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Abstract

Given a group G, any subset C of G\{e} induces a Cayley graph, Cay(G,C). The set

C also induces a natural edge-colouring of this graph. All affine automorphisms of the

Cayley graph preserve this edge-colouring. A Cayley graph Cay(G,C) has the Cayley

Colour Automorphism Property (is CCA), if all its colour-preserving automorphisms are

affine. A group G is CCA if every connected Cayley graph on G is CCA. The goal of this

thesis is to classify all groups of small order to determine if they are CCA. In order to do

this, we have developed two main algorithms that are the new contributions of this thesis.

One algorithm finds all minimal generating sets for any group. The other algorithm uses

this to test whether or not a group is CCA. These algorithms can also be used to determine

whether or not a given Cayley graph is CCA.
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Chapter 1

Introduction

The Cayley Colour Automorphism (CCA) property is a certain property that some finite

groups have, and others do not (see Definition 1.7 for the precise definition). The study of

this property has only come up recently in history. In early 2012, M. Conder, T. Pizanski and

A. Žitnik [3] proposed a question to J. Morris about the permutations on circulant graphs

that preserved a certain edge colouring. In the middle of 2012 J. Morris [15] answered

by showing that for any connected circulant graph on Zn, all of these colour-preserving

automorphisms that fix the identity are automorphisms of Zn. In 2014, A. Hujdurović,

K. Kutnar, D. W. Morris, and J. Morris [11] extended the original question by looking at

more general graphs (Cayley graphs) and using the natural edge colouring that we will de-

scribe. Recently in 2016, E. Dobson, A. Hujdurović, K. Kutnar, and J. Morris [5] improved

some of the results that had been proven when the order of G is odd and square free. Also

in early 2017, L. Morgan, J. Morris and G. Verret [14], [13] gave some new results for finite

simple groups and Sylow cyclic groups which generalized the results of [5].

The problem of determining colour-preserving and colour-permuting automorphisms

for Cayley digraphs has already been studied and is well understood. In [18] the authors

showed that for every connected Cayley digraph, every colour-preserving automorphism of

it is a left-translation by some element of the group. In [7] the authors showed that every

colour-permuting automorphism is affine. As we shall see, the situation is much more

complex when we consider graphs rather than digraphs, so that a generator and its inverse

are forced to have the same colour.
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1.1. NOTATION

In Chapter 2 we review the main results of the aforementioned papers and discuss how

their results can be applied to determine whether a group is CCA or not. Then in Chapter

3 we introduce a new algorithm which takes in a group as input and outputs whether or

not that group is CCA or non-CCA. A program was written using this algorithm using

both GAP [8] and Sage [17] and ran on all groups up to order 200 (except orders 128 and

192). The results of this program are provided in Appendix B. In Chapter 4 we make some

observations about these results. Also in Chapter 4 we discuss another application for one

piece of the general algorithm.

1.1 Notation

Notation 1.1. The following will hold for the remainder of the thesis:

• G and Gi will represent groups of finite order.

• the identity of the group G, will be denoted e or eG.

• C will represent a subset of G\{e}.

• Cay(G,C) will be the notation used for the Cayley graph (See Definition 1.5) of the

group G with connection set C. For the special case C = G\{e} we denote KG =

Cay(G,G\{e}) (the complete graph viewed as a Cayley graph).

• 〈C〉 (called the group generated by C) is the smallest subgroup of G that contains

every element of C.

• Aut(G) denotes the group of automorphisms of G.

• X = (V (X),E(X)) will represent a graph of finite order, consisting of a set V =V (X)

of vertices and a set E = E(X)⊆V ×V of edges.

• L(X) denotes the line graph of X . That is, L(X) is the graph where the vertices

correspond to the edges of X and there is an edge between two vertices in L(X) if the

corresponding edges share a vertex in X .

2



1.2. BASICS

• N(v) is the set of neighbours of the vertex v in a graph.

• If G acts on a graph X and S⊆V (X) then GS is the restriction of the action of G to S.

• The symbol ∼ will be used to show that two vertices are adjacent in a graph. That is,

if v and u are vertices of a graph, v ∼ u means that there is an edge between v and u

in that graph. Likewise, 6∼ means two vertices do not have an edge between them.

In Section 2.5 we use the following notation.

Notation 1.2. For a fixed Cayley graph Cay(G,C):

• A0 is the group of all colour-preserving automorphisms (see Definition 1.6) of the

Cayley graph Cay(G,C).

• Ĝ is the subgroup of A0 consisting of all left translations by elements of G.

• He is the stabilizer of e in Cay(G,C), for any H ⊆ A0 (see Definition 1.17).

1.2 The Basics

In this section we will introduce the basic definitions and facts that will lay the founda-

tion needed for the rest of the thesis. We note that we do not include every definition. Any

definition we do not include can be found in one of [2, 4, 9, 10].

Definition 1.3 ([2, p. 1]). A graph X is connected if there is a path from every vertex of

V (X) to every other vertex of V (X).

Definition 1.4 ([2, p. 6]). An automorphism of a graph is a permutation of the vertex set

that preserves edges and non-edges. More explicitly, we have that ϕ is an automorphism of

X if ϕ is a bijection on V (X) and v∼ u⇔ ϕ(v)∼ ϕ(u) for all vertices v and u in X .

Definition 1.5 ([9, p. 34]). The Cayley graph of G with respect to C (a subset of G\{e})

is the graph Cay(G,C) whose vertices are the elements of G, and with an edge from g to gc

for each g ∈ G, c ∈C.

3



1.2. BASICS

Since we are talking about a graph instead of a digraph, we ignore the technicalities of

c,c−1 ∈C since having them both would result in the same graph (as we do not allow more

than one edge between two vertices). We say a colouring of a set is a function that maps

each element to a colour. With the definition of a Cayley graph, we can see that there is

a natural colouring of the edges of Cay(G,C). We colour the edge from g to gc (and gc

to g) with a colour associated to {c,c−1}. This in turn lets us consider automorphisms of

Cay(G,C) that preserve the colours that we associate with each edge.

Definition 1.6 ([11, p. 190]). An automorphism of Cay(G,C) is called a colour-preserving

automorphism if it preserves the natural edge colouring. More explicitly ϕ is a colour-

preserving automorphism if and only if ϕ is an automorphism and we have ϕ(gc) is in

{ϕ(g)c,ϕ(g)c−1} for each g ∈ G, c ∈C.

Two easy-to-understand automorphisms are immediate from this definition. For any

g′ ∈ G the left translation g 7→ g′g is a colour-preserving automorphism of Cay(G,C) since

g′(gc)= (g′g)c for any g∈G,c∈C. Also if α is an automorphism of G with α(c)∈{c,c−1}

for all c ∈ C, then α is a colour-preserving automorphism. In several cases, all colour-

preserving automorphisms of Cay(G,C) are obtained by a composition of these two types

of automorphisms, which leads us to our next definition.

Definition 1.7 ([11, Definition. 1.2]).

• A function ϕ : G→G is affine if it is a composition of an automorphism of G with left

translation by an element of G. More specifically ϕ(g) =α(g′g) for some α∈ Aut(G)

and g′ ∈ G.

• A Cayley graph Cay(G,C) has the Cayley Colour Automorphism property if all of

its colour-preserving automorphisms are affine functions on G. In this case, we say

Cay(G,C) is CCA.

• A group G has the Cayley Colour Automorphism property if every connected Cay-

ley graph on G is CCA. In this case, we say G is CCA.
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1.2. BASICS

For the definition of a group to be CCA we need to restrict our consideration to con-

nected Cayley graphs. The reason we need the graph to be connected is that if there were

two nontrivial components of the graph, we could apply a left translation by an element

of 〈C〉 to some component that does not include the identity and leave the rest fixed. It

can be seen that this would be a colour-preserving automorphism that is not affine. Simi-

larly, if every component is trivial then the graph is Kn and its automorphism group is Sn,

which clearly includes elements that are not affine whenever n ≥ 4. Thus, if we allowed

disconnected Cayley graphs, the only CCA groups would be C2 and C3.

Another useful way to see when a Cayley graph is CCA is to see if Ĝ is a normal

subgroup of its colour-preserving automorphisms. This is a consequence of the following

remark.

Remark 1.8. It is known that a permutation of G is affine if and only if it normalizes Ĝ (see,

for example [16, Lem. 2]).

We consider another definition very similar to colour-preserving automorphism. This

new definition allows for the permutation of the colours as well as preserving them.

Definition 1.9 ([11, Definition. 1.4]).

• An automorphism α is a colour-permuting automorphism of a Cayley graph

Cay(G,C) if it respects the colour classes. That is there exists π a permutation of C

such that α(gc) ∈ {α(g)π(c),α(g)π(c)−1} for all g ∈ G and c ∈ C (with π(c−1) =

π(c)−1).

• We say G is strongly CCA if every colour-permuting automorphism of every con-

nected Cayley graph on G is affine.

Clearly, if G is strongly CCA then G is CCA (we can take π to be the identity map), but

the converse is not true. To study every connected Cayley graph of a group G it is useful

to know exactly what conditions C would need, to have it generate a connected Cayley
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1.2. BASICS

graph. For that we introduce a well known fact about Cayley graphs (see, for example [9,

Lem. 3.7.4, p. 49]).

Lemma 1.10 ([9, Lem. 3.7.4, p. 49]). Cay(G,C) is connected if and only if C generates G.

Proof. (⇒) Let g ∈ G be arbitrary. Since Cay(G,C) is connected there is some path be-

tween the identity vertex and g. Let c1, ...,cn ∈ C be the elements corresponding to the

edges (in order) taken in the path from e to g. Thus by the definition of Cayley graphs,

g = c1...cn. Thus g ∈ 〈C〉 and since g was arbitrary G⊆ 〈C〉. Also since 〈C〉 ⊆ G we have

〈C〉= G.

(⇐) Let g1,g2 ∈ G be arbitrary and suppose C generates G. Then ∃c1, ...,cn ∈C such

that c1...cn = g−1
1 g2. By the definition of Cayley graphs we have an edge from g1 to g1c1.

Similarly we have an edge from g1c1...ci to g1c1...ci+1 for i ∈ {1, ...,n−1}, and thus a path

from g1 to g1c1...cn = g1g−1
1 g2 = g2 in Cay(G,C).

Since Cayley graphs have a very natural edge colouring, it seems intuitive to study what

kind of automorphisms of these graphs can preserve these colours. Our main goal of this

thesis is to classify what groups and Cayley graphs are and are not CCA to help understand

the automorphisms of Cayley graphs.

Later, in Corollary 2.4, we will see that the following two families of groups are exam-

ples of non-CCA groups.

Definition 1.11. [11, Definition. 2.6] Let A be an abelian group of even order. Choose an

involution y of A. The corresponding generalized dicyclic group is

Dic(y,A) = 〈x,A | x2 = y,x−1ax = a−1∀a ∈ A〉.

Definition 1.12. [11, Definition. 2.7] For n≥ 1, we define

SemiD16n = 〈a,x | a8n = x2 = e,xa = a4n−1x〉

6



1.2. BASICS

as the semidihedral group.

The following definition will be used in Section 2.4 where we will classify when these

groups are (strongly) CCA.

Definition 1.13. [11, Definition. 5.1] The generalized dihedral group over an abelian

group A is the group

Dih(A) = 〈σ,A | σ2 = e,σaσ = a−1∀a ∈ A〉

which is called the dihedral group if A is cyclic.

In Section 2.5 we will use Definitions 1.14, 1.15 and Lemma 1.16 for some of the

proofs. Lemma 1.16 is a very well known fact taught in elementary group theory (see, for

example [10, p. 32]).

Definition 1.14 ([10, p. 26]). A subgroup H of G is called a normal subgroup, denoted

H /G, if ∀g ∈ G, gH = Hg.

Definition 1.15 ([10, p. 31]). A subgroup H of G is called a characteristic subgroup,

denoted HcharG, if ∀ϕ ∈ Aut(G), ϕ(H) = H.

Lemma 1.16 ([10, p. 32]). If KcharH/G then K /G.

Definition 1.17 ([4, p. 8], [9, p. 20]). If G acts on a set Ω and v is an element of Ω then the

stabilizer of v with respect to G is Gv = {g ∈ G : g(v) = v}.

The following two definitions will be used in Section 2.1 to help show that the non-

abelian group of order 21 is not CCA.

Definition 1.18 ([12, Definition 1.1]). Let X be a graph and G a permutation group acting

on the edges of X . We say that X is a G-edge-regular graph if for each pair of edges e1

and e2 of X , there exists a unique element of G that maps e1 to e2.

7



1.2. BASICS

Definition 1.19 ([14, Definition 4.5]). Let B be a permutation group and G a regular sub-

group of B. Let A0 be the colour-preserving automorphism group for the Cayley graph KG.

We say that (G,B) is a complete colour pair if B is a subgroup of A0 and G is one of the

following:

• G is abelian but not an elementary abelian 2-group, and A0 = Dih(G).

• G∼= Dic(A,y) but not of the form Q8×Cn
2 and A0 = Ĝo 〈σ〉, where σ is the permu-

tation that fixes A pointwise and maps every element of the coset Ax to its inverse.

• G ∼= Q8×Cn
2 and A0 = 〈Ĝ,σi,σ j,σk〉, where σα is the permutation of Q8×Cn

2 that

inverts every element of {±α}×Cn
2 and fixes every other element.

The following definition will be used in Section 2.7.

Definition 1.20 ([14, p. 89]). A group G is a Sylow cyclic group if, for every prime p, the

Sylow p-subgroups of G are cyclic.

Finally we conclude this section with a very important definition that will be used

throughout the thesis.

Definition 1.21 ([1, p. 97]). A generating set C for a group G is called a minimal generat-

ing set for G if for all c ∈C we have that 〈C\{c}〉 6= G.

