
ON THE DETERMINATION OF SPARSE HESSIAN MATRICES USING
MULTI-COLORING

NASRIN HAKIM MITHILA
Bachelor of Science, Military Institute of Science and Technology, 2012

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Nasrin Hakim Mithila, 2016

ON THE DETERMINATION OF SPARSE HESSIAN MATRICES USING
MULTI-COLORING

NASRIN HAKIM MITHILA

Date of Defence: December 20, 2016

Dr. Shahadat Hossain
Supervisor Professor Ph.D.

Dr. Daya Gaur
Committee Member Professor Ph.D.

Dr. Robert Benkoczi
Committee Member Associate Professor Ph.D.

Dr. Howard Cheng
Chair, Thesis Examination Com-
mittee

Associate Professor Ph.D.

Dedication

To

My family.

iii

Abstract

Efficient determination of large sparse Hessian matrices leads to solving many optimization

problems. Exploiting sparsity and symmetry of the Hessian matrix can reduce the number

of function evaluations required to determine the matrix. This sparse matrix determination

problem can be posed as a graph coloring problem. Graph formulation of the problem using

an appropriate model can lead to a better exposition of the matrix compression heuristics.

iv

Acknowledgments

I would like to express my gratitude to everyone who have encouraged and guided me

throughout this thesis work.

First and foremost, I would like to give my utmost thanks and appreciation to my su-

pervisor, Dr. Shahadat Hossain, for his continuous guidance, helpful suggestions, and per-

sistent encouragement throughout the journey of my MSc program.

I would also like to express sincere appreciation and obligation to my supervisory com-

mittee members, Dr. Daya Gaur and Dr. Robert Benkoczi for there encouragement and

insightful advice.

I am grateful to my parents, friends and fellow graduate students for their inspiration

and support.

v

Contents

Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Our Contribution . 2
1.2 Thesis organization . 3

2 Preliminaries 5
2.1 Newton’s Method for Unconstrained Minimization 5
2.2 Computing Partial Derivatives . 6

2.2.1 Gradient . 7
2.2.2 Finite Difference Approximation 8
2.2.3 Approximating the Hessian . 8
2.2.4 Automatic Differentiation . 9
2.2.5 Forward Mode . 11
2.2.6 Reverse Mode . 11

2.3 Efficient Determination of Sparse and Structured Derivatives 12
2.3.1 Direct or Substitution Partition . 13
2.3.2 Unidirectional or Bidirectional Partition 15
2.3.3 Symmetric or Nonsymmetric Partition 17

3 Graph Models for Derivative Matrix Determination 18
3.1 Graph Terminologies . 18
3.2 Graph Coloring . 19

3.2.1 Graph Coloring Methods . 19
3.3 Graph Formulation of Matrix Partitioning Problem 21

3.3.1 Graph Models for Matrix Partitioning Problem 21
3.3.2 Adjacency Graph . 22
3.3.3 Bipartite Graph . 23
3.3.4 Column Intersection Graph . 23
3.3.5 Pattern Graph . 24

3.4 Comparative Study of Graph Models for Matrix Partitioning Problem . . . 24
3.4.1 Graph Models . 24
3.4.2 Graph size . 26
3.4.3 Representation . 27

vi

CONTENTS

3.4.4 Implementation . 27
3.4.5 Versatility . 28

4 Determination of Hessian Matrix 30
4.1 Problem Definition . 30

4.1.1 Compression-Reconstruction for matrix determination 30
4.1.2 Symmetric Direct Cover . 31

4.2 Algorithm for Symmetric Direct Cover . 36
4.3 Data Structure . 39

4.3.1 Compressed Storage . 39

5 Numerical Experiments 41
5.1 Test Data Sets . 41
5.2 Test Environment . 46
5.3 Test Results . 46

6 Conclusion and Future works 52
6.1 Conclusion . 52
6.2 Future Direction . 52

Bibliography 53

vii

List of Tables

5.1 Matrix Data Set - 1 . 41
5.2 Matrix Data Set - 2 . 42
5.3 Matrix Data Set - 3 . 44
5.4 Matrix Data Set - 4 . 45
5.5 Graph coloring for data set 1 . 47
5.6 Graph coloring for data set 2 . 48
5.7 Graph coloring for data set 3 . 50
5.8 Graph coloring for data set 4 . 50

viii

List of Figures

2.1 Computational Graph . 10
2.2 Column Partitioning . 16
2.3 Row Partitioning . 16
2.4 Bidirectional Partitioning . 16

3.1 Sparse Symmetric Matrix . 22
3.2 Adjacency Graph . 22
3.3 Bipartite Graph . 23
3.4 Column Intersection Graph . 23
3.5 Pattern Graph . 24
3.6 Distance-1 coloring of Column Intersection Graph 25
3.7 Graph coloring of Adjacency Graph . 25
3.8 Distance-2 coloring of Bipartite Graph . 26

4.1 Sparse Hessian Matrix . 32
4.2 Pattern graph . 32
4.3 Adjacency Graph . 34
4.4 Star coloring of [34] . 34
4.5 Star coloring of [17] . 35
4.6 4-Multi-Coloring of pattern graph . 35
4.7 Pattern graph coloring . 36
4.8 Seed Matrix . 36
4.9 Visualizing steps of Algorithm 1 . 38
4.10 CCS data structure of sparse matrix . 40
4.11 CRS data structure of sparse matrix . 40

5.1 Sparse Matrix, Name:can 715, Dimensions: 715 × 715, 6665 nonzero
elements shown in black, Source: [2] . 42

5.2 Sparse Matrix, Name:dwt 419, Dimensions: 419 × 419, 3563 nonzero
elements shown in black, Source: [2] . 44

5.3 Sparse Matrix, Name:lshp1561, Dimensions: 1561 × 1561, 6121 nonzero
elements shown in black, Source: [2] . 45

5.4 Sparse Matrix, Name:jagmesh9, Dimensions: 1349 × 1349, 5225 nonzero
elements shown in black, Source: [2] . 47

ix

Chapter 1

Introduction

Many algorithms in optimization and partial differential equations require the repeated eval-

uation of gradient, Jacobian or Hessian matrices. These derivative matrices can be estimated

through Automatic or Algorithmic Differentiation (AD) or Finite Differencing (FD) where

the cost involved in computing is proportional to the number of columns in the matrix.

Sparsity and symmetry in the derivative matrices can be exploited to solve problems eco-

nomically: much faster and using far less memory than if all the entries of a matrix were

stored and took part in explicit computations. It is very crucial for large-scale compu-

tational problems arising in structural design, circuit analysis, semiconductor modeling,

and many other areas where solving problems is not computationally feasible without any

sparse techniques. Taking the effective advantage of the structure of a sparse matrix requires

a combination of numerical and combinatorial methods (graph algorithms and related data

structures).

In a compression-reconstruction method, computing the sparse Jacobian or Hessian matrix,

whose sparsity pattern is known a priori, involves partitioning the columns of the matrix

into the fewest groups such that the nonzero unknowns in each group can be determined

uniquely by a matrix-vector product of the form Ad, where A is the matrix to be determined

and d is a direction determined by the columns in a group [13, 34, 24, 25].

For a twice continuously differentiable function f : Rn 7→ R it is usual for the second

derivative matrix to have many zero elements in known positions with large n [33]. In

this instance, efficient approach is to estimate second derivatives rather than evaluating the

1

1.1. OUR CONTRIBUTION

function with its derivatives in each iteration for unconstrained optimization. In this thesis

we are concerned with the determination of symmetric Hessian matrices ∇ f ′(x) i.e., where

∇ f is the gradient of f .

Sparse matrix partitioning problems are often modeled and effectively solved using special-

ized graph coloring problems and their algorithms. A natural representation of the structure

of a Hessian matrix is to use its adjacency graph. There has been significant work on

symmetry-exploiting determination methods where the vertices are partitioned into small

number of groups or color classes such that the nonzero unknowns in each group can be

determined directly or indirectly, via FD or AD [10, 15, 16, 29, 34]. Gebremedhin et al [15]

present several heuristics for star coloring (direct determination) and acyclic coloring (de-

termination via substitution) and analyze the performance of the implemented algorithms

on an extensive test suite. Hossain and Steihaug [24] propose the pattern graph as a unifying

framework for methods that exploit the sparsity by matrix compressions: row compression,

column compression, or a combination of the two in sparse Jacobian matrix computation.

From an algorithmic view point the structural correspondence between the matrix and its

pattern graph leads to a better exposition of the compression heuristics and their efficient

computer realization.

1.1 Our Contribution

In this thesis we assume that the sparsity pattern of the Hessian matrix is known and

the problem lies in partitioning the columns of the matrix into groups to determine each

nonzero entries of the matrix. We use direct method as the evaluation scheme which cor-

responds to solving a diagonal system of equations. We employ pattern graph model to

formulate Hessian matrix determination problem. The underlying mapping is defined on

the nonzero unknowns of the Hessian matrix such that sparsity can be exploited at element

level. Further, the mapping induces “multi-coloring” i.e., nonzero unknowns can assume

more than one color or belong to more than one group as long as each non-zero can be

2

1.2. THESIS ORGANIZATION

determined directly. We use data structures where the sparse matrix is represented using

Compressed Row Storage (CRS) and Compressed Column Storage (CCS) storage scheme

to implement the direct determination algorithms. Results from experiments on various

test matrices demonstrate the effectiveness of our method. Specific contributions are given

below:

1. We extend the definition of pattern graph in [24] to incorporate symmetry.

2. We show that the symmetric direct cover is equivalent to a multi-coloring problem on

the pattern graph.

3. We propose an algorithm to identify the reduced seed matrix corresponding to a direct

cover for Hessian matrix H. Each nonzero element is determined directly from this

cover.

4. We present results of numerical testing using a suite of large-scale practical problem

instance to validate our approach.

Parts of the work contained in this thesis have been published in [21].

1.2 Thesis organization

Including this chapter, there are five more chapters in this thesis organized as follows.

In Chapter 2, we describe Newton’s method to solve unconstrained minimization prob-

lem. We review some basic concepts used in this thesis and a finite difference approxima-

tion scheme that is suitable for exploiting known sparsity is introduced. For completeness

we also describe Automatic Differentiation (AD), which is also applicable to our method

to avoid truncation error. Finally we describe the variants of matrix partitioning problem.

