
CODE AUTHORSHIP ATTRIBUTION USING CONTENT-BASED
AND NON-CONTENT-BASED FEATURES

PARINAZ BAYRAMI
Master of E-commerce, Kntu University, 2018

A thesis submitted
in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

© Parinaz Bayrami, 2021

CODE AUTHORSHIP ATTRIBUTION USING CONTENT-BASED AND
NON-CONTENT-BASED FEATURES

PARINAZ BAYRAMI

Date of Defence: June 14, 2021

Dr. J. Rice Professor Ph.D.
Thesis Supervisor

Dr. F. Li Associate Professor Ph.D.
Thesis Examination Committee
Member

Dr. R. Benkoczi Professor Ph.D.
Thesis Examination Committee
Member

Dr. Y. Chali Professor Ph.D.
Chair, Thesis Examination Com-
mittee

Dedication

I would like to dedicate my thesis to the remarkable woman who always assured me

that everything is going to be alright, My mother.

iii

Abstract

Machine learning approaches are widely used in natural language analysis. Previous

research has shown that similar techniques can be applied in the analysis of computer

programming (artificial) languages. In this thesis, we focus on identifying the au-

thors of computer programs by using machine learning techniques. We extend these

techniques to determine which features capture the writing style of authors in the

classification of a computer program according to the author’s identity. We then pro-

pose a novel approach for computer program author identification. In this method,

program features from the text documents are combined with authors’ sociological

features (gender and region) to develop the classification model. Several experiments

have been conducted on two datasets composed of computer programs written in

C++, and the results are encouraging. According to the experimental results, the

author’s identity can be predicted with a 75% accuracy rate.

iv

Acknowledgments

I would like to express my sincere gratitude to my supervisor, professor Jacqueline E.

Rice who always supported me throughout my graduate journey. I am grateful for

the patient guidance and advice she has provided during my graduate study. I have

been extremely lucky to have a supervisor who cared so much about my research.

I am truly grateful to my family and fiance for their unconditional support and love.

v

Contents

Contents vi

List of Figures viii

List of Tables xi

1 Introduction 1
1.1 Motivation and Contribution . 4
1.2 Organization of Thesis . 6

2 Background and Literature Review 7
2.1 Machine Learning . 7
2.2 Text Mining . 9

2.2.1 Data Collection . 10
2.2.2 Data Preprocessing . 11
2.2.3 Metric/Feature Extraction . 14
2.2.4 Classification . 23
2.2.5 Model Evaluation . 29
2.2.6 Related Work . 33

3 Methodology 39
3.1 Data Collection . 39
3.2 Document Representation and Preparation 41
3.3 Metrics/Features Extraction . 42

3.3.1 Software Metrics . 42
3.3.2 N-grams . 44
3.3.3 Similarity Measurement . 46
3.3.4 Lexical Diversity . 48
3.3.5 Sociolinguistic Characteristic 48

3.4 Programming Environment . 49
3.5 Summary . 50

4 Experiments and Results 51
4.1 Experiments . 51

4.1.1 Experiment 1 . 53
4.1.2 Experiment 2 . 53
4.1.3 Experiment 3 . 55
4.1.4 Experiment 4 . 56

vi

CONTENTS

4.1.5 Experiment 5 . 56
4.1.6 Experiment 6 . 56

4.2 Results . 57
4.2.1 Experiment 1 Results . 59
4.2.2 Experiment 2 Results . 60
4.2.3 Experiment 3 Results . 61
4.2.4 Experiment 4 Results . 62
4.2.5 Experiment 5 Results . 63
4.2.6 Experiment 6 Results . 64

5 Discussion 66
5.1 Performance Discussion of Experiments 1, 2, and 3 on the Github Dataset. 66

5.1.1 Accuracy distribution . 70
5.1.2 Gender-based Analysis . 70
5.1.3 Region-based Analysis . 72

5.2 Performance Discussion of Experiments 4, 5, and 6 on the Codeforce
Dataset. 73
5.2.1 Accuracy distribution . 77
5.2.2 Gender-based Analysis . 77
5.2.3 Region-based Analysis . 78

5.3 Feature Analysis . 79
5.4 Author Identification using Top-ranked Features 81
5.5 Word Frequencies . 83

6 Conclusion 87
6.1 Future work . 89

Bibliography 92

vii

List of Figures

2.1 The red rectangle is a row of data, known as instance, which consists of
an array of observations from the domain, such as height and width. The
blue rectangle indicating a single column of data is called a feature. In this
example the labels are the classes of the animals that should be predicted. 10

2.2 Data structure for the author identification problem. Text samples are
stored as instances in rows, while columns represent features. The labels
(output) are the author’s identity. 12

2.3 Document representation using bi-gram approach. The bi-gram variables
extracted from ‘One Cent, Old Cent, New Cent’. 16

2.4 A is an m ˚ n matrix. m is the number of input documents (files) and n is
the number of features. To see the full example of SVD decomposition of
this matrix see [62]. 17

2.5 Illustration of singular value decomposition (SVD) and reduced singular
value decomposition (RSVD) approaches. 18

2.6 Geometrical representation of two documents, Doc1 and Doc2, where Y =
new and X = old. 22

2.7 RF bootstrap sampling. 25
2.8 Concept of RF classification. In training set, the algorithm creates T mul-

tiple bootstrapped samples, and then builds a classification trees from each
bootstrapped sample set. For classification, each tree gives a unit vote for
the most popular class at each input data. The final label is determined by
a majority vote of all trees. 26

2.9 OOB data are separated for each bootstrapped sample. The accuracy per-
formance is evaluated by testing the trees with the separated OOB data,
and then the performance of the RF is calculated by taking the average of
these performance rates. 27

2.10 Separating hyper-planes, or possible decision boundaries, which can separate
two possible classes. Circles indicate documents with “negative” labels and
squares represent documents with “positive” labels. 30

2.11 Choosing the optimal decision boundary using SVM: the distance to the
closest negative (circle) point should be equal to the distance to the closest
positive (square) point. 30

2.12 Confusion matrix for multiple classes. This example represents a three-class
problem with the classes A, B, and C. 32

3.1 Information about data distribution in our datasets. 40
3.2 An example dataset of four texts written by two authors. 41

viii

LIST OF FIGURES

3.3 Tokenization process for a dataset with four documents written by two au-
thors. The tokenization technique divides each program line into identified
tokens. Each row represents a text document, each column represents a
distinct token, and each cell represents a count of the tokens in the document. 42

3.4 Example showing how 5 keywords in TF-IDF format represent the dataset
of four texts with software metrics. 44

3.5 3-gram extraction process for our example dataset with four documents be-
longing to two authors. Each row represents a text document, each column
represents a 3-gram (3 sequential tokens), and each cell represents a count
of the sequence (terms) in the document. 45

3.6 Data frame in the example dataset showing 3-gram frequencies after apply-
ing TF-IDF. 45

3.7 Example dataset represented by 3-gram frequencies after applying TF-IDF
and reducing the feature set using SVD. 45

3.8 The similarity and lexical diversity features of our example dataset of four
texts written by two authors. We compared the similarity value between
text1 and text2 written by author A and then calculated the value of simi-
larity between text3 and text4 written by author B. As we were considering
cosine distance between two texts, the similarity entries were repeated. A
value of 0 indicates that the documents do not have any similarity and a
value of 1 indicates that they are identical. 47

3.9 A visualization of five categories of features we extracted using machine
learning techniques for a dataset that contained four texts from two authors.
Each category was coloured a different shade. 49

4.1 An overview of the six experiments in this thesis. 52
4.2 Steps for experiments 1 and 4. 53
4.3 Steps for experiments 2 and 5. 55
4.4 Steps for experiments 3 and 6. 57
4.5 Confusion matrix for multi-class machine learning model in our work. . . . 58

5.1 Experiment 2 using n P t3, 6, 10u) to establish optimal settings for the choice
of n-gram length. Three classification models were employed, and their
performance was demonstrated with each feature set. 67

5.2 Comparative results of experiments 1,2, and 3. The results of experiment 1,
experiment 2, and experiment 3 respectively appear in EX1, EX2, and EX3. 68

5.3 Each of the three experiments evaluated the accuracy performance of the
RF model by averaging individual accuracy scores of 60 classes. 69

5.4 Accuracy distribution by class for the GitHub dataset. 70
5.5 Label distribution of individual accuracy over 80% when grouped by gender

and region. For experiments 1, 2, and 3 (respectively) results are labeled
EX1, EX2, and EX3. 72

5.6 Each of the three experiments 4,5 and 6 evaluated the accuracy performance
of the RF model by averaging individual accuracy scores of 60 classes. . . 74

ix

LIST OF FIGURES

5.7 Experiment 5 using n P t3, 6, 10u) to establish optimal settings for the choice
of n-gram length. Three classification models were employed, and their
performance was demonstrated with each feature set. 75

5.8 Comparative results of experiment 4 (EX4), experiment 5 (EX5), and ex-
periment 6 (EX6). 76

5.9 Accuracy distribution by class for the Codeforces dataset. 76
5.10 Label distribution of individual accuracy more than 80% concerning gender

and region in experiment 4 (EX4), experiment 5 (EX5), and experiment 6
(EX6). 78

5.11 Top 15 highest-ranked features in Experiments 1,3,4 and 6. 80
5.12 Top 15 frequently occurring words from datasets Coll-G and Coll-F. . . . 84
5.13 Top-ranked features of experiment 4. The red line indicate the keywords. . 85
5.14 Top-ranked features of experiment 1. The red line indicate the keywords. . 85

x

List of Tables

2.1 Tokenization of the phrase ‘One Cent, Old Cent, New Cent’. 12
2.2 The number of word types (V) and the number of tokens (N) in a text

phrase ‘One Cent, Old Cent, New Cent’. 19
2.4 Matrix with two documents and two terms. 22

3.1 List of 18 software metrics. 43

4.1 Comparison of previous contributions [54]. 59
4.2 Experiment 1 results. 59
4.3 Results from experiment 2 with feature set A. 60
4.4 Results from experiment 2 with feature set B. 61
4.5 Results from experiment 2 with feature set C. 61
4.6 Experiment 3 results. 62
4.7 Experiment 4 results. 62
4.8 Results from experiment 5 with feature set A (3-grams). 63
4.9 Results from experiment 5 with feature set B (6-grams). 63
4.10 Results from experiment 5 with feature set C (10-grams). 64
4.11 Experiment 6 results. 64

5.1 The RF label distribution of individual accuracy from experiment 1, 2, 3
grouped by gender. 70

5.2 The RF label distribution of individual accuracy from experiment 1, 2, 3
grouped by region. 72

5.3 The RF label distribution of individual accuracy from experiment 4, 5, 6
grouped by gender. 77

5.4 The RF label distribution of individual accuracy from experiment 4, 5, 6
grouped by region. 78

5.5 Comparing the results of experiment 3 using the 15 most important features
and the 32 initial features. 82

5.6 Comparing the results of experiment 6 using the 15 most important features
and the 32 initial features. 82

xi

Chapter 1

Introduction

Stylometry, or authorship attribution, is the study of style in language, based on a set

of techniques that attempt to identify a person’s writing style through determining

the unique characteristics that can be derived from the author’s books or writing

samples [19]. For instance, if a professor writes some notes, they may write them

in a certain way and use certain phrases. Those phrases create a pattern that is

characteristic of their writing and talking style. Language is divided into the following

two groups: natural language (such as English or Arabic) and artificial language

(which is created for controlling the behavior of a machine) [37]. Stylometry looks at

both groups of languages.

Authorship attribution (stylometry) in natural language is analyzing texts or

speeches to determine their authorship [19]. For instance, some scholars examined

English written texts to identify the authorship. JK Rowling is known for her Harry

Potter series, but she is also a bestselling author of crime novels. In 2012, a poem

named The Cuckoo’s Calling, written by Robert Galbraith, was published. It was

Galbraith’s first poem, and surprisingly the poem became a bestseller overnight. A

journalist said he had recalled a tip that the writer was actually JK Rowling. A group

of British researchers in Pennsylvania tested this by applying authorship attribution.

Their tests confirmed that the poem was written by JK Rowling. She then admitted

to the press that it was indeed her work. This is an example of how stylometry can

be used on natural language [3].

1

1. INTRODUCTION

Authorship profiling is one use of stylometry in natural language. Profiling is used

to detect an author’s sociolinguistic characteristics—such as age, gender, location,

educational background, and personality traits—by examining writing patterns in

written text [19]. Studies have shown that the use of natural language varies by the

social context of a situation, the speaker, and the audience. These variations reveal

aspects of our social identity [92]. The differences that influence natural language use

mostly occur due to sociolinguistic characteristics.

The second broad category of language is artificial language. A programming

language is an artificial language [74]. In some studies of programming languages,

researchers have investigated whether coding style is unique for each programmer [68].

They have found that just as each speaker of a natural language will reveal their

identity through their language choices [5], so each programmer can demonstrate

their unique fingerprint and individuality in their code. It might be thought that

the standard guidelines for aspects of programming style—such as layout, naming

conventions, and source file organization—are too strict for individual style to be

demonstrated in a program language. Nonetheless, there is much freedom and choice

left up to programmers, including the use of keywords, operators, statements, the

choice of standard library functions, and the use of white space. Thus, we can use

these choices to investigate author style [22].

Code stylometry is the application of stylometry to attribute anonymous program

code. Since an individual learns to code independently, it should be possible for them

to develop a unique coding style. Additionally, the use of programming language

among programmers may differ depending on sociolinguistic factors such as gender

and region, just as the compelling impact of sociolinguistic characteristics on natural

language use (authorship profiling) [83, 74]. Code stylometry (authorship attribu-

tion) can be used for software forensics [19], detecting plagiarism [88], and Canadian

copyright investigation [43]. However, at the same time, code stylometry is often also

2

1. INTRODUCTION

privacy infringing depending upon how it is used. The following is a real example of

using stylometry to identify the software programmer.

Saeed Malekpour is an Iranian programmer who developed photo uploading soft-

ware. Stylometry identified him as a web programmer for a pornography website.

When an Iranian court sentenced him for his work on this software, he confessed that

he did not know that this website was using his program. If he had known, he would

never have allowed it, as it is illegal in Iran [23]. Code stylometry is a double-edged

sword, and it could be a concern for programmers who want to remain anonymous.

Code authorship attribution can be formed as a machine-learning problem/task.

Machine learning is a process with the ability to automatically learn and improve

performance or make accurate predictions from experience [32]. In authorship attri-

bution there are a set of documents of known authorship, and the goal is to use them

to classify a document of unknown authorship. To perform the authorship attribution

analysis, a traditional workflow of a supervised learning algorithm for classification

is required, where each document (or text entry) is partitioned into a set of features

and those features are associated with the user-defined output (labels). Next, labels

or known class and extracted features are then passed to the training phase where

machine learning algorithms are used to identify a good model which map inputs to

desired outputs. Once a model is constructed, it is used to fit new (unlabeled) data [8].

In this thesis, we explore the possibility of determining the author of an unattributed

piece of work/program based on the features of the candidate’s writing style and their

sociolinguistics characteristics [74, 83]. In this research, two data sets with different

contexts are used: Codeforces (contest-based programming website) and the GitHub

repository (non-contest-based programming website). We also examine statistical

differences in the importance of the features in different programming contexts. Con-

sidering the programming website’s context leads us to find an appropriate feature

set and to identify the author of written computer programs more accurately. In

3

1.1. MOTIVATION AND CONTRIBUTION

this study, we use machine learning tools to investigate the programming style of

programmers using several popular machine learning techniques, including random

forest, support vector machine and näıve Bayes.

1.1 Motivation and Contribution

The stylometric analysis of textual data can numerically represent style expressed

in natural language and programming language. The existence of stylometry tech-

niques can provide key information in several basic areas [57]:

• In industry, some companies may wish to determine which employee wrote harm-

ful code; or, whenever a particular program needs to be rewritten, the author

may need to be located. It would be convenient to be able to determine the

name of the programmer who wrote a particular piece of code from a set of

several hundred programmers, so they can be located to assist in the upgrade

process.

• In the academic community, it is considered unethical to copy programming

assignments. A professor wants to determine if students are plagiarizing assign-

ments. While plagiarism detection can show that two programs are equivalent,

authorship analysis can show that some code fragment was indeed written by

the person who claims authorship of it.

• The legal community wants to determine authorship in disputes and to identify

cybercriminals. Governments need practical methodologies that can be used to

provide empirical evidence to show that the same person wrote two or more

programs.

There have been many works in authorship attribution in computer programs,

starting in 1993 with Eugene Howard Spafford, a professor of computer science at

4

1.1. MOTIVATION AND CONTRIBUTION

Purdue University. Spafford’s research [87] suggests that measuring style in program-

ming language could aid in program code authorship attribution. Our research builds

on prior works in program stylometry [22, 74, 83].

University of Lethbridge M.Sc. graduates Naz and Rafee implemented machine-

learning techniques to analyze programmer coding style based on the programmer’s

sociolinguistic characteristics [74, 83]. Naz used vocabularies of programming lan-

guage (e.g., keywords, operators, loops, and comments) as features to classify the

programming language based on gender. Rafee focused on a different group of fea-

tures consisting of 13 IEEE standard software metrics, such as the numbers of code

lines to categorize the programmer based on regions. Burrows [22] also studied au-

thorship attribution in computer programs. In his experiment, he used stylometry to

identify anonymous programmers in large programming datasets using n successive

words (N-gram) as features. However, the use of these features or programming el-

ements often depends on the problem. Burrows extended his work to examine the

combinations of features, using three categories of features: N-gram, vocabularies of

programming language, and software metric features. The hybrid features have been

shown to be more effective for code stylometry. That is why, in this research, we

try to discover and compare the different combinations of feature categories of the

program code, rather than use a particular feature category.