We use both wreath products and semi-direct products in this thesis. For those unfamil-

iar with these definitions see [10, p. 81, 88] or [4, p. 44, 46].

8



Chapter 2

Background

The results of this Chapter are based on [5, 11, 13, 14].

The recent work on CCA groups has produced the following major results that will be

used in the remaining chapters:

• There is a group of order n that is not CCA if and only if n≥ 8, and n is divisible by

either 4, 21, or a number of the form pqq, where p and q are primes (not necessarily

distinct) and p is odd (Corollary 2.24).

• An abelian group is not CCA if and only if it has a direct factor isomorphic to either

C4×C2 or a group of the form C2k×C2×C2, for some k ≥ 2 (Proposition 2.12).

• Every non-CCA group of odd order has a section that is isomorphic to either the

nonabelian group of order 21 or is a semi-wreath product of certain groups (Theorem

2.22).

• If G×H is CCA, then G and H are both CCA. The converse is not always true, but it

is true if gcd(|G|, |H|) = 1 (Proposition 2.9 and 2.10).

• A finite simple group is CCA if and only if it has no element of order four (see [13]).

The proofs and details of these results will be looked at in depth in the coming sections.

2.1 Non-CCA Groups

In this section we show a couple of small examples of groups that are non-CCA. First

we notice that for an affine function to fix the identity, it must be an automorphism of the

9



2.1. NON-CCA GROUPS

group. This is because if there is some left translate by a non-identity element it would move

the identity element. So, if we have that Cay(G,C) is CCA, then every colour-preserving

automorphism is affine and thus from above we must have that every colour-preserving

automorphism that fixes the identity is an automorphism of the group. More precisely:

Remark 2.1. A Cayley graph Cay(G,C) is CCA if and only if, for every colour-preserving

automorphism ϕ of Cay(G,C) with ϕ(e) = e, we have that ϕ∈ Aut(G) (see [11, Rem. 2.1]).

This fact is a consequence of Cayley graphs being vertex-transitive, and we can make a

similar statement with strongly CCA in place of CCA. We now give the first two examples

of non-CCA groups.

Example 2.2 ([11, Example. 2.2]). C4×C2 and Q8 (the quaternion group) are non-CCA.

Proof. For G = Q8 consider the connection set C = {±i,± j}. Below is a graph isomorphic

to Cay(Q8,{±i,± j}) with nodes v1, v2, v3, v4, v5, v6, v7, v8 replaced with 1, i, k, j, −1, −i,

−k, − j respectively.

v1

v2

v4

v5

v6

v8

v3

v7

The dashed edges correspond to the edges formed by ± j and the solid ones correspond

to ±i. Consider the automorphism ϕ that swaps the vertices k,−k: this corresponds to

flipping the two black vertices in the above picture. We can see that ϕ preserves the edge

types and is thus a colour-preserving automorphism, but since ϕ fixes the identity 1, by

Remark 2.1 ϕ must be in Aut(Q8) but this is not the case (since {i, j} generate Q8 and are

fixed pointwise by ϕ but ϕ is not the identity function).

Similarly if we consider G = C4×C2 and the connection set C = {±(1,0),±(1,1)}

we have that Cay(C4×C2,{±(1,0),±(1,1)}) is again isomorphic to the above graph with

10



2.1. NON-CCA GROUPS

nodes v1, v2, v3, v4, v5, v6, v7, v8 replaced with (0,0), (1,0), (2,1), (1,1), (2,0), (3,0),

(0,1), (3,1) respectively. The dashed edges correspond to ±(1,1) and the solid to ±(1,0).

We can see similarly that by swapping (0,1) and (2,1) we get an automorphism of the

graph that fixes (0,0) but is not an automorphism of C4×C2 (again it is not the identity but

fixes (1,0) and (1,1) pointwise, and these generate C4×C2).

We present a second method to see that the automorphism in both cases is not an auto-

morphism of the group (this idea is extended in the next proposition). A group automor-

phism has the property that the elements fixed by the automorphism form a subgroup of the

original group. Thus if more than half the elements are fixed by an automorphism this im-

plies that the automorphism must be the identity (using the fact that the order of a subgroup

divides the order of the group). Thus since both automorphisms presented above fix all but

two elements, six elements are fixed and thus to be an automorphism of the original group

it would have to be the identity (which it is not).

The ideas used in this proof can be generalized. This leads us to our next proposition

giving a construction that can prove that a group is not CCA. As seen later in this section,

this leads to several examples of non-CCA groups.

Proposition 2.3 ([11, Prop. 2.5]). Suppose there is a generating set C of G, an element τ of

G, and a subset T of C, such that:

• τ2 = e,

• for each element c ∈C, τcτ ∈ {c,c−1},

• t2 = τ for all t ∈ T ,

• the subgroup 〈(C\T )∪{τ}〉 6= G, and

• |G : 〈(C\T )∪{τ}〉|> 2 or τ /∈ Z(G)

Then G is not CCA.

11



2.1. NON-CCA GROUPS

Proof. Let H = 〈(C\T )∪{τ}〉. Since G is generated by C but H is not all of G we have

that there exists t0 ∈ T such that t0 /∈ H. Consider the function ϕ from G to G defined by

ϕ(g) = g if g /∈ t0H and ϕ(g) = gτ if g ∈ t0H. We first prove that ϕ is a colour-preserving

automorphism of Cay(G,C). Our goal afterwards (to show G is not CCA) will be achieved

by showing that ϕ is not affine. Since ϕ fixes the identity of G (since the identity is in H),

by Remark 2.1 this means we will show that ϕ is not an automorphism of G.

Clearly ϕ fixes edges between two vertices not in t0H so it fixes their colour as well.

Suppose w ∈ t0H and let c be any element of C such that wc ∈ t0H, then ϕ(wc) = wcτ =

wτc±1 = ϕ(w)c±1 using the assumption that τcτ = c±1. This proves (from Definition 1.6)

that ϕ preserves the colour of edges that are inside t0H. Lastly we must show that the colour

of edges is preserved when one vertex is in t0H and one vertex is not.

Suppose there are adjacent vertices w ∈ t0H and g /∈ t0H. Thus there exists c ∈C such

that wc = g. If c was in C\T then c ∈H and this would mean wc ∈ t0H, so we may assume

c ∈ T . Since ϕ fixes g we must prove that ϕ(w) has an edge of colour c to g (we use this

terminology loosely but the meaning should be clear). By our definitions there is an edge

of colour c from ϕ(w) to ϕ(w)c±1. We notice ϕ(w)c−1 = wτc−1 and from our assumption

since c∈ T we have that c2 = τ giving us wτc−1 = wc2c−1 = wc = g and thus as desired we

have an edge of colour c from ϕ(w) to g. Therefore ϕ is a colour-preserving automorphism.

All we have left to prove is that ϕ is not affine. We have two cases to consider.

Case 1: |G : H|> 2

In this case we have that ϕ fixes more then half of the elements of G. Recalling Example

2.2 this implies that if ϕ was an automorphism of G it must be the identity. Since it is not

the identity this implies that ϕ is not an automorphism of G as desired.

Case 2: |G : H|= 2

By our assumption this means that τ is not in the center of G, so ∃g ∈ G such that

τg 6= gτ. From our third assumption for t ∈ T we have that τt = t3 = tτ and thus τ commutes

with elements of T . All elements of G can be written in the form th for t ∈ T and h ∈ H

12



2.1. NON-CCA GROUPS

since H contains C\T and C generates G. So without loss of generality this means we can

take g ∈ H since τ commutes with the elements of T . (We use guidance from [11] to finish

this proof.) Suppose towards a contradiction that ϕ is an automorphism of G. We notice

from our third assumption that t−1
0 = t3

0 = t0τ and since τ ∈ H we have t0τ ∈ t0H which

gives us that t−1
0 ∈ t0H. Using our assumptions we get the following (each step is explained

in more detail following the calculations):

t−1
0 gt0 = ϕ(t−1

0 gt0) = ϕ(t−1
0 )gϕ(t0) = t−1

0 τgt0τ 6= t−1
0 gτt0τ = t−1

0 gt0.

The first equality is since t−1
0 gt0 6∈ t0H and thus ϕ fixes t−1

0 gt0. The second equality

is from our assumption that ϕ is an automorphism and it fixes g since g 6∈ t0H. The third

equality is since t0, t−1
0 ∈ t0H. The next inequality is due to our assumption that τ does

not commute with g, and the last equality is due to τ commuting with t0 and τ2 = e. This

calculation is a contradiction so we must have ϕ not an automorphism of the group.

We use Proposition 2.3 to summarize some of our examples of non-CCA groups.

Corollary 2.4 ([11, Cor. 2.8]). The following groups are not CCA:

1. C4×C2,

2. C2k×C2×C2, for any k ≥ 2,

3. Q8

4. every generalized dicyclic group except C4, and

5. every semidihedral group.

Proof. For each we will apply Proposition 2.3.

(1) Consider τ = (2,0) and C = T = {±(1,0),±(1,1)}. We fulfill the requirements

since (2,0)+ (2,0) = (0,0), C4×C2 is abelian (and thus τ commutes with all elements),

13



2.1. NON-CCA GROUPS

(1,0)+(1,0) = (2,0) = (1,1)+(1,1) and lastly |G : 〈(C\T )∪{τ}〉|= |G : 〈(2,0)〉|= |G :

{(0,0),(2,0)}|= 4 which satisfies the last two requirements.

(2) Take τ to be (2k−1,0,0) with C = {(1,0,0),(2k−2,1,0),(2k−2,0,1)} and consider

T = {(2k−2,1,0), (2k−2,0,1)}. This satisfies all the requirements of the proposition since

(2k−1,0,0)+ (2k−1,0,0) = (0,0,0), C2k ×C2×C2 is abelian (so τ commutes with all el-

ements), (2k−2,1,0)+ (2k−2,1,0) = (2k−1,0,0) = (2k−2,0,1)+ (2k−2,0,1). The last two

properties are satisfied since |G : 〈(C\T )∪{τ}〉|= |G : 〈{(1,0,0)}〉|= 2k+2

2k = 4.

(3) Consider τ = −1 and C = T = {±i,± j}. This satisfies all the properties since

(−1)2 = 1, (±i)2 = i2 = −1 = j2 = (± j)2. We also have that −1 commutes with all

elements of Q8 and similar to the above examples |G : 〈(C\T )∪{τ}〉|= |G : 〈−1〉|= 4.

(4) Using Definition 1.11 for Dic(y,A), take τ = y and let C = T = {xa : a ∈ A} = xA.

Then τ2 = y2 = e since y is an involution. Let c ∈C be arbitrary, then we have c = xa for

some a ∈ A. So

τcτ = yxay = x3ax2 = x−1axx = a−1x = xa = c

thus satisfying second property needed for Proposition 2.3. The third property is satisfied

since

c2 = (xa)2 = xaxa = xxa−1a = x2 = y = τ

for all c ∈ C = T . Finally the last property is satisfied since |〈(C\T )∪{τ}〉| = |{τ}| = 2

and since Dic(y,A) 6∼=C4 we have |Dic(y,A)|> 4 thus |Dic(y,A) : 〈{τ}〉|> 2 as desired.

(5) Using Definition 1.12 for SemiD16n, take τ = a4n and let T = {ax,xa−1} and C =

{x,ax,xa−1}. Now to satisfy the second property, consider c ∈ C to be arbitrary. For the

two cases c ∈ {x,ax} let c = amx with m ∈ {0,1}. Then

τcτ = τamxτ = a4namxa4n = a4n+ma4n−1xa4n−1 = am−1ax = amx.

14
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Now consider c = xa−1:

τcτ = τxa−1
τ = a4nxa−1a4n = a4n−1(ax)a4n−1 = a4n−1xa4n−1a4n−1 = xaa−2 = xa−1

giving us that τ centralizes C. Now let t ∈ T be arbitrary, for the case t = ax we have

t2 = (ax)2 = axax = aa4n−1xx = a4nx2 = τe = τ

and for the case t = xa−1 we have

t2 = (xa−1)2 = xa−1xa−1 = xxa−(4n−1)a−1 = x2a4n+1−1 = ea4n = τ

so the third property is satisfied. Now

|SemiD16n : 〈(C\T )∪{τ}〉|= |SemiD16n : 〈{x,τ}〉|= 16n
4

= 4n > 2

as desired.

Proposition 2.5 ([14, Prop. 4.6]). Let X be a connected bipartite G-edge-regular graph. If

H is a group of automorphisms of X such that:

• G≤ H,

• the orbits of H on the vertex-set of X are exactly the biparts, and

• for every vertex v of X, either GN(v)
v = HN(v)

v or (GN(v)
v ,HN(v)

v ) is a complete colour

pair,

then H is a colour-preserving group of automorphisms of L(X) viewed as a Cayley graph

on G.

Example 2.6 ([14, Example. 4.8]). The unique nonabelian group of order 21 is not CCA.

15



2.1. NON-CCA GROUPS

Proof.

Let X be the Heawood graph (the graph seen above) and let H be the subgroup of

Aut(X) that preserves the bipartitions. It can be seen that H ∼= PSL(2,7) and H contains an

edge-regular subgroup G (isomorphic to the nonabelian group of order 21). Thus L(X) can

be viewed as a Cayley graph on G.

We also have that for every vertex v of X , GN(v)
v ∼=C3 and HN(v)

v ∼= D3. Since (C3,D3) is

a complete colour pair we can apply Proposition 2.5 and say that H is a colour-preserving

group of automorphisms of L(X) (viewed as a Cayley graph on G). But G is not normal

in H, so there exists an element h ∈ H such that hG 6= Gh. Since H is a colour-preserving

group of automorphisms of L(X) that means h preserves its colours, but h is not an affine

function of G. Therefore L(X) is a non-CCA graph of G and so G (the nonabelian group

of order 21) is non-CCA.