In Chapter 3, we provide some basic graph theory definitions and notations. This is

followed by a brief description of contemporary graph formulations for large scale sparse

matrix determination problem and a detailed comparison among them.

3

1.2. THESIS ORGANIZATION

In Chapter 4, we describe the main result of our work for determining symmetric direct

cover and the proposed algorithm to determine the Hessian matrix.

In Chapter 5, we provide experimental results that demonstrate the efficacy of our algo-

rithms.

Finally in Chapter 6, we provide concluding remarks and directions for future research

in this area.

4

Chapter 2

Preliminaries

In this chapter, we give the motivation to determine Hessian matrices, discuss about various

sparse matrix determination problems and review mathematical preliminaries necessary for

this thesis.

2.1 Newton’s Method for Unconstrained Minimization

Derivative information is needed in the solution of systems of nonlinear equations and

in the unconstrained minimization problems. We consider the unconstrained minimization

problem

min
x∈Rn

f (x)

At point x = x, f (x) can be approximated by:

q(x) = f (x)+∇ f (x)T (x− x)+
1
2
(x− x)T H(x)(x− x) (2.1)

which is the quadratic Taylor expansion of f (x) where ∇ f (x) is the first derivative (the

gradient vector) of f (x) and H(x) = ∇2 f (x) is the second derivative (the Hessian matrix)

of f (x). The quadratic function q(x) is minimized by solving ∇q(x) = 0. We have to solve

∇ f (x)+H(x)(x− x) = 0 (2.2)

5

2.2. COMPUTING PARTIAL DERIVATIVES

since the gradient of q(x) is:

∇q(x) = ∇ f (x)+H(x)(x− x) (2.3)

Equation (2.2) yields,

x− x =−H(x)−1
∇ f (x) (2.4)

Equation (2.4) is commonly called the Newton step. This leads to the following algorithm

for solving the above minimization problem.

Algorithm: Newton’s Method
Input: Given an initial approximation x0

1 for k← 0 to max iter do
2 Solve sk = −H(xk)

−1∇ f (xk)
3 if sk = 0 then
4 break;

5 Set xk+1← xk + sk

One of the main difficulties in using Newton’s method on practical problems is the need

for derivative information at each iteration. Fortunately in many large-scale problems, the

Hessian matrix is sparse or structured. By exploiting this sparsity and symmetry, we can

efficiently determine the Hessian matrix and thus significantly reduce the overall computa-

tional cost of the solution process.

2.2 Computing Partial Derivatives

In this section, we introduce some basic terminologies related to this thesis and discuss

different methods for obtaining derivative information. In section 2.1 we have observed that

the gradient and Hessian are useful quantities in modeling and solving nonlinear problems.

In practical problems the analytical derivatives are usually unavailable. For example the

function for which the derivatives are sought is available in the form of a “black-box” i.e.

given an input vector, the function gives an output vector which represents the function

6

2.2. COMPUTING PARTIAL DERIVATIVES

evaluated at the input vector.

2.2.1 Gradient

Let f :Rn 7→R be a twice continuously differentiable function. The gradient of function

f (x1,x2,x3, . . . ,xn) is denoted by,

∇ f =
∂ f
∂x1

e1 + · · ·+
∂ f
∂xn

en =


∂ f
∂x1

...

∂ f
∂xn

 (2.5)

where ∂ f
∂xi

are the partial derivatives of f and the ei is the ith unit coordinate vector, that is,

the vector whose elements are all 0 except for 1 in the ith position.

Hessian matrix is a square matrix of second order partial derivatives of a scalar-valued

function f .

H =


∂ f
∂x1

(
∂ f
∂x1

)
· · · ∂ f

∂x1

(
∂ f
∂xn

)
...

∂ f
∂xn

(
∂ f
∂x1

)
· · · ∂ f

∂xn

(
∂ f
∂xn

)

=


∂2 f
∂x2

1
· · · ∂2 f

∂x1xn
...

∂2 f
∂xnx1

· · · ∂2 f
∂x2

n

 (2.6)

The second-derivative is independent of the order in which derivatives are taken. Hence,

H(i, j) = H(j, i) for every pair (i, j) and the Hessian is a symmetric matrix.

For example, let f (x1,x2) = x2
1 +3x1x2

2 +5x2

The gradient is,

∇ f (x1,x2) =

2x1 +3x2
2

6x1x2 +5



7

2.2. COMPUTING PARTIAL DERIVATIVES

The Hessian matrix is

H(x1,x2) =

 2 6x2

6x2 6x1


2.2.2 Finite Difference Approximation

Finite differencing (FD) is an approach to the calculation of approximate derivatives

whose motivation comes from Taylor’s theorem. For instance, we can get an approximation

of the partial derivative of f with respect to the ith variable xi using the forward difference

formula,
∂ f
∂xi
≈ f (x+ εei)− f (x)

ε
(2.7)

where i = 1,2, ...,n, ei is the ith unit coordinate vector and ε > 0 is small. Assuming f has

already been evaluated, we can estimate the partial derivatives in the ith column of matrix A

through the additional function evaluation f (x+ εei). Then, we will need n extra function

evaluations to determine A if the sparsity information is not exploited.

Finite difference approximation is easy to implement. To obtain an approximation to the

derivatives, we just need call the subroutine that implements the mathematical function

without accessing the function code. But it is prone to numerical instability. If ε is too

large, then approximation may not be accurate due to truncation error. Also if ε is too small,

then the accuracy is compromised due to rounding errors. Truncation error is the error that

is caused by neglecting the higher order terms in mathematical series and approximating

it to a finite sum. Rounding error is caused by performing arithmetic operations in fixed

precisions. For detail information on errors in FD method we refer to [33].

2.2.3 Approximating the Hessian

It is possible to obtain the Hessian matrix by applying finite difference approximation

techniques for the vector function ∇ f . In many algorithms, each iteration requires only

the Hessian-vector product ∇2 f (x)p, for a given vector p instead the knowledge of the full

8

2.2. COMPUTING PARTIAL DERIVATIVES

Hessian matrix. We can obtain an approximation to this matrix-vector product by Taylor’s

theorem. When second derivatives of f exist and are Lipschitz continuous near x, we have

∇
2 f (x)p≈ ∇ f (x+ εp)−∇ f (x)

ε
(2.8)

For the case in which even gradients are not available, we can use Taylor’s theorem once

again for approximating the Hessian that use only function values [33]. For the sparse Hes-

sian matrix, any estimate of the element ∇2 f (xi j) =
∂2 f (x)
∂xi∂x j

is also an estimate of its sym-

metric counter part ∇2 f (x ji) because of symmetry. By exploiting symmetry, it is possible

to estimate the entire Hessian by evaluating ∇ f and using the formula 2.8.

2.2.4 Automatic Differentiation

Automatic differentiation (AD) is a chain rule based technique used for computing

derivatives of a function with respect to the given arguments without incurring truncation

error [19]. According to chain rule, if f is a function of the vector y ∈ Rm, which in turn is

a function of the vector x∈Rn, we can write the derivative of f with respect to x as follows:

∇x f (y(x)) =
m

∑
i=1

∂ f
∂yi

∇yi(x) (2.9)

As an example, consider the function

f = x2
1 sin(x3)+ ex1x2 (2.10)

The evaluation of this function can be broken down into its elementary operations. Figure

2.1 shows the ordering associated with these operations. For instance, the multiplication

x4 ∗ x5 can follow the multiplication of x1 ∗ x1.

9

2.2. COMPUTING PARTIAL DERIVATIVES

Figure 2.1: Computational Graph

The steps involved in computation of f is given as a sequence of arithmetic operations

x4 = x1 ∗ x1,

x5 = sinx3,

x6 = x4 ∗ x5

x7 = x1 ∗ x2

x8 = ex7

x9 = x7 + x8

Here, x4,x5, . . . distinguished from the independent variables x1,x2,x3, contain the results

of intermediate computations. The final node x9 contains the function value f (x). For an

directed arc from i to j, node j is the child of node i and node i is the parent of node j. Any

node can be evaluated when the values of all its parents are known, so computation flows

through the graph from left to right. It is possible to form different sequence of operations

for the same function f . After forming a sequence, we can apply rules of differentiation to

compute derivative of a function with respect to the independent variables x1, x2 and x3.

There are two basic modes of automatic differentiation: the forward and reverse modes.

10

2.2. COMPUTING PARTIAL DERIVATIVES

2.2.5 Forward Mode

In forward mode, intermediate partial derivatives are accumulated in the same order as

the function values are computed. By the chain rule, the gradient of each intermediate vari-

ables xk,k = 4,5, . . . ,9 of the function f above with respect to three independent variables

x1,x2,x3 can be written as

∇xk =
3

∑
j=1

∂xk

∂x j
Φk (2.11)

where xk = Φk(x1,x2,x3). We can find the corresponding value of ∇xk as soon as the value

of xk at any node is known. For instance, to calculate ∇x7, using the chain rule we can write

∇x7 =
∂x7
∂x1

∇x1 +
∂x7
∂x2

∇x2 = x2∇x1 + x1∇x2

assuming the values of x1,∇x1,x2 and ∇x2 are known. Applying 2.11, we obtain

∇x7 =
∂x7

∂x1

(3

∑
j=1

∂x1

∂x j
Φ1

)
+

∂x7

∂x2

(3

∑
j=1

∂x2

∂x j
Φ2

)
(2.12)

As the derivatives are computed and combined with other derivatives via the chain rule in

the evaluation steps of forward mode the computational complexity of one pass is propor-

tional to the complexity of the original code.

2.2.6 Reverse Mode

The reverse mode recovers the partial derivatives of f with respect to each independent

variable xi by performing a reverse sweep of the computational graph after the evaluation of

f is complete. The gradient vector ∇ f can be assembled from the partial derivatives at the

end of this process. For any node i, the partial derivative ∂ f
∂xi

can be built up from the partial

derivatives ∂ f
∂x j

corresponding to its child nodes j according to the following formula:

∂ f
∂xi

= ∑
j a child of i

∂ f
∂x j

∂x j

∂xi
(2.13)

11

2.3. EFFICIENT DETERMINATION OF SPARSE AND STRUCTURED DERIVATIVES

Once ∂ f
∂xi

is known for a child node, it is ready to contribute a term to the summation for

each of its parent nodes according to 2.13. The process continues in this way until all nodes

are known.The accumulation of adjoint derivatives are computed in reverse order as the

function values are computed.

