt (5 mL) 2 tsp ginger (10 mL) 2 tsp soy sauce (30 mL) 

Eggs (3 pieces) 1 tsp cinnamon (5 mL) 1 tsp vinegar (15 mL) 

Canola oil (250 mL) 1 tsp baking powder (5 mL) 1 tsp cornstarch (15 mL) 

1.5 cups granulated sugar (375 1 tsp baking soda (5 mL) 1 tsp honey (15 mL) 

2 tsp vanilla (10 mL)   

2 cups shredded zucchini (500   

1 can crushed pineapple (398   

1 cup chopped pecans (250 mL)   

Yields 2 loaves (565 g each) Yields 36 cookies (12 g each) Yields 4 servings 
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Table 2 

Composition of fatty acids during different cooking methods 

Processing condition 
Contributiona (%) 

SAT MUFA PUFA TRANS 

Canola oil 5.82 ± 0.10a 60.03 ± 0.72b 27.31 ± 0.34c 1.97 ± 0.02d 

Zucchini cake 180oC 5.82 ± 0.09a 60.00 ± 0.89b 27.33 ± 0.43c 1.98 ± 0.04d 

Zucchini cake 200oC 5.83 ± 0.11a 60.02 ± 0.96b 27.29 ± 0.39c 2.12 ± 0.07d 

Ginger cookies 180oC 5.89 ± 0.07a 59.98 ± 0.68b 27.11 ± 0.51c 2.07 ± 0.04d 

Ginger cookies 200oC 5.85 ± 0.10a 59.89 ± 0.91b 27.01 ± 0.48c 2.14 ± 0.08d 

Stir frying 200oC 5.91 ± 0.10a 59.81 ± 0.88b 27.00 ± 0.28c 2.03 ± 0.05d 

Stir frying 275oC 6.01 ± 0.09a 60.07 ± 0.66b 26.78 ± 0.31c 2.22 ± 0.06d 

a Data are presented as mean ± SD and all values are averages of triplicate analyses from 

three separate trials (n = 9). Means within a column marked with same superscripts do 

not differ significantly at p < 0.05. SAT: Saturated fatty acids, MUFA: 

Monounsaturated fatty acids, PUFA: Polyunsaturated fatty acids, TRANS: Trans fatty 

acids. 
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Figure 1 Formation of trans isomers during baking and stir-frying at different 
temperatures. Results represent total contribution of trans isomers and for specific 
fatty acids. (A) - Zucchini cake; (B) - Gingersnap cookie; (C) - Stir-fry.  
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Abstract  

The effect of carbon dioxide blanketing and vacuum frying on the frying performance of 

regular canola oil was evaluated.  For seven hours daily and for seven days French fries 

were fried in regular canola oil at 185 ± 5 oC without and with carbon dioxide blanketing 

and in vacuum fryer. Extend of changes in oil were assessed by analysis of total polar 

compounds (TPC), anisidine value (AV), color components formation and changes in 

composition of fatty acids and tocopherols. Frying under CO2 blanket (CDB) reduced the 

amount of total polar compounds by 54% while 76% reduction was observed during 

vacuum frying compared to standard frying conditions (SFC). Similarly lower oxidative 

degradation was observed when measured by anisidine value. At the end of frying period, 

the reduction in unsaturated fatty acids content was 3.8%, 1.9% and 12.7% when frying 

under CDB,  vacuum and SFC, respectively. The rate of tocopherols degradation was 

three and twelve times slower in vacuum frying when compared to CDB and SFC, 

respectively. 

 

 

Keywords: Canola oil, Carbon dioxide blanket, Vacuum frying, Frying performance, Total 

polar compounds, Anisidine value, Color, Tocopherols, French fries. 
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Introduction 

 

Deep-fat frying is always performed with access of atmospheric oxygen, the main cause 

of oxidative degradation of frying oil. Fried foods offer a product with desired sensory 

characteristics including fried food flavor, golden brown color and a crisp texture [1]. 

However, applied high temperature, the presence of air and moisture initiate several 

chemical and physical changes in the oil which affect the sensory and nutritive qualities 

of both the oil and the food fried in it. During frying intensive mass exchange is 

happening between frying oil and fried food. As effect of it, degradation products present 

in oil are fast transferred into fried food [2]. Compounds formed during thermo-oxidative 

degradation of oil may have detrimental health effect whereas volatile components are 

part of pollutants affecting negatively frying facility [3, 4]. 

Lipid oxidation has been identified as single the most important factor affecting the 

performance of edible oil, and the presence of oxygen is suggested to be the main factor 

stimulating oxidative degradation of oil during frying [5, 6]. Therefore, approaches aimed 

to reduce the oxygen presence during frying have been reported as ways of protecting oil 

from oxidative degradation. These include flushing frying oil with nitrogen or carbon 

dioxide or recently, applying frying under vacuum [7–9]. It has been established that 

carbon dioxide offers greater protection than nitrogen for an oil during heating [8]. 

Shyu et al. [9] reported the superior performance of palm, soybean oils, and lard during 

vacuum frying of carrot chips over standard frying. Potato chips fried under vacuum 

absorbed more oil when frying temperature increased [10, 11]. Additionally, most of the 

reports on vacuum frying focused on its effect as drying process with an aim at quality of 

dried products, neglecting performance of the frying fats [11–14].  

It is a general knowledge that both frying under carbon dioxide blanketing and vacuum 

frying offer protection to frying oil, although quantitative data on frying performance of 

oils under these conditions are very scanty and there is no data on the effectiveness of 

these protection methods.  
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The purpose of this study was a comparison of extend of canola oil degradation under 

carbon dioxide blanketing, vacuum frying, as compared to standard frying conditions.  

 

Materials and Methods 

 

Materials 

Oil and French fries 

Commercially refined, bleached and deodorized regular canola oil (peroxide value 2 

meq/kg; FFA 0.01%) without antioxidant added was donated by Canbra Foods Ltd 

(Richardson Oil Processing, Lethbridge, Canada). Frozen par-fried French fries in 

institutional packs were obtained from a local food store. 

 

Chemicals 

All solvents and chemicals of analytical grade were used in this study and purchased 

from Sigma-Aldrich (St. Louis, MO). Standards of tocopherols were obtained from 

Calbiochem-Novabiochem (San Diego, CA). Standards of fatty acid methyl esters 

mixtures were purchased from Nu-Check-Prep (Elysian, MN). Carbon dioxide of 

anaerobic purity was purchased from Liquid Air (Calgary, Canada)  

 

Frying procedure and oil sampling 

Standard frying and under carbon dioxide blanketing 

The standard frying (SFC) was conducted in 8 L capacity restaurant style stainless steel 

fryers (General Electric Company, Niskayuna, USA). Canola oil (4 L) was heated at 185 

± 5oC, 7 hours daily for 7 days. A batch of 400 g of frozen French fries was fried for 5 

minutes for a total of eight batches per frying day. At the end of each frying day, fryers 

were shut off and left to cool down overnight. Two 25 mL samples of oil from each of the 

fryers were taken daily and kept frozen at -20oC until analyzed. Before commencing 

frying each day, oils were filtered to remove solid debris. Oil was replenished every 
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second day of frying with 500 mL of fresh oil. Standard frying conditions was used as 

control in this assessment. 

The set up described above was used for frying under carbon dioxide blanketing (CDB). 

The carbon dioxide was delivered through stainless steel tubing (2 mm i.d.) with 0.6 mm 

holes placed equally alongside of fryer and at a flow rate of 2.5 L/min. The tubing was 

attached to the upper edge of the fryer and gas outlets were 1 cm above the oil surface.  

Oil was purged with CO2 for 10 minutes prior commencing frying and at the end of each 

frying day, the flow of carbon dioxide was continued until the temperature of oil dropped 

below 100oC. 

 

Vacuum frying 

Vacuum frying (VF) was done using BT-1 Industrial Vacuum Deep Fryer (Sakuma 

Corporation, Chiba, Japan). Canola oil (9.5 L) was placed into a 10 L capacity industrial 

vacuum fryer. A batch of 400 g of frozen French fries was fried under 9.7 kPa vacuum at 

180 ± 2oC for 2.5 minutes. A total of eight batches of French fries were fried daily for 7 

days. At the end of each day, the frying oil was allowed to cool overnight under the 

vacuum. Two 25 mL samples were taken daily and kept frozen at -20oC until analyzed. 

Oil was replenished every second day of frying with 500 mL of fresh oil. The vacuum 

frying conditions produced fried French fries comparable in sensory properties to those 

obtained under SFC. 

 

Fatty acid analysis 

Fatty acids were methylated according to AOCS Official Method Ce 1-62 [15]. The 

resulting methyl esters (FAME) were analyzed on Trace GC Ultra gas chromatograph 

(Thermo Electron Corp., Rodano, Italy) using a Trace TR-FAME fused silica capillary 

column (100 m × 0.25 mm × 0.25 µm; Thermo, Waltham, MA, USA). Hydrogen was 

used as carrier gas with flow rate of 1.5 mL min-1. Column temperature was programmed 

from 70oC to 160oC at 25oC min-1 then held for 30 minutes, and further programmed to 

210oC at 3oC min-1. Initial and final temperatures were held for 5 and 30 minutes, 

respectively. Splitless injection was used utilizing PTV injector. Detector temperature 

was set at 250oC. FAME samples, 1 µL, were injected with AS 3000 autosampler 
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(Thermo Electron Corporation, Rodano, Italy). Fatty acids were identified by comparison 

of retention time with authentic standards (Standard mixture #617; Nu-Chek-Prep, 

Elysian, MN). 

 

Tocopherols  

Tocopherols were analyzed according to AOCS Official Method Ce 8-89 [15]. Briefly, 

oil samples (75 mg) were weighed directly into autosampler vials and dissolved in 1.5 

mL hexane. Analyses were performed on a Finnigan Surveyor LC (Thermo Electron 

Corp., Waltham, MA, USA) with a Finnigan Surveyor Autosampler Plus and Finnigan 

Surveyor FL Plus fluorescence detector, the later set for excitation at 292 nm and 

emission 394 nm. The column was a normal phase Diol column (5µm; 250 × 4.6 mm; 

Monochrom, Varian, CA). Of each sample, 10 µL was injected. Mobile phase consisted 

of 7% methyl-tert-butyl-ether in hexane with a flow rate of 0.6 mL/min. The amounts of 

tocopherols were quantified using external calibration method where each isomer was 

calibrated separately. 

 

Total polar compounds (TPC) 

TPC were determined by gravimetric method following AOAC Method 982.27, using 

column chromatography to separate non-polar fraction from polar one [16]. This 

procedure was modified according to Schulte [17]. Polar fractions were eluted with 50% 

MTBE in hexane and further analyzed for composition by size exclusion 

chromatography. 

 

Size exclusion chromatography 

The composition of polar components was assessed using high performance size 

exclusion chromatography (HPSEC) according to ISO Method 16931-2007 [18]. 

Separation was performed on a Finnigan Surveyor liquid chromatograph (Thermo 

Electron Corporation, Waltham, MA). Components were separated on three size 

exclusion Phenogel columns connected in series (500A, 100A and 50A; 5µ, 300x 4.6 
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mm; Phenomenex, Torrance, CA) kept at 30oC. Tetrahydrofuran (THF) was used as a 

mobile phase at flow rate of 0.3 mL/min. Sample of 10 µL was injected, and eluting 

components detected with evaporative light scattering detector (Sedex 75; Sedere, 

Alfortville, France), operated at 30oC with purified air at pressure of 2.5 bar. 

 

Anisidine values (AV) 

AV, a measure of secondary oxidation products, was determined according to ISO 

Method 6885:2004 [19].  

 

Color  

Color of the frying oils was assessed according to AOCS Official method Cc 13c-50 [15] 

using a DU®-65 spectrophotometer (Beckman, Fullerton, CA). 

 

Statistical analysis 

Samples from three repetitions of frying for each frying protocol were collected and were 

analyzed in triplicate. Data are presented as mean value ± SD. Data was analyzed by 

single factor analysis of variance (ANOVA) and regression analyses using Minitab 2000 

statistical software (Minitab Inc, PA, ver. 13.2). Statistically significant differences 

between means were determined by Duncan’s multiple range tests. Statistically 

significant differences were determined at P ≤ 0.05. 

 

Results and Discussion 

Frying 

Frying was performed under typical parameters used on the American continent and it is 

in contrast to Europe where frying temperature is often regulated. During VF lower by 

5ºC frying temperature was applied to obtain comparable quality of French fries as in the 

other methods. To explain further the differences in frying temperature, during SFC and 

CDB temperature drop to 165ºC for about 2 to 3 minutes was observed when frozen fries 

were loaded. After about 4 minutes temperature of the oil return to 185 ºC. During VF 

drop of temperature was only a few degrees, mainly due to lower boiling point of water 

and in reality average temperature was similar for all frying conditions.   
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During frying oil is top up due to the removal of oil by fried foods. In CDB and SFC 

10%, while in VF 5% of frying oil was replaced every second day. Larger amount of 

replaced oil in the former frying conditions should have more efficient protecting effect 

than in vacuum frying; however presented data in this paper shows opposite. Added fresh 

oil has minimal effect on oxidative degradation of oil where frying conditions played the 

major role. 

   

Total polar compounds 

Polar materials, among them polymerized triacylglycerols, are formed as major 

secondary oxidation products during frying. Since they remain in the oil, their presence is 

the most reliable measure of the extent of oxidative degradation [20]. For the three frying 

protocols, TPC amount increased significantly (P ≤ 0.05) as the frying time progressed.  

Oil during SFC underwent the most rapid oxidation and accumulated the highest amount 

of polar components (Fig. 1). At the end of the frying time, the amount of TPC was 2.2 

and 4.1 times higher in SFC compared to CDB and vacuum frying, respectively. During 

SFC the rate of polar components formation was 2 and 8 times faster compared to CDB 

and VF, respectively.    

 

Anisidine values 

Carbonyls are the most abundant secondary oxidation products formed from oxidative 

degradation of unsaturated fatty acids during frying [21]. CDB and vacuum frying 

resulted in 65% and 93% reduction in anisidine value compared to SFC, respectively 

(Fig. 2). During the first day of frying, 80% increase in AV was observed for all frying 

conditions.  This can be related to the initial amounts of dissolved oxygen in the frying 

oil, and potential thermo-oxidative degradation stimulated by it presence. Przybylski and 

Eskin [8] reported that the amount of oxygen dissolved in oil is sufficient to provide 

peroxide value of 10 meq/kg. From the second day of frying, the effectiveness of CDB 

protection was comparable to vacuum frying where AV reached plateau with 

insignificant increase up to the end of frying time (Fig. 2). At SFC the value for AV 

increased significantly through all frying time (Fig 2).  
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Composition of polar components 

The individual classes of polar compounds formed during the various frying conditions 

were separated by HPSEC as oxidized triacylglycerides (OTG), dimers and polymers. 

Formation and accumulation of dimers increased consistently over the entire frying 

period regardless of the frying conditions (Fig. 3). Excluding the first day of frying, 1.5 

and 3 times lower rate of dimers formation were observed for VF when compared to 

CDB and SFC, respectively (Fig 3). Since the formation of hydroperoxide is a 

prerequisite for dimers production, the above result implied a greater ability of vacuum 

frying over carbon dioxide blanketing to defer oxidation [22, 23]. Similarly to AV, the 

amount of dimers formed during the first day of frying in SFC and CDB was the highest 

compared to VF, indicating better removal of dissolve oxygen by vacuum (Fig 3).  

The amounts of formed polymers increased consistently with frying time for all frying 

conditions (Fig. 4). Since formation of oligomers is dependent on hydroperoxides 

presence, similar pattern of their development was observed, where first day offered the 

highest increase in contribution. The rate of polymers formation was three and seven 

times lower for frying under vacuum when compared to CDB and SFC, respectively (Fig 

4). However, differences in polymers formation might be partially affected  by a shorter 

frying time, 2.5 minutes per batch during vacuum frying as compared to a 5 

minutes/batch for frying under CDB.  

The contribution of oxidized triacylglycerides consistently decreased over the frying time 

regardless of the frying conditions (Fig. 5). These compounds are precursors to oligomers 

and other larger molecules. The decrease was most pronounced for SFC compared to 

both CDB and vacuum frying, indicative of higher rate of polymerization. During the first 

day of frying the largest decrease in contribution of oxidized triacylglycerides was 

observed for all frying conditions. After that, rate of these components disappearance was 

similar regardless of applied frying conditions. 

 

Fatty acid composition 

The fatty acid composition of fresh canola oil and the resulted changes during the frying 

under the three frying protocols in Table 1 is presented. A progressive decrease in 
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contributions of linoleic and linolenic acids throughout the frying period were observed, 

with the later one the most affected. The contribution of linolenic acid decreased by 

24.5%, 7.1% and 5.3% under SFC, CDB and vacuum frying, respectively. However, for 

linoleic acid losses were smaller, and the contribution decreased by 0.5%, 2.4% and 7.6% 

during vacuum frying, CDB and SFC, respectively. Fujisaki et al. [6] reported that in 

environment with reduced amount of oxygen to 2%, the decrease of linoleic acid was 

negligible. Shyu et al. [9] found that contributions of linoleic and linolenic acids decrease 

by 12.7% and 19.6% during vacuum frying of carrot slices in soybean oil, respectively. 

  

Tocopherols 

Tocopherols are the single most important natural antioxidants in edible oils. The 

tocopherol profile of the fresh canola oil used in this study was: 317 µg/g of α-

tocopherol, and 353 µg/g of γ-tocopherol. The degradation of tocopherols in canola oil 

during frying at different conditions in Figure 6 is shown. At the end of frying period, 

15% of the total amounts of tocopherols remained in the oil during standard frying. 

Whereas, during CDB frying 70% of the initial amounts of tocopherol remained at the 

end of frying period. The lowest degradation of tocopherols was observed during vacuum 

frying with 90% left at the end of the frying. The average rates of tocopherol 

disappearance were 82 µg/g, 17 µg/g and 7 µg/g per frying day during SFC, CDB and 

vacuum frying, respectively. Slow degradation of tocopherols can improve storage 

stability of fried products and offer better nutritional value.  Fujisaki et al. [6] reported 

insignificant changes in the tocopherols content during heating of high oleic safflower oil 

in environment with reduced amount of oxygen to 2%.  

Regarding individual tocopherols, irrespective of the frying conditions, γ-tocopherol 

degraded faster than α-tocopherol (Fig. 7). The average rates of disappearance for α-

tocopherol were 37 µg/g, 7 µg/g, and 2 µg/g per frying day for SFC, CDB and vacuum 

frying, respectively. Whereas, the corresponding rates for γ-tocopherol were 44 µg/g, 15 

µg/g and 4 µg/g per frying day. These results are in agreement with the finding of 

Matthäus [24] who reported a faster rate of degradation of γ-tocopherol compared to α-

tocopherol during frying in high-oleic rapeseed oil, high-oleic sunflower oil, partially 

hydrogenated rapeseed oil and palm olein. 
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Color  

Frying conditions significantly (P < 0.05) affected a rate of pigments formation. 

Generally formation of pigments increased as a function of frying time regardless of the 

frying conditions (Fig. 8). Pigments formed 3 and 7 times faster during CDB and SFC 

compared to vacuum frying. This directly indicates that formation of pigments is affected 

by oxidation of fatty acids and thermal decomposition of oxidation products.  

 

Conclusions 

The present study evidently showed the superior ability of vacuum frying to protect 

frying oil from oxidative degradation, extending fry-life of it and improving nutritional 

quality of fried foods. However, the initial capital cost of equipment is very high and 

operation is complicated and cumbersome. Application of the vacuum system in 

institutional and industrial frying will be costly and operationally labour intensive and 

probably impossible to apply at current state of technology available. Important 

enhancement in performance of frying oil was also achieved when frying under carbon 

dioxide blanket. The later offer simple modification to the fryer and with it significant 

improvement in quality of fried foods by impeding oxidative degradation of oil and 

extending fry-life of the oil. Proposed protection method can have significant impact on 

the amounts and rate of formation of oxidative degradation products in frying oil and 

their transfer into fried foods.  
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Table 1 Changes in contribution of fatty acids during frying in canola at different 
conditions  

Frying 
time[h] 

Frying 
Conditions 

Contribution a (Relative Percentage) 

C16:0 C18:0 C18:1 C18:2 C18:3  C18:2/C16:0 C18:3/C16:0 

0 Standard 4.04±0.04
b
 1.84±0.03b 60.16±0.71b 19.68±0.20b 8.40±0.09b 4.87±0.05b 2.08±0.03b 

7  4.04±0.04b 1.97±0.04c 60.04±0.68b 19.10±0.20c 7.46±0.09c 4.72±0.05c 1.85±0.02c 

14  4.24±0.06c 1.99±0.02c 61.42±0.71c 19.05±0.19d 7.16±0.11d 4.49±0.04d 1.69±0.02d 

21  4.21±0.12c 1.93±0.03c,d 61.79±1.00c 18.75±0.28e 7.10±0.08d 4.45±0.04d 1.69±0.03d 

28  4.25±0.09c 1.94±0.04c,d 61.97±1.00c 18.79±0.21e 6.85±0.05e 4.42±0.05d 1.61±0.03e 

35  4.20±0.12c 1.91±0.05d 61.85±0.93c 18.66±0.27e 6.69±0.07f 4.44±0.07d 1.59±0.03e 

42  4.29±0.05c 1.95±0.04c,d 61.53±0.71c 18.39±0.19f 6.56±0.06g 4.29±0.06e 1.53±0.04f 

49  4.47±0.05d 2.02±0.05c 61.68±0.68c 18.19±0.21g 6.34±0.08h 4.07±0.05f 1.42±0.02g 

         

0 With CO2 4.04±0.03b 1.84±0.02b 60.16±1.01b 19.68±0.22b 8.40±0.09b 4.87±0.05b 2.08±0.04b 

7  4.08±0.05b 1.85±0.04b 60.19±0.78b 19.31±0.29c,d 8.02±0.08c 4.73±0.05c 1.97±0.04c 

14  4.15±0.05c, 1.87±0.02b 60.58±0.91b 19.57±0.20b,d 7.89±0.06d 4.72±0.06c 1.90±0.03d 

21  4.22±0.11c,d 1.92±0.03c,d 61.32±0.91b 19.48±0.19d 7.94±0.08d 4.62±0.07d 1.88±0.02e 

28  4.31±0.08d 1.98±0.05d 61.21±0.67b 19.43±0.23c,d 7.83±0.05e 4.51±0.05e 1.82±0.03f 

35  4.28±0.04d 1.94±0.05d 61.28±0.63b 19.40±0.27c,d 7.82±0.07e 4.53±0.07e,f 1.83±0.02f 

42  4.27±0.05d 1.91±0.05c,d 61.01±0.72b 19.35±0.18c,d 7.80±0.08e 4.53±0.08e,f 1.83±0.02f 

49  4.19±0.05c 1.93±0.02c,d 60.99±0.88b 19.20±0.23c 7.80±0.08e 4.58±0.05e,f 1.86±0.02g 

         

0 Vacuum 4.05±0.03b 1.91±0.04b,c,d 60.21±1.06b 19.51±0.19b 8.29±0.08b 4.82±0.06b 2.05±0.04b 

7  4.07±0.03b 1.90±0.04b,c,d 60.81±0.78b 19.40±0.19b 8.17±0.08c 4.77±0.05b,c 2.01±0.04c 

14  4.08±0.05b 1.95±0.05b 60.89±0.97b 19.38±0.17b 8.10±0.06c 4.75±0.05c 1.99±0.02c 

21  4.07±0.10b 1.88±0.03c 60.35±1.01b 19.53±0.18b 8.15±0.08c 4.80±0.08b,c 2.00±0.03c 

28  4.11±0.09b,e 1.93±0.06d 61.01±0.77b 19.49±0.19b 8.09±0.05c 4.74±0.04c 1.97±0.03d 

35  4.20±0.11e 1.98±0.05b 61.12±0.63b 19.47±0.17b 7.92±0.07d 4.64±0.07d 1.89±0.02e 

42  4.18±0.06e 1.91±0.06b,c,d 61.21±0.72b 19.45±0.18b 7.89±0.05e,d 4.65±0.06d 1.89±0.04e 

49  4.17±0.09e 1.95±0.09b 60.51±0.98b 19.41±0.23b 7.85±0.04d 4.61±0.08d 1.88±0.03e 

         a All values are averages of triplicate analyses from three repetitions. Means within a column of the same 
frying condition marked with the same superscripts do not differ significantly at P < 0.05 
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Fig. 1 Changes in polar components during frying at different conditions. 

  Abbreviations: Control – Standard frying conditions; With CO2 – Frying with 

carbon   dioxide blanketing; Under vacuum – Vacuum frying. 
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Fig. 2 Changes in anisidine values during frying at different conditions.  

  For abbreviations see Fig 1. 
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Fig. 3 Changes in contribution of dimers during frying at different conditions.  

  For abbreviations see Fig 1. 
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Fig. 4 Changes in polymers during frying at different conditions. For abbreviations see 

Fig 1. 
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Fig. 5 Changes in contribution of oxidized triglycerides during frying at different 

conditions. For abbreviations see Fig 1. 
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Fig. 6 Total tocopherols changes during using different frying conditions. 

  For abbreviations see Fig 1. 
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Fig. 7 Changes in α and γ-tocopherol isomers during frying using different conditions. 

  For abbreviations see Fig 1. 
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Fig. 8 Changes in pigments formation during frying using different conditions. 

  For abbreviations see Fig 1. 
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Abstract 

 

Acrylamide and 4-hydroxynonenal (HNE) are among the most detrimental compounds 

formed during high temperature processing of food. The effect of carbon dioxide 

blanketing (CDB) on the formation and accumulation in food of these compounds during 

deep-fat frying was investigated. French fries were fried for 7 h daily and for 7 days in 

canola oil at 185 ± 5oC without and with CO2 protection. The amount of acrylamide and 

HNE accumulated in the French fries were analyzed. Compared to standard frying 

conditions (SFC), frying under CDB reduced the amount of HNE by 62%. On the 3rd day 

of frying, the amount of acrylamide in fries fried under SFC was 3.3 times higher 

compared to frying with CO2 protection. Frying with carbon dioxide protection is an 

effective and practical way to impede formation of toxic components during deep-fat 

frying. To assess formation of HNE  a simple, sensitive and reliable procedure for HNE 

analysis in frying oils and fried products was developed and evaluated. 

 

Practical applications: The toxicity of HNE and acrylamide, coupled with the increasing 

consumption of fried foods necessitates that measures be taken to reduce their formation 

and subsequent accumulation in fried foods. The frying method proposed in this study is 

very effective and requires only a simple modification to the fryer. Developed rapid and 

simple procedure for HNE analysis allows more accurate quantification. 
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1. Introduction 

 

Polyunsaturated oils such as canola are susceptible to thermo-oxidative reactions during 

food processing. The extent of degradation, the amount and nature of degradation 

products depend, among other factors, on the temperature applied and accessibility of 

oxygen. During deep fat frying where elevated temperatures (160 – 190oC) are employed, 

these reactions rate is particularly high and usually leads to the formation of a variety of 

degradation products [1]. Because of the intensive mass exchange that occurs between the 

frying oil and the fried food, most of the degradation products are transferred into the 

fried food [2]. 

Many toxic degradation products have been identified in the deep-fat fried foods, 

and the list keeps growing. However, acrylamide and 4-hydroxynonenal (HNE) have 

attracted much attention not only because of their unusually high toxicity, but also 

because they could be formed at concentrations that may pose health concerns [3, 4]. 

Indeed, their detection in food has been of both national and international concerns. It has 

been reported that more than one-third of the calories consumed by U.S and European 

populations contain acrylamide [5]. Because of their great reactivity, acrylamide and 

HNE are known to modify proteins, nucleic acids and other biomolecules leading to 

several diseases and medical conditions [4, 6]. Acrylamide is also regarded as mutagenic, 

cytotoxic and carcinogenic as demonstrated by both in vitro and in vivo studies [8]. As a 

matter of fact, the risk of acrylamide estimated by the Scientific Committee on Toxicity, 

Ecotoxicity and the Environment (CSTEE) in the European Union demands that the 

exposure to this compound should be minimized to the lowest possible level [9].  

HNE is a secondary oxidation product of omega-6 polyunsaturated fatty acids.  It 

is reasonable therefore to postulate that any measure that reduces the availability of 

oxygen or discourages oxidative degradation will inhibit the formation of HNE and 

acrylamide. HNE has been shown to exhibit mutagenic, cytotoxic and genotoxic 

properties, which are related to pathogenesis of several human diseases such as 

Alzheimer’s and atherosclerosis [4, 7]. It inactivates various enzymes, inhibits the 

proliferation of cells and acts as a chemotaxin [7]. 
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The toxicity of these compounds, coupled with the increasing consumption of 

fried foods necessitates that measures have to be taken to reduce their formation and 

accumulation in foods. Studies have shown that frying under vacuum inhibits the 

formation of acrylamide because this process allows using lower frying temperature (< 

140oC) and accessibility to oxygen is limited [10, 11]. German regulations require that 

frying operations be carried out at a temperature not higher than 165oC to limit formation 

of acrylamide [12]. The interaction between asparagine and reducing sugar is the most 

widely recognized acrylamide formation mechanism in foods [13]. Recent studies have 

shown the significant contributions of lipid oxidation products to acrylamide formation in 

model systems [14 – 16]. 

Recently, we reported the efficiency of CDB to protect oil from thermo-oxidative 

degradation during frying [17]. In the present study, we continued to investigate the 

effectiveness of CDB to reduce the formation and accumulation of HNE and acrylamide 

during  frying.  

Most of the methods applied for the sample preparation and analysis of 4-

hydroxynonenal from oils and fried products are derived from procedures developed 

initially for biological systems utilizing its derivatization to 2,4 - dinitrophenylhydrazones 

[18 – 22]. However, the complexity of the degradation products formed during frying, 

where the main compounds are carbonyls, demands an efficient and rapid procedure for 

HNE analysis. Purification of the complex mixture of carbonyl hydrazones is multi step 

and labourious, and potential source of errors. Complete separation of purified samples 

on HPLC is impossible due to similar properties of carbonyl hydrazones and usually 

HNE peak is placed in the middle of the peaks cluster, affecting proper integration and 

quantification [19]. Furthermore, its labile nature, lengthy extraction and clean-up 

procedure may be a source of errors and artefacts formation. Taking into account all 

problems related to currently used procedures to quantify HNE content, we developed 

simple, rapid, reproducible and efficient method to analyse this compound in oil samples, 

which omit derivatization and purification.  
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2. Materials and methods 

 

2.1 Materials 

2.1.1 Oil and French fries 

Commercially refined, bleached and deodorized regular canola oil without antioxidant 

was donated by Richardson Oilseed Limited (Lethbridge, Alberta). Frozen par-fried 

French fries in institutional packs were obtained from a local food store. 

 

2.1.2 Chemicals 

Deuterated acrylamide (98%) was supplied by Cambridge Isotope Laboratories 

(Andover, USA). Ethyl acetate, petroleum ether, and sodium chloride were purchased 

from Merck (Darmstadt, Germany). Acetonitrile, methanol, chloroform, hexane, methyl-

tert-butylether, and 4-hydroxynonenal were purchased from Sigma-Aldrich (St. Louis, 

MO, USA). Anaerobic carbon dioxide was purchased from Liquid Air (Calgary, Canada). 

All solvents and chemicals were of analytical grade. 

 

2.2 Frying procedure and sample preparations 

2.2.1 Standard frying (SFC) and carbon dioxide blanketing (CDB) 

Frying under SFC was performed in 8 L capacity restaurant style stainless-steel fryer 

(General Electric Company, Niskayuna, USA). Canola oil (4 L) was heated at 185oC ± 

5oC for 7 h daily for 7 days. A batch of 400 g of frozen French fries was fried for 5 min 

for a total of eight batches per frying day. At the end of each frying day, the fryer was 

shut off and left to cool down overnight. The last batches of fries from each frying day 

were kept frozen at -16oC until analyzed. Before commencing each frying day, the oil 

was filtered to remove solid debris. The oil was replenished every second day of frying 

with 500 mL fresh oil.  

 The setup described above was used for frying under CDB. The carbon dioxide 

was delivered through stainless-steel tubing (2 mm i.d.) with 0.6-mm holes equally 

distributed alongside of the fryer and at flow rate of 2.5 L/min. The tubing was attached 

to the upper edge of the fryer, and the gas outlets were 1 cm above the oil surface. Oil 
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was purged with CO2 for 10 min prior to commencing frying. At the end of each frying 

day the flow of carbon dioxide was continued until the temperature of oil dropped below 

100oC.  

 

2.2.2 Extraction of lipids 

Samples of French fries (50 g) from each day of frying were chopped into small pieces 

and homogenized with 400 mL of chloroform/methanol (2:1, v/v) following the Folch 

procedure [23]. The solvent/lipid mixture was filtered through paper filter (Whatman #2) 

into a separatory funnel. Distilled water (100 mL) was added, and after mixing, the 

mixture was allowed to separate into two layers. The lower layer was collected in a round 

bottom flask, and the solvent removed under vacuum on a rotary evaporator (BÜCHI 

Labortechnik AG, Flawil, Switzerland) at 35oC. The oil samples were transferred with 

isooctane to appropriately labelled vials, flushed with nitrogen and stored at -16oC until 

analyzed. Extracted oils were used for analysis parameters described in this paper, 

including HNE and acrylamide.  

 

2.2.3 Analysis of HNE 

2.2.3.1  Novel procedure 

Sample of 200 mg of oil in isooctane was loaded into column with conditioned to 5% 

water silica gel. Non-polar fraction was eluted with 10 mL of 15% diisopropyl ether in 

hexane following AOAC Method 982.27 with Schulte modification [24, 25]. Polar 

fraction was eluted with four 5 mL portions of methanol. Combined polar fractions were 

subsequently concentrated under gentle stream of nitrogen to the volume of 5 mL. The 

cloudy solution was then centrifuged at 2300 rpm for 5 min, and the supernatant analyzed 

for HNE by HPLC. Whole polar fraction without prior separation was used directly for 

HNE analysis. 

 

2.2.3.2 DNPH method 

Synthesis and isolation of DNPH derivative of HNE was carried out following the 

Seppanen and Csallany procedure [19]. Briefly, sample of fresh canola oil (1 g) 

containing known amount of added HNE was mixed with 2 mL of freshly prepared 
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DNPH reagent and incubated overnight at room temperature in the dark [19]. Then, the 

oil was extracted three times with 5 mL methanol/water (75:25, v/v) and separated by 

centrifugation at 2500 rpm for 10 min. The clear methanol solution was then extracted 

three times with dichloromethane (5 mL each). After centrifugation, the dichloromethane 

extract was evaporated under gentle stream of nitrogen until the sample size was reduced 

to about 1 mL. The sample was separated on a silica gel TLC plate (20 cm × 20 cm, 0.2 

mm thickness; Whatman) using dichloromethane as the developing solvent. The band 

corresponding to HNE-DNPH was extracted three times with methanol (10 mL each). 

The combined methanol extract was centrifuged at 2500 rpm for 10 min to eliminate 

residual silica. The supernatant was concentrated under nitrogen to 2.0 mL and analyzed 

by HPLC [19]. 

 

2.2.3.3 Solvent extraction of HNE 

Fresh canola oil sample (200 mg) containing known amount of added HNE was dissolved 

in isooctane (2 mL) and homogenized with 5 mL of methanol/water (8:2, v/v) following 

the procedure by Lang et al. [20]. Extraction was repeated three times and the combined 

extract was centrifuged at 2500 rpm for 5 min and the methanol-water layer transferred to 

a clean vial using a Pasteur pipette and volume of sample reduced under nitrogen to 5 

mL. The resulted cloudy solution was centrifuged and clear supernatant transferred to a 

clean vial for HPLC analysis. 

 

2.2.4 Acrylamide 

Acrylamide was determined by a GC-MS method after extraction of it from the fries. 

Deuterated acrylamide was used as internal standard for quantification.  Briefly, 10 g of 

the sample was grinded in a laboratory mill (Grindomax GM200, Retsch, Haan, 

Germany). To 4g of ground sample 50 µL of internal standard solution (150 µg/mL) was 

added and extracted with 50 mL distilled water utilizing sonication at 60°C. The extract 

was centrifuged at 4500 g and the supernatant defatted by extraction with petroleum ether 

and further clarified with 5 mL of each Carrez I and II solution. For separation of the 

precipitate the solution was centrifuged and then acrylamide was salted out with sodium 

chloride. Acrylamide was extracted from the aqueous phase by threefold extraction with 
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30 mL ethyl acetate, each. The organic phase was filtrated by water-repellent filter MN 

616 WA (Macherey-Nagel GmbH, Düren, Germany) to eliminate water and finally 

sample concentrated to about 0.5 mL before analysis on GC-MS. 

 

2.3 Instrumentation 

2.3.1 Gas chromatography-mass spectrometry 

GC-MS analysis were carried out using the electron impact ionization mode (EI) at 70 eV 

on a Hewlett Packard system Model 5890 Series II GC with 5989 series MS A. For the 

determination of acrylamide and deuterated acrylamide the selected ion monitoring (SIM) 

mode was applied using the ions with the following m/z: 74, 71, 58 and 55. The 

quantification was done utilizing the ions with masses 71 and 74. The compounds were 

separated on DB-23 capillary column (30 m x 0.25 mm i.d., 0.25 µm; J&W Scientific 

Products GmbH, Köln, Germany) using helium as carrier gas at a flow rate of 

1.0 mL/min. The column temperature was initially kept at 80°C for 2 min and then 

programmed from 80 to 220°C at 10°C/min. The final temperature was held for 1 min. 

Other operating temperatures were as follows: a splitless injector was held at 240°C; an 

interface at 250°C, and an ion source at 200°C. 