We will see that Example 2.6 is useful in Section 2.5 and 2.7. Lastly we have one more

example, involving wreath products.

Proposition 2.7 ([14, Prop. 3.1]). Let H be a permutation group of a set Ω, G a group. If

• there is an inverse-closed generating set C for G and a non-identity bijection τ : G→

G, such that τ fixes e, and τ(gc) = τ(g)c±1 for every g ∈ G and every c ∈C, and

• either H is nontrivial or τ 6∈ Aut(G),

then G oΩ H is non-CCA.

Proposition 2.7 has multiple applications, some of which can be seen in [14]. Another

application is the following example.
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Example 2.8 ([11, Example. 2.4]). The wreath product Cm oCn is not CCA whenever m≥ 3

and n≥ 2.

2.2 Direct and Semidirect Products

For a group G that is a direct product of two other groups G1 and G2, it is natural

to check what conditions cause G to be a non-CCA group. It will be shown in the next

proposition that if either G1 or G2 is not CCA, then G is not CCA.

Proposition 2.9 ([11, Prop. 3.1]). If G1 is not (strongly) CCA, and G2 is any group, then

G1×G2 is not (strongly) CCA.

Proof. Since G1 is not strongly CCA, ∃C1 a generating set of G1 with a colour-permuting

automorphism ϕ of Cay(G1,C1) that is not affine. By the definition of colour-permuting

automorphism this means that for all g1 ∈G1 and c1 ∈C1 we have ϕ(g1c1) = ϕ(g1)π(c1)
±1

for some π a permutation of C1. Let C2 be any generating set for G2 and consider the Cayley

graph Cay(G1×G2,C) where C = {(c1,eG2) : c1 ∈C1}∪{(eG1 ,c2) : c2 ∈C2}. It is not hard

to see that C is a generating set for G1×G2 so Cay(G1×G2,C) is connected.

Our goal is to prove that Cay(G1×G2,C) has a colour-permuting automorphism that is

not affine. We consider the function ϕ′ defined by ϕ′(g1,g2) = (ϕ(g1),g2). Let (g1,g2) ∈

G1×G2, c1 ∈C1 and c2 ∈C2 all be arbitrary. Then:

ϕ
′((g1,g2)(c1,eG2)) = (ϕ(g1c1),g2) = (ϕ(g1)π(c1)

±1,g2) = ϕ
′(g1,g2)(π(c1),eG2)

±1, and

ϕ
′((g1,g2)(eG1,c2)) = (ϕ(g1),g2c2) = ϕ

′(g1,g2)(eG1,c2)

Therefore ϕ′ is a colour-permuting automorphism of Cay(G1×G2,C), and it is not

affine since if we restrict ϕ′ to G1 it is not affine.

The proof for colour-preserving automorphism follows exactly the same argument re-

placing π with the identity map.
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Proposition 2.9 says that if G1×G2 is (strongly) CCA then both G1 and G2 must also

be (strongly) CCA. The converse is not always true: for example C4 and C2 are both CCA,

but as we saw previously, C4×C2 is not CCA. But we can improve Proposition 2.9 with

the following result, showing that if the order of the groups are coprime then the converse

is true.

Proposition 2.10 ([11, Prop. 3.2]). If |G1| and |G2| are coprime then G1×G2 is (strongly)

CCA if and only if G1 and G2 are both (strongly) CCA.

Proof. (⇒) Proposition 2.9.

(⇐) Suppose that G1 and G2 are both strongly CCA and let C be any generating set

of G1×G2. Define πi : G1×G2→ Gi to be the natural projection for i = 1,2. Let k be a

multiple of |G2| such that k≡ 1 (mod |G1|). Such a k can be found since gcd(|G1|, |G2|) =

1.

For (g1,g2)∈G1×G2 we see that (g1,g2)
k = (gk

1,g
k
2) = (g1,eG2). Therefore (with some

abuse of notation) for g ∈ G1×G2, gk = π1(g). Suppose c ∈C is arbitrary and let c0 ∈C

be the ‘colour’ that c is permuted to, more formally c0 = ϕ(c). For g ∈ G1×G2 we have:

ϕ(gπ1(c)) = ϕ(gck) = ϕ(g)c±k
0 = ϕ(g)π1(c0)

±1 ∈ ϕ(g)G1 (2.1)

Consider g1 ∈ G1 arbitrary and g2 ∈ G2. Since C generates G1×G2, ∃c1, ...,cm ∈ C

such that g1 = π1(c1)...π1(cm) and so by applying (2.1) m times we get that:

ϕ(g1g2) = ϕ(g2g1) = ϕ(g2π1(c1)...π1(cm)) ∈ ϕ(g2)G1 = G1ϕ(g2)

Since g1 was arbitrary we have that ϕ(G1g2) is contained in G1ϕ(g2). Moreover, if

we consider ϕ2(g2) = π2(ϕ(g2)) (a well-defined permutation of G2) we get ϕ(G1g2) =

G1ϕ2(g2).

Repeating a similar argument we can find ϕ1 a permutation of G1 with the property that

ϕ(g1,g2) = (ϕ1(g1),ϕ2(g2)). Notice that (2.1) says that ϕ1 is a colour-permuting automor-
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phism of Cay(G1,π1(C)) and thus must be an automorphism of G1 since G1 is strongly

CCA. Similarly ϕ2 is a automorphism of G2.

Thus to show ϕ is an automorphism of G1 ×G2, let (g1,g2),(g′1,g
′
2) ∈ G1 ×G2 be

arbitrary. Then

ϕ((g1,g2)(g′1,g
′
2)) = (ϕ1(g1g′1),ϕ2(g2g′2))

= (ϕ1(g1)ϕ1(g′1),ϕ2(g2)ϕ2(g′2))

= (ϕ1(g1),ϕ2(g2))(ϕ1(g′1),ϕ2(g′2))

= ϕ(g1,g2)ϕ(g′1,g
′
2)

In the case where G1,G2 are CCA instead of strongly CCA we use the same proof, with

c0 = c±1.

A result using the same ideas used in Example 2.8 leads us to the following proposition.

Proposition 2.11 ([11, Prop. 3.3]). Suppose G = H oK is a semidirect product, and also

that Cay(H,C0) is a connected Cayley graph of H, such that

• C0 is invariant under conjugation by every element of K, and

• there is a colour-preserving automorphism ϕ0 of Cay(H,C0), such that either

– ϕ0 is not affine, or

– ϕ0(e) = e, and there exists c ∈C0 and k ∈ K, such that ϕ0(k−1sk) 6= k−1ϕ0(s)k.

Then G is not CCA.

2.3 Abelian Groups

It is interesting for us to consider abelian groups as a natural family of groups that we

can completely classify using these ideas. In this section we present a proposition that
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gives us the exact conditions needed for an abelian group to be non-CCA. These conditions

relate to the two groups we have previously looked at (C4×C2 and C2k ×C2×C2) and it

says that the only time that an abelian group is non-CCA is exactly when it has a direct

factor isomorphic to one of these groups. Afterwards, we get a simple corollary that is a

consequence of the coming proposition and Proposition 2.9.

Proposition 2.12 ([11, Prop. 4.1]). For an abelian group G, the following are equivalent:

1. G has a direct factor that is isomorphic to either C4×C2 or a group of the form

C2k×C2×C2, for any k ≥ 2

2. G is not CCA

3. G is not strongly CCA

Corollary 2.13 ([11, Cor. 4.2]). There is a non-CCA abelian group of order n if and only if

n is divisible by 8.

2.4 Generalized Dihedral Groups

Since we know exactly when an abelian group is (strongly) CCA, we consider looking

at groups that are constructed from abelian groups. In this section we will look at the

generalized dihedral groups and determine when they are (strongly) CCA.

Lemma 2.14 ([11, Lem. 5.2]). Suppose D is the generalized dihedral group over an abelian

group A, and also that ϕ is a colour-permuting automorphism of a connected Cayley graph

Cay(D,C), such that ϕ(e) = e. If A is strongly CCA, and ϕ(C∪A) = C∪A, then ϕ is an

automorphism of D.

Proposition 2.15 ([11, Prop. 5.3]). The generalized dihedral group D over an abelian group

A is CCA if and only if A is CCA.
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From Proposition 2.12 we can notice that since cyclic groups cannot have a direct factor

isomorphic to C4×C2 or C2k×C2×C2 we get that cyclic groups are (strongly) CCA. Thus

by Proposition 2.15 we get the following simple corollary.

Corollary 2.16 ([11, Cor. 5.4]). Every dihedral group is CCA.

We can also do better and look at the exact requirements needed for a generalized dihe-

dral group to be strongly CCA. This leads us to the following lemma which helps prove the

next proposition.

Lemma 2.17 ([11, Lem. 5.5]). If C is a generating set of a group H, and σ is a nontrivial

automorphism of H, such that σ(c)∈ {c,c−1} for all c∈C, then the group G = (Ho〈σ〉)×

C2 is not strongly CCA.

Proposition 2.18 ([11, Prop. 5.6]). The generalized dihedral group over an abelian group

A is strongly CCA if and only if either:

• A does not have C2 as a direct factor, or

• A is an elementary abelian 2-group.

2.5 Groups of Odd Order

We now will be considering the cases where the order of G is odd.

Lemma 2.19 ([11, Lem. 6.3]). A0
e is a 2-group (recall Notation 1.2).

Proof. Suppose ϕ∈A0
e , then ϕ is a colour-preserving automorphism of Cay(G,C) that fixes

e. Consider any cycle C that contains edges of only one colour with e ∈ C . Since e is fixed

by ϕ, then either C is fixed or reflected by ϕ. In either case ϕ2 fixes C and so since every

vertex with distance one away from e is on some cycle (containing only one edge colour),

ϕ2 fixes all vertices of distance 1 away from e. Since there was nothing special about e

being fixed we can use this argument again using the neighbours of e to show that ϕ22
fixes
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all vertices of distance 2 away from e. By repeating this process enough times this shows

that ϕ2m
fixes all vertices with m large enough, which shows that the order of ϕ is a power

of 2. Since ϕ was arbitrary this means that A0
e is a 2-group.

Our next result says that the CCA and strongly CCA properties are equivalent for groups

of odd order.

Proposition 2.20 ([11, Prop. 6.4]). Let Cay(G,C) be a connected Cayley graph on a group

G of odd order. If every colour-preserving automorphism of Cay(G,C) is affine, then every

colour-permuting automorphism is affine.

Proof. Let A∗ be the set of all colour-permuting automorphisms of Cay(G,C). We can see

from Remark 1.8 that if a permutation is affine, then it normalizes Ĝ so if we can prove that

Ĝ /A∗ then that means that every permutation of A∗ normalizes Ĝ and thus are all affine

which gives us that G is strongly CCA.

Since G is CCA this implies that Ĝ / A0. Moreover we will show that we can get

ĜcharA0 which will help finish the proof. By the definition of A0 and Ĝ we can see that

A0 = ĜA0
e . Also by our definition of Ĝ we get that |G|= |Ĝ| and so |Ĝ| is odd. As proven

in Lemma 2.19 we have that |A0
e | is a power of 2 and so this means that Ĝ is the unique

largest subgroup of odd order in A0. Thus since Ĝ is unique, every automorphism of A0

must fix Ĝ setwise. So by Definition 1.15 this means ĜcharA0.

Now, by Lemma 1.16, KcharH /G implies K /G, so all we must show is that A0 /A∗

(since it is clear that A0 is a subgroup of A∗). This is easy to see since A∗ permutes the

colours and A0 fixes them and so A0 is the kernel of the action of permuting the colours.

Thus since the kernel of a homomorphism is normal, we get our desired result.

Definition 2.21. Let G be a group. For any subgroups H,K of G, such that K C H, the

quotient H/K is said to be a section of G.

The follow theorem gives us an indication of what a non-CCA group of odd order looks

like. This uses Example 2.6 with the nonabelian group of order 21.
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Theorem 2.22 ([11, Thm. 6.8]). Any non-CCA group of odd order has a section that is

isomorphic to either:

• A semi-wreathed product A oα Cn, where A is a nontrivial, elementary abelian group

of odd order and n > 1, or

• the unique nonabelian group of order 21.

The following Lemma gives us some restrictions on the set C when determining the

(strongly) CCA property. Our algorithm does not implement this but it could be used to

reduce the search space.

Lemma 2.23 ([11, Lem. 6.11]). To prove a group G is (strongly) CCA, it suffices to consider

only the connected Cayley graphs Cay(G,C), such that every element of C has prime-power

order.

The next corollary summarizes several results of [11]. We have used it to restrict the

orders on which we run our program, to those for which non-CCA groups exist.

Corollary 2.24 ([11, Cor. 6.13]). The following are equivalent

• There is a group of order n that is not CCA

• There is a group of order n that is not strongly CCA

• n≥ 8, and n is divisible by either 4, 21, or a number of the form pqq, where p and q

are primes (not necessarily distinct) and p is odd

2.6 Groups of Small Order

In this section we look at all groups that have order less than 32 and see whether or not

they are CCA. This section is going to be useful in Chapter 4 where we try to classify all

groups up to order 200 (except orders 128 and 192). These results will help us cross-check

our output for groups of order up to 32.
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Proposition 2.25 ([11, Prop. 7.1]). An abelian group of order less than 32 is not (strongly)

CCA if and only if it is either

• C2×C4,

• C2×C2×C4, or

• C2×C3×C4.

Proposition 2.26 ([11, Prop 7.2]). The only groups that are not (strongly) CCA, and whose

order is less than 32 and not divisible by 4 are:

• C3 oC2 ∼= D6×C3, and

• the unique nonabelian group of order 21.