Argamon’s research in natural language analysis has explored the sociolinguistic

factors of written documents [11]. Argamon suggested that it is possible to find a link

between an individual’s linguistic expression and their sociolinguistic characteristics,

such as region and gender [11]. Naz worked to assess the impact of gender on the

programming language [74]. In Naz’s research, the program classification showed

that gender does appear to affect the use of programming language. Following this,

Rafee also investigated the gender and region difference in the use of programming

languages [83].

5

1.2. ORGANIZATION OF THESIS

Our work is novel because we seek to evaluate the effectiveness of adding gender

and region to programming content-based features, such as n-gram and keywords.

We use real-world data from the public GitHub and the competitive programming

website Codeforces. GitHub repository is a non-contest-based programming website,

while Codeforces is a contest-based programming website. These data sources pro-

vide a real-world space to examine stylometry techniques to be applied in two different

dataset concepts. We used R programming to apply machine-learning techniques. R

is an open-source programming language and is widely used in data-mining prob-

lems. R supports various machine-learning functions such as data processing, feature

extraction, supervised and unsupervised learning, and model evaluation of different

kinds of data.

1.2 Organization of Thesis

This chapter has given an overview of the research work, followed by a discussion

of the motivation and contributions of this work and the organization of the thesis.

Chapter 2 provides background material important for understanding the remainder

of the thesis, including definitions, fundamentals of machine learning, and text-mining

methods. Chapter 2 ends with a review of the related research in these fields. Chapter

3 presents the methodology we used to classify written computer programs based on

author identity, and discuss the programming environment in this chapter. We also

explain all the steps that we implement in our approaches. Chapter 4 describes six

experiments and numerical results. Chapter 5 provides some analysis of features to

identify the author of the programs. In chapter 6, we conclude this research with the

discussion of possible research directions and future work.

6

Chapter 2

Background and Literature Review

2.1 Machine Learning

Machine learning can be defined as a process with the ability to automatically learn

from experience to make accurate predictions or improve performance [32]. Experience

is the information available related to the past period of time. In 1997, Mitchell

explained machine learning as follows: “A computer program is said to learn from

experience E with respect to some class of tasks T and performance measure P, if its

performance at tasks in T, as measured by P, improves with experience E” [73]. At a

high level, machine learning algorithms are classified into two groups: supervised and

unsupervised, according to the way they “learn” about data [53].

• Unsupervised machine learning, or clustering, is concerned with finding any

hidden pattern within a dataset. The data provided to the unsupervised algo-

rithm are not labelled, which means only the input variables are given with no

corresponding output variables. A clustering analysis uses the similarity and

dissimilarity between data features to group them into clusters. For example,

businesses or marketing campaigns can use clustering to segment customers by

personal attributes and identify key differentiators that divide customers. As a

result, different marketing campaigns targeting various types of customers can

be designed [14].

• Supervised machine learning algorithms, or classifiers, are used when training

data consists of input variables pXq, paired with the correct output variable pY q,

7

2.1. MACHINE LEARNING

and an algorithm is used to learn the mapping function from the input(s) to the

output (see Equation 1). The algorithm will search for patterns in the data that

fit the relationship between the input attributes and the correct outputs. For

example, a classification algorithm will learn to distinguish animals after being

trained through repeated experience with a dataset of images that are properly

labelled with the species of the animal and some identifying characteristics [14].

Y “ fpXq (1)

The goal is to approximate the mapping function so that when the algorithm

is provided with new unlabeled input(s), it can determine which label the new

inputs should be classified as based on prior training data. This is called su-

pervised learning because the process can be thought of as having a teacher

supervise the learning process.

The first step in solving a problem with machine learning is to determine how to

represent the learning problem in terms of something the computer can understand.

Next, users must choose a learning model, typically the classifier users want the system

to use.

Data are raw facts, values, text, sound, or pictures that refer to, or represent,

conditions, person, ideas, or objects. Since the collected data may not be in a format

that is easily used by the machine learning algorithm, further modification may be

needed to represent the data in the desired format for the learning algorithms. For

example, an object can be represented by formulating the description of the object.

Each input object, which we often call a sample/instance, is converted into a set of

features that describes the object.

In the field of machine learning, a common structure for data representation con-

sists of rows and columns, such as a database table or an Excel spreadsheet as shown

8

2.2. TEXT MINING

in Figure 2.1. A row of data is known as instance, which consists of an observation

from the domain (a red rectangle in Figure 2.1). A single column of data is called a

feature or an attribute shown as a blue rectangle in Figure 2.1. A feature or attribute

is a component of an observation. These features describe each of the instances. The

label or class is the attribute, or factor, that should be predicted, or the goal of pre-

diction. A dataset is a collection of instances used to train the system. If users wish

to predict an animal’s type, each instance will be labeled with the name or type of

the animal. Each instance, in turn, is composed of features that describe it, such as

the animal’s weight and mass. In machine learning, a vector that stores the feature

values of an instance is known as feature vector.

Normally in machine learning applications, the main dataset is divided into two

subsets: a training set and a test set. The training set consists a set of data used

as input to a supervised machine learning algorithm to train the machine learning

model. The test set is a collection of data used to evaluate the model performance

after it has been trained. The test data may not be provided to the machine learning

algorithm model during training.

2.2 Text Mining

Machine learning has a broad set of practical applications, including text mining:

the process of extracting useful information and identifying concealed patterns in large

repositories of text data [4]. One area of text mining is linguistic stylometry, where

analyzing an author’s writing style can potentially identify who authored a specific

text. Computer program code is a special form of text. Combinations of words, and

different coding expressions are used to form the program, or a set of instructions

for computers [30]. Style expressed in computer code also can be quantified and

characterized. The general assumption is that each programmer automatically tends

to use the same linguistic pattern, which is unique to them [68]. In this way, it may

9

2.2. TEXT MINING

Figure 2.1: The red rectangle is a row of data, known as instance, which consists of an array
of observations from the domain, such as height and width. The blue rectangle indicating
a single column of data is called a feature. In this example the labels are the classes of the
animals that should be predicted.

be possible to differentiate programmers’ identities by mining their code.

Author identification, also known as author attribution or stylometry, deals with

attributing authorship of an unknown program based on similarities and features

common to an author’s known works. Author identification consists of various steps,

namely data collection, data processing, feature extraction, classification, and model

evaluation (evaluating the output to determine whether useful knowledge was discov-

ered) [32].

2.2.1 Data Collection

The first step in any authorship attribution study is the gathering of data. Re-

searchers for authorship attribution should give thought to the following considera-

tions:

1. Samples must be of single authorship for authorship attribution. Obtaining

single-authored samples for constructing source code collections is challenging

since most of the time, software efforts tend to be collaborative in nature, which

10

2.2. TEXT MINING

limits the availability of meaningful single-author samples [19].

2. Having a high number of programmers makes the problem of authorship attri-

bution complicated and more difficult to solve [19]. The greater the number

of outputs the higher complexity that is added to the model [17]. A system is

defined as complex according to the number of inputs and outputs it has. For

example, labelling a sample as dog, cat, or human requires several features, such

as weight, height and number of legs. However, to classify cats and humans,

the number of legs might be the only feature needed [9]. Also take, for exam-

ple, a typical authorship attribution problem, where an unattributed piece of

text is assigned to one of four possible authors. With four candidate authors,

this problem is described as four-class. In this example there is a 25 percent

chance of identifying the author by random chance. However, if there were a

hundred possible authors, the chance to identify the authors by random chance

is reduced to 1 percent [19].

3. Having a higher number of samples per author is preferable. This increases the

amount of training data available to model the writer’s style [19].

2.2.2 Data Preprocessing

Preprocessing can have a significant influence on the success of text mining [91].

Preprocessing is a text mining technique used to transform the text data into an

understandable, predictable, and analyzable form before it can be imported to a

machine-learning algorithm. Machine-learning algorithms operate on a numeric fea-

ture space. To perform machine learning on text, we must transform our documents

into vectors or numerical representation, generally as a two-dimensional array, where

rows are the instances and columns are the features.

The first step in representing text documents as vectors is decomposing the docu-

ments into distinct pieces or tokens. This process is called tokenization and involves

11

2.2. TEXT MINING

Figure 2.2: Data structure for the author identification problem. Text samples are stored
as instances in rows, while columns represent features. The labels (output) are the author’s
identity.

splitting longer strings of text, code or character sequences into tokens [8]. Typically,

tokens include words, symbols, and numbers in natural language. In programs (code),

tokens may include functions, punctuation, operators, and keywords.

The next step is to build a dataset where

• each row represents a document,

• each column represents a distinct token, and

• each cell is a count of how often that token occurs in the document.

Let us take the simple sentence ‘One Cent, Old Cent, New Cent’ as an example. The

tokenization result is shown in Table 2.1.

Table 2.1: Tokenization of the phrase ‘One Cent, Old Cent, New Cent’.

Tokens One Cent Old New
Doc 1 3 1 1

To evaluate how relevant a token is to a document in a collection of documents,

TF-IDF can be used. TF-IDF is a vector-space model, which creates a numerical rep-

12

2.2. TEXT MINING

resentation of textual documents in terms of features [74]. TF-IDF uses two metrics:

term frequency (TF) and inverse document frequency (IDF).

Term frequency (TF):

• Let freq(t,d) be the count of occurrence of the term t in document d,

• TF(t,d) be a proportion of the count of term t in document d, and

• n be the number of distinct terms in document d and i P Z` is a positive inte-

ger. Then

TF pt, dq “
freqpt, dq

Σn
i freqpti, dq

“
Frequency of term t in document d

Total numbers of terms in a document d
(2)

Inverse document frequency (IDF):

• Let N be the count of distinct documents in the dataset, and

• count(t) be the count of documents in the dataset in which the term t is present. Then

IDF ptq “ log p N

countptq
q (3)

TF-IDF:

• TF-IDF values are calculated by multiplying TF and IDF to enhance document

representation.

TF -IDF pt, dq “ TF pt, dq ˚ IDF ptq (4)

13

2.2. TEXT MINING

2.2.3 Metric/Feature Extraction

Stylometry (explained in Section 2.2) has been widely applied to various areas.

For example, it has been studied in fine art for attributing works to particular artists.

Style in art can include shapes, designs, textures, and colors, which may present in

a way that looks unique [66]. Stylometry has been applied in music to study har-

mony and melody [13]. However, the most common study of style has been applied to

text and source code [23]. The theory in program (code) stylometry is that everyone

learns coding on an individual basis and unconsciously tends to write in relatively

consistent, recognizable, and unique ways [23]. Differences in coding style make the

identification of the author possible since the coding style expressed in computer code

can be quantified. The underlying notion of style is that works by different program-

mers are strongly distinguished by quantifiable features of the programs, known as

style markers [54, 68]. These style markers may include various software metrics,

as well as language metrics such as n-grams and lexical diversity. In this section we

discuss the methods of extracting these features. We begin by reviewing software met-

rics definitions. We then review n-grams, lexical diversity, and the cosine similarity

feature, which are categorized as content-based features. Content-based features are

contained in the program code. Following that, we explain the authors’ sociolinguistic

characteristic features, which we categorize as practical non-content based features.

Software Metrics

Krsul et al. [57] collected metrics for authorship identification from a wide variety

of sources [78] and grouped them in a package named software metrics. Software

metrics is a broad category of features which can be further categorized according to

their relevance to programming layout, programming style, and programming struc-

ture [68]. Programming layout specifies the form and pattern of the source code,

such as the number of code lines, blank lines, and spaces. Programming style deals

14

2.2. TEXT MINING

with characteristics that are difficult to change automatically by code formatters (for

example, mean variable length and mean comment length). Programming structure

metrics are connected to the programmer’s skills and experience, such as keywords

and usage of data structures.

N-grams

N-gram modeling is a popular feature identification technique used in natural

language processing [5]. An n-gram is a contiguous sequence of n words extracted from

a text or program. Each text is considered to be a sequence of words. To generate

the n-grams from the text, all the overlapping sequences of n consecutive words are

extracted [5]. N-grams allow us to capture information about tokens occurring near

one another, which the software metrics cannot do [19]. For example, the bi-grams

(n=2) and tri-grams (n=3) corresponding to the sentence ‘One Cent, Old Cent, New

Cent’ are:

Bi-grams: (One Cent) (Cent ,) (, Old) (Old Cent) (Cent ,) (, New) (New Cent)

(Cent .).

Tri-grams: (One Cent ,) (Cent , Old) (, Old Cent) (Old Cent ,) (Cent , New) (,

New Cent) (New Cent .).

Bi-gram variables keep track of which token pairs occur and how often two con-

secutive tokens occur in each text shown in Figure 2.3. Tri-gram variables keep track

of which three consecutive tokens occur and how often three consecutive tokens occur

in each text. The n-gram technique is used to identify groups of two or three tokens

that repeat throughout the sample.

N-gram language models have proven effective in text categorization problems

when applied to any language or even non-language scripts such as music or DNA [67].

Adding n-grams to the feature set can increase the model’s efficiency because the

machine-learning algorithms will learn more signals in the dataset [76]. These n-

15

2.2. TEXT MINING

Figure 2.3: Document representation using bi-gram approach. The bi-gram variables ex-
tracted from ‘One Cent, Old Cent, New Cent’.

grams capture grammatical and orthographic preferences that include capitalization,

punctuation and white spaces [76].

However, the n-gram approach considerably increases the dimensionality of the

problem in comparison to other approaches due to large numbers of n-gram features.

The dimensionality of the feature vectors also may be intractable in terms of memory

and time requirements. The other problem is sparsity: n-grams are a sparse represen-

tation of text data. This is because we build the features based on the sequence of n

words co-occurring. The approach will give a zero value to all sequences of n keywords

that are not present in the other programs. For example, the sequence “include math”

which occurs in one computer program, may never occur in the other programs in the

dataset. This is called the curse of dimensionality [41].

Therefore when n-grams are used, dimensionality reduction is of crucial impor-

tance. Singular value decomposition (SVD) is used to reduce dimensionality. The

major purpose of SVD is to reduce a dataset involving a large number of values to a

dataset involving significantly fewer values, but which still contains a large fraction of

the variability present in the original data [47]. In our work, SVD reduced the overall

dimensionality of the input matrix to a matrix of much smaller size with fewer vari-

ables. The input is a matrix, with documents designated by rows and n-gram terms

by columns. The elements of the matrix are the n-gram counts. In other studies [16],

researchers applied SVD to the input matrix and the resulting reduced matrix still

16

2.2. TEXT MINING

Figure 2.4: A is an m ˚ n matrix. m is the number of input documents (files) and n is the
number of features. To see the full example of SVD decomposition of this matrix see [62].

proved sufficient to capture the language context.

As shown in Figure 2.4, A is an m ˚ n matrix where m represents the number of

input documents (files) and n represents the number of features. The SVD of the

document-term matrix Am˚n splits the matrix into three sub-matrices or “factors”

[2, 72] as described in Equation 5.

A “ UΣV T (5)

where U is m ˚n with orthonormal columns, V is n ˚n with orthonormal columns,

and Σ is diagonal with the main diagonal entries sorted in decreasing order. A matrix

U is orthogonal if UT U = I, or the inverse of U is its transpose.

To reduce dimensionality, a truncated SVD of the term-document matrix was used,

where A is approximated by

A « UkΣkV T
k (6)

17

2.2. TEXT MINING

Figure 2.5: Illustration of singular value decomposition (SVD) and reduced singular value
decomposition (RSVD) approaches.

where Uk is the first k columns of U , Vk is the first k columns of V , and Σk is the

upper left k by k part of Σ). This gives the best rank k approximation to the original

matrix. Because a full SVD is not required the truncated SVD is usually computed

by an iterative technique [79] (see Figure 2.5).

Lexical Diversity Metrics (LDMs):

Lexical diversity is “the proportion of words in a language sample that are not

repetitions of words already encountered” [51]. LDMs refer to the range of different

unique words used in a text, with a greater range indicating a higher diversity [71].

Lexical diversity is useful for analyzing speakers’ or writers’ linguistic skills or the

complexity of ideas expressed in documents [38]. Gregori [38] claimed that it is pos-

sible to obtain a reliable measure of lexical diversity that is stable across two pieces

of writing produced by the same writer. Some studies [51, 70, 65] dealing with the

assessment of lexical diversity show that the scores given by metrics are highly vari-

able and some may work better than others, depending on the data under scrutiny.

In this research, we use 9 metrics based on Lissón’s research [65], namely Type–token

ratio (TTR), R Guiraud’s Root TTR, Carroll’s Corrected TTR (CTTR), Herdan’s C

(LogTTR), Uber Index (U), Yule’s K (K), Yule’s I (I), Simpson’s D, Maas, and Vm.

• Type–token ratio (TTR) and several of its transformations, such as Guiraud’s

Root TTR (R) and Carroll’s Corrected TTR (CTTR), is probably the most

18

2.2. TEXT MINING

Table 2.2: The number of word types (V) and the number of tokens (N) in a text phrase
‘One Cent, Old Cent, New Cent’.

Word Frequency
One 1
Cent 3
Old 1
New 1

4 word types (V) 6 tokens (N)

well-known measure of lexical diversity. TTR is the ratio of the number of word

types (V) to the number of words (N) in a text [28] (see Equation 7). “Tokens”

refers to the sum of all words in the text (total number of words), where “types”

refers to each individual word (different words). For example we expressed the

number of word types (V) and the number of tokens (N) in a text phrase ‘One

Cent, Old Cent, New Cent’ in Table 2.2. In the following formulas, N refers to

the total number of tokens, and V to the number of types.

TTR “
V

N
(7)

• R Guiraud’s Root TTR is the ratio of the number of types divided by a square

root of the number of tokens in a given text [90].

R “
V
?

N
(8)

• Carroll’s Corrected TTR (CTTR) is the ratio of the number of types divided

by a square root of twice a number of tokens in a given text [70].

CTTR “ V
?

2N
(9)

• However, many studies have shown that TTR highly depends on text length [90].

19

2.2. TEXT MINING

As a consequence, some interesting attempts to improve the TTR index have

been proposed in the literature. In the following, a TTR variant proposed by

Herdan (1960) and usually addressed as Herdan’s C or LogTTR is reported

here [65]. In Equation 10, N refers to the total number of tokens and V to the

number of types.