 

2.3.2 High performance liquid chromatography (HPLC) 

Analysis of HNE from the polar fraction was carried out on a Finnigan Surveyor Plus 

HPLC (Thermo Electron, Waltham, MA, USA) with a Finnigan Surveyor Autosampler 

Plus and a Finnigan Surveyor UV-Vis Plus detector. A 20 µL sample was injected onto a 

C18 Novapak column (300 × 3.9 mm, 4 µm; Waters, MA). HNE was detected at 223 nm.  

Acetonitrile/water (30:70 v/v) was used as mobile phase at a flow rate of 0.75 mL/min. 

HNE was identified by comparison of the retention time and co-elution with this 

standard. Confirmation of HNE peak was achieved by mass spectrometry. Quantification 

of HNE was carried out using external calibration. 

 

2.3.3 HPLC-MS/MS 

HPLC was carried out using an Agilent 1200 series HPLC system equipped with binary 

pump and autosampler (Agilent technologies, Palo Alto, CA, USA). Of each sample, 10 
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µL was injected. The sample was separated on the same column as described above using 

a mobile phase consisting of a solvent A (acetonitrile + 0.1% formic acid) and a solvent 

B (water + 0.1% formic acid) (30:70 v/v) at a flow rate of 0.75 mL/min. The UV detector 

was set at 223 nm. The column effluent was splitted at 73:27 ratio, UV detector 0.55 

mL/min while MS 0.2 mL/min. The identification was carried on a QSTAR Elite mass 

spectrometer (AB SCIEX, Concord, ON, Canada) equipped with an APCI interface 

operated in a positive mode. Analyst QS 2.0 software was used for data acquisition and 

analysis. The mass spectrometric conditions were optimized for 4-hydroxynonenal as 

follows: the APCI source temperature was set at 450oC, the curtain gas at 25, the 

declustering potential at 45V, the focus potentials at 150V and the ion source gas 1 and 2 

at 20 and 60 psi, respectively. 

  

2.4 Statistical analysis 

Samples from two repetitions of frying for each frying protocol were collected, and were 

analyzed in duplicate. Data are presented as mean value ± SD. Data were analyzed by 

single-factor analysis of variance (ANOVA) and regression analysis using Minitab 2000 

statistical software (Minitab, PA, USA; ver. 13.2). Statistical differences between means 

were determined by Duncan’s multiple range tests. Statistically significant differences 

were determined at p ≤ 0.05. 

 

3. Results and discussion 

3.1 Analysis of HNE 

A widely applied method for the isolation of HNE from oil matrix prior to HPLC analysis 

usually utilizes 2,4-dinitrophenylhydrazone derivatives of carbonyl compounds, followed 

by solvent extraction and subsequent clean up by thin layer chromatography [19]. The 

procedure is tedious, laborious and it is a possibility that some portion of materials is lost 

during extraction from the TLC plate which rarely is complete. Additionally, all carbonyl 

compounds present in analyzed matrix are derivatized forming complex mixture very 

difficult to separate on individual components. The method developed in the present 

study is simple, and allows assessment of HNE, total polar components (TPC) and their 

composition in a single preparation run. Additionally, the method is sensitive and precise, 
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observed coefficient of variation was below 6%. The new method was compared with 

two commonly used procedures to assess recovery from canola oil. The results for four 

concentrations in Table 1 are presented. Solvent extraction with methanol-water resulted 

in 0, 51, 68 and 71% recovery when assessed for the following levels of the compound: 

0.1, 1, 5 and 10 ppm, respectively [20]. The developed procedure offered recovery at 82, 

103, 91 and 93%, respectively. The most commonly used procedure utilizing the DNPH 

derivatives provided accordingly recovery at 0, 72, 80 and 85% for the same 

concentration of standard. Recovery data indicates that HNE can be measured 

quantitatively at all analyzed levels utilizing the novel procedure. Very low coefficient of 

variation indicates that the new methodology is rapid and potential sources of errors have 

been eliminated. Specific isolation of polar components allows baseline separation of 

HNE peak from other components and improves significantly quantification. 

Additionally, procedure has been simplified by eliminating derivatization and multiple 

extractions and purification steps. The developed procedure makes possible to prepare in 

the single run multiple samples within one working day for the assessment of the amount 

and composition of polar components, and accurate quantification of HNE. 

 

3.2 Identification of HNE in polar fraction by HPLC-MS/MS 

The HPLC chromatogram of HNE standard is presented in Fig. 1a. The peak at 12.7 min 

corresponded to HNE standard. The mass spectrum of the peak is presented in Fig. 1b. 

The base peak at m/z = 157 was consistent with the expected molecular ion [M + H]+. 

The observed daughter ions at m/z 139, 121, 93 and 79 representing [MH – H2O]+, [MH 

– 2H2O]+, [MH – 2H2O – C2H4]
+, [MH – 2H2O – C3H6]

+, respectively and are in the 

agreement with data published by Gioacchini et al. [26].  The observed ions with m/z: 

139 [MH – H2O]+, 97 [MH – H2O – C3H6]
+, 83 [MH – H2O – C4H8]

+, 69 [MH – H2O – 

C5H10]
+,  and 55 [MH – H2O – C6H12]

+ observed for MS/MS fragmentation of the HNE 

molecule (Fig. 1c) are consistent with the expected fragmentation pattern for this 

compound [26, 27]. A typical chromatogram of polar components separation for frying 

oil samples in Fig. 2a is presented. The mass spectrum of the peak corresponding to HNE 

is shown in Fig. 2b. The identical retention time and fragmentation pattern with HNE 
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standard further confirms the presence of this compound in the analyzed samples, further 

validates the newly developed procedure. 

 

3.3 Concentrations of HNE in French fries 

4-Hydroxynonenal is one of the most abundant and most toxic 4-hydroxyalkenal formed 

during lipid oxidation. The same level of HNE was observed in both the frying oil and the 

fries fried in it, and it is in an agreement with previously reported data by Seppanen and 

Csallany [28]. This observation further confirms extensive exchange between frying oil 

and fried products. Irrespective of the frying protocol, HNE concentrations in fries 

increased consistently throughout the entire frying time. Results indicated that frying 

under CDB reduced the amount of HNE by 62% compared to standard frying condition 

(Fig. 3). HNE is a secondary product of lipid oxidation, and the presence of oxygen is the 

main factor stimulating oxidative degradation of oil during frying [12, 29]. Therefore, it 

is expected that any measure that limits the availability of oxygen will inhibit the 

formation of HNE. Carbon dioxide blanketing has been reported to reduce the incident of 

oxidation reaction during frying and current results further support this observation [17]. 

 

3.4 Concentration of acrylamide in French fries 

Acrylamide is a toxic alkylamide formed under frying conditions. The acrylamide 

concentrations in French fries fried under SFC and CDB are presented in Fig. 4. For the 

first day of frying, there was no significant difference (p ≤ 0.05) between both frying 

conditions in the formation of acrylamide. This may be due to the fact that fresh oil in 

both fryers contained comparable amount of dissolved oxygen which is absorbed during 

manipulation and pre-frying purge with CO2 was not effective to remove it. Frying under 

CDB resulted in an average 58% reduction in the amount of acrylamide formed for the 

remaining frying time when compared to SFC (Fig. 4). Apart from the application of 

carbon dioxide during CDB frying, other frying conditions such as frying temperature, 

frying time, surface-to-volume ratio, frying product load, were essentially identical for 

both frying procedures. Therefore, the observed difference in the amount of acrylamide 

can be attributed to the ability of CDB to reduce availability of atmospheric oxygen and 

impede lipid oxidation. Zamora and Hidalgo [14] reported that lipid oxidation products 
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contributed to acrylamide formation in a model system. The potential role of alkadienals 

and other carbonyl compounds as precursors interacting with asparagine which lead to 

formation of acrylamide have been reported [15, 16]. Results from this study support 

observation from model study by Hildago, verifying that oxidation of fatty acids is 

producing precursors required for acrylamide formation.  

 

4. Conclusions 

The present study showed that frying under CDB can considerably reduce the amount of 

toxic components in fries during deep fat frying. Furthermore, the study revealed a 

significant connection between lipid oxidation and acrylamide and HNE formation. 

Additionally, a simplified, quantitative and reliable procedure for analysis of HNE has 

been developed and verified it efficiency.   
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Table 1. Recovery of isolated HNE from spiked canola oil samples by different methods.  

Method HNE added 

(µg/g) 

HNE found 

(µg/g) 

HNE recovery 

(%) 

Solvent Extraction 

0.1 0.00±0.00 0 

1 0.51±0.03 51 

5 3.47±0.19 68 

10 7.09±0.58 71 

    

HNE-DNPH 

0.1 0.00±0.00 0 

1 0.72±0.07 72 

5 3.98±0.40 80 

10 8.50±0.88 85 

    

Modified TPC 

 

0.1 0.08±0.00 80 

1 1.03±0.05 103 

5 4.54±0.23 91 

10 9.31±0.48 93 

Solvent Extraction - procedure according to Lang et al [20]; HNE-DNPH derivatization 

procedure according to Seppanen and Csallany [19]; Modified TPC – novel procedure 

developed in this study, for details see text. 
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A/D Converter Channel 1 from Sample 1 (HNE standard011) of HNE standardSET1.wiff Max. 10.3 %.
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Figure 1a. HPLC chromatogram of HNE standard. (Refer to text for conditions)  
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 +TOF MS: Exp 1, 12.138 to 13.206 min from Sample 1 (HNE standard011) of HNE standardSET1.wiff

a=3.59340737778742380e-004, t0=-1.15113001691061070e+001 (Heated Nebulizer), subtracted (10.234 to 11.603 min)

Max. 107.1 counts.
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Figure 1b. Mass spectrum of the HNE standard. Refer to text for conditions. 
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 +TOF Product (157.1): Exp 2, 12.956 to 13.323 min from Sample 1 (canola oil -HPLC004) of canola oil -HPLCSET1.wiff

a=3.59326858723563270e-004, t0=-1.14056793097188350e+001 (Heated Nebulizer), subtracted (9.750 to 10.451 min)

Max. 31.4 counts.
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Figure 1c. MS/MS spectrum of the HNE with molecular ion at m/z 157.  
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A/D Converter Channel 1 from Sample 1 (SFO-2006) of SFO-2SET1.wif f Max. 15.0 %.
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Figure 2a. HPLC chromatogram of polar material isolated from frying oil with the novel 

procedure. HNE peak is marked. Refer to text for conditions. 
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 +TOF MS: Exp 1, 12.278 to 12.564 min from Sample 1 (SFO-2006) of SFO-2SET1.wiff

a=3.59326858723563160e-004, t0=-1.14056793097188350e+001 (Heated Nebulizer), subtracted (9.344 to 9.728 min)

Max. 2077.6 counts.
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Figure 2b. Mass spectrum of peak corresponding to HNE in extracted polar material 

from frying oil. For details see text. Peak at m/z = 157.1246 representing HNE. 
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Figure 3. Formation of HNE during frying under standard frying conditions (SFC) and 

carbon dioxide blanketing (CDB). 
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Figure 4. Formation of acrylamide during frying without (SFC) and with carbon dioxide 

blanketing (CDB).  
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Abstract: A rapid, effective and mimicking actual frying test was developed to assess the frying 

performance of oils and fats using small size samples. To small volume of tested oil a formulated 

food consisting of  gelatinized potato starch, glucose and silica gel, (4:1:1 w/w) were added and 

content heated at 185 ± 5oC  with mixing for 2 h. Thermo-oxidative degradation of oil was assessed 

by the measurement of total amount of polar components and their composition, including 

degradation of tocopherols. The developed fast test is accurately mimicking actual frying done using 

institutional fryer as assessed by the accumulation and composition of total polar components and 

the amount of residual tocopherols. The validity of the test was assessed using the following oils: 

regular canola, high oleic low linolenic canola, and high oleic sunflower. Comparison of data 

between the fast frying test and institutional frying revealed lack of significant differences. The 

developed frying test is providing reliable quantitative and qualitative data describing performance 

of frying oil/fat. The rapid frying procedure allows assessment of the frying performance of oils at 

the early stages of a development where usually small amounts of sample is available and when 

large number of samples have to be tested assessing effects of oil additives.  

 

 

Keywords: Frying performance, fast test, polar components, additives, tocopherols, oils 
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Introduction 

During deep fat frying, oils are subjected to hydrolysis, oxidation and polymerization reactions. In 

institutional frying operation oils are used for several cycles, which accelerate degradation leading 

to a variety of products and impacting: the physical properties, flavor and nutritional value of the 

frying oil and fried food. Thus, the heat stability of frying oils is a vital criterion in the selection of 

fats and oils for institutional and commercial frying [1]. 

Often, official and recommended methods such as the Rancimat and Schaal oven tests are 

employed to assess the oxidative stability of oils at elevated temperature [2]. Currently, none of the 

standard procedure is testing performance at the standard frying temperatures ranging from 165 to 

190oC.  It has been observed that the type of chemical reactions taking place during frying is 

different from those happening during heating without food and from ones occurring at ambient 

temperature [3]. Furthermore, the performance of some endogenous antioxidants is affected by 

temperature. For instance, sterols, ascorbyl palmitate, or sesamolin are nearly inactive at 

temperatures below 130oC, whereas all are powerful antioxidants in deep fat frying [4]. 

Additionally, various components of the fried food are known to participate in the reactions 

occurring at frying conditions [5].  

In addition to the well known radical mechanism of lipid oxidation and polymerization, 

Brütting and Spitteller [6] proposed nonradical mechanism for the formation of dimers and cyclic 

triacylglycerides during frying. Recently, based on the information on the nonradical mechanism, 

Gertz et al [4] developed the oxidation stability at elevated temperature index (OSET). The principle 

of this method is based on the accelerated triacylglycerides dimerization stimulated by water 

conditioned silica gel and treatment at the frying temperature for 2h. Employment of this procedure 

in our laboratory, and subsequent HPLC analyses for composition of polar materials and the amount 

of residual tocopherols indicated that the results were similar to the actual frying for less than 6 h, or 

about 1 day of intermittent frying operation. Besides, the performance and behavior of oils during 

first day of frying does not represent its performance over prolonged time such as is utilized during 

typical institutional frying. Thus, the method is limited when it comes to acquiring quantitative and 

qualitative data describing frying performance of oils, or to assess performance of natural and/or 

synthetic antioxidants during prolonged frying. The need to assess performance of oil during 

prolonged frying when small size sample is available still remains imperative. Furthermore, 
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assessing effect of different factors, particularly endogenous minor components or antioxidants 

where large number of tests has to be performed requires rapid and reliable testing procedure.  

Different factors interplay in the determination of types of chemical reactions and the nature of 

chemical products formed during deep fat frying includes: (1) the type of fryer used; (2) the ratio of 

oil surface area to volume; (3) the ratio of oil volume to mass of food fried and (4) availability of 

oxygen. Although at the elevated temperature during deep fat frying, oxygen supply is limited by 

blanketing with the steam coming from fried food and is also limited by the lower solubility at 

elevated temperature, even at these limiting conditions the influence of oxygen still remains 

important [7]. Oxygen is continually introduced into the frying medium when a new portion of food 

containing adsorbed and absorbed oxygen is placed in it, and by the subsequent agitation of the oil 

during frying mainly by escaping water vapours. In the reliable frying test these factors ought to 

work together to truly mimic actual institutional frying. 

Actual deep fat frying in standard fryer remains the best method when assessing frying 

performance of oils. However, a rapid and cost-effective procedure generating reproducible and 

comparable results remains a very interesting task. This becomes particularly important when it is 

required to assess the frying performance of expensive, newly designed oils with limited quantity, or 

to evaluate novel antioxidants designed for frying applications. Previous attempts to simulate the 

prevailing conditions during actual frying for routine evaluation of thermo-oxidative degradation of 

frying oils include: Frying of moist cotton balls [8]; Spraying oil with water during heating at frying 

temperature [9]; Heating to a frying temperature in a Rancimat apparatus [10]; and recently, Heating 

to frying temperature in the presence of water conditioned silica gel [4]. Some of the shortcomings 

of the proposed procedures include: (1) The need for prolonged heating, in the excess of 8 h, to 

achieve sufficiently high amount of TPC formed; (2) Heating without food may not be 

representative of the reactions occurring during actual frying; and (3) Relatively large amount of 

sample required.  In the present study, the development of the rapid frying test (FT) was directed to 

its optimization to mimic as close as possible the accumulation and composition of polar 

compounds, and the amount of residual tocopherols (RTOC) achieved when frying using standard 

fryer (SF). Furthermore, the heating period and the amount of sample were reduced for faster and 

more effective routine assessment of stability of the frying oil. Developed test is allowing utilization 

of the most effective analytical parameters directly describing degradation rate of frying oil and its 
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performance in standardized conditions. One of the main reasons why rapid test was developed is a 

comparison of oil/fat performance measured at well established conditions, allowing direct 

evaluation of stability.   

 

Materials and Methods 

 

Oils and French fries 

Commercially refined oils were supplied by Richardson Oilseed Limited (Lethbridge Canada). 

Three oils were used in investigation: canola oil (CAN), high oleic low linolenic canola oil 

(HOLLCAN), and high oleic sunflower oil (HOSUN). Frozen par-fried French fries in institutional 

packs were obtained from a local food store. 

 

Ingredients  

Silica gel 60Å (70 – 230 mesh), alumina 58Å (150 mesh), Celite 512, hydrolyzed starch, potato 

starch, D-glucose, FeSO4, and CuSO4 used for formulation of replacement food in the rapid test 

were obtained from Sigma-Aldrich (St. Louis, MO). Water conditioned silica gel, alumina and 

Celite were prepared by heating the material for 24 h at 160oC, and adjusting the water content to 

10, 20 or 40%.  

 Mixture to mimic fried food, abbreviated as formulated food (FF), was prepared by mixing 4 g 

of potato starch, 1 g of glucose and 1 g of silica gel with 5 mL of cold distilled water, and then 15 

mL of boiling water was added. The mixture was transferred onto a hot plate preset at 110oC, and 

heated for 2 min with continuous mixing. The resulted gel was left uncovered to cool to room 

temperature. The moisture content of the gel was at 64.7 ± 2.1% 

 

Fast frying test and oil sampling 

Vegetable oil (12.0 g) was weighed into a clean glass beaker (30 mL, Pyrex, USA). Clean octagonal 

stir bars (9.5 × 25 mm, Fischer Scientific, USA) was placed into the glass vessel, altering the final 

ratio of oil surface area to volume at 0.42.  The oil sample in glass beaker was heated at 185 ± 5oC 

for 10 min, and 1.2 g of FF was added. The heating was continued for another 20 min without 

mixing and then was stirred at 500 rpm. Heating and stirring were continued for the additional 90 

min. About 0.5 g of oil sample was withdrawn at the 60th, 80th, 100th, and 120th min for the analysis. 
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Actual frying and oil sampling 

Actual frying was conducted in an 8 L capacity restaurant style stainless steel deep fryer (General 

Electric Company, New York, USA). Vegetable oil (4 L) was heated at 185 ± 5oC, 7 h daily for 7 

days. A batch of 400 g of frozen French fries was fried for 5 min for a total of eight batches per 

frying day. At the end of each frying day, fryers were shut off and left to cool overnight. Two 25 mL 

samples of oil from the fryer were taken daily and kept frozen at -16 oC until analyzed. Before 

commencing next frying day, oils were filtered to remove solid debris and were replenished every 

second day of frying with 500 mL of fresh oil. 

 

Total Polar components (TPC) 

The amounts of polar compounds were determined by gravimetric procedure following AOAC 

Method 982.27 with the Schulte modification [11, 12]. 

 

Composition of polar components 

The composition of polar components was analyzed by high performance size exclusion 

chromatography (HPSEC) following the ISO Method 16931-2007 [13]. Separation was performed 

on a Finnigan Surveyor chromatograph (Thermo Electron Corporation, West Palm Beach, FL). 

Components were separated on three size exclusion columns connected in series (Phenogel 500A, 

100A and 50A, 5µ, 300 x 4.6 mm; Phenomenex, Torrance, CA), with tetrahydrofuran (THF) as the 

mobile phase at a flow rate of 0.3 mL/min. Columns were held at temperature of 30oC. A 10 µL 

sample was injected and components detected with a Sedex 75 evaporative light scattering detector 

(Sedere, Alfortville, France) operated at 35oC with air pressure of 2.5 bar. 

 

Tocopherols 

Tocopherols were analyzed using high performance liquid chromatography (HPLC) based on the 

AOCS Official Method Ce 8-89 [2]. Analysis was performed on a Finnigan Surveyor LC (Thermo 

Electron Corporation, West Palm Beach, FL) with a Finnigan Surveyor Autosampler Plus and 

Finnigan Surveyor FL Plus fluorescence detector, set for the excitation at 292 nm and the emission 

at 325 nm. Separation of tocopherol isomers was carried out on a normal phase Diol column (250 × 

4.6 mm; MonoChrom, Varian, CA). Of each sample, 10 µL was injected. Mobile phase contained 
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7% methyl-tert-butyl-ether in hexane with a flow rate of 0.6 mL/min. The contents of tocopherols 

were quantified using calibration curves for each isomer separately. 

 

Statistical analysis 

Samples from three repetitions of each model frying experiment were analyzed in duplicate. For the 

actual frying experiments, samples from two repetitions of frying in each oil were collected and 

were analyzed in triplicate. Data are presented as mean ± SD. Data was analyzed by single factor 

analysis of variance (ANOVA) and regression analyses using Minitab 2000 statistical software 

(Minitab inc. PA, ver. 13.2). Statistically significant differences between means were determined by 

Duncan’s multiple range tests for P ≤ 0.05. 

 

Results and Discussion 

The type of reactions, the nature of products and the consequent performance of vegetable oil during 

deep fat frying depend, among other factors, on: the ratio of oil surface area to volume (S/V), 

availability of oxygen, and the presence of antioxidant/prooxidant in the frying medium. The effects 

of these parameters in a frying test were studied and accordingly adjusted to reproduce the amount 

and composition of polar components, and degradation of tocopherols as it happen in standard 

institutional frying. 

 Results showed that there was no significant difference in the amount of total polar compounds 

(TPC) formed at the end of 2 h of test frying when silica gel, alumina or celite were used to imitate 

frying foods (Table 1). A direct relationship was observed between the amount of TPC and S/V ratio 

(Table 1). Irrespective of the size of the heating vessel, systems with the S/V ratio of 0.75 provided 

the highest level of thermo-oxidative degradation. Lower S/V ratios, particularly at 0.27, exhibited 

the slowest rate of degradation (Table 1). Mezouari and Eichner [14] reported a significant increase 

in the rate of degradation of tocopherols with a concomitant increase in the accumulation of 

polymeric materials when oil was heated with stirring. This is probably due to the increased surface 

area of oil and better access to oxygen during stirring of the heated oil. A similar agitation of oil is 

happening when food, usually frozen, is introduced into the oil during frying. Rock and Roth [15] 

demonstrated that circulation of oil significantly increased the rate of fat deterioration.  
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 Likewise, the water contents in the FF did not lead to the substantial differences in the amount of 

TPC, however, the contribution of diacylglycerides in the polar material significantly increased 

when the water content was increased to 40% (Table 2). This may substantiate effect of water 

content in frying food on hydrolysis of triacylglycerides.   

 The determination of TPC in frying oil is the most reliable measure of the extent of thermo-

oxidative degradation [16, 17]. In order to achieve a rate of TPC formation similar to usually 

obtained during the 7 days of SF the effect of stirring at 400, 450, 500 and 600 rpm were studied. 

Within the 2 h heating period, a combination of 500 rpm stirring and S/V ratio of 0.42 was 

established as optimal. Utilizing developed conditions, the effect of several FF combinations on the 

amount and composition of polar components, and the degradation of tocopherols were studied 

(Table 2). The pro-oxidant effects of copper and iron ions are well established [7]. Gertz et al [4] 

suggested that hydrated silica gel catalyzed the non-radical dimerization of triacylglycerides, and 

utilized it in the OSET test.  The rate of oil degradation during frying was increased when starchy 

product are fried [18]. The formulated food to mimic typical food product usually fried has to have 

similar water content to stimulate hydrolytic reaction. Pokorny [19] observed that frying gelatinized 

starch impregnated with glucose produced a sweet flavor, indicating an interaction between the fried 

food and the oil at frying temperature. Thus, the FF used in the developed frying test contained 

gelatinized starch mixed with 16% glucose and the same amount of silica gel. Selection of 

ingredients was directed by the major reactions involved in oil degradation during frying, including: 

(1) The water content was adjusted to the average amount among most fried food; (2) Starch and 

glucose are the most common ingredients present in the most foods, sometimes as an ingredient or is 

added to the food in different form (e.g. breading); (3) Silica gel is simulating the acid catalyzed 

non-radical dimerization of triacylglycerides; (4) The potato starch contains: 80% starch, 0.1% 

protein, and approximately 3 - 5 ppm of iron, providing ingredients which are usually present in the 

fried foods. (5) To further explain, low amount of proteins in FF is dictated by the type and role of it 

during the frying. Potato protein contains mainly low molecular proteins which are the most active 

in pigments formation. Additionally, proteins are not directly involved in lipids degradation, mostly 

involved in pigments formation utilizing lipids degradation precursors. Although the optimized FF 

used in this study does not entirely represents the variation of the food ingredients used in frying, the 

components were deliberately chosen to simulate reactions and processes taking place during SF. 

Utilization of this formulation in the frying test endow with  the degradation rate observed during 
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institutional frying. The rate of TPC formation in heated oil in the absence of food was significantly 

different from the results of the FT when oil was heated with the presence of FF (Table 2). On the 

other hand, differences were observed in the distribution of polar components. In samples heated 

without FF, over 60% of the polar material was formed by oxidized triacylglycerides, indicating 

prevalence of oxidation over oxides degradation reactions, contrary to what is usually observed 

during institutional and prolonged deep fat frying [4]. Generally, addition of metal ions such as iron 

and copper, exhibited a significantly higher rate of TPC formation and significantly faster 

degradation of tocopherols (Table 2).  Of the tested FF’s, when ingredients were added to 

gelatinized starch the amounts and the compositions of TPC formed was very close to the targeted 

values usually achieved during the 7 days of SF, suggesting similar mechanism of oxidative 

degradation (Table 2).  

 Three frying oils, namely canola, HOLL canola and HO sunflower oils were tested by both the 

frying tests and actual frying. The formation of TPC is presented in Figure 1. At the end of the 

frying test, the amount of formed TPC in CAN, HOLLCAN, and HOSUN were 23.7, 22.5, and 

20.3%, respectively (Fig. 1). These values were between 93.1 – 96.6% of the values obtained for 

these oils at the 7th day of the actual frying (Fig. 1). Comparable results were also obtained in the 

distribution of polar components (Fig. 2 - 5). The respective contribution of polymers at the end of 

the frying test using CAN, HOLLCAN, and HOSUN oils were 9 to 14% lower than the amounts 

observed for the actual frying (Fig. 2). Oil samples from the frying test contained higher amounts of 

dimers and oxidized triglycerides than corresponding oils from the actual deep frying (Fig 3). The 

contribution of dimers was lower by 12% in samples from the actual frying, this difference can be 

within experimental error usually achieved between frying experiments. Unlike other groups of 

polar material, the amounts of diacylglycerides formed during the frying test using different oils was 

close to 50% lower when comparing to the actual frying (Fig. 5). The amounts of tocopherols 

remaining in the oils during the test frying were comparable to the values obtained during the actual 

frying (Fig 6). Controlled stirring at 500 rpm with the FF added resulted in the residual tocopherol 

amounts within 83.5 to 90.8% of the values observed for the actual frying at 1, 3, 5 and 7 day of 

frying (Fig. 6).  

 To extend the prediction of the frying test to earlier stages of frying, samples were collected at 

several sampling points, and were analyzed for degradation products. Results reflected that samples 
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withdrawn at the 60th min provided information on the frying performance of the oil during the first 

day of the actual frying. While the samples collected at 80th min for 2nd and 3rd day, at 100th min for 

4th and 5th day, and at 120th min for 6th and 7th day, are comparable to performance of oil during the 

actual frying. Calculated slopes for polar components formation and degradation of tocopherols, 

which describe kinetics of degradation, were the same in all cases further proving that mechanism of 

changes was the same in actual and test frying (Data not included). 

 The consistency of the results obtained for the tested oils evidently showed that the developed 

frying test can offer a fast, reliable and reproducible prediction of frying performance of oils and fats 

during the actual frying. With the frying test the rate of tocopherols degradation can be predicted, 

which is a useful indicator of frying oil stability.  

 In conclusion we developed rapid procedure that offers fast and reliable assessment of frying 

performance of oil(s), oil additives and antioxidants. The procedure is designed to be utilized in 

assessment of the frying performance at the early stages of oil development, where usually small 

size samples are available. This procedure can be a practical test to be applied at the breeder level to 

improve selection of proper lines of new oils intended for frying operation. The procedure presented 

in the paper is specific to the standard frying condition, nevertheless, the following assessments can 

be done with it: (1) Establishing performance and fry-live of the frying oil; (2) Assessing 

effectiveness of antioxidants; (3) Assessing performance of oilseed lines at the breeder level; (4) 

Establishing activity of minor components during frying where usually large number of combination 

need to be evaluated.  
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Table 1: Effect of selected compounds, water content, mixing rate and oil surface to volume ratio on 

the formation of polar components during frying test. 

Additives Water 
content 

S/V  Stirring (rpm)  

0 400 450 500 600 

Silica gel 

10% 

0.75 14.1±0.9 17.7±1.6 21.1±1.9 27.1±2.0 34.9±3.2 

0.42 10.9±0.7 15.7±0.8 17.8±1.3 22.3±1.9 28.7±1.9 

0.27 7.5±0.5 8.8±0.4 11.9±1.0 13.8±1.1 18.3±1.6 

20% 

0.75 13.3±1.1 18.4±1.1 20.0±1.5 25.2±1.1 32.1±2.4 

0.42 10.3±0.8 14.9±1.3 16.5±1.6 23.9±1.9 31.3±1.9 

0.27 7.5±0.5 9.1±0.8 11.5±0.9 14.1±0.9 17.5±1.5 

40% 

0.75 15.3±1.2 18.2±1.3 21.9±1.8 26.9±1.9 32.9±3.1 

0.42 10.7±0.8 15.2±1.3 17.5±1.5 21.8±2.1 29.1±1.3 

0.27 7.3±0.6 8.9±0.7 12.1±1.1 15.9±1.3 18.0±1.3 

Alumina 

10% 

0.75 13.9±1.3 17.9±1.5 20.1±1.8 26.1±2.0 33.9±2.2 

0.42 11.1±1.0 14.8±1.4 16.1±1.3 22.1±1.9 29.7±2.9 

0.27 7.8±0.4 8.5±0.6 11.6±0.8 15.1±1.7 17.3±1.6 

20% 

0.75 14.8±0.9 17.0±1.5 21.1±1.4 27.7±2.4 32.3±2.9 

0.42 11.0±0.9 15.5±0.9 16.9±1.5 21.2±1.7 28.3±2.1 

0.27 8.6±0.7 9.9±0.7 12.4±0.6 14.3±1.1 17.7±1.7 

40% 

0.75 15.7±1.3 18.0±1.5 20.7±0.8 26.9±2.3 31.5±2.7 

0.42 10.9±0.8 14.9±0.8 16.9±1.4 20.9±1.9 27.1±2.1 

0.27 7.0±0.4 9.2±0.5 11.7±0.9 15.1±0.5 17.7±1.4 

Samples were heated for 2 h at 185 ± 50C with and without stirring. S/V – Ratio of oil surface area 

to volume. 
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Table 2: Formation of polar components and degradation of tocopherols during frying and frying 
test using canola oil and various formulations of mimicking food (%)f. 

Componenta TPC Polymer Dimers OxTAG DG RTOC 

Canola oilb 20.8±1.7 6.4±0.4 29.8±1.9 61.2±3.9 2.3±0.2 18.3±2.0 

Silica (10% water) 22.2±2.4 8.8±0.3 33.2±2.4 54.7±3.1 2.4±0.1 14.8±1.2 

Silica (20% water) 22.9±1.9 8.1±0.2 32.9±3.0 56.1±3.7 2.7±0.2 10.9±1.0 

Silica (40% water) 21.8±2.0 7.9±0.4 35.3±2.1 52.2±4.0 3.9±0.2 15.1±1.3 

CuSO4 (50µg/g) 24.5±2.1 6.1±0.5 32.2±2.1 60.1±4.2 1.6±0.1 6.3±0.5 

FeSO4 (50µg/g) 26.7±2.5 6.9±0.2 37.8±3.0 52.5±2.8 1.9±0.1 5.1±0.5 

Silicac + CuSO4 (50µg/g) 24.9±2.3 7.7±0.5 34.1±3.1 55.8±2.1 2.1±0.1 5.8±0.3 

Silicac + FeSO4 (50µg/g) 25.6±2.0 8.1±0.5 38.4±2.5 51.8±3.0 1.7±0.1 7.3±0.4 

Potato starch  22.1±1.9 7.6±0.3 32.1±2.9 57.5±3.3 2.5±0.1 14.1±1.4 

Hydrolyzed starch  20.2±1.8 8.9±0.6 32.0±2.7 56.3±2.7 2.8±0.2 15.2±1.1 

(Starch+glucose+silica)d 23.7±1.5 13.3±0.9 36.4±2.1 44.7±3.0 4.5±0.2 12.0±1.1 

Institutional fryinge 24.9±2.0 15.6±1.2 32.6±1.6 41.1±2.9 9.6±0.4 13.3±0.8 

a - Apart from the salts, all components were added at 10% of the oil weight; b - Canola oil heated at 

the frying test conditions; c - Added silica gel containing 40% water. d - A formulated food 

containing gelatinized starch, glucose, silica gel and water at 4:1:1:65 w/w. e - Values from the 7th 

day of actual frying using canola oil. f – Testing conditions: temperature 185 ± 5oC; stirring at 

500rpm; time 2h; the ratio of oil surface to volume at 0.42. OxTAG – Oxidized triacylglycerides; 

DG – Diacylglycerides; RTOC – Residual tocopherol. 

 



 

 

15 

 

Frying time [days]

0 1 2 3 4 5 6 7

T
o

ta
l 

p
o

la
r 

co
m

p
o

u
n

d
s 

[%
]

5

10

15

20

25 CAN 
HOLLCAN 
HOSUN 

Frying test time [min]

0 20 40 60 80 100 120

CAN
HOLLCAN
HOSUN

 

 

 

Fig. 1: Polar components formation during the actual (F) and the test (T) frying using different oils. 

CAN- canola oil, HOLLCAN – high oleic low linolenic canola oil; HOSUN – high oleic sunflower 

oil.  
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Fig. 2: Contribution of polymers in the total polar compounds formed during the actual and the test 

frying using different oils. For oil abbreviations and symbols explanation see Fig 1.  
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Fig. 3: Contribution of dimers in the total polar compounds formed during the actual and the test 

frying utilizing different oils. For oil abbreviations and symbols explanation see Fig 1.  
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Fig. 4: Contribution of oxidized triacylglycerides (OxTAG) in the total amounts of polar compounds 

formed during the actual and the test frying using different oils. For oil abbreviations and symbols 

explanation see Fig 1.  
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Fig. 5: Contribution of diacylglycerides in the total amount of polar compounds formed during the 

actual and test frying in different oils. For oil abbreviations and symbols explanation see Fig 1.  
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Fig. 6: Changes of tocopherols during the actual (F) and the test (T) frying in the different oils. 

For oil abbreviations and symbols explanation see Fig 1.  
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Abstract: The endogenous minor components from canola, rice bran, sesame and palm oils 

including selected phospholipids, and various combinations of tocopherol isomers were tested 

during frying using canola oil triacylglycerols as frying medium. Thermo-oxidative degradation was 

assessed by measurement of total polar components, the rate of volatile carbonyl compounds and 4-

hydroxynonenal formation. All the tested minor components protected to different extend canola 

triacylglycerides from thermo-oxidative degradation during frying. No significant differences were 

observed in protection of the triacylglycerides among all the tested tocopherol isomers and their 

mixtures. Irrespective of the composition of tocopherol homologous, an increase in the added 

amounts above 1000 µg/g did not improve protection. Minor components isolated from rice bran 

and sesame oils offered better protection during canola triacylglycerides frying than endogenous 

minor components isolated from canola oil.  When 0.2% phosphatidylcholine or 

phosphatidylethanolamine was added to the canola triacylglycerides, the amount of formed polar 

components decreased twice compared to the tocopherol isomers. Accordingly, by optimizing the 

composition and the concentration of the endogenous minor components, the frying performance of 

oil can be significantly enhanced. 

 

Keywords: Minor components, canola oil, rice bran oil, palm oil, tocopherols, sterols, 

phospholipids, frying performance. 
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Introduction 

 

Under frying conditions, large number of volatile and non-volatile compounds is produced. Not only 

these compounds adversely affect the stability of the frying oil, but the food fried in the deteriorated 

oil acquires a significant amount of decomposition products that may have potentially adverse 

effects on the safety, flavour, nutritional value, and stability of a fried food. Moreover, several 

studies have shown that a number of volatile compounds formed during frying exhibit carcinogenic, 

mutagenic and genotoxic properties [1 – 3]. In consequence, the thermal stability of frying oils is a 

vital criterion in the selection of frying medium [4]. The search for oil with improved frying stability 

has led to the several modifications of the fatty acid composition of many commodity oils [5 – 9]. 

On the other hand, a body of research has demonstrated the significant role of endogenous minor 

components on frying stability of oil [10 – 14]. 