Proposition 2.27 ([11, Prop 7.3]). The only nonabelian groups that are strongly CCA and

whose order is less than 32 and is divisible by 4 are:

• the dihedral groups D8, D16, D24,

• the alternating group A4,

• C8 oC2 in which a−1xa = x5 for x ∈C8 and 〈a〉=C2, and

• D8×C3, A4×C2 and C3 oC8 in which C8 inverts C3.

Furthermore, the only groups of order less than 32 that are CCA, but not strongly CCA,

are:

• the dihedral groups D12, D20, D28, and

• the generalized dihedral group D12×C2.
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2.7 Sylow Cyclic Groups with Order not divisible by four

We now look at our last example of families of groups that have been studied. The

following theorem helps us understand the structure of Sylow cyclic groups (recall Defini-

tion 1.20) whose order is not divisible by four that admit non-CCA Cayley graphs. It is a

simplified version of [14, Thm. 5.1].

Theorem 2.28 ([14, Thm. 5.1]). Let G be a be a Sylow cyclic group whose order is not

divisible by four and that is non-CCA. Then

• G = F×H, or

• G = (F×H)oC2

where |H| is odd and F is the nonabelian group of order 21.

The next two theorems are in some sense converse to each other. In the first theorem if

we have a non-CCA Cayley graph on a Sylow cyclic group whose order is not divisible by

four, then there is a connected Cayley graph on a smaller group that is not CCA. The second

theorem shows that if we have this ‘condensed’ Cayley graph with a couple of properties

(including not CCA) then the ‘expanded’ Cayley graph is non-CCA.

Theorem 2.29 ([14, Thm. 5.2]). Let G be a Sylow cyclic group whose order is not divisible

by four, let Cay(G,C) be a connected non-CCA graph and let A=A0, the colour preserving

automorphisms of Cay(G,C). Using notation from Theorem 2.28 write A = (T ×J)oR and

G = (F×H)oR. Let r be the generator of R, let Y = S\(F ∪ (H oR)) and let

X =Cay(F oR,(F ∩S)∪{r}∪{s2 : s ∈ Y}).

Then

• X is connected and non-CCA.

• Y ⊆ { f z : f ∈ F,z ∈ Hr, | f |= 3, |z|= 2}, and
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• if Y 6= /0, then |R|= 2, and T commutes with R.

Theorem 2.30 ([14, Thm. 5.2]). Let G be a Sylow cyclic group whose order is not divisible

by four such that G = (F ×H)oR where F is the nonabelian group of order 21, R is a

Sylow 2-subgroup of G, and F and H are normal in G. Let r be the generator of R, let C be

a generating set for G, let Y = S\(F ∪ (H oR)), and let

X =Cay(F oR,(F ∩S)∪{r}∪{s2 : s ∈ Y}).

If

• X is connected and non-CCA

• Y ⊆ { f z : f ∈ F,z ∈ Hr, | f |= 3, |z|= 2}, and

• if Y 6= /0, then |R|= 2, and F commutes with R,

then Cay(G,C) is connected and non-CCA.

See [14] to see what the possible ‘condensed’ graphs are, one of which is similar to

Example 2.6.

Putting Theorem 2.30 together with the fact that F (the nonabelian group of order 21)

is non-CCA and the direct product results (Proposition 2.9), we see that any group satisfy-

ing Theorem 2.28 is non-CCA. Thus we have a complete characterization of Sylow cyclic

groups whose order is not divisible by four, according to whether or not they are CCA.
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Chapter 3

Algorithms to determine CCA groups

As discussed in Section 2.6 we hope to expand the number of groups that we know are

or are not CCA. A new program was developed to verify whether or not a group is CCA.

The program is the main contribution of this thesis and forms the basis of the thesis. It

uses both GAP [8] and Sage [17]. In this chapter we explain the algorithm(s) used by the

program and how it determines whether or not a group or graph is CCA. After giving all

the background knowledge needed we will explain the algorithm and give some arguments

as to why it works. In later sections we will break down the larger algorithm into smaller

pieces and explain each piece in more detail.

In this section we describe the algorithm using pseudo code. The actual code can be

found in Appendix A.

3.1 Background and general approach of the algorithms

Recalling Definition 1.7, for a group to be CCA means that every connected Cayley

graph on that group must also be a CCA graph. So one way for our program to solve

this problem is to look at every connected Cayley graph of a group to determine whether

the group is CCA. Lemma 1.10 then tells us that to find each connected Cayley graph we

can reduce to considering Cay(G,C) for those C that generate G. Since the number of

generating sets of a group can be large we use the following lemma to help us reduce the

number of generating sets we need to look at.

Lemma 3.1. Let C be a minimal generating set of G and let C′ ⊇ C. If Cay(G,C′) is not
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CCA then Cay(G,C) is not CCA.

Proof. If ϕ is a colour-preserving automorphism of Cay(G,C′) then it also must also be a

colour-preserving automorphism of Cay(G,C). Assume Cay(G,C′) is not CCA, then there

exists a colour-preserving automorphism ϕ that is not an affine function on G. From above,

ϕ would also be a colour-preserving automorphism of Cay(G,C), and ϕ is not an affine

function on G. Thus Cay(G,C) is not CCA.

This Lemma is known by experts but has not been published. Lemma 3.1 tells us

that we only need to look at Cayley graphs that are formed by minimal generating sets to

check for the CCA property in groups. So we have two main algorithms that need to be

considered. The first algorithm is given a group, determine all unique minimal generating

sets of that group (up to group automorphism). The second algorithm is given a group and a

minimal generating set, determine whether the Cayley graph generated by the two is CCA.

Combining those two together, for each group we find all minimal generating sets and see

if all the corresponding Cayley graphs are CCA. If any of the graphs are not CCA then the

group is not CCA.

By Remark 2.1 we will only need to check colour-preserving automorphisms of the

Cayley graph that fix the identity. Another useful remark for our algorithm is the following.

Remark 3.2. If A0 is the group of colour-preserving automorphisms of Cay(G,C), then

Cay(G,C) is CCA if |A0|= |G|.

The reason that Remark 3.2 is true is because recalling Chapter 1, all elements of Ĝ∼= G

(recall Notation 1.2, this is the set of left translations of A0) are in A0. Thus if |A0| = |G|

then A0 = Ĝ. Using Remark 2.1 with the fact that the only element of A0 that fixes the

identity is the identity itself gives us that all elements of A0 that fix the identity are elements

of Aut(G).
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3.2 Pseudocode and explanation for the algorithms

We start with the CCA Algorithm (Algorithm 1) which determines whether or not a

given group is CCA. Algorithm 1 relies on Algorithm 2 (which determines whether a func-

tion on G is an element of Aut(G)) and Algorithm 3 (which finds all minimal generating

sets of a group). Also, we use Sage [17] to both store the Cayley graph with the given edge

colouring and list all colour-preserving automorphisms of that graph (easy to do in Sage

[17]).

Algorithm 1 CCA Algorithm
Input: G a group
Output: True if G is CCA, False if it is not

1: MinGens← AllMinimalGeneratingSets(G) {Algorithm 3}
2: FoundNonCCA← False
3: for all C ∈MinGens do
4: CayGph←Cay(G,C) with the natural edge colouring
5: AutCay← colour-preserving automorphism group of CayGph
6: if |AutCay| 6= |G| then
7: for all ϕ ∈ AutCay do
8: if ϕ(e) = e and ϕ 6∈ Aut(G) then {Algorithm 2}
9: FoundNonCCA← True.

10: end if
11: end for
12: end if
13: end for
14: if FoundNonCCA = True then
15: return False
16: else
17: return True
18: end if

We will show the expanded algorithm that checks the condition ϕ 6∈ Aut(G) which se-

lects one of two “brute force” approaches (whichever is better complexity wise). The first

choice looks at each element of Aut(G) and checks to see if that element acts on G the same

way ϕ does. The second choice does a simple homomorphism check on ϕ, i.e it checks

ϕ(gh) = ϕ(g)ϕ(h) for all g,h ∈ G.
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Algorithm 2 Checks whether ϕ is in the automorphism group of the group G.
Input: G a group, ϕ : G→ G
Output: True if ϕ ∈ Aut(G), False otherwise

1: if |G|> |Aut(G)| then {First Choice}
2: for all ψ ∈ Aut(G) do
3: ActsDiff← False
4: for all g ∈ G do
5: if ϕ(g) 6= ψ(g) then
6: ActsDiff← True
7: end if
8: end for
9: if ActsDiff = False then

10: return True
11: end if
12: end for
13: return False
14: else {Second Choice}
15: for all g,h ∈ G do
16: if ϕ(gh) 6= ϕ(g)ϕ(h) then
17: return False
18: end if
19: end for
20: return True
21: end if
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Now, the main algorithm should be fairly clear to understand. The only details which

should be expanded on is the AllMinimalGeneratingSets(G) algorithm which itself is bro-

ken up into a couple of parts. To begin the algorithm, we create a list of elements (Elements

from Line 2) that we will try to make minimal generating sets from. The list Elements

will contain exactly one generator for each cyclic subgroup in G. The reason is as follows;

suppose g1,g2 ∈ G and 〈g1〉 = 〈g2〉 then if C is a minimal generating set of G with g1 ∈C

then we also have that C\{g1}∪{g2} is a minimal generating set for G. Our strategy will

be to find all minimal generating sets containing elements from Elements. Then we will

use a function Expand to take any minimal generating set whose elements are all in the

list Elements, and find all minimal generating sets that can be formed by replacing some

of the generators with other elements that generate the same cyclic subgroup (as we have

just described). Lines 3 through 13 create the list Elements, and the function Expand on

Line 17 is a function that takes in a generating set and returns the expanded list using the

explanation above.

The Recurse function is a recursive algorithm that takes in a set CurGens (elements you

are using to generate G) and the set Elements (elements that you want to consider adding

to the previous set to make G, explained above). The algorithm tries every combination of

using and not using elements of Elements to generate G while also making sure CurGens is

minimal. This function is expanded on in Algorithm 4.

Finally, we use the function UniqueUpToAutomorphism which checks to make sure

that a possible addition to our minimal generators is not just a copy of another minimal

generating set (with an automorphism applied to it). This is expanded on in Algorithm 5.

We also make a note here that the order in which the elements of G are looked at may

change the list Elements but we will still get a set of minimal generating sets that is unique

up to automorphism.
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Algorithm 3 AllMinimalGeneratingSets
Input: G a group
Output: A set of all minimal generating sets of G

1: CurGens← /0

2: Elements← /0

3: for all g ∈ G do {Creating list Elements as described above}
4: Unique← True
5: for all el ∈ Elements do
6: if 〈el〉= 〈g〉 then
7: Unique← False
8: end if
9: end for

10: if Unique = True then
11: Elements← Elements∪{g}
12: end if
13: end for
14: MinGensTemp← Recurse(CurGens, Elements) {Algorithm 4}
15: MinGens← /0

16: for all Gen ∈MinGensTemp do
17: GenExpanded← Expand(Gen)
18: for all GenSet ∈ GenExpanded do
19: if UniqueUpToAutomorphism(GenSet,MinGens) then {Algorithm 5}
20: MinGens←MinGens∪{GenSet}
21: end if
22: end for
23: end for
24: return MinGens
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We now give the details of the recursive algorithm which is the core of finding minimal

generating sets. We first give some more detail as to how the algorithm works. First, since

this is a recursive algorithm we need base cases. If 〈CurGens〉 = G that means we have

constructed a minimal generating set, so we should return it (Lines 1 through 4). Our

second base case is if Elements is empty, meaning we have no more elements to try (Line

5). Now, if we have not fallen into one of the base cases, then CurGens does not generate

G and Elements is non-empty. So, we take an element of Elements (Line 7) and we can

either choose to use it (Lines 8 through 18) or not use it (Line 19, where we recursively try

to not use that element). If we do decide to use it, we check to make sure adding it will

expand our generated group (Line 8) and we also make sure it does not make any of our

other generators redundant (Lines 9 through 14).

Algorithm 4 Recurse
Input: CurGens, Elements sets of elements of G
Output: Partial sets of all minimal generating sets of G

1: GenG← 〈CurGens〉
2: if GenG = G then
3: return {CurGens} {CurGens is a minimal generating set}
4: end if
5: if Elements 6= /0 then
6: RetSets← /0

7: Element← element of Elements
8: if Element 6∈ GenG then {This will try to use Element}
9: MakesOtherElementRedundant← False

10: for all c ∈ CurGens do
11: if 〈CurGens∪{Element}〉= 〈(CurGens\c)∪{Element}〉 then
12: MakesOtherElementRedundant← True
13: end if
14: end for
15: if MakesOtherElementRedundant = False then
16: RetSets← RetSets∪Recurse(CurGens∪{Element}, Elements\ Element)
17: end if
18: end if {Try not using Element}
19: RetSets← RetSets∪Recurse(CurGens, Elements\ Element)
20: return RetSets
21: end if
22: return {}
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Finally we show the short algorithm which checks whether a generating set is unique

up to group automorphisms. This algorithm also selects from two algorithms depending

on which is better complexity wise. The first choice of the algorithm applies every group

automorphism to the minimal generating set that we want to add, and if the transformed set

is already in our set of unique (up to group automorphisms) minimal generating sets, then

it is not unique so we should not add it. The second choice uses a GAP [8] algorithm that

takes in a set C which generates G and a set S (for our purpose, another generating set of

G). So C = {c1, ...,cn},S = {s1, ...,sn} ⊆ G. The algorithm then quickly checks to see if

there is a homomorphism (or in our case, automorphism) ϕ of G such that ϕ(ci) = ϕ(si) for

all i. In this second case we use this function to check GroupSet against all permutations of

all sets of equal length in SetofGroupSets.