C “
log V

log N
(10)

• Uber Index reflects lexical diversity by relating the total number of lexical words

used (N) in a text sample with the number of unique lexical words used (V).

A high Uber Index value would indicate that complex sentence structures are

being used in an individual’s communication [70, 90].

U “
log2 N

log N ´ log V
(11)

• Yule’s K measure is based on lexical repetitions. The formula for calculating

Yule’s K is shown in Equation 12. If we obtain a low value, the text analyzed

is rich in vocabulary. On the contrary, if we obtain a greater value, the text

analyzed contains less vocabulary richness. Therefore, the larger the result of

Yule’s K, the greater the number of repeated words and the vocabulary appears

to be simpler in the text [65]. In the following formulas, N refers to the total

number of tokens, V to the number of types, and fvpi, Nq to the numbers of

types occurring i times in a sample of length N [65].

K “ 104
ˆ r´

1
N
`

V
ÿ

i“1
fvpi, Nqp

i

N
q

2
s (12)

• Yule’s I is based on the reciprocal of Yule’s K: the larger Yule’s I, the greater

20

2.2. TEXT MINING

the diversity of the vocabulary [65].

I “
V 2

M2 ´ V

M2 “

V
ÿ

i“1
i2
˚ fvpi, Nq

(13)

• The next measure is VM . This indicator can be considered another modification

of Yule’s K. Herdan defined Vm as follows [44]:

Vm “

g

f

f

e

V
ÿ

i“1
fvpi, Nqpi{Nq2 ´

i

V
(14)

• Indices from outside the field of linguistics have sometimes been used to measure

the LDMs [90]. For example, Simpson (1949) derived the following formula as

a measure to capture the diversity of a population [86]. Simpson’s D also has

been used to measure LDMs:

D “

V
ÿ

i“1
fvpi, Nq

i

N

i´ 1
N ´ 1 (15)

Cosine Similarity Feature

A typical way to discriminate between objects is by representing those objects via

their similarities or dissimilarities. The cosine similarity feature is a measure of the

degree of similarity between two documents [60]. Concepts and issues specific to the

generalizability of using similarities as features were reported by varying researchers

[81, 19]. Cosine similarity within the text-mining domain calculates the cosine between

two documents, for example Doc1 and Doc2. Documents must be represented by

vectors of features. As the text documents are represented in a vector space, it allows

us to work with documents geometrically (see Figure 2.6). Calculating similarities

between two documents can be expressed as:

21

2.2. TEXT MINING

Figure 2.6: Geometrical representation of two documents, Doc1 and Doc2, where Y = new
and X = old.

SimpDoc1, Doc2q “ cosΘ “
Doc1 ¨Doc2
}Doc1} }Doc2} “

řn
i“1 Ai.Bi

a

řn
i“1 A2

i

a

řn
i“1 B2

i

(16)

Table 2.4: Matrix with two documents and two terms.

Terms: Old New
Doc1: 6 10
Doc2: 10 3

For example, take a hypothetical matrix with two documents and two terms. In

Table 2.4, Doc1 consists of 6 ‘old’ terms and 10 ‘new’ terms, and Doc2 consists of 10

‘old’ terms and 3 ‘new’ terms. The similarity rate between Doc1 and Doc2 can be

measured as:

SimpDoc1, Doc2q = cosΘ “
p6ˆ10q`p10ˆ3q

?
62`102ˆ

?
102`32 “

90?
136ˆ

?
109 “ 0.73

The cosine similarity is widely used in text mining for document classification [34].

It restricts values to the range of p0, 1q, where a value of 0 indicates that there is no

similarity between the documents and a value of 1 indicates that the documents are

identical.

Sociolinguistics Characteristics

Talking styles are influenced by the social context of a situation, the speaker, and

the audience, such as who can hear us and where we are talking. Styles reveal aspects

of our social identity involving who we are, where we come from, and perhaps what

22

2.2. TEXT MINING

kind of social experience we have [45]. Sociolinguistics focuses on how people use

language in their social interactions and studies the relationships between language

and society. Sociolinguistics investigates how social structure influences how people

talk and how language varieties and patterns of use correlate with social attributes,

such as class, sex, and age [45].

Computer code is a system of symbols and rules used to represent instructions

to a computer. Coding involves writing a certain line of code to send a message to

the computer. It is how humans communicate with machines and computers. Some

variations may be found in computer programs, such as spacing (e.g., spaces vs tabs),

naming styles (e.g., CamelCase vs. snake case), commenting, and how a programmer

implements certain types of functionality or uses keywords. Some research has found

that social variables may influence a programmer’s style just as society influences a

person’s verbal or written communication [74]. When we observe how varied computer

programming style is, we can search for the causes of that variability.

2.2.4 Classification

Using the features presented in section 2.2.3, computer programs can be expressed

as numerical vectors, making them applicable to classification algorithms. Text clas-

sification aims to assign predefined classes to text documents [24]. The problem of

text classification is as follows [8]:

• Given a training set of text documents,

D “ td1, d2, . . . , dnu

• each document di is labeled with a label lj from the set.

L “ tl1, l2, . . . , lku

23

2.2. TEXT MINING

• The task is to find a classification model f where

f : D Ñ L and fpdiq “ lj (17)

which can assign the correct class label (author) to unlabeled document d (test in-

stance).

Next, this section summarizes the classification algorithms that have been applied

most frequently in previous authorship attribution studies [54, 23]. The classifiers

covered are random forest (RF), näıve Bayes (NB) and support vector machine (SVM).

Random Forest

To understand the random forest (RF) model, we must first learn about the de-

cision tree: a graphical depiction of a decision and every potential outcome or result

of making that decision. In a decision tree a divide and conquer technique is used as

the basic learning strategy (flowchart-like tree structure). Sharma [85] stated that “a

decision tree is a structure that includes a root node, branches, and leaf nodes. Each

internal node denotes a test on an attribute, each branch denotes the outcome of a

test, and each leaf node holds a class label. The topmost node in the tree is the root

node”.

Random forest is a supervised random decision-tree classifier. RF takes the

decision-tree concept further by producing a large number of trees. Random for-

est randomly creates and merges multiple decision trees into one “forest”. The goal is

to rely not on a single learning model but rather on a collection of decision models to

improve model performance. Random forests differ in how randomness is introduced

in the tree-building process. Here, we consider the random forest version as used by

Breiman [18]. To classify a new object, each decision tree provides a classification

for input data; random forest collects the classifications and chooses the most voted

prediction as the result. In Figure 2.8 the input vector (d) is pushed through each

24

2.2. TEXT MINING

Figure 2.7: RF bootstrap sampling.

of the trees in the forest. Each tree classifies, and each tree votes for the class. The

forest chooses the classification with the most votes (over all the trees in the forest).

Each random forest’s tree is grown in the following way: if the number of records

in the training set is N, then N records are sampled at random but with replacement

from the original data as shown in Figure 2.7. This is called a bootstrap sample [59].

Bootstrapping is a type of resampling where large numbers of samples of the same

size are repeatedly drawn, with replacement, from a single original sample [49]. In

RF bootstrap sampling, drawing a sample of size n with replacement from an original

sample of the same size tends to include roughly two-thirds of the original sample,

with duplication in the remaining third [48] (see Figure 2.7).

This set will form the training set for growing the tree. If there are M input

features, a number m ăă M is selected such that at each node, m features are

selected at random out of the M , and the best split on these m is used to split the

node. The value of m is held constant during forest growing. Each tree is grown to

the largest extent possible until all the leaves are belongs to a single class [59] such

as red squares in Figure 2.8.

When the training set for the current tree is drawn by sampling with replacement,

about one-third of the records are left out of the sample. These are called OOB (out-

25

2.2. TEXT MINING

Figure 2.8: Concept of RF classification. In training set, the algorithm creates T multiple
bootstrapped samples, and then builds a classification trees from each bootstrapped sample
set. For classification, each tree gives a unit vote for the most popular class at each input
data. The final label is determined by a majority vote of all trees.

of-bag) samples, and all of these have their labels available. OOB is used to estimate

classification accuracy (i.e., for testing purposes) [59] as shown in Figure 2.9.

One useful byproduct of RF is feature importance measures [18]. Liaw [63] im-

plemented an algorithm for calculating feature importance measures in the RF. The

algorithm calculates feature importance as the mean decrease in accuracy using the

OOB observations, as described below.

First, the accuracy performance on the OOB samples is calculated. Then, the

values of the feature in the OOB samples are randomly shuffled, keeping all other fea-

tures the same. Finally, the change in accuracy on the shuffled samples is measured.

The average decrease in accuracy performance across all trees is reported. This im-

portance is calculated explicitly for each attribute in the dataset, allowing attributes

to be ranked and compared.

26

2.2. TEXT MINING

Figure 2.9: OOB data are separated for each bootstrapped sample. The accuracy per-
formance is evaluated by testing the trees with the separated OOB data, and then the
performance of the RF is calculated by taking the average of these performance rates.

Näıve Bayes

NB is the most straightforward classifier and is based on Bayes’ theorem. NB

describes the probability: for document d and class c, our goal is to compute the con-

ditional probability of each class c given a document d, then we use this probability

P pc | dq to find the best class. The best class is, out of all classes (c P C), the one

that maximizes the probability P pc | dq. Bayes’ theorem describes the probability of

an event based on prior knowledge of conditions that might be related to the event.

P pc | dq “
P pd | cq P pcq

P pdq
Bayes1 Theorem (18)

• P pc | dq: Probability of class given a document

• P pd | cq: Probability of document given a class

• P pcq: Probability of class

• P pdq: Probability of document

To use Bayes’ theorem in a classifier, Equation (a) defines CM , which is the best

class. The goal is to assign document d to the best class.

Using Bayes’ rule as shown in Equation (b), the best class CM can be determined.

In (c), we drop the denominator to simplify the equation (whichever class maximizes

27

2.2. TEXT MINING

Equation (b) will also maximize Equation (c)). In Equation (c), to find the probability

of P pd|cq, document d should be represented by feature vector px1, x2, . . . , xnq as shown

in Equation (e).

CM “ argmax
cPC

P pc|dq (a)

“ argmax
cPC

P pd|cqP pcq

P pdq
(b)

“ argmax
cPC

P pd|cqP pcq (c)

CM “ argmax
cPC

P pd|cqP pcq (c)

“ argmax
cPC

P px1, x2, . . . , xn|cqP pcq (e)

NB assumes that the attributes of any instance of the training-set are conditionally

independent of each other as expressed in (f).

P pd|cq “ P px1, x2, . . . , xn|cq “ P px1|cq ¨ P px2|cq ¨ P px3|cq ¨ ¨ ¨P pxn|cq (f)

The final formula to find the best class using NB is presented in Equation 19.

CM “ P px1|cq ¨ P px2|cq ¨ P px3|cq ¨ ¨ ¨P pxn|cq ¨ P pcq (19)

Note that P pcq is the prior probability of a class. The prior probability of a

given target class is the proportion of its occurrence compared with the other target

state [75]. For instance, we have 5 documents and there are two possible class labels,

class=yes and class=no. 2 of the 5 documents were assigned with a yes class, and 3

were assigned with a no class. The prior probability for class “no” is P pnoq “
3
5.

28

2.2. TEXT MINING

Support Vector Machine (SVM)

SVM is a supervised machine learning algorithm [27] based on the separating

hyper-plane. This hyper-plane separates the dataset into classes with the maximum

margin. Imagine we are given a training set of documents with two known class

labels (´1 and `1) and two available measurements (attributes) per document. In

this specific example, we consider a problem with two classes. The idea behind support

vector machine classification is that these measurements can be regarded as a two-

dimensional space [31]. Each document is then represented by a data point in this

space as expressed with black square or circle (d1, d2, dn) in Figure 2.10. For the

documents with two available measurements such as Feature1, Feature2 as shown in

Figure 2.10, a line can be drawn to separate between the training documents.

We want to find a separating hyper-plane that separates these points (documents)

into the two classes: “the positives” (class “`1”) and “the negatives” (class “´1”)

(assuming they are linearly separable). But as shown in Figure 2.10 there are many

possible decision boundaries which could separate these two classes; which one should

be chosen? In SVM the goal is to choose the optimal decision boundary, which is

where the distance to the closest negative point is equal to the distance to the closest

positive point (see Figure 2.11). The distance between a point and a decision boundary

(SVM) can be measured using the techniques described in [27].

Currently, SVM is widely used in text mining for its effectiveness in high dimen-

sional spaces because the learning algorithm is independent of the dimensionality of

the feature space [8]. Joachims [52] claimed that text data is an appropriate choice

for SVM classification due to the sparse high dimensional nature of the text.

2.2.5 Model Evaluation

The purpose of model evaluation is to determine the best classifier, or model, and

predict classifier performance on unlabeled data. To assess a model’s performance,

29

2.2. TEXT MINING

Figure 2.10: Separating hyper-planes, or possible decision boundaries, which can separate
two possible classes. Circles indicate documents with “negative” labels and squares represent
documents with “positive” labels.

Figure 2.11: Choosing the optimal decision boundary using SVM: the distance to the closest
negative (circle) point should be equal to the distance to the closest positive (square) point.

30

2.2. TEXT MINING

datasets are separated into two types:

1. Training set: used for result learning and making algorithms, and

2. Testing set: used for data validation.

One approach would be to manually to split the data into training and testing

sets. However in this process, the presence or absence of a single sample that devi-

ates significantly from the other samples can significantly change outcomes. Another

approach is K-fold cross-validation (CV).

Cross-Validation

K-fold cross-validation (CV) is one of the most common approaches for evaluating

machine learning models using multiple test sets. CV uses multiple test sets and

averages the outcome values, which may give us more precise classification results.

CV requires that the data are randomly divided into k equal sized folds (or train

and test splits). The first fold is treated as a validation (test) set, and the method is

trained on the remaining k ´ 1 folds [49]. A value of k “ 10 is commonly used in the

field of machine learning [49].

Evaluation Metrics

Evaluation metrics measure classifier effectiveness: the ability to make correct

classification decisions for the largest possible number of documents. In the following,

we will characterize four evaluation measures: accuracy, kappa, precision and recall.

We first describe a tool referred to as a confusion matrix. The confusion matrix

is a useful tool for analyzing a model’s performance and helps us gain insight into

the types of errors a model makes. To explain the working principle of a confusion

matrix, a table of size nˆ n is shown in Figure 2.12, where n represents the number

of classes. We assume we have a three class problem pn “ 3q, with classes A, B,

and C. The predicted classes are the columns, the actual classes are the rows, and

31

2.2. TEXT MINING

Figure 2.12: Confusion matrix for multiple classes. This example represents a three-class
problem with the classes A, B, and C.

the values inside the cells are the integer count of classifications or misclassifications.

The diagonal value is the true positive (TP), or data points for which the actual

label matches the predicted label. The values in other cells are the error counts. For

example (EAB) is the number of instances for which the actual label is class A but

the prediction was class B.

By using a confusion matrix, the evaluation metrics of accuracy, recall, and kappa

can be calculated as follows:

• Accuracy: sum of correct classifications divided by the total number of classifi-

cations.

Accuracy “ TPA ` TPB ` TPC

TPA ` TPB ` TPC ` EAB ` EAC ` EBA ` EBC ` ECA ` ECB

(2.2.1)

• Kappa: compares an observed accuracy with an expected accuracy (random

accuracy).

K “
Accuracy´ Random Accuracy

1´ Random Accuracy (2.2.2)

Random Accuracy “ RA `RB `RC

32

2.2. TEXT MINING

RA “
TPA ` EBA ` ECA

total observations ˆ
TPA ` EAB ` EAC

total observations

RB “
TPB ` EAB ` ECB

total observations ˆ
TPB ` EBA ` EBC

total observations

RC “
TPC ` EAC ` EBC

total observations ˆ
TPC ` ECA ` ECB

total observations

total observation “ TPA`TPB`TPC`EAB`EAC`EBA`EBC`ECA`ECB

• Recall (or sensitivity): the ratio of correctly predicted observations divided by

all observations in actual class. Actual class observations are horizontal rows

shown in Figure 2.12:

– Recall A = TPA/(TPA + EBA +ECA)

– Recall B = TPB/(TPA + EAB +ECB)

– Recall C = TPC/(TPC + EAC +EBC)

• Precision: is the ratio of correctly predicted observations divided by the total

number of observations.

– Precision A = TPA/(TPA + EAB +EAC)

– Precision B = TPB/(TPB + EBA +EBC)

– Precision C = TPC/(TPC + ECA +ECB)

2.2.6 Related Work

Authorship attribution of natural language text documents is a well-explored area

but too broad for a comprehensive review in this thesis. Instead, we focus on the

specific area of feature extraction to allow us to summarize the computer code au-

thorship attribution literature. Existing studies show that machine learning can be

33

2.2. TEXT MINING

used to determine the author of a natural language text. Argamon et al. conducted

authorship attribution experiments to find writing differences based on the author’s

writing style. They experimented with online discussion boards [12]. Each document,

on average, consisted of between 61 and 167 words. Stylometry techniques were used

to identify relevant features from the dataset. Function words, Internet abbreviations,

capitalization, word positioning/placement, word length, and line length features were

selected to investigate author style. Argamon et al. used machine learning approaches

and achieved more than 66% prediction accuracy for the two-class authorship attri-

bution problem (classifying text sample between two authors). In [12] Argamon et al.

extended their work to the multi-class problem; however the scores degraded to less

than 30% percent accuracy for a twenty-class problem.

Following up, Argamon et al. conducted a comprehensive study to evaluate gen-

der writing style differences in textual documents using stylometry techniques [10]. A

collection of 600 writing samples was collected for their experiments, which allowed

each author to be represented by multiple documents. Feature extraction techniques

were employed to determine the writing style of the male or female programmers.

Relevant features including word distribution, usage, and frequencies were selected to

investigate gender writing style. Then machine learning approaches were employed

to distinguish between male and female written documents. Using stylometric fea-

tures, they were able to develop a model which could predict author gender with 90%

accuracy.