The amount and relative contribution of linoleic, linolenic and other unsaturated fatty acids in 

canola oil makes it desirable as a good source for essential fatty acids. However, the susceptibility of 

these acids to oxidation demands measures that will increase the oil’s frying stability without 

compromising it nutritional value. Previous work in this area focused mainly on the influence of 

added tocopherols on the frying stability, with relatively fewer reports on the use of other natural 

antioxidants [14–17]. So far, there has been no report on the effect of endogenous minor 

components from rice bran, sesame and palm oils on the frying stability of canola oil. Although, a 

few papers have reported the frying performance of canola oil blends with palm olein, olive and 

corn, rice bran, and sesame oils [18-22]. These blends had changed fatty acid, triacylglycerols and 

minor components compositions and make it impossible to assess the effect of the endogenous 

minor components [23,24]. 

In the present study, the effects of  selected phospholipids, various combinations of tocopherol 

homologues, and minor components isolated from canola (CO), rice bran (RBO), sesame (SO) and 

palm oils (PO) on the frying performance of antioxidant stripped canola oil triacylglycerides were 

assessed. The vegetable oils chosen for this study contain unique endogenous minor components 

which are not found in canola oil, namely, tocotrienols and oryzanol in RBO, lignans in SO, and 

tocotrienols and carotenoids in PO.    
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Materials and Methods 

 

Materials 

Commercially processed regular canola oil was donated by Richardson Oilseed Limited 

(Lethbridge, Canada). High oryzanol rice bran (RBO) and red palm oils were gifts from Rito, Inc. 

(Stuttgart, Arkansas, USA) and Golden Jomalina Food Industries (Kuala Langat, Malaysia), 

respectively. Neutral alumina (70-230 mesh), silica gel 60Å (70 – 230 mesh), D-glucose, and potato 

starch were purchased from VWR (Edmonton, Canada). Phosphatidylcholine (>99%), 

phosphatidylethanolamine (~98%), β-carotene and 4-hydroxynonenal (HNE) were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). BSTFA (N,O-bis(trimethylsilyl)trifluoroacetamide, TMCS 

(trimethylchlorosilane), and pyridine were obtained from Supelco (Bellefonte, PA, USA). Standards 

of tocopherols were purchased from Calbiochem-Novabiochem (San Diego, CA, USA). Standard of 

γ-oryzanol was provided by Oryza Oil and Fat Chemical Co. Ltd (Ichinomiya-City, Japan). 

Standards of volatile carbonyl compounds were purchased from Bedoukian Research (Danbury, CT, 

USA), all were subsequently derivatized to dinitrophenylhydrazones [25]. 

 

Preparation of antioxidant stripped canola triacylglycerides and isolation of minor components.  

Isolation of endogenous minor components and triacylglycerides from canola and rice bran oils 

including further purification of fractions in Scheme 1 is presented. Canola oil was stripped of its 

endogenous minor components including antioxidants via adsorption chromatography, following the 

procedure described by Lampi and Kamal-Eldin [26] with modifications. A slurry of alumina (1 kg; 

activated at 103 oC for 16 h and at 200 oC for 8 h) in 2 L of hexane was loaded to a glass 

chromatography column (950 × 50 mm i.d.). The hexane was allowed to flow helping with proper 

and even packing. Canola oil (500 g) dissolved in 500 mL hexane was loaded into the packed 

column. The first 800 mL of the eluting hexane was discarded, followed by 3.7 L hexane containing 

431 g of purified canola triacyglycerols (CTG). The canola oil minor components (CMC) were 

recovered from the column by elution with 2.5 L of 10% methanol in methyl tert butyl ether. Both 

the column and collection vessels were wrapped in aluminum foil to prevent photo-oxidation. The 

CTGs were stored as hexane solution at -16 oC until used in the experiments. From rice bran oil 

minor components were similarly isolated forming rice bran triglyceride (RBTG) and minor 

components fraction (RBMC). 
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Purification of minor components 

The recovered minor components from canola and rice bran oils were further separated into two 

fractions by adsorption chromatography. Conditioned silica gel was prepared by heating it for 24 h 

at 160 oC, and the water content adjusted to 5% by addition of stoichiometric amount of water. 

Slurry of 120 g of the conditioned silica gel in 150 mL of hexane was loaded into a glass 

chromatography column (600 × 45 mm i.d.) allowing constant flow of hexane until the packing was 

evenly packed. Minor components, 20 g, dissolved in 30 mL of hexane were introduced into the 

column. Tocopherol fraction was subsequently eluted with 750 mL of 5% methyl tert butyl ether 

(MTBE) in hexane while sterols fraction with 750 mL of 50% MTBE in hexane. The purity of 

fractions was monitored by thin layer chromatography. Collected fractions were concentrated under 

vacuum using a rotary evaporator (BÜCHI, Flawil, Switzerland) providing 2.5 g of golden oil for 

tocopherol fraction and 15.3 g of yellow oil for sterol fraction. Both the column and collection 

vessels were wrapped in aluminum foil to prevent photo-oxidation. The fractions were stored in 

hexane at -16 oC until used in the experiments.  

 

Purification of tocopherol and sterol fractions 

Tocopherol fraction from canola and rice bran oils were further purified by preparative thin layer 

chromatography (PTLC) using MTBE/hexane (2:8, v/v) as developing solvent. Bands corresponding 

to the tocopherols were scrapped off and eluted three times with 10 mL of MTBE. Combined 

extracts were concentrated under vacuum using a rotary evaporator, flushed with nitrogen and kept 

in hexane at -16 oC until used in the experiments. From 1 g of starting tocopherol fraction 157 and 

313 mg of purified tocopherols were obtained from canola (TCAN) and rice bran (TRBO) oils, 

respectively. Sterol fractions from both oils were similarly purified by PTLC using MTBE/hexane 

(65:35, v/v) as the developing solvent. From 1 g of initial sterol fraction 219 and 402 mg of purified 

sterols fractions was isolated from canola (SCAN) and rice bran (SRBO) oils, respectively.  

 

Solvent extraction of endogenous minor components 

Minor components were extracted directly from rice bran oil according to Miraliakbari and Shahidi 

[27] procedure with modifications. Briefly, 200g of oil was placed in a 500 mL capacity separatory 

funnel and 200 mL methanol added followed by agitation for 5 min with periodic venting. The 

mixture was allowed to sit at room temperature for 1 h to allow separation of oil from methanol. The 

extraction was repeated 12 times with the same volume of fresh methanol. Extracts were combined 
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and excess of methanol evaporated under vacuum using a rotary evaporator. The 9.4 g of light 

yellow gummy material coded RBOS was flushed with nitrogen and stored at -16 oC until used in 

the experiments. Minor components from sesame and palm oils were extracted in the same way and 

coded SOS and POS, respectively. 

 

Formulation of food for frying  

A mixture of selected food ingredients was prepared to mimic as closely as possible typical frying 

food providing similar degradation processes as usually happening during French fries frying. Slurry 

of 4 g of potato starch, 1 g of glucose and 1 g of silica gel in 5 mL of cold distilled water was 

prepared then to it 15 mL of boiling water was added. The mixture was placed onto a hot plate 

preset at 110 oC, and heated for 2 min with continuous mixing. The resulted gel was left uncovered 

to cool to room temperature and used as formulated food (FF) in all frying experiments. 

 

Frying test  

An oil or purified triacylglycerides (12.0 g) were weighed into a clean, acid-washed glass beaker (30 

mL, Pyrex, USA). Clean octagonal stir bars (9.5 × 25 mm, Fischer Scientific, USA) was placed into 

the glass vessel with oil, altering the surface-to-volume ratio of oil to 0.42.  The vessel was heated at 

185 ± 5 oC for 10 min, then 1.2 g of FF was added. The heating was continued for another 20 min 

without mixing and continuous stirring initiated at 500 rpm. Heating and stirring were maintained 

for additional 90 min. About 0.5 g of oil was withdrawn at the 60th, 80th, 100th, and 120th min for 

analysis. Selected sampling intervals reflect frying time at standard conditions for 1, 3, 5 and 7 days 

of actual frying using institutional fryer (General Electric Company, NY, USA) and are based on the 

amount and composition of polar components formed.  

 

Total Polar components  

The amount of polar components (TPC) was determined by gravimetric method following AOAC 

Method 982.27, using column chromatography to separate non−polar from polar fraction as 

described in Schulte modification [28, 29].  
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Tocopherols 

Tocopherols were analyzed according to AOCS Official Method Ce 8-89 [30]. Briefly, 50 mg of oil 

samples were weighed directly into autosampler vials and dissolved in 1 mL hexane. Analyses were 

performed on a Finnigan Surveyor HPLC (Thermo Electron Corp., Waltham, MA, USA) with a 

Finnigan Surveyor Autosampler Plus and Finnigan Surveyor FL Plus fluorescence detector, the later 

was set for excitation at 292 nm and emission 325 nm. The column was a normal phase Diol column 

(5µm; 250 × 4.6 mm; MonoChrom, Varian, CA, USA). Of each sample, 10 µL was injected. Mobile 

phase consisted of 7% methyl-tert-butyl-ether in hexane with a flow rate of 0.6 mL/min. The 

amounts of tocopherols were quantified using external calibration for each isomer separately.  

 

Phytosterols 

Compositions of phytosterols were analyzed using the procedure described by Rudzińska et al [31]. 

Briefly, lipid samples were saponified with 1 M KOH in methanol at room temperature for 18 h, 

then water was added and unsaponifiables multi extracted with diethyl ether. Dry residues were 

silylated with BSTFA containing 1% TMCS. Derivatives of the sterols were separated on a Hewlett-

Packard 6890 gas chromatograph with an HP-5 capillary column (30 m × 0.32 mm × 0.25 µm; J&W 

Scientific, Folsom, CA, USA). Split injection with split ratio 1:25 was used. Separation was done 

isothermally at 290 oC, with a helium flow rate of 1.6 mL/min. The injector and detector 

temperatures were set at 310oC. An internal standard, 5-α-cholestane, was used for quantification. 

Phytosterols were identified by comparison of retention data and by GCMS using a Finnigan Trace 

2000 gas chromatograph coupled to a Finnigan Polaris Q quadrupole ion-trap mass spectrometer 

after separation on a DB-5 capillary column (50 m × 0.2 mm × 0.32 µm; J&W). Helium was used as 

carrier gas at a flow rate of 0.6 mL/min. All mass spectra were recorded using electron impact 

ionization mode at 70 eV and masses were scanned in the range of 100–650 Da. Ion source was held 

at 200 oC and injector at 300oC. A combination of the NIST Mass Spectra Library and collected 

spectra in lab were used to identify sterols. 

 

Gamma-Oryzanol  

RBOS and RBMC were analyzed for γ-oryzanol by HPLC as previously reported [32]. A Finnigan 

Surveyor Plus HPLC system (Thermo Electron, Waltham, MA, USA) was used. A 20 µL sample 
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was injected onto a C18 column (4 µm; 300 × 3.9 mm; Novapak, Waters, MA) held at 30oC. 

Separation was achieved by using acetonitrile/water (65:35, v/v) eluant. Finnigan Surveyor 

photodiode-array detector (PDA) was at 325 nm. The amount of γ-oryzanols is expressed as a sum 

of all esters separated and quantified by using the external calibration.  

 

Carotenoids  

Carotenoids were analysed according to the method of Khachik et al [33] with modifications. 

Analyses were carried out on Finnigan Surveyor Plus HPLC system (Thermo Electron, Waltham, 

MA, USA). A 10 µL sample was injected onto a C18 column (4µm; 300 × 3.9 mm; Novapak, 

Waters, MA) held at 25oC. Gradient system was used as follows: (1) 15% methanol, 75% 

acetonitrile, 5% methylene chloride and 5% hexane was held for 2 minutes; (2) at 20 minutes eluant 

was changed to 17%  methanol , 60% acetonitrile, 11.5% methylene chloride and 11.5% hexane; (3) 

at 35 minute eluant was:  15% methanol, 40% acetonitrile, 22.5% methylene chloride, and 22.5% 

hexane; followed by returning to the initial eluant composition within 5 minutes with additional 5 

min of equilibration. The flow rate was 0.5 mL/min. Carotenoids were quantified using external 

calibration using β-carotene as standard. 

 

Analysis of minor components composition 

The isolated minor components were separated into lipid classes according to Silversand and Haux 

[34] method with modifications. Separation was performed on a Finnigan Surveyor LC (Thermo 

Electron, Waltham, MA, USA). Components were separated on a normal phase Diol column (5 µm, 

250 × 4.6 mm; Monochrom, Varian, CA, USA). The binary gradient was used consisting of: (A) 

hexane–acetic acid (99:1.0, v/v) and (B) hexane–isopropanol–acetic acid (84:15:1.0, v/v) solvents. 

The samples of 20 µL were injected and the gradient changed from 0% to 100% of the solvent B 

within 40 minutes. The final gradient was kept for 2 min and then returned to initial composition 

within 3 min followed by 5 min of equilibration. The flow rate was 0.6 mL/min and the column was 

kept at 45oC. Components were detected with a Sedex 75 evaporative light scattering detector 

(Sedere, Alfortville, France), operated at 30 oC with an air pressure of 1.5 bar. Triolein, diolein, 

monoolein, oleic acid, and stigmasterol linoleate, were used as standards for external calibration to 

assess the amount of triacylglycerols (TAG), diacylglycerols (DAG), monoacylglycerols (MAG), 

free fatty acids (FFA), and sterol esters (SE), respectively.   
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Quantification of 4-hydroxynonenal 

Isolation and quantification of HNE was carried out according to the method developed in our 

laboratory and published elsewhere [35]. Briefly, polar fraction obtained during polar components 

analysis was utilized. When the non-polar fraction was eluted, polar fraction was removed from the 

column with four consecutive elutions using 5 mL of methanol. The combined eluants were 

subsequently evaporated under gentle stream of nitrogen to 5 mL. The cloudy solution was 

centrifuged at 2300 rpm for 5 min, and the clear supernatant analyzed by HPLC. 

Analysis of HNE was carried out using a Finnigan Surveyor Plus HPLC (Thermo Electron, 

Waltham, MA, USA) with a Finnigan Surveyor Autosampler Plus and a Finnigan Surveyor UV-Vis 

Plus detector. A 20 µL sample was injected onto a C18 column (4 µm; 300 × 3.9 mm; Novapak, 

Waters, MA). HNE was detected at 223 nm after elution with acetonitrile/water (30:70, v/v) at a 

constant flow of 0.75 mL/min. Identification of HNE was done by comparison of retention data and 

by co-elution of HNE standard with selected samples. To further verify identity of the HNE peak 

identification was carried out on a QSTAR Elite mass spectrometer (AB SCIEX, Concord, ON, 

Canada) equipped with an APCI interface operated in a positive mode. Analyst QS 2.0 software was 

used for data acquisition and analysis. The conditions of mass spectrometric analysis were 

optimized for 4-hydroxynonenal as follows: the APCI source temperature was set at 450oC, the 

curtain gas at 25, the declustering potential at 45V, the focus potentials at 150V, and the ion source 

gas 1 and 2 at 20 and 60 psi, respectively. Quantification of HNE was carried out using external 

calibration.  

 

Sampling and quantification of volatile carbonyl compounds  

Volatile carbonyl compounds (VCC) generated during the frying experiments was trapped by a Sep-

Pak DNPH-Silica cartridge (Waters, Milford, MA) where they were converted to the stable 

dinitrophenylhydrazones. During trapping the cartridge was connected to a pump with flexible 

tubing through a flowmeter. The wider end of the cartridge was suspended about 0.5 cm above the 

upper edge of the beaker used for frying test, and the samples of vapours were drawn through the 

cartridge at a flow rate of 350 mL/min. The resulted dinitrophenylhydrazones were eluted from the 

cartridge with 5 mL of acetonitrile keeping its flow at 2 mL/min.  

 Dinitrophenylhydrazones were separated and quantified by HPLC using a Finnigan Surveyor 

Plus HPLC system (Thermo Electron, Waltham, MA, USA). A 20 µL sample was injected onto a 
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C18 column (4µm; 300 × 3.9 mm; Novapak, Waters, MA) held at 30oC. Separation was achieved by 

using the following gradient: (1) 40% acetonitrile and 60% water was held for 5 min; (2) followed 

by 100% acetonitrile within 40 min and maintained it for 5 min; (3) for 5 min eluant returned to the 

initial composition followed by 5 min equilibration. The flow rate was 0.5 mL/min, Finnigan 

Surveyor UV-Vis Plus detector was set at 360 nm. VCC were identified by comparison of retention 

data with standards and their identity assessed by HPLC-MS (Exactive Bench-Top; Thermo Fischer 

Scientific, West Palm Beach, FL). The HPLC conditions were similar to the above. The mass 

spectrometer was equipped with an APCI ion source, operated in the negative mode. The spectra 

were collected using a mass scan range from 100 to 1000 Da. 

 

Treatments 

Performance of canola oil triacylglycerides was assessed with addition of the following components: 

1. Canola oil triacylglycerol (CTG) - control 

2. Phospholipids (phosphatidylcholine and phosphatidylethanolamine) 

3. Combinations of tocopherol isomers  

4. Canola oil tocopherol fraction, TCAN 

5. Rice bran oil tocopherol fraction, TRBO  

6. Canola oil sterol fraction, SCAN  

7. Rice bran oil sterol fraction, SRBO 

8. Solvent extracted minor components from rice bran oil, RBOS 

9. Minor components isolated by chromatography from rice bran oil, RBMC 

10. Solvent extracted minor components from sesame oil, SOS 

11. Solvent extracted minor components from palm oil, POS 

 

Statistical analysis 

Results were statistically analyzed by single factor analysis of variance (ANOVA) and regression 

analyses using Minitab 2000 statistical software (Minitab Inc, PA, ver. 13.2). Statistically significant 

differences between means were determined by Duncan’s multiple range tests. Statistically 

significant differences were determined at P ≤ 0.05. 
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Results and Discussion 

 

Minor components 

In Table 1 composition of minor components isolated for this study is presented. TCAN and TRBO 

are fractions rich in tocopherols recovered from canola oil and rice bran oil, respectively. Both 

fractions contained more than 80% tocochromanols, with insignificant contribution of sterol ester. 

The small amounts of sterols are mainly coming from the sterol esters present in oils and having 

similar chromatographic properties as tocopherols. The corresponding SCAN and SRBO are 

fractions containing only phytosterols, where presence of tocopherols was not detected. RBOS and 

POS are fractions of minor components isolated by solvent extraction from rice bran and palm oils, 

respectively. Both fractions contained both tocopherols and sterols, reflecting composition of these 

compounds in the starting oils. In RBOS γ-oryzanols were detected, while as should be expected 

carotenoids in POS (Table 1). The composition of RBMC is not included in Table 1 because its 

composition is essentially the combination of compounds present in TRBO and SRBO fractions.  

 

Tocopherols 

All the indices of performance indicated that tocopherols at all tested concentrations and 

homologous compositions protected CTG under frying conditions. For instance, the amount of TPC 

formed in CTG containing a combination of 100, 450 and 450 µg/g of α-, γ-, and δ-tocopherol, 

respectively was 28% lower than formed in unprotected CTG at the end of the frying (Fig. 1). A 

statistically significant increase in the frying performance was observed when the concentration of 

tocopherol was increased from 500 to 1000 µg/g (Fig 1). However, further increase in the 

tocopherols amount to 2000 µg/g did not result in concomitant increase in frying stability of CTGs 

despite the increase in residual tocopherols amount at the end of frying (Figs. 1 and 2). This 

observation was consistent with the results of previous study by Lampi and Kamal-Eldin [26]. At 

the concentrations employed in the present work, results indicated that varying the relative 

proportions of tocopherol homologues in the mixture did not have significant effect on their ability 

to protect the CTGs during frying. Results by Warner and Moser also showed that varying the ratio 

of tocopherol homologues has no significant impact on their antioxidant activity when α-, γ-, δ-

tocopherols were present together in the oil [36]. 

 Furthermore, as observed for pure tocopherol homologous mixtures (Fig. 1), tocopherols 

fractions isolated from canola and rice bran oils offered significant level of protection to CTGs 
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during frying (Fig. 3). It is interesting that the presence of tocotrienols in rice bran tocochromanol 

mixtures did not lead to any enhancement in frying performance of CTG’s fortified with these 

components over other tested tocopherol compositions. Indeed, Romero et al [14] found no increase 

in the antioxidant activity when a mixture of α-tocopherol and α-tocotrienol was added to 

antioxidants stripped canola oil as compared to when only tocotrienol was added. They however, 

reported a reduced activity for the mixture as compared to α-tocopherol alone. 

 Volatile carbonyl compounds (VCC) are important secondary oxidation products formed during 

frying causing pollution in frying facility. Twenty one aldehydes including 9 alkanals, 9 alkenals 

and 3 alkadienals were detected and quantified in the present study (Table 2, Fig. 4). Propanal and 

pentenal were the most abundant volatile products formed during thermo-oxidative degradation of 

linolenic acid, whereas hexanal and pentanal were the major products formed from linoleic acid.  

Nonanal and octanal, on the other hand, were the major volatile degradation products formed from 

oleic acid (Table 2). The relatively lower concentrations of 2,4-decadienal and 2,4-heptadienal, the 

respective oxidation products of linoleic and linolenic acids might be due to further degradation of 

these compounds to produce other volatile compounds such as ethanal and 2-propenal, under the 

frying conditions used in the present study [37,38]. Similarly to TPC, the rate of VCC formation 

during degradation of unprotected CTGs was significantly higher when the tocopherol isomers 

mixtures were applied. Compared to other tested tocopherol compositions, the system containing 

450-α, 450-γ and 100-δ generated the least amount of VCC. An increase in the tocopherol amount 

from 1000 to 2000 µg/g resulted in a significant increase in rate of VCC formation, with the increase 

more pronounced when higher amounts of α-tocopherol were present (Table 2). Whereas equivalent 

amounts of tocopherols were used, the rate of VCC formation was lower with TCAN, lowering it 

further when TRBO was applied.  However, the VCC profile was independent of the composition of 

tocopherol isomers, indicating similar mechanism of degradation [14, 26]. Furthermore, irrespective 

of the minor components added the CTG, the same trends were observed for the major individual 

carbonyl compounds such as propanal and hexanal, and the total volatile carbonyl compounds 

(VCC). 

 Results indicated that the formation of HNE was significantly reduced in the presence of 

tocopherols compared to control (Fig. 5). At the end of the frying test, the amount of HNE 

accumulated in oils without tocopherols was 11.7 µg/g, compared to a maximum of 6.2 µg/g in 

sample containing mixture of tocopherol isomers. In agreement with the amount of TPC, no 
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significant differences were observed in the amount of HNE formation when all tested tocopherol 

homologous mixtures were applied (Fig. 5). The ability of tocopherols to restrict the formation of 

HNE during heating soybean oil at frying temperature has been observed [39]. 

 

Phytosterols 

Separating tocopherols from sterols furnished a mixture of endogenous phytosterols without 

tocopherols to study their effect on the frying stability of CTGs. Sterol fractions SCAN and SRBO 

provided a concentration dependent protection for CTGs during frying (Fig. 3). When 500 µg/g of 

SCAN was added, no protective activity was observed. On the contrary, at this low concentration 

the protection by SRBO was comparable to the observed for endogenous tocopherols isolated from 

canola or rice bran oils (Fig. 3). This is presumably due to the presence of higher amount of sterols 

with known antioxidant activity such as an avenasterol in RBO (Table 1). When 3000 µg/g was 

added, the protection offered by SCAN was 20% better than tocopherols as measured by the amount 

of TPC at the end of the frying period (Fig 3). Gertz et al [4] assessed antioxidative activity using 

the OSET procedure and reported superior antioxidant activity of canola oil sterols over tocopherols.  

 CTG fortified with a mixture of SCAN or SRBO and tocopherol isomers accumulated 

significantly higher amount of TPC throughout the frying period than present individually each of 

these fraction (results not included). Indeed, whenever tocopherols were added to the sterols 

fraction, the amount of TPC formed was similar to the amounts accumulated when CTGs contained 

only tocopherols. This indicates lack of synergistic interaction between these components.  Thus, the 

antioxidant effect of sterols might not be realized in the presence of tocopherols, presumably due to 

the lower activation energy of the latter [26].  

  The emission rate of VCC was significantly lower when CTGs were heated in the presence of 

sterols at 3000 µg/g compared to unprotected CTGs (Table 2). However, it is contrary to the 

formation of TPC and no significant difference in the emission rate of VCC when CTGs were 

heated with sterols and tocopherols. Furthermore, no significant difference in both the amounts and 

profiles of volatile carbonyl compounds produced during heating CTGs with SCAN and SRBO 

fractions at the higher concentration (Table 2, Fig. 4). 

 The amount of HNE formed during heating CTGs fortified with SCAN was 60% lower 

comparing to control. In agreement with the TPC and VCC formation, no significant differences 
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were observed in HNE formation when SCAN and SRBO fraction were used for protection of CTGs 

(Fig. 6).   

 

Solvent extracted minor components 

Fortification of CTGs with RBOS, RBMC, SOS and POS at 0.5% resulted in significantly lower 

amounts of polar compounds formed, indicating lower oxidative degradation (Fig. 7). Comparing to 

RBMC, CTGs fortified with RBOS or SOS formed about 19% less TPC under frying. However, no 

statistically significant differences were observed in the stability of CTG’s fortified with RBMC, 

POS, and any of the tocopherol isomers mixtures (Fig 7). Thus, distinctive endogenous minor 

components such as carotenoids and tocotrienols present in POS and RBMC did not enhance the 

antioxidant effectiveness of the minor components during frying with CTGs. RBOS contained 

10.5% γ-oryzanol and 11.8% wax as measured by HPLC and preparative TLC. RBMC, on the other 

hand, contained insignificant amounts of these minor compounds. Presumably, the significantly 

higher protective efficiency of RBOS over RBMC could be attributed to the presence of γ-oryzanol 

and waxes, in addition to tocopherols or potential synergistic effect between these components. 

Mezouari and Eichner [23] reported a significant antioxidant activity of RBO waxes during frying in 

sunflower oil. Similarly, the significant protection offered by SOS was possible due to the activity of 

the sesame lignans such as sesamol, sesaminol, sesamin and sesamolin. The improved frying 

stability of blends of sesame and canola oils over canola oil alone was attributed to the activity of 

the sesame oil lignans [20 – 22]. In a related study, the improved stability of a blend of soybean and 

sesame oils, and the food fried in it over soybean oil alone was assigned to the sesame oil lignans 

[40,41]. According to Hemalatha and Ghafoorunissa [42], addition of 1.2% of sesame lignans 

significantly increased the radical scavenging activity and the frying performance of soybean and 

sunflower oils.   

 The rate of VCC generation during frying in CTGs fortified with RBOS was 1.3 and 2.7 times 

lower than in CTG’s containing POS and control, respectively (Table 2). The rate of VCC 

generation during frying in CTGs containing RBOS was 9.8% lower than CTGs contained SOS; 

however, these differences were within the experimental error. No differences were observed in the 

VCC profiles for CTGs fortified with either of RBMC, RBOS, POS and SOS. 
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 The results for HNE formation parallel those of VCC. At the end of the frying period, the 

amount of HNE detected in CTGs fortified with RBOS was 2.7 times lower than the amounts in 

control (Fig. 6).  

 

Phospholipids 

The effects of two phospholipids, namely phosphatidylcholine (PC) and phosphatidylethanolamine 

(PE) on the frying stability of CTGs were examined. As measured by TPC, no significant 

differences were observed in the ability of both phospholipids to protect CTGs during frying (Fig. 

8). At concentration of 500 µg/g, neither PC nor PE offered any protection to CTGs. However, at 

concentration of 1000 µg/g, the antioxidant effect of phospholipids became evident (Fig. 8). At the 

end of the frying test, the amount of TPC accumulated in control was 2.5 and 2.3 times higher than 

the amount detected in CTG’s fortified with PC and PE, respectively (Fig. 8). Furthermore, the 

results from this study showed that CTGs containing 2000 µg/g PC were 1.9 times more stable than 

CTGs fortified with any tested tocopherol homologous mixtures.  

 At low phospholipids concentration tested, similar effect to sterols was observed when 

tocopherols were added. However, when the higher amounts of both phospholipids were added, the 

antioxidant activity was not impeded by the presence of tocopherols. Contrary to some literature 

reports, lack of synergy was observed between any of the studied phospholipids and tocopherols 

under the conditions employed in the present study [43,44]. On the other hand, a statistically 

significant synergy was observed between the tested phospholipids and RBOS (Fig. 8). This may be 

due to an interaction between the phospholipids and the phenolic compounds such as γ-oryzanol 

present in the RBOS. Ramadan [45] reported that quercetin increased the antioxidant activity of 

soybean lecithin in a triolein model system.  

 There is rather scanty information available on the application of phospholipids as antioxidants 

under frying conditions, probably because of their reportedly adverse effects on colour and foaming 

of oils [46]. Kourimska et al [47] found no significant increase in foaming of olive oil and no effect 

on the sensory properties of the French fries when lecithin was applied at 0.1%. In the present work, 

CTGs oil darkened at the faster rate when either or both phospholipids were utilized.   

 Compared to control, the rate of VCC generation during the frying was 3.1 and 3.5 times slower 

in the CTG’s containing PC and PE, respectively (Table 2). Similarly, both PC and PE significantly 

inhibited the formation of HNE during the frying test. At the end of the frying test, only 2.8 and 2.3 
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µg/g of HNE were observed in CTGs fortified with these phospholipids, respectively, compared 

to11.7 µg/g in control (Fig. 6). These results are consistent with the abilities of soybean 

phospholipids to inhibit HNE formation in fried fish fillets during storage [48]. Despite the higher 

amount of TPC observed in the samples fortified with PE as compared to PC, the amount of 

carbonyl compounds, such as VCC and HNE, were generally lower when oil contained PE. This 

observation was in agreement with previous reports by Hidalgo et al [49]. Therefore, the possibility 

of a reaction between the amine group on PE and the carbonyl group is verified, which possibly 

stimulates drastic color changes [49]. 

 

Conclusions 

 

The influence of various endogenous minor components on the frying performance of canola oil 

triacylglycerols was evaluated. The present study showed that both the composition and the 

concentration of the minor components exerted profound influence on the frying performance of the 

oil. Tocopherols remain the major antioxidants in the frying oils, whereas, the results from the 

present study indicated that there might be a need to look beyond tocopherols in order to design 

canola oil with remarkably improved frying performance. Phosphatidylcholine, 

phosphatidylethanolamine, and minor components isolated from rice bran and sesame oils 

particularly enhanced the frying performance of canola oil triacylglycerol. 
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Table 1. Composition of endogenous minor components isolated from canola, rice bran and palm 
oilsa 

Components Concentration (mg/g) 

TCAN TRBO SCAN SRBO RBOS POS 

α-tocopherol 269.8±19 139.1±11 ND ND 18.1±1.5 25.4±2.3 

β-tocopherol ND 9.8±0.5 ND ND 0.4±0.1 ND 

γ-tocopherol 505.1±39 178.9±11 ND ND 37.2±1.4 ND 

δ-tocopherol 47.3±3 34.5±2.5 ND ND 10.7±0.4 48.6±1.9 

α-tocotrienol ND 83.5±4.4 ND ND 17.5±1.6 59.8±4.3 

β-tocotrienol ND ND ND ND ND ND 

γ-tocotrienol ND 317.4±24 ND ND 51.8±5.0 97.4±5.4 

δ-tocotrienol ND 27.9±2.1 ND ND 3.6±0.2 53.8±3.7 

TOTAL 822.2±57 791.1±40   139.3±7.2 285.0±15 

Brassicasterol 4.9±0.3 ND 115.0±9.3 ND ND ND 

Campesterol 11.9±1.0 7.9±0.4 264.1±16 143.5±10 63.8±4.1 44.7±2.3 

Stigmasterol 1.8±0.1 6.0±0.4 14.5±1.2 157.2±11 78.1±4.9 1.5±0.1 

β-Sitosterol 16.0±1.2 29.1±1.3 488.5±38 476.2±24 262.3±18 202.8±12 

∆5-Avenasterol 1.9±0.1 3.3±0.2 10.3±0.7 10.8±0.6 13.5±0.9 0.6±0.1 

∆7-Avenasterol ND 3.5±0.2 5.1±0.6 17.5±1.4 16.0±1.3 ND 

24-Methylenecycloartanol ND 7.5±0.6 ND 22.9±2.1 27.5±1.8 ND 

Cycloartenol ND 6.7±0.5 ND 8.3±0.6 10.4±0.8 ND 

Citrostadienol ND 7.5±0.3 ND 18.0±1.3 15.6±1.2 ND 

Unknown  4.9±0.3  8.2±0.5 10.7±0.9  

TOTAL 36.5±2.1 76.4±3.7 897.5±70 862.6±51 497.9±30 249.3±12 

Total γ-Oryzanol ND ND ND ND 105.4±7.4 ND 

Total Carotenoids ND ND ND ND ND 27.3±1.8 

Triacylglycerols 48.3±3.9 51.6±3.3 ND ND 125.1±12 186.8±19 

Diacyglycerols 23.1±1.8 37.4±2.4 13.9±1.0 20.9±3.2 56.4±4.5 94.6±8.1 

Monoacyglycerols ND ND 1.1±0.1 5.9±0.3 8.5±3.2 15.8±2.7 

Free fatty acids ND 2.8±0.2 6.3±0.6 8.7±1.1 13.9±1.4 27.2±1.9 

Others 69.9±5.4 40.7±2.6 81.2±4.7 101.9±8.4 53.5±4.8 114.0±11 
aSamples from two different experiments were analyzed in triplicate (n=6); values are reported as Mean ± SD. 
TCAN and TRBO - Tocopherol fractions, and SCAN and SRBO - Sterol fractions isolated from canola and rice 
bran oils, respectively; RBOS and POS – solvent extracted minor components from rice bran and palm oils, 
respectively; ND = not detected; Others – Undefined components  
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Scheme 1.  Schematic of isolation and purification of concentrated endogenous minor components 
from canola and rice bran oils. CC, column chromatography; PTLC, preparative thin layer 
chromatography; MTBE, methyl tert butyl ether; CO, canola oil; RBO, rice bran oil; CTG, canola 
oil triacylglycerols; CMC and RBMC are minor components isolated by column chromatography 
from canola and rice bran oils, respectively; TCAN and TRBO are tocopherol fractions isolated 
from canola and rice bran oils, respectively; SCAN and SRBO are sterol fractions isolated from 
canola and rice bran oils, respectively. For chromatographic conditions see the text. 

 

CO/RBO  

CC on alumina 

Hexane 

CTG CMC/RBMC 

10% methanol in MTBE 

CC on conditioned silica gel 

Tocopherols 

5% hexane in MTBE 50% hexane in MTBE 

Sterols 

PTLC 

TCAN/TRBO SCAN/SRBO 

PTLC 



 

 

23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Formation of polar components during test frying with antioxidant-free canola 

triacylglycerides containing different combinations and amounts of tocopherol homologous. CTG - 

canola triacylglycerides. Tocopherols concentrations are in µg/g. For details see text. 
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Figure 2. Changes of tocopherols during test frying of antioxidant-free canola triacylglycerides 

containing different combinations and amounts of tocopherol homologous mixtures. Tocopherols 

concentrations are in µg/g. For details see text.  
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Figure 3. Formation of polar components during test frying of antioxidant-free canola 

triacylglycerides containing different amounts of tocopherol and sterol fractions isolated from 

canola and rice bran oils. CTG - canola triacylglycerides. For details see text. 
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Table 2. Rate of volatile carbonyl compounds emission (µg/g/hr) during test frying with 
antioxidant-free canola triacylglycerides fortified with various minor componentsa 

 

VCC CTGs 

C
an

ol
a 

(R
B

D
) 

22
5α

+
22

5γ
+

50
δ 

45
0α

+
45

0γ
+

10
0δ

 

45
0α

+
10

0γ
+

45
0δ

 

10
0α

+
45

0γ
+

45
0δ

 

90
0α

+
90

0γ
+

20
0δ

 

90
0α

+
20

0γ
+

90
0δ

 

20
0α

+
90

0γ
+

90
0δ

 

Ethanal  20.1b 16.8d 21.4b 13.2e 15.8cd 15.1c 19.2b 22.1b 19.9b 

Propanal 257.0b 100.1c 137.0d 96.9c 101.2c 102.0cf 125.1e 124.0e 99.9c 

2-propenal 40.9b 29.8a 33.6c 19.7df 24.3e 23.9e 33.1c 36.1c 21.7f 

2-butenal 0.3b 0.1c 0.3b 0.1c 0.1c 0.2d 0.1c 0.1c 0.2d 

Butanal 1.0bd 0.6c 1.0b 0.9d 1.1b 1.3e 1.1b 1.0b 0.7cd 

2-pentenal 15.4b 7.8c 8.9c 6.2de 6.8d 7.0cd 7.6cd 7.0cd 7.2cd 

Pentanal 39.2b 25.8c 30.0df 29.4d 30.1df 34.0e 42.6b 33.4e 30.1df 

2-hexenal 3.9b 1.3c 2.1d 1.1e 1.1e 1.4c 1.8f 1.7f 1.3c 

Hexanal 20.6b 9.9c 14.9d 9.6c 10.1cg 10.9cg 15.8d 10.3cg 10.0c 

2,4-heptadienal 1.6 b 0.5 c 0.8 d 0.6ce 0.7 e 0.6ce 0.9d 0.5c 0.6ce 

2-heptenal 2.2b 1.1c 1.1c 0.9de 1.0cd 1.0cd 1.4f 1.0cd 1.1cd 

Heptanal 4.2b 1.5c 1.9d 1.6c 1.8d 1.9d 2.6e 1.8d 1.8d 

2-octenal 0.3b 0.3b 0.2c 0.4d 0.2e 0.2e 0.8f 0.3b 0.3b 

2,4-nonadienal 0.1b 0.1b 0.1b 0.0c 0.1b 0.1b 0.1b 0.0c 0.1b 

Octanal 1.9b 1.5cg 1.7de 1.8e 1.8e 1.6cd 2.9f 1.5cg 1.6cd 

2-nonenal 0.4b 0.3c 0.6df 0.6df 0.7d 0.4b 1.1e 0.7d 0.4b 

Nonanal 15.1b 6.1cg 8.9d 5.9c 7.1eg 10.1f 10.3f 7.8e 6.7g 

2,4-decadienal 0.6b 0.2c 0.5b 0.3e 0.2c 0.2c 0.5b 0.2c 0.3e 

2-decenal 0.5b 0.3c 0.2d 0.4e 0.4e 0.3c 0.4e 0.4e 0.4e 

Decanal 0.2b 0.2b 0.2b 0.1c 0.1c 0.1c 0.2b 0.1c 0.1c 

undecenal 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 

Unidentified 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 

Total Carbonyl 425.7b 204.5ce 265.8d 189.9c 204.9ce 212.6eh 267.8d 250.2d 204.7ce 
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Table 2 cont’d 

aSamples from two different frying experiments were analyzed in triplicate (n=6). Values with the 

same superscript in the same row are not significantly different at p < 0.05. 