Algorithm 5 UniqueUpToAutomorphism
Input: GroupSet a set of elements of G and SetofGroupSets a set of sets of elements of G
Output: True if GroupSet is not in SetofGroupSets up to automorphism, False otherwise

1: if |Aut(G)| ≤ |GroupSet|! then {Choice 1}
2: for all ψ ∈ Aut(G) do
3: AutGpSet← ψ(GroupSet)
4: if AutGpSet ∈ SetofGroupSets then
5: return False
6: end if
7: end for
8: return True
9: else {Choice 2}

10: for all S ∈ SetofGroupSets such that |S|= |GroupSet| do
11: for all S′ a permutation of S do
12: if ∃ϕ from S′ to GroupSet then {Using GAP function}
13: return False
14: end if
15: end for
16: end for
17: return True
18: end if
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Chapter 4

Results

In Chapter 3 we explained the algorithm and program that we wrote to determine which

groups (and graphs) are and are not CCA. In this chapter we will analyze the output of the

program in Chapter 3. The full table can be found in Appendix B which will show each

group up to order 200 (excluding orders 128 and 192) and indicate whether the group was

already known to be CCA from past results seen in Chapter 2 or if they are newly found

from the program in Chapter 3. We did not run on groups of order 128 and 192 because

there are 2328 and 1543 groups of those orders respectively.

4.1 Observations from the Table

Here we list some observations based on the data in the table. These seem to hold true

throughout the table but were not checked in every detail. These also may not hold for

groups of order over 200.

Orders of the form 4p (where p is prime) have only four to five groups (except order 12)

and have at most two non-CCA groups. The orders 18, 50, 81, 98 have at most two groups

that are non-CCA (they are of the form exactly pqq where p is a odd prime and q is prime).

The five orders 54, 90, 126, 150 and 198 (odd prime multiples of 18, 50, 81, 98) also seem

to have mostly CCA groups. The orders that are prime multiples of 21 (42, 63, 105, 147,

189) also tend to have mostly CCA groups (although order 105 only has two unique groups

similar to order 21). The orders 36, 56, 84, 88, 104, 108, 136, 140, 152, 184, 196 have

close to half CCA groups and half non-CCA groups while orders 60, 90, 126, 132, 156,
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162 seem to have more than half of the groups being CCA. The remaining orders seem to

have predominantly non-CCA groups.

The first non-CCA group that was not previously known is S3×S3. Using Proposition

2.9 and combining it with these new non-CCA groups give us several new groups that

may have not been previously known. In the table, groups with this structure are listed

as previously known (as their status can be determined by combining our new knowledge

about the original non-CCA group with Proposition 2.9). Similarly new results on CCA

groups can be applied with Proposition 2.10. Looking through the tables, the groups that

are new mostly seem to be CCA groups. This is because Proposition 2.3 applies to most of

the non-CCA groups that were found. However, it is not often easy to see from a group’s

presentation whether or not it will have the structure described in Proposition 2.3; we used

an additional new algorithm (this code is also provided in Appendix A) to determine which

of the non-CCA groups have this structure.

4.2 Future Work

In this section we list some ideas for possible future work for the study of the CCA

property.

The algorithm used and listed in this work is very much a brute force approach (remov-

ing some cases when possible). One possibility could be optimizing this algorithm further

to make it run faster on groups to produce more results. One possible way of doing this

would be to move some of the automorphism checks into the recursive function instead of

doing it all at the end. This would result in cutting off branches of the search tree earlier.

This would be beneficial since theoretically the recursive search function has the highest

complexity in the algorithm. Another simple change would be to use Lemma 2.23 and only

use elements that are prime power orders. This was left out because we wanted our minimal

generating set algorithm to be more general and not just to be used for the CCA property.

Another area for future study to improve the algorithm would be coming up with an
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algorithm to determine all minimal generating sets without using a brute force method.

Since the search space can be quite large, this is where the program suffers the most in

terms of time. This would significantly increase the number of groups (and graphs) that

could be searched.

Several of the results in Chapter 2 rely on the study of non-CCA graphs to determine

which groups are non-CCA. Taking the time to study some of the non-CCA graphs (which

can be output by the program) may lead to insight on some of the structures of non-CCA

graphs.

A project could be to analyze the group structures from the table and make conjectures

about general results. This could lead to results giving us a better understanding of which

groups are (and are not) CCA.

We make one note on a possible subject for analyzing this table. Searching through the

table we noticed several times when we had a group that was a semidirect product involving

at least one non-CCA group, it was generally true that the product group was also non-CCA.

The first counter-example found in this table was the group ((C4×C2) : C4) : C3 of order

96 since (C4×C2) : C4 is non-CCA but the product is CCA. One project could be to study

this group and determine why this group is CCA. Another (more difficult) project is to try

to generalize the results of Proposition 2.11 to determine exactly when semidirect products

result in CCA and non-CCA groups. A first step might be to further study wreath products

of groups and determining when those result in CCA and non-CCA groups. Some work on

wreath products has appeared in [14].

4.3 Application

In this section we will briefly discuss another application of the all minimal generating

sets part of our program. This section will be self contained because it is not the main

application that the program was built for.

Definition 4.1. • A Hamiltonian path in a graph is a path that meets every vertex
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(once).

• A Hamiltonian cycle in a graph is a cycle that meets every vertex (once).

• A graph is Hamiltonian connected if, for every pair of distinct vertices u and v, there

is a Hamiltonian path from u to v.

• A bipartite graph is Hamiltonian laceable if, for every pair of distinct vertices u and

v in opposite halves of the bipartition, there is a Hamiltonian path from u to v.

We note that the last two definitions are a lot stronger than the first two. In [6] the au-

thors (M. Dupuis and S. Wagon) asked a couple of questions pertaining to the Hamiltonian

laceable and Hamiltonian connected properties in Hamiltonian, vertex-transitive graphs.

Question 4.2 ([6, Question. 4.1]). Are even cycles the only bipartite, Hamiltonian, vertex-

transitive graphs that are not Hamilton laceable?

Question 4.3 ([6, Question. 4.3]). Are odd cycles and the dodecahedral graph the only

nonbipartite, Hamiltonian, vertex-transitive graphs that are not Hamilton connected?

When a question is asked about vertex-transitive graphs, it is natural to ask similar

questions about Cayley graphs. If every Cayley graph on G whose connection set is a

minimal generating set is Hamiltonian connected, then every connected Cayley graph on

G is Hamiltonian connected (since the same Hamilton path exists). If some Cayley graphs

on G whose connection sets are minimal generating sets are Hamiltonian laceable, then

additional work must be done to ensure that adding any element to the generating set that

creates an odd cycle, results in a Hamiltonian connected graph. Nonetheless, finding all

minimal generating sets efficiently is a major piece of this problem.

D. W. Morris (personal communication) used the code that was written to generate all

minimal generating sets (and made some modifications for this problem) and combined it

with the Lin-Kernighan-Helsgaun Hamiltonian-cycle finder and started looking to see if he
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could find an example of a connected Cayley graph (which is not just a cycle) that was not

Hamiltonian connected or Hamiltonian laceable.

In a fairly short amount of time he was able to confirm that all connected Cayley graphs

generated by groups of even order (up to order 100) were either a cycle, Hamiltonian con-

nected or Hamiltonian laceable. He also checked all groups of odd order (up to order 200)

and got the same results. These early results suggest that it may be possible that all con-

nected Cayley graphs are either a cycle, Hamiltonian connected or Hamiltonian laceable.

This would be an even stronger result than the well known conjecture in Algebraic Graph

Theory which states that every connected Cayley graph has a Hamiltonian cycle.
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Appendix A

Code For Chapter 3

In this section we give the core of the code that was used to determine the table in Appendix
B. These pieces of code (or updated versions) are available at:
https://github.com/brandonfuller621/CCA. The first pieces of code are the GAP [8] func-
tions which determined all minimal generating sets for a particular group.

#Returns a list which are the orders of the elements of L.
ListOfOrders := function(L)
local orders;
orders := ShallowCopy(L);
Apply(orders, Order);
return orders;

end;;

#Checks to see if the current generators (CurrGens) is already a list in
MinGens by applying an automorphism to it. Returns true if the current
generators should be added to the

list and returns false otherwise.
#MinGens = current list of minimal generators.
#ElmtsOfAutG = the elements of AutG if CanUseAutG = true, empty set

otherwise.
#CanUseAutG = a boolean which says true if AutG does not have ‘too many

elements’.
#CurrGens = the current elements that generate G.
#GenG = G.
UniqueUpToAutomorphism := function(MinGens, ElmtsOfAutG, CanUseAutG,

CurrGens, GenG)
local i, T, a, g, r, S, perm, permS, CGOrders;

#If MinGens is empty, we can add CurrGens
if Length(MG) = 0 then
return true;

fi;

#If checking all permutations of a set (the size of CurrGens) is ‘worse’
than checking all elements of AutG.

if CanUseAutG = true and Factorial(Length(CurrGens)) > Length(ElmtsOfAutG)
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then
for a in ElmtsOfAutG do
T := [];
for g in CurrGens do
Add(T, gˆa);

od;
Sort(T);
for i in [1..Length(MinGens)] do
if MinGens[i] = T then
return false;

fi;
od;

od;
return true;

else #If checking all permutations of a set (the size of CurrGens) is
‘better’ than checking all elements of AutG.

r := Length(CurrGens);
CGOrders := ListOfOrders(CurrGens);
for perm in SymmetricGroup(r) do
for S in MG do
if Length(S) = r then
permS := Permuted(S, perm);
if ListOfOrders(permS) = CGOrders then
if (GroupHomomorphismByImages(GenG, GenG, permS, CurrGens) <>

fail) then
return false;

fi;
fi;

fi;
od;

od;
return true;

fi;
end;;

#If g is an element the generates the group <g>, then for all k s.t
gcd(k,|g|) = 1, <gˆk> = <g>. In AllMinimalGeneratingSets we remove these
elements before we use the recurse

function, this refill function undoes that to get all the true minimal
generating sets using recursion.

#pos = the position of the element of the set mingen that we are considering.
#L = A list. L[i] contains a coprime number to |mg[i]|
#mingen = a minimal generating set.
#MinGen2 = the list which holds all the actual list of all minimal

generating sets.
#ElmtsOfAutG = the elements of AutG if CanUseAutG = true, empty set

otherwise.
#CanUseAutG = a boolean which says true if AutG does not have ‘too many
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elements’.
refill := function(pos, L, mingen, MinGens2, ElmtsOfAutG, CanUseAutG)
local i, mg2, g;
mg2 := [];
if pos > Length(mingen) then
for i in [1..Length(mingen)] do
Add(mg2, mg[i]ˆL[i]);

od;
if UniqueUpToAutomorphism(MinGen2, ElmtsOfAutG, CanUseAutG, mg2,

Group(mg2)) then
Sort(mg2);
Add(MG2, ShallowCopy(mg2));

if;
else
for i in [1..Order(mg[pos])] do
if GcdInt(i, Order(mg[pos])) = 1 then
L[pos] := i;
refill(pos+1, L, mingen, MinGen2, ElmtsOfAutG, CanUseAutG);

fi;
od;

fi;
end;;

#This is the recursive function that tries all ‘reasonable’ subsets of Elmts
to find which ones generate all of Grp.

#Elmts = the elements of G.
#MinGens = the current minimal generating sets.
#CurrGens = the current generators we are testing.
#ElmtsOfAutG = he elements of AutG if CanUseAutG = true, empty set otherwise.
#CanUseAutG = a boolean which says true if AutG does not have ‘too many

elements’.
#pos = the current position of the element we may consider next in Elmts.
#ord = the order of Grp.
recurse := function(Elmts, MinGens, CurrGens, ElmtsOfAutG, CanUseAutG, pos,

ord)
local GenG, L, i, B, G1, G2, l;

#Turn GenG into the group we get with the current generators.
if Length(CurrGens) = 0 then
#Make GenG the identity group.
GenG := Group(E[1]);

else
GenG := Group(CurrGens);

fi;

#If the order of GenG is the same as the order of G, then CurrGens is a
minimal generating set. Use UniqueUpToAutomorphism() to check to see
if it’s already in the list via an
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automorphism of the group. If it is not in the list, then add it.
if Order(GenG) = ord then
if UniqueUpToAutomorphism(MinGens, ElmtsOfAutG, CanUseAutG, CurrGens,

GenG) then
Add(MG, SortedList(CG));

fi;
else #GenG =/= Grp, so we may need to add more to CurrGens.
#Make sure we are in the bounds of the list Elmts
if pos < Length(Elmts) + 1 then
#If Elmts[pos] is not already in GenG, then adding it would make GenG

larger.
if not E[pos] in GenG then
#We now have to make sure that E[pos] does not make any other

element useless
B := true;
L := [];
for i in [1..Length(CurrGens)] do
Add(L, CurrGens[i]);

od;
Add(L, Elmts[pos]);
G1 := Group(L);
for i in [1..Length(L)-1] do
if B then
l := Remove(L,i);
G2 := Group(L);
Add(L,l,i);

fi;
if G1 = G2 then
B := false;
break;

fi;
od;
if B then
#If it did not make another element useless, recursively try using

Elmts[pos] in CurrGens
Add(CurrGens, Elmts[pos]);
recurse(Elmts, MinGens, CurrGens, ElmtsOfAutG, CanUseAutG, pos+1,

ord);
Remove(CurrGens);

fi;
fi;
#Recursively try not using Elmts[pos]
recurse(Elmts, MinGens, CurrGens, ElmtsOfAutG, CanUseAutG, pos+1, ord);

fi;
fi;

end;;

#This function takes in a group and returns all minimal generating sets of
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the group.
#Grp = Group to find all minimal generating sets of.
#LIMIT_AUT_ORDER = The maximum size you allow AutG to be if you want to use

it.
AllMinimalGeneratingSets := function(Grp, LIMIT_AUT_ORDER)
local mg, MinGens, MinGen2, CurrGens, pos, AutG, ElmtsOfAutG, CanUseAutG,

Elmts, Elmts2, i, j, G1, G2, B, L, g;
Elmts := Enumerator(Grp);
MinGens := [];
MinGen2 := [];
CurrGens := [];
Elmts2 := [E[1]];
pos := 2;

#Filter out the duplicate elements that generate the same subgroup.
for i in [2..Length(Elmts)] do
B := true;
G1 := Group(E[i]);
for j in [2..Length(Elmts2)] do
G2 := Group(Elmts2[j]);
if G1 = G2 then
B := false;
break;

fi;
od;
if B = true then
Add(Elmts2, Elmts[i]);

fi;
od;

#Compare order of AutG with LIMIT_AUT_ORDER and respond accordingly.
AutG := AutomorphismGroup(G);
if Order(AutG) > LIMIT_AUT_ORDER then
CanUseAutG := false;
ElmtsOfAutG := [];

else
CanUseAutG := true;
ElmtsOfAutG := Enumerator(AutG);

fi;

recurse(Elmts2, MinGens, CurrGens, ElmtsOfAutG, CanUseAutG, pos,
Order(Grp));

#Fill in the minimal generators by creating all the ones you lost when you
filtered out some of the elements of Grp.

for mg in MinGens do
L := [];
pos := 1;
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for g in mg do
Add(L, 0);

od;
refill(pos, L, mg, MinGen2, ElmtsOfAutG, CanUseAutG);

od;
return MinGen2;

end;;

The next piece of code is the Sage [17] function which determined whether or not a
group was CCA. It relies on the GAP functions above.