Addressing authorship attribution (stylometry) for natural language text is a well-

known problem. However, far fewer works are dedicated to authorship identification

in non-natural languages, such as computer code. Code authorship attribution (code

stylometry) presents a challenge due to the inflexibility of written code expressions.

One of the earliest publications in the area of code stylometry was produced by Krsul

and Spaford [57]. This study focuses on the classification of programmer style to

34

2.2. TEXT MINING

find characteristics of coding style to identify a program’s author. Krsul and Spaford

were the first to introduce sixty stylistic characteristics of author writing, including

indentation of C statements; use of conditional compilation; choice of while, for, do

loops; and the number of lines in a function. The dataset used in their study was

composed of eighty-eight C programs from 29 students, staff, and faculty members

(3 writing samples per author). Krsul and Spaford used LNKnet [64] software to

implement the machine learning methods [57]. Two classification models were applied

to the given dataset: multi-layer perception neural network and nearest neighbor. To

evaluate the model, the authors used the 4-fold cross-validation method. Krsul and

Spafford achieved 100% accuracy with the multi-layer perception neural network.

However, Burrows believed that their methodology was questionable, as they used

4-fold cross-validation with approximately three samples of work per author. There

were three samples per author, so if each fold contained one sample from a particular

individual, there had to be a fold with no sample from that individual.Thus, this may

cause the classifier to function incorrectly [19].

Burrows’ work presented an approach based on n-gram features [20]. His work was

inspired by the success of using n-grams in text-authorship identification [1]. Using

n-grams made the approach programming-language independent, since it is based on

low-level information (character or word) [33]. In their experiment, they used a dataset

consisting of 1640 C programs written by 100 programmers. They examined the most

appropriate n-gram size for the problem domain (n-grams length P t1, 2, 3, ¨ ¨ ¨ }) and

also explored the effect of increasing the number of authors. Burrows’ approach did

not achieve high accuracy as the number of authors increased. Thus in [21] Burrows

extended the work on code authorship identification by including stylometric features

along with the n-gram representation of the programs. The stylometric features were

white space, operator, and keywords. This combination slightly improved the earlier

results.

35

2.2. TEXT MINING

The most relevant recent work in this area was done by Islam in 2015 and Dauber

in 2018, applying the same approach [23, 29]. In 2015, Islam achieved a 94% at-

tribution rate with 1600 authors. They collected the C++ language data from the

international annual programming competition (Code Jam). To find the features that

would represent a programmer’s coding style, they used two feature groups: lexical

features, such as the number of the code line and spaces, and syntactic features.

For their syntactic features, the authors used the abstract syntax tree (a tree rep-

resentation of the structure of a piece of code) of the computer code using Fuzzy

AST parser [26]. Then they applied the random forest classification to develop a

model. Dauber (2018) [29] also used a similar approach to computer code author

identification of Git repositories. They collected contiguous program fragments using

Git Blame (https://git-scm.com/docs/git-blame) and organized possible met-

rics (features) using an analytical approach similar to the approach Islam employed

in their 2015 work [29]. Dauber obtained their dataset of 104 programmers from

some unknown subset of the repositories. Dauber also used 10-fold cross-validation to

evaluate their models, as in Islam [23]. Using this approach Dauber [29] reported an

attribution rate of around 50% accuracy from a 104-programmer dataset with at least

150 samples of at least 1 line in length. Dauber found that the approach from [23]

is much less effective on this data than on Google Code Jam data. However Dauber

found that they could improve classification rates from around 50% accuracy to about

90% accuracy by grouping samples in batches of 30.

Information about the influence of the author’s sociolinguistic characteristic fea-

tures on computer programs was determined by a group of studies by Naz, Rafee and

Rice [74, 83]. Naz et al. investigated gender differences in programming language use.

Their dataset was composed of 100 C++ programming assignments from male and fe-

male programmers at the University of Lethbridge. Naz et al. present a technique for

computer code attribution described in [74]. To convert the collected C++ programs

36

https://git-scm.com/docs/git-blame

2.2. TEXT MINING

into the numeric form, they used a list of 50 features including operators, keywords,

loops, and comments. They used Information Gain approach to select a small set of

the most useful features. As a result, only seven features were identified that played

a role in the differentiation between male-written and female-written texts. The

machine-learning tool WEKA [42] was used to construct supervised learning models.

Cross-validation and hold-out techniques were used to evaluate the performance of

classification models. In the classification step, the K* (nearest neighbour) model

performed best with an accuracy of 71%.

Related research made further inroads into the practical categorization of computer

programs based on author gender and region. In 2017 Rafee and Rice demonstrated

an approach for classifying programming assignments [83]. They collected 160 C++

programs from a university in Canada and a university in Bangladesh. In this work,

they used 15 from the IEEE Standard for Software Productivity [25], including total

number of code lines, total number of blank lines, and comment lines. They evalu-

ated seven classification models through 10-fold cross-validation [83]. They achieved

an accuracy rate of 92% using the random forest [63] classification technique. Rafee

also performed another experiment where they included the programmer’s region as

a feature. They used a hybrid of the region and software features in a feature set to

categorize the programs based on author gender. They used the same seven classi-

fication models and evaluation technique in this experiment. The NB classification

model using 16 features (15 IEEE features plus region as social factor) achieved 83%

classification accuracy. However, this was reduced to 70% in the absence of the extra

feature (author region).

The majority of code stylometry studies to date have used different feature cate-

gories, including content-based features such as the number of code lines, word order,

and keywords, or non-content-based features such as region (explained in Section 2.3).

Nevertheless, there is no consensus on the best set of features to achieve recognition

37

2.2. TEXT MINING

of author style. The majority of researchers used the subsets of features from differ-

ent groups. For instance, the use of feature sets containing software features such as

keywords and n-grams has been shown more effective for stylometry [23, 69]. Thus,

using subsets of features from software metrics and n-grams categories is better than

using features from only one of these categories. This section’s key finding is that

using subsets of features from different categories for example n-grams, lexical diver-

sity, and similarity is generally more effective at identifying the most likely author of

a document than subsets restricted to single categories of features.

38

Chapter 3

Methodology

In this chapter, we discuss the significant steps we used to move towards identify-

ing authors of computer programs. We discuss data collection, transformation, and

feature extraction and briefly describe our programming environment.

3.1 Data Collection

The two collections we employed in this thesis are labelled Coll-F and Coll-G. In

this section, we discuss the sources of the data for each collection and the methods

for building those collections.

The first source was Codeforces.com, a contest-based programming website that

hosts daily contests. The daily contest problem sets consist of five problems for contes-

tants to solve in a two-hour period. The website stores each programmer’s biograph-

ical information and their submissions. Data from this source were labeled Coll-F.

Data collection for Coll-F proceeded according to procedures established in Tasnim’s

work [89]. We built a collection of C++ computer programs with the author’s identity

and sociolinguistic characteristic features, such as gender and region.

Dataset Coll-F contained C++ computer programs from 60 programmers. For

each programmer, we stored 10 to 12 programs in the dataset, for a total of 669

programs. We used 4 attributes: handle, gender, region, and source code. Handle,

region and gender are the user’s biographical information. Handle is a user’s unique

login name for Codeforces (chosen by the user) and is an identifier for each programmer

39

3.1. DATA COLLECTION

Figure 3.1: Information about data distribution in our datasets.

(label). The region represents the region of the programmer and, the source code field

contains the computer program. We attempted to classify computer programs into 60

classes: the author’s handle. We prepared our dataset in CSV format. We selected

equal numbers of programs written by males and females and from three regions:

Asia, Europe and the U.S. (shown in Figure 3.1).

The second source was Github (accessible at https://github.com/), the largest

online code sharing or storage website on the internet. Data from this source were

labeled Coll-G. We collected data on users, as well as source code, from GitHub and

added it to the database according to procedures established in Alam’s work [7].

The Coll-G dataset contained programs from 60 programmers. Each programmer

had nine programs stored in the dataset, for a total of 540 programs. In Coll-G, each

program is a record in a CSV file and contains country code, gender, source code,

and programmer identity. The region, gender, and programmer’s identity form the

user’s information. Programmer identity (ID) is unique to each programmer (label)

and is selected by the user. The source code field contains the computer program.

We attempted to classify computer programs into 60 classes: the author’s identity.

As for dataset Coll-F, we selected equal numbers of programs written by males and

females and from three regions: Asia, Europe and U.S. (shown in Figure 3.1).

In each of the following subsections we provide an example dataset as shown in

Figure 3.2 consisting of four texts written by two different authors to demonstrate

40

3.2. DOCUMENT REPRESENTATION AND PREPARATION

Figure 3.2: An example dataset of four texts written by two authors.

how our methodology works.

3.2 Document Representation and Preparation

To determine the authorship of computer programs, we needed to transform the

text-based datasets into a numerical representation. In our research, the input fea-

ture values are numeric and class labels are nominal. There are 60 class labels: the

author’s identity. All of the collected C++ programs are considered text documents.

The numerical representation of a given text document is produced in two steps:

tokenization and TF-IDF.

In the tokenization step (see Section 2.2.2), we used the quanteda package in the

R ecosystem [55] to perform document representation and preparation. The quanteda

package has a “tokens()” function for tokenizing text documents, which divides each

program line into identified tokens. Each document (C++ program) is divided into

tokens, separated by white space. With tokenization complete, we constructed a data

frame where each row represented a document, each column represented a distinct

token, and each cell represented a count of the tokens in the document.

We used the dataset of four texts written by two authors (discussed in Section 3.1)

in order to demonstrate the tokenization approach. The tokenized programs are shown

in Figure 3.3.

In the second step, in each document we calculated the TF-IDF values for individ-

ual tokens in each document in order to convert the original dataset into a numerical

41

3.3. METRICS/FEATURES EXTRACTION

Figure 3.3: Tokenization process for a dataset with four documents written by two authors.
The tokenization technique divides each program line into identified tokens. Each row
represents a text document, each column represents a distinct token, and each cell represents
a count of the tokens in the document.

representation and evaluate how relevant a token is to a particular document within

the collection of documents. Token occurrences over the entire dataset were repre-

sented using term frequency and inverse document frequency (TF-IDF), as explained

in 2.2.2. In this way, we transformed the text-based dataset into a numerical repre-

sentation. In each dataset we added a new column representing the class label (the

author’s identity) to each computer program row in the experimental dataset. Af-

ter data preparation, Coll-F had 2, 500 tokens (columns) and 669 rows (representing

computer programs), and Coll-G had 17, 890 tokens and 540 rows.

3.3 Metrics/Features Extraction

As seen in Chapter 2, a set of features is needed to classify text document data

using classification algorithms. In authorship identification these features help quan-

tify an author’s writing style. In this research we used five groups of features for

authorship identification. Four of them—software metrics, n-grams, cosine similarity,

and lexical diversity metrics—are content-based groups of features. Sociolinguistics

characteristics—the fifth—are non-content-based features. The following subsections

explain how we extracted these feature groups from the raw text.

3.3.1 Software Metrics

In this study, the first group of content-based features is software metrics. Naz [74]

used machine learning to assess how sociolinguistic characteristics, including author

42

3.3. METRICS/FEATURES EXTRACTION

gender, impact computer programs. We selected 16 keywords based on [74] for our

research work, as listed in Table 3.1.

In other research, Rafee [83] also used machine learning to assess how sociolinguis-

tic characteristics, including author gender and region, impact computer programs.

In our work, we also selected two features based on [83]: lines of code and the number

of characters in the code. In total we developed a set of 18 software metrics as listed

in Table 3.1.

Table 3.1: List of 18 software metrics.

C++
vocabulary

Features

Keywords include, std, vector, double, char, const, void,
bool, int, return, string, for, else, while, if, cout

Total lines Count of lines (includes number of computer
program lines and blank lines)

Total number of
characters

Count of characters (includes number of
computer program characters)

To extract keywords from the thousands of tokens in a data set, we used an R-

based package [82] and the “select()” function. The critical keywords were chosen from

the prepared datasets. To count the number of lines and the number of characters,

we used the “readLines()” and “length()” functions from the base package.

For example, to develop a set of software metrics for the dataset of four texts

written by two authors, we used tokenization and then we applied TF-IDF to prepare

a numerical representation. Next, we extracted software metrics such as keywords

to represent the documents as a vector of features (software metrics). Figure 3.4

illustrates the software metrics chosen for this example.

Our representation of the text documents so far has been single terms such as

43

3.3. METRICS/FEATURES EXTRACTION

Figure 3.4: Example showing how 5 keywords in TF-IDF format represent the dataset of
four texts with software metrics.

keywords, also known as unigrams. Not surprisingly, there are also bi-grams, tri-

grams, and n-grams.

3.3.2 N-grams

An n-gram is a sequence of n consecutive words. The set of n-grams, n P t1, 2, . . . , nu

that can be generated for a given document is the result of moving a window of n

words along the text, one word at a time. In this way, the number of occurrences

of each n-gram is counted. In our work, we used an n-gram model to represent the

context of the document and generate features to classify the document. We used

different values of n P t3, 6, 10u to generate and extract the n-gram features. We

explored whether shorter or longer n-gram patterns are suitable for authorship attri-

bution. To add n-grams to our features, we used the same preprocessing approach

as for the software metrics. It is important to note that comments and punctuation

are not removed from programming samples in datasets, so they are analyzed as well.

We used the “tokens ngrams()” function from the quanteda package to represent the

data using n-gram features. Next we used TF-IDF to represent each n-gram feature.

We provide an example in order to clarify the n-gram approach. In the dataset of

four texts written by two authors in Section 3.1, the 3-gram approach was employed

to identify groups of 3 tokens that repeat throughout the sample. Each row represents

a text document, each column represents a 3-gram term and each cell represents a

count of the terms in the document, as shown in Figure 3.5. We then applied TF-IDF

to that data frame of 3-gram features’ frequency. There were 12 columns and 4 rows

44

3.3. METRICS/FEATURES EXTRACTION

Figure 3.5: 3-gram extraction process for our example dataset with four documents be-
longing to two authors. Each row represents a text document, each column represents a
3-gram (3 sequential tokens), and each cell represents a count of the sequence (terms) in
the document.

Figure 3.6: Data frame in the example dataset showing 3-gram frequencies after applying
TF-IDF.

Figure 3.7: Example dataset represented by 3-gram frequencies after applying TF-IDF and
reducing the feature set using SVD.

45

3.3. METRICS/FEATURES EXTRACTION

in the numerical representation using 3-gram as reported in Figure 3.6.

One challenge of using n-gram features is learning from high-dimensional data.

When documents contain a large number of words, there is a high computational

burden for the learning process. Thus, it is best to perform a dimension reduction

technique to reduce the text feature size and avoid large feature space dimension.

We used the “irlba” package to apply the truncated SVD projection method in this

research as described in Chapter 2, reducing the feature set to a smaller subset of the

combination of the most valuable features. We represented each document with 20

features obtained from the truncated SVD.

To illustrate our approach, we use an example dataset of 4 texts from 2 authors.

We extracted the 3-gram features’ frequency and applied the TF-IDF, as shown in

Figure 3.7. Then we applied SVD, which reduced the data frame dimension from

12 columns (terms) and 4 rows to 3 columns (V1, V2, V3) and 4 rows as shown in

Figure 3.7.

3.3.3 Similarity Measurement

Another metric used in our work is cosine similarity. This section presents the

steps we used to calculate the similarity between documents. The process to compute

the similarity between two texts t1 and t2 is as follows [6]:

1. Tokenize t1 and t2 and combine both outputs into a joint list J .

2. Calculate the feature vectors vt1 and vt2 for each of t1 and t2 using TF-IDF.

3. Obtain a similarity measure between the two texts by calculating the cosine

similarity between the two vectors. We used a “cosine()” function from the

“lsa” package in R.

The general hypothesis behind the similarity feature is as follows: if all of author

X’s programs can be collected, it may be possible to say, on average, that any writ-

46

3.3. METRICS/FEATURES EXTRACTION

Figure 3.8: The similarity and lexical diversity features of our example dataset of four texts
written by two authors. We compared the similarity value between text1 and text2 written
by author A and then calculated the value of similarity between text3 and text4 written by
author B. As we were considering cosine distance between two texts, the similarity entries
were repeated. A value of 0 indicates that the documents do not have any similarity and a
value of 1 indicates that they are identical.

ten programs by author X will have higher average similarities with all of their other

programs than with those belonging to other authors. Thus, we can provide that simi-

larity measurement as a feature for classification, and it may improve the performance

of the resulting model.

As an example, we calculated similarity values between 4 texts written by 2 authors

as shown in Figure 3.8. As we demonstrated in section 3.3, we can calculate the cosine

similarity between two documents by considering just a few keywords, for example,

the frequency of “NEW” and “OLD” in Doc1 and Doc2, shown in Figure 2.6. For

this example, we only considered part of the keywords (“int”, “main”, “iostream”,

“math.h”), but not all of the tokens, to determine the similarity ratio between pairs

of documents. This was to keep the example simple while illustrating the effect of

variation similarity rate. This feature represents the similarity between text1 and

text2 written by author A, and the similarity between text3 and text4 written by

author B in the example dataset. Because we are considering cosine distance between

two texts (combining two rows) the similarity entries are repeated as shown in Figure

3.8. A value of 0 indicates that the documents do not have any similarity and a value

of 1 indicates that they are identical.

47

3.4. PROGRAMMING ENVIRONMENT

3.3.4 Lexical Diversity

Metrics in this group are considered to be indicators of lexical diversity within

the computer programs written by each programmer. In our work we used 9 metrics

implemented in the quanteda package [55]: TTR, CTTR, R Guiraud’s Root, Herdan’s

C, Uber Index, Yule’s K, Yule’s I, Vm, and Simpson’s D. We applied the metrics to

programs produced by the programmer. Prior to computing the metrics, we parsed all

texts as a sequence of words (tokenization). Then for calculating these lexical diversity

measurements of the documents we used the “lexdiv()” function. The five properties

of lexical diversity were measured in our example dataset as shown in Figure 3.8.