VCC 

R
B

O
S

 (
0.

5%
) 

S
O

S
 (

0.
5%

) 

P
O

S
 (

0.
5%

) 

S
C

A
N

 (
30

00
 µ

g/
g)

 

S
R

B
O

 (
30

00
 µ

g/
g)

 

T
R

B
O

 (
10

00
 µ

g/
g)

 

T
C

A
N

 (
10

00
 µ

g/
g)

 

P
C

 (
20

00
 µ

g/
g)

 

P
E

 (
20

00
 µ

g/
g)

 

Ethanal  12.1e 15.3c 17.4d 13.2e 15.0c 15.8cd 16.0cd 8.8f 7.1g 

Propanal 80.1gh 93.1c 110.4f 99.7c 91.8c 111.9f 93.9c 74.7hi 68.2i 

2-propenal 19.9df 18.1dg 30.1c 17.7g 14.3h 20.0df 19.2dg 14.0h 12.2i 

2-butenal 0.1c 0.1c 0.3b 0.2d 0.1c 0.2d 0.1c 0.2d 0.3b 

Butanal 1.0b 0.9bd 1.1b 0.9b 1.1b 0.8d 1.1b 0.8d 0.9bd 

2-pentenal 6.7df 6.8df 6.9df 6.4d 6.2d 6.1de 5.8e 4.7g 3.3h 

Pentanal 22.6g 24.5cg 33.7e 27.6cf 27.0cf 28.9f 29.3f 18.1h 15.6i 

2-hexenal 1.3c 1.1e 1.2e 1.4c 1.2e 2.0d 1.1e 1.1e 1.3c 

Hexanal 5.5f 6.2f 11.1g 9.8c 9.0c 10.0c 8.4e 6.8fh 5.7f 

2,4-heptadienal 0.4f 0.4f 0.5c 0.6ce 0.7e 0.6ce 0.6ce 0.4f 0.4f 

2-heptenal 0.8e 0.8e 1.0cd 1.1d 0.9de 1.1cd 0.8e 0.8e 0.8e 

Heptanal 1.5c 1.4cf 1.8d 1.5c 1.1g 1.7cd 1.8d 1.4cf 1.1g 

2-octenal 0.3b 0.4d 0.4d 0.3b 0.3b 0.2e 0.3b 0.2c 0.2c 

2,4-nonadienal 0.0c 0.1b 0.1b 0.0c 0.1b 0.1b 0.1b 0.0c 0.0c 

Octanal 1.4g 1.3gh 1.6cd 1.5cg 1.2h 1.5cg 1.6cd 1.2h 1.0i 

2-nonenal 0.4b 0.4b 0.5f 0.4b 0.4b 1.1e 0.5f 0.1g 0.1g 

Nonanal 3.8h 4.0h 7.4eg 6.7g 7.3eg 7.1eg 7.8e 3.8h 3.1j 

2,4-decadienal 0.2b 0.2b 0.2b 0.2b 0.1c 0.4d 0.4d 0.2b 0.2b 

2-decenal 0.3c 0.2d 0.3c 0.3c 0.2d 0.3c 0.4e 0.2d 0.2d 

Decanal 0.1c 0.1c 0.1c 0.1c 0.0d 0.2b 0.2b 0.0d 0.0d 

undecenal 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b  0.1b 0.1b  0.1b 

Total Carbonyls 158.8f 175.5cf 226.2g 189.7c 178.1cf 210.1ce  189.5c 137.6i 121.5j 
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Figure 4. Typical HPLC chromatogram of dinitrophenylhydrazone derivatives of volatile carbonyl 

compounds . a = ethanal; b = propenal; c = propanal; d = 2-butenal; e = butanal; f = 2-pentenal; g = 

pentanal; h = 2-hexenal; i = hexanal; j = unknown; k = 2,4-heptadienal; l = 2-heptenal; m = 

heptanal; n = 2-octenal; o = 2,4-nonadienal; p = octanal; q = 2-nonenal; r = nonanal; s = 2,4-

decadienal; t = 2-decenal; u = decanal; v = 2-undecenal; w = unknown. See the text for HPLC 

conditions. 
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Figure 5. Formation of HNE during test frying of antioxidant-free canola triacylglycerides 

containing different combinations of tocopherol homologous mixtures. CTG - canola 

triacylglycerides. For details see text  
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Figure 6. Formation of HNE during test frying of antioxidant-free canola triacylglycerides 

containing different amounts of endogenous minor components. CTG - canola triacylglycerides. For 

details see text.  
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Figure 7. Formation of polar components during test frying of antioxidant-free canola 

triacylglycerides containing 0.5% of endogenous minor components isolated from different oils. 

CTG - canola triacylglycerides. For details see text. 
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Figure 8. Formation of polar components during test frying of antioxidant-free canola 

triacylglycerides containing different amounts of phosphatidylcholine and 

phosphatidylethanolamine. CTG - canola triacylglycerides. For details see text 
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Abstract 

 

The ability of selected phenolic acids to improve the frying performance of canola oil 

triacylglycerides was evaluated in a frying test. The frying performance was assessed by the 

analysis of total polar components, formation of 4-hydroxynonenal and volatile carbonyl 

compounds. Ferulic, caffeic, dihydrocaffeic, gallic, and vanillic acids significantly increased the 

frying stability of canola oil triacylglycerols. At the end of the frying test, the amount of polar 

components formed in the canola triacylglycerides was at 22.9% compared to a maximum of 

18.8% when the phenolic acids were added. Similarly, the level of HNE was reduced by up to 

45% when triacyglycerols were supplemented with these compounds. The results showed that 

ethyl ferulate was more efficient as antioxidant than its acid form, while dihydrocaffeic acid 

offered a better protection than caffeic acid. Ferulic acid, a cinnamic acid derivative, was more 

efficient than its benzoic analog, vanillic acid. A positive interaction between phenolic acids and 

the sterol fraction isolated from canola oil was observed which contributed to the formation of 

steryl esters of the phenolic acids, such as steryl ferulate during the frying. 

 

Practical applications: The poor thermal stability of polyunsaturated oils limits their application 

for prolonged frying. Polyunsaturated fatty acids offer important health benefits and can improve 

nutritional value of fried foods. Contrary to the commonly applied synthetic antioxidants, the 

phenolic acids tested in this study often are part of endogenous oil components present in 

oilseeds and also in some oils, and are known for their positive health benefits. Thus, the simple 

phenolic acids, especially the cinnamic acid derivatives may be applied as potent antioxidants to 

protect oils during thermal processes used for food production.  
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1. Introduction 

 

Thermo-oxidative alterations of oils is the main degradation phenomenon happening in every 

food product containing lipids, particularly accelerated under the conditions employed during 

frying, leading to the formation of a variety of volatile and non-volatile compounds. The 

intensive mass exchange between the frying oil and the fried food occurring during frying, 

causes that degradation products are fast transferred into the food product [1]. Apart from the 

negative impacts on the physical, flavor and nutritional quality of the oils and the fried food, 

many of these products are known for their toxicity. For instance, 4-hydroxynonenal, a 

secondary oxidation product formed by oxidative degradation of omega-6 polyunsaturated fatty 

acids has been shown to exhibit mutagenic, cytotoxic and genotoxic properties, which are related 

to pathogenesis of several human diseases such as Alzheimer’s and atherosclerosis [2, 3]. 

Furthermore, several studies have shown that a number of volatile compounds are formed during 

frying which may exhibit carcinogenic, mutagenic and genotoxic properties [4 – 6]. Thus, the 

oxidative stability of frying oils is of paramount importance in the selection of frying medium 

and the quality of fried foods [7]. 

The contribution of linoleic and linolenic acids to food products containing or fried in 

canola oil makes it desirable as a good source of essential fatty acids. However, the susceptibility 

of these acids to thermo-oxidative degradation demand for measures that will increase the oil’s 

frying stability without compromising the availability of its essential fatty acids. Previous work 

in this area focused mainly on the influence of added tocopherols on the frying stability, with 

relatively fewer reports on the use of other natural antioxidants [8–11]. 

Like tocopherols, phenolic acids are widely distributed in oilseeds and are known to be 

efficient cell antioxidants [12]. Besides their high antioxidant activity, they are also known to 

possess interesting biological properties such as: antiviral, antimicrobial, antithrombosis, 

antifibrosis, anti-inflammatory, and anti-cancer activities of some of the phenolic acids have 

been documented [13 – 15]. Their ability to inhibit oxidation of edible oils under storage 

conditions have been established, although their effectiveness under thermo-oxidative conditions 

during frying remains controversial [16 – 18]. Higher oxidative stability was reported for canola 

oil supplemented with fraction rich in phenolic acids isolated from canola [19, 20], and evening 

primrose meals [21].  
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The type of chemical reactions occuring during frying is different from those happening 

at ambient storage conditions, which affects the behavior of antioxidants [22, 23]. Thus, 

evaluation of the antioxidant activity of individual phenolic acids under frying conditions 

remains an interesting task. To the best of our knowledge, the effect of simple phenolic acids, 

such as: caffeic, dihydrocaffeic, ferulic, gallic, and vanillic on the frying performance of canola 

oil has not been studied. So far, there are no reports on the capacity of these phenolic acids to 

inhibit the formation of toxic hydroxyalkenals during frying. Frying oils contain a number of 

endogenous minor components such as tocopherols, phytosterols, free fatty acids, which are 

involved in the oxidation process and may affect the activity of added antioxidants [18, 24]. 

Therefore, in the present study, the ability of the phenolic acids to improve the frying stability 

and inhibit the formation of HNE during test frying in canola oil triacylglycerols was evaluated. 

Also an interaction between phenolic acids and selected canola oil endogenous minor 

components was explored. 

 

2. Materials and Methods 

2.1 Materials 

Commercially refined, bleached and deodorized regular canola oil was donated by Richardson 

Oilseed Limited (Lethbridge, Canada). Neutral alumina (70-230 mesh), silica gel 60Å (70 – 230 

mesh), D-glucose, and potato starch, were obtained from VWR (Edmonton, Canada). Ferulic 

(FA), caffeic (CA), dihydrocaffeic (HCA), gallic (GA), vanillic acids (VA), ethyl ferulate (EF), 

and 4-hydroxynonenal (HNE) were purchased from Sigma-Aldrich (St. Louis, MO). BSTFA 

(N,O-bis(trimethylsilyl)trifluoroacetamide, TMCS (trimethylchlorosilane), and pyridine were 

obtained from Supelco (Bellefonte, PA, USA). γ-Oryzanol standard was supplied by Oryza Oil 

and Fat Chemical Co. Ltd (Ichinomiya-City, Japan). Volatile carbonyl compounds standards 

were purchased from Bedoukian Research (Danbury, CT).  

2.2 Preparation of antioxidant stripped triacylglycerides and isolation of endogenous 

minor components 

Canola oil was stripped of its endogenous minor components including antioxidants via 

adsorption chromatography following procedure described by Lampi and kamal-Eldin [25] with 

modifications. A slurry of 1 kg of alumina (activated at 103oC for 16 h and 200oC for 8 h) in 2 L 
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of hexane was loaded into a glass chromatography column (950 × 50 mm i.d.) keeping 

continuous hexane flow until bed in the column was evenly packed. In 500 mL of hexane 500 g 

of canola oil was dissolved and mixture loaded onto the packed column with continuous flow of 

hexane. Purified canola triacylglycerols were eluted with 3.7 L of hexane, discarding first 800 

mL of hexane as containing only solvent. The polar components were eluted with 2.5 L of 10% 

methanol in methyl-tert-butyl ether. Both the column and collection vessels were wrapped in 

aluminum foil to prevent photo-oxidation. The collected fractions were stored as hexane solution 

at -16oC until used in the experiments. 

 

2.3 Isolation of tocopherol and sterol fraction  

The recovered minor components from canola oil were separated by adsorption chromatography 

into two fractions [26]. Water conditioned silica gel was prepared by heating it for 24 h at 160oC, 

and adjusting the water content to 5%. Slurry of 120 g of conditioned silica gel in 150 mL 

hexane was loaded into a glass chromatography column (600 × 45 mm i.d.) allowing hexane 

continuous flow until column was evenly packed. Minor components, 20 g, dissolved in 30 mL 

hexane were introduced into the column, the hexane was allowed to flow through the column and 

then discarded. Tocopherol fraction was subsequently eluted with 750 mL of 5% MTBE in 

hexane while sterol fraction with 750 mL of 50% MTBE in hexane. Purity of fractions was 

monitored by thin layer chromatography. Collected fractions were concentrated under vacuum 

using a rotary evaporator (BÜCHI Labortechnik AG, Flawil, Switzerland) at 35oC.  

Tocopherol fraction was further purified by preparative thin layer chromatography 

(PTLC) using MTBE/hexane (2:8, v/v) as the developing solvent. Bands corresponding to 

tocopherols were scrapped and extracted three times with 10 mL of MTBE. Combined extracts 

were concentrated under vacuum using a rotary evaporator, flushed with nitrogen and coded TC. 

Similarly, sterol fraction was purified by PTLC using MTBE/hexane (65:35, v/v) as the 

developing solvent following procedure described for tocopherols. Purified sterol fraction is 

coded SC. 

 

2.4 Preparation of frying food 

Food as closely as possible mimicking most often fried foods containing mainly starch was  

prepared by mixing 4 g of potato starch, 1 g of glucose and 1 g of silica gel with 5 mL of cold  
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water. To this slurry15 mL of boiling water was added. The mixture was transferred onto a hot 

plate preset at 110oC, and heated for 2 min with continuous mixing. The resulted gel was left 

uncovered to cool to ambient temperature and is coded FF. 

 

2.5 Addition of antioxidants to canola oil triacylglycerides 

A stock solution of the examined antioxidant in ether was added to canola oil triacylglycerides to 

deliver the target concentrations. After mixing, the solvent was evaporated under vacuum using a 

rotary evaporator (BÜCHI Labortechnik AG, Flawil, Switzerland) at 40oC. Residual solvent was 

removed under a gentle stream of nitrogen. The optimum concentrations for the examined 

antioxidants used in this study (500 µg/g for phenolic acids; 1000 µg/g for tocopherols; 3000 

µg/g for sterols) were established by preliminary studies [26]. Moreover, in a typical refined, 

bleached and deodorized canola oil, the amount of sterols is at least 3 times that of tocopherols.     

 

2.6 Frying test procedure and oil sampling 

Vegetable oil (12.0 g) was weighed into an acid-washed glass beaker (30 mL; Pyrex,  

USA). Clean stirring bar (9.5 × 25 mm; Fischer Scientific, USA) was placed in the beaker, 

increasing the surface-to-volume ratio of an oil to 0.42. The beaker was heated at 185 ± 5oC for 

10 min, and 1.2 g of FF was added. The heating was continued for another 20 min and thereafter, 

stirring at 500 rpm was initiated. Both stirring and heating were maintained for another 90 min. 

About 0.5 g of oil was withdrawn at the 60th, 80th, 100th and 120th min of heating for analyses. 

Selected sampling points are equivalent to the frying at standard conditions using institutional 

fryer (General Electric Company, NY, USA) for 1, 3, 5 and 7 days, respectively, based on the 

amount and composition of polar components formed [27]. 

 

 

2.7 Total polar components  

Total polar components (TPC) were assessed by gravimetric procedure following AOAC 

Method 982.27. Column chromatography was utilized for separation of non−polar from polar 

fraction applying Schulte modifications [28, 29]. 

 

2.8 Tocopherols 
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Tocopherols were analyzed according to AOCS Method Ce 8-89 [30]. Briefly, 50 mg of oil 

samples were weighed directly into autosampler vials and dissolved in 1 mL of hexane. Analyses 

were performed on a Finnigan Surveyor HPLC (Thermo Electron Corp., Waltham, MA, USA) 

with a Finnigan Surveyor Autosampler Plus and Finnigan Surveyor FL Plus fluorescence 

detector, the later set for excitation at 292 nm and emission 325 nm. The column was a normal 

phase Diol column (5µm; 250 × 4.6 mm; MonoChrom, Varian, CA, USA). Of each sample, 10 

µL was injected. Mobile phase consisted 7% MTBE in hexane and a flow rate of 0.6 mL/min. 

The amounts of tocopherols were quantified using external calibration for each isomer 

separately. 

 

2.9 Phytosterols 

Compositions of phytosterols were analyzed using the procedure described by Rudzińska et al. 

[31]. Briefly, lipid samples were saponified with 1 M KOH in methanol at room temperature for 

18 h, then water was added and unsaponifiables extracted with diethyl ether. Dry residues were 

silylated with BSTFA containing 1% TMCS. Derivatives of the sterols were separated on a 

Hewlett-Packard 6890 gas chromatograph with an HP-5 capillary column (30 m × 0.32 mm × 

0.25 µm; J&W Scientific, Folsom, CA, USA). Split injection with split ratio 1:25 was used. 

Separation was done isothermally at 290oC, and at a helium flow rate of 1.6 mL/min. The 

injector and detector temperatures were set at 310oC. An internal standard, 5-α-cholestane, was 

used for quantification. Phytosterols were identified by comparison of retention data and by GC–

MS using a Finnigan Trace 2000 gas chromatograph coupled to a Finnigan Polaris Q quadrupole 

ion-trap mass spectrometer after separation on a DB-5 capillary column (50 m × 0.2 mm × 0.32 

µm; J&W). Helium was used as carrier gas at a flow rate of 0.6 mL/min. All mass spectra were 

recorded using electron-impact ionization mode at 70 eV and scanning mass in the range of 100–

650 D. Ion source was held at 200oC and injector at 300oC. A combination of the NIST Mass 

Spectra Library and collected spectra of sterols were used to identify the sterols. 

 

2.10 Steryl ferulates 

Analysis for steryl ferulates (γ-oryzanol) was carried out as previously reported [32]. A Finnigan 

Surveyor Plus HPLC system (Thermo Electron, Waltham, MA, USA) was used. A 20 uL sample 

was injected onto a C18 column (4 µm; 300 × 3.9 mm; Novapak, Waters, MA) held at 30oC. 
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Separation was achieved by using acetonitrile-water (65:35, v/v). Detection was at 325 nm using 

a Finnigan Surveyor photodiode-array detector (PDA). Total amounts of gamma-oryzanols is 

expressed as a group of esters and quantified by using external calibration method with standard 

oryzanol sample. 

 

2.11 Analysis of minor components composition 

The isolated minor components were separated into lipid classes according to Silversand and  

Haux [33] method with modifications. Separation was performed on a Finnigan Surveyor LC  

(Thermo Electron, Waltham, MA, USA). Components were separated on a normal phase Diol 

column (5 µm, 250 × 4.6 mm; Monochrom, Varian, CA, USA). The binary gradient was used 

consisting of: (A) hexane–acetic acid (99:1.0, v/v) and (B) hexane–isopropanol–acetic acid 

(84:15:1.0, v/v) solvents. The samples of 20 µL were injected and the gradient changed from 0% 

to 100% of the solvent B within 40 minutes. The final gradient was kept for 2 min and then 

returned to initial composition within 3 min followed by 5 min of equilibration. The flow rate 

was 0.6 mL/min and the column was kept at 45oC. Components were detected with a Sedex 75 

evaporative light scattering detector (Sedere, Alfortville, France), operated at 30oC with an air 

pressure of 1.5 bar. Triolein, diolein, monoolein, oleic acid, and stigmasterol linoleate, were used 

as standards for external calibration to assess the amount of triacylglycerols (TAG), 

diacylglycerols (DAG), monoacylglycerols (MAG), free fatty acids (FFA), and sterol esters 

(SE), respectively.   

 

2.12 Quantification of HNE 

An analysis of HNE was carried out according to a method developed in our laboratory and 

published elsewhere [34]. First, frying oil sample was separated on non-polar and polar fractions 

following AOAC Method 982.27 with Schulte modifications [28, 29]. The polar fraction was 

eluted four times with 5 mL of methanol. The excess of solvent was evaporated with gentle 

stream of nitrogen reducing volume to 5 mL. The cloudy solution was centrifuged at 2300 rpm 

for 5 min, and the clear supernatant analyzed for HNE by HPLC. 

Analysis of HNE was carried out using a Finnigan Surveyor Plus HPLC (Thermo 

Electron, Waltham, MA, USA) consisting of a Finnigan Surveyor Autosampler Plus and a 

Finnigan Surveyor UV-VIS Plus detector. A 20 µL sample was injected onto a C18 column (4 
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µm; 300 × 3.9 mm; Novapak, Waters, MA). HNE was detected at 223 nm and sample separated 

using acetonitrile/water (30:70, v/v) as mobile phase at a constant flow of 0.75 mL/min. HNE 

was identified by comparison of retention data and co-elution with HNE standard. Identity of 

HNE was assessed by HPLC-MS as described elsewhere [34] Quantification of HNE was carried 

out using external calibration with HNE standard. 

 

2.13 Sampling and quantification of volatile carbonyl compounds (VCC) 

Volatile carbonyl compounds generated during the frying experiments were trapped in a Sep-Pak 

DNPH-Silica cartridge (Waters, Milford, MA) where these compounds were converted to the 

stable dinitrophenylhydrazones [26]. The cartridge was connected to an air pump through a 

flowmeter with flexible tubing. The wider end of the cartridge was suspended about 0.5 cm 

above the top edge of the beaker, and the volatiles were drawn through the cartridge at a flow 

rate of 350 mL/min. The sampling time was 2 h and the resulted dinitrophenylhydrazones were 

eluted from the cartridge with 5 mL of acetonitrile keeping its flow at 2 mL/min.  

  Dinitrophenylhydrazones were separated and quantified using a Finnigan Surveyor Plus 

HPLC system (Thermo Electron, Waltham, MA, USA). A 20 µL of sample was injected onto a 

C18 column (4µm; 300 × 3.9 mm; Novapak, Waters, MA) held at 30oC. Separation was achieved 

by applying the following gradient: (1) Acetonitrile/water (40:60, v/v) was held for 5 min; (2) 

Within 40 min acetonitrile contribution increased to 100% and was held for 5 min; (3) In 10 min 

gradient returned to initial composition which was held for 5 min for equilibration. The flow rate 

was 0.5 mL/min. Finnigan Surveyor UV-VIS Plus detector was at 360 nm. VCC were identified 

by comparison of the retention data with the standards and by HPLC-MS (Exactive Bench-Top; 

Thermo Fischer Scientific, West Palm Beach, FL). The HPLC conditions were similar to the 

above. The mass spectrometer was equipped with an APCI ion source operated in the negative 

mode. The spectra were collected in a mass range from 100 to 1000 Da at a scan rate of 1 

scan/sec. The derivatization of the carbonyl standards into dinitrophenylhydrazones was 

achieved using the method by Possanzini and Dipalo [35] 
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2.14 Statistical analysis 

Samples from two repetitions of each frying experiments were analyzed in triplicate. Data are 

presented as mean ± SD. Data were analyzed by single factor analysis of variance (ANOVA) and 

regression analysis using Minitab 2000 statistical software (Minitab Inc, PA, ver. 13.2). 

Statistically significantdifferences between means were determined by Duncan’s multiple range 

tests. Statistically significant differences were determined at P ≤ 0.05. 

 

3. Results and discussions 

3.1 Composition of TC and SC 

The major components of TC and SC are presented in Table 1.  TC fraction contained over 82% 

of tocopherols, and insignificant amount of sterols was also detected. This amount of sterols is 

related mainly to the presence of sterol esters which have similar chromatographic properties as 

tocopherols. . Conversely, SC fraction composed of nearly 90% phytosterols, and no detectable 

amount of tocopherols was observed (Table 1). 

 

3.2 Total polar components  

Assessment of the amount of TPC is considered as the single and the most reliable measurement 

of thermo-oxidative oil degradation during frying [23, 36]. As measured by the amount of TPC 

formed, all the phenolic acids examined in the present study offered outstanding protection to 

CTG during the frying (Fig. 1). At the end of the frying period, the amount of TPC in 

unprotected CTG was at 22.9%, compared to 17.0, 16.8, 15.4, 15.9, 17.8, and 18.8% when CTG 

were fortified with FA, CA, HCA, EF, GA, and VA, respectively. In the first 60 min of frying 

test, about 1 day of actual frying, CTGs containing gallic and caffeic acids showed formation of 

lower amounts of TPC compared to ferulic acid. However, as frying proceeded, a marked 

reduction in the activity of GA was observed. At the end of the frying period, no significant 

differences (P ≥ 0.18) were observed in the activity of CA, FA, and GA regarding inhibition of 

polar components formation (Fig. 1). The observed reduced ability of gallic acid could be 

explained by its inherent tendency to oligomerization. Wang et al. [37] observed that although 

gallic acid was quite effective during assessment of Oxidative Stability Index (OSI), however it 

did not prevent changes in viscosity.  
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The role of the 2,3-double bond configuration in the structure of CA on its antioxidant 

activity remains controversial [17, 18]. In the present study, HCA offered significantly better 

protection (P ≤ 0.04) than CA during frying test using canola oil triacylglycerols (Fig. 1). 

Nenadis et al. reported a superior antioxidant activity of HCA over CA during triolein oxidation 

at 45 and 120oC [18]. Thus, the reduced antioxidant activity of CA may be related to the electron 

withdrawing characterstics of the 2,3-double bond [18]. 

Compared to ferulic acid (FA), ethyl ferulate (EF) offered a significantly better protection 

(P ≤ 0.04) against thermo-oxidative degradation during frying as measured by TPC (Fig. 1). At 

the end of the frying period, the amounts of TPC in CTG fortified with FA and EF were 17.0 and 

15.9%, respectively. According to a study by Warner and Laszlo [38], the ferulic acid completely 

disappeared after 15 h of frying in soybean oil, while 55% of an ethyl ferulate was still found for 

the same period of frying. Thus, the observed higher activity of EF over FA during the frying test 

with CTG can be related to its higher thermal stability and/or differences in oil solubility. Among 

all of the tested phenolic acids, VA was the least effective and at the end of the frying period, the 

amount of TPC was at 18.8%, compared to 17.0% when the structurally related ferulic acid was 

applied (Fig. 1). According to Marinova et al. [16], derivatives of cinnamic acid were better 

antioxidants than the corresponding analogues of benzoic acid. It is well known that the presence 

of an alkyl chain the carboxyl group and the phenolic ring increases the radical scavenging 

activity of the phenolic acids [14, 15]. 

An interesting interaction was observed during frying between canola oil endogenous 

minor components, namely sterols, and the added phenolic acids. The sterol and tocopherol 

fractions were added in the amounts delivering 3000 µg/g of sterol and 1000 µg/g of tocopherol, 

respectively. Concentration of 1000 µg/g has previously been established as the optimum 

concentration for tocopherol antioxidant activity under frying conditions while sterols required a 

much higher concentration to be effective [26]. As measured by the amount of TPC formed, no 

significant interaction was observed between the phenolic acids and the tocopherol fraction 

isolated from canola oil (Fig. 1). For instance, at the end of the frying period, the amount of TPC 

in CTG fortified with TC, FA, and a mixture of FA and TC were at 17.8, 17.0, and 17.1%, 

respectively. On the contrary, a positive interaction was observed between tested phenolic acids 

and the sterol components isolated from canola oil. At the end of the frying period, the amount of 
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TPC in CTG containing a mixture of FA and SC was 26 and 11% lower compared to the 

amounts when these components were added individually (Fig. 1). Preliminary studies indicated 

that 500 µg/g was the optimum concentration for phenolic acid antioxidant activity under the 

conditions employed in this study, no additional protection was observed even at phenolic acid 

concentration of 5000 µg/g (results not shown). Thus, the improvement in antioxidant activity 

observed between sterols and the phenolic acids is most likely due to interactions between these 

components rather than the effect of an increase in concentration. The analysis for steryl 

ferulates indicated that up to 59 µg/g of γ-oryzanols was formed during the frying (Fig. 2). The 

formation of γ-oryzanols progressed with the frying time reaching maximum at 80 min of frying 

test and lowering to the value of 15.9 µg/g at the end of the frying period (Fig. 2). Formation of 

these components during frying might affect antioxidant capacity and improve protection of the 

frying oil. Sitostanyl ferulate improved protection of high oleic sunflower during frying [39]. 

The high thermal stability and improved antioxidant capacity of γ-oryzanols was established 

when steryl ferulates present in rice bran oil were assessed as frying oil protectants [7, 39]. 

 

3.3 Volatile carbonyl compounds (VCC) 

VCC are important secondary oxidation products formed during frying which may contribute to 

the pollution in frying facilities. Apart from their potential toxicity, many of the volatile carbonyl 

compounds are directly responsible for off-odor and off-flavor development originating from 

lipids oxidation. Twenty one aldehydes including 9 alkanals, 9 alkenals and 3 alkadienals were 

identified and quantified in the present study (Table 2, Fig. 3). All the tested additives exhibited 

significant antioxidant activity as the measured amounts of VCC decreased at the end of the 

frying period when additives were added (Table 2). Compared to pure CTG, the rate of VCC 

formation was reduced by 42, 58, 54, 52, 57, 58, 55, 56, 60, and 51% when VA, EF, GA, FA, 

CA, HCA, SC, TC, FA+SC, and FA+TC were added to oil, respectively. In agreement with the 

TPC results, the rate of VCC formation was significantly lower when CTG contained ethyl 

ferulate compared to a ferulic acid. Furthermore, no significant differences (P ≥ 0.14) in the 

formation of VCC were observed when CTG were fortified with a mixture of phenolic acid and 

TC compared to CTG containing either of the constituents (Table 2). Conversely, an improved 

antioxidant activity was observed when CTG contained the tested phenolic acids and SC. For 

instance, the rate of VCC formation was at 203, 190, and 171 µg/g/hr at the end of the frying 
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period when CTG were fortified with FA, SC, and FA+SC, respectively (Table 2). Again, the 

similar pattern of changes was observed between TPC and VCC formation when CTG were 

fortified with VA and FA. These results support earlier observations that the derivatives of 

cinnamic acid offer better antioxidant capacity than the corresponding benzoic acid analogues 

[16]. 

 

3.4 Hydroxynonenal  

Hydroxyalkenals is a group of polar secondary oxidation products formed during oxidative 

degradation of polyunsaturated fatty acids, particularly at elevated temperatures. Principally, 

HNE has attracted much attention not only because of its unusually high toxicity, but also 

because it could be formed at the concentrations posing health concerns when food is processed 

at elevated temperatures and containing n-6 polyunsaturated fatty acids. As shown in Fig. 4, all 

applied additives inhibited the formation of HNE during frying when canola oil triacylglycerols 

were used. At the end of the frying period the following amounts of HNE were found: 11.2 µg/g 

for purified CTG, 5.9, 7.1, 6.0, 5.7, 6.0, 6.3, 5.8, 4.9, 4.3, 4.5, and 5.6 µg/g when CTG comprised 

EF, VA, CA, HCA, FA, GA, TC, SC, FA+SC, CA+SC, and FA+TC, respectively. The amounts 

of HNE found in CTG fortified with VA were significantly higher than observed for CTG 

containing any of the phenolic acids. However, no significant differences in HNE formation 

were observed when individually FA, CA, EF, HCA and GA were applied. In agreement with 

other measured indices, CTG fortified with the mixture of phenolic acids and SC accumulated 

significantly lower amounts of HNE, indicating improved thermo-oxidative protection of these 

components (Fig. 4). 

  

4. Conclusions 

The present study substantiated that the frying performance of canola oil could be improved by 

adding simple phenolic acids. In this study, no interaction was observed between phenolic acids 

and endogenous canola oil tocopherols in improving protection of the oil during frying. On the 

other hand, a significant positive interaction was observed between phenolic acids and 

endogenous canola sterols; this synergy could be due to the formation of γ-oryzanols during the 

frying process 
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Table 1. Composition of tocopherol and phytosterol in isolated fraction of endogenous minor 

components from canola oil§  

Components TC (mg/g) SC (mg/g) 

α-tocopherol 269.8 ± 19.2 nd 

γ-tocopherol 505.1 ± 38.9 nd 

δ-tocopherol 47.3 ± 3.1 nd 

Brassicasterol 4.9 ± 0.3 115.0 ± 9.3 

Campesterol 11.9 ± 1.0 264.1  ± 16.1 

Stigmasterol 1.8 ± 0.1 14.5 ± 1.2 

β-Sitosterol 16.0 ± 1.2 488.5 ± 38.4 

∆5-Avenasterol 1.9 ± 0.1 10.3 ± 0.7 

∆7-Avenasterol nd 5.1 ± 0.6 

Triacylglycerols 48.3 ± 3.9 nd 

Diacylglycerols 23.1 ± 1.8 13.9 ± 1.0 

Monoacylglycerols nd 1.1 ± 0.1 

Free fatty acids nd 6.3 ± 0.6 

Steryl esters 29.7 ± 1.2 nd 

Others 69.9 ± 5.4 81.2± 4.7 

§Samples from two different frying experiments were analyzed in triplicate (n=6); values are 

reported as Mean ± SD. TC – tocopherol-rich fraction; SC – sterol-rich fraction; nd = not 

detected 
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Table 2: Volatile carbonyl compounds rate of emission (µg/g/hr) during frying canola oil 

triacylglycerideswith various phenolic compoundsa 

aSamples from two different frying experiments were analyzed in triplicate (n=6). Values with 

same superscript in the same row are not significantly different at p < 0.05. See Fig. 1 for details. 

VCC CTG VA EF GA FA CA HCA SC TC FA+SC FA+TC 

Ethanal  20.1b 18.6bd 15.0c 19.2bd 18.9bd 17.6de 16.3ce 13.2f 16.0ce 13.1f 15.8ce 

Propanal 257.0b 127.1d 91.9eh 101.8cf 107.2cf 97.1ch 94.8ce 99.4ch 93.9ce 85.9e 111.9f 

2-propenal 40.9b 30.6c 14.3h 17.1ef 20.1d 16.2ef 16.1ef 17.7e 19.2de 20.9d 20.0d 

2-butenal 0.3b 0.3b 0.1c 0.1c 0.2d 0.2d 0.1c 0.2d 0.1c 0.2d 0.2d 

Butanal 1.0bd 1.1b 1.1b 1.0b 1.1b 0.7c 0.9d 0.9d 1.1b 1.0bd 0.8e 

2-pentenal 15.4b 8.6c 6.2d 7.2f 6.1de 5.5e 5.8de 6.4d 5.8de 6.1de 6.1de 

Pentanal 39.2b 31.0d 27.0c 27.0c 25.5ce 25.0ce 24.5ce 27.6ce 29.3cd 24.9ce 28.9cd 

2-hexenal 3.9b 2.1c 1.2d 1.4e 1.7f 1.3de 1.2d 1.4e 1.1dg 1.1dg 2.0c 

Hexanal 20.6b 13.1c 9.0dg 10.9e 9.0dg 8.1g 7.2f 9.8d 8.4g 7.8fg 8.4g 

2,4heptadienal 1.6 b 0.8 c 0.7d 0.7d 0.7d 0.7d 0.4e 0.6f 0.6f 0.4e 0.6f 

2-heptenal 2.2b 1.1c 0.9d 0.9d 0.6e 0.8f 0.8f 1.1c 0.8f 0.8f 1.1c 

Heptanal 4.2b 1.9c 1.1d 1.1d 1.3e 1.1d 1.4ef 1.5f 1.8cg 1.3e 1.7g 

2-octenal 0.3b 0.2c 0.3b 0.3b 0.3b 0.3b 0.3b 0.3b 0.3b 0.2c 0.2e 

2,4nonadienal 0.1b 0.1b 0.1b 0.0c 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 

Octanal 1.9b 1.7c 1.2d 1.2d 1.3d 1.2d 1.3d 1.5e 1.6e 1.2d 1.5e 

2-nonenal 0.4b 0.6c 0.4b 0.4b 0.5d 0.4b 0.4d 0.5d 0.5d 0.4b 0.5d 

Nonanal 15.1b 9.1c 7.8d 6.3eg 7.9d 6.3eg 5.7e 6.7g 7.8d 4.5h 7.1d 

2,4decadienal 0.6b 0.3c 0.1d 0.1d 0.1d 0.2e 0.2e 0.2e 0.4f 0.2e 0.3c 

2-decenal 0.5b 0.2c 0.2c 0.2c 0.3d 0.2c 0.2c 0.3d 0.4e 0.2c 0.3d 

Decanal 0.2b 0.2b 0.0c 0.1d 0.1d 0.1d 0.1d 0.1d 0.2b 0.1d 0.1d 

Undecenal 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b  

Unidentified 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b 0.1b  

Total  425.7b 248.9c 178.8df 197.2e 203.2e 183.3d 178.0df 189.7de 189.5de 170.6f 207.8e 
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Figure 1. Polar components formation during test frying canola triacylglycerides fortified with 

different phenolic acids and minor components isolated from canola oil. CTG – canola 

triacylglycerides; HCA – dihydrocaffeic acid (500 µg/g); CA – caffeic acid (500 µg/g); GA – 

gallic acids (500 µg/g); VA – vanillic acid (500 µg/g); FA – ferulic acid (500 µg/g); EF – ethyl 

ferulate (500 µg/g); SC – canola oil sterol fraction (3000 µg/g); TC – canola oil tocopherol 

fraction (1000 µg/g). 
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Figure 2. Amount of steryl ferulates detected in CTGs fried with a mixture of ferulic acid and 

sterol fraction isolated from canola oil. CTGs – canola oil triacylglycerides; FA+SC – ferulic 

acid with canola sterol fraction.  
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Figure 3. Chromatogram of volatile carbonyl dinitrophenylhydrazones. See text for HPLC 

conditions. a = ethanal; b = propenal; c = propanal; d = 2-butenal; e = butanal; f = 2-pentenal; g 

= pentanal; h = 2-hexenal; i = hexanal; j = unknown; k = 2,4-heptadienal; l = 2-heptenal; m = 

heptanal; n = 2-octenal; o = 2,4-nonadienal; p = octanal; q = 2-nonenal; r = nonanal; s = 2,4-

decadienal; t = 2-decenal; u = decanal; v = 2-undecenal; w = unknown. 
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Figure 4. Formation of 4-hydroxynonenal during test frying using canola triacylglycerides 

containing different phenolic acids and minor components isolated from canola oil. CTG – 

canola triacylglycerides; HCA – dihydrocaffeic acid (500 µg/g); CA – caffeic acid (500 µg/g); 

GA – gallic acids (500 µg/g); VA – vanillic acid (500 µg/g); FA – ferulic acid (500 µg/g); EF – 

ethyl ferulate (500 µg/g); SC – canola sterol fraction added at 3000 µg/g; TC – canola tocopherol 

fraction added at 1000 µg/g. 
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Abstract 

Novel antioxidants, derivatives of trolox and selected phenolic acids have been prepared in 

good yields and fully characterized by 1H NMR, 13C NMR, and MS. Their antioxidant 

activities have been assessed by DPPH and ORAC assays, and during frying and accelerated 

storage tests. Novel phenolic compounds exhibited higher radical scavenging activities than 

both trolox and α-tocopherol. Trolox hydroxybenzoate showed a significantly higher 

protection than α-tocopherol under storage conditions.  All new antioxidants performed better 

than α-tocopherol under frying conditions. Moreover, their outstanding thermal stability 

makes them more valuable than α –tocopherol for frying applications. 