#Returns true if the group is CCA and false if it is not CCA.
#Grp = The group you are checking for the CCA property.
#LIMIT_AUT_ORDER = The maximum size you allow AutG to be if you want to use

it.
def DetermineIfCCA(Grp, LIMIT_AUT_ORDER):

AutG = gap.AutomorphismGroup(Grp);
MinGens = gap.AllMinimalGeneratingSets(Grp, LIMIT_AUT_ORDER);

nonCCA = False
for GenSet in MinGens:

if nonCCA:
break

#Create Cayley graph with natural edge colours
CayGph = Graph()
Elmts = gap.Enumerator(Grp);
CayGph.add_vertices(Elmts)
for i in range(1, gap.Length(GenSet) + 1):

for g in Elmts:
CayGph.add_edge(g, g*GenSet[i], str(i))

#Get all colour preserving automorphisms of the Cayley Graph
CayGphAutG = CayGph.automorphism_group(edge_labels = True)

if gap(CayGphAutG.order()) == gap.Order(Grp):
return true;

B1 = True

#If checking that each automorphism of the Cayley Graph (that fix
the identity) is ‘better’ than checking if it acts the same as an
automorphism in AutG.

if gap.Order(Grp) <= gap.Order(AutG):
for l in CayGphAutG:

#See if l fixes the identity
if l(Elmts[1]) == Elmts[1]:

#Check if l preserves the operation of the group (and if
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so, it is an automorphism of the group)
for g1 in Elmts:

for g2 in Elmts:
if l(g1*g2) != l(g1)*l(g2):

B1 = False
break

if B1 == False:
break

if B1 == False:
break

else: #If checking that each automorphism of the Cayley Graph (that
fix the identity) is ‘worse’ than checking if it acts the same as
an automorphism in AutG.
ElmtsOfAutG = gap.Enumerator(AutG)
for l in CayGphAutG:

#See if l fixes the identity
if l(Elmts[1]) == Elmts[1]:

B2 = False
for a in ElmtsOfAutG:

B3 = True
for e in Elmts:

if eˆa != l(e):
B3 = False
break

if B3 == True:
B2 = True
break

if B2 == False:
B1 = False
break

#A nonaffine automorphism was found
if B1 == False:

nonCCA = True

if nonCCA == True:
return False

else:
return True

The next four functions were used as helper functions written in GAP [8] to determine
which groups were abelian, a generalized dihedral group, a generalized dicyclic group or if
it follows the structure of Proposition 2.3.

#Determines if the inputed group Grp is abelian.
IsAbelian := function(Grp)
local i, j, Elmts;
Elmts := Enumerator(Grp);
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for i in [1..Length(Elmts)] do
for j in [1..Length(Elmts)] do
if not (Elmts[i]*Elmts[j] = Elmts[j]*Elmts[i]) then
return false;

fi;
od;

od;
return true;

#Determines if the inputed group Grp is a generalized dihedral group.
IsGenDih := function(Grp)
local G1, G2, B, Elmts, Elmts2, e, e2;
Elmts := Enumerator(Grp);
G1 := MaximalSubgroups(G);
for G2 in G1 do
if Order(Grp) = Order(G2)*2 then
B := IsAbelian(G2);
if B = true then
Elmts2 := Enumerator(G2);
for e in Elmts do
if not (e in G2) then
B := true;
for e2 in Elmts2 do
if not (e*e2*e*e2 = Elmts[1]) then
B := false;
break;

fi;
od;
if B = true then
return true;

fi;
fi;

od;
fi;

fi;
od;
return false;

end;;

#Determines if the inputed group Grp is a generalized dicyclic group.
IsGenDic := function(Grp)
local G1, G2, B, Elmts, Elmts2, e, e2;
Elmts := Enumerator(Grp);
G1 := MaximalSubgroups(Grp);
for G2 in G1 do
if Order(Grp) = Order(G2)*2 then
Elmts2 := Enumerator(G2);
B := IsAbelian(G2);
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if B = true then
for e in Elmts do
if not (e in G2) then
if Order(e) = 4 then
if e*e in G2 then
for e2 in Elmts2 do
if not (e*e*e*e2*e*e2 = Elmts[1]) then
B := false;

fi;
od;
if B = true then
return true;

fi;
fi;

fi;
fi;

od;
fi;

fi;
od;
return false;

end;;

#Determines if the inputed group Grp follows the Structure of Prop 2.3
PropStruc := function(Grp, LIMIT_AUT_ORDER)
local G1, Elmts, e, C, C2, c, MinGens, tau, T1, T2, B, l, l2, Center;
Elmts := Enumerator(Grp);
MinGens := AllMinimalGeneratingSets(Grp, LIMIT_AUT_ORDER);
for C in MinGens do
for tau in E do
if Order(tau) = 2 then

#Checks if tau*c*tau = c or cˆ-1
B := true;
for c in C do
if not (tau*c*tau = c or tau*c*tau*c = Elmts[1]) then
B := false;
break;

fi;
od;

if B = true then

#Checks if tau is in the center of Grp
Center := true;
for e in Elmts do
if not (tau*e = e*tau) then
Center := false;
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break;
fi;

od;

#Put the elements that could be in T into T1
T1 := [];
for c in C do
if c*c = tau then
Add(T1,c);

fi;
od;

#Try all subsets of T1 for the possible T (put into T2)
for T2 in Combinations(T1) do

#Turn C2 into (C\T2) union {tau}
C2 := [];
for c in C do
if not (c in T2) then
Add(C2, c);

fi;
od;
Add(C2, tau);

#See if This C, T and tau satisfy the remaining two properties
G1 := Group(C2);
if not (G1 = Grp) then
if Order(G1)*2 < Order(Grp) or not Center then
return true;

fi;
fi;

od;
fi;

fi;
od;

od;

#If no C, T, tau satifies the properties, return false.
return false;

end;;

We note that it can be verified that using minimal generating sets for C is sufficient
when checking for Proposition 2.3 in a group.
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Table of Results

We now show the table that contains all the results produced by the program in determining
whether or not groups have the CCA property. We will only consider looking at groups
with orders that are at least 8 and have a divisor of the form 4, 21 or pqq (where p is odd
and p,q are primes) because Corollary 2.24 tells us that all other groups are CCA. We did
test our program on groups of other orders. The program agreed with Corollary 2.24 that
every other group up to order 100 was CCA.

In our table, the first column is the order of the group. The second column is the GAP
ID of the group. The third column is the structure of the group. The fourth column says if
the group is CCA or non-CCA. The fifth column is whether the group was already known
from a result in Chapter 2. Again, in all cases, the results of the algorithm agreed with any
theoretical results. Since a group can fall under several different results, we made a priority
on which results we would list in the table. Some of the non-CCA groups may succumb to
2.11 even if this is not indicated here.

The . denotes a non-split extension. Several of these groups have alternative forms that
are equivalent in GAP [8] but we have removed the alternate forms. Groups that had their
alternate forms removed have a ∗ next to them.

Four groups ran for a longer time than others (up to a week) without returning CCA
or Non-CCA. In these cases we checked by hand that these groups succumb to theoretical
results (and their status was not confirmed by the program). These groups have a ∼ (along
with whether or not that group is CCA) in the ‘CCA Property’ column of the table. The
four groups checked by hand were:

• C2×C2×C2×C2×D10 (Order n = 160 with GAP ID k = 237) which falls under
Proposition 2.15.

• C2×C14× S3 (Order n = 168 with GAP ID k = 55) which falls under Proposition
2.10.

• C10×D18 (Order n = 180 with GAP ID k = 10) which falls under Proposition 2.10.

• C15×A4 (Order n = 180 with GAP ID k = 31) which falls under Proposition 2.10.

Below the first table is another table. This second table indicates how many unique (up
to automorphism) minimal generating sets there are for each group.
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Order GAP ID Group Structure CCA Prop. Known
k = 1 C8 CCA Prop. 2.12
k = 2 C4×C2 Non-CCA Ex. 2.2

n = 8 k = 3 D8 CCA Cor. 2.16
k = 4 Q8 Non-CCA Ex. 2.2
k = 5 C2×C2×C2 CCA Prop. 2.12
k = 1 C3 : C4 Non-CCA Cor. 2.4
k = 2 C12 CCA Prop. 2.12

n = 12 k = 3 A4 CCA Prop. 2.27
k = 4 D12 CCA Cor. 2.16
k = 5 C6×C2 CCA Prop. 2.12
k = 1 C16 CCA Prop. 2.12
k = 2 C4×C4 CCA Prop. 2.12
k = 3 (C4×C2) : C2 Non-CCA Prop. 2.3
k = 4 C4 : C4 Non-CCA Cor. 2.4
k = 5 C8×C2 CCA Prop. 2.12
k = 6 C8 : C2 CCA Prop. 2.27

n = 16 k = 7 D16 CCA Cor. 2.16
k = 8 QD16 Non-CCA Cor. 2.4
k = 9 Q16 Non-CCA Cor. 2.4

k = 10 C4×C2×C2 Non-CCA Prop. 2.12
k = 11 C2×D8 Non-CCA Prop. 2.15
k = 12 C2×Q8 Non-CCA Prop. 2.9
k = 13 (C4×C2) : C2 Non-CCA Prop. 2.3
k = 14 C2×C2×C2×C2 CCA Prop. 2.12
k = 1 D18 CCA Cor. 2.16
k = 2 C18 CCA Prop. 2.12

n = 18 k = 3 C3×S3 Non-CCA Prop. 2.26
k = 4 (C3×C3) : C2 CCA Prop. 2.15
k = 5 C6×C3 CCA Prop. 2.12
k = 1 C5 : C4 Non-CCA Cor. 2.4
k = 2 C20 CCA Prop. 2.12

n = 20 k = 3 C5 : C4 Non-CCA Prop. 2.3
k = 4 D20 CCA Cor. 2.16
k = 5 C10×C2 CCA Prop. 2.12

n = 21 k = 1 C7 : C3 Non-CCA Ex. 2.6
k = 2 C21 CCA Prop. 2.12

n = 24 k = 1 C3 : C8 CCA Prop. 2.27
k = 2 C24 CCA Prop. 2.12
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k = 3 SL(2,3) Non-CCA Prop. 2.3
k = 4 C3 : Q8 Non-CCA Cor. 2.4
k = 5 C4×S3 Non-CCA Prop. 2.3
k = 6 D24 CCA Cor. 2.16
k = 7 C2× (C3 : C4) Non-CCA Prop. 2.9
k = 8 (C6×C2) : C2 Non-CCA Prop. 2.3

n = 24 k = 9 C12×C2 Non-CCA Prop. 2.12
k = 10 C3×D8 CCA Prop. 2.10
k = 11 C3×Q8 Non-CCA Prop. 2.9
k = 12 S4 Non-CCA Prop. 2.3
k = 13 C2×A4 CCA Prop. 2.27
k = 14 C2×C2×S3 CCA Prop. 2.15
k = 15 C6×C2×C2 CCA Prop. 2.12
k = 1 C7 : C4 Non-CCA Cor. 2.4

n = 28 k = 2 C28 CCA Prop. 2.12
k = 3 D28 CCA Cor. 2.16
k = 4 C14×C2 CCA Prop. 2.12
k = 1 C32 CCA Prop. 2.12
k = 2 (C4×C2) : C4 Non-CCA Prop. 2.3
k = 3 C8×C4 CCA Prop. 2.12
k = 4 C8 : C4 CCA
k = 5 (C8×C2) : C2 Non-CCA Prop. 2.3
k = 6 ((C4×C2) : C2) : C2 Non-CCA Prop. 2.3
k = 7 (C8 : C2) : C2 CCA
k = 8 (C2×C2).(C4×C2)∗ Non-CCA Prop. 2.3
k = 9 (C8×C2) : C2 Non-CCA Prop. 2.3