Forward mode is more efficient than reverse mode for functions f : Rn→Rm with m much

larger than n as only n passes are necessary, where reverse accumulation is more efficient

than forward accumulation with n much larger than m as only m passes are necessary.

The Newton’s method algorithm of section 2.1 requires the evaluation of the second deriva-

tive matrix of the function and solution of the Newton equations for the Newton step sk

at each iteration. The jth column of the Hessian ∇2 f (x) can be approximated using the

formula (2.8), by setting the vector p = εe j, j = 1,2, . . . ,n. But then, each evaluation of the

Hessian will require n gradient evaluations. This can be computationally prohibitive if n is

large and the function is highly nonlinear (e.g. containing components that are transcen-

dentals). Additionally, as n grows large, the method becomes impractical from data storage

viewpoint. However, many large problems have sparse Hessians. In such cases, only the

nonzero entries are explicitly stored and it is possible to significantly reduce the number of

gradient evaluations by exploiting known sparsity and the symmetry of the Hessian.

2.3 Efficient Determination of Sparse and Structured Derivatives

In this section we review methods that exploit sparsity and/or symmetry for efficient

determination of Hessian matrices. The central idea shared by these methods is the notion

of structural orthogonality and the combinatorial problem of grouping of columns and/or

rows.

Given the sparsity structure of a matrix A ∈ Rm×n, matrix partitioning problem is to obtain

vectors d1,d2, . . . ,dp so that the elements of the given matrix A are uniquely determined

from the products Ad1,Ad2, . . . ,Adp with p as small as possible. This can be achieved by

partitioning the columns into structurally orthogonal columns i.e. no two columns from

12

2.3. EFFICIENT DETERMINATION OF SPARSE AND STRUCTURED DERIVATIVES

the same group have non-zeros in the same row position. Then, the non-zeros in each

group can be determined by one finite differencing or by the forward mode of automatic

differentiation.

Curtis, Powell and Reid [13] were the first to address this problem. They noted that sparsity

of the Jacobian matrices can be exploited if the matrix can be partitioned into groups such

that columns in each group are structurally orthogonal to each other. The appropriate notion

of structural independence and the corresponding partitioning problem depends on whether

the derivative matrix to be computed is symmetric or unsymmetric, whether the evaluation

scheme employed is direct or substitution-based, and whether a unidirectional (1d) partition

or a bidirectional (2d) partition is used.

2.3.1 Direct or Indirect Partition

In direct determination method, each nonzero element of a derivative matrix A can be

read-off from some row of a matrix-vector product or a vector-matrix product without any

further arithmetic operation. Using the direct evaluation scheme, the partitioning problem

can be posed as to find a n× p matrix S or q×m matrix W T so that the product AS or W T A

can be used to define a diagonal system of equations where the unknowns are the nonzero

entries of A and the right-hand side is the result obtained by p FD calculation or p passes

of the forward mode of AD for matrix-vector product AS and q passes of the reverse mode

of AD for vector-matrix product W T A. The following example will demonstrate direct

determination method. Let

13

2.3. EFFICIENT DETERMINATION OF SPARSE AND STRUCTURED DERIVATIVES

A =



a11 a12 0 a14 0 0

0 0 a23 a24 a25 0

a31 0 0 a34 0 0

0 a42 0 0 a45 0

0 a52 0 a54 0 a56

0 0 a63 0 0 a66

a71 0 a73 0 0 0



S =



1 0 0

0 1 0

0 1 0

0 0 1

1 0 0

1 0 0


We can determine all the non-zeros of the matrix A by using only three matrix-vector prod-

ucts in column computation. On the other hand, four vector-matrix products will be re-

quired for a row computation if we consider

W =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

1 0 0 0

0 0 0 1


From this example we can see that column computation is more efficient than the row com-

putation in terms of the number of AD passes required to completely determine the matrix.

In a substitution method the unknown elements of the matrix A are determined by solving

a triangular system of equations i.e. the ordering of the non-zeros of A is such that ev-

ery nonzero is determined using formerly computed values. Substitution method usually

require fewer number of function evaluation or AD passes but is subject to numerical insta-

bility [23].

Let us demonstrate this method with the help of an example from [23]. Let

14

2.3. EFFICIENT DETERMINATION OF SPARSE AND STRUCTURED DERIVATIVES

A =


a11 0 a13

a21 a22 0

0 a32 a33

 S =


1 0

1 1

0 1


The second row of A can be determined by solving for a21 and a22 in the following reduced

system

[
a21 a22 0

]


1 0

1 1

0 1

 =
[

b21 b22

]

Eliminating row 3 of S and transposing the system, we get 1 1

0 1


 a21

a22

 =

 b21

b22


which is an upper triangular system. The non-zeros of the other two rows of A can be found

in the similar way. For this instance, direct method will require three AD passes, while

allowing substitution as shown above, the nonzero entries can be determined with two AD

passes.

Powell and Toint [34] have used substitution method for computing Hessian matrices based

on acyclic coloring. Coleman and Moré [10] have showed that star coloring models the Hes-

sian matrix determination problem via direct method. The acyclic coloring model has been

used by Coleman and Cai [7] to represent the problem in a substitution-method. Hossain

and Steihaug [23] have applied a variant of substitution method for computing a Jacobian

matrix which works in two steps. First, it finds a partition of the columns into groups of

structurally orthogonal columns and then it merges the pair of successive groups to get a

column grouping that allows overlaps.

2.3.2 Unidirectional or Bidirectional Partition

A partitioning scheme in which either the columns or the rows are partitioned into

structurally orthogonal groups is known as unidirectional partitioning.

15

2.3. EFFICIENT DETERMINATION OF SPARSE AND STRUCTURED DERIVATIVES

Matrix A can be partitioned into two column groups such that all the non-zeros of A can be

obtained from the product AS as shown in Figure 2.2.

A =


a11 0 0 0 0
a21 a22 0 0 0
a31 0 a33 0 0
a41 0 0 a44 0
a51 0 0 0 a55

 S =


1 0
0 1
0 1
0 1
0 1


Figure 2.2: Column Partitioning

In Figure 2.3, we see that by partitioning the matrix A into two row groups, we can obtain

all the non-zeros of A from the product W T A.

A =


a11 a12 a13 a14 a15

0 a22 0 0 0
0 0 a33 0 0
0 0 0 a44 0
0 0 0 0 a55

W T =
[

1 0 0 0 0
0 1 1 1 1

]

Figure 2.3: Row Partitioning

For a sparse matrix A, if seed matrices S∈Rn×p and W ∈Rm×q can be obtained such that all

the non-zeros of A can be determined uniquely from the products B = AS and CT =W T A,

then the resulting partitioning is known as bidirectional partitioning.

Considering Figure 2.4, we notice that unidirectional partitioning (either row or column)

will require at least 5 groups. But if we determine row 1 and column 1 separately and

collect the remaining non-zeros in one column(row) group then we require only 3 groups.

A =


a11 a12 a13 a14 a15

a21 a22 0 0 0
a31 0 a33 0 0
a41 0 0 a44 0
a51 0 0 0 a55

 S =


1 0
0 1
0 1
0 1
0 1

W T =
[

1 0 0 0 0
]

Figure 2.4: Bidirectional Partitioning

For Hessian matrices, there is no advantage in considering a bidirectional partition due to

symmetry.

16

2.3. EFFICIENT DETERMINATION OF SPARSE AND STRUCTURED DERIVATIVES

2.3.3 Symmetric or Nonsymmetric Partition

Powell and Toint [34] extended the approach of Curtis, Powell and Reid in 1979 for

Hessian matrices. They showed that the number of function evaluations can be reduced fur-

ther by exploiting symmetry in addition to exploiting sparsity using structurally orthogonal

partitions in case of Hessian matrix estimation using finite differences.

Graph coloring have been used for efficient computation of Hessians. Mostly used models

are star and acyclic coloring. In a star coloring, every pair of adjacent vertices receives

distinct colors (a distance-1 coloring), and every path of four vertices uses at least three

colors. In an acyclic coloring, every pair of adjacent vertices receives distinct colors, and

every cycle uses at least three colors. Let

A =



a11 a12 a13 a14 a15

a21 a22 0 0 0

a31 0 a33 0 0

a41 0 0 a44 0

a51 0 0 0 a55


S =



1 0

0 1

0 1

0 1

0 1


With the knowledge of sparsity and exploiting symmetry, the non-zeros of A can be read

off from B.

B =



a11 a12 +a13 +a14 +a15

a21 a22

a31 a33

a41 a44

a51 a55



17

Chapter 3

Graph Models for Derivative Matrix
Determination

In this chapter we give graph notations followed by the methods used to represent a matrix

partitioning problem into graph coloring problems. We also discuss various graph models

and the pattern graph model we used in this thesis.

3.1 Graph Terminologies

A graph G is an ordered pair (V,E), where V is a finite and nonempty set of vertices

and E is a set of edges. In an undirected graph, an edge is an unordered pair of vertices

whereas for a directed graph the pair of vertices is ordered, i.e. an edge (u,v) corresponds

to the arc from u to v. A graph allowing multiple edges between two vertices is called

multigraph. Self-loop or loop is an edge between a vertex and itself. An undirected graph

is known as a simple graph if it contains no multiple edges or loops. We have considered

simple undirected graphs throughout this thesis.

Two vertices u and v are adjacent if (u,v) ∈ E, otherwise they are called nonadjacent. If

vertex u is one of edge e’s endpoints, u is incident to e. The degree of a vertex v, denoted

by deg(v) is the number of edges incident on it.

A path of length l is a sequence of distinct vertices v1,v2, . . . ,vl+1 in G such that vi is

adjacent to vi+1, for 1≤ i≤ l. If the shortest path length between two distinct vertices is at

most k then they are said to be distance-k neighbors.

A subgraph G′ = (V ′,E ′) of a graph G is a graph for which V ′ ⊆ V and E ′ ⊆ E. For any

18

3.2. GRAPH COLORING

set of vertices V ′ ⊆V , the graph induced by V ′ is the subgraph of G whose vertex set is V ′

and whose edges are the edges of G with both endpoints in V ′. The graph induced by V ′ is

denoted by G[V ′].

3.2 Graph Coloring

Graph coloring is an assignment of colors or labels to the vertices of the graph such that

no two adjacent vertices receive the same color.