 

KEYWORDS: Antioxidant; Synthesis; Frying; Phenolics; Radical scavenging activity; 

trolox; storage stability; frying performance 
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INTRODUCTION 

Free radicals are involved in inflammatory and cardiovascular diseases, cancer and 

stimulate aging (1-7). In food, rancidity is one of the major concerns and mainly related to 

oxidative degradation of polyunsaturated fatty acids. For years antioxidants have been used to 

prevent degradation of food (8). Phenolic derivatives are one of the most effective and 

commonly used antioxidants. These derivatives slow down the degradation of food 

ingredients by inhibiting their oxidation (9-10). Among this family of compounds, both 

synthetic antioxidants such as BHT, BHA, TBHQ and natural ones such as tocopherols, 

phenolic acids, herbal extracts are used to protect against oxidative degradation. Although 

synthetic antioxidants have shown good efficiency, their use has been limited because of their 

possible detrimental effect on human health (8). As a consequence, there is a growing interest 

in the development of new antioxidants that are based on natural components and exhibit low 

toxicity 

Among the natural antioxidants α-tocopherol (vitamin E) is the most effective; however its 

activity is affected by the environment and conditions in which these compounds operate (11). 

Distribution and type of substitutes on the chromanol ring is mainly responsible for its 

effectiveness. Indeed, the methyl groups activate the aromatic ring and the geometry adopted 

by the heterocyclic ring results in a stabilization of the phenoxyl radical (11). Natural phenolic 

acids are components of food and their antioxidative activity have been used for food 

protection. Besides, some are also known for health stimulating properties. As an example, 

gallic acid and its derivatives have been shown to exhibit the following health affecting 

properties: cardioprotective (12), neuroprotective (13), anti-inflammatory (14), antimutagenic 

(15) and anticancerogenic (16).  

 The objective of this work was the synthesis of new phenolic compounds with higher 

antioxidant activities than the common natural antioxidants and improved stability during 

storage and frying. Given that very often antioxidants are assessed for their free radical 

scavenging and this assessment has a limited value in predicting antioxidant effectiveness in 

real food system (17), we applied accelerated storage and frying as measures of their efficacy.  

 

MATERIALS AND METHODS 

General Procedures. Column chromatography was performed using EMD silica gel Si 60 

(40-63 µm). 1H NMR and 13C NMR were recorded on a 300 MHz Bruker Avance II 

spectrometer (Bruker BioSpin Corporation, Billerica, MA) with TMS as an internal standard. 

NMR data are presented in the following order: chemical shift in ppm, multiplicity (s-singlet; 
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d-doublet; t-triplet; m-multiplet), coupling constant in Hertz, assignment broad band 1H 

decoupling. Melting points (Mp) were measured with an Electrothermal MEL-TEMP 3.0 

(Barnstead). Analyses of residual antioxidants after frying and storage tests were performed 

on a Finnigan Surveyor LC (Thermo Electron Corp., Waltham, MA, USA) with a Finnigan 

Surveyor Autosampler Plus and Finnigan Surveyor FL Plus fluorescence detector. The 

column was a normal phase Diol column (5µm; 250 × 4.6 mm; Monochrom, Varian, CA).  A 

Beckman DU-65 spectrophotometer (Beckman Instruments, Inc., Fullerton, CA) was used in 

the DPPH assay as well as for the determination of PV. For ORAC assay, fluorescence was 

measured on a Cary Eclipse fluorescence spectrophotometer (Varian, Palo Alto, CA). High-

resolution mass spectra were obtained with a QSTAR Elite mass spectrometer (AB SCIEX, 

Concord, ON, Canada) equipped with an electrospray source operated in positive ion mode. 

 

Chemicals. AAPH-2,2'-azobis (2-amidinopropane) dihydrochloride; DCC-N,N'-

dicyclohexylcarbodiimide; DMAP-dimethylaminopyridine; DPPH-2,2-diphenyl-1-

picrylhydrazyl; fluorescein disodium salt, trolox and other phenolic acids were purchased 

from Sigma-Aldrich (St. Louis, MO). THF - tetrahydrofuran and DCM – dichloromethane 

were purified using a MBraun Solvent Purification System (M. Braun Incorporated, Stratham, 

NH). DMF- dimethylformamide and other solvents used in this work were of HPLC grade 

and obtained from VWR (Edmonton, Canada).  

 

Syntheses. Compounds 3a, 3d, 4a, 4d, 4e, 5, and 6 were synthesized according to a 

method described by Tranchimand et al (18) while compound 7 according to procedure 

described by Muller et al (19). 

General procedure for synthesis of benzoic acid esters (3b and 3c). Benzoic esters 3b and 

3c were prepared according to a procedure described by Tranchimand  et al (18)  Briefly, 

potassium carbonate (77.2 mmol, 3.0 equiv) and benzyl bromide (77.2 mmol, 3.0 equiv) were 

added to a solution of the desired benzoic acid derivative (25.7 mmol) dissolved in 100 mL of 

dry DMF under an argon blanket. The mixture was stirred for 15 hrs and transferred into 

distilled water (150 mL). Compound of interest was extracted thrice with diethyl ether (100 

mL). The combined extracts were washed with distilled water (100 mL), dried on magnesium 

sulfate and concentrated under vacuum using a rotary evaporator.  

Data for benzyl 3-methoxy-4-benzyloxybenzoate (3b; Scheme 1). The crude benzoic ester 

was purified by recrystallization in hexanes. Aspect: white solids. Yield = 89%. The spectral 

results were in agreement with published data (20). 
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Data for benzyl 3,5-dimethoxy-4-benzyloxybenzoate (3c; Scheme 1). The crude benzoic 

ester was purified by hexane recrystallization. Aspect: white solids. Yield = 76%. 1H NMR 

(300.0 MHz, CDCl3): δ: 3.73 (s, 6H, OCH3); 4.96 (s, 2H, OCH2Ph); 5.23 (s, 2H, OCH2Ph); 

7.18-7.35 (m, 12H, CHAr).
 13C NMR (75.0 MHz, CDCl3): δ 56.2 (OCH3); 66.8 (COOCH2Ph); 

75.9 (OCH2Ph); 106.9 (CAr); 125.3 (CAr); 128.0 (CAr); 128.2 (CAr); 128.3 (CAr); 128.4 (CAr); 

128.5 (CAr); 128.6 (CAr); 136.1 (CAr); 137.3 (CAr); 141.1 (CAr); 153.3 (CAr); 166.2 (C=O). 

 

General procedure for preparation of carboxylic acids (4b and 4c; Scheme 1). 

Carboxylic acids were prepared according to the procedure described by Tranchimand  et al 

(18).  Briefly, potassium hydroxide (72.0 mmol, 5.0 equiv) was added to a solution of the 

corresponding benzoic ester 3b or 3c (14.4 mmol) in a mixture of distilled water (53 mL) and 

ethanol (210 mL). The mixture was refluxed for 2 hours and solvent evaporated under a 

vacuum using a rotary evaporator.  The residue obtained was dissolved in distilled water (200 

mL). The aqueous solution was extracted twice with diethyl ether (50 mL) and acidified with 

concentrated sulfuric acid until white solids were formed. The suspension was then extracted 

tree times with ethyl acetate (200 mL). The combined extracts were washed with distilled 

water and dried on magnesium sulfate and finally concentrated under a vacuum using a rotary 

evaporator.  

Data for 3-methoxy-4-benzyloxybenzoic acid (4b; Scheme 1) Aspect: white solids. Yield = 

87%. The spectral results matched published data (21).  

Data for 3,5-dimethoxy-4-benzyloxybenzoic acid (4c; Scheme 1). Aspect: white solids. 

Yield = 90%. 1H NMR (300.0 MHz, DMSO-d6): δ: 3.84 (s, 6H, OCH3); 5.00 (s, 2H, 

OCH2Ph); 7.25 (s, 2H, CHAr); 7.27-7.47 (m, 5H, CHAr); 12.96 (s, 1H, COOH). 13C NMR 

(75.0 MHz, DMSO-d6): δ 56.4 (OCH3); 74.4 (OCH2Ph); 106.9 (CAr); 126.5 (CAr); 128.3 

(CAr); 128.5 (CAr); 128.6 (CAr); 138.0 (CAr); 140.6 (CAr); 153.3 (CAr); 167.4 (C=O). 

 

Procedure for esters 8a to 8e syntheses. DCC (3.06 mmol, 2.0 equiv) and DMAP (0.23 

mmol, 0.15 equiv) were added under an argon blanket to an alcoholic solution of compound 7 

(1.53 mmol) and the desired benzoic acid derivative (3.06 mmol, 2.0 equiv) in dry DCM (40 

mL). The mixture was stirred for 15 hrs at room temperature and distilled water (50 mL) 

added. The organic layer was removed and washed once more with distilled water (20 mL), 

then dried over anhydrous magnesium sulfate and concentrated. Finally, the crude product 

was purified by flash column chromatography with silica gel and solvents used for elution are 

described for the particular compounds.  
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Data for (6’-benzyloxy-2’,5’,7’,8’-tetramethylchroman-2’-yl) methyl 4-benzyloxybenzoate 

(8a; Scheme 2). Eluent = DCM/hexanes (7:3 v/v). Aspect: highly viscous oil. Yield = 70%. 
1H NMR (300.0 MHz, CDCl3): δ 1.40 (s, 3H, CH3); 1.81-2.10 (m, 2H, C=C-CH2-CH2); 2.11 

(s, 3H, CH3); 2.18 (s, 3H, CH3); 2.22 (s, 3H, CH3); 2.67 (t, J = 6.9 Hz, 2H, C=C-CH2); 4.29 

(d, J = 11.4 Hz, 1H, CH2OCO); 4.38 (d, J = 11.4 Hz, 1H, CH2OCO); 4.69 (s, 2H, OCH2Ph); 

5.13 (s, 2H, OCH2Ph); 7.00 (d, J = 8.7 Hz, 1H, CHAr); 7.28-7.53 (m, 10H, CHAr); 8.00 (d, J = 

8.7 Hz, 1H, CHAr). 
13C NMR (75.0 MHz, CDCl3): δ 11.9 (CH3); 12.0 (CH3); 12.9 (CH3); 20.3 

(C=C-CH2); 22.4 (CH3); 28.8 (C=C-CH2-CH2); 68.9 (CH2OCO); 70.1 (OCH2Ph); 73 .8 

(OCCH2OCO); 74.8 (OCH2Ph); 114.5 (CAr); 117.3 (CAr); 122.8 (CAr); 123.2 (CAr); 126.1 

(CAr); 127.5 (CAr); 127.7 (CAr); 127.8 (CAr); 128.2 (CAr); 128.3 (CAr); 128.5 (CAr); 128.7 (CAr); 

131.7 (CAr); 136.2 (CAr); 137.9 (CAr); 147.4 (CAr); 148.6 (CAr); 162.6 (CAr); 166.1 (C=O). MS 

(m/z): calculated for C35H36O5 = 537.2636; found 537.2637 [M + H]+. 

 Data for (6’-benzyloxy-2’,5’,7’,8’-tetramethylchroman-2’-yl) methyl 3-methoxy-4-benzyl-

oxybenzoate (8b; Scheme 2). Eluent = Ethyl acetate/hexanes (25:75 v/v). Aspect: highly 

viscous oil. Yield = 75%. 1H NMR (300.0 MHz, CDCl3): δ 1.39 (s, 3H, CH3); 1.81-2.09 (m, 

2H, C=C-CH2-CH2); 2.11 (s, 3H, CH3); 2.17 (s, 3H, CH3); 2.22 (s, 3H, CH3); 2.67 (t, J = 6.9 

Hz, 2H, C=C-CH2); 3.94 (s, 3H, OCH3); 4.26 (d, J = 11.4 Hz, 1H, CH2OCO); 4.39 (d, J = 

11.4 Hz, 1H, CH2OCO); 4.69 (s, 2H, OCH2Ph); 5.23 (s, 2H, OCH2Ph); 6.90 (d, J = 8.10 Hz, 

1H, CHAr); 7.27-7.65 (m, 12H, CHAr). 
13C NMR (75.0 MHz, CDCl3): δ 11.9 (CH3); 12.0 

(CH3); 12.9 (CH3); 20.3 (C=C-CH2); 22.4 (CH3); 28.8 (C=C-CH2-CH2); 56.1 (OCH3); 68.9 

(CH2OCO); 70.8 (OCH2Ph); 73.8 (OCCH2OCO); 74.8 (OCH2Ph); 112.5 (CAr); 112.6 (CAr); 

117.4 (CAr); 122.9 (CAr); 123.2 (CAr); 123.5 (CAr); 126.1 (CAr); 127.2 (CAr); 127.8 (CAr); 127.9 

(CAr); 128.1 (CAr); 128.3 (CAr); 128.5 (CAr); 128.7 (CAr); 136.4 (CAr); 137.9 (CAr); 147.4 (CAr); 

148.6 (CAr); 149.2 (CAr); 152.2 (CAr); 166.2 (C=O). MS (m/z): calculated for C36H38O6 = 

567.2741; found 567.2743 [M + H]+. 

Data for (6’-benzyloxy-2’,5’,7’,8’-tetramethylchroman-2’-yl) methyl 3,5-dimethoxy-4-

benzyl-oxybenzoate (8c; Scheme 2). Eluent = DCM/hexanes (4:1 v/v). Aspect: highly viscous 

oil. Yield = 71%. 1H NMR (300.0 MHz, CDCl3): δ 1.40 (s, 3H, CH3); 1.84-2.11 (m, 2H, 

C=C-CH2-CH2); 2.13 (s, 3H, CH3); 2.18 (s, 3H, CH3); 2.22 (s, 3H, CH3); 2.68 (t, J = 6.9 Hz, 

2H, C=C-CH2); 3.87 (s, 6H, OCH3); 4.28 (d, J = 11.4 Hz, 1H, CH2OCO); 4.43 (d, J = 11.4 

Hz, 1H, CH2OCO); 4.69 (s, 2H, OCH2Ph); 5.09 (s, 2H, OCH2Ph); 7.25-7.53 (m, 12H, CHAr). 
13C NMR (75.0 MHz, CDCl3): δ 11.8 (CH3); 12.0 (CH3); 12.9 (CH3); 20.2 (C=C-CH2); 22.3 

(CH3); 28.9 (C=C-CH2-CH2); 56.2 (OCH3); 69.2 (CH2OCO); 73.8 (OCCH2OCO); 74.8 

(OCH2Ph); 75.0 (OCH2Ph); 106.9 (CAr); 117.3 (CAr); 123.1 (CAr); 125.3 (CAr); 126.1 (CAr); 
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127.7 (CAr); 127.9 (CAr); 128.0 (CAr); 128.2 (CAr); 128.4 (CAr); 128.5 (CAr); 128.6 (CAr); 137.4 

(CAr); 137.9 (CAr); 141.2 (CAr); 147.3 (CAr); 148.7 (CAr); 153.3 (CAr); 166.1 (C=O). MS (m/z): 

calculated for C37H40O7 = 597.2847; found 597.2831 [M + H]+. 

Data for (6’-benzyloxy-2’,5’,7’,8’-tetramethylchroman-2’-yl) methyl 3,4-di-benzyloxy-

benzoate (8d; Scheme 2). Eluent = Ethyl acetate/hexanes (1:4 v/v). Aspect: highly viscous oil. 

Yield = 78%. 1H NMR (300.0 MHz, CDCl3): δ 1.41 (s, 3H, CH3); 1.83-2.13 (m, 2H, C=C-

CH2-CH2); 2.15 (s, 3H, CH3); 2.22 (s, 3H, CH3); 2.26 (s, 3H, CH3); 2.70 (t, J = 6.9 Hz, 2H, 

C=C-CH2); 4.30 (d, J = 11.4 Hz, 1H, CH2OCO); 4.39 (d, J = 11.4 Hz, 1H, CH2OCO); 4.74 (s, 

2H, OCH2Ph); 5.25 (s, 2H, OCH2Ph); 5.27 (s, 2H, OCH2Ph); 6.98 (d, J = 8.7 Hz, 1H, CHAr); 

7.29-7.70 (m, 17H, CHAr). 
13C NMR (75.0 MHz, CDCl3): δ 11.9 (CH3); 12.0 (CH3); 12.9 

(CH3); 20.3 (C=C-CH2); 22.4 (CH3); 28.8 (C=C-CH2-CH2); 68.9 (CH2OCO); 70.8 (OCH2Ph); 

71.2 (OCH2Ph); 73.8 (OCCH2OCO); 74.8 (OCH2Ph); 113.2 (CAr); 115.5 (CAr); 117.4 (CAr); 

123.0 (CAr); 123.2 (CAr); 124.1 (CAr); 126.1 (CAr); 127.1 (CAr); 127.4 (CAr); 127.8 (CAr); 127.9 

(CAr); 128.0 (CAr); 128.1 (CAr); 128.3 (CAr); 128.5 (CAr); 128.6 (CAr); 128.7 (CAr); 136.6 (CAr); 

136.9 (CAr); 137.9 (CAr); 147.4 (CAr); 148.3 (CAr); 148.6 (CAr); 153.0 (CAr); 166.0 (C=O). MS 

(m/z): calculated for C42H42O6 = 643.3054; found 643.3087 [M + H]+. 

Data for (6’-benzyloxy-2’,5’,7’,8’-tetramethylchroman-2’-yl) methyl 3,4,5-tri-benzyloxy-

benzoate (8e; Scheme 2). Eluent = DCM/hexanes (4:1 v/v). Aspect: light yellow solids. Yield 

= 80%. 1H NMR (300.0 MHz, CDCl3): δ 1.36 (s, 3H, CH3); 1.77-2.06 (m, 2H, C=C-CH2-

CH2); 2.12 (s, 3H, CH3); 2.19 (s, 3H, CH3); 2.23 (s, 3H, CH3); 2.66 (t, J = 6.6 Hz, 2H, C=C-

CH2); 4.26 (d, J = 11.4 Hz, 1H, CH2OCO); 4.36 (d, J = 11.4 Hz, 1H, CH2OCO); 4.70 (s, 2H, 

OCH2Ph); 5.14 (s, 6H, OCH2Ph); 7.22-7.55 (m, 22H, CHAr). 
13C NMR (75.0 MHz, CDCl3): δ 

11.9 (CH3); 12.1 (CH3); 12.9 (CH3); 20.2 (C=C-CH2); 22.4 (CH3); 28.7 (C=C-CH2-CH2); 69.1 

(CH2OCO); 71.2 (OCH2Ph); 73.7 (OCCH2OCO); 74.8 (OCH2Ph); 75.2 (OCH2Ph); 109.1 

(CAr); 117.3 (CAr); 123.1 (CAr); 125.1 (CAr); 126.1 (CAr); 127.5 (CAr); 127.6 (CAr); 127.8 (CAr); 

127.9 (CAr); 128.0 (CAr); 128.1 (CAr); 128.2 (CAr); 128.4 (CAr); 128.5 (CAr); 128.6 (CAr); 136.7 

(CAr); 137.4 (CAr); 137.9 (CAr); 142.5 (CAr); 147.3 (CAr); 148.6 (CAr); 152.5 (CAr); 165.9 

(C=O). MS (m/z): calculated for C49H48O7 = 749.3473; found 749.3485 [M + H]+. 

General procedure for antioxidants 1a to 1e preparation (Fig 1). Palladium on charcoal 

(10% w/w) was added to a solution of the desired benzylated compound, 0.7 mmol in 8 mL of 

dry THF. The mixture was stirred at room temperature under an atmosphere of hydrogen for 

24 hrs, then filtrated on celite and concentrated on a rotary evaporator under reduced pressure. 

The residue was purified by flash column chromatography with silica gel and solvents used 

for elution are described for each individual component below.  
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Data for (6’-hydroxy-2’,5’,7’,8’-tetramethylchroman-2’-yl) methyl 4-hydroxybenzoate 

(1a). Eluent = Ethyl acetate/hexanes (2:3 v/v). Aspect: white solids. Yield = 90%. Mp = 139-

140 °C. 1H NMR (300.0 MHz, CDCl3): δ 1.42 (s, 3H, CH3); 1.80-2.09 (m, 2H, C=C-CH2-

CH2); 2.10 (s, 3H, CH3); 2.11 (s, 3H, CH3); 2.15 (s, 3H, CH3); 2.67 (t, J = 6.6 Hz, 2H, C=C-

CH2); 4.21 (s, 1H, OH); 4.27 (d, J = 11.4 Hz, 1H, CH2OCO); 4.34 (d, J = 11.4 Hz, 1H, 

CH2OCO); 5.40 (s, 1H, OH); 6.84 (d, J = 8.7 Hz, 1H, CHAr); 7.95 (d, J = 8.7 Hz, 1H, CHAr). 
13C NMR (75.0 MHz, CDCl3): δ 11.3 (CH3); 11.8 (CH3); 12.2 (CH3); 20.3 (C=C-CH2); 22.2 

(CH3); 28.9 (C=C-CH2-CH2); 68.9 (CH2OCO); 73.5 (OCCH2OCO); 115.3 (CAr); 117.1 (CAr); 

118.6 (CAr); 121.3 (CAr); 122.5 (CAr); 122.8 (CAr); 132.0 (CAr); 145.0 (CAr); 160.0 (CAr); 166.3 

(C=O). MS (m/z): calculated for C21H24O5 = 357.1697; found 357.1696 [M + H]+. 

Data for (6’-hydroxy-2’,5’,7’,8’-tetramethylchroman-2’-yl) methyl 3-methoxy-4-hydroxy-

benzoate (1b). Eluent = Ethyl acetate/hexanes (1:1 v/v). Aspect: white solids. Yield = 70%. 

Mp = 171-172 °C. 1H NMR (300.0 MHz, DMSO-d6): δ 1.03 (s, 3H, CH3); 1.43-1.75 (m, 2H, 

C=C-CH2-CH2); 1.75 (s, 3H, CH3); 1.78 (s, 3H, CH3); 1.82 (s, 3H, CH3); 2.25-2.38 (m, 2H, 

C=C-CH2); 3.57 (s, 3H, OCH3); 3.90 (d, J = 11.4 Hz, 1H, CH2OCO); 3.99 (d, J = 11.4 Hz, 

1H, CH2OCO); 6.17 (s, 1H, OH); 6.58 (d, J = 8.1 Hz, 1H, CHAr); 7.20 (s, 1H, CHAr); 7.24 (d, 

J = 8.1 Hz, 2H, CHAr); 8.48 (s, 1H, OH). 13C NMR (75.0 MHz, DMSO-d6): δ 12.1 (CH3); 

12.3 (CH3); 13.2 (CH3); 20.2 (C=C-CH2); 22.2 (CH3); 28.8 (C=C-CH2-CH2); 56.0 (OCH3); 

68.5 (CH2OCO); 73.7 (OCCH2OCO); 112.9 (CAr); 115.6 (CAr); 117.2 (CAr); 120.8 (CAr); 

120.9 (CAr); 121.6 (CAr); 123.2 (CAr); 123.9 (CAr); 144.4 (CAr); 146.0 (CAr); 147.9 (CAr); 152.1 

(CAr); 165.8 (C=O). MS: calculated for C22H26O6 = 387.1802; found 387.1781 [M + H]+. 

Data for (6’-hydroxy-2’,5’,7’,8’-tetramethylchroman-2’-yl) methyl 3,5-dimethoxy-4-

hydroxybenzoate (1c). Eluent = Ethyl acetate/hexanes (2:3 v/v). Aspect: white solids. Yield = 

81%. Mp = 144-145 °C. 1H NMR (300.0 MHz, CDCl3): δ 1.38 (s, 3H, CH3); 1.79-2.06 (m, 

2H, C=C-CH2-CH2); 2.11 (s, 3H, CH3); 2.12 (s, 3H, CH3); 2.15 (s, 3H, CH3); 2.69 (t, J = 6.9 

Hz, 2H, C=C-CH2); 3.93 (s, 6H, OCH3); 4.22 (s, 1H, OH); 4.27 (d, J = 11.4 Hz, 1H, 

CH2OCO); 4.40 (d, J = 11.4 Hz, 1H, CH2OCO); 5.90 (s, 1H, OH); 7.33 (s, 2H, CHAr). 
13C 

NMR (75.0 MHz, CDCl3): δ 12.1 (CH3); 12.3 (CH3); 13.2 (CH3); 20.2 (C=C-CH2); 22.2 

(CH3); 28.9 (C=C-CH2-CH2); 56.5 (OCH3); 68.7 (CH2OCO); 73.7 (OCCH2OCO); 107.2 

(CAr); 117.2 (CAr); 119.6 (CAr); 120.8 (CAr); 121.6 (CAr); 123.2 (CAr); 141.3 (CAr); 144.4 (CAr); 

146.0 (CAr); 148.0 (CAr); 165.8 (C=O). MS: calculated for C23H28O7 = 417.1908; found 

417.1902 [M + H]+. 

Data for (6’-hydroxy-2’,5’,7’,8’-tetramethylchroman-2’-yl) methyl 3,4-dihydroxybenzoate 

(1d). Eluent = Ethyl acetate/hexanes (1:1 v/v). Aspect: white solids. Yield = 76%. Mp = 182-
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183 °C. 1H NMR (300.0 MHz, CDCl3): δ 1.38 (s, 3H, CH3); 1.86-2.08 (m, 2H, C=C-CH2-

CH2); 2.09 (s, 3H, CH3); 2.11 (s, 3H, CH3); 2.14 (s, 3H, CH3); 2.66 (t, J = 6.6 Hz, 2H, C=C-

CH2); 4.31 (s, 2H, CH2OCO); 4.35 (s, 1H, OH); 6.31 (s, 1H, OH); 6.40 (s, 1H, OH); 6.89 (d, J 

= 8.4 Hz, 1H, CHAr); 7.50  (s, 1H, CHAr); 7.55 (d, J = 8.4 Hz, 1H, CHAr). 
13C NMR (75.0 

MHz, CDCl3): δ 11.3 (CH3); 11.8 (CH3); 12.2 (CH3); 20.4 (C=C-CH2); 22.5 (CH3); 29.1 

(C=C-CH2-CH2); 69.3 (CH2OCO); 73.6 (OCCH2OCO); 114.9 (CAr); 116.5 (CAr); 117.4 (CAr); 

118.6 (CAr); 121.4 (CAr); 122.4 (CAr); 122.9 (CAr); 123.9 (CAr); 143.0 (CAr); 144.9 (CAr); 145.3 

(CAr); 148.9 (CAr); 166.4 (C=O). MS: calculated for C21H24O6 = 373.1646; found 373.1663 

[M + H]+. 

Data for (6’-hydroxy-2’,5’,7’,8’-tetramethylchroman-2’-yl) methyl 3,4,5-trihydroxy-

benzoate (1e). Eluent = Ethyl acetate/hexanes (1:1 v/v). Aspect: white solids. Yield = 77%. 

Mp = 212-213 °C. 1H NMR (300.0 MHz, DMSO-d6): δ 1.30 (s, 3H, CH3); 1.73-2.00 (m, 2H, 

C=C-CH2-CH2); 2.00 (s, 3H, CH3); 2.04 (s, 3H, CH3); 2.05 (s, 3H, CH3); 2.59 (t, J = 6.9 Hz, 

2H, C=C-CH2); 4.20 (s, 2H, CH2OCO); 6.99 (s, 2H, CHAr); 7.47 (s, 1H, OH); 9.10 (s, 3H, 

OH). 13C NMR (75.0 MHz, DMSO-d6): δ 12.2 (CH3); 12.3 (CH3); 13.2 (CH3); 20.2 (C=C-

CH2); 22.0 (CH3); 28.7 (C=C-CH2-CH2); 68.3 (CH2OCO); 73.7 (OCCH2OCO); 109.0 (CAr); 

117.0 (CAr); 119.7 (CAr); 120.8 (CAr); 121.6 (CAr); 123.2 (CAr); 139.0 (CAr); 144.4 (CAr); 145.9 

(CAr); 146.0 (CAr); 166.0 (C=O). MS: calculated for C21H24O7 = 389.1595; found 389.1580 

[M + H]+. 

 

 

DPPH Radicals Scavenging Assay. The DPPH assay was performed according to 

Nenadis and Tsimidou (22). Briefly, to 2960 µL of 0.1 mM ethanolic solution of DPPH 40 µL 

of synthesized antioxidant solution in ethanol was added at the following concentrations: 

0.37, 0.74, 1.11, 1.85, 3.7, and 5.2 µM forming the ratios between the molar amounts of 

antioxidant to the molar amount of DPPH radicals at 0.05, 0.10, 0.15, 0.25, 0.5 and 0.7, 

respectively. The decrease of absorbance at 516 nm was measured at 25 °C after 20 min of 

reaction time. The blank solution contained the same amount of DPPH and 40 µL of ethanol. 

Each test was performed in triplicate. The results are expressed as the %DPPH inhibition 

calculated according to the following equation:  
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Where Ac and At are the absorbances of the control sample and the test sample, respectively. 

All standard deviations for DPPH tests were below 3.0%. Both trolox and α-tocopherol were 

used as references. The IC50 represents the concentration of antioxidant required to decrease 

the initial amount of DPPH by 50%. 

ORAC Assay. ORAC assays were performed according to Szydlowska-Czerniak et al 

(23). Briefly, fluorescein disodium salt and AAPH solutions were prepared in 75 mM 

phosphate buffer (pH=7.4). The antioxidant solutions, 1 mM of each compound were 

dissolved in methanol and specific volume of it dissolved in the buffer to provide the required 

amount of antioxidant within a range of 3.125 - 25.00 µM. Four different concentrations were 

tested for each antioxidant. Solution of fluorescein, 3.0 mL (0.0816 µM) was mixed with 0.5 

mL of antioxidant solution directly in a quartz cuvette. The mixture was kept at 37 °C for 10 

min and 0.5 mL of the AAPH solution (153.0 µM) added. The fluorescence was measured at 

37 °C for 30 min at 30 sec intervals. The emission and excitation were set at 525 nm and 485 

nm, respectively. For a blank, phosphate buffer replaced the antioxidant solution.  Each 

antioxidant solution was prepared in duplicate and three measurements were performed for 

each sample. A calibration curve was generated using trolox as the reference antioxidant. 

The area under the fluorescence decay curve (AUC) was calculated as follows: 

 

Where ft  is the fluorescence at time t (min). 

The net AUC corresponding to the sample was calculated using the following equation: 

AUCnet = AUC – AUCblank 

For each antioxidant, a regression between AUCnet and the compound concentrations was 

calculated and the results were expressed as trolox equivalents (TE). 

Canola Oil Triacylglycerides Isolation. Canola oil was stripped of its endogenous minor 

components including antioxidants via adsorption chromatography, following the procedure 

described by Lampi et al. (24). 

Accelerated Storage. The ability of the new antioxidants to protect oil against oxidative 

degradation was determined using Schaal Oven test. To 1 g of pure canola triacylglycerols 

(CTG) 350 ppm of the tested antioxidant was added in a vial (National Scientific Target DP 

Vials; 2mL, 12 × 32 mm). The samples were stored in the dark for five days at 60 °C, 

providing the surface area to volume ratio at 0.78. Samples were examined at 24 h intervals 

for peroxide value and the residual amounts of antioxidant. The effectiveness of the new 
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compounds was compared with α-tocopherol as natural antioxidant and butylated 

hydroxytoluene (BHT) as a synthetic antioxidant. Experiments were set up in two repetitions 

for each tested antioxidant and samples from each repetition were analyzed in duplicate.  

Peroxide Value (PV). A modified method originally published by Hornero-Mendeza et al. 

was used (25). Briefly, 200 mg of oil was dissolved in 5 mL of hexane; to 200 µL of the 

sample solution 5 mL of methanol/chloroform/HCL (1:1:0.012, v/v.), then 100 µL of 

NH4SCN (30% w/w in water) and 100 µL of ferrous chloride (0.4% in water) were added. 

After 5 minutes incubation at room temperature the absorbance at 480 nm was measured.  

Test Frying. The effectiveness of the developed antioxidants to protect CTG under frying 

conditions was assessed using a frying test system. CTG (12.0 g), fortified with 500 µg/g of 

the studied antioxidant, was weighed into a glass beaker (Pyrex, USA). Octagonal stir bar 

(ThermoFischer Scientific, USA) was placed into the vessel, evolving the final surface-to-

volume ratio to 0.42. Then vessel was heated at 185 ± 5 oC for 10 minutes and 1.2 g of 

formulated starch (a mixture of gelatinized potato starch with glucose and silica gel, 4:1:1 

w/w) was added. The heating was continued for another 20 minutes without mixing and then 

was stirred at 500 rpm. Heating and stirring were afterwards maintained for 90 minutes. 

About 0.5 g of oil sample was withdrawn at 60th, 80th, 100th and 120th minutes of heating. 

Selected sampling points reflect frying time based on the amount of polar components formed 

and correspond to 1, 3, 5 and 7 days of actual frying time using an institutional fryer (General 

Electric Company, NY, USA). Frying performance of oils was assessed by the measurement 

of total polar components (TPC) and the amount of retained tocopherol and added 

antioxidant. Samples from two repetitions of frying test were analyzed in duplicate for TPC 

and residual antioxidant. 

Total Polar Compounds. The amounts of polar compounds were determined by 

gravimetric procedure following AOAC Method 982.27 with Schulte modification (27, 28).  

Residual Tocopherol and Novel Antioxidant. Tocopherols and the new antioxidants 

were analyzed according to AOCS Official Method Ce 8−89 (29). Briefly, oil samples (50.0 

mg) were weighed directly into autosampler vials and dissolved in hexanes (1.0 mL). For 

tocopherol, the mobile phase consisted of 7% methyl tert−butyl ether in hexanes with a flow 

rate of 0.6 mL/min and the fluorescence detector was set for excitation at 292 nm and 

emission at 325 nm. For the new antioxidants the mobile phase was changed to 65% methyl 

tert−butyl ether in hexane and the fluorescence detector emission set to 394 nm. For each run 

10 µL of sample was injected.  
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Statistical Analysis. Data were analyzed by single factor analysis of variance (ANOVA) 

and regression using Minitab 2000 statistical software (Minitab Inc., PA, ver. 13.2). 

Significant differences between means were determined by Duncan’s multiple range tests. 

Statistically significant differences were determined at the P < 0.05 level. 

 

RESULTS AND DISCUSSION  

Synthesis. In order to produce the new antioxidants 1a-1e (Fig 1), benzoic acids 4a-4e 

have been prepared in two steps using commercially available derivatives of benzoic acids 2a-

2d (Scheme 1). Benzoic derivatives, 2a-2d, have been benzylated using benzyl bromide and 

potassium carbonate in dimethylformamide (DMF) to produce 3a-3d esters with the following 

yields:  68% (3a), 89% (3b), 76% (3c) and 94% (3d). Saponification of 3a-3d esters with 

potassium carbonate in methanol/water solution has formed the desired benzoic acids 

derivatives with the yields of 87% (4a, 4b), 90% (4c), and 95% (4d). Gallic acid derivative 

4e, has been synthesized from methyl gallate following the reaction described in Scheme 2 

(18). Derivatives of trolox 1a-1e have been prepared in four steps as described in Scheme 3. 