k = 10 Q8 : C4 Non-CCA Prop. 2.3
n = 32 k = 11 (C4×C4) : C2 Non-CCA Prop. 2.15

k = 12 C4 : C8 CCA
k = 13 C8 : C4 Non-CCA Prop. 2.3
k = 14 C8 : C4 Non-CCA Cor. 2.4
k = 15 C4.D8∗ CCA
k = 16 C16×C2 CCA Prop. 2.12
k = 17 C16 : C2 CCA
k = 18 D32 CCA Cor. 2.16
k = 19 QD32 Non-CCA Cor. 2.4
k = 20 Q32 Non-CCA Cor. 2.4
k = 21 C4×C4×C2 Non-CCA Prop. 2.12
k = 22 C2× ((C4×C2) : C2) Non-CCA Prop. 2.9
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k = 23 C2× (C4 : C4) Non-CCA Prop. 2.9
k = 24 (C4×C4) : C2 Non-CCA Prop. 2.3
k = 25 C4×D8 Non-CCA Prop. 2.3
k = 26 C4×Q8 Non-CCA Prop. 2.9
k = 27 (C2×C2×C2×C2) : C2 Non-CCA Prop. 2.3
k = 28 (C4×C2×C2) : C2 Non-CCA Prop. 2.3
k = 29 (C2×Q8) : C2 Non-CCA Prop. 2.3
k = 30 (C4×C2×C2) : C2 Non-CCA Prop. 2.3
k = 31 (C4×C4) : C2 Non-CCA Prop. 2.3
k = 32 (C2×C2).(C2×C2×C2) Non-CCA Prop. 2.3
k = 33 (C4×C4) : C2 Non-CCA Prop. 2.3
k = 34 (C4×C4) : C2 CCA
k = 35 C4 : Q8 Non-CCA Cor. 2.4
k = 36 C8×C2×C2 Non-CCA Prop. 2.12

n = 32 k = 37 C2× (C8 : C2) Non-CCA Prop. 2.3
k = 38 (C8×C2) : C2 Non-CCA Prop. 2.3
k = 39 C2×D16 CCA Prop. 2.15
k = 40 C2×QD16 Non-CCA Prop. 2.9
k = 41 C2×Q16 Non-CCA Prop. 2.9
k = 42 (C8×C2) : C2 Non-CCA Prop. 2.3
k = 43 (C2×D8) : C2 Non-CCA Prop. 2.3
k = 44 (C2×Q8) : C2 Non-CCA Prop. 2.3
k = 45 C4×C2×C2×C2 Non-CCA Prop. 2.12
k = 46 C2×C2×D8 Non-CCA Prop. 2.15
k = 47 C2×C2×Q8 Non-CCA Prop. 2.9
k = 48 C2× ((C4×C2) : C2) Non-CCA Prop. 2.9
k = 49 (C2×D8) : C2 Non-CCA Prop. 2.3
k = 50 (C2×Q8) : C2 Non-CCA Prop. 2.3
k = 51 C2×C2×C2×C2×C2 CCA Prop. 2.12
k = 1 C9 : C4 Non-CCA Cor. 2.4
k = 2 C36 CCA Prop. 2.12
k = 3 (C2×C2) : C9 CCA
k = 4 D36 CCA Cor. 2.16

n = 36 k = 5 C18×C2 CCA Prop. 2.12
k = 6 C3× (C3 : C4) Non-CCA Prop. 2.9
k = 7 (C3×C3) : C4 Non-CCA Cor. 2.4
k = 8 C12×C3 CCA Prop. 2.12
k = 9 (C3×C3) : C4 Non-CCA Prop. 2.3

k = 10 S3×S3 Non-CCA
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k = 11 C3×A4 CCA
n = 36 k = 12 C6×S3 Non-CCA Prop. 2.9

k = 13 C2× ((C3×C3) : C2) CCA Prop. 2.15
k = 14 C6×C6 CCA Prop. 2.12
k = 1 C5 : C8 CCA
k = 2 C40 CCA Prop. 2.12
k = 3 C5 : C8 Non-CCA Prop. 2.3
k = 4 C5 : Q8 Non-CCA Cor. 2.4
k = 5 C4×D10 Non-CCA Prop. 2.3
k = 6 D40 CCA Cor. 2.16

n = 40 k = 7 C2× (C5 : C4) Non-CCA Prop. 2.9
k = 8 (C10×C2) : C2 Non-CCA Prop. 2.3
k = 9 C20×C2 Non-CCA Prop. 2.12

k = 10 C5×D8 CCA Prop. 2.10
k = 11 C5×Q8 Non-CCA Prop. 2.9
k = 12 C2× (C5 : C4) Non-CCA Prop. 2.9
k = 13 C2×C2×D10 CCA Prop. 2.15
k = 14 C10×C2×C2 CCA Prop. 2.12
k = 1 (C7 : C3) : C2 Non-CCA
k = 2 C2× (C7 : C3) Non-CCA Prop. 2.9

n = 42 k = 3 C7×S3 CCA Prop. 2.10
k = 4 C3×D14 CCA Prop. 2.10
k = 5 D42 CCA Cor. 2.16
k = 6 C42 CCA Prop. 2.12
k = 1 C11 : C4 Non-CCA Cor. 2.4

n = 44 k = 2 C44 CCA Prop. 2.12
k = 3 D44 CCA Cor. 2.16
k = 4 C22×C2 CCA Prop. 2.12
k = 1 C3 : C16 CCA
k = 2 C48 CCA Prop. 2.12
k = 3 (C4×C4) : C3 CCA
k = 4 C8×S3 Non-CCA Prop. 2.3
k = 5 C24 : C2 Non-CCA Prop. 2.3

n = 48 k = 6 C24 : C2 Non-CCA Prop. 2.3
k = 7 D48 CCA Cor. 2.16
k = 8 C3 : Q16 Non-CCA Cor. 2.4
k = 9 C2× (C3 : C8) CCA

k = 10 (C3 : C8) : C2 CCA
k = 11 C4× (C3 : C4) Non-CCA Prop. 2.9
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k = 12 (C3 : C4) : C4 Non-CCA Prop. 2.3
k = 13 C12 : C4 Non-CCA Cor. 2.4
k = 14 (C12×C2) : C2 Non-CCA Prop. 2.3
k = 15 (C3×D8) : C2 CCA
k = 16 (C3 : C8) : C2 Non-CCA Prop. 2.3
k = 17 (C3×Q8) : C2 Non-CCA Prop. 2.3
k = 18 C3 : Q16 Non-CCA Prop. 2.3
k = 19 (C2× (C3 : C4)) : C2 Non-CCA Prop. 2.3
k = 20 C12×C4 CCA Prop. 2.12
k = 21 C3× ((C4×C2) : C2) Non-CCA Prop. 2.9
k = 22 C3× (C4 : C4) Non-CCA Prop. 2.9
k = 23 C24×C2 CCA Prop. 2.12
k = 24 C3× (C8 : C2) CCA Prop. 2.10
k = 25 C3×D16 CCA Prop. 2.10
k = 26 C3×QD16 Non-CCA Prop. 2.9
k = 27 C3×Q16 Non-CCA Prop. 2.9
k = 28 C2.S4∗ Non-CCA Prop. 2.3
k = 29 GL(2,3) Non-CCA Prop. 2.3
k = 30 A4 : C4 Non-CCA Prop. 2.3

n = 48 k = 31 C4×A4 Non-CCA Prop. 2.3
k = 32 C2×SL(2,3) Non-CCA Prop. 2.9
k = 33 SL(2,3) : C2 Non-CCA Prop. 2.3
k = 34 C2× (C3 : Q8) Non-CCA Prop. 2.9
k = 35 C2×C4×S3 Non-CCA Prop. 2.9
k = 36 C2×D24 Non-CCA Prop. 2.15
k = 37 (C12×C2) : C2 Non-CCA Prop. 2.3
k = 38 D8×S3 Non-CCA Prop. 2.3
k = 39 (C2× (C3 : C4)) : C2 Non-CCA Prop. 2.3
k = 40 Q8×S3 Non-CCA Prop. 2.9
k = 41 (C4×S3) : C2 Non-CCA Prop. 2.3
k = 42 C2×C2× (C3 : C4) Non-CCA Prop. 2.9
k = 43 C2× ((C6×C2) : C2) Non-CCA Prop. 2.9
k = 44 C12×C2×C2 Non-CCA Prop. 2.12
k = 45 C6×D8 Non-CCA Prop. 2.9
k = 46 C6×Q8 Non-CCA Prop. 2.9
k = 47 C3× ((C4×C2) : C2) Non-CCA Prop. 2.9
k = 48 C2×S4 Non-CCA Prop. 2.9
k = 49 C2×C2×A4 CCA
k = 50 (C2×C2×C2×C2) : C3 CCA
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n = 48 k = 51 C2×C2×C2×S3 CCA Prop. 2.15
k = 52 C6×C2×C2×C2 CCA Prop. 2.12
k = 1 D50 CCA Cor. 2.16
k = 2 C50 CCA Prop. 2.12

n = 50 k = 3 C5×D10 Non-CCA
k = 4 (C5×C5) : C2 CCA Prop. 2.15
k = 5 C10×C5 CCA Prop. 2.12
k = 1 C13 : C4 Non-CCA Cor. 2.4
k = 2 C52 CCA Prop. 2.12

n = 52 k = 3 C13 : C4 Non-CCA Prop. 2.3
k = 4 D52 CCA Cor. 2.16
k = 5 C26×C2 CCA Prop. 2.12
k = 1 D54 CCA Cor. 2.16
k = 2 C54 CCA Prop. 2.12
k = 3 C3×D18 CCA
k = 4 C9×S3 CCA
k = 5 ((C3×C3) : C3) : C2 Non-CCA
k = 6 (C9 : C3) : C2 CCA
k = 7 (C9×C3) : C2 CCA Prop. 2.15

n = 54 k = 8 ((C3×C3) : C3) : C2 CCA
k = 9 C18×C3 CCA Prop. 2.12

k = 10 C2× ((C3×C3) : C3) CCA Prop. 2.10
k = 11 C2× (C9 : C3) CCA Prop. 2.10
k = 12 C3×C3×S3 Non-CCA Prop. 2.9
k = 13 C3× ((C3×C3) : C2) Non-CCA
k = 14 (C3×C3×C3) : C2 CCA Prop. 2.15
k = 15 C6×C3×C3 CCA Prop. 2.12
k = 1 C7 : C8 CCA
k = 2 C56 CCA Prop. 2.12
k = 3 C7 : Q8 Non-CCA Cor. 2.4
k = 4 C4×D14 Non-CCA Prop. 2.3
k = 5 D56 CCA Cor. 2.16

n = 56 k = 6 C2× (C7 : C4) Non-CCA Prop. 2.9
k = 7 (C14×C2) : C2 Non-CCA Prop. 2.3
k = 8 C28×C2 Non-CCA Prop. 2.12
k = 9 C7×D8 CCA Prop. 2.10

k = 10 C7×Q8 Non-CCA Prop. 2.9
k = 11 (C2×C2×C2) : C7 CCA
k = 12 C2×C2×D14 CCA Prop. 2.15
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n = 56 k = 13 C14×C2×C2 CCA Prop. 2.12
k = 1 C5× (C3 : C4) Non-CCA Prop. 2.9
k = 2 C3× (C5 : C4) Non-CCA Prop. 2.9
k = 3 C15 : C4 Non-CCA Cor. 2.4
k = 4 C60 CCA Prop. 2.12
k = 5 A5 CCA
k = 6 C3× (C5 : C4) Non-CCA Prop. 2.9

n = 60 k = 7 C15 : C4 Non-CCA Prop. 2.3
k = 8 S3×D10 CCA
k = 9 C5×A4 CCA Prop. 2.10

k = 10 C6×D10 CCA Prop. 2.10
k = 11 C10×S3 CCA Prop. 2.10
k = 12 D60 CCA Cor. 2.16
k = 13 C30×C2 CCA Prop. 2.12
k = 1 C7 : C9 CCA

n = 63 k = 2 C63 CCA Prop. 2.12
k = 3 C3× (C7 : C3) Non-CCA Prop. 2.9
k = 4 C21×C3 CCA Prop. 2.12
k = 1 C64 CCA Prop. 2.12
k = 2 C8×C8 CCA Prop. 2.12
k = 3 C8 : C8 CCA
k = 4 ((C8×C2) : C2) : C2 Non-CCA Prop. 2.3
k = 5 (C4×C2) : C8 Non-CCA Prop. 2.3
k = 6 (C8×C4) : C2 Non-CCA Prop. 2.15
k = 7 Q8 : C8 Non-CCA Prop. 2.3
k = 8 ((C8×C2) : C2) : C2 Non-CCA Prop. 2.3
k = 9 (C2×Q8) : C4 Non-CCA Prop. 2.3

k = 10 (C8 : C4) : C2 Non-CCA Prop. 2.3
n = 64 k = 11 (C4×C2).(C4×C2)∗ Non-CCA Prop. 2.3

k = 12 (C4 : C8) : C2 CCA
k = 13 (C4×C2).(C4×C2)∗ Non-CCA Prop. 2.3
k = 14 (C4×C2).(C4×C2)∗ Non-CCA Prop. 2.3
k = 15 C8 : C8 CCA
k = 16 C8 : C8 CCA
k = 17 (C8×C2) : C4 Non-CCA Prop. 2.3
k = 18 (C8×C2) : C4 Non-CCA
k = 19 C4.(C4×C4) CCA
k = 20 (C4×C4) : C4 Non-CCA Prop. 2.3
k = 21 (C8×C2) : C4 Non-CCA Prop. 2.3
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k = 22 C4.(C4×C4)∗ CCA
k = 23 (C4×C2×C2) : C4 Non-CCA Prop. 2.3
k = 24 (C8 : C2) : C4 Non-CCA Prop. 2.3
k = 25 (C8×C2) : C4 Non-CCA
k = 26 C16×C4 CCA Prop. 2.12
k = 27 C16 : C4 CCA
k = 28 C16 : C4 CCA
k = 29 (C16×C2) : C2 Non-CCA Prop. 2.3
k = 30 (C16 : C2) : C2 Non-CCA Prop. 2.3
k = 31 (C16×C2) : C2 Non-CCA Prop. 2.3
k = 32 ((C8 : C2) : C2) : C2 Non-CCA Prop. 2.3
k = 33 (C4×C2×C2) : C4 Non-CCA Prop. 2.3
k = 34 (((C4×C2) : C2) : C2) : C2 Non-CCA Prop. 2.3
k = 35 (C4×C4) : C4 Non-CCA Prop. 2.3
k = 36 ((C2×C2).(C4×C2)) : C2∗ Non-CCA
k = 37 (C4×C2).(C4×C2)∗ Non-CCA Prop. 2.3
k = 38 (C16×C2) : C2 Non-CCA Prop. 2.3
k = 39 Q16 : C4 Non-CCA Prop. 2.3
k = 40 (C16×C2) : C2 Non-CCA Prop. 2.3