3.3.5 Sociolinguistic Characteristic

The final category of features that we collected was sociolinguistic characteristics.

We chose the region and gender of the programmer as features, while classifying the

programs according to author’s identity. The sociolinguistic characteristic informa-

tion is not a feature of a program. However, some research [83] claims that inclusion

of programmer sociolinguistic characteristic features in the feature set increases model

performance. Our datasets contained programs from 3 regions and two gender cate-

gories.

In the example dataset gender and region were attached to the original dataset as

can be seen in Figure 3.2. Overall we used machine learning techniques to analyze

five categories of features. In order to visualize all the pieces of information that we

collected, Figure 3.9 illustrates all the data using the example dataset that included

four texts. In this figure each of the five categories of features is shaded with a different

colour.

48

3.4. PROGRAMMING ENVIRONMENT

Figure 3.9: A visualization of five categories of features we extracted using machine learning
techniques for a dataset that contained four texts from two authors. Each category was
coloured a different shade.

3.4 Programming Environment

We ran all experiments on a Dell laptop with an Intel Core i7 processor, 8 GB

of RAM, and 500 GB of hard disk space. The computer ran on the Windows 10

operating system. We used the R programming language to classify the programs

and analyze the features of our research. R is free and open-source and is widely used

in the field of machine learning. We chose R because it has a large community and

lots of support [46]. Also, the wide variety of packages is one of its essential qualities:

there are around 12, 000 packages available in CRAN, an open-source R repository.

We repeated a 10-fold cross-validation technique five times as the basis for our

model-building process. Cross-validation is a technique that gets maximum use out

of our training data and allows us to create ideally representative estimates of how

the model will perform on new data. Cross-validation is powerful, but its downside is

that it requires more processing and, therefore, more time. We used a “caret” package

to create the folds for the 10-fold cross-validation. We repeated the process five times

to provide more valid estimates. To reduce total execution time we used multicore

training in parallel techniques. Almost all computers have multicore processors, and

as long as the computations do not need to communicate they can be implemented

across multiple cores and executed in parallel, reducing computation time. However,

for R—or any other language—it is hard to determine what can be parallelized. By

49

3.5. SUMMARY

default, the operating system will allocate each R session to a single core. R provides

several packages for parallel computing to run the program on multiple cores and we

used doSNOW package in our work.

Each of the five 10-fold cross-validations is independent of the others. If a com-

puter with multiple processors or cores is available, the computations could be spread

across these processors to increase the computational efficiency. The “caret” package

leverages one of the parallel processing frameworks in R to do just this [58]. To run

the parallel processing technique, a separate function “register” is used to specify the

number of cores to use. In this work we used three cores because the number of logical

core in my system is four, and one core was saved for usual tasks in computer and

three of them dedicated to parallel computing in R programming.

3.5 Summary

This chapter defined the data collections, the procedure to transform the text-

based dataset into a numerical dataset and the feature extraction methods. These

were the necessary steps to classify computer programs based on the author’s identity.

In the next chapter, we will discuss the experiments and the results.

50

Chapter 4

Experiments and Results

In this chapter, we discuss the structure of our six experiments, review the results of

these experiments, and conclude with a summary of the results.

4.1 Experiments

Our experiments assume that the collected C++ programs are a form of text

documents. In chapters 2 and 3, we explained the procedures we used to transform

the text document dataset into a numerical dataset. We applied several classification

algorithms to the text documents to develop models that identify the author from

a set of suspects. A vector of numeric feature values was provided as input to the

classification models, which, in turn, provided outputs in the form of class labels,

the author’s identity. In authorship attribution and text mining, there are several

popular classification algorithms available [54, 23]. We selected three algorithms that

are popular in code authorship attribution [83, 74, 89]: random forest, support vector

machine, and näıve Bayes. We applied these machine learning algorithms to train and

test our models, and then we evaluated the models using metrics such as accuracy,

Kappa, precision and recall.

In this research, we performed six experiments using two datasets. Figure 4.1

gives an overview of these six experiments: We collected the first dataset—consisting

of 540 C++ programs from 60 programmers—from the code repository GitHub.com

(Coll-G). We collected the second dataset—consisting of 669 C++ programs from 60

51

4.1. EXPERIMENTS

Figure 4.1: An overview of the six experiments in this thesis.

programmers—from the freelance contest website Codeforces.com (Coll-F).

We used the GitHub dataset (Coll-G) in experiments 1, 2, and 3 and the Code-

forces dataset (Coll-F) in experiments 4, 5, and 6. We used different feature sets

in each experiment, but we applied the same three classification algorithms in each

experiment. We used software metrics, lexical diversity and similarity features in ex-

periments 1 and 4, switched software metrics with appropriate n-gram size features

in experiments 2 and 5, and added a set of 2 sociolinguistic characteristic features

in experiments 3 and 6. In each of the six experiments, we used three classification

models to identify the author/programmer of the text/program. We assumed that

each text/program is assigned to only one author, represented by the class (label) of

a given text. In all experiments, we used the 10-fold cross-validation technique and

repeated it five times to evaluate the model. We collected the results in terms of the

evaluation metrics. We used the R language programming to carry out our experi-

ments. The R library package for these machine learning algorithms was “caret”. The

description of these six experiments follows in the next subsections.

52

4.1. EXPERIMENTS

Figure 4.2: Steps for experiments 1 and 4.

4.1.1 Experiment 1

In experiment 1, our goal was to classify a computer program based on programmer

identity, mostly using software metrics. We conducted the experiment on dataset Coll-

G with 540 computer programs belonging to 60 programmers. We used 28 content-

based features, including 18 software metrics, 9 lexical diversity, and 1 similarity

features. In this research the class labels are programmer’s identity. The steps of

experiment 1 are shown in Figure 4.2. We applied three machine learning algorithms

to the dataset to build the models: näıve Bayes (NB), random forest (RF), and

support vector machine (SVM). To evaluate the model, we applied the 10-fold cross-

validation technique repeated five times. We collected the results in terms of the

evaluation metrics. The performance results are reported in section 4.2.1.

4.1.2 Experiment 2

In experiment 2, we again analyzed computer programs from dataset Coll-G to

determine authorship. However this experiment examined three feature sets to find

the appropriate length for n-gram features. Each feature set included 30 features:

20 optimized features generated by the n-gram (n P {3, 6, 10}), 9 lexical diversity

53

4.1. EXPERIMENTS

features, and 1 similarity feature. Steps of this experiment are shown in Figure 4.3.

We extracted three types of n-gram features (3-gram, 6-gram, and 10-gram) from

the computer programs data to explore how n-gram length impacts our experiment (a

review of n-gram length is given in section 3.2). However, we found that we obtained

high dimensional data frames due to a high number of features extracted through the

n-gram approach. For the 3-gram approach (a sequence of 3 words) in dataset Coll-G,

there were 136433 features; for the 6-gram approach (a sequence of 6 words) there

were 250592 features; and for the 10-gram approach (a sequence of 10 words) 303940

features. We applied SVD to each data frame in order to transfer the features into the

optimized format as explained in section 3.2. Singular value decomposition or SVD is

a dimensionality reduction approach that can be used as a projection method where

data with m-columns (features) is projected into a subspace with fewer columns, whilst

preserving the essence of the original data. The optimized SVD format of each n-gram

feature set contained 20 features. For example, the data frame with 540 programs

and 136433 features based on the 3-gram approach optimized to 540 programs and 20

features. Thus, in experiment 2, we built three feature sets, as listed below, to find

the best n-gram length to create a numeric vector of the dataset:

1. 20 features from 3-gram, 9 lexical diversity features, and 1 similarity feature

(feature set A);

2. 20 features from 6-gram, 9 lexical diversity features, and 1 similarity feature

(feature set B); and

3. 20 features from 10-gram, 9 lexical diversity features, and 1 similarity feature

(feature set C).

In this experiment, we tested each feature set to the three machine learning models

(SVM, NB, RF) using 10-fold cross-validation technique repeated five times. The

model performances are reported in Section 4.2.2.

54

4.1. EXPERIMENTS

Figure 4.3: Steps for experiments 2 and 5.

4.1.3 Experiment 3

In experiment 3 we again used the Coll-G dataset, consisting of 540 C++ pro-

grams written by programmers from three regions and two genders. To improve

model performance we added a set of sociolinguistic characteristic features to the

feature set from the experiment with the best performing model from the previous

two experiments: experiment 2 with feature set A. In this experiment, the added

sociolinguistic characteristic features are the programmer’s gender and region, which

may help identify a programmer’s identity [83]. We retrieved numeric feature values

from the second experiment, and we added 2 non-content-based features from the col-

lected dataset. Each computer program was thus represented by 32 feature values: 20

3-gram features, 9 lexical diversity features, 1 similarity feature, and 2 sociolinguistic

characteristic features. We used the 10-fold cross-validation technique repeated five

times to evaluate all of the developed models. The steps for experiment 3 are shown

in Figure 4.4.

55

4.1. EXPERIMENTS

4.1.4 Experiment 4

In experiment 4, we analyzed the Coll-F dataset to determine the programmer’s

identity for each program. Coll-F consists of 669 C++ programs written by 60 unique

programmers and taken from a competitive programming website. In experiment

4, we categorized the C++ programs according to programmer’s identity using 28

content-based features: 18 software metrics, 9 lexical diversity features, and 1 simi-

larity feature. As in the previous experiments we built the three classification models

using NB, RF and SVM classification algorithms. We used the 10-fold cross-validation

technique, repeated five times, to evaluate all the developed models. The steps for

this experiment are shown in Figure 4.2.

4.1.5 Experiment 5

In experiment 5 our goal was to classify 669 computer programs with 30 features

based on the the programmer’s identity. This experiment was also run on dataset Coll-

F. The steps of this experiment are the same as in experiment 2, and are shown in

Figure 4.3. To generate the 20 n-gram features, we explored three lengths of n-gram:

3-gram, 6-gram, and 10-gram. We then built three feature sets, as in experiment 2—A,

B, and C—to find the best n-gram length. In this experiment, the learning step was

constructing the same three models (SVM, NB, RF) using 10-fold cross-validation

technique repeated five times for each feature set.

4.1.6 Experiment 6

In the final experiment, we classified the collected C++ programs from the Coll-F

dataset using content-based features and sociolinguistic characteristic features. We

added a set of sociolinguistic characteristic features (gender, and region) to the set of

content-based features from experiment 5. The steps of this experiment are the same

as those in experiment 3, as shown in Figure 4.4, but using the Coll-F dataset. We

built the three classification models using NB, RF, and SVM classification algorithms.

56

4.2. RESULTS

Figure 4.4: Steps for experiments 3 and 6.

We again used the 10-fold cross-validation technique repeated five times to evaluate

all of the developed models.

4.2 Results

The goal of all six experiments was to categorize computer programs based on

programmer’s identity. We conducted experiments 1, 2, and 3 on dataset Coll-G and

experiments 4, 5, and 6 on dataset Coll-F. In all experiments, class labels were the

programmer’s identity. We evaluated the performance of the machine learning models

in all experiments using a 10-fold cross-validation technique, repeated five times. We

used accuracy, Kappa, precision, and recall to evaluate the model.

Note that in our work, the authorship attribution approach categorized programs

into one of 60 classes, which is called a multi-class classification model. Multi-class

classification is the task of classifying programs into one of three or more classes. The

performance of a multi-class model can be evaluated by averaging the performance

of the individual classes as shown in Figure 4.5. Furthermore, when the number of

57

4.2. RESULTS

Figure 4.5: Confusion matrix for multi-class machine learning model in our work.

classes increases, performance may decrease as explained in Section 2.1. Table 4.1

compares multiple contributions in authorship attribution among 7 to 229 authors

and ranges of accuracy from (53% to 100%). Most of the research has found that

models are less accurate when there are more authors (labels). In our work, there

are 60 authors in each dataset. We used different feature sets to improve model

performance in each experiment. The highest accuracy rate for classifying programs

into 60 classes in each dataset is given in Table 4.1. As discussed further on, this level

of accuracy was achieved in Experiments 3 and 6.

58

4.2. RESULTS

Table 4.1: Comparison of previous contributions [54].

Reference Authors Classification Accuracy Features Sample
Macdonell et al. 7 Case-based reasoning 88% 26 351

Frantzeskou et al. 8 Nearest neighbor 100% 1500 107
Elenbogen and Seliya 12 Decision tree 74.7% 8 83

Krsul and Spafford 29 Discriminant analysis 73% 50 88
Ding and Samadzadeh 46 Nearest neighbor 55% 56 225

Islam et al. 229 Random forest 53.9% 120000 2061
Ours (Coll-G) 60 Random forest 74% 32 540
Ours (Coll-F) 60 Random forest 76% 32 669

4.2.1 Experiment 1 Results

In experiment 1, we used 28 content-based features and three classification algo-

rithms to build our three models. As shown in Table 4.2, the RF model performed

best with 51.76% accuracy. That means this model could correctly classify half of

the programs from dataset Coll-G according to programmer identity. The NB model

classified programs with 25.09% accuracy, while the SVM model achieved accuracy

of 42.15%. The RF model also achieved the highest Kappa rate: 50.86%. Next was

the SVM model, which achieved 41.09% Kappa rate. Precision and recall for the RF

were 46.07% and 48.15%, respectively. The NB model was in last position among

the three classification models in terms of correctly classifying programmer’s identity

of the programs. Precision and recall for the NB model were 28.93% and 21.74%,

respectively.

Table 4.2: Experiment 1 results.

Models Accuracy Kappa Precision Recall
RF model 51.76% 50.86% 46.07% 48.15 %

SVM model 42.15% 41.09% 39.51% 40.13 %
NB model 25.09% 23.56% 28.93% 21.74 %

59

4.2. RESULTS

4.2.2 Experiment 2 Results

In experiment 2, we turned our attention to word orders using n-gram features.

We explored three feature sets (A, B, C) to choose an appropriate n-gram size. Each

feature set consisted of 20 n-gram, 9 lexical diversity, and 1 similarity feature. For our

first representation of Coll-G in experiment 2, we transformed the computer programs

into vectors using the feature set A (3-grams). As shown in Table 4.3, the RF model

performed best with 59.86% accuracy. That means this model classified 59.86% of

the programs of our dataset correctly according to programmer identity. Classifica-

tion accuracy of the SVM model was 41.04%. The NB model achieved almost 44%

accuracy. The RF model achieved the highest Kappa rate scoring 59.10%. The SVM

and NB models achieved 39.95% and 42.13% Kappa, respectively.

Table 4.3: Results from experiment 2 with feature set A.

Models Accuracy Kappa Precision Recall
RF model 59.86% 59.10% 55.22% 55.35 %

SVM model 41.04% 39.95% 38.02% 37.10 %
NB model 43.17% 42.13% 42.4% 39.42 %

For our second representation of Coll-G in experiment 2, we transformed the com-

puter programs into vectors using feature set B (6-grams). As shown in Table 4.4, the

RF model performed best, classifying 55.72% of the programs of our dataset correctly

according to programmer identity. The NB model achieved accuracy rates of about

33%. The SVM model was slightly better with accuracy rates around 35%. The

RF model also achieved the highest Kappa rate, scoring 54.89%. Next was the SVM

model, which achieved 35% Kappa. Precision and recall for the RF model were both

approximately 52%.

For our third representation of Coll-G in experiment 2, we transformed the com-

puter programs into vectors using feature set C (10-grams), as shown in Table 4.5.

The RF model classified 53.23% of the programs of our dataset correctly according

60

4.2. RESULTS

to programmer identity (53.23% accuracy). The classification accuracy of the SVM

model was 30.2%. The NB model had an accuracy rate of less than 10%. The RF

model also achieved the highest Kappa rate, scoring 52.36%. Next was classification

via the SVM model, which achieved 28.96% Kappa.

Overall, we found that the RF model using feature set A (with 3-gram features)

performed better than feature sets B and C.

Table 4.4: Results from experiment 2 with feature set B.

Models Accuracy Kappa Precision Recall
RF model 55.72% 54.89% 52.23% 52.49 %

SVM model 34.67% 33.48% 31.39% 30.69 %
NB model 32.93% 31.73% 33% 29.54 %

Table 4.5: Results from experiment 2 with feature set C.

Models Accuracy Kappa Precision Recall
RF model 53.23% 52.36% 47.62% 48.17 %

SVM model 30.2% 28.96% 27.10% 26.59 %
NB model 6% 4% 7% 5 %

4.2.3 Experiment 3 Results

In experiment 3, again our goal was to classify the programs according to program-

mer identity. We expanded the feature set from 30 to 32. Features in experiment 3

included 20 3-gram, 9 lexical diversity, 1 similarity, and 2 sociolinguistic characteris-

tics (region and gender). The 3-gram features were chosen because that feature set

performed the best in Experiment 2. We used three classification algorithms to build

the three models. As shown in Table 4.6, the RF model performed best (74.78%

accuracy), classifying correctly 74.78% of the programs in our dataset according to

programmer identity. Classification accuracy for the SVM model was 59.11%, and for

the NB model, 45.44%. The RF model also achieved the highest Kappa rate: 74.31%.

Next was classification via the SVM model, which achieved 58.34% Kappa.

61

4.2. RESULTS

It is important to note that we carried out three different experiments using dataset

Coll-G; experiments 1, 2, and 3. The RF model in experiment 3, with the two added

non-content-based features improved significantly over all the other models we used

in our previous experiments 1 and 2.

Table 4.6: Experiment 3 results.

Models Accuracy Kappa Precision Recall
RF model 74.78% 74.31% 73.59% 71.70 %

SVM model 59.11% 58.34% 60.02% 56.19%
NB model 45.44% 44.44% 43.83% 41.63 %

Table 4.7: Experiment 4 results.