Alcohol 7 has been obtained according to procedure described by Muller et al (19). A Steglich 

esterification between compound 7 and benzoic acid derivatives 4a-4e formed esters 8a-8e 

(30). These esters have been purified by flash chromatography, and were produced with the 

following yields: 70% (8a), 75% (8b), 71% (8c), and 80% (8d, 8e). Antioxidants 1a-1e has 

been obtained by hydrogenation over palladium catalyst compounds 8a-8e. Isolated 

antioxidants formed white solids and were produced with the following yields: 90% (1a), 

70% (1b), 81% (1c), 76% (1d) and 77% (1e). 

The structures of antioxidants 1a-1e have been confirmed by 1H NMR, 13C NMR, 31P 

NMR and MS.  As an example, the 1H NMR spectrum of antioxidant 1b in Figure 2 is 

included. The 1H NMR spectrum is characterized by four methyl groups at 1.03 ppm, 1.75 

ppm, 1.78 ppm and 1.82 ppm (s), by methylene groups at 1.43-1.75 ppm (m) and 2.25-2.38 

ppm (m), and by a methoxy group at 3.57 ppm (s). The inequivalent H3 protons next to the 

ester group are easily identified by two doublets at 3.90 ppm and 3.99 ppm. As for the 

aromatic protons, they are identified by two doublets at 6.58 ppm and 7.24 ppm and by a 

singlet at 7.20 ppm. The complete disappearance of the characteristic signals for the benzyl 

groups of ester 8b (two singlets at 4.69 ppm and 5.23 ppm as well as a multiplet at 7.27-7.65 

ppm) clearly demonstrate that the removal of benzyl protection of the alcohol groups has been 

completed. 

Antioxidant Capacity Assays 
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DPPH Assay. The radical scavenging properties of the synthesized antioxidants 1a to 1e, 

trolox (A1) and α-tocopherol (A2) have been evaluated by the DPPH assay. Results of this 

study in Table 1 are included. These results attest that the radical scavenging activities of the 

new compounds 1d (IC50 = 0.82 µM) and 1e (IC50 = 0.63 µM) were significantly higher than 

the commercially available trolox (IC50 = 1.75 mM) and tocopherol (IC50 = 1.61 mM).  As for 

antioxidant 1a (IC50 = 1.92 mM), its scavenging activity towards DPPH radicals was the 

lowest among those synthesized (Table 1). Antioxidants 1b (IC50 = 1.69 mM) and 1c (IC50 = 

1.64 mM) provided similar scavenging activity as trolox and α-tocopherol. In the case of this 

test it was established that the number of hydroxyl groups on the aromatic ring define radical 

scavenging activity. When comparing activities for compounds 1a (2 OH), 1d (3 OH) and 1e 

(4 OH), where the only structural differences are in the number of hydroxyl groups on the 

ring, statistically significant differences have been observed in the DPPH radicals scavenging 

potency in the decreasing order: 1e>1d>1a. It is well established that phenolic compounds 

scavenged radicals by proton donation (10). Consequently, this paper results are consistent 

with this observation because higher number of hydroxyl group resulted in the higher capacity 

of proton donation. A dimeric antioxidant containing two hydroxyl groups in fused double 

chromanol rings had better DPPH radical scavenging activity, and provided double reducing 

power compared to α-tocopherol (31, 32). Furthermore, it is well established fact that 

configuration of hydroxyl group on ring in ortho position increases the radical scavenging 

activity (33). Our results also confirmed that the configuration of methoxy substituents to the 

hydroxyl group on the ring in ortho position increased the radical scavenging activity of the 

antioxidant (34). Indeed, 1b (1 methoxy group, IC50 = 1.69 mM) and 1c (2 methoxy groups, 

IC50 = 1.64 mM) were more efficient than 1a (IC50 = 1.92 mM). Component 1c was slightly 

more effective in radical scavenging activity than 1b however the differences were not 

statistically significant. This trend can be related to the structure differences discussed above. 

Similar trends discussed above related to half life of DPPH radicals were observed for 

inhibition (Table 1).  

ORAC Assay. The antioxidant capacities of the synthesized antioxidants using caffeic acid 

as reference have been assessed by the ORAC assay. Figure 3 depicts the decay curves for 

different concentrations (3.125-25.0 µM) of antioxidant 1b. A regression coefficient above 

99% has been achieved for correlation between the AUCnet and the antioxidant concentration 

for each compound tested (Results not included). Antioxidant capacities of each compound, 

expressed in trolox equivalent are given in Table 1. According to these results, all the 

synthesized phenolic compounds exhibited a higher antioxidant capacity than trolox. An 
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improved antioxidant activity was reported for a synthesized compound containing 

hydroxytyrosol attached to the chromanol ring which inhibited formation of malondialdehyde 

in rat liver microsomal membrane when oxidation was induced by AAPH (35). The data 

obtained for caffeic acid (4.46 TE) was similar to the one published by Gomez-Ruiz et al. 

(4.52; 36). Antioxidant 1b (5.10 TE) was the most effective radical scavenger among the 

studied compounds whereas 1e (2.26 TE) was the least active. It is worth mentioning that the 

ORAC assessment gives different results from the DPPH assay. As an example, 1e was the 

least efficient radical scavenger in the ORAC assay whereas it was the most effective 

scavenger for the DPPH radicals (Table 1). Contrary to the DPPH results, no trend has been 

observed in ORAC test. There is as well as lack of relation between the numbers of hydroxyl 

or methoxy groups on the chromanol ring. Each of the tests utilizes different stable free 

radicals and a different mechanism of scavenging is involved making data not comparable and 

not transferrable to the food system (37-39). Both DPPH and ORAC assays confirmed that the 

new antioxidants 1a-1e bestowed similar or higher radical scavenging activity as some 

commercially available antioxidants. Therefore, developed phenolic compounds are good 

candidates to improve food stability.  

Accelerated storage stability (Schaal Oven Test). Since scavenging activity is not 

directly indicative of antioxidant effectiveness in food system we also tested developed 

compounds in real food applications (39). The ability of the phenolic derivatives 1a to 1e to 

protect CTG from oxidative degradation was assessed under Schaal Oven test (SOT) 

conditions. All synthesized antioxidants are well soluble in an oil and fat system. In order to 

determine the amount of antioxidant needed for an optimal protection of the oil, α-tocopherol, 

BHT and 1e have been added to CTG at two concentrations, 0.7 µM and 1.86 µM. Results of 

the SOT indicated that an antioxidant concentration of 0.7 µM, equivalent to 350 ppm, was 

sufficient (Fig 4). Indeed, when 1.86 µM of antioxidant was added, the PV’s were not 

significantly different from 0.7 µM (Fig 4). Results also demonstrated that new antioxidant 1e 

was significantly more effective that α-tocopherol at protecting CTG from oxidative 

degradation. The amounts of hydroperoxides formed at the end of the storage period were 

significantly lower for CTG fortified with 1e (PV = 9.4 meq/kg) than α-tocopherol (PV = 37.1 

meq/kg) and activity was similar to BHT at the same concentration (Fig 4). In order to 

compare the efficiency of all novel antioxidants, 1a to 1e, each compound has been added to 

CTG at 0.7 µM and subjected to accelerated storage. All compounds discussed in this paper 

have very good solubility in canola oil. Results showed that all newly developed antioxidants 

(1a to 1e) significantly inhibited CTG oxidative degradation under accelerated storage 
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condition compared to unprotected canola triacylglycerols (Fig 5).  After 5 days of storage, 

PV of CTG was at 111 meq/kg whereas for triacylglycerides fortified with antioxidants 1a to 

1e were between 9.4 and 44.4 (meq/kg) (Fig 5). PV values for oils containing compounds 1b, 

1c and 1d were not statistically different. Hence, the effectiveness to protect CTG from 

oxidation by 1b, 1c and 1d was lower than for 1e. Among these compounds 1a was the least 

effective in canola triacylglycerides protection against oxidative degradation and less efficient 

than α-tocopherol. The phenolic compound 1e exhibits the highest antioxidant potency among 

the novel compounds in both accelerated oil storage and in scavenging the DPPH radicals. 

This observation demonstrates that DPPH scavenging activity test closely describes the 

behaviour of a particular compound in oil whereas the ORAC assay did not show any relation 

(Table 1 and Fig 5).  

Protection during Frying. Although many compounds are known to display antioxidant 

activities at ambient temperature, the stringent conditions such as high temperature (~185oC) 

and prolonged exposure of oil to oxygen during frying  tallying  an additional demand on 

antioxidants. Consequently, antioxidant for institutional and industrial frying should not only 

be effective at frying conditions but thermally stable and retain low volatility to prevent their 

evaporation (40). As an example, BHT is not efficient under frying conditions due to it 

evaporative losses at elevated temperatures (41). The results from this study demonstrated that 

all developed antioxidants protected CTG from degradation during frying (Fig 6). At the end 

of the frying operation, the amount of total polar compounds accumulated in CTG was 25.7% 

while the amounts accumulated in triacylglycerides fortified with the new antioxidants ranged 

from 17.0% to 18.8%. Thus, antioxidants 1a to 1e were less efficient than BHT in the Schaal 

Oven test, the opposite occurred under frying conditions. At the initial stage of frying (70th 

minute; 1 day of actual frying), no significant difference was observed in the effectiveness of 

antioxidants 1a to 1e and α-tocopherol (Fig 6). However, as frying progressed, CTG fortified 

with antioxidants 1a to 1e has accumulated significantly lower amounts of polar compounds 

compared to CTG with α-tocopherol, indicating more efficient protection against oxidative 

degradation. Antioxidants 1a to 1c protected triacylglycerols at the same level whereas 1d and 

1e were significantly more efficient. Hence, it seems that a higher number of hydroxyl groups 

on the chromanol aromatic rings tends to improve the ability of the antioxidant to prevent 

oxidation of the oil during frying. The presence of methoxy substituents in ortho position to 

the hydroxyl group did not affect the efficiency of the antioxidant. 

Antioxidant Stability. In order to investigate the stability of 1a to 1e, the amounts of 

antioxidant remaining at different stages during storage and frying have been measured 
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(Figures 7 and 8). All novel antioxidants exhibited significantly higher stability than α-

tocopherol. Indeed, under accelerated storage 69.2% (1a), 76.3% (1b), 74.8 (1c), 70.2% (1d) 

and 72.5% (1e) of added antioxidants have been observed at the end of storage time, 

compared to 35% for CTG containing α-tocopherol (Figure 7). α-Tocopherol has been 

completely depleted at the 80th minute of the frying test, whereas 27.0% (1a), 37.5% (1b), 

49.1% (1c), 18.1% (1d) and 24.5% (1e) were still remained (Figure 8). It is noteworthy that, 

in frying test, 1e exhibited a significantly higher stability than the other compounds. As a 

consequence, it is expected that significantly higher amounts of antioxidant will be carried 

over to fried foods when frying in oil containing one of the newly developed phenolic 

compounds. Hence, foods fried in such oils will possess higher storage stability than foods 

fried in oils containing α-tocopherol at the same concentration level. Additionally, fried food 

containing higher amounts of antioxidants can offer better nutritional quality. 

A convenient method has been developed for the synthesis of novel antioxidants.  These 

phenolic components have been prepared in four steps from trolox and phenolic acids and 

shown to be produced in good yields. The radical scavenging activities of these compounds 

were different when assessed by DPPH and ORAC assays indicating lack of compatibility of 

these tests in assessing antioxidant activity. These studies have demonstrated that each 

prepared phenolic antioxidant offered a higher antioxidant activity than trolox and α-

tocopherol. Although a trend has not been observed between chemical structure and data from 

the ORAC assay, however results obtained with the DPPH assay can be explained by 

chemical structure of the components.  Furthermore, the new antioxidants were better at 

protecting oil from oxidation during storage and frying when compared to standard 

antioxidants used today.  The antioxidant 1e displayed superior protection of oil under 

accelerated storage conditions when compared to other novel antioxidants and α-tocopherol. 

Results also indicated that novel antioxidants were significantly better in protecting frying oil 

when compared to α-tocopherol. Antioxidants 1d and 1e were the most effective at frying 

temperatures. Phenolic compound 1e was the most efficient antioxidant under storage and 

frying conditions. The remarkably high thermal stability of novel antioxidants makes them 

very valuable under frying conditions and these compounds may also improve nutritional 

quality of fried foods. 

Further investigations are underway to get a better understanding of the relationship 

between structure and antioxidant activity of these novel antioxidants. The nature of the 
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degradation products from the new antioxidants will also be studied to better understand what 

degradation products may form. 

Abbreviations: AAPH: 2,2'-azobis(2-amidinopropane) dihydrochloride; CTG: Canola 

triacylglyceride; DCC: N,N'-dicyclohexylcarbodiimide; DCM: dichloromethane; DMAP: 4-

dimethylaminopyridine; DMF: dimethylformamide; DPPH: 2,2-Diphenyl-1-Picrylhydrazyl; 

THF: tetrahydrofuran; TPC: total polar components; PV: peroxide value. 
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Figure and Scheme Captions  

Figure 1. Structure of novel antioxidants 1a-1e 

Figure 2. 
1H NMR spectrum of antioxidant 1b 

Figure 3. Fluorescence decay profiles induced by AAPH for new 1b antioxidant at different 

concentrations. All standard deviations for this assessment were below 3.0% 

Figure 4. Changes in peroxide value during accelerated storage of canola triacylglycerols 

fortified with different amounts of α-tocopherol, BHT and the novel antioxidant 1e. CTG –

canola triacylglycerides. For details see text. 

Figure 5. Changes in peroxide formation during storage of canola triacylglycerols with 

different antioxidants added at 300 ppm. CTG – Canola triacylglycerols. For details see text  

Figure 6. Polar components formation during canola triacylglycerides test frying with α-

tocopherol and novel antioxidants 1a – 1e added at 500 ppm. For details see text.  

Figure 7.  Percentage of remaining antioxidant during accelerated storage of canola 

triacylglycerols fortified with α-tocopherol and novel antioxidants 1a-1e added at 300 ppm. 

Figure 8: Percentage of remaining antioxidant during canola triacylglycerol test frying 

fortified with α-tocopherol and novel antioxidants at 500 ppm.  

Scheme 1. Reagents and conditions: (i) BnBr, K2CO3, DMF; (ii) KOH, H2O/MeOH, reflux 

Scheme 2. Reagents and conditions: (i) BnBr, K2CO3, DMF; (ii) KOH, H2O/MeOH, reflux 

Scheme 3. Reagents and conditions: (i) BnBr, K2CO3, DMF; (ii) LiAlH4, THF, 0 °C; (iii) 4a-

4e, DCC, DMAP, DCM; (iv)  H2, Pd/C 10%, THF 
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Table 1. DPPH and ORAC tests results for novel antioxidants
a
 

 

Antioxidant 
DPPH Test ORAC Test 

IC50 (µM) Inhibition (%) Trolox Equivalents (µM) 

(µM) 
1a 1.92 ± 0.01 29.9 ± 1.2 3.78 ± 0.26 

1b 1.69 ± 0.06 32.2 ± 2.3 5.10 ± 0.26 

1c 1.64 ± 0.04 34.4 ± 1.8 2.81 ± 0.29 

1d 0.82 ± 0.01 65.0 ± 2.1 4.48 ± 0.13 

1e 0.63 ± 0.01 88.1 ± 2.2 2.26 ± 0.12 

Trolox
b 1.75 ± 0.02 31.7 ± 1.9  

α-Tocopherol
b 1.61 ± 0.02 34.6 ± 1.7  

Caffeic acid
b   4.46 ± 0.22 

 

aCompounds 1a–1e, novel antioxidants, for their structure see Fig 1 
bReference antioxidants. 
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Figure 1. Structure of novel antioxidants 1a - 1e. For details see text. 
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Figure 2. 
1H NMR spectrum of novel antioxidant 1b. For details see text. 

 

 



 

 

26 

 

 

 

 

Time [min]

0 5 10 15 20 25 30

R
e
la

ti
v

e 
F

lu
o

r
e
sc

e
n

c
e

0

20

40

60

80

100

120
Blank
3.125 µM 
6.25 µM 
12.5 µM 
25 µM 

 

 

 

Figure 3. Fluorescence decay profiles induced by AAPH for new 1b antioxidant at different 

concentrations. 
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Figure 4. Changes in peroxide value during accelerated storage of canola triacylglycerols 

fortified with different amounts of α-tocopherol, BHT and the novel antioxidant 1e. CTG –

canola triacylglycerides. For details see text. 
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Figure 5. Changes in peroxide formation during storage of canola triacylglycerols with 

different antioxidants added at 300 ppm. CTG – Canola triacylglycerols. For details see text. 
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Figure 6.  Polar components formation during canola triacylglycerides test frying with α-

tocopherol and novel antioxidants 1a – 1e added at 500 ppm. For details see text.  
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Figure 7. Percentage of remaining antioxidant during accelerated storage of canola 

triacylglycerols fortified with α-tocopherol and novel antioxidants 1a-1e added at 300 ppm. 
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Figure 8: Percentage of remaining antioxidant during canola triacylglycerol test frying 

fortified with α-tocopherol and novel antioxidants at 500 ppm.  
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Scheme 1. Reactions, reagents and conditions for syntheses of benzoic acid derivatives: (i) 

BnBr, K2CO3, DMF; (ii) KOH, H2O/MeOH, reflux 
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Scheme 2. Reactions, reagents and conditions for synthesis benzylated esters: (i) BnBr, 

K2CO3, DMF; (ii) KOH, H2O/MeOH, reflux. For details see text. 
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Scheme 3. Reactions, reagents and conditions for syntheses of antioxidant 1 and 8: (i) BnBr, 

K2CO3, DMF; (ii) LiAlH4, THF, 0 °C; (iii) 4a-4e, DCC, DMAP, DCM; (iv)  H2, Pd/C 10%, 

THF. For details see text. 
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Abstract  Novel phenolic antioxidants: 2a (6’-hydroxy-2’,5’,7’,8’-tetramethylchroman-2’-

yl)methyl 3-methoxy-4-hydroxycinnamate, 2b (6’-hydroxy-2’,5’,7’,8’-tetramethylchroman-

2’-yl)methyl 3,5-dimethoxy-4-hydroxycinnamate, 2c (6’-hydroxy-2’,5’,7’,8’-

tetramethylchroman-2’-yl)methyl 3,4-dihydroxycinnamate, and 3 (6-hydroxy-2,5,7,8-

tetramethylchroman-2-yl)methyl (6’-hydroxy-2’,5’,7’,8’-tetramethylchroman-2’-carboxylate) 

have been prepared in good yields and fully characterized by 1H and 13C NMR, and HRMS. 

Their radical scavenging activities have been evaluated by DPPH and ORAC assays. Each of 

the synthesized antioxidants exhibited significantly higher radical scavenging activities than 

trolox and α-tocopherol. These novel antioxidants efficiently protected canola oil 

triacylglycerides (CTG) during accelerated storage and frying. Compounds 2c and 3 were 

significantly more efficient than α-tocopherol protecting CTG under accelerated storage. All 

new antioxidants were more efficient than α-tocopherol under frying conditions and present 

significantly higher thermal stability. 

 

 

 

Keywords:  Phenolic antioxidants, synthesis, canola oil, frying, storage stability, trolox, 

cinnamic acid, caffeic acid 
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Introduction 

 

Oxidation of polyunsaturated lipids is one of the main causes of food degradation [1]. 

Degraded lipids deteriorate its flavor and forms free radicals which may stimulate and /or 

initiate development of some health problems [1]. Free radicals are also involved in 

inflammatory and cardiovascular diseases, cancer and aging [2–5]. To prevent development of 

rancidity in foods, antioxidants have been utilized for years. Antioxidants are efficient 

scavengers of radicals, the later are formed during the initiation or the propagation stages of 

oxidative degradation [3].  

Phenolic compounds including phenolic acids, tocopherol and flavonoids are widely 

distributed in the plants and are the efficient cell antioxidants [6]. Besides their high 

antioxidant activity, some phenolic derivatives present interesting biological properties. 

Caffeic acid and its analogues provide antiviral, anti-thrombosis, anti-hypertension, anti-

fibrosis and antitumor properties [7]. Ferulic acid and its derivatives, the most abundant 

phenolic acid in plants, has been shown to possess antioxidant, antimicrobial, anti-

inflammatory, anti-thrombosis and anti-cancer activities [8]. 

Synthetic antioxidants such as BHT, BHA and TBHQ have been used in some food 

applications; however their safety has been challenged due to possible negative effect on 

human health [9, 10]. Consequently, the synthesis of new antioxidants derived from natural 

ingredients, offering low toxicity, interesting biological properties as well as high antioxidant 

effectiveness are of current interest. In this context, our group recently took an interest in the 

preparation of new phenolic compounds presenting higher antioxidant efficiency than those of 

the common natural antioxidants [11]. We focused our work on the preparation of esters of 

common phenolic acids and components bearing a chromanol ring, the later is responsible for 

the antioxidant activity.  

 Phenolic antioxidants break the free radical chain and a stable phenoxyl radical is formed, 

stability of it is achieved by the delocalization of unpaired electrons on the aromatic ring [12]. 

It is well known that an electron donating groups such as hydroxyl and methoxy present in the 

ortho or para position to hydroxyl substituent on the aromatic ring increases the antioxidant 

effectiveness. Placing an electron acceptor substituent in the same position, such as an ester 

group, is lowering antioxidant potency of a compound [12]. Therefore, in order to improve the 

antioxidant capacities of synthesized phenolic compounds, we focused on the preparation of 

the new derivatives fulfilling discussed structural functions (Figure 1). 
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According to structure activity principles, the presence of an alkyl chain between the 

ester function and the aromatic ring should increase the radical scavenging activity of the 

compounds [7, 8]. The high activity of α-tocopherol is defined by the substituents present on 

the chromanol ring, we applied this consideration when preparing compound 3, where two 

chromanol rings have been joint by alkyl chain (Figure 1). 

The synthesis and radical scavenging activities of the novel antioxidants:  2a, 2b, 2c, and 

3 is reported. Furthermore, the ability of these compounds to protect CTG under accelerated 

storage and frying has been investigated.  

 

Materials and Methods 

 

Materials 

 

Refined, bleached and deodorised regular canola oil was obtained from Richardson Oilseeds 

(Lethbridge, Canada). 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH), N,N'-

dicyclohexylcarbodiimide (DCC), dimethylaminopyridine (DMAP), 2,2-diphenyl-1-

picrylhydrazyl (DPPH), fluorescein disodium salt, trolox and phenolic acids were purchased 

from Sigma-Aldrich (St. Louis, MO). THF and dichloromethane (DCM) were purified using 

MBraun Solvent Purification System (M. Braun Incorporated, Stratham, NH). 

Dimethylformamide (DMF) and other solvents used in this work were of HPLC grade and 

were obtained from VWR (Edmonton, Canada). 

 

Methods 

 

Synthesis of Benzyl 3-methoxy-4-benzyloxycinnamate (5a) and Benzyl 3,5-dimethoxy-4-

benzyloxycinnamate (5b) (Scheme 1) 

 

Potassium carbonate (10.7 g, 77.2 mmol, 3.0 equiv) and benzyl bromide (9.2 mL, 77.2 mmol, 

3.0 equiv) were added to a solution of the desired cinnamic acid derivative (25.7 mmol), the 

later dissolved in 100 mL of dry DMF, and kept under an argon blanket. The mixture was 

stirred for 15 h and then transferred into distilled water (150 mL). The compound of interest 

was extracted thrice with diethyl ether (100 mL). The combined extracts were washed with 

distilled water (100 mL), dried on magnesium sulfate, and concentrated under vacuum using a 

rotary evaporator. 
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Data of compounds 5a and 5b 

 

Benzyl 3-methoxy-4-benzyloxycinnamate (5a): The crude ester was purified by crystallization 

in hexanes. Aspect: White solids.  Mp = 89 – 90oC. Yield = 86%. The spectral results were in 

agreement with data published by Leschot et al [13]. 

Benzyl 3,5-dimethoxy-4-benzyloxycinnamate (5b): The crude oily product was purified by 

washing thrice with hot hexanes (100 mL). Aspect: Yellow oil. Yield = 92%. 1H NMR (300.0 

MHz, CDCl3): δ: 3.84 (s, 6H, OCH3); 5.05 (s, 2H, OCH2Ph); 5.25 (s, 2H, OCH2Ph); 6.40 (d, 
3JHH = 15.9 Hz, 1H, CH=CH-CO); 6.74 (s, 2H, CHAr); 7.26-7.49 (m, 10H, CHAr); 7.63 (d, 
3JHH = 15.9 Hz, 1H, CH=CH-CO). 13C NMR (300.0 MHz, CDCl3): δ: 56.1 (OCH3); 66.4 

(OCH2Ph); 75.1 (OCH2Ph); 105.3 (CAr); 117.1 (CH=CH-CO); 128.0 (CAr); 128.2 (CAr); 128.4 

(CAr); 128.5 (CAr); 128.7 (CAr); 130.0 (CAr); 136.1 (CAr); 137.6 (CAr); 139.0 (CAr); 145.3 

(CH=CH-CO); 153.8 (CAr); 166.8 (C=O). HRMS (m/z): calculated for C25H24O5 = 405.1697; 

found 405.1692 [M + H]+. 

 

Synthesis of Benzyl 3,4-dibenzyloxycinnamate 5c (Scheme 1) 

 

Potassium carbonate (15.3 g, 111.0 mmol, 4.0 equiv) and benzyl bromide (13.2 mL, 111.0 

mmol, 4.0 equiv) were added to a solution of caffeic acid (5.0 g, 27.7 mmol) dissolved in 100 

mL of dry DMF. The mixture was stirred for 15 h under an argon blanket and then transferred 

into distilled water (150 mL). The compound of interest was extracted thrice with diethyl 

ether (100 mL). The combined extracts were washed with distilled water (100 mL), dried on 

magnesium sulfate, and concentrated under vacuum using a rotary evaporator. The crude 

product was purified by crystallization in hexanes. The desired benzoic ester was isolated as 

white solids with 91% yield. 

 

Data for Benzyl 3,4-dibenzyloxycinnamate (5c): Mp = 80-81 °C. 1H NMR (300.0 MHz, 

CDCl3): δ: 5.19 (s, 2H, OCH2Ph); 5.22 (s, 2H, OCH2Ph); 5.26 (s, 2H, OCH2Ph); 6.31 (d, 3JHH 

= 15.9 Hz, 1H, CH=CH-CO); 6.93 (d, 3JHH = 8.4 Hz, 1H, CHAr); 7.09 (d, 3JHH = 8.4 Hz, 1H, 

CHAr); 7.14 (s, 1H, CHAr); 7.29-7.50 (m, 15H, CHAr); 7.63 (d, 3JHH = 15.9 Hz, 1H, CH=CH-

CO). HRMS (m/z): calculated for C30H26O4 = 451.1909; found 451.22 [M + H]+. 

 

Synthesis of 3-methoxy-4-benzyloxycinnamic acid (6a), 3,5-dimethoxy-4-benzyloxycinnamic 

acid (6b), and 3,4-dibenzyloxycinnamic acid (6c) (Scheme 1) 
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Potassium hydroxide (4.0 g, 72.0 mmol, 5.0 equiv) was added to a solution of the 

corresponding benzoic ester (14.4 mmol) in a mixture of distilled water (53 mL) and ethanol 

(210 mL). The mixture was refluxed for 2 h and the solvent evaporated under a vacuum using 

a rotary evaporator. The residue was dissolved in distilled water (200 mL) and the aqueous 

solution was washed twice with diethyl ether (50 mL) and acidified with concentrated sulfuric 

acid until white solids were formed. The suspension was then extracted thrice with ethyl 

acetate (200 mL). The combined extracts were washed with distilled water, dried on 

magnesium sulfate, and finally concentrated under vacuum using a rotary evaporator. 

 

Data for compound 6a – 6c 

 

3-Methoxy-4-benzyloxycinnamic acid (6a): Aspect: White solids. Mp = 193 - 194 °C. Yield = 

86%. The spectral results matched the published results by Muller et al [14]. 

 

3,5-Dimethoxy-4-benzyloxycinnamic acid (6b): Aspect: White solids. Mp = 114-115 °C. Yield 

= 98%. 1H NMR (300.0 MHz, DMSO-d6): δ: 3.83 (s, 6H, OCH3); 4.95 (s, 2H, OCH2Ph); 6.66 

(d, 3JHH = 15.9 Hz, 1H, CH=CH-CO); 7.06 (s, 2H, CHAr); 7.31-7.48 (m, 5H, CHAr); 7.55 (d, 
3JHH = 15.9 Hz, 1H, CH=CH-CO); 12.32 (s, 1H, COOH). 13C NMR (300.0 MHz, DMSO-d6): 

δ: 56.4 (OCH3); 74.5 (OCH2Ph); 106.1 (CAr); 119.0 (CH=CH-CO); 128.2 (CAr); 128.4 (CAr); 

128.5 (CAr); 130.5 (CAr); 138.2 (CAr); 138.6 (CAr); 144.7 (CH=CH-CO); 153.7 (CAr); 168.3 

(C=O). HRMS (m/z): calculated for C18H18O5 = 315.1232; found 315.1256 [M + H]+. 

3,4-Dibenzyloxycinnamic acid (6c): Aspect: White solids. Mp = 202-203 °C. Yield = 90%. 

The spectral results matched one reported by Percec et al [15]. 

 

Compounds 7 and 8 were synthesized according to a procedure described by Muller et al [14]. 

 

Synthesis of (6’-benzyloxy-2’,5’,7’,8’-tetramethylchroman-2’-yl) methyl 3-methoxy-4-

benzyloxycinnamate (9a), (6’-benzyloxy-2’,5’,7’,8’-tetramethylchroman-2’-yl) methyl 3, 5-

dimethoxy-4-benzyloxycinnamate (9b), and (6’-benzyloxy-2’,5’,7’,8’-tetramethylchroman-2’-

yl) methyl 3, 4-dibenzyloxycinnamate (9c) (Scheme 2) 

 

DCC (632 mg, 3.06 mmol, 2.0 equiv) and DMAP (19.5 mg, 0.23 mmol, 0.15 equiv) were 

added under an argon blanket to an alcoholic solution of component 8 (500 mg, 1.53 mmol) 
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and the desired cinnamic acid derivative (3.06 mmol, 2.0 equiv) in dry DCM (40 mL). The 

mixture was stirred for 15 h at room temperature, and then distilled water (50 mL) was added. 

The organic layer was removed and washed once with distilled water (20 mL), then dried over 

anhydrous magnesium sulfate, and concentrated. Finally, the crude product was purified by a 

flash chromatography using silica gel and DCM as eluant.  

 

Data for compound 9a – 9c 

 

(6’-benzyloxy-2’,5’,7’,8’-tetramethylchroman-2’-yl) methyl 3-methoxy-4-benzyloxycinnamate 

(9a ): Aspect: White solids. Yield = 71%.  1H NMR (300.0 MHz, CDCl3): δ: 1.36 (s, 3H, 

CH3); 1.78-2.11 (m, 2H, C=C-CH2-CH2); 2.11 (s, 3H, CH3); 2.18 (s, 3H, CH3); 2.22 (s, 3H, 

CH3); 2.66 (t, 3JHH = 6.9 Hz, 2H, C=C-CH2); 3.93 (s, 3H, OCH3); 4.22 (d, 2JHH = 11.4 Hz, 1H, 

CH2OCO); 4.29 (d, 2JHH = 11.4 Hz, 1H, CH2OCO); 4.69 (s, 2H, OCH2Ph); 5.19 (s, 2H, 

OCH2Ph); 6.33 (d, 3JHH = 15.9 Hz, 1H, CH=CH-CO); 6.89 (d, 3JHH = 8.4 Hz, 1H, CHAr); 7.01-

7.09 (m, 2H, CHAr); 7.26-7.52 (m, 10H, CHAr); 7.62 (d, 3JHH = 15.9 Hz, 1H, CH=CH-CO). 
13C NMR (75.0 MHz, CDCl3): δ: 11.9 (CH3); 12.0 (CH3); 12.9 (CH3); 20.2 (C=C-CH2); 22.2 

(CH3); 28.6 (C=C-CH2-CH2); 56.0 (OCH3); 68.7 (CH2OCO); 70.9 (OCH2Ph); 73 .8 (OC-

CH2OCO); 74.8 (OCH2Ph); 110.2 (CAr); 113.4 (CAr); 115.7 (CH=CH-CO); 117.3 (CAr); 122.5 

(CAr); 123.2 (CAr); 126.1 (CAr); 127.2 (CAr); 127.7 (CAr); 127.8 (CAr); 127.9 (CAr); 128.0 (CAr); 

128.3 (CAr); 128.5 (CAr); 128.7 (CAr); 136.6 (CAr); 137.9 (CAr); 145.0 (CH=CH-CO); 147.4 

(CAr); 148.6 (CAr); 149.8 (CAr); 150.3 (CAr); 167.1 (C=O). HRMS (m/z): calculated for 

C38H40O6 = 593.2898; found 593.2886 [M + H]+. 

 

(6’-benzyloxy-2’,5’,7’,8’-tetramethylchroman-2’-yl) methyl 3, 5-dimethoxy-4-

benzyloxycinnamate (9b): Aspect: Highly viscous oil. Yield = 80%. 1H NMR (300.0 MHz, 

CDCl3): δ: 1.39 (s, 3H, CH3); 1.81-2.14 (m, 2H, C=C-CH2-CH2); 2.14 (s, 3H, CH3); 2.21 (s, 

3H, CH3); 2.25 (s, 3H, CH3); 2.70 (t, 3JHH = 6.9 Hz, 2H, C=C-CH2); 3.88 (s, 6H, OCH3); 4.27 

(d, 2JHH = 11.4 Hz, 1H, CH2OCO); 4.33 (d, 2JHH = 11.4 Hz, 1H, CH2OCO); 4.72 (s, 2H, 

OCH2Ph); 5.08 (s, 2H, OCH2Ph); 6.40 (d, 3JHH = 15.9 Hz, 1H, CH=CH-CO); 6.77 (s, 1H, 

CHAr); 7.28-7.55 (m, 10H, CHAr); 7.65 (d, 3JHH = 15.9 Hz, 1H, CH=CH-CO). 13C NMR (75.0 

MHz, CDCl3): δ: 11.9 (CH3); 12.0 (CH3); 12.9 (CH3); 20.2 (C=C-CH2); 22.2 (CH3); 28.6 

(C=C-CH2-CH2); 56.2 (OCH3); 68.9 (CH2OCO); 73.8 (OC-CH2OCO); 74.8 (OCH2Ph); 75.1 

(OCH2Ph); 105.3 (CAr); 117.0 (CH=CH-CO); 117.3 (CAr); 123.2 (CAr); 126.1 (CAr); 127.7 

(CAr); 127.9 (CAr); 128.0 (CAr); 128.2 (CAr); 128.3 (CAr); 128.4 (CAr); 128.5 (CAr); 128.6 (CAr); 
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130.0 (CAr); 137.5 (CAr); 137.9 (CAr); 139.1 (CH=CH-CO); 147.4 (CAr); 148.6 (CAr); 153.8 

(CAr); 166.8 (C=O). HRMS (m/z): calculated for C39H42O7 = 623.3003; found 623.2977 [M + 

H]+. 

 

(6’-benzyloxy-2’,5’,7’,8’-tetramethylchroman-2’-yl) methyl 3, 4-dibenzyloxycinnamate (9c): 

Aspect: Highly viscous oil. Yield = 88%. 1H NMR (300.0 MHz, CDCl3): δ: 1.35 (s, 3H, CH3); 

1.79-2.10 (m, 2H, C=C-CH2-CH2); 2.11 (s, 3H, CH3); 2.17 (s, 3H, CH3); 2.22 (s, 3H, CH3); 

2.65 (t, 3JHH = 6.9 Hz, 2H, C=C-CH2); 3.88 (s, 6H, OCH3); 4.20 (d, 2JHH = 11.1 Hz, 1H, 

CH2OCO); 4.28 (d, 2JHH = 11.1 Hz, 1H, CH2OCO); 4.68 (s, 2H, OCH2Ph); 5.18 (s, 2H, 

OCH2Ph); 5.19 (s, 2H, OCH2Ph);  6.27 (d, 3JHH = 15.9 Hz, 1H, CH=CH-CO); 6.91 (d, 3JHH = 

8.4 Hz, 1H, CHAr); 7.07 (d, 3JHH = 8.4 Hz, 1H, CHAr); 7.12 (s, 1H, CHAr); 7.28-7.51 (m, 10H, 

CHAr); 7.57 (d, 3JHH = 15.9 Hz, 1H, CH=CH-CO). 13C NMR (75.0 MHz, CDCl3): δ: 11.9 

(CH3); 12.0 (CH3); 12.9 (CH3); 20.2 (C=C-CH2); 22.2 (CH3); 28.6 (C=C-CH2-CH2); 68.7 

(CH2OCO); 71.0 (OCH2Ph); 71.4 (OCH2Ph); 73.8 (OC-CH2OCO); 74.8 (OCH2Ph); 113.8 

(CAr); 114.3 (CAr); 115.8 (CH=CH-CO); 117.3 (CAr); 123.0 (CAr); 123.2 (CAr); 127.2 (CAr); 

127.3 (CAr); 127.7 (CAr); 127.8 (CAr); 127.9 (CAr); 128.0 (CAr); 128.3 (CAr); 128.5 (CAr); 128.6 

(CAr); 136.2 (CAr); 136.3 (CAr); 136.7 (CAr); 136.9 (CAr); 137.9 (CAr); 144.9 (CH=CH-CO); 

147.4 (CAr); 148.6 (CAr); 149.0 (CAr); 151.1 (CAr); 153.2 (CAr); 167.0 (C=O). HRMS (m/z): 

calculated for C44H44O6, 669.3211= found 669.3204 [M + H]+. 