A p-coloring of a graph G is a function Φ : V 7→ {1,2, .., p} such that Φ(u) 6= Φ(v) if

(u,v) ∈ E. The chromatic number χ(G) is the smallest p for which G has a p-coloring. A

coloring that requires only χ(G) colors to color all the vertices of G is known as optimal

coloring.

A Multi-coloring is an assignment where each vertex can be assigned with more than one

color. A distance-k coloring of a graph is a p-coloring whenever u and v are distance-k

neighbors. Lin and Skiena [28] proved that the distance-k coloring problem is NP-hard for

every k ≥ 1.

Both the star and the acyclic coloring has been proved to be NP-hard by Coleman and Moré

[10] and Coleman and Cai [7] respectively. Johnson [26] showed that the approximation

ratio of the first approximation algorithm for distance-1 coloring is O(n 1
logn) where n is the

number of vertices. According to [3], distance-1 coloring can not be approximated within

O(n1/7−ε) for any ε > 0, unless P = NP.

3.2.1 Graph Coloring Methods

The vertex coloring problem (VCP) is known to belong to the class of problems called

NP-hard problems [31]. The VCP problem arises in numerous practical applications and

the problem instances are large such that optimal coloring is impractical. On the other hand,

VCP and its many variants are being actively and vigorously researched for their theoretical

properties and their real-life applications.

19

3.2. GRAPH COLORING

There are heuristic techniques as well as exact methods to color the vertices of the graph.

We have used heuristic approach to solve the partitioning problem as it yields a result in

polynomial time. We also want to measure how our heuristic based algorithm differs from

the exact coloring techniques. The following sections will provide a short description of

both the techniques.

Exact Methods

Algorithms that give optimal solution for the problem are called exact methods. No

other algorithm can guarantee better solution than this. Exact methods are hard and often

not solvable in polynomial time. For example, the algorithm developed by Brélaz [4] works

by subdividing the problem into subproblems. Each subproblem corresponds to a partial

coloring of the graph. Depending on the number of colors used in the partial coloring and

the upper bound on the needed number of colors subproblems are updated. Mehrotra and

Trick [30] proposed a Branch and Price algorithm based on the VCP-Set Covering formu-

lation (VCP-SC). According to VCP-SC, VCP can be formulated through the following

model:

min ∑
s∈S

xs, (3.1)

∑
s∈S:i∈s

xs ≥ 1 i ∈V, (3.2)

xs ∈ {0,1} s ∈ S. (3.3)

where a binary variable xs is associated with each independent set (column) s ∈ S having

value 1 iff the vertices of s receive the same color. The objective function 3.1 minimizes the

total number of independent sets (number of colors) used. Constraint 3.2 state that every

vertex i in the graph must belong to at least one independent set (i.e., must receive at least

one color) where constraint 3.3 impose variables xs to be binary.

20

3.3. GRAPH FORMULATION OF MATRIX PARTITIONING PROBLEM

Heuristic Methods

Algorithms which give solution more quickly than classical methods but do not guaran-

tee an optimal solution of the problem are called heuristic or inexact methods.The perfor-

mance measurement for these methods is usually done by benchmarking i.e. measuring the

quality of performance on different sets of inputs. The weakness of this performance mea-

suring is that it is difficult to predict the results of arbitrary sets of inputs. The first heuristic

approaches were mostly based on greedy algorithms. Greedy algorithm applies some tech-

nique to choose the next vertex to color and the color to use while coloring the vertices

sequentially of the graph. For instance, in the greedy version of DSATUR algorithm by

Brélaz [4], vertex v is chosen for which |dcolor(v)| is maximum and colored with the first

available color at each iteration having the initial graph uncolored. Here, dcolor(v) for an

uncolored vertex is defined as dcolor(v) = {Φ(v′)|(v,v′) ∈ E and v′ is colored}. Recursive

Largest First algorithm proposed by Leighton [27] colors the vertices, one class at a time,

using a greedy approach. Culberson and Luo proposed the Iterated Greedy Algorithm [12].

It iteratively colors the graph by means of the sequential algorithm, in such a way that at

each iteration the number of used colors is not increased.

Surveys by Galinier and Hertz [14] and by Chiarandini et al. [6] review the algorithms for

the VCP based on local search. Local search requires a set of candidate solutions corre-

sponding to partial colorings or complete colorings, a neighborhood relation and solution

evaluating function. Local search algorithms for the VCP can be partitioned in three fami-

lies: fixed k-complete colorings, fixed k-partial colorings and variable k-complete colorings

[6].

3.3 Graph Formulation of Matrix Partitioning Problem

3.3.1 Graph Models for Matrix Partitioning Problem

Graphs are used to model and solve many combinatorial problems. It is very crucial to

choose a graph type which can accurately represent the underlying problem and enable the

21

3.3. GRAPH FORMULATION OF MATRIX PARTITIONING PROBLEM

efficient design and computer implementation of relevant algorithms. Several graph mod-

els for partitioning computational tasks in a parallel computing environment are considered

in [5]. There may arise some problem while using standard graph model for partitioning

problem like optimization of an inaccurate cost metric and missing information e.g., un-

symmetric dependencies. These can be circumvented by employing more versatile models

such as hypergraphs and bipartite graphs [5]. We will review different graph representa-

tions of the sparsity structure of matrices and the motivation towards our choice of graph

model for the Hessian matrix determination problem in the following subsections.

3.3.2 Adjacency Graph

The adjacency graph of A is G(A) = (V,E) where there is a vertex v j ∈ V for each

column j = 1,2, . . . ,n of A(:, j) and an edge (vi,v j) ∈ E corresponds to each nonzero ai j in

A for 1 ≤ i ≤ n,1 ≤ j ≤ n, i 6= j. Graph G(A) exploits the symmetry in A as both nonzero

entries ai j and a ji are represented by a single edge (vi,v j). Figure 3.1 shows a symmetric

matrix and the associated adjacency graph in Figure 3.2.

A =


a11 a12 a13 a14 a15

a21 a22 . . .

a31 . a33 . .

a41 . . a44 .

a51 . . . a55


Figure 3.1: Sparse Symmetric Matrix

v1

v2

v3

v5

v4

Figure 3.2: Adjacency Graph

22

3.3. GRAPH FORMULATION OF MATRIX PARTITIONING PROBLEM

3.3.3 Bipartite Graph

The bipartite graph of matrix A denoted by Gb(A) = (Vc∪Vr,E) where there is a column

vertex v j ∈Vc for each column j = 1,2, . . . ,n of A(:, j) and a row vertex vi ∈Vr for each row

i = 1,2, . . . ,m of A(i, :);(vi,v j) ∈ E if and only if ai j 6= 0. For example, Figure 3.3 shows

the bipartite graph representation of the matrix from 3.1.

r1

r2

r3

r4

r5

c1

c2

c3

c4

c5

Figure 3.3: Bipartite Graph

3.3.4 Column Intersection Graph

The column intersection graph of matrix A denoted by GI(A) = (V,E) is where there is

a vertex v j ∈V for each column j = 1,2, . . . ,n of A(:, j) and (v j,vl) ∈ E, j 6= l if and only if

ai j 6= 0 and ail 6= 0 for some index i. For example, Figure 3.4 shows the column intersection

graph with the corresponding matrix at Figure 3.1.

v1

v2 v5

v4v3

Figure 3.4: Column Intersection Graph

23

3.4. COMPARATIVE STUDY OF GRAPH MODELS FOR MATRIX PARTITIONING
PROBLEM

3.3.5 Pattern Graph

A lateral neighbor of vi j is vi j′ such that the difference j′− j is the smallest if j′ > j or

such that the difference j− j′ is the smallest if j > j′ among all such indices j′ in row i.

A vertical neighbor of vi j is its lateral neighbor in AT . The pattern graph associated with

matrix A is GP (A) = (V,E), where V = {vi j | ai j 6= 0, i = 1,2, . . . ,m, j = 1,2, . . . ,n} and

{vi j,vi′ j′} ∈ E if ai j andai′ j′ are lateral or vertical neighbors.

Figure 3.5 shows the pattern graph representation of the above mentioned symmetric ma-

trix.

v11 v12 v13 v14 v15

v21 v22

v31 v33

v41 v44

v51 v55

Figure 3.5: Pattern Graph

3.4 Comparative Study of Graph Models for Matrix Partitioning Prob-

lem

3.4.1 Graph Models

Coleman and More [10] modeled the matrix partitioning problem as a distance-1 graph

coloring problem. They used column intersection graph to represent the matrix. For the

24

3.4. COMPARATIVE STUDY OF GRAPH MODELS FOR MATRIX PARTITIONING
PROBLEM

v1

v2 v5

v4v3

Figure 3.6: Distance-1 coloring of Column Intersection Graph

column intersection graph of (3.4) the distance-1 coloring will require 5 colors as shown in

Figure 3.6. In their proposed algorithm, they ordered the vertices of the column intersec-

tion graph using some ordering heuristics and then applied the algorithm on these ordered

vertices [8].

In 1983, McCormick [29] introduced a distance-2 graph coloring model. He used adja-

cency graph representation of the underlying symmetric matrix which requires that in every

path of three vertices in the graph, all of them will receive distinct colors. Figure 3.7 shows

v1

v2

v3

v5

v4

Figure 3.7: Graph coloring of Adjacency Graph

the graph coloring of the adjacency graph from Figure 3.2.

Hossain and Steighaug [22], Coleman and Verma [11] independently proposed bipartite

graph model. Coleman and Verma suggested that it is sufficient to partition subsets of rows

and columns such that A is determined directly. The vertices not involved in the determina-

tion of non-zeros are assigned the neutral color zero. Hossain and Steihaug [22] have used

bipartite model to determine Jacobian matrices with two-sided compression or bidirectional

25

3.4. COMPARATIVE STUDY OF GRAPH MODELS FOR MATRIX PARTITIONING
PROBLEM

determination. For both unidirectional and bidirectional partitioning, bipartite graph model

has been used in [17]. Figure (3.8) shows the distance-2 coloring of (3.3). It is called

r1

r2

r3

r4

r5

c1

c2

c3

c4

c5

Figure 3.8: Distance-2 coloring of Bipartite Graph

partial distance-2 coloring since the row vertex set is left uncolored [17]. Hossain and Stei-

haug [24] have introduced pattern graph model to determine Jacobian matrices. They have

suggested the pattern graph as a unifying framework for methods that exploit sparsity by

matrix compression: unidirectional, bidirectional, or a combination of the two. We extend

the pattern graph model to incorporate symmetry. The graph coloring of pattern graph as-

sociated with a symmetric matrix will be discussed in next chapter.