Models Accuracy Kappa Precision Recall
RF model 57.10% 56.32% 55.11% 55.88 %

SVM model 51.62% 50.74% 52.57% 51.55 %
NB model 22.75% 21.34% 19.21% 22.54 %

4.2.4 Experiment 4 Results

In experiment 4, we switched to dataset Coll-F. The 669 programs were classified

into 60 classes using 28 content-based metrics: 18 software metrics, 9 lexical diversity

features, and 1 similarity feature. The performance of the three machine learning

models using the 10-fold cross-validation technique repeated five times is given in

Table 4.7. RF and SVM performed well for classifying programs based on programmer

identity with accuracy of 57.10% and 51.62%, respectively. This means that each

model was able to classify slightly more than 50% of the programs of our dataset Coll-

F correctly according to the identity of the programmer. NB’s accuracy of 22.75%

was lowest among all models. In addition, RF led based on Kappa scores (56.32%).

The NB model had an inferior Kappa score to other models (21.34%).

62

4.2. RESULTS

4.2.5 Experiment 5 Results

Table 4.8: Results from experiment 5 with feature set A (3-grams).

Models Accuracy Kappa Precision Recall
RF model 60.54% 59.81% 59.20% 59.69 %

SVM model 55.96% 55.16% 57% 55.41%
NB model 50.4% 49.49% 53% 49.75 %

Table 4.9: Results from experiment 5 with feature set B (6-grams).

Models Accuracy Kappa Precision Recall
RF model 62.27% 61.58% 60.79% 61.70 %

SVM model 51.45% 50.55% 51.79% 50.37%
NB model 52.23% 51.34% 54.71% 51.28 %

In experiment 5 we classified dataset Coll-F using three feature sets: A, B, and

C as explained in Section 4.1.5. We used 30 features in each feature set: 20 n-gram

features with a specific length n P t3, 6, or10u, 9 lexical diversity , and 1 similarity

features.

With feature set A, the RF model performed better than other models, with a

classification accuracy of 60.54%. That means that the model would classify more

than 60% of the programs of our dataset correctly according to programmer identity.

The model developed using SVM classifier had an accuracy of 55.96%. The NB model

had the lowest accuracy: 50.40%. RF model had the highest Kappa score (59.81%)

while NB model had the lowest (49.49%) as shown in Table 4.8.

Table 4.9. reports the performance of three machine learning models using feature

set B. The RF and NB performed better than the SVM model in this representation,

with an accuracy of 62.27% and 52.23%, respectively. The RF model also had the

top Kappa score (61.58%). The accuracy of the SVM model was lower than other

models: 51.45%. The Kappa score of SVM was 50.55%, which was the lowest among

all of the models.

63

4.2. RESULTS

Performance of the three machine learning models using feature set C are shown in Ta-

ble 4.10. The RF model surpassed all other learning models in terms of accuracy,

precision, Kappa, and recall. It achieved 58.51% accuracy, while the other models’

accuracy was between 40% and 50%. This indicates that RF model was able to clas-

sify 58.51% of the programs of our dataset Coll-F correctly, according to the identity

of the programmer.

In experiment 5, for our three feature sets A, B, and C, we used n-grams of

n P t3, 6, 10u respectively, to investigate the optimal length of n (explained in 4.1.5).

Results showed that the machine learning models that had the best results used 6-

grams in feature set B.

Table 4.10: Results from experiment 5 with feature set C (10-grams).

Models Accuracy Kappa Precision Recall
RF model 58.51% 57.75% 56.37% 57.90 %

SVM model 42.39% 41.32% 41.94% 41.17%
NB model 52.41% 51.52% 53.55% 51.54%

Table 4.11: Experiment 6 results.

Models Accuracy Kappa Precision Recall
RF model 76.47% 76.04% 74.73% 74.80%

SVM model 66.37% 65.75% 66.91% 65.34%
NB model 55.36% 54.54% 57.13% 54.18 %

4.2.6 Experiment 6 Results

Experiment 6 again used dataset Coll-F. We retrieved a total of 30 content-based

programming features same as for Experiment 3; 20 6-gram, 9 lexical diversity, 1

similarity. The 6-gram features were chosen because that feature set performed the

best in Experiment 5. Also, we added 2 sociolinguistic characteristics to the feature

set. We then classified the programs using the three machine learning models. We

used the 10-fold cross-validation technique repeated five times to evaluate the machine

64

4.2. RESULTS

learning models. The results of experiment 6 are in Table 4.11. The accuracy of most

of the machine learning classifiers increased significantly in experiment 6, compared

to experiment 5. The increased accuracy of the machine learning classifiers was an

outcome of adding 2 attributes from non-content-based features. The accuracy of RF

and SVM classifiers increased the most, at around 14% and 15%, respectively. The

RF classification accuracy was 76.57%, meaning this model would classify 76.57%

of the programs of our dataset correctly based on the programmer identity. Of the

three classifiers, NB saw a slight increase in accuracy (about 3%). The RF model

also achieved the highest Kappa rate of 76.04%. Next was the SVM model, which

achieved 65% Kappa and 66% accuracy rate. Precision and recall for the RF model

were both around 75% while they were considerably lower for the NB model: 57%

and 54% respectively.

It is important to note that we carried out three different experiments on dataset

Coll-F; experiments 4, 5, and 6. The RF model in experiment 6 improved significantly

over all the other models we applied in our previous experiments 4 and 5.

65

Chapter 5

Discussion

The goal of this work was author identification. We performed 6 experiments in total,

3 on each of our two datasets (Coll-G and Coll-F). In experiments 1, 2, 4, and 5,

we comparatively analyzed the different groups of content-based features using three

learning models, while experiments 3 and 6 evaluated how adding non-content-based

features to content-based features impacts learning-model performances.

5.1 Performance Discussion of Experiments 1, 2, and 3 on

the Github Dataset.

In experiments 1, 2, and 3, our goal was to identify authorship on computer

programs on the Coll-G/Github dataset. In experiment 1, we extracted 18 software

metrics, 9 lexical diversity features, and 1 similarity feature to transform the written

computer programs into vectors. We used three learning models for classification.

With an overall accuracy score of 50%, the RF model performed the best among

the three learning models in experiment 1 as shown with EX1 in Figure 5.2. This

percentage was the average of 60 individual class accuracy as shown in Figure 5.3.

That means in average that model was able to correctly classify 50% of programs

of each programmer in our dataset according to the identity of the programmer. In

experiment 1, this was the best performance. However, the accuracy rate needed to

be improved to identify authors more correctly.

For experiment 2, we replaced the 18 software metrics with 20 n-gram features

66

5. PERFORMANCE DISCUSSION OF EXPERIMENTS 1, 2, AND 3 ON THE
GITHUB DATASET.

Figure 5.1: Experiment 2 using n P t3, 6, 10u) to establish optimal settings for the choice
of n-gram length. Three classification models were employed, and their performance was
demonstrated with each feature set.

to see whether that improved model performance. To implement the n-gram ap-

proach, we needed to establish optimal settings for the choice of n-gram size. Some

studies have suggested that choosing an efficient n-gram size could affect authorship

attribution and improve model performance [19]. We examined three n-gram lengths

n P t3, 6, 10u for dataset Coll-G to test whether shorter or longer string patterns

(terms) were good indicators of authorship.

We used three feature sets with different n-gram lengths, feature sets A, B, and C.

Three classification models were employed, and their performance was analyzed with

each feature set. The accuracy results showed that for all three models, best results

were achieved with the 3-gram features. This suggests that smaller n-gram sizes (3-

gram) are better for program authorship attribution in dataset Coll-G (Github), as

illustrated in Figure 5.1. We also observed the lowest classification performance in

machine learning models when we used the largest n-gram size in experiment 2. We

hypothesize that perhaps, when programmers write a computer program for a GitHub

67

5. PERFORMANCE DISCUSSION OF EXPERIMENTS 1, 2, AND 3 ON THE
GITHUB DATASET.

Figure 5.2: Comparative results of experiments 1,2, and 3. The results of experiment 1,
experiment 2, and experiment 3 respectively appear in EX1, EX2, and EX3.

repository, they do not have the pressure of time and results, so they write the code

in their own style and reveal their individuality. For instance, they are free to name

variables or punctuate as they like. Therefore, smaller n-grams may be better able to

capture these unique patterns. N-grams of length 2 or 3 have also been successful in

identifying the author of a given text in natural language [39].

We have also demonstrated that replacing software metrics with 3-grams in the

feature set improved the accuracy in all models except the SVM model. Comparative

results are shown in Figure 5.2. One reason for the performance consistency in the

SVM results is the property of its classification algorithm to be able to learn indepen-

dent of the dimensionality of the feature space. The SVM measures the complexity

of hypotheses based on the margin with which features separate the data, not the

number of features [52] (See Section 2.3.1).

In experiment 2, with the use of 3-gram and lexical diversity features and similarity

68

5. PERFORMANCE DISCUSSION OF EXPERIMENTS 1, 2, AND 3 ON THE
GITHUB DATASET.

Figure 5.3: Each of the three experiments evaluated the accuracy performance of the RF
model by averaging individual accuracy scores of 60 classes.

feature, the performance of the RF model showed a significant improvement, with

around 60% accuracy and Kappa rate. Using only content-based features, this was

the highest percentage of classification we achieved for dataset Coll-G as shown in

Figure 5.2.

In line with experiment 2, to improve the model’s performance in experiment 3, we

added a set of two sociolinguistic characteristics—region and gender—to the content-

based feature set in experiment 2. In experiment 3, the average performance of all

machine learning models improved. The RF model achieved the highest accuracy

and Kappa: 74%. Figure 5.2 shows that the RF model performed better in each

of the experiments, which is due to the underlying concept of the RF classification

algorithm. The RF classification algorithm is an ensemble of decision trees. This

classifier combines the power of several decision-tree classifiers, and the final decision

is the majority class. The RF algorithm is widely used in text mining and has been

demonstrated to be efficient for dealing with high-dimensional text data [54].

69

5. PERFORMANCE DISCUSSION OF EXPERIMENTS 1, 2, AND 3 ON THE
GITHUB DATASET.

Figure 5.4: Accuracy distribution by class for the GitHub dataset.

5.1.1 Accuracy distribution

For the GitHub dataset, the overall classification accuracy is 74.5%. There are 8

peaks in the line chart shown in Figure 5.4 that indicate 100% accuracy, but there are

also several other classes with accuracy between 99% and 80%. There are a few classes

with accuracy from 60% to 80%; however, there are no classes where the accuracy is

less than 50%.

5.1.2 Gender-based Analysis

Table 5.1: The RF label distribution of individual accuracy from experiment 1, 2, 3 grouped
by gender.

Accuracy Accuracyą 80% Accuracyă 80%
Female Male Female Male

RF from Experiment 1 10 12 20 18

RF from Experiment 2 11 16 19 14

RF from Experiment 3 11 17 19 13

Because RF models performed best in the three experiments using the Coll-G

dataset, we examined the label distribution in these RF models. In this work, we

70

5. PERFORMANCE DISCUSSION OF EXPERIMENTS 1, 2, AND 3 ON THE
GITHUB DATASET.

grouped the programmers based on their individual class accuracy levels into two

groups based on gender, then examined the distribution of labels within each group.

(See Figure 5.3)

As Figure 5.5 illustrates, in all experiments the number of male programmers

for which the model achieved individual accuracy of over 80% was higher than the

number of female programmers. This suggests that the models were able to identify

male-authored programs more accurately. In the accuracy range of less than 80%,

the number of female authors was higher as shown in Table 5.1. We hypothesize

that male programmers were more predictable in non-competitive situations such as

programming for the Github repository. Gilligan [35] claimed women may display

different behavior in different contexts, whilst men tend to display behavior that is

less context-sensitive and more rule-based. In another study, Wood [92] claimed that

women attempt to apply their own rules, whereas men prefer to follow predefined

rules. This suggests that maybe male programmers tend to follow specific rules and

use a more consistent style in writing different computer programs while female pro-

grammers change their style more frequently. These habits could be a possible reason

we were unable to classify female-written programs with a better prediction accuracy

in non-competitive situations.

Leming’s research may also explain why we were not able to identify women-

authored programs as accurately as male-authored programs in dataset Coll-G [50].

He ran experimental tests in academic space under two conditions (high and low risk)

in a undergraduate college (N “ 153). In a high-risk situation, there were pressures

from time and proctors, and in low risk, there was no pressure. His results showed

that in low-risk situations, women cheated significantly more than men [50]. This

could also be one of the reasons we have been able to accurately label fewer female-

authored programs. It is possible that female programmers in some cases may have

cheated in non-competitive situations, which caused misclassification and mislead the

71

5. PERFORMANCE DISCUSSION OF EXPERIMENTS 1, 2, AND 3 ON THE
GITHUB DATASET.

Figure 5.5: Label distribution of individual accuracy over 80% when grouped by gender
and region. For experiments 1, 2, and 3 (respectively) results are labeled EX1, EX2, and
EX3.

machine learning process.

Table 5.2: The RF label distribution of individual accuracy from experiment 1, 2, 3 grouped
by region.

Experiments
Accuracyą 80% Accuracyă 80%

Asia Europe U.S. Asia Europe U.S.
RF from Experiment 1 9 7 6 11 13 14
RF from Experiment 2 8 11 8 12 9 12
RF from Experiment 3 14 15 13 6 5 7

5.1.3 Region-based Analysis

In terms of region, when the individual class accuracy was more than 80%, the

number of U.S. programmers was less than those in the other two regions, as shown

in Figure 5.5. The inaccurate prediction performance in this region as shown in

Table 5.2 may be due to population variety. According to the United Nations [15], the

United States has the highest number of immigrants from different regions in Asia and

Europe. Similar to the overall immigrant population, college-educated immigrants are

concentrated in the U.S [77]. We hypothesize that this variety may affect our author

identification research.

72

5. PERFORMANCE DISCUSSION OF EXPERIMENTS 4, 5, AND 6 ON THE
CODEFORCE DATASET.

For author identification, we used content-based features like keywords as well

as non-content-based features like region. Alam [7] indicates that sometimes there

is an association between the features of programs and programmers’ regions. For

example, Asian programmers were found to use more comparison operators than

American programmers. There is a possibility to misclassify someone from Asia with

Asian style (such as using more comparative operators) who migrated to the US and is

now programming in the US. In this case the program features we extracted from the

programmer’s texts and the region of the programmer can conflict with each other,

and in some cases, this may be misleading the learning model. In other words, there

is a higher probability that we have wrong information about the authors’ region in

the US and as this information is used for classification, inaccurate information can

result in a lower model accuracy rate.

5.2 Performance Discussion of Experiments 4, 5, and 6 on

the Codeforce Dataset.

For our next three experiments on dataset Coll-F/Codeforce we used content-based

features for experiments 4 and 5, and combined content-based and non-content-based

features for experiment 6. The RF model had the highest accuracy rates in all three

experiments: 57% in experiment 4, 62% in experiment 5, and 76% in experiment 6 as

shown in Figure 5.6.

In experiment 4, we transformed the computer programs into numerical vectors

using software metrics, lexical diversity features, and similarity feature. We applied

three machine learning algorithms to classify 699 computer programs into 60 classes.

Except for the NB, all models had an overall accuracy of over 50% in experiment 4

as shown in Figure 5.8. This means that each model (except NB) correctly classified

just over half of the programs of the programmer according to their identity. Since

this percentage was not satisfactory for our work, we continued to investigate different

73

5. PERFORMANCE DISCUSSION OF EXPERIMENTS 4, 5, AND 6 ON THE
CODEFORCE DATASET.

Figure 5.6: Each of the three experiments 4,5 and 6 evaluated the accuracy performance
of the RF model by averaging individual accuracy scores of 60 classes.

content-based features.

In experiment 5, we replaced the software metrics with 20 n-gram features. We

examined three n-gram sizes (n P t3, 6, 10u) using three different feature sets A, B, and

C. Three classification models were employed, and their performance was analyzed

with each feature set. The accuracy results showed that the best results were achieved

with the 6-gram features as shown in Figure 5.7.

In the experiment 5 (dataset Coll-F), the n-gram size of 6 proved to be the most

efficient. Perhaps the underlying reason for getting good results with 6-gram fea-

tures lies in the structure of programming competition. Competitive programming

resources offer guidelines to programmers to use more prepared code blocks or tem-

plates [61]. They believe that creating algorithms from scratch is not as efficient

because templates or standard library functions are already available. Templates are

most commonly used during online competitions where speed is extremely impor-

tant [61]. We hypothesized that programmers under the pressure of competition may

tend to use more prepared blocks of code instead of writing code from scratch and

using their creativity; this could be why a bigger n-gram may act better as features,

and it could reveal programmer identity with higher performance. This would mean

74

5. PERFORMANCE DISCUSSION OF EXPERIMENTS 4, 5, AND 6 ON THE
CODEFORCE DATASET.

Figure 5.7: Experiment 5 using n P t3, 6, 10u) to establish optimal settings for the choice
of n-gram length. Three classification models were employed, and their performance was
demonstrated with each feature set.

that larger n-grams are beneficial in the capturing patterns of the prepared blocks of

code used by each programmer in their programming styles. Alternatively, larger n-

grams may allow for the model to discover patterns in the number of special libraries,

comments, variables programmers may use in competition.

To improve model performance from the last experiment, we added author gender

and region to the feature set and re-applied the machine learning models with a

feature set of 33 features: 20 6-gram features, 9 lexical diversity features, 1 similarity

feature, and 2 sociolinguistic features. As we can expect, adding non-content-based

features improved the performance of the machine learning models with performance

increasing 10% compared to experiment 5. Results are shown in Figure 5.8. The RF

had the highest rate of accuracy, with around 76% accuracy. All of the models had

more than 50% accuracy.

75

5. PERFORMANCE DISCUSSION OF EXPERIMENTS 4, 5, AND 6 ON THE
CODEFORCE DATASET.

Figure 5.8: Comparative results of experiment 4 (EX4), experiment 5 (EX5), and experi-
ment 6 (EX6).

Figure 5.9: Accuracy distribution by class for the Codeforces dataset.