 

Synthesis of antioxidants (6’-hydroxy-2’,5’,7’,8’-tetramethylchroman-2’-yl) methyl 3-

methoxy-4-hydroxycinnamate (2a), (6’-hydroxy-2’,5’,7’,8’-tetramethylchroman-2’-yl) methyl 

3, 5-dimethoxy-4-hydroxycinnamate (2b), and (6’-hydroxy-2’,5’,7’,8’-tetramethylchroman-

2’-yl) methyl 3, 4-dihydroxycinnamate (2c) (Scheme 2) 

 

Palladium on charcoal (10% wt) was added to a solution of the desired benzylated compound 

(1.0 mmol in 10 mL of dry THF) then the mixture was stirred at room temperature when 

purged with hydrogen for 24 h. Reactants were filtrated on Celite, and concentrated on a 

rotary evaporator under reduced pressure. The residue was purified by flash chromatography 

with silica gel, and the solvents used for elution are described for each individual component 

below. 

 

Data for antioxidants 2a - 2c 
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(6’-hydroxy-2’,5’,7’,8’-tetramethylchroman-2’-yl) methyl 3-methoxy-4-hydroxycinnamate 

(2a): Eluant: ethyl acetate/hexanes (3.5:6.5 v/v). Aspect: Highly viscous oil. Yield = 78%. 1H 

NMR (300.0 MHz, CDCl3): δ: 1.24 (s, 3H, CH3); 1.65-1.95 (m, 2H, CH2CH2CCH3); 2.08 (s, 

3H, CH3); 2.10 (s, 3H, CH3); 2.15 (s, 3H, CH3); 2.53-2.67 (m, 4H, CH2CH2COO and 

CH2CH2COO); 2.89 (t, 3JHH = 7.5 Hz, 2H, CH2CH2CCH3); 3.86 (s, 3H, OCH3); 4.07 (d, 2JHH 

= 11.1 Hz, 1H, CH2OCO); 4.14 (d, 2JHH = 11.1 Hz, 1H, CH2OCO); 4.25 (s, 1H, OH); 5.49 (s, 

1H, OH); 6.62-6.71 (m, 2H, CHAr); 6.82 (d, 3JHH = 7.8 Hz, 2H, CHAr). 
13C NMR (75.0 MHz, 

CDCl3): δ: 11.3 (CH3); 11.8 (CH3); 12.2 (CH3); 20.2 (CH2CH2CCH3); 21.8 (CH3); 28.6 

(CH2CH2CCH3); 30.7 (s, CH2); 36.2 (s, CH2); 55.9 (OCH3); 68.7 (CH2OCO); 73.3 

(OCCH2OCO); 110.9 (CAr); 114.3 (CAr); 117.0 (CAr); 118.5 (CAr); 120.8 (CAr); 121.3 (CAr); 

122.7 (CAr); 132.3 (CAr); 144.1 (CAr); 144.9 (CAr); 145.0 (CAr); 146.4 (CAr); 172.8 (C=O). 

HRMS (m/z): calculated for C24H30O6 = 415.2115; found 415.2117 [M + H]+. 

 

(6’-hydroxy-2’,5’,7’,8’-tetramethylchroman-2’-yl) methyl 3, 5-dimethoxy-4-hydroxycinnamate 

(2b): Eluant: ethyl acetate/hexanes (2:3 v/v). Aspect: Highly viscous oil. Yield = 83%. 1H 

NMR (300.0 MHz, CDCl3): δ: 1.29 (s, 3H, CH3); 1.69-1.92 (m, 2H, CH2CH2CCH3); 2.08 (s, 

3H, CH3); 2.11 (s, 3H, CH3); 2.15 (s, 3H, CH3); 2.58-2.68 (m, 4H, CH2CH2COO and 

CH2CH2COO); 2.89 (t, 3JHH = 7.5 Hz, 2H, CH2CH2CCH3); 3.86 (s, 6H, OCH3); 4.07 (d, 2JHH 

= 11.4 Hz, 1H, CH2OCO); 4.15 (d, 2JHH = 11.4 Hz, 1H, CH2OCO); 4.24 (s, 1H, OH); 5.39 (s, 

1H, OH); 6.42 (s, 2H, CHAr).
 13C NMR (75.0 MHz, CDCl3): δ: 11.3 (CH3); 11.8 (CH3); 12.2 

(CH3); 20.2 (CH2CH2CCH3); 21.8 (CH3); 28.6 (CH2CH2CCH3); 31.2 (s, CH2); 36.3 (s, CH2); 

56.2 (OCH3); 68.7 (CH2OCO); 73.3 (OCCH2OCO); 104.8 (CAr); 117.0 (CAr); 118.5 (CAr); 

121.3 (CAr); 122.7 (CAr); 131.5 (CAr); 133.1 (CAr); 144.9 (CAr); 145.0 (CAr); 147.0 (CAr); 172.8 

(C=O). HRMS (m/z): calculated for C25H32O7 = 445.2221; found 445.2208 [M + H]+. 

 

(6’-hydroxy-2’,5’,7’,8’-tetramethylchroman-2’-yl) methyl 3, 4-dihydroxycinnamate (2c): 

Eluant: ethyl acetate/hexanes (2:3 v/v). Aspect: highly viscous oil. Yield = 80%. 1H NMR 

(300.0 MHz, CDCl3): δ: 1.23 (s, 3H, CH3); 1.64-1.91 (m, 2H, CH2CH2CCH3); 2.08 (s, 3H, 

CH3); 2.09 (s, 3H, CH3); 2.15 (s, 3H, CH3); 2.55-2.63 (m, 4H, CH2CH2COO and 

CH2CH2COO); 2.82 (t, 3JHH = 7.5 Hz, 2H, CH2CH2CCH3); 4.04 (d, 2JHH = 11.4 Hz, 1H, 

CH2OCO); 4.16 (d, 2JHH = 11.4 Hz, 1H, CH2OCO); 4.25 (s, 1H, OH); 5.11 (s, 1H, OH); 5.17 

(s, 1H, OH); 6.60 (d, 3JHH = 8.1 Hz, 1H, CHAr); 6.62 (s, 1H, CHAr); 6.73 (d, 3JHH = 8.1 Hz, 1H, 

CHAr). 
13C NMR (75.0 MHz, CDCl3): δ: 11.3 (CH3); 11.8 (CH3); 12.2 (CH3); 20.2 

(CH2CH2CCH3); 21.9 (CH3); 28.6 (CH2CH2CCH3); 30.3 (s, CH2); 36.1 (s, CH2); 68.8 
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(CH2OCO); 73.3 (OCCH2OCO); 115.3 (CAr); 115.4 (CAr); 117.1 (CAr); 118.7 (CAr); 120.6 

(CAr); 121.4 (CAr); 122.8 (CAr); 133.2 (CAr); 142.0 (CAr); 143.4 (CAr); 144.9 (CAr); 145.0 (CAr); 

173.1 (C=O). HRMS (m/z): calculated for C23H28O6 = 401.1959; found 401.1939 [M + H]+. 

 

Synthesis of 6-Benzyloxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (10) (Scheme 3) 

 

Carboxylic acid 10 was prepared similarly to compounds 6a, 6b, and 6c. Benzoic ester 7 (3.0 

g, 6.97 mmol) and potassium hydroxide (1.96 g, 34.85 mmol, 5.0 equiv) produced carboxylic 

acid 10 (2.13 g, 6.26 mmol). 

 

Data for 6-Benzyloxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (10): Aspect: White 

solids. Mp = 151-153 °C. Yield = 90%.  1H NMR (300.0 MHz, CDCl3): δ: 1.64 (s, 3H, CH3); 

1.88-2.02 (m, 1H, C=C-CH2-CH2); 2.15 (s, 3H, CH3); 2.17 (s, 3H, CH3); 2.23 (s, 3H, CH3); 

2.35-2.44 (m, 1H, C=C-CH2-CH2); 2.52-2.74 (m, 1H, C=C-CH2-CH2); 4.69 (s, 2H, CH2OPh); 

7.28-7.53 (m, 5H, CHAr). 
13C NMR (75.0 MHz, CDCl3): δ: 11.9 (CH3); 12.1 (CH3); 12.9 

(CH3); 20.7 (C=C-CH2); 25.2 (CH3); 30.1 (C=C-CH2-CH2); 74.7 (OCH2Ph); 117.2 (CAr); 

123.0 (CAr); 126.2 (CAr); 127.8 (CAr); 127.9 (CAr); 128.5 (2* CAr); 137.9 (CAr); 147.4 (CAr); 

149.1 (CAr); 179.5 (C=O). HRMS (m/z): calculated for C21H24O4 = 341.1747; found 341.1737 

[M + H]+. 

 

Synthesis of (6-benzyloxy-2,5,7,8-tetramethylchroman-2-yl) methyl (6’-benzyloxy-

2’,5’,7’,8’-tetramethylchroman-2’-carboxylate) (11)  (Scheme 3) 

 

Ester 11 was prepared similarly to compounds 9a, 9b, and 9c.  Alcohol 8 (0.50 g, 1.53 mmol) 

was mixed with carboxylic acid 10 (1.04 g, 3.06 mmol, 2.0 equiv), DCC (0.63 g, 3.06 mmol, 

2.0 equiv), and DMAP (29.0 mg, 0.23 mmol, 0.15 equiv). Compound 11 was isolated as 

highly viscous oil, futher purified by flash chromatography with silica gel. Two stereoisomers 

were observed on the NMR spectrum. 

 

Data for (6-benzyloxy-2,5,7,8-tetramethylchroman-2-yl) methyl- 6’-benzyloxy-2’,5’,7’,8’-

tetramethylchroman-2’-carboxylate (11): Eluant: ethyl acetate/hexanes (9:1 v/v). Aspect: 

Highly viscous oil. Yield = 73%.  1H NMR (300.0 MHz, CDCl3): δ: 1.05 and 1.15 (2, 3H, 

CH3); 1.40-1.60 (m, 2H, CH2); 1.65 and 1.64 (2s, 3H, CH3); 1.79-1.98 (m, 1H, CH2); 1.98, 

2.03, 2.05, 2.11, 2.12, 2.13, 2.15, 2.19, 2.20 and 2.21 (10s, 18H, CH3); 2.27-2.68 (m, 5H, 



 

 

45 

 

CH2); 3.84, 4.04, 4.16 and 4.28 (4d, 2JHH = 11.1 Hz, 2H, CH2OCO); 4.63, 4.64, 4.65, 4.67 (4s, 

4H, CH2OPh); 7.27-7.53 (m, 20H, CHAr).
 13C NMR (75.0 MHz, CDCl3): δ: 11.7 (CH3); 11.8 

(CH3); 11.9 (CH3); 12.0 (CH3); 12.1 (CH3); 12.7 (CH3); 12.9 (CH3); 20.0 (C=C-CH2); 20.1 

(C=C-CH2); 20.9 (C=C-CH2); 21.5 (CH3); 21.9 (CH3);  25.8 (CH3); 25.9 (CH3); 27.7 (C=C-

CH2-CH2); 27.8 (C=C-CH2-CH2); 30.7 (C=C-CH2-CH2); 30.8 (C=C-CH2-CH2); 68.8 

(CH2OCO); 69.2 (CH2OCO); 73.4 (OC-CH3); 73.5 (OC-CH3); 74.6 (OCH2Ph); 74.7 

(OCH2Ph); 117.1 (CAr); 117.3 (CAr); 122.8 (CAr); 123.0 (2s, CAr); 123.1 (CAr); 126.0 (CAr); 

126.1 (CAr); 127.7 (2s, CAr); 127.8 (CAr); 127.9 (CAr); 128.2 (CAr); 128.4 (CAr); 128.5 (CAr); 

137.8 (CAr); 137.9 (CAr); 147.1 (CAr); 147.2 (CAr); 148.2 (CAr); 148.5 (CAr); 148.9 (2s, CAr); 

173.9 (C=O); 174.0 (C=O). HRMS (m/z): calculated for C42H48O6 = 649.3524; found 

649.3567 [M + H]+. 

 

Synthesis of (6-hydroxy-2,5,7,8-tetramethylchroman-2-yl) methyl (6’-hydroxy-2’,5’,7’,8’-

tetramethylchroman-2’-carboxylate) 3 (Scheme 3) 

 

Antioxidant 3 was prepared similarly to compounds 2a, 2b, and 2c. Hydrogenation of the 

ester 11 (658.0 mg) using a palladium on charcoal catalyst (66.0 mg, 1.01 mmol, 10% wt) 

provided compound 3 (267.0 mg, 0.57 mmol). The crude compound was purified by flash 

chromatography on silica gel. Two stereoisomers were observed on the NMR spectrum. 

 

Data for (6-hydroxy-2,5,7,8-tetramethylchroman-2-yl) methyl 6’-hydroxy-2’,5’,7’,8’-

tetramethylchroman-2’-carboxylate (3): Eluant: ethyl acetate/hexanes (7/3 v/v). Aspect: 

White solids. Mp = 79-81 °C. Yield = 57%. 1H NMR (300.0 MHz, CDCl3): δ: 1.05 and 1.12 

(2s, 3H, CH3); 1.20-1.50 (m, 2H, CH2); 1.62, 1.63 (2s, 3H, CH3); 1.86 (s, CH3);  2.00, 2.02, 

2.03, 2.04, 2.06, 2.09, 2.12, 2.14 and 2.16 (9s, 18H, CH3); 2.22-2.65 (m, 6H, CH2); 3.80, 4.03, 

4.13 and 4.26 (4d, 2JHH = 11.1 Hz, 2H, CH2OCO); 4.05, 4.13; 4.18, 4.19 (4s, 2H, OH). 13C 

NMR (75.0 MHz, CDCl3): δ: 10.9 (CH3); 11.1 (CH3); 11.2 (CH3); 11.3 (CH3); 11.7 (CH3); 

11.8 (CH3); 11.9 (CH3); 12.1 (CH3); 12.2 (CH3); 20.0, 20.1 (2s, C=C-CH2); 21.0 (CH3); 21.1, 

21.6 (2s, C=C-CH2); 25.7, 25.8 (2s, CH3); 27.7, 27.8 (2s, C=C-CH2-CH2); 30.8, 30.9 (2s, 

C=C-CH2-CH2); 68.8, 69.2 (2s, CH2OCO); 73.2 (OC-CH3); 73.3 (OC-CH3); 116.8 (CAr), 

116.9 (CAr); 118.4 (CAr), 188.5 (CAr); 121.2 (CAr); 122.3 (CAr); 122.6 (CAr); 144.7 (CAr); 144.9 

(CAr); 145.2 (CAr); 145.3 (CAr); 145.8 (CAr); 145.9 (CAr); 174.0, 174.1 (2s, C=O). HRMS 

(m/z): calculated for C28H36O6 = 469.2585; found 469.2587 [M + H]+. 
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NMR Spectroscopy 
 

1H and 13C NMR were recorded on a 300 MHz Bruker Avance II spectrometer (Billerica, 

MA, USA) with TMS as internal reference for 1H and 13C NMR chemical shifts. Data are 

presented in the following order: chemical shift in ppm, multiplicity (s, singlet; d doublet; t, 

triplet; m, multiplet), coupling constant in Hertz, assignment broad band 1H decoupling. 

 

Melting Point 

 

Melting points (Mp) were measured with a Barnstead Electrothermal MEL-TEMP 3.0 

(Barnstead; Dubuque, IA, USA). 

 

Mass spectrometry 

 

High resolution mass spectra (HRMS) were obtained on a QSTAR Elite mass spectrometer 

(Applied Biosystems; Foster City, CA, USA) equipped with an electrospray and operated in 

positive ion mode. 

 

High Performance Liquid Chromatography 

 

Tocopherol and the new antioxidants were analyzed according to AOCS Official Method Ce 

8−89 [16]. Analyses were performed on a Finnigan Surveyor LC (Thermo Electron Corp., 

Waltham, MA, USA) with a Finnigan Surveyor Autosampler Plus and Finnigan Surveyor FL 

Plus fluorescence detector. The column was a normal phase Diol column (5µm; 250 × 4.6 

mm; Monochrom, Varian, CA). For tocopherol, the mobile phase consisted of 7% 

methyl−tert−butyl−ether in hexanes with a flow rate of 0.6 mL/min and the fluorescence 

detector was set for excitation at 292 nm and emission at 325 nm. For the analysis of novel 

antioxidants the mobile phase was changed to 65% methyl-tert-butyl-ether in hexane. The 

fluorescence detector was set for excitation at 292 nm and emission at 394 nm. For each 

sample 10 µL was injected. 

DPPH Radical-Scavenging Assay 
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The DPPH assay was performed according to method described by Nenadis and Tsimidou 

[17]. Briefly, to 2960 µL of 0.1 mM ethanolic solution of DPPH, 40 µL of synthesized 

antioxidant solution in ethanol was added at the following concentrations: 0.37, 0.74, 1.11, 

1.85, 3.7, and 5.2 mM forming the ratios between the molar amounts of antioxidant to the 

molar amount of DPPH radicals at 0.05, 0.10, 0.15, 0.25, 0.5 and 0.7, respectively. The 

decrease of absorbance at 516 nm was measured at 25 °C after 20 min of reaction. The blank 

solution contained the same amount of DPPH and 40 µL of ethanol. Each test was performed 

in triplicate. The results are expressed as the %DPPH inhibition calculated according to the 

following equation: 

 

Where Ac and At are the absorbances of the control and the test sample, respectively. All 

standard deviations for DPPH tests were below 3.0%. Both trolox and α-tocopherol were used 

as references. Calculated IC50 represents the concentration of antioxidant required to decrease 

the initial amount of DPPH by 50%. 

 

ORAC Assay 

 

ORAC assays were performed according to Szydlowska-Czerniak et al [18]. Briefly, the 

fluorescein disodium salt and AAPH solutions were prepared in 75 mM phosphate buffer 

(pH=7.4). The antioxidant solutions, 1 mM of each compound, were dissolved in methanol, 

and specific volume of it dissolved in the buffer to provide the required amounts of 

antioxidant within a range of 3.125 - 25.00 µM. Four different concentrations were tested for 

each antioxidant. A solution of fluorescein disodium salt, 3.0 mL (0.0816 µM) was mixed 

with 0.5 mL of antioxidant solution directly in a quartz cuvette. The mixture was kept at 37 

°C for 10 min and 0.5 mL of the AAPH solution (153.0 µM) added. The fluorescence was 

measured at 37 °C for 30 min at 30 sec intervals. The emission and excitation were set at 525 

and 485 nm, respectively. For a blank, phosphate buffer replaced the antioxidant solution.  

Each antioxidant solution was prepared in duplicate and three measurements were performed 

for each sample. A calibration curve was generated using trolox as the reference antioxidant. 

The area under the fluorescence decay curve (AUC) was calculated as follows: 

 

Where ft is the fluorescence at a time t (min). 
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The net AUC was calculated using the following equation: 

 

AUCnet = AUC – AUCblank 

 

For each antioxidant, a regression between AUCnet and the compound concentrations was 

calculated, and the results are expressed as trolox equivalents (TEq). 

 

Canola Oil Triacylglycerides Isolation 

 

Canola oil was stripped of its endogenous minor components including antioxidants via 

adsorption chromatography, following the procedure described by Lampi and Kamal-Eldin 

[19]  

 

Accelerated Storage  

 

The ability of the new antioxidants to protect oil against oxidative degradation was 

determined using Schaal Oven test. To 1 g of canola triacylglycerols (CTG) 350 µg/g of the 

tested antioxidant was added in a vial (National Scientific Target DP Vials; 2 mL, 12 × 32 

mm). The samples were stored in the dark for five days at 60 °C, providing the surface area to 

volume ratio at 0.78. Samples were examined at 24 h intervals for peroxide value and the 

residual amounts of antioxidant. The effectiveness of the new compounds was compared to α-

tocopherol. Experiments were set up in two repetitions for each tested antioxidant, and 

samples from each repetition were analyzed in duplicate. 

 

Peroxide Value (PV) 

 

To assess PV method published by Hornero-Mendez et al, and modified by Shantha and 

Decker was used [20, 21]. Briefly, 200 mg of oil was dissolved in 5 mL of hexane. To 200 µL 

of the sample solution, 5 mL of methanol/chloroform/HCl solution (1:1:0.012, v/v), then 100 

µL of NH4SCN (30% w/w in water), and 100 µL of ferrous chloride (0.4% in water) were 

added. After 5 min of incubation at room temperature, the absorbance measured at 480 nm. 

 

Frying Test  
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The effectiveness of the developed antioxidants to protect CTG under frying conditions was 

assessed using a frying test developed in our laboratory. CTG (12.0 g), fortified with 500 µg/g 

of the studied compound, was weighed into a glass beaker (Pyrex, USA). An octagonal stir 

bar (ThermoFischer Scientific, USA) was placed into the vessel, altering the final surface to 

volume ratio to 0.42. The vessel with sample was heated at 185 ± 5 oC for 10 min, and 1.2 g 

of formulated starch (a mixture of gelatinized potato starch with glucose and silica gel, 4:1:1 

w/w) was added. The heating was continued for another 20 min without mixing and then was 

stirred at 500 rpm. Heating and stirring were afterward maintained for another 90 min. About 

0.5 g of oil sample was withdrawn at the 60th, 80th, 100th and 120th minutes of heating. 

Selected sampling points reflect the frying time based on the amount of polar components 

formed and correspond to 1, 3, 5, and 7 days of actual frying time using an institutional fryer 

(General Electric Company, NY, USA). The frying performance of oils was assessed by the 

measurement of total polar components (TPC) and the retained amounts of added antioxidant. 

Samples from two repetitions of frying test were analyzed in duplicate for TPC and residual 

antioxidant. 

 

Total Polar Components (TPC) 

 

The amounts of polar compounds were determined by gravimetric procedure following 

AOAC Method 982.27 with Schulte modification [22, 23] 

 

Statistical Analysis 

 

Data were analyzed by single factor analysis of variance (ANOVA) and regression analyses 

using Minitab 2000 statistical software (Minitab Inc., PA, ver. 13.2). Significant differences 

between means were determined by Duncan’s multiple range tests. Statistically significant 

differences were determined at P < 0.05. 

 

 

Results and Discussion 

 

Synthesis 
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In order to produce the new antioxidants 2a, 2b, and 2c, precursors 6a, 6b, and 6c have first 

been prepared in two steps from carboxylic acids 4a, 4b, and 4c, respectively (Scheme 1). 

Cinnamic acid derivatives, 4a–4c, have been benzylated using benzyl bromide and potassium 

carbonate in dimethylformamide (DMF) to produce 5a–5c with the following yields: 86% 

(5a), 92% (5b), and 91% (5c). Saponification of 5a–5c esters with potassium hydroxide in 

ethanol/water solution has formed the desired cinnamic acids derivatives with the yield of 

86% (6a), 98% (6b), and 90% (6c). Antioxidants 2a, 2b, and 2c have been prepared in four 

steps from trolox as described in Scheme 2. First, alcohol 8 was isolated in two steps 

according to a synthetic pathway described by Percec et al [15]. A Steglich esterification 

between compound 8 and cinnamic acid derivatives 6a–6c formed esters 9a–9c. Finally, 

antioxidants 2a–2c has been obtained by hydrogenation of compounds 9a–9c using palladium 

as catalyst. Isolated antioxidants formed highly viscous oils and were produced with the 

following yield: 78% (2a), 83% (2b), and 80% (2c).  

In order to prepare the antioxidant 3, synthesis of precursor 10 was first carried out. 

Carboxylic acid 10 has been easily synthesized by saponification of ester 7 (Scheme 3). A 

Steglich esterification, followed by a hydrogenation, finally made the desired antioxidant 3 in 

a moderate yield of 57% (Scheme 3). 

All developed antioxidants showed good solubility in oils and fats. 

 

DPPH assay 

 

The radical scavenging properties of the synthesized antioxidants 2a, 2b, 2c and 3, trolox and 

α- tocopherol have been evaluated by the DPPH assay. Results of this study are given in 

Table 1. These results confirm that the radical scavenging effectiveness of the novel 

antioxidants 2a (IC50 = 1.52 mM), 2b (IC50 = 1.05 mM), 2c (IC50 = 0.76 mM) and 3 (IC50 = 

1.15 mM) were significantly higher (P ≤ 0.001) than the trolox (IC50 = 1.75 mM) and α-

tocopherol (IC50 = 1.61 mM). Antioxidant 2c, which possesses the highest number of 

hydroxyl groups, was the most efficient. Furthermore, compared to trolox (one hydroxyl) and 

α-tocopherol (one hydroxyl), the bichromanol 3 (2 hydroxyls) exhibited a significantly higher 

radical scavenging activity (P ≤ 0.001). In agreement with the present result, a novel dimeric 

antioxidant containing two hydroxyl groups in fused double chromanol rings was reported to 

possess better DPPH radical scavenging activity and provide double reducing power 

compared to α-tocopherol, [24, 25].  
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It is well established that phenolic compounds scavenged radicals by proton donation [6]. 

Consequently, the present results are consistent with this observation because higher number 

of hydroxyl group resulted in higher capacity for proton donation. Additionally, this test 

established that the presence of a second methoxy substituent in ortho position of the 

hydroxyl group significantly increases the antioxidant effectiveness in radical scavenging. 

Thus, when comparing activities for compounds 2a with 2b where the only structural 

difference is in the number of methoxy groups on the ring, 1 vs 2 methoxy groups, 

respectively, the radical scavenging potency of 2b (50.1%) was higher than 2a (37.1%). These 

results are in agreement with the observation that an electron donating substituent in ortho 

position to the hydroxyl group increases the radical scavenging activity [12, 26]. Kikuzaki et 

al [26] reported a higher radical scavenging activity for sinapic acid compared to ferulic acid. 

Comparing to the previously published results by the same authors, antioxidants 2a, 2b, and 

2c are better scavengers than the trolox hydroxybenzoates (Fig. 2) [11]. Thus, as expected, the 

presence of an alkyl chain between the ester group and the phenolic rings significantly 

increases the radical scavenging activity of the antioxidants. 

 

ORAC assay 

 

The antioxidant capacities of 2a, 2b, 2c and 3 have also been evaluated by the ORAC assay. 

The linearity between the AUCnet and the antioxidant (AH) concentration has been checked 

for each synthesized phenolic compound, and a regression coefficient above 99% has been 

observed (Results not included). Antioxidant capacities of each compound, expressed in 

trolox equivalent (TEq), are given on Table 1. According to these results, all of the 

synthesized phenolic compounds exhibited a higher antioxidant capacity than trolox. An 

improved antioxidant capacity was reported for a synthesized compound containing 

hydroxytyrosol attached to the chromanol ring, which inhibited the formation of 

malondialdehyde in rat liver microsomal membrane when oxidation was induced by AAPH 

[27]. The data obtained for caffeic acid (4.46 TEq) was similar to the value published by 

Gomez-Ruiz et al (4.52 TEq) [28]. Antioxidant 2c (5.41 TEq) was the most effective radical 

scavenger among the studied compounds whereas compound 3 (1.48 TEq) was the least 

active. Similarly to the results reported in previous investigations [11, 29], no correlations 

between ORAC and DPPH assays have been observed. Lack of similarities in trends between 

these two antioxidative tests is related to the different radicals used and the possible 

interaction between radicals and antioxidants. Additionally, for both tests different 
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mechanism of antioxidant radical interaction is involved and with it different response to the 

radicals scavenging activity [30-32]. For instance, compound 3 (1.48 TEq) is less effective 

than 2a (3.30 TEq) in the ORAC assay whereas the opposite has been observed in the DPPH 

test (Table 1). Furthermore, no trend has been observed regarding the nature and position of 

the substituent on the ring, eg para position to the hydroxyl group, when the radical 

scavenging activity was measured by ORAC. 

 

Accelerated storage stability (Schaal Oven Test)  

 

Radicals scavenging activity is not directly indicative of antioxidant effectiveness in a food 

system, we tested the novel compounds effectiveness in the food applications [32]. The ability 

of the new compounds 2a, 2b, 2c and 3 to protect CTG from oxidation has been determined 

under Schaal Oven test (SOT) conditions. The results of the SOT indicated that the new 

antioxidants better protected CTG, compared to α-tocopherol (Fig. 3). Indeed, the amounts of 

hydroperoxides formed after five days of storage were significantly lower for CTG fortified 

with 2a (39.9 meq/kg), 2b (39.3 meq/kg), 2c (15.9 meq/kg) or 3 (14.0 meq/kg) compared to 

unprotected CTG (110.8 meq/kg). Although no significant difference was observed even at P 

≤ 0.12 in the protective capacities of novel antioxidant 2a, 2b and α-tocopherol, whereas 

antioxidants 2c and 3 were significantly more efficient (P ≤ 0.001) than α-tocopherol. 

Compound 3 was the most effective antioxidant among all tested compounds. These results 

indicate lack of direct correlation between the radical scavenging activity measured by DPPH 

and ORAC assays and the antioxidant activity measured in the food system. Similar lack of 

correlation have been reported in the literature, ascribing it to the nature of the radicals 

involved and the difference in the scavenging mechanism between DPPH and ORAC [30-32].  

 

Protection during frying 

 

Many compounds are known for their antioxidant activities at ambient temperature. The 

extreme conditions used during frying such as elevated temperature, prolonged exposure to 

oxygen, adding special limitations for antioxidants. Consequently, the antioxidant for 

institutional and industrial frying should not only be effective at frying conditions but also 

need to be: thermally stable and of low volatility to prevent evaporation [33]. As an example, 

the effectiveness of BHT under frying conditions is compromised by its evaporative losses at 

elevated temperature [34]. The capacities of the new antioxidants to protect CTG from 
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degradation during frying have been determined using a frying test developed in our 

laboratory. Their efficiency has been assessed by measuring the TPC after different frying 

times. Results are presented in Figure 4. This study has demonstrated that antioxidants 2a, 2b, 

2c and 3 much better protected CTG during frying, compared to α-tocopherol. Indeed, at the 

end of the frying period, the TPC amounts were: 18.3%, 17.8%, 15.8%, and 15.4% for 2a, 2b, 

2c and 3, respectively (Fig 4). These values are significantly lower (P ≤ 0.001) from 

unprotected CTG (25.7%). Besides, the new antioxidants were significantly more efficient (P 

≤ 0.004) than α-tocopherol (20.4%). Among the synthesized antioxidant, compound 3 was the 

most efficient. Compared to previously published results, trends related to the difference in 

chemical structure have not been observed [11]. 

 

Antioxidant stability 

 

In order to investigate the stability of 2a, 2b, 2c and 3, the amounts of antioxidant remaining 

at different stages during storage and frying have been measured (Figures 5 and 6). All the 

novel antioxidants exhibited higher stability than α-tocopherol. Indeed, under accelerated 

storage at the end of storage time the following amounts of antioxidant have been retained: 

75.5%, 69.5%, 64.5%, and 68.7% for 2a, 2b, 2c and 3, respectively while only 35.2% of α-

tocopherol was observed (Fig 5). The same superior stability was observed during frying test 

(Fig. 6). After 60 min of frying test, significantly higher amounts (P ≤ 0.001) of antioxidants 

2a (56.3%), 2b (48.1%), 2c (42.1%) and 3 (20.5%) were retained when compared to 12.1% of 

α-tocopherol. Consequently, the higher amounts of antioxidant will be carried over to the 

fried foods when frying oil containing one of the novel antioxidants. Correspondingly, foods 

fried in such oil will have better storage stability than foods fried in oils containing α-

tocopherol. Additionally, fried foods containing higher amounts of antioxidants can offer 

better nutritional value. It is worth mentioning that the new antioxidant 3 was depleted faster 

than the compounds 2a, 2b and 2c. This might be explained by the higher reactivity of the 

chromanol ring [6]. 

 

Conclusions 

 

Developed novel antioxidants have been prepared in four steps from trolox. A convenient 

method for the synthesis of the compound 3 has also been developed. DPPH and ORAC 

assays demonstrated that the novel antioxidants offered higher radical scavenging activities 
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than trolox and α-tocopherol. It appears that the presence of an alkyl chain between the ester 

groups and/or the aromatic ring increases the radical scavenging activity of the compound. 

Moreover, a higher number of methoxy substituents in the ortho position to the hydroxyl 

group increased the efficiency of an antioxidant. Results from accelerated storage 

demonstrated that the compound 2c and 3 offered better protection for CTG than α-

tocopherol. Furthermore, each of the synthesized compounds was more efficient than α-

tocopherol when applied during frying. The developed novel antioxidants, particularly 

compounds 2c and 3, when used in food applications may extend storage stability and 

improve fry-life of oil. The remarkably higher thermal stability of these novel antioxidants 

makes them very valuable for high temperature applications such as frying.    

Further investigations are underway to develop better understanding of the relationship 

between structure and antioxidant activity, the nature of the novel antioxidants degradation 

products formed, and to address any safety issues related to these antioxidants and their 

degradation products.  This study was designed to prepare novel antioxidants and assess their 

activity in an oil system, however their potential application in various foods and regulatory 

acceptance will be a matter of further development. 
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Table 1. Radical scavenging activity of the novel and reference antioxidants* 

 

Antioxidant 

                   DPPH Test            ORAC Test 

        IC50 (mM) Inhibition (%) Trolox Equivalents (µM) 

2a 1.52 ± 0.01 37.1 ± 2.0 3.30 ± 0.10 

2b 1.05 ± 0.04 50.1 ± 1.8 3.42 ± 0.22 

2c 0.76 ± 0.01 71.0 ± 2.4 5.41 ± 0.19 

3 1.15 ± 0.01 51.4 ± 1.9 1.48 ± 0.05 

Troloxb 1.75 ± 0.02 31.7 ± 1.9  

α-Tocopherolb 1.61 ± 0.02 34.6 ± 1.7  

Caffeic acidb   4.46 ± 0.22 

 

* Compounds 2a–2c, and 3 developed the novel antioxidants. For their structures and 

properties see Fig 1 and the text. 
b Reference antioxidants 
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Figure 1. Chemical structure of the novel antioxidants 2a, 2b, 2c and 3. 
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Figure 2. Structures of the intermediate phenolic compounds used for the synthesis of 

antioxidants. For details see the text. 
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Scheme 1. Reagents and conditions used for the synthesis of cinnamic acid derivatives. (i) 

BnBr, K2CO3, DMF; (ii) KOH, H2O/EtOH, reflux. For details see the text. 
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Scheme 2. Reagents and conditions used for the synthesis of antioxidants 2a–2c. (i) BnBr, 

K2CO3, DMF; (ii) LiAlH4, THF, 0 °C; (iii) 6a-6c, DCC, DMAP, DCM; (iv)  H2, Pd/Charcoal 

10%, THF. For details see the text. 
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Scheme 3. Reagents and conditions for the synthesis of antioxidant 3: (i) KOH, H2O/EtOH, 

reflux; (ii) 8, DCC, DMAP, DCM; (iii) H2, Pd/Charcoal 10%, THF. For details see the text. 
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Figure 3: 

Changes in hydroperoxides during the storage of canola triacylglycerols with different 

antioxidants added at 350 µg/g. CTG - canola oil triacylglycerides. For details see the text. 
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Figure 4. Formation of polar components during test frying of canola triacylglycerols with 

added α-tocopherol and the novel antioxidants 2a–2c and 3 at 500 µg/g. CTG - canola 

triacylglycerides. For details see text. 
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Figure 5. Percentage of remaining antioxidants during the accelerated storage of canola 

triacylglycerides fortified with α-tocopherol and the novel antioxidants 2a–2c, and 3 added at 

350 µg/g. For details see the text. 
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Figure 6. Percentage of remaining antioxidants during test frying canola triacylglycerides 

fortified with α-tocopherol and the novel antioxidants 2a – 2c, and 3 added at 500 µg/g. For 

details see the text. 
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ABSTRACT 

Twelve novel dihydro-caffeic acid amides were synthesized in good yields and fully 

characterized by 1H NMR, 13C NMR, and MS. Their radical scavenging activities were assessed 

by DPPH assay. Additionally, their abilities to protect polyunsaturated oils under accelerated 

storage and frying conditions were evaluated. All the new compounds possessed significantly 

higher radical scavenging activities than α-tocopherol and BHT. The radical scavenging activity 

of N-decyl-N-(3,5-dimethoxy-4-hydroxybenzyl)-3-(3,4-dihydroxyphenyl) propanamide was 1.7 

and 4 times higher than α-tocopherol and BHT, respectively. At the end of storage period, the 

respective amounts of hydroperoxides in canola oil triacylglycerols (CTAG) fortified with α-

tocopherol and BHT was 6.1 and 1.4 times higher than CTAG containing the amide. Frying test 

exhibited that CTAG containing N-decyl-N-benzyl-3-(3,4-dihydroxybenzyl) propanamide was 

1.3, 1.4, and 1.6 times more stable compared to oil fortified with dihydro-caffeic acid, α-

tocopherol and BHT, respectively, as assessed by the amounts of total polar compounds. 

Moreover, these compounds were remarkably thermally stable, making them suitable for frying 

applications. 

 

1. Introduction 

 

Recent global awareness campaigns for the health benefits of essential fatty acids have 

led to considerable increase in human consumption of polyunsaturated oils. However, these oils 

are susceptible to oxidative degradation leading to generation of free radicals and other toxic 

products. Free radicals have been implicated in the pathogenesis of inflammatory and 

cardiovascular diseases, cancer and aging (Reuter, Gupta, Chaturvedi, & Aggarwal, 2010). 

Under storage and frying conditions, polyunsaturated oils are fast degrading, negatively 

impacting the physical, flavor, nutritional and functional qualities of the oils and the foods 

containing them.  It is imperative, therefore, that these oils are protected against oxidative and 

thermal degradation. One of such measures is application of antioxidants. Phenolic antioxidants 

are particularly potent and many of them occur naturally in food. They slow the degradation of 

food lipids by inhibiting the propagation of oxidation, and many of them are known to possess 

variety of interesting biological activities (Jiang, Lau, Hon, Mak, Woo & Fung 2005; Ou & 

Kwok, 2004; Priscilla & Prince, 2009). On the other hand synthetic antioxidants such as BHT, 

BHA and TBHQ offer good protection during storage, however their use has been limited 

because of the potential detrimental effects on the human health (Frankel, 2007). As a 
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consequence, there is a growing interest in the development of new antioxidants exhibiting low 

toxicity, high antioxidant capacity, good thermal stability and prepared from natural precursors.  