In sections 3.4.2 through 3.4.5, we elaborate these graph models in terms of size, represen-

tation, implementation and versatility.

3.4.2 Graph size

The size of the graph is an important metric to consider while designing the data struc-

ture for making the matrix storage space efficient. It depends on the sparsity structure of the

given matrix A. For adjacency graph, |V | = n , where n is the number of vertices in A and

|E| = 1
2(nnz(A)− n) with nnz as the number of non-zeros while for bipartite graph Gb(A)

we have |V |= m+n and |E|= nnz. Here, m is the number of row vertices and n is the num-

ber of column vertices in Gb(A). Let ρi be the number of nonzero element in row i. Then

26

3.4. COMPARATIVE STUDY OF GRAPH MODELS FOR MATRIX PARTITIONING
PROBLEM

the size of the column intersection graph can be written as, |V | = n, |E| = O
(

∑
n
i=1 ρ2

i

)
.

For pattern graph |V |= nnz and |E|= 2nnz−m−n.

3.4.3 Representation

An important consideration in choosing a graph for sparse matrix determination prob-

lem is to preserve the structure and sparsity of the matrix. While transforming from graph

into matrix representations, loss of not-so-obvious structural information in the original ma-

trix may result indiscrepancies in the solution. As an example, column intersection graph

of a sparse arrow-head matrix contains all possible edges. Arrow-head matrix is the matrix

where except for the main diagonal, nth column and nth row, all entries all identically zero.

Adjacency graph can only be used for symmetric matrices. Bipartite and pattern graph are

equivalent in representation of the matrix regardless of symmetry.

3.4.4 Implementation

The efficiency of graph algorithms is critically dependent on the data structures used

to represent the graphs. Adjacency list and adjacency matrix are two graph data structures

that are commonly considered in textbook presentation of graph algorithms [35]. More

specifically, for sparse graphs, adjacency list representation of graphs are implemented us-

ing pointer-based linked lists. Many graph operations are characterized by irregular access

to data where data movement through deep memory hierarchy dominates the running time.

The prevalence of multi-core architectures in the recent years with nonuniform memory

access (NUMA) have rendered the data access optimization efforts even more challenging.

An exciting and promising line of research that has been considered in the recent years is to

express and implement basic graph operations with sparse linear algebra [18, 20, 24]. The

pattern graph model makes the connection between sparse derivative matrix determination

and its associated graph problem more explicit such that the underlying computation can be

made structured and cache-friendly [21].

27

3.4. COMPARATIVE STUDY OF GRAPH MODELS FOR MATRIX PARTITIONING
PROBLEM

A data structure consisting two arrays: colind and rowptr seems an efficient one for matrix

representation where colind stores the column indices of the nonzero entries row-by-row

and the later contains the index of the first nonzero element of each row of matrix A stored

in colind array. Except this two, sparsity pattern of AT is explicitly stored in analogous

arrays rowind and colptr. The storage meets the design strategies for sparse linear algebra

implementation [18]. In the column intersection graph distance-1 neighbors v j′ of ver-

tex v j where Φ(v j′) 6= Φ(v j) are computed as j′ = colind(ind j) where ind j = rowptr(i) :

rowptr(i+1)−1, i= rowind(indi), indi = col ptr(j) : col ptr(j+1)−1. For bipartite graph,

distance-2 neighbors v j′ of vertex v j are checked assuming j a column index. For the pat-

tern graph, paths of our interest are vi j ∼ vi j′, j 6= j′, vi j ∼ vi j′ ∼ vi′ j′, i 6= i′, j 6= j′ and

vi j ∼ vi′ j ∼ vi′ j′, i 6= i′, j 6= j′ for vi j corresponding to the nonzero entry ai j where ‘∼’ rep-

resenting a path between two vertices in GP ..

3.4.5 Versatility

Column intersection graph has been used for unidirectional partitioning of sparse Jaco-

bian matrix determination in [9, 17, 25, 32]. For bidirectional partitioning this graph model

requires the concept of neutral color while for bipartite graph model, one set of vertices

(column or row vertices) are left out [17]. Hossain and Steihaug [24] have showed that

pattern graph can be used for both unidirectional and bidirectional Jacobian matrix parti-

tioning problems.

In this thesis we are concerned with the Hessian sparse matrix determination with the

knowledge of sparsity. We have studied the available graph models for matrix determi-

nation problems and chosen the pattern graph to represent our problem after careful con-

sideration of each of the criteria mentioned above. Adjacency graph is only applicable to

symmetric matrices with nonzero diagonal. Though for the bipartite graph and the pattern

graph the size of the graph is proportional to the number of nonzero elements in sparse ma-

trix A, bipartite graph contains extraneous information in unidirectional partitioning of the

28

3.4. COMPARATIVE STUDY OF GRAPH MODELS FOR MATRIX PARTITIONING
PROBLEM

given matrix. The main disadvantage of column intersection graph is that while translating

the matrix problem to the graph problem due to connecting edge between each pair of dis-

tinct vertices sparsity structure of the matrix is lost. Also to apply ordering and partitioning

algorithms, explicit construction of GI(A) will need Θ(n2) effort and Θ(n2) space to store

the graph [24]. Pattern graph is structurally close to the actual computer representation of

the associated sparse matrix. Both unidirectional [13] and bidirectional [11, 22] as well

as column-segments [25, 32] computation of the graph operations can be expressed in an

uniform manner in pattern graph representation. The details of this can be found in [24].

It also allows to express the computational cost of graph operations in terms of nonzero

unknowns to be determined. Thus, pattern graph representation of the input sparse matrix

enables the same asymptotic computational cost as indicated by its graph abstraction. Note

that one of the main objectives in this thesis is to extend the pattern graph model to enable

symmetric determination.

29

Chapter 4

Determination of Hessian Matrix

In this chapter we give the problem definition in a formal way, describe our main result

connecting symmetric direct cover and coloring, and a new algorithm for sparse Hessian

matrix determination.

4.1 Problem Definition

4.1.1 Compression-Reconstruction for matrix determination

The general problem of sparse derivative matrix determination problem can be viewed

as a compression - reconstruction process where compression is involved with minimizing

the number of matrix-vector products p and the reconstruction phase is responsible for

solving for the non-zero unknowns while maintaining numerical stability and efficiency.

Without loss of generality, we assume that ρi ≤ p for all i. The compression-reconstruction

framework consists of two main algorithmic stages:

1. Seeding or Compression. Obtain S ∈ Rn×p and compute B = AS using FD or for-

ward AD.

2. Harvesting or Reconstruction. Determine the nonzero elements of A row-by-row:

a. Identify the reduced seed matrix Si ∈Rρi×p for A(i,Ji) where Ji denotes a vector

containing the column indices of the nonzero entries in row i of A,

Si = S(Ji, :).

30

4.1. PROBLEM DEFINITION

b. Solve for the ρi unknown elements of A(i, :),

A(i,Ji)Si = B(i, :).

For Hessian matrix determination problem, if a nonzero entry ai j of A is unknown then

so is a ji due to symmetry such that any determination method needs to determine only

one of ai j and a ji. A symmetric determination method is called direct determination if

there is a seed matrix S ∈ {0,1}n×p such that each unknown ai j is determined directly i.e.,

there is an index k such that ai j = bik or a ji = b jk in the matrix equation AS = B in which

the compressed matrix B is computed via AD or FD. A direct determination in which the

number of columns p of S is minimum is said to be optimal.

4.1.2 Symmetric Direct Cover

We consider the matrix equation

AS = B

Let Ji and I j, respectively, be vectors containing the column indices of the nonzero entries

in row i and row j of matrix A. Also let Ŝi ≡ S(Ji, :) and Ŝ j ≡ S(I j, :) denote the submatrix

of matrix S associated with the nonzero entries in row i and row j of matrix A respectively.

Definition 4.1. An unknown ai j is said to be covered by the seed matrix S if ai j or a ji can

be uniquely solved in

A(i,Ji)Ŝi = B(i, :) or A(j,J j)Ŝ j = B(j, :) respectively

Definition 4.2. Matrix S is said to constitute a cover for A if each ai j = a ji 6= 0 is covered.

A cover is a direct cover if A can be determined directly from the cover.

Consider the pattern graph GP associated with matrix A where A = AT . To determine

the symmetric direct cover we have defined the neighbor of a vertex vi j of GP in a different

way.

31

4.1. PROBLEM DEFINITION

Definition 4.3. The neighbors of vi j consist of {vi j′|vi j ∼ vi j′ j 6= j′} ∪ {vi′ j′|vi j ∼ vi j′ ∼

vi′ j′, j 6= j′, i 6= i′}∪{vi′ j′|vi j ∼ vi′ j ∼ vi′ j′, j 6= j′, i 6= i′}.

Here ‘∼’ represents a path between two vertices in GP . So the degree of vi j can be

represented by deg(vi j) =
∣∣N(vi j)

∣∣ ,N(vi j) is the set of neighbors of vi j.

Figure 4.2 shows the associated pattern graph of sparse Hessian matrix from Figure 4.1

pointing out all the neighbors of a blue circled vertex by red bordered circles.

a11 a12 a13 . . a16

a21 a22 a23 a24 . .

a31 a32 a33 . a35 .

. a42 . a44 a45 a46

. . a53 a54 a55 a56

a61 . . a64 a65 a66


Figure 4.1: Sparse Hessian Matrix

v11 v12 v13 v16

v21 v22 v23 v24

v31 v32 v33 v35

v42 v44 v45 v46

v53 v54 v55 v56

v66v65v64v61

Figure 4.2: Pattern graph

Definition 4.4. Let P be a power set of {1,2, . . . , p}. Mapping Φ : V 7→P is a generalized

p−Multi-coloring (generalized p-MC) of pattern graph GP (A) if for each vertex vi j we have

32

4.1. PROBLEM DEFINITION

EITHER

1.

Φ(vi j)\
⋃

{vi j′ |vi j∼vi j′ , j′ 6= j}
Φ(vi j′) 6= /0

OR

2.

Φ(v ji)\
⋃

{v ji′ |v ji∼v ji′ ,i′ 6=i}
Φ(v ji′) 6= /0

Theorem 4.5. Mapping Φ : V 7→P({1,2, . . . , p}) yields a direct cover for the Hessian

matrix A if and only if Φ is a generalized p−Multi-coloring of GP (A).