76

5. PERFORMANCE DISCUSSION OF EXPERIMENTS 4, 5, AND 6 ON THE
CODEFORCE DATASET.

5.2.1 Accuracy distribution

The codeforce dataset has an overall classification accuracy of 76%. The line chart

shown in Figure 5.9 has 11 peaks that represent 100% accuracy. Approximately 19

classes have a classification accuracy between 99% and 80%. As in the GitHub dataset,

several classes have accuracies ranging from 80% to 50%. A few classes in this exper-

iment have accuracy rates of less than 50%.

5.2.2 Gender-based Analysis

As shown in Figure 5.10 we grouped the programmers based on their individual

class accuracy levels into two groups based on gender, then examined the distribution

of labels within each group.

Table 5.3: The RF label distribution of individual accuracy from experiment 4, 5, 6 grouped
by gender.

Accuracy Accuracyą 80% Accuracyă 80%
Female Male Female Male

RF from Experiment 4 11 17 19 13

RF from Experiment 5 17 15 13 15

RF from Experiment 6 25 22 5 8

In experiment 5 and 6, the RF model classified the programs of 25 and 17 female

programmers with more than 80% accuracy respectively. That means this model was

able to correctly classify at least 80% of programs of each female-authors according

to the identity of the programmer. This is a slightly higher number of programmers

compared to male programmers with the individual class accuracy between 80% and

100% as shown in Table 5.3. Based on our review of previous research [40, 36, 84],

it appears that females are more predictable in the competitive situations in both

academic and nonacademic competitions. Similarly, our results in experiments 5 and

6 on dataset Coll-F indicated that the models could identify a slightly higher percent-

77

5. FEATURE ANALYSIS

Figure 5.10: Label distribution of individual accuracy more than 80% concerning gender
and region in experiment 4 (EX4), experiment 5 (EX5), and experiment 6 (EX6).

age of female programmers in a competitive situation with the individual accuracy

between 80% and 100%.

5.2.3 Region-based Analysis

Table 5.4: The RF label distribution of individual accuracy from experiment 4, 5, 6 grouped
by region.

Experiments
Accuracyą 80% Accuracyă 80%

Asia Europe U.S. Asia Europe U.S.
RF from Experiment 4 11 9 8 9 11 12
RF from Experiment 5 13 9 10 7 11 10
RF from Experiment 6 17 14 16 3 6 4

In Figure 5.10 we analyzed label distribution concerning region of the programmer.

In terms of region, when we could predict the authors with the individual accuracy

more than 80%, the numbers of Asian authors was higher in all cases, comparing to

the other two regions. The low author identification performance in Europe and the

US could be the result of population variations in those regions as we explained in

Section 5.1.2.

78

5. FEATURE ANALYSIS

5.3 Feature Analysis

In this section, we discuss features used in our work and their importance in

determining program authorship. To find the most significant features for our learning

models, we applied a feature evaluator: random forest feature importance. We used

the “varimp()” function in the R “random forest” package. RF feature importance

determines the importance of features for each experiment individually and assigns

a numerical value to each feature based on its efficiency for RF classification. Using

this feature evaluator, we plotted the top 15 highest-ranked features. Note that we

plotted feature importance in experiments 1, 3, 4 and 6, as experiments 2 and 5 had

nearly the same feature importance as experiments 3 and 6.

In experiments 1 and 4, we used software metrics, lexical diversity features, and

similarity feature. Experiment 1 used dataset Coll-G, a repository website for pro-

gramming. In this repository, there is no pressure on time and results while pro-

grammers write (non-competitive). Experiment 4 used dataset Coll-F, a website for

competitive programming; programmers are under pressure for time and accuracy

while they participate in the programming contest.

We chose a subset of the top 15 highest-ranked features out of 28 features in

each of experiments 1 and 4 as shown in Figure 5.11. These were the most important

features, according to the random forest importance technique. There were 9 common

features between experiments 1 and 4. Note that lines of code and int were the first

two important features in both experiments.

Although in experiment 1 (Coll-G) there were no lexical diversity features among

the top 15 highest-ranked features, in experiment 4 (Coll-F) 5 lexical diversity fea-

tures appeared in the top 15: VM, CCTR, R, D, S. This may support the idea that

programmers are more likely to use prepared blocks of code or template in compet-

itive programming. In this case, if unlike others, a programmer writes a computer

program spontaneously using different names for functions or variables rather than

79

5. FEATURE ANALYSIS

Figure 5.11: Top 15 highest-ranked features in Experiments 1,3,4 and 6.

80

5. AUTHOR IDENTIFICATION USING TOP-RANKED FEATURES

the predefined names present in prepared blocks of code, the diversity of that author’s

vocabulary and keywords will make them stand out and easy to classify.

Experiments 3 and 6 showed that adding non-content based features to content-

based features improved performance significantly. We selected a subset of the top

15 highest-ranked features out of 32 features in each of experiments 3 and 6 shown in

Figure 5.11. In both experiments, the authors’ gender and region (both non-content-

based features) were by far the most important features.

In these two experiments, except for similarity, all remaining top-ranked features

were the result of a mathematical combination of n-gram features. Similarity was

one of the top 15 highest-ranked features in experiment 3 (Coll-G), but in contrast it

did not appear in the set of the most important features for experiment 6 (Coll-F).

This may be because many programmers use the same prepared block of code, so

their programming styles look similar and therefore, it becomes harder to distinguish

between programs developed by different programmers.

5.4 Author Identification using Top-ranked Features

As discussed in Section 5.3, to determine the most significant features for the

learning models, we applied a feature evaluator: random forest feature importance.

In experiment 3 and experiment 6 we used this to select the top 15 highest-ranked

features for classifying programs according to the programmer’s identity.

We reduced the feature set in each experiment to the subset of the top 15 highest-

ranked features and re-applied the learning models. Our goal was to determine

whether a reduced feature set is sufficient to classify the programs according to the

programmer’s identity. To evaluate the impact of the reduced feature set, we per-

formed a comparative analysis between the models developed with all 32 features and

the models with 15 features, as shown in Table 5.5 and Table 5.6.

81

5. AUTHOR IDENTIFICATION USING TOP-RANKED FEATURES

Table 5.5: Comparing the results of experiment 3 using the 15 most important features
and the 32 initial features.

Models 32 features 15 features
Accuracy Kappa Accuracy Kappa

RF 74.78% 74.31% 74.61% 74.07%

SVM 59.11% 58.34% 56.93% 56.07%

NB 45.44% 44.44% 47.05% 46.03%

Table 5.6: Comparing the results of experiment 6 using the 15 most important features
and the 32 initial features.

Models 32 features 15 features
Accuracy Kappa Accuracy Kappa

RF 76.47% 76.04% 76.98% 76.56%

SVM 66.37% 65.75% 73.8% 72.69%

NB 55.37% 54.54% 61.51% 60.77%

Table 5.5 shows the performance of the three models with all 32 features and the

performance of the three models with the reduced 15 features in experiment 3. Per-

formances are shown in terms of accuracy and kappa of the models. From Table 5.5,

we can see that the classification models with a reduced number of features gave

similar performance to the models with all the 32 features. In experiment 3, of the

three classification models, the RF had the highest accuracy and Kappa with all 32

features and also with a subset of 15 high-ranked features. The NB model achieved

slight performance increases after reducing the features. Only the SVM model had a

lower model performance with the reduced feature set.

In experiment 6, we used 32 features to categorize computer programs based on

the author identity in Coll-F, and then we reduced the feature set to 15 features by

selecting the 15 highest-ranked features using the random forest feature importance

evaluator. We used the top 15 features and re-applied experiment 6. The results

82

5. WORD FREQUENCIES

are shown in Table 5.6. Removing some features appeared to help remove the noisy

data from the dataset and actually helped the classification model to predict the

class more accurately. The RF models achieved similar model performance with both

feature sets, but the SVM and NB models achieved a higher model performance with

the reduced feature set.

5.5 Word Frequencies

In authorship attribution research in natural language, features have always played

a critical role. As in the literary domain, some research claims that words frequently

appearing in the text without having much content information (e.g. prepositions,

conjunctions, etc) should be removed from that text prior to feature extraction. Sim-

ilarly, words occurring quite often in the text are said to provide little information

for distinguishing between documents and author style [8]. In contrast to previous

work in this field, which used content terms to represent documents, recent work has

proposed methods based on stop words, conjunctions, and adverbs used in natural

language. Any language (natural language) has a large set of conjunctions that can be

used to link words, phrases, and clauses. Such conjunctions can be used in different

ways without modifying the meaning of the text. For example, the sentence “Michael

is rich, but Alexis is poor”, could be written in several ways using other conjunc-

tions (for example, “Michael is rich; however, Alexis is poor.” or “Michael is rich;

on the other hand, Alexis is poor.”). Some researchers claim that how conjunctions,

stop words, and the most frequent words are used is unique to each author, and thus

should be used as features in this types of work [80, 56, 88].

In this section, we list the most frequently occurring words in the computer pro-

grams in datasets Coll-F and Coll-G. We also discuss whether these frequently oc-

curring words play a key role in author identification using content-based features or

whether we should focus on the approach, that suggests removing these words. We

83

5. WORD FREQUENCIES

Figure 5.12: Top 15 frequently occurring words from datasets Coll-G and Coll-F.

extracted the 15 most frequent words in written programs from each data collection

as shown in Figure 5.12.

Next, we compared the most frequently occurring words in Coll-F with the most

important keywords in Coll-F. Experiment 4 was the only experiment that included

Coll-F’s keywords in its feature set. Therefore, to find the most important keywords

in Coll-F, we examined the top-ranked features of experiment 4 (from Section 5.3).

As shown in Figure 5.13 the top 15 highest-ranked features of experiment 4 included

seven keywords: int, cout, return, vector, for, std, if.

We see that among the seven important keywords, five of them also appeared

in the frequency list of dataset Coll-F. We highlight the common keywords in the

frequency charts in Figure 5.12.

Using dataset Coll-G, we compared the most frequent words to the important

features in experiment 1. In experiment 1, we used 18 software metrics, 9 lexical

diversity features, and 1 similarity features. We plotted the most important features

84

5. WORD FREQUENCIES

Figure 5.13: Top-ranked features of experiment 4. The red line indicate the keywords.

Figure 5.14: Top-ranked features of experiment 1. The red line indicate the keywords.

85

5. WORD FREQUENCIES

in this experiment in Figure 5.14. Out of 15 features, there are 12 keywords as shown

in Figure 5.14 with red lines. We see that there are 9 common words between the

frequency word list of dataset Coll-G and the most important features of dataset

Coll-G, which highlighted in Figure 5.12.

It seems that in this work, a stylometry approach that uses frequently occurring

words reveals the better model performance. This approach takes full advantage of

the words occurring quite often in the text, instead of following the common practice

of eliminating words that frequently appear in the text.

86

Chapter 6

Conclusion

Based on Burrows’ research [19], text mining approaches can be used to determine

the authorship of computer programs. Burrows stated that each programmer’s unique

fingerprint is revealed with the programming language choice. Researchers [83, 74, 7,

89] have demonstrated that sociolinguistic factors such as the author’s gender, region

and experiences affect how computer programs are written by the author.

Our research is mainly focused on the use of machine learning techniques to classify

computer programs based on the identity of the author. In this study, two separate

datasets with the concept of a competitive and non-competitive environment were

collected. On each dataset, we performed three experiments using three machine

learning models that used different types of features. The features we used were

content-based features derived from the authors’ programs and sociological factors

derived from their programming profiles. Then, we evaluated the effectiveness of

these features in classifying computer programs.

The feature analysis and machine learning experiments revealed some interesting

results:

• All six experiments demonstrate that the RF model performed better than other

machine learning models on both datasets because it makes predictions using

multiple machine learning algorithms, as we noted in Section 2.3.

• In experiment 2 on the dataset Coll-G and experiment 5 on the dataset Coll-

F, the performance of machine learning models was significantly improved by

87

6. CONCLUSION

using appropriate n-gram features rather than software metrics. In experiment

2, 3-grams appeared to be a valuable feature because due to the non-competitive

environment of dataset Coll-G, shorter n-gram lengths (3-gram) could be used to

capture the pattern of the text very accurately. The performance of the models

improved between 5% to 10% by using the 3-gram features in experiment 2.

The 6-gram proved to be an appropriate fit for n-gram length in experiment 5

as Coll-F is a competitive environment, and there may be a greater probability

of using the prepared block of code. Replacing software metrics with 6-gram

features improved model performance by more than 8%.

• Experimental 3 and 6 showed that machine learning model performance was

increased significantly using a feature set that included both content-based and

none-content-based features. In each experiment we added gender and region

to the content-based features. The performance of the models improved signifi-

cantly in both experiments after combining these two groups of features.

• In our work, the highest performance for author identification was achieved in

experiment 3 for dataset Coll-G and experiment 6 for dataset Coll-F using a

set of 32 features. We used a Random Forest feature evaluator to reduce the

dimension of feature set in each experiment, and only the 15 most important

features were used to re-apply machine learning models. Although the reduced

feature set was used, the change in performance of the machine learning models

was not significant. This shows that it is possible to achieve almost the same

performance by selecting the most important features in computer program

classification.

• In each dataset, the keywords that were most important for classifying the

author of unknown programs were the same as the keywords that were frequent

in programs of that dataset.

88

6. FUTURE WORK

• In order to evaluate our methodology, we applied the same methodology to two

datasets with different concepts (competitive and non-competitive) and different

data collection procedures. We found that overall performance was about the

same regardless of whether we used dataset Coll-G or dataset Coll-F. But we

found a higher number of male authors with more accurate results than female

authors in the Github dataset In Codeforce the trend was converse and the

female author’s identification was more accurate.

• Author identification of computer code, which we performed in our work, is a

special case of text mining. It is likely that we will be able to use the techniques

we used in our work in other application of text mining as well. It should be

noted that the addition of sociolinguistic features to the content-based features

would likely improve natural language processing models, but some of the other

features might not carry over due to the unique nature of the features found

in code.

6.1 Future work

There is scope for much work to extend this thesis. Below we have listed up

everything we believe is appropriate recommendations for further work.

• In the future it would be interesting to use additional social variable (non-

content-based) features in our feature set, such as the level of programmer’s ex-

perience, age, and academic degree. It could be even useful to see the companies

that the programmers had prior work experience with.

• Author identification performance may depend mostly on the number of authors

and the number of samples collected for each author. Further research could

focus on determining a threshold of the appropriate number of authors with an

adequate number of samples.

89

6. FUTURE WORK

• One aim of our study was to evaluate various lengths of n-grams to determine

which is the best to select as a feature. In the future, it would be interesting to

find out how combinations of different n-grams lengths perform. For example,

instead of using only 6-gram features, a combination of 6-grams and 3-grams

might perform better.

• Using appropriate n-grams and sociolinguistic features, it is possible to catego-

rize C++ programs based on the author’s identity. On programming websites

such as Codeforce and Github, programmers may use more than one program-

ming language to write programs in a repository or to solve problems in com-

petitions. In other words, an author on GitHub might have some samples in

C++ language and others in Java or Python. A proposed feature selection

in our work is independent of the language of programming, so we can make

use of all the program samples provided by authors in various programming

languages. Further research will take into consideration how our methodology

performs when applied to a dataset consisting of author samples in different

programming languages.

• Our experiments are closed-world problems. This means that the identification

of the author is restricted to programmers whose codes are analyzed for au-

thorship attribution. For example, if there are n number of programmers in the

experiments (which means n label), the solution must be from those n labels.

The solution is not general and, thus, cannot be valid for other authors who

do not exist in the dataset. It would be possible in the future to work on open

world problems with the use of unsupervised learning and the same combination

of features from our study.

• Our work demonstrates the efficiency of ensemble models such as the RF in

author identification. It will be interesting in the future to develop an ensemble

90

6. FUTURE WORK

machine learning model that combines supervised learning algorithms such as

RF and NB to classify computer programs.

91

Bibliography

[1] M. Abuhamad, T. AbuHmed, A. Mohaisen, and D. Nyang. Large-scale and
language-oblivious code authorship identification. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, CCS ’18,
page 101–114. Association for Computing Machinery, 2018.

[2] D. Adams. Oracle database online documentation 12c release 1 (12.1), 2014.
https://docs.oracle.com/en/cloud/paas/exadata-express-cloud/csdbk/
known-issues-oracle-database-exadata-express-cloud-service.pdf.

[3] S. Afroz. Deception in authorship attribution. PhD thesis, Department of Com-
puter Science, Drexel University, Philadelphia, PA, 2013. http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.715.9382&rep=rep1&type=pdf.

[4] C.C. Aggarwal and C. Zhai. An Introduction to Text Mining. Springer US,
Boston, MA., 2012.

[5] H. Ahmed. Detecting opinion spam and fake news using n-gram analysis and se-
mantic similarity. PhD thesis, Department of Electrical and Computer Engineer-
ing, University of Victoria, 2017. https://dspace.library.uvic.ca//handle/
1828/8796.

[6] H. Ahmed, I. Traore, and S. Saad. Detection of online fake news using N-gram
analysis and machine Learning Techniques. In Intelligent, Secure, and Depend-
able Systems in Distributed and Cloud Environments, volume 10618, pages 38–
127. Springer International Publishing, 2017.

[7] S. Alam. Computer program complexity and its correlation with program features
and sociolinguistics. Master’s thesis, Department of Mathematics and Computer
Science, University of Lethbridge, 2020.

[8] M. Allahyari, S. Pouriyeh, M. Assefi, S. Safaei, E.D Trippe, J.B Gutierrez, and
K. Kochut. A brief survey of text mining: Classification, clustering and extraction
techniques. ArXiv:1707.02919 [Cs], 2017.

[9] E.L. Allwein, R.E. Schapire, and Y. Singer. Reducing multiclass to binary: A uni-
fying approach for margin classifiers. J. Mach. Learn. Res., 1:113–141, September
2001.

[10] S. Argamon, J.B. Goulain, R. Horton, and M. Olsen. Vive la différence! text
mining gender difference in french. Digital Humanities Quarterly, 3(2), 2009.