Recently, Rajan, Vedernikova, Cos, Berghe,  Augustyns &  Haemers (2001) described the 

synthesis of new caffeic acid amides exhibiting good antioxidant activities. In their study, the 

amide group was chosen for enhanced metabolic stability. Jung et al (2002) also reported the 

synthesis of 4-hydroxyphenylacetic acid amide possessing potent analgesic activity. The 

synthesis of caffeic acid amides possessing antimicrobial activities was recently reported by Fu, 

Cheng, Zhang, Fang, & Zhu (2010). The amide derivative of N-acetylcysteine (NACA), a 

commercially available pharmaceutical drug and nutritional supplement, was found to permeate 

more efficiently cell membranes than the parent form (Ates, Abraham, & Ercal, 2008). Several 

hydroxycinnamic acid amides occur in different parts of plants and a number of them possessing 

interesting physiological activities (Chen, Chang, Yen, & Wu, 1998; Dalby-Brown, Barsett, 

Landbo, Meyer, & Mølgaard, 2005; Fagerlund, Sunnerheim, & Dimberg, 2009).  

In this paper, we synthesized a variety of new N-alkyl-N-aryl-3-(3,4-dihydroxyphenyl) 

propane-amides and assessed their radical scavenging activities using the DPPH assay. 

Recognizing that there is a lack of direct relation between the radical scavenging activity 

measurements by DPPH or ORAC assays and the real antioxidant activity in a food system 

(Alamed, Chaiyasit, Mc Clements, & Decker, 2009), we assessed the effectiveness of the novel 

antioxidants using standard accelerated storage and frying tests. Canola oil triacylglycerols, 

typical polyunsaturated oil, were used as the substrate. We chose to prepare derivatives of 

dihydro-caffeic acid due to its higher radical scavenging and antioxidant activity compared to 

caffeic acid (Nenadis, Boyle, Bakalbassis, & Tsimidou, 2003).  

 

2. Materials and Methods 

2.1. Reagents 

Benzaldehydes; 4-hydroxybenzaldehyde; vanillin (3-methoxy-4-hydroxybenzaldehyde); 

syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde); propylamine; hexylamine; 

decylamine; dihydro-caffeic acid (DCA);  2,2-diphenyl-1-picryl-hydrazyl (DPPH)  and silica gel 

were purchased from Sigma-Aldrich (St. Louis, MO, USA). Benzotriazole-1-yl-oxy-tris 

(dimethylamino) phosphonium hexafluorophosphate (BOP), butylated hydroxytoluene (BHT) 

and α-tocopherol were from Calbiochem-Novabiochem (San Diego, CA, USA). Dry 

dichloromethane (DCM) was purified using a MBraun Solvent Purification System (M. Braun 

Incorporated, Stratham, NH). All other solvents were HPLC grade. 
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2.2. Synthesis 

2.2.1.  General procedure for the synthesis of amines 2a to 2L  

 The aldehyde (10 mmol) and the amine (15 mmol) were dissolved in methanol (10 mL) 

and the mixture was stirred for 3 hrs, then NaBH4 (10 mmol) was added in small portions. The 

mixture again was stirred for 3 hrs following by solvent removal under reduced pressure using a 

rotary evaporator. Then distilled water (10 mL) was added and the solution extracted three times 

with ethyl acetate (10 mL each). The organic layers were combined and dried on magnesium 

sulfate followed by solvent removal under reduced pressure in a rotary evaporator and the 

desired crude product was obtained.  

 Propylbenzylamine (2a); 4-[(propylamino) methyl] phenol (2d) and 2-methoxy-4-

[(propylamino) methyl] phenol (2g) were used in the next step without purification. The crude 

hexylbenzylamine (2b) and decylbenzylamine (2c) were purified by a flash chromatography 

using ethyl acetate as eluant. 4-[(decylamino) methyl] phenol (2f); 2-methoxy-4-[(hexylamino) 

methyl] phenol (2h) and 2-methoxy-4-[(decylamino) methyl] phenol (2i) were similarly purified 

using ethyl acetate/methanol (9:1) as eluant. The crude 4-[(hexylamino) methyl] phenol (2e) was 

purified in the same manner using an ethyl acetate/methanol (9.5:0.5). Whereas 2,6-dimethoxy-

4-[(propylamino)methyl]phenol (2j); 2,6-dimethoxy-4-[(hexylamino) methyl] phenol (2k) and 

2,6-dimethoxy-4-[(decylamino) methyl] phenol (2L) were purified by recrystallization in 

hexane.   

 

2.2.2. General procedure for the synthesis of new DCA amides (3a-3L) 

DCA (200 mg, 1.1 mmol) and triethylamine (1.1 mmol) were added to dimethylformamide 

(2 mL) and the mixture was stirred at 0°C for 30 min. Then an amine (2.2 mmol) dissolved in a 

minimum of DCM and BOP (486 mg, 1.1 mmol) dissolved in 2 mL of DCM were added and 

stirred for 2 hrs at room temperature. The solution was concentrated under reduced pressure 

using a rotary evaporator. To the residue 10 mL of water was added and the solution extracted 

three times with 10 mL of ethyl acetate. The organic layers were combined and dried on 

magnesium sulfate and solvent removed under reduced pressure using a rotary evaporator. 

Utilizing an ethyl acetate/hexane mixture (3:2) as eluant, the crude N-propyl-N-benzyl-3-

(3,4-dihydroxyphenyl) propanamide (3a); N-decyl-N-benzyl-3-(3,4 dihydroxyphenyl) 

propanamide (3c); N-hexyl-N-(4-hydroxybenzyl)-3-(3,4-dihydroxyphenyl) propanamide (3e) 

and N-decyl-N-(4-hydroxybenzyl)-3-(3,4-dihydroxyphenyl) propanamide (3f) were purified by a 

flash chromatography. The crude N-hexyl-N-benzyl-3-(3,4-dihydroxyphenyl) propanamide (3b) 

was purified in the same manner using an ethyl acetate/hexane mixture (1:1). Crude N-propyl-N-



 

 

4 

 

(4-hydroxybenzyl)-3-(3,4-dihydroxyphenyl) propanamide (3d); N-propyl-N-(3-methoxy-4-

hydroxybenzyl)-3-(3,4-dihydroxyphenyl) propanamide (3g); N-hexyl-N-(3-methoxy-4-

hydroxybenzyl)-3-(3,4-dihydroxyphenyl) propanamide (3h); N-decyl-N-(3-methoxy-4-

hydroxybenzyl)-3-(3,4-dihydroxyphenyl) propanamide (3i); N-propyl-N-(3,5-dimethoxy-4-

hydroxybenzyl)-3-(3,4-dihydroxyphenyl) propanamide (3j); N-hexyl-N-(3,5-dimethoxy-4-

hydroxybenzyl)-3-(3,4-dihydroxyphenyl) propanamide (3k) and N-decyl-N-(3,5-dimethoxy-4-

hydroxybenzyl)-3-(3,4-dihydroxyphenyl) propanamide (3L) were purified by a flash 

chromatography using an ethyl acetate/hexane mixture (7:3). 

 

2.3. Instruments 

1H NMR and 13C NMR were recorded on a 300 MHz Bruker Avance II spectrometer 

(Bruker Daltonics, Billerica, MA) with TMS as internal standard. HPLC analyses for residual 

antioxidants were performed on a Finnigan Surveyor LC system (Thermo Electron, Waltham, 

MA, USA) with a Finnigan Surveyor Autosampler Plus, Finnigan Surveyor FL Plus fluorescence 

detector and a Finnigan Surveyor photodiode array detector (PDA). The column was a normal 

phase Diol column (5µm; 250 × 4.6 mm; Monochrom, Varian, CA). Column chromatography 

with EMD silica gel Si 60 (40-63 µm) was used for separation and purification. Melting points 

(Mp) were measured with an Electrothermal MEL-TEMP 3.0 (Barnstead, Dubuque, IA, USA). A 

Beckman DU-65 spectrophotometer (Beckman Instruments, Inc., Fullerton, CA) was used in the 

DPPH assay as well as for the determination of PV. High-resolution mass spectra (HRMS) were 

obtained with a QSTAR Elite mass spectrometer (AB SCIEX, Concord, ON, Canada) equipped 

with an electrospray operated in positive ion mode.  

 

2.4. DPPH radical scavenging assay 

The DPPH assay was performed according to a method described by Nenadis et al (2003). 

Briefly, an ethanolic DPPH solution (0.1 mM; 2960 µL) was added to the 40 µL of antioxidant 

solution in ethanol at the following concentrations: 0.74 mM, 1.11 mM, 1.85 mM, 3.7 mM, 

providing the ratios of the molar amounts of antioxidant to DPPH at 0.10, 0.15, 0.25 and 0.5, 

respectively. The decrease in absorbance at 516 nm was measured at 25 °C after 20 min of 

reaction. The blank solution contained the same amount of DPPH reagent and 40 µL of ethanol 

and each test was performed in triplicate. The results were expressed as the percentage of DPPH 

inhibition calculated as follows: 

 

  



 

 

5 

 

  

Where: Acontrol and Atest are the absorbances of the control and test samples, respectively. All 

standard deviations (SD) for DPPH tests were below 3.0%. BHT, α-tocopherol and DCA were 

used as references. Calculated IC50 represents the concentration of antioxidant required to 

decrease the DPPH amount by 50%. 

 

2.5. Antioxidant activity under storage and frying conditions 

 

2.5.1. Purification of canola oil 

Canola oil was stripped of its endogenous minor components including antioxidants via 

adsorption chromatography, following the method described by Lampi & Kamal-Eldin (1998). 

 

2.5.2. Accelerated storage - Schaal oven test  

The ability of the novel antioxidants 3a to 3L to protect oil from oxidative degradation was 

determined using Schaal oven test. Canola triacylglycerols (1.0 g), fortified with 350 µg/g of the 

tested antioxidant, were introduced in the vials (National Scientific Target DP Vials; 2 mL, 12 × 

32 mm). The ratio of surface area to volume was at 0.78. The uncapped vials were stored in dark 

at 60 °C for up to seven days. Samples were examined at 24 hrs intervals by collecting individual 

vials at particular period. The oxidative stability of the samples was evaluated by peroxide value 

(PV). The effectiveness of the new compounds was compared with α-tocopherol as natural 

antioxidant and butylated hydroxytoluene (BHT) as synthetic antioxidant. Experiments were set 

up in two repetitions for each tested antioxidant, and samples from each repetition were analyzed 

in triplicate. 

 

2.5.3. Determination of peroxide value  

PV was assessed according to procedure described by Arkadiusz, Roszko, Sosińska, 

Derewiaka, & Lewicki (2010). Briefly, 200 mg of oil was dissolved in 5 mL of hexane. Two 

hundred µL of the solution was mixed with 5 mL of methanol/chloroform/HCl solution 

(1:1:0.012, v/v). Thereafter, 100 µL of FeCl2 (0.4% water solution) and 100 µL of NH4SCN 

(30% water solution) were added. The reaction was run at room temperature for 5 minutes, and 

the absorbance measured at 480 nm using all reagents as blank sample.   
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2.5.4. Frying test  

The effectiveness of the developed antioxidants to protect CTAG’s under frying conditions 

was assessed using a frying test developed in our laboratory (Aladedunye & Przybylski, 2011). 

Briefly, 12 g of CTAG’s fortified with 500 µg/g of the tested antioxidant, was weighed into a 

glass beaker (Pyrex, USA). Octagonal stir bar (ThermoFischer Scientific, USA) was placed into 

the vessel, forming the final surface to volume ratio of 0.42. Then vessel with the content was 

heated at 185 ± 5 oC for 10 minutes and 1.2 g of formulated food containing a mixture of 

gelatinized potato starch, glucose and silica gel (4:1:1w/w) was added. The heating was 

continued for another 20 minutes and the mixture stirred at 500 rpm. Heating and stirring were 

maintained for another 90 minutes. About 0.5 g of fat sample was withdrawn at the 60th, 80th, 

100th and 120th minutes of heating. Selected sampling points are equivalent to 1, 3, 5 and 7 days 

of actual frying time using institutional fryer (General Electric Company, NY, USA). At selected 

intervals oil accumulated similar amounts of polar components compared to actual frying. Frying 

performance of oils was assessed by measuring an amount of the total polar components (TPC) 

and by assessing the amount of retaining antioxidant in the oil. BHT, α-tocopherol and DCA 

were used as references. Samples from two repetitions of frying test were analyzed in duplicate 

for TPC and residual antioxidant. 

 

2.5.5. Total polar compound  

TPC were determined by gravimetric method following AOAC Method 982.27 (AOAC, 

1990) with Schulte modification (2004). Briefly, oils were separated into non-polar and polar 

fractions using a hydrated silica gel in a column chromatography.   

 

2.5.6. Analyses of residual antioxidants 

 Tocopherol was analyzed according to AOCS Official Method Ce 8−89 (AOCS, 1999). 

Briefly, 50 mg of oil samples were weighed directly into the autosampler vials and dissolved in 1 

mL hexane. The mobile phase consisted of 7% methyl−tert−butyl−ether in hexane with a flow 

rate of 0.6 mL/min and the fluorescence detector set for excitation at 292 nm and emission at 325 

nm were used. For BHT, DCA and the novel antioxidants the mobile phase was changed to 50% 

methyl-tert-butyl-ether in hexane and a flow rate to 0.3 mL/min using PDA at 281 nm for 

quantification, injecting 10 µL of each sample.  
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2.6. Statistical Analysis 

 Data were analyzed by single factor analysis of variance (ANOVA) and regression using 

Minitab 2000 statistical software (Minitab Inc., PA, ver. 13.2). Statistically significant 

differences between means were determined by Duncan’s multiple range tests for P < 0.05. 

 

 

3. Results and discussion 

3.1. Synthesis 

New antioxidants 3a to 3L were prepared in two steps synthesis from the corresponding 

aldehydes 1a to 1d (Fig. 1). Amines 2a to 2L were obtained by reductive amination. Reaction of 

aldehydes 1a to 1d with an excess of alkylamine in methanol, yielded the expected imines. The 

imines were subsequently reduced with sodium borohydride and the desired amines were 

isolated in moderate to good yields (Table 1). The physical and spectroscopic characteristics of 

the amines are presented in Tables 1 and 2, respectively. The spectral results for compounds 2a, 

2b and 2c were in agreement with the data reported in literature (Guino, Brule, & de-Miguel, 

2003; Sato, Sakamoto, Miyakawa, & Kikukawa, 2004; Lai, Lee, & Liu, 2008). Antioxidants 3a 

to 3L were prepared from DCA and the corresponding amines 2a to 2L using BPO as coupling 

reagent (Rajan et al., 2001). After purification by a flash chromatography, compounds 3a-3L 

were obtained in moderate to good yields, each as a mixture of the two rotamers (Table 1). 

The structure of the novel antioxidants were confirmed by 1H NMR, 13C NMR and HRMS 

(Tables 1 and 3).  As an example, the 1H NMR spectrum of antioxidant 3a is reported in Fig 2.  

The 1H NMR spectrum is characterized by a methyl group at 0.85 and 0.87 ppm (2t, one for each 

rotamer), five methylene groups at 1.55 ppm (sx), 2.63 and 2.71 ppm (2t, one for each rotamer), 

2.87 and  2.93 ppm (2t), 3.12 and  3.32 ppm (2t) and at  4.45 and  4.61 ppm (2t).  The protons of 

the aromatic rings are identified by two doublets at 6.52 and 6.53 ppm as well as by three 

multiplets at 6.75 - 6.83 ppm, 7.06 - 7.15 ppm and 7.24 - 7.39 ppm. The calculated molecular 

mass agreed very well with the mass established by mass spectrometry (Table 1).  

 

 

3.2. DPPH radical scavenging assay 

Results indicate that all the developed compounds displayed a considerable concentration 

dependent radical scavenging activity (Fig. 3, data for 1.11mM concentration are presented). At 

the tested concentrations, all the novel antioxidants exhibited significantly better (p < 0.05) 

radical scavenging capacity than α-tocopherol (Results not included). At concentration of 1.11 
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mM, 3L, the most active of the new antioxidants was four times more effective than BHT (Fig. 

3). Interestingly, no significant differences were observed in the radical scavenging capacity 

between DCA and the following new antioxidants: 3a, 3b, 3c, 3d, 3e and 3f, indicating that the 

dihydro-caffeoyl group is mainly responsible for their radical scavenging activities.  However, 

the presence of one or more methoxy groups in the ortho position to the hydroxyl group seemed 

to make the benzyl amine moiety more efficient in radicals scavenging. This is consistent with 

the general knowledge that an electron donating group in the ortho or para position increases the 

radical scavenging activity of some compounds (Fagerlund, Sunnerheim, & Dimberg, 2009). 

Consequently, antioxidants 3g, 3h, 3i, 3j, 3k and 3L displayed radical scavenging activity 

significantly higher than DCA (Fig. 3). The superior radical scavenging activity of the new 

antioxidants was also confirmed by assessing their IC50, demonstrating significantly lower values 

than: α-tocopherol (1.75 mM); BHT (2.55 mM); DCA (1.31 mM) (Fig. 3). 

Furthermore, results implied that the length of alkyl chain did not have an effect on the radical 

scavenging activities and no significant differences were observed for the following compounds 

(chain length): 3a (n = 2), 3b (n = 5) and 3c (n = 9). Our results are in agreement with data 

published by Silva et al (2000) and Hsu et al (2009). 

 

3.3. Antioxidant activity under accelerated storage  

Results indicated that all new antioxidants outstandingly protected CTAG’s from oxidative 

degradation and the formation of rancidity (Fig. 4). At the end of the accelerated storage time the 

amount of hydroperoxides formed in unprotected CTAG’s was 10 times higher than in samples 

fortified with the novel antioxidants. Compared to α-tocopherol, a natural lipophilic antioxidant, 

CTAG’s fortified with the new antioxidants were significantly more stable (p < 0.05). The 

amounts of hydroperoxides formed in CTAG’s containing 350 µg/g of compound 3L was 6.1 

times lower compared to CTAG’s containing the same amount of α-tocopherol (Fig 4). BHT and 

the novel antioxidants: 3a, 3b, 3c, 3d, 3e and 3f protected CTAG’s with the same efficiency 

during accelerated storage (Fig 4). However antioxidants 3g, 3h, 3i, 3j, 3k, and 3L offered much 

better protection than BHT. These results are consistent with observations from DPPH assay, 

suggesting that more hydroxyl and methoxy groups activate the benzyl amine moiety and 

improves antioxidant efficiency. Consistently, as was observed within each group, the 

antioxidant activity decreases when the alkyl chain length was shorter in the following order n = 

9 < n = 5 < n = 2, however, this trend was statistically not significant at p < 0.05.  
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3.4. Protection under frying conditions 

The effectiveness of the novel antioxidants to protect CTAG’s from oxidative degradation 

under frying conditions was determined using a frying test developed in our laboratory (Catel, 

Aladedunye, & Przybylski, 2010). CTAG’s fortified with 500 µg/g of antioxidant were tested 

under frying conditions and performance assessed by the measurement of an amount of the total 

polar components (TPC) formed as a function of frying time. The effectiveness of the new 

antioxidants was compared to BHT, α-tocopherol and DCA. Results showed that all novel 

antioxidants (3a to 3L) were more efficient in protecting CTAG’s during frying. At the end of 

the frying time, the amounts of TPC formed in CTAGs fortified with the novel antioxidants were 

significantly lower (p < 0.05) compared to CTAG alone (Fig 5). Further, the novel antioxidants 

were more efficient than α-tocopherol and BHT (Fig 5). Among the synthesized antioxidants, 

compound 3c was the most efficient and better protected oil than the parent DCA. 

Interestingly, the group of antioxidants in which the benzyl amine moiety was not 

hydroxylated, compounds 3a, 3b, and 3c, were the most effective in CTAG’s protection during 

frying. This observation is contrary to the results from a radical scavenging and an accelerated 

storage stability tests, suggesting that the nature of the reactions under frying conditions are 

different from those happening during low temperature applications (Frankel 2007). The increase 

in alkyl chain length presumably enhanced the lipophilicity of the antioxidants, however, trend 

was observed but without statistical significance in their performance (Fig 5). 

 

3.5. Residual antioxidants 

In addition to being effective, an antioxidant should also be thermally stable so that it can 

provide lasting protection to food and biological systems at ambient and frying temperatures. 

This is particularly important during frying where temperature of 185oC is generally utilized. In 

the present study, the stability of the new antioxidants under both accelerated storage and frying 

were investigated and the amounts of residual antioxidants remaining at storage and frying in Fig 

6 and 7 are presented, respectively. Evidently, the novel antioxidants were significantly more 

stable than α-tocopherol, BHT and DCA when tested with CTAG’s during accelerated storage at 

60°C (Fig 6). At the fifth day of storage, the remaining amounts of α-tocopherol, BHT and DCA 

were at 39, 65, and 54%, respectively, compared to a minimum of 75% for the novel 

antioxidants. The same superior stability was observed during frying (Fig 7). At all stages of 

frying the significantly higher amounts of the novel antioxidants were present in the oil 

compared to α-tocopherol, BTH and DCA (Fig 7).  
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4. Conclusion 

 The novel antioxidants 3a to 3L have been conveniently prepared in good yield from 

DCA. DPPH assays demonstrated their significantly higher radical scavenging activities than α-

tocopherol, BHT and DCA. Furthermore, when compared to α-tocopherol and BHT, the new 

compounds offered better protection to polyunsaturated oil both under storage and frying 

conditions. Beside their superior antioxidant activities, the higher lipophilicity and thermal 

stability make them more desirable than the precursor phenolic acid. 

 Further investigations are underway to develop better understanding of the relationship 

between structure and antioxidant activity, the nature of the novel antioxidants degradation and 

products formed. This study was designed to prepare novel antioxidants and assess their activity 

in an oil system; however their potential application in various foods and regulatory acceptance 

will be a matter of further development. 
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Figure 1. Reactions and structures of the novel antioxidants 3a – 3L. For details see the text. 
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OH 
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Figure 2. 1H-NMR spectrum of the novel antioxidant 3a. For details see the text. 
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Figure 3.  DPPH radicals scavenging and IC50 for α-tocopherol, BHT, DCA and the novel 

antioxidants. All antioxidants were tested at concentration of 1.11 mM. αT - α-tocopherol; BHT - 

butylated hydroxytoluene; DCA – dihydro-caffeic acid. For details see the text. 
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Figure 4. Changes in peroxide value during accelerated storage of canola triacylglycerols 

fortified with α-tocopherol, BHT, and the novel antioxidant 3a-3L at 350 µg/g. CTAG – canola 

triacylglycerols; DCA – dihydro-caffeic acid; BHT – butylated hydroxytoluene; αT–α-

tocopherol.
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Figure 5. Formation of polar components during frying test of canola triacylglycerides with 

added α-tocopherol, BHT, DCA and the novel antioxidants 3a – 3L at 500 µg/g. CTAG – canola 

triacylglycerols; αT – α-tocopherol. For details see the text.  
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Figure 6. Changes of the antioxidants during accelerated storage of canola triacylglycerols 

fortified with BHT, α-tocopherol and the novel antioxidants 3a-3L added at 350 µg/g. For details 

see the text. 
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Figure 7. Changes of antioxidants during frying tests of canola triacylglycerols fortified with 

BHT, α-tocopherol, DCA and the novel antioxidants 3a-3L added at 500 µg/g. For details see the 

text. 
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Table 1. Characteristics of synthesized compounds  

Compound Description Mp (oC) Yield 

(%) 

[M + H]+ Rotamers  

ratio Calculated Found 

2d light yellow, viscous oil NA 98 ND ND NA 

2e light orange solids 61 – 62 89 ND ND NA 

2f light orange solids 61 – 63 85 ND ND NA 

2g light orange solids 56 – 58 98 ND ND NA 

2h light yellow solids 65 – 67 86 ND ND NA 

2i white solids 77 – 78 80 ND ND NA 

2j white solids 139 – 141 90 ND ND NA 

2k white solids 83 – 85 68 ND ND NA 

2L white solids 90 – 92 76 ND ND NA 

3a colourless, highly viscous oil NA 58 314.1751 314.1754 55:45 

3b light yellow, highly viscous NA 68 356.2220 356.2231 55:45 

3c light yellow, highly viscous NA 56 412.2846 412.2854 57:43 

3d white solids 62 – 64 64 330.1700 330.1706 55:45 

3e light green, highly viscous oil NA 55 375.2169 372.2168 55:45 

3f light yellow, highly viscous NA 47 428.2795 428.2785 60:40 

3g white solids 59 – 61 60 360.1805 360.1805 59:41 

3h orange, highly viscous oil NA 56 402.2275 402.2286 60:40 

3i light orange, highly viscous NA 53 458.2901 458.2907 60:40 

3j white solids 60 – 62 54 390.1911 390.1909 57:43 

3k orange, highly viscous oil NA 54 432.2381 432.2378 59:41 

3L orange, highly viscous oil NA 61 488.3007 488.3020 60:40 

NA = Not Applicable; ND = Not determined; Compounds 2d to 2L are intermediates used in 

synthesis; Mp = Melting point 
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Table 2. 1H and 13C NMR of the amine precursors synthesized in the study 

Hydrogen 2d* 2e 2f 2g* 2h 2i 2j* 2k 2L 

CH3 (t) 0.90, J=5 0.88, J=6.9 0.90, J=6.9 0.94, J=6.9 0.89, J=6.9 0.88, J=6.9 0.88, J=7.2 0.88, J=6.9 0.86, J=6.9 
CH2 (m)  1.20-1.38 1.22-1.38  1.22-1.38 1.20-1.38  1.24-1.38 1.14-1.38 
CH2CH2N 1.55(sx), J=7.5 1.50-1.61(m) 1.49-1.62(m) 1.56,sx, J=7.5 1.45-1.57(m) 1.43-1.58(m) 1.43(sx), J=7.2 1.46-1.58(m) 1.42-1.58(m) 
CH2CH2N (t) 2.63, J=7.5 2.70, J=7.5 2.69, J=7.5 2.63, J=7.2 2.62, J=7.5 2.62, J=7.5 2.44, J=7.2 2.63, J=7.2 2.62, J=7.2 
ArCH2N (s) 3.67 3.70 3.71 3.73 3.71 3.71 3.57 3.71 3.71 
OCH3 (s)    3.87 3.88 3.88 3.74 3.88 3.88 
CHAr 6.57(d), J=8.4 6.59(d), J=8.4 6.63(d), J=8.4 6.79(d), J=8.1 6.77(d), J=7.8 6.77(d), J=7.8 6.59(s) 6.56(s) 6.56(s) 
CHAr (d) 7.05, J=8.4 7.08, J=8.4 7.09, J=8.4 6.85, J=8.1 6.84, J=7.8 6.84, J=7.8    
CHAr (s)    6.88 6.87 6.87    
OH, NH (s) 4.50 5.12 6.05 6.05      
          CH3 12.3 14.0 14.2 11.8 14.0 14.1 12.4 14.1 14.1 
CH2  22.5 22.7  22.6 22.7  22.6 22.7 
CH2  27.0 27.3  27.0 27.4  27.1 27.4 
CH2  29.3 29.2  29.3 29.3  30.0 29.3 
CH2   29.4   29.5   29.5 
CH2   29.5   29.6   29.6 
CH2   29.6   29.7   30.0 
CH2CH2N 23.0 31.6 31.9 22.8 31.7 31.9 23.1 31.8 31.9 
CH2CH2N 51.0 49.2 49.2 51.1 49.0 49.3 51.1 49.5 49.6 
ArCH2N 53.1 53.3 53.3 53.8 53.6 53.8 53.7 54.4 54.4 
OCH3    55.6 55.4 55.7 56.3 56.2 56.2 
CHAr 115.3 116.0 116.0 145.2 145.8 145.2 148.2 147.2 147.2 
CHAr 115.3 116.0 116.0 114.7 115.2 114.7 148.2 147.2 147.2 
CHAr 129.5 129.3 129.3 111.2 111.6 111.2 105.6 104.8 104.8 
CHAr 129.5 129.4 129.3 121.0 121.1 121.0 105.6 104.8 104.8 
CHAr 131.5 129.8 129.8 132.9 130.3 131.3 131.6 131.4 131.4 
CHAr 156.5 156.5 156.6 147.1 147.6 147.1 134.4 133.7 133.7 

 *Solvent = DMSO-d6; s, singlet; d, doublet; t, triplet; sx, sextet; m, multiplet. J, coupling constant in Hertz. For details see the text 
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Table 3. 1H and 13C NMR of the novel antioxidants 3a – 3L 

Hydrogen 3a 3b 3c 3d* 3e* 3f 3g 3h 3i 3j 3k 3L 
CH3 0.85(t) 

0.87(t) 
J = 7.5 

0.85(t) 
0.87(t) 
J = 7.5 

0.84- 
0.92(m) 

0.77(t) 
J = 7.5 

0.81- 
0.88(m) 

0.83- 
0.92(m) 

0.84(t) 
0.85(t) 
J = 7.2 

0.83- 
0.93(m) 

0.84- 
0.92(m) 

0.85(t) 
0.87(t)  
J = 7.5 

0.80- 
0.89(m) 

0.83- 
0.92(m) 

CH2 (m)  1.18-1.31 1.13-1.35  1.10-1.13 1.11-1.35  1.15-1.32 1.16-1.34  1.14-1.32 1.13-1.35 
CH2CH2N 1.55(sx) 

J = 7.5  
1.42- 
1.58(m) 

1.40- 
1.56(m) 

1.33- 
1.49(m) 

1.31- 
1.48(m) 

1.37- 
1.52(m) 

1.46- 
1.63(m) 

1.40- 
1.57(m) 

1.38- 
1.56(m) 

1.45- 
1.60(m) 

1.39- 
1.55(m) 

1.41- 
1.57(m) 

CH2CO 2.63(t) 
2.71(t) 
J = 7.5 

2.65(t) 
2.71(t) 
J = 7.5 

2.60(t) 
2.69(t) 
J = 7.5 

2.48- 
2.80(m) 

2.47- 
2.73(m) 

2.57(t) 
2.65(t) 
J = 7.5 

2.62(t) 
2.67(t) 
J = 7.8 

2.64(t) 
2.69(t) 
J = 7.2 

2.61(t) 
2.66(t) 
J = 7.5 

2.62(t) 
2.67(t) 
J = 7.5 

2.61(t) 
2.67(t) 
J = 7.5 

2.62(t) 
2.68(t) 
J = 7.5 

CH2CH2CO 2.87(t) 
2.93(t) 
J = 7.5 

2.86(t) 
2.93(t) 
J = 7.5 

2.84(t) 
2.91(t) 
J = 7.5 

2.48- 
2.80(m) 

2.47- 
2.73(m) 

2.78(t) 
2.86(t) 
J = 7.5 

2.82(t) 
2.87(t) 
J = 7.5 

2.85(t) 
2.90(t) 
J = 7.2 

2.85(t) 
2.90(t) 
J = 7.5 

2.83(t) 
2.89(t) 
J = 7.5 

2.83(t) 
2.89(t) 
J = 7.5 

2.85(t) 
2.90(t) 
J = 7.5 

CH2CH2N (t) 3.12, 3.32 
J = 7.5 

3.13, 3.34 
J = 7.8 

3.11, 3.32 
J = 7.8 

3.07, 3.16 
J = 7.8 

3.10, 3.18 
J = 7.8 

3.09, 3.30 
J = 7.8 

3.11, 3.30 
J = 7.8 

3.15, 3.33 
J = 7.8 

3.12, 3.32 
J = 7.8 

3.13, 3.31 
J = 7.5 

3.14, 3.33 
J = 7.5 

3.15, 3.34 
J = 7.8 

OCH3 (s)       3.79, 3.81 3.79, 3.83 3.80, 3.81 3.80, 3.81 3.80, 3.81 3.81, 3.82 
ArCH2N (s) 4.45, 4.61 4.45, 4.60 4.43, 4.58 4.38 

 
4.38 
 

4.35, 4.46 4.36, 4.50 4.38, 4.51 4.36, 4.49 4.36, 4.50 4.35, 4.49 4.37, 4.50 

CHAr 6.52(d) 
6.63(d) 
J = 7.8 

6.52(d) 
6.62(d) 
J = 8.1 

6.50(d) 
6.60(d) 
J = 8.1 

6.40(d) 
6.48(d) 
J = 8.1 

6.40(d) 
6.47(d) 
J = 8.0 

6.47(d) 
6.55(d) 
J = 7.8 

6.49- 
6.64m) 

6.49- 
6.65(m) 

6.50- 
6.64(m) 

6.28(d) 
6.41(d) 
J = 8.1 

6.27(d) 
6.41(d) 
J = 8.1 

6.29(d) 
6.42(d) 
J = 8.1 

CHAr (m) 6.75-6.83 6.74-6.85 6.72-6.83 6.54-6.76 6.54-6.75 6.67-6.80 6.71-6.79 6.72-6.82 6.71-6.79 6.70-6.81 6.70-6.81 6.71-6.81 
CHAr 7.05-7.15 7.05-7.16 7.03-7.14 6.94(d) 

6.98(d) 
J = 8.4 

6.93(d) 
6.98(d) 
J = 8.4 

6.86(d) 
6.90(d) 
J = 8.4 

6.82(d) 
6.87(d) 
J = 8.1 

6.84(d) 
6.88(d) 
J = 8.1 

6.82(d) 
6.87(d) 
J = 8.1 

6.49(d) 
6.57(d) 
J = 8.1 

6.48(d) 
6.56(d) 
J = 8.1 

6.51(d) 
6.59(d) 
J = 8.1 

CHAr (m) 7.24-7.39 7.21-7.38 7.19-7.37          
OH    8.61-

8.74(m) 
8.62(s) 
8.64(s) 

       

OH (s)     8.69, 8.72        
OH (s)    9.29, 9.36 9.29, 9.36        
Carbon 
CH2  27.4, 28.5 27.4, 28.5  27.4, 28.5 27.4, 28.5  27.4, 28.4 27.5, 28.5  27.5, 28.5 27.6, 28.5 
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Table 3 cont’d 

 3a 3b 3c 3d* 3e* 3f 3g 3h 3i 3j 3k 3L 
CH2  31.1, 31.3 29.2, 29.3  30.9, 31.0 29.3  31.2 29.3  31.0, 31.1 29.3 
CH2  31.4, 31.5 29.3, 29.4  31.4, 31.5 29.4  31.4, 31.5 29.3, 29.4  31.4, 31.5 29.3, 29.4 
CH2   29.5   29.5   29.5   29.5 
CH2   29.6   29.6   29.6   29.6 
CH2   31.2, 31.3   31.0, 31.2   31.1, 31.2   31.0, 31.1 
CH2   31.9   31.9   31.9   31.9 
CH2CH2CO 34.6, 35.1 34.9, 35.3 35.0, 35.4 34.7, 35.1 34.7, 35.2 34.8, 35.4 35.1, 35.5 35.2, 35.5 35.1, 35.5 35.1, 35.3 35.1, 35.3 35.1, 35.3 
CH2CH2N 47.8, 48.0 46.9, 47.6 46.9, 47.6 47.3, 47.4 45.7, 46.8 46.9, 47.8 48.4, 48.7 46.8, 47.5 46.8, 47.5 48.5, 49.0 46.9, 47.4 46.9, 47.5 
ArCH2N 48.9, 50.8 48.8, 51.3 48.8, 51.3 48.4, 50.3 47.4, 50.2 48.5, 51.0 49.1, 51.2 48.7, 51.2 48.7, 51.2 49.1, 51.4 49.0, 51.4 49.0, 51.4 
OCH3       55.9 55.9 55.9 56.4 56.4 56.3 
CAr 115.8 115.0 115.0 115.5 115.5 115.5 108.9 108.9 108.8 102.7 102.8 102.8 
CAr 116.3 115.7 115.6 115.8 115.7 115.7 114.4 114.4 114.3 102.8 102.8 102.8 
CAr 119.3 119.9 119.9 116.2 116.2 115.9 115.4 115.4 115.3 115.1 115.1 115.1 
CAr 126.8 126.2 126.2 117.1 119.3 119.1 115.7 115.7 115.7 115.6 115.6 115.6 
CAr 127.5 127.3 127.3 121.8 121.2 120.9 119.0 119.1 119.1 120.0 120.0 119.9 
CAr 127.8 128.6 128.6 128.1 128.9 128.3 120.1 120.1 120.1 127.6 127.6 127.6 
CAr 128.8 129.0 132.8 128.9 129.3 129.1 128.1 128.1 128.1 133.0 132.9 132.9 
CAr 132.6 132.8 132.8 130.0 131.6 129.9 132.9 132.8 132.8 134.1 134.1 134.1 
CAr 138.4 136.4 136.4 132.7 132.6 132.6 142.8 142.8 142.8 142.7 142.8 142.8 
CAr 138.8 137.0 137.0 143.4 143.7 142.7 144.2 144.3 144.2 143.9 144.0 144.1 
CAr 143.7 142.9 142.9 144.7 145.4 143.9 145.0 145.1 145.1 143.9 144.0 144.1 
CAr 144.4 144.1 144.1 156.7 156.7 155.4 147.2 147.0 146.9 147.1 147.1 147.1 
CO 172.1 173.4 173.5 171.7 171.7 173.8 173.7 173.6 173.6 173.3 173.3 173.3 

 *Solvent = DMSO-d6; s, singlet; d, doublet; t, triplet; sx, sextet; m, multiplet; J, coupling constant in Hertz. For details see the text  

 

 

 

 