Proof. Let the mapping Φ yield a direct cover for A that does not satisfy conditions 1

and 2. Then for each k ∈ Φ(vi j) there is an index j′ 6= j such that k ∈ Φ(vi j′) and for each

k′ ∈Φ(v ji) there is an index i′ 6= i such that k′ ∈Φ(v ji′). Then,

bik = (eT
i A)(Sek) = A(i, :)

(
∑{ j′′|k∈Φ(vi j′′)} e j′′

)
= ∑{ j′′|k∈Φ(vi j′′)} ai j′′ 6= ai j,

since the index set j′′ contains at least two elements. Similarly, it can be shown that b jk′ 6=

a ji. Then, S does not constitute a direct cover implying that Φ does not yield a direct cover

- a contradiction.

To establish the converse consider the seed matrix S defined by Φ. We want to show that

for each unknown ai j 6= 0, we have ai j = bik or a ji = b jk′ in AS = B. Since Φ must satisfy

at least one of the two conditions above assume, without loss of generality, that there is an

index k ∈ 1,2, . . . , p such that k ∈ Φ(vi j) \
⋃

vi j′ | j′ 6= j Φ(vi j′). We claim that the kth column

of Ŝi, Ŝiek is the jth coordinate vector e j giving bik = (eT
i A)e j = ai j. This is clearly the case

since for ai j′ 6= 0, we have k /∈Φ(vi j′) implying that

Ŝi(l,k) =


1 if l = j

0 otherwise.

33

4.1. PROBLEM DEFINITION

Therefore, bik = (eT
i A)e j = ai j. �

The associated adjacency graph of the symmetric matrix above is shown in Figure 4.3.

Here, each pair of distinct vertices are connected by a path of length 2. It can be verified

v1 v2

v3

v4v5

v6

Figure 4.3: Adjacency Graph

that any star coloring will require more than 4 colors for this adjacency graph. For exam-

ple, if the set of colors is {R,G,B,Y,O}, then the colors of the corresponding graph can be

shown as Figure 4.4 based on the star coloring proposed in [34]. The star coloring algo-

v1 v2

v3

v4v5

v6

Figure 4.4: Star coloring of [34]

rithm from [17] also gives 5 colors as shown in Figure 4.5.

Now consider the associated pattern graph. If we use 4-Multi-Coloring of the graph as

Figure 4.6 taking the colors {R,G,B,O}, then by Theorem 4.5 the associated matrix of

the graph can be directly determined. In order to construct the seed matrix S, we use

Φ(vi j)\
⋃
{vi j′ |vi j∼vi j′ , j′ 6= j}Φ(vi j′) to represent the color of each vertex vi j. For example, v24

can be represented by the color R as Φ(v24)−Φ({v21,v22,v23}) = {R}. We can represent

all the vertices using only one color in similar way shown in Figure 4.7. The identically

colored vertices can be grouped together which contribute 1 in the associated rows of a

34

4.1. PROBLEM DEFINITION

v1 v2

v3

v4v5

v6

Figure 4.5: Star coloring of [17]

Φ(v11) = {R,B} Φ(v42) = {O}
Φ(v12) = {O} Φ(v44) = {R,B}
Φ(v13) = {B} Φ(v45) = {R,G}

Φ(v16) = {R,O} Φ(v46) = {R,O}
Φ(v21) = {G} Φ(v53) = {B}
Φ(v22) = {O} Φ(v54) = {R,B}
Φ(v23) = {B} Φ(v55) = {R,G}

Φ(v24) = {R,B} Φ(v56) = {R,O}
Φ(v31) = {R,B} Φ(v61) = {R,B}
Φ(v32) = {O} Φ(v64) = {R,B}
Φ(v33) = {B} Φ(v65) = {R,G}

Φ(v35) = {R,G} Φ(v66) = {R,O}
Figure 4.6: 4-Multi-Coloring of pattern graph

column and 0 otherwise in S. For instance, as v16,v24 and v35 of column 4, 5 and 6 in A

share the same color R, the corresponding rows 4, 5 and 6 will have 1 in a column group

of S. The unknowns of such group can be determined with one matrix-vector product each

giving 4 matrix-vector products. The uncolored vertices are known by symmetry. Thus the

matrix A is completely determined with only 4 matrix vector products. The associated seed

matrix has the structure of Figure 4.8.

This example demonstrates that using the pattern graph model, sparsity and symmetry can

be exploited more effectively. Specifically, the definition of cover allows for Hessian ma-

trices with the most general sparsity patterns including instances with sparse diagonal. We

remark that the adjacency graph representation of a symmetric matrix sparsity pattern does

35

4.2. ALGORITHM FOR SYMMETRIC DIRECT COVER

v11 v12 v13 v16

v21 v22 v23 v24

v31 v32 v33 v35

v42 v44 v45 v46

v53 v54 v55 v56

v66v65v64v61

Figure 4.7: Pattern graph coloring



0 1 0 0
0 0 0 1
0 0 1 0
1 0 1 0
1 1 0 0
1 0 0 1


Figure 4.8: Seed Matrix

not define the sparsity of the diagonal elements.

4.2 Algorithm for Symmetric Direct Cover

In this section, we will describe our algorithm for determining the symmetric direct

cover S for Hessian Matrix H. We have used the term group which consists of the column

indices that can be grouped together to form a vector d of the seed matrix S. As we have

relaxed structurally orthogonal property, a column may belong to more than one group.

For example, there is no column that does not share non-zeros at same row in Figure 4.1.

Thus structurally orthogonal partitioning of the matrix will require 6 matrix-vector product

36

4.2. ALGORITHM FOR SYMMETRIC DIRECT COVER

which we have reduced to 4 by relaxing this property. From Figure 4.8, we can see that the

first group consists of column 4, 5 and 6.

Throughout the algorithm 1, we maintain three sets of information forbiddenSet, fullCov-

eredSet and coveredSetInGroup. The forbiddenSet(F) contains the unknown vertices (un-

covered / undetermined nonzero element of the matrix) that cannot be included in the same

group, coveredSetInGroup(D) is a set of vertices directly covered in each iteration of the

outer while loop. Within the outer loop, we initialize D with no elements in it, construct the

group and update coveredSet(C), set of all the covered vertices by combining the elements

of D and C in line 16. C denotes the complement of C .

Algorithm 1: Symmetric Direct Cover determination of H
Input : Sparse Hessian H
Output: number of groups numgroup, direct cover C

1 numgroup← 0
2 C ← /0

3 while C 6= /0 do
4 D← /0

5 F ← /0

6 Let α ∈ C be an unknown such that degC (α) is maximum
7 D←D ∪{α}
8 F ← F ∪ (N(α)∩C)

9 while C \F 6= /0 do
10 Let β ∈ C \D be an unknown such that degF (β) is maximum
11 D←D ∪{β}
12 F ← F ∪ (N(β)∩ (C \D))

13 D←D ∪DT

14 numgroup← numgroup+1
15 Assign the elements of D group number numgroup
16 C ← C ∪D

We choose the first uncovered vertex α with maximum degree (maximum number of neigh-

bors in the associated pattern graph) to be in D in line 6. Then we update the forbidenSet

such a way that for the next vertex to be chosen is anything but not a neighbor of α as well

as covered. We proceed to add as many vertices as possible in D until there is none left.

The choice of those vertices is based on an attribute forbiddenCount(degF (β)) : size of F

37

4.3. DATA STRUCTURE

16 16 16 18

16 16 16 18

16 16 16 18

18 16 16 16

18 16 16 16

16161618

16 16 16 18

16 16 16 18

16 16 16 18

18 16 16 16

18 16 16 16

16161618

16 16 16 18

16 16 16 18

16 16 16 18

18 16 16 16

18 16 16 16

16161618

16 16 16 18

16 16 16 18

16 16 16 18

18 16 16 16

18 16 16 16

16161618

(a)

16 16 16 18

16 16 16 18

16 16 16 18

18 16 16 16

18 16 16 16

16161618

16 16 16 18

16 16 16 18

16 16 16 18

18 16 16 16

18 16 16 16

16161618

16 16 16 18

16 16 16 18

16 16 16 18

18 16 16 16

18 16 16 16

16161618

16 16 16 18

16 16 16 18

16 16 16 18

18 16 16 16

18 16 16 16

16161618

(b)

16 16 16 18

16 16 16 18

16 16 16 18

18 16 16 16

18 16 16 16

16161618

16 16 16 18

16 16 16 18

16 16 16 18

18 16 16 16

18 16 16 16

16161618

16 16 16 18

16 16 16 18

16 16 16 18

18 16 16 16

18 16 16 16

16161618

16 16 16 18

16 16 16 18

16 16 16 18

18 16 16 16

18 16 16 16

16161618

(c)

16 16 16 18

16 16 16 18

16 16 16 18

18 16 16 16

18 16 16 16

16161618

16 16 16 18

16 16 16 18

16 16 16 18

18 16 16 16

18 16 16 16

16161618

16 16 16 18

16 16 16 18

16 16 16 18

18 16 16 16

18 16 16 16

16161618

16 16 16 18

16 16 16 18

16 16 16 18

18 16 16 16

18 16 16 16

16161618

(d)

Figure 4.9: Visualizing steps of Algorithm 1

after adding β in it where β /∈ N(α) and β /∈D . We can write degF (β) as |N(β)∩F |. We

select the one which contributes the maximum forbiddenCount in line 10. When there are

no more unknowns left, we update C and again start doing these steps with empty D .

For calculating forbiddenCount we have used the algorithm 2 which returns the count for

an unknown vertex v.

38

4.3. DATA STRUCTURE

Algorithm 2: Find forbiddenCount of v
1 count← 0 ;
2 for each element i ∈ F do
3 for each element j ∈ N(v) do
4 if i == j then
5 count ++ ;

6 return count ;

4.3 Data Structure

It is very important to choose a data structure which can take advantage of sparse struc-

ture for storing and manipulating sparse matrices on a computer. As a sparse matrix has

many zeros which remain unused so using two-dimensional array to store the matrix will

cause wastage of memory. Depending on the number and distribution of the nonzero en-

tries, different data structures are used. We have used Compressed Storage as accessing

each nonzero of the matrix becomes more faster and easier which is an important step in

our algorithm to find neighbors as well as the fobiddenCount.