92

https://docs.oracle.com/en/cloud/paas/exadata-express-cloud/csdbk/known-issues-oracle-database-exadata-express-cloud-service.pdf
https://docs.oracle.com/en/cloud/paas/exadata-express-cloud/csdbk/known-issues-oracle-database-exadata-express-cloud-service.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.715.9382&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.715.9382&rep=rep1&type=pdf
https://dspace.library.uvic.ca//handle/1828/8796
https://dspace.library.uvic.ca//handle/1828/8796

BIBLIOGRAPHY

[11] S. Argamon, M. Koppel, J. Fine, and A. R. Shimoni. Gender, genre, and writing
style in formal written texts. Text-The Hague Then Amsterdam Then Berlin,
23(3):321–346, 2003.

[12] S. Argamon, M. Šarić, and S.S. Stein. Style mining of electronic messages for mul-
tiple authorship discrimination: First results. In Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’03, page 475–480, New York, NY, USA, 2003. Association for Computing
Machinery.

[13] E. Backer and P. Kranenburg. On musical stylometry—a pattern recognition ap-
proach. Pattern Recognition Letters, 26(3):299–309, 2005. In Memoriam: Azriel
Rosenfeld.

[14] R. Bali, D. Sarkar, B. Lantz, and C. Lesmeister. R: Unleash Machine Learning
Techniques. Packt Publishing, Birmingham, UK, 2016.

[15] J Batalova. The top sending regions of immigrants in Aus-
tralia, Canada, and the United States. Migrationpolicy.Org,
2013. https://www.migrationpolicy.org/programs/data-hub/
top-sending-regions-immigrants-australia-canada-and-united-states.

[16] A. Bhowmick, A. Biswas, N. AnveshKumar, and R. Kottath. Identification/seg-
mentation of indian regional languages with singular value decomposition based
feature embedding. Applied Acoustics, 176:107864, 2021.

[17] C.M Bishop. Pattern recognition and machine learning. Information science and
statistics. Springer, New York, NY, 2006.

[18] L. Breiman. Random forests. Machine Learning, 45(1):5–32, Jan. 2001.

[19] S. Burrows. Source code authorship attribution. PhD thesis, Department of
Computer Science and Information Technology, RMIT University, Melbourne,
Australia, 2010. https://researchbank.rmit.edu.au/view/rmit:10828.

[20] S. Burrows and S.M. Tahaghoghi. Source code authorship attribution using n-
grams. In Proceedings of the twelth Australasian document computing symposium,
Melbourne, Australia, RMIT University, pages 32–39, Jan. 2007.

[21] S. Burrows, A.L. Uitdenbogerd, and A. Turpin. Application of information re-
trieval techniques for source code authorship attribution. In International Con-
ference on Database Systems for Advanced Applications, volume 5463, pages 699–
713, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[22] S. Burrows, A.L Uitdenbogerd, and A. Turpin. Temporally robust software fea-
tures for authorship attribution. In 2009 33rd Annual IEEE International Com-
puter Software and Applications Conference, volume 1, pages 599–606, 2009.

93

https://www.migrationpolicy.org/programs/data-hub/top-sending-regions-immigrants-australia-canada-and-united-states
https://www.migrationpolicy.org/programs/data-hub/top-sending-regions-immigrants-australia-canada-and-united-states
https://researchbank.rmit.edu.au/view/rmit:10828

BIBLIOGRAPHY

[23] A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan, C. Voss, F. Yamaguchi, and
R. Greenstadt. De-anonymizing programmers via code stylometry. In Proceedings
of the 24th USENIX Conference on Security Symposium, SEC’15, page 255–270,
USA, 2015. USENIX Association.

[24] J.G. Carbonell, R.S Michalski, and T.M Mitchell. 1 - an overview of machine
learning. In Machine Learning, pages 3–23. Morgan Kaufmann, San Francisco
(CA), 1983.

[25] L. Cheikhi, R.E. Al-Qutaish, and A. Idri. Software productivity: Harmoniza-
tion in ISO/IEEE software engineering standards. JOURNAL OF SOFTWARE,
7(2):462–470, 2012.

[26] P. Cingolani and J. Alcalá-Fdez. jfuzzylogic: a robust and flexible fuzzy-logic in-
ference system language implementation. In 2012 IEEE International Conference
on Fuzzy Systems, pages 1–8, 2012.

[27] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20(3):273–
297, 09 1995.

[28] M. A. Covington and J. D. McFall. Cutting the gordian knot: The moving-
average type–token ratio (mattr). Journal of Quantitative Linguistics, 17(2):94–
100, 2010.

[29] E. Dauber, A. Caliskan-Islam, R. Harang, G. Shearer, M. Weisman, F. Nelson,
and R. Greenstadt. Git blame who?: Stylistic authorship attribution of small, in-
complete source code fragments. Proceedings on Privacy Enhancing Technologies,
2019(3):389–408, Jul 2019.

[30] A. Dreweke, I. Fischer, T. Werth, and M. Wörlein. Text Mining in Program
Code. IGI global, Boston, MA., 2009.

[31] J. Dukart. Basic concepts of image classification algorithms applied to study
neurodegenerative diseases. In Arthur W. Toga, editor, Brain Mapping, pages
641–646. Academic Press, Waltham, 2015.

[32] I. El Naqa and M.J. Murphy. What is machine learning? In Machine Learning in
Radiation Oncology: Theory and Applications, pages 3–11. Springer International
Publishing, Cham, 2015.

[33] G. Frantzeskou, E. Stamatatos, S. Gritzalis, and S. Katsikas. Effective identifi-
cation of source code authors using byte-level information. In Proceedings of the
28th International Conference on Software Engineering, ICSE ’06, page 893–896,
New York, NY, USA, 2006. Association for Computing Machinery.

[34] K. C. Fraser, J. A. Meltzer, and F. Rudzicz. Linguistic features iden-
tify alzheimer’s disease in narrative speech. Journal of Alzheimer’s Disease,
49(2):407–422, 2016.

94

BIBLIOGRAPHY

[35] C. Gilligan. In A Different Voice: Psychological Theory And Women’s Develop-
ment. Harvard University Press, 1993.

[36] O. Gokcekus, A. Godet, and H. Ramsey. Are women more predictable than men?
Applied Economics, 42(5):641–645, 2010.

[37] J. Good and K. Howland. Natural language and programming: Designing effec-
tive environments for novices. In 2015 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), pages 225–233, 2015.

[38] C. Gregori-Signes and B. Clavel-Arroitia. Analysing lexical density and lexical
diversity in university students’ written discourse. Procedia-Social and Behavioral
Sciences, 198:546–556, 2015.

[39] J. Grieve. Quantitative authorship attribution: An evaluation of techniques.
Literary and Linguistic Computing, 22(3):251–270, 07 2007.

[40] AL. Gross, J. Faggen, and K. McCarthy. The differential predictability of the
college performance of males and females. Educational and Psychological Mea-
surement, 34(2):363–365, 1974.

[41] A. Gungor. Benchmarking authorship attribution techniques using over a thou-
sand books by fifty victorian era novelists. Master’s thesis, Department of Com-
puter and Information Science, Purdue University, Indiana, U.S., 2018.

[42] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H Witten.
The WEKA data mining software: an update. ACM SIGKDD Expl. Newslett,
11(1):10–18, 2009.

[43] K. Hancock. 1997 Canadian copyright act revisions. Berkeley Tech. L.J., 13:517,
1998.

[44] G. Herdan. A new derivation and interpretation of yule’s ‘characteristic’ k. Jour-
nal of Applied Mathematics and Physics (ZAMP), 6(4):332–339, 1955.

[45] J. Holmes. An Introduction to Sociolinguistics. Routledge, 4th edition, 2013.

[46] R. Ihaka and R. Gentleman. R: A language for data analysis and graphics.
Journal of Computational and Graphical Statistics, 5(3):299–314, 1996.

[47] International Research Institute. Statistical techniques in the data library:
A tutorial. https://iridl.ldeo.columbia.edu/dochelp/StatTutorial/SVD/
index.html.

[48] G. Izmirlian. Application of the random forest classification algorithm to a seldi-
tof proteomics study in the setting of a cancer prevention trial. Annals of the
New York Academy of Sciences, 1020(1):154–174, 2004.

95

https://iridl.ldeo.columbia.edu/dochelp/StatTutorial/SVD/index.html
https://iridl.ldeo.columbia.edu/dochelp/StatTutorial/SVD/index.html

BIBLIOGRAPHY

[49] G. James, D. Witten, T. Hastie, and R. Tibshirani. Classification. In An Intro-
duction to Statistical Learning: with Applications in R, pages 127–173. Springer
New York, New York, NY, 2013.

[50] S. L. James. Cheating behavior, subject variables, and components of the
internal-external scale under high and low risk conditions. The Journal of Edu-
cational Research, 74(2):83–87, 1980.

[51] S. Jarvis. Capturing the diversity in lexical diversity. Language Learning,
63(1):87–106, Feb. 2013.

[52] T. Joachims. Text categorization with support vector machines: Learning with
many relevant features. In Machine Learning: ECML-98, pages 137–142. Springer
Berlin Heidelberg, 1998.

[53] M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and
prospects. Science, 349(6245):255–260, 2015.

[54] V. Kalgutkar, R. Kaur, H. Gonzalez, N. Stakhanova, and A. Matyukhina.
Code authorship attribution: Methods and challenges. ACM Computer Survey,
52(1):1–36, 2019.

[55] B. Kenneth, K. Watanabe, H. Wang, P. Nulty, A. Obeng, and A. Müller,
S.and Matsuo. Quanteda: An R package for the quantitative analysis of tex-
tual data. Journal of Open Source Software, 3(30):774, 2018.

[56] JA. Khan. A model for style change detection at a glance. Training, 593(293):113,
1981.

[57] I. Krsul and E.H. Spafford. Authorship analysis: identifying the author of a
program. Computers and Security, 16(3):233–257, 1997.

[58] M. Kuhn. Building predictive models in R using the caret package. Journal of
Statistical Software, Articles, 28(5):1–26, 2008.

[59] V. Y. Kulkarni and P. K. Sinha. Pruning of random forest classifiers: A sur-
vey and future directions. In 2012 International Conference on Data Science
Engineering (ICDSE), pages 64–68, 2012.

[60] P. Kwangil, J.S. Hong, and W Kim. A methodology combining cosine similarity
with classifier for text classification. Applied Artificial Intelligence, 34(5):396–411,
2020.

[61] A. Laaksonen. Chapter 1 - introduction. In Guide to Competitive Programming:
Learning and Improving Algorithms Through Contests, pages 1–7. Springer In-
ternational Publishing, Cham, 2020.

[62] J. Leskovec, A. Rajaraman, and J. D. Ullman. Chapter 11 - dimensionality
reduction. In Mining of Massive Datasets, pages 405–424. Cambridge University
Press, USA, 2014.

96

BIBLIOGRAPHY

[63] A. Liaw and M. Wiener. Classification and regression by random forest. R News,
2(3):18–22, 2002.

[64] R. P. Lippmann, L. Kukolich, and E. Singer. Lnknet: neural network, machine-
learning, and statistical software for pattern classification. Technical Report 2,
Massachusett Inst of Tech Lexington Lincoln Lab, 1993.

[65] P. Lissón and N. Ballier. Investigating lexical progression through lexical di-
versity metrics in a corpus of french l3. Discours. A Journal of Linguistics,
Psycholinguistics and Computational Linguistics, (23), Dec. 2018.

[66] H. Liu, R. H. Chan, and Y. Yao. Geometric tight frame based stylometry for
art authentication of Van Gogh paintings. Applied and Computational Har-
monic Analysis, 41(2):590–602, 2016. Sparse Representations with Applications
in Imaging Science, Data Analysis, and Beyond, Part II.

[67] J. E. Mason. An n-gram based approach to the automatic classification of web
pages by genre. PhD thesis, Department of Computer Science, Dalhousie Univer-
sity Halifax, 2009. https://dalspace.library.dal.ca/handle/10222/12351.

[68] A. Matyukhina, N. Stakhanova, M. Dalla Preda, and C. Perley. Adversarial
authorship attribution in open-source projects. In Proceedings of the Ninth ACM
Conference on Data and Application Security and Privacy, CODASPY ’19, pages
291––302. Association for Computing Machinery, 2019.

[69] A. McCallum and K. Nigam. A comparison of event models for naive bayes text
classification. In AAAI-98 workshop on learning for text categorization, pages
41–48, 1998.

[70] P. M. McCarthy and S. Jarvis. vocd: A theoretical and empirical evaluation.
Language Testing, 24(4):459–488, 2007.

[71] P. M McCarthy and S. Jarvis. Mtld, vocd-d, and hd-d: A validation study
of sophisticated approaches to lexical diversity assessment. Behavior Research
Methods, 42(2):381–392, May 2010.

[72] G. Miner, J. Elder IV, A. Fast, T. Hill, R. Nisbet, and D. Delen. Chapter 3 -
conceptual foundations of text mining and preprocessing steps. In Practical Text
Mining and Statistical Analysis for Non-structured Text Data Applications, pages
43–51. Academic Press, Boston, 2012.

[73] T.M. Mitchell. Does machine learning really work? AI Magazine, 18(3):11, 1997.

[74] F. Naz and J. E. Rice. Sociolinguistics and programming. In 2015 IEEE Pa-
cific Rim Conference on Communications, Computers and Signal Processing
(PACRIM), pages 74–79, 2015.

[75] R Nisbet, J Elder, and G Miner. Chapter 4 - data understanding and prepara-
tion. In Handbook of Statistical Analysis and Data Mining Applications (Second
Edition), pages 55–82. Academic Press, Boston, second edition edition, 2018.

97

https://dalspace.library.dal.ca/handle/10222/12351

BIBLIOGRAPHY

[76] A. Nyström. When words are not enough an evaluation of character n-grams
and function words in author identification of musical artists. Master’s thesis,
Department of Computer Science, Ume̊a University, Sweden, 2018. https://
www.diva-portal.org/smash/get/diva2:1286107/FULLTEXT01.pdf.

[77] K. Olsen-Medina and J Batalova. College educated immigrants in the United
States. Migrationpolicy.Org, 2020. https://www.migrationpolicy.org/
article/college-educated-immigrants-united-states-2018.

[78] P W. Oman and C. R. Cook. A taxonomy for programming style. In Proceedings
of the 1990 ACM Annual Conference on Cooperation, CSC ’90, page 244–250.
Association for Computing Machinery, 1990.

[79] H. S. Parry Husbands and C. H. Ding. On the use of the singular value de-
composition for text retrieval. Computational information retrieval, 5:145–156,
2001.

[80] D. Pavelec, L.S Oliveira, E.JR Justino, and L.V. Batista. Using conjunctions
and adverbs for author verification. j-jucs, 14(18):2967–2981, oct 2008.

[81] E. Pekalska and R. P.W Duin. Dissimilarity representations allow for building
good classifiers. Pattern Recognition Letters, 23(8):943–956, 2002.

[82] R Core Team. R: A language and environment for statistical computing, 2013.
http://www.R-project.org/.

[83] M. H. Rafee. Computer program categorization with machine learning. Mas-
ter’s thesis, Department of Mathematics and Computer Science, University of
Lethbridge, Lethbridge, AB, 2017.

[84] H.G Seashore. Women are more predictable than men. Journal of Counseling
Psychology, 9(3):70–261, 1962.

[85] H. Sharma and S. Kumar. A survey on decision tree algorithms of classification in
data mining. International Journal of Science and Research (IJSR), 5(4):2094–
2097, 2016.

[86] E. H Simpson. Measurement of diversity. Nature, 163(4148):688, 1949.

[87] E.H. Spafford and S.A. Weeber. Software forensics: Can we track code to its
authors? Computers and Security, 12(6):585–595, 1993.

[88] E. Stamatatos. Plagiarism detection using stopword n-grams. Journal of the
American Society for Information Science and Technology, 62(12):2512–2527,
2011.

[89] N. Tasnim. Machine learning in the classification of computer code. Master’s the-
sis, Department of Mathematics and Computer Science, University of Lethbridge,
Lethbridge, AB, 2020.

98

https://www.diva-portal.org/smash/get/diva2:1286107/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1286107/FULLTEXT01.pdf
https://www.migrationpolicy.org/article/college-educated-immigrants-united-states-2018
https://www.migrationpolicy.org/article/college-educated-immigrants-united-states-2018
http://www.R-project.org/

BIBLIOGRAPHY

[90] F. J. Tweedie and R. H. Baayen. How variable may a constant be? measures of
lexical richness in perspective. Computers and the Humanities, 32(5):323–352,
1998.

[91] A. K. Uysal and S. Gunal. The impact of preprocessing on text classification.
Information Processing and Management, 50(1):104–112, 2014.

[92] J. T. Wood. Gendered interaction: Masculine and feminine styles of verbal
communication. New York: Wadsworth, pages 18–29, 1995.

99

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation and Contribution
	Organization of Thesis

	Background and Literature Review
	Machine Learning
	Text Mining
	Data Collection
	Data Preprocessing
	Metric/Feature Extraction
	Classification
	 Model Evaluation
	Related Work

	Methodology
	Data Collection
	Document Representation and Preparation
	Metrics/Features Extraction
	Software Metrics
	N-grams
	Similarity Measurement
	Lexical Diversity
	Sociolinguistic Characteristic

	Programming Environment
	Summary

	Experiments and Results
	Experiments
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5
	Experiment 6

	Results
	Experiment 1 Results
	Experiment 2 Results
	Experiment 3 Results
	Experiment 4 Results
	Experiment 5 Results
	Experiment 6 Results

	Discussion
	Performance Discussion of Experiments 1, 2, and 3 on the Github Dataset.
	Accuracy distribution
	Gender-based Analysis
	Region-based Analysis

	Performance Discussion of Experiments 4, 5, and 6 on the Codeforce Dataset.
	Accuracy distribution
	Gender-based Analysis
	Region-based Analysis

	Feature Analysis
	Author Identification using Top-ranked Features
	Word Frequencies

	Conclusion
	Future work

	Bibliography