4.3.1 Compressed Storage

A compressed storage is proposed in [20] which represents a matrix by three one di-

mensional arrays, that contain nonzero values, the extents of rows, and column indices. It

takes only 3×nnz(A)+m+n+2 memory locations. The total data structure is divided into

two parts: Compressed Row Storage (CRS) and Compressed Column Storage (CCS).

Compressed Column Storage

In compressed column storage, a row index is stored for each value in array row ind,

and column pointers are stored in col ptr. Row indices of each column j can be found

in between row ind[col ptr[j]] and row ind[col ptr[j+1]−1]. The following Figure 4.10

shows the CCS data structure of the matrix of Figure 4.1.

39

4.3. DATA STRUCTURE

row ind
1 2 3 6 1 2 3 4 1 2 3 5 2 4 5 6 3 4 5 6 1 4 5 6

col ptr
1 5 9 13 17 21 25

Figure 4.10: CCS data structure of sparse matrix

Compressed Row Storage

Like Compressed Column Storage, CRS uses array row ptr to represent starting index

of each row and array col ind to store column indices of each row. Column indices of each

row i can be found in between col ind[row ptr[i]] and col ind[row ptr[i+ 1]− 1]. Figure

(4.11) shows the CRS data structure of same matrix.

col ind
1 2 3 6 1 2 3 4 1 2 3 5 2 4 5 6 3 4 5 6 1 4 5 6

row ptr
1 5 9 13 17 21 25

Figure 4.11: CRS data structure of sparse matrix

40

Chapter 5

Numerical Experiments

In this chapter, we present numerical results of coloring algorithm proposed in this thesis

on practical instances. First, we give details of test data sets and the environment on which

we run our experiments. For the purpose of comparison we also include sequential and star

coloring results.

5.1 Test Data Sets

We have considered multiple groups of matrices collected from Matrix Market Collec-

tion [2]. The name of the matrix is under the column labeled Matrix, the columns labeled

n is used to represent the number of columns and rows (square matrix) and nnz is used to

represent the total number of non-zeros in the matrix. Table 5.1 is the CANNES collection

which are finite-element structure problems in aircraft design.

Table 5.1: Matrix Data Set - 1

Matrix n nnz

can 62 62 218

can 256 256 2916

can 268 268 3082

can 292 292 2540

can 634 634 7228

can 715 715 6665

41

5.1. TEST DATA SETS

Matrix n nnz

can 1054 1054 12196

can 1072 1072 12444

The non-zero structure of can 715 is shown in Figure 5.1.

Figure 5.1: Sparse Matrix, Name:can 715, Dimensions: 715 × 715, 6665 nonzero ele-
ments shown in black, Source: [2]

Table 5.2 is on DWT consisting of 30 matrices collected from various US military and

NASA users of NASA’s structural engineering package NASTRAN for use as a benchmark

collection for variable bandwidth reordering heuristics.

Table 5.2: Matrix Data Set - 2

Matrix n nnz

dwt 59 59 267

dwt 66 66 320

dwt 72 72 222

dwt 87 87 541

dwt 162 162 1182

dwt 193 193 3493

42

5.1. TEST DATA SETS

Matrix n nnz

dwt 198 198 1392

dwt 209 209 1743

dwt 221 221 1629

dwt 234 234 834

dwt 245 245 1461

dwt 307 307 2523

dwt 310 310 2448

dwt 346 346 3226

dwt 361 361 2953

dwt 419 419 3563

dwt 492 492 3156

dwt 503 503 6027

dwt 512 512 3502

dwt 592 592 5104

dwt 607 607 5131

dwt 758 758 5994

dwt 869 869 7285

dwt 878 878 7448

dwt 918 918 7384

dwt 992 992 16744

dwt 1005 1005 8621

dwt 1007 1007 8575

dwt 1242 1242 10426

43

5.1. TEST DATA SETS

Matrix n nnz

dwt 2680 2680 25026

Figure 5.2 shows the non-zero structure of dwt 419.

Figure 5.2: Sparse Matrix, Name:dwt 419, Dimensions: 419 × 419, 3563 nonzero ele-
ments shown in black, Source: [2]

LSHAPE: Matrices on finite-element model problems are shown in Table 5.3.

Table 5.3: Matrix Data Set - 3

Matrix n nnz

lshp 265 265 1009

lshp 406 406 1561

lshp 577 577 2233

lshp 778 778 3025

lshp1009 1009 3927

lshp1270 1270 4969

lshp1561 1561 6121

lshp1882 1882 7393

lshp2233 2233 8785

44

5.1. TEST DATA SETS

Matrix n nnz

lshp2614 2614 10297

lshp3025 3025 11929

lshp3466 3466 13681

The non-zero structure of all the sparse matrix of LSHAPE collection is quite similar.

One of them is shown shown in Figure 5.3.

Figure 5.3: Sparse Matrix, Name:lshp1561, Dimensions: 1561 × 1561, 6121 nonzero ele-
ments shown in black, Source: [2]

Table 5.4 is the JAGMESH collection which are also finite-element model problems.

Table 5.4: Matrix Data Set - 4

Matrix n nnz

jagmesh1 936 3600

jagmesh2 1009 3837

jagmesh3 1089 4225

jagmesh4 1440 5472

jagmesh5 1180 4465

jagmesh6 1377 5185

45

5.3. TEST RESULTS

Matrix n nnz

jagmesh7 1138 4294

jagmesh8 1141 4303

jagmesh9 1349 5225

Figure 5.4 shows the non-zero structure of a sparse matrix from JAGMESH collection.

5.2 Test Environment

Numerical Experiments with data sets in Table (5.1, 5.2, 5.3, 5.4) were done on an

AMD PC with AMD Opteron(tm) Processor 4284, 16 GB RAM 64 bit Linux.

5.3 Test Results

We use C++ for the implementation. We compare our results with two software pack-

ages: DSJM [20] and ColPack [1].

DSJM represents the matrix using sparse data structure mentioned in section 4.3.1 of the

previous chapter and applies sequential coloring algorithm to color the vertices in some

chosen order which is more efficient. Sequential coloring is a greedy approach which as-

signs the smallest available (colors not been assigned to N(v)) color to the vertex v in

each iteration. The ordering methods used in DSJM are: Largest-First Ordering (LFO),

Smallest-Last Ordering (SLO), Incidence-Degree Ordering (IDO), Saturation-Degree Or-

dering (SDO), Recursive-Largest-First (RLF) and a hybrid approach MRLF-SLO based on

RLF and SLO. In our comparison we consider RLF as it provides better result than the

other for partitioning the columns into structurally orthogonal groups. In RLF, vertex set V

is partitioned into V1,V2, . . . ,Vp independent sets and a partition with p number of column

groups is formed. A largest degree vertex is chosen from Vi in the induced graph, and adja-

46

5.3. TEST RESULTS

Figure 5.4: Sparse Matrix, Name:jagmesh9, Dimensions: 1349 × 1349, 5225 nonzero
elements shown in black, Source: [2]

cent vertices of v1 are added to the inadmissible set U . RLF proceeds to add vertices vk in

Vi which has the largest number of adjacent vertices in the set U keeping the neighbors of vk

in U . ColPack has implementations of various algorithms for graph coloring and recovery.

Depending on the derivative matrix to be computed and the recovery scheme, it has several

variations of the coloring models. For example, for direct Hessian recovery ColPack im-

plements star coloring algorithm and acyclic coloring for the substitution recovery. We are

only concerned about the direct recovery.

Table 5.5, 5.6, 5.7 and 5.8 illustrates the coloring results found in our proposed algorithm

under the column Pattern Graph, DSJM and ColPack along with the maximum number of

non-zeros in any row denoted by ρmax. It is a lower bound on the number of groups in a

structurally orthogonal partition. The results from our numerical testing are organized in

two sections. In the first, we demonstrate the advantage of utilizing symmetry in addition to

sparsity. In the second section, we compare our algorithm for pattern graph multi-coloring

with ColPack star coloring.

Table 5.5: Graph coloring for data set 1

Matrix ρmax Pattern Graph DSJM

can 62 7 5 7

47

5.3. TEST RESULTS

Matrix ρmax Pattern Graph DSJM

can 256 83 20 83

can 268 37 18 37

can 292 35 13 35

can 634 28 20 28

can 715 105 14 105

can 1054 35 20 35

can 1072 35 22 35

Table 5.5 displays the coloring results for CANNES problems. We compare the results

of DSJM and Algorithm 1 of this thesis. DSJM ignores symmetry while determining the

number of colors i.e. number of groups required to directly determine the input matrix.

From the Table it is evident that exploiting symmetry combined with sparsity gives better

coloring than when symmetry is ignored. In particular, on can 715, exploiting symmetry

achieves more than 7-fold decrease in the number of matrix-vector products. On all the

test sets exploiting symmetry always showed significant improvement in the number of

matrix-vector products.

Table 5.6: Graph coloring for data set 2

Matrix ρmax Pattern Graph ColPack

dwt 59 6 6 6

dwt 66 6 5 5

dwt 72 5 5 4

dwt 87 13 12 11

dwt 162 9 9 9

dwt 193 30 31 27

48

5.3. TEST RESULTS

Matrix ρmax Pattern Graph ColPack

dwt 198 12 11 10

dwt 209 17 13 13

dwt 221 12 11 11

dwt 234 10 8 6

dwt 245 13 11 12

dwt 307 9 10 10

dwt 310 11 10 10

dwt 346 19 17 18

dwt 361 9 9 11

dwt 419 13 12 13

dwt 492 11 11 10

dwt 503 25 22 21

dwt 512 15 15 13

dwt 592 15 12 14

dwt 607 14 14 12

dwt 758 11 10 10

dwt 869 14 12 12

dwt 878 10 10 11

dwt 918 13 13 12

dwt 992 18 19 20

dwt 1005 27 20 20

dwt 1007 10 10 11

dwt 1242 12 13 13

49

5.3. TEST RESULTS

Matrix ρmax Pattern Graph ColPack

dwt 2680 19 16 16

Total 377 371

Table 5.7: Graph coloring for data set 3

Matrix ρmax Pattern Graph ColPack

jagmesh1 7 8 8

jagmesh2 7 8 8

jagmesh3 7 7 9

jagmesh4 7 8 8

jagmesh5 7 9 8

jagmesh6 7 8 9

jagmesh7 7 8 8

jagmesh8 7 8 9

jagmesh9 7 8 9

Total 72 76

Table 5.8: Graph coloring for data set 4

Matrix ρmax Pattern Graph ColPack

lshp 265 7 8 8

lshp 406 7 9 9

lshp 577 7 8 9

lshp 778 7 8 8

lshp1009 7 8 8

50

5.3. TEST RESULTS

Matrix ρmax Pattern Graph ColPack

lshp1270 7 8 9

lshp1561 7 8 9

lshp1882 7 9 9

lshp2233 7 9 8

lshp2614 7 9 9

lshp3025 7 9 9

lshp3466 7 9 9

Total 102 104

Table 5.6, 5.7 and 5.8 illustrates the difference between the number of colors by Algo-

rithm 1 and ColPack. Each of the these tables also shows the total number of colors. On the

test suite DWT of Table 5.7, ColPack gives marginally better (fewer) coloring. On the other

hand, our algorithm performs slightly better on the test suite LSHAPE and JAGMESH.

Both the star coloring used in ColPack and Algorithm 1 presented in this thesis are based

on Greedy heuristic. It is inconclusive as to which method is better based on the test in-

stances. On the other hand, it is evident that the multi-coloring approach with pattern graph

model is more general compared to the star coloring using adjacency graph model. The

pattern graph model allows for a strictly larger class of instances (matrices) than the adja-

cency graph. Moreover, the notion of symmetric direct cover more accurately captures the

determination ability in the sense of matrix-vector products. This is clearly demonstrated

by the example sparsity structure in page 36. It can be shown that no star coloring of a Hes-

sian matrix having this sparsity pattern can be determined with fewer than 5 matrix-vector

products.

51

Chapter 6

Conclusion and Future works

6.1 Conclusion

For large-scale problems, it is preferable to take advantage of the sparsity structure and

the symmetry of the Hessian matrix to reduce number of function evaluations. In this thesis,

• We have presented a generalized model for the symmetry-exploiting direct deter-

mination methods for sparse Hessian matrices. Our model uses pattern graphs to

represent the sparsity structure of Hessian matrices.

• We have proposed a new heuristic for the direct determination. We have run our

heuristic on a set of large-scale practical test instances and found promising numerical

results.

6.2 Future Direction

For extending the scope of this thesis, we would like to give the following suggestions:

• Our algorithm tries to minimize the number of groups required to determine the Hes-

sian matrix. Though it provides better result on some instances but the implementa-

tion still needs to be efficient.

• A parallel implementation of our algorithm on shared memory symmetric multi-

processor system seems very promising research direction.

52

Bibliography

[1] A graph coloring algorithm package. https://github.com/CSCsw/ColPack. Accessed:
2016-06-20.

[2] The matrix market project. http://math.nist.gov/MatrixMarket/. Accessed:
2016-06-20.

[3] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, pcps, and
nonapproximability—towards tight results. SIAM Journal on Computing, 27(3):804–
915, 1998.

[4] Daniel Brélaz. New methods to color the vertices of a graph. Communications of the
ACM, 22(4):251–256, 1979.

[5] Tamara G. Kolda Bruce Hendrickson. Graph partitioning models for parallel comput-
ing. Parallel Computing - Special issue on graph partioning and parallel computing,
26(12):1519–1534, 2000.

[6] Marco Chiarandini, Irina Dumitrescu, and Thomas Stützle. Stochastic local search
algorithms for the graph colouring problem. Handbook of approximation algorithms
and metaheuristics, pages 63–1, 2007.

[7] T. F. Coleman and J.-Y. Cai. The cyclic cloring problem and estimation of sparse
Hessian matrices. SIAM Journal on Algebraic Discrete Methods, (7):221–235, 1986.

[8] Thomas F Coleman, Burton S Garbow, and Jorge J Moré. Software for estimating
sparse Jacobian matrices. ACM Transactions on Mathematical Software (TOMS),
10(3):329–345, 1984.

[9] Thomas F Coleman and Jorge J Moré. Estimation of sparse Jacobian matrices and
graph coloring problems. SIAM Journal on Numerical Analysis, 20(1):187–209, 1983.

[10] Thomas F Coleman and Jorge J Moré. Estimation of sparse Hessian matrices and
graph coloring problems. Mathematical Programming, 28(3):243–270, 1984.

[11] Thomas F Coleman and Arun Verma. The efficient computation of sparse Jaco-
bian matrices using automatic differentiation. SIAM Journal on Scientific Computing,
19(4):1210–1233, 1998.

[12] Joseph C Culberson and Feng Luo. Exploring the k-colorable landscape with iter-
ated greedy. Cliques, coloring, and satisfiability: second DIMACS implementation
challenge, 26:245–284, 1996.

53

http://math.nist.gov/MatrixMarket/

BIBLIOGRAPHY

[13] AR Curtis, Michael JD Powell, and John K Reid. On the estimation of sparse Jacobian
matrices. J. Inst. Math. Appl, 13(1):117–120, 1974.

[14] Philippe Galinier and Alain Hertz. A survey of local search methods for graph color-
ing. Computers & Operations Research, 33(9):2547–2562, 2006.

[15] Assefaw H Gebremedhin, Arijit Tarafdar, Fredrik Manne, and Alex Pothen. New
acyclic and star coloring algorithms with application to computing Hessians. SIAM
Journal on Scientific Computing, 29(3):1042–1072, 2007.

[16] Assefaw H Gebremedhin, Arijit Tarafdar, Alex Pothen, and Andrea Walther. Effi-
cient computation of sparse Hessians using coloring and automatic differentiation.
INFORMS Journal on Computing, 21(2):209–223, 2009.

[17] Assefaw Hadish Gebremedhin, Fredrik Manne, and Alex Pothen. What color is your
Jacobian? graph coloring for computing derivatives. SIAM review, 47(4):629–705,
2005.

[18] John R Gilbert, Steve Reinhardt, and Viral B Shah. High-performance graph algo-
rithms from parallel sparse matrices. In International Workshop on Applied Parallel
Computing, pages 260–269. Springer, 2006.

[19] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and tech-
niques of algorithmic differentiation. SIAM, 2008.

[20] Mahmudul Hasan, Shahadat Hossain, Ahamad Imtiaz Khan, Nasrin Hakim Mithila,
and Ashraful Huq Suny. DSJM: a software toolkit for direct determination of sparse
Jacobian matrices. In Proceedings of the 5th International Conference on Mathemat-
ical Software, ICMS, volume 9725 of LNCS, pages 275–283, Berlin,Germany, 2016.
Springer.

[21] Shahadat Hossain and Nasrin Hakim Mithila. Pattern graph for sparse Hessian matrix
determination. In The 7th International Conference on Algorithmic Differentiation,
pages 78–81. SIAM, 2016.

[22] Shahadat Hossain and Trond Steihaug. Computing a sparse Jacobian matrix by rows
and columns. Optimization Methods and Software, 10(1):33–48, 1998.

[23] Shahadat Hossain and Trond Steihaug. Reducing the number of AD passes for com-
puting a sparse Jacobian matrix. In Automatic Differentiation of Algorithms, pages
263–270. Springer Newyork, 2002.

[24] Shahadat Hossain and Trond Steihaug. Graph models and their efficient imple-
mentation for sparse Jacobian matrix determination. Discrete Applied Mathematics,
161(12):1747–1754, 2013.

[25] Shahadat Hossain and Trond Steihaug. Optimal direct determination of sparse Jaco-
bian matrices. Optimization Methods and Software, 28(6):1218–1232, 2013.

54

BIBLIOGRAPHY

[26] David S Johnson. Worst case behavior of graph coloring algorithms. In Proc. 5th SE
Conf. on Combinatorics, Graph Theory and Computing, pages 513–528, 1974.

[27] Frank Thomson Leighton. A graph coloring algorithm for large scheduling problems.
Journal of research of the national bureau of standards, 84(6):489–506, 1979.

[28] Yaw-Ling Lin and Steven S Skiena. Algorithms for square roots of graphs. SIAM
Journal on Discrete Mathematics, 8(1):99–118, 1995.

[29] S Thomas McCormick. Optimal approximation of sparse Hessians and its equivalence
to a graph coloring problem. Mathematical Programming, 26(2):153–171, 1983.

[30] Anuj Mehrotra and Michael A Trick. A column generation approach for graph color-
ing. informs Journal on Computing, 8(4):344–354, 1996.

[31] R Garey Michael and S Johnson David. Computers and intractability: a guide to the
theory of np-completeness. WH Free. Co., San Fr, 1979.

[32] Garry N Newsam and John D Ramsdell. Estimation of sparse Jacobian matrices.
SIAM Journal on Algebraic Discrete Methods, 4(3):404–418, 1983.

[33] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer Science &
Business Media, 2006.

[34] MJD Powell and Ph L Toint. On the estimation of sparse Hessian matrices. SIAM
Journal on Numerical Analysis, 16(6):1060–1074, 1979.

[35] Jeremy P Spinrad. Efficient Graph Representations.: The Fields Institute for Research
in Mathematical Sciences., volume 19. American Mathematical Soc., 2003.

55

	Contents
	List of Tables
	List of Figures
	Introduction
	Our Contribution
	Thesis organization

	Preliminaries
	Newton's Method for Unconstrained Minimization
	Computing Partial Derivatives
	Gradient
	Finite Difference Approximation
	Approximating the Hessian
	Automatic Differentiation
	Forward Mode
	Reverse Mode

	Efficient Determination of Sparse and Structured Derivatives
	Direct or Substitution Partition
	Unidirectional or Bidirectional Partition
	Symmetric or Nonsymmetric Partition

	Graph Models for Derivative Matrix Determination
	Graph Terminologies
	Graph Coloring
	Graph Coloring Methods

	Graph Formulation of Matrix Partitioning Problem
	Graph Models for Matrix Partitioning Problem
	Adjacency Graph
	Bipartite Graph
	Column Intersection Graph
	Pattern Graph

	Comparative Study of Graph Models for Matrix Partitioning Problem
	Graph Models
	Graph size
	Representation
	Implementation
	Versatility

	Determination of Hessian Matrix
	Problem Definition
	Compression-Reconstruction for matrix determination
	Symmetric Direct Cover

	Algorithm for Symmetric Direct Cover
	Data Structure
	Compressed Storage

	Numerical Experiments
	Test Data Sets
	Test Environment
	Test Results

	Conclusion and Future works
	Conclusion
	Future Direction

	Bibliography