n = 64 k = 41 (C16 : C2) : C2 Non-CCA Prop. 2.3
k = 42 (C16 : C2) : C2 CCA
k = 43 C8.(C4×C2)∗ Non-CCA Prop. 2.3
k = 44 C4 : C16 CCA
k = 45 C8.D8∗ CCA
k = 46 C16 : C4 Non-CCA
k = 47 C16 : C4 Non-CCA Cor. 2.4
k = 48 C16 : C4 Non-CCA Prop. 2.3
k = 49 C4.D16∗ CCA
k = 50 C32×C2 CCA Prop. 2.12
k = 51 C32 : C2 CCA
k = 52 D64 CCA Cor. 2.16
k = 53 QD64 Non-CCA Cor. 2.4
k = 54 Q64 Non-CCA Cor. 2.4
k = 55 C4×C4×C4 CCA Prop. 2.12
k = 56 C2× ((C4×C2) : C4) Non-CCA Prop. 2.9
k = 57 (C4×C4) : C4 Non-CCA
k = 58 C4× ((C4×C2) : C2) Non-CCA Prop. 2.9
k = 59 C4× (C4 : C4) Non-CCA Prop. 2.9
k = 60 (C2× ((C4×C2) : C2)) : C2 Non-CCA Prop. 2.3
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k = 61 (C2× (C4 : C4)) : C2 Non-CCA Prop. 2.3
k = 62 ((C4×C2) : C4) : C2 Non-CCA Prop. 2.3
k = 63 (C4×C4) : C4 Non-CCA Prop. 2.3
k = 64 (C4×C4) : C4 Non-CCA
k = 65 (C4×C4) : C4 Non-CCA Cor. 2.4
k = 66 (C2× (C4 : C4)) : C2 Non-CCA Prop. 2.3
k = 67 (C4×C2×C2×C2) : C2 Non-CCA Prop. 2.3
k = 68 (C4 : C4) : C4 Non-CCA Prop. 2.3
k = 69 (C4×C4×C2) : C2 Non-CCA Prop. 2.3
k = 70 (C4 : C4) : C4 Non-CCA Prop. 2.3
k = 71 (C4×C4×C2) : C2 Non-CCA Prop. 2.3
k = 72 (C2×Q8) : C4 Non-CCA Prop. 2.3
k = 73 (C2×C2×D8) : C2 Non-CCA Prop. 2.3
k = 74 (C2×C2×Q8) : C2 Non-CCA Prop. 2.3
k = 75 (C2× ((C4×C2) : C2)) : C2 Non-CCA Prop. 2.3
k = 76 (C4×C2) : Q8 Non-CCA Prop. 2.3
k = 77 (C2× (C4 : C4)) : C2 Non-CCA Prop. 2.3
k = 78 (C2× (C4 : C4)) : C2 Non-CCA Prop. 2.3
k = 79 (C2×C2×C2).(C2×C2×C2) Non-CCA Prop. 2.3

n = 64 k = 80 (C2× (C4 : C4)) : C2 Non-CCA Prop. 2.3
k = 81 (C2×C2×C2).(C2×C2×C2) Non-CCA Prop. 2.3
k = 82 (C2×C2×C2).(C2×C2×C2) Non-CCA
k = 83 C8×C4×C2 Non-CCA Prop. 2.12
k = 84 C2× (C8 : C4) Non-CCA Prop. 2.3
k = 85 C4× (C8 : C2) Non-CCA Prop. 2.3
k = 86 (C8×C4) : C2 Non-CCA Prop. 2.3
k = 87 C2× ((C8×C2) : C2) Non-CCA Prop. 2.9
k = 88 (C2× (C8 : C2)) : C2 Non-CCA Prop. 2.3
k = 89 (C8×C2×C2) : C2 Non-CCA Prop. 2.3
k = 90 C2× (((C4×C2) : C2) : C2) Non-CCA Prop. 2.9
k = 91 (((C4×C2) : C2) : C2) : C2 Non-CCA Prop. 2.3
k = 92 C2× ((C8 : C2) : C2) CCA
k = 93 C2× ((C2×C2).(C4×C2))∗ Non-CCA Prop. 2.9
k = 94 (C2× (C8 : C2)) : C2 Non-CCA Prop. 2.3
k = 95 C2× ((C8×C2) : C2) Non-CCA Prop. 2.9
k = 96 C2× (Q8 : C4) Non-CCA Prop. 2.3
k = 97 (C8×C2×C2) : C2 Non-CCA Prop. 2.3
k = 98 (C2× (C8 : C2)) : C2 Non-CCA Prop. 2.3
k = 99 (C2× (C8 : C2)) : C2 Non-CCA Prop. 2.3
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k = 100 (Q8 : C4) : C2 Non-CCA Prop. 2.3
k = 101 C2× ((C4×C4) : C2) Non-CCA Prop. 2.3
k = 102 (C2× (C8 : C2)) : C2 Non-CCA Prop. 2.3
k = 103 C2× (C4 : C8) Non-CCA Prop. 2.3
k = 104 (C4 : C8) : C2 Non-CCA Prop. 2.3
k = 105 (C4 : C8) : C2 Non-CCA Prop. 2.3
k = 106 C2× (C8 : C4) Non-CCA Prop. 2.3
k = 107 C2× (C8 : C4) Non-CCA Cor. 2.4
k = 108 (C8 : C4) : C2 Non-CCA Prop. 2.3
k = 109 (C8 : C4) : C2 Non-CCA Prop. 2.3
k = 110 C2× (C4.D8)∗ CCA
k = 111 (C4.D8) : C2∗ CCA
k = 112 (C8×C4) : C2 Non-CCA Prop. 2.3
k = 113 (C4 : C8) : C2 Non-CCA Prop. 2.3
k = 114 (C8×C4) : C2 Non-CCA Prop. 2.3
k = 115 C8×D8 Non-CCA Prop. 2.3
k = 116 (C8×C2×C2) : C2 Non-CCA Prop. 2.3
k = 117 (C8×C4) : C2 Non-CCA Prop. 2.3
k = 118 C4×D16 Non-CCA Prop. 2.3

n = 64 k = 119 C4×QD16 Non-CCA Prop. 2.9
k = 120 C4×Q16 Non-CCA Prop. 2.9
k = 121 (C4×Q8) : C2 Non-CCA Prop. 2.3
k = 122 Q16 : C4 Non-CCA Prop. 2.3
k = 123 (C4×D8) : C2 Non-CCA Prop. 2.3
k = 124 (C8×C4) : C2 Non-CCA Prop. 2.3
k = 125 ((C4×C4) : C2) : C2 Non-CCA Prop. 2.3
k = 126 C8×Q8 Non-CCA Prop. 2.9
k = 127 C8 : Q8 Non-CCA Prop. 2.3
k = 128 (C2×C2×D8) : C2 Non-CCA Prop. 2.3
k = 129 (C2×C2×Q8) : C2 Non-CCA Prop. 2.3
k = 130 (C2×D16) : C2 Non-CCA Prop. 2.3
k = 131 (C2×QD16) : C2 Non-CCA Prop. 2.3
k = 132 (C2×Q16) : C2 Non-CCA Prop. 2.3
k = 133 (C2×Q16) : C2 Non-CCA Prop. 2.3
k = 134 ((C4×C4) : C2) : C2 Non-CCA Prop. 2.3
k = 135 ((C4×C4) : C2) : C2 Non-CCA Prop. 2.3
k = 136 ((C4×C4) : C2) : C2 Non-CCA Prop. 2.3
k = 137 ((C4×C4) : C2) : C2 Non-CCA Prop. 2.3
k = 138 (((C4×C2) : C2) : C2) : C2 Non-CCA Prop. 2.3
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k = 139 (((C4×C2) : C2) : C2) : C2 Non-CCA Prop. 2.3
k = 140 (C4×D8) : C2 Non-CCA Prop. 2.3
k = 141 (C2×QD16) : C2 Non-CCA Prop. 2.3
k = 142 (Q8 : C4) : C2 Non-CCA Prop. 2.3
k = 143 C4 : Q16 Non-CCA Prop. 2.3
k = 144 (C4×D8) : C2 Non-CCA Prop. 2.3
k = 145 (C2×Q16) : C2 Non-CCA Prop. 2.3
k = 146 (C8×C2×C2) : C2 Non-CCA Prop. 2.3
k = 147 (C8×C2×C2) : C2 Non-CCA Prop. 2.3
k = 148 (C2×Q16) : C2 Non-CCA Prop. 2.3
k = 149 (C2× (C8 : C2)) : C2 Non-CCA Prop. 2.3
k = 150 (C2× (C8 : C2)) : C2 Non-CCA Prop. 2.3
k = 151 (C2×Q16) : C2 Non-CCA Prop. 2.3
k = 152 (C2×QD16) : C2 Non-CCA Prop. 2.3
k = 153 (C2×D16) : C2 Non-CCA Prop. 2.3
k = 154 (C2×Q16) : C2 Non-CCA Prop. 2.3
k = 155 (C8 : C4) : C2 Non-CCA Prop. 2.3
k = 156 Q8 : Q8 Non-CCA Prop. 2.3
k = 157 (C8 : C4) : C2 Non-CCA Prop. 2.3

n = 64 k = 158 Q8 : Q8 Non-CCA Prop. 2.3
k = 159 (C8 : C4) : C2 Non-CCA Prop. 2.3
k = 160 (C2×C2).(C2×D8)∗ Non-CCA Prop. 2.3
k = 161 (C2× (C4 : C4)) : C2 Non-CCA Prop. 2.3
k = 162 (C2× (C4 : C4)) : C2 Non-CCA Prop. 2.3
k = 163 ((C8×C2) : C2) : C2 Non-CCA Prop. 2.3
k = 164 (Q8 : C4) : C2 Non-CCA Prop. 2.3
k = 165 (Q8 : C4) : C2 Non-CCA Prop. 2.3
k = 166 (C8 : C4) : C2 Non-CCA Prop. 2.3
k = 167 (C8×C4) : C2 Non-CCA Prop. 2.3
k = 168 (C2×C2).(C2×D8)∗ Non-CCA Prop. 2.3
k = 169 (C8×C4) : C2 Non-CCA Prop. 2.3
k = 170 (Q8 : C4) : C2 Non-CCA Prop. 2.3
k = 171 ((C8×C2) : C2) : C2 Non-CCA Prop. 2.3
k = 172 (C2×C2).(C2×D8)∗ Non-CCA Prop. 2.3
k = 173 (C8×C4) : C2 Non-CCA Prop. 2.3
k = 174 (C8×C4) : C2 CCA
k = 175 C4 : Q16 Non-CCA Cor. 2.4
k = 176 (C8×C4) : C2 Non-CCA Prop. 2.3
k = 177 (C2×D16) : C2 Non-CCA Prop. 2.3
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k = 178 (C2×Q16) : C2 Non-CCA Prop. 2.3
k = 179 C8 : Q8 Non-CCA Prop. 2.3
k = 180 (C2×C2).(C2×D8)∗ Non-CCA Prop. 2.3
k = 181 C8 : Q8 Non-CCA Cor. 2.4
k = 182 C8 : Q8 Non-CCA Prop. 2.3
k = 183 C16×C2×C2 Non-CCA Prop. 2.12
k = 184 C2× (C16 : C2) Non-CCA Prop. 2.3
k = 185 (C16×C2) : C2 Non-CCA Prop. 2.3
k = 186 C2×D32 CCA Prop. 2.15
k = 187 C2×QD32 Non-CCA Prop. 2.9
k = 188 C2×Q32 Non-CCA Prop. 2.9
k = 189 (C16×C2) : C2 Non-CCA Prop. 2.3
k = 190 (C2×D16) : C2 Non-CCA Prop. 2.3
k = 191 (C2×Q16) : C2 Non-CCA Prop. 2.3
k = 192 C4×C4×C2×C2 Non-CCA Prop. 2.12
k = 193 C2×C2× ((C4×C2) : C2) Non-CCA Prop. 2.9
k = 194 C2×C2× (C4 : C4) Non-CCA Prop. 2.9
k = 195 C2× ((C4×C4) : C2) Non-CCA Prop. 2.15
k = 196 C2×C4×D8 Non-CCA Prop. 2.9

n = 64 k = 197 C2×C4×Q8 Non-CCA Prop. 2.9
k = 198 C4× ((C4×C2) : C2) Non-CCA Prop. 2.9
k = 199 (C4×D8) : C2 Non-CCA Prop. 2.3
k = 200 (C4×Q8) : C2 Non-CCA Prop. 2.3
k = 201 (C4×Q8) : C2 Non-CCA Prop. 2.3
k = 202 C2× ((C2×C2×C2×C2) : C2) Non-CCA Prop. 2.9
k = 203 C2× ((C4×C2×C2) : C2) Non-CCA Prop. 2.9
k = 204 C2× ((C2×Q8) : C2) Non-CCA Prop. 2.9
k = 205 C2× ((C4×C2×C2) : C2) Non-CCA Prop. 2.9
k = 206 (C4×C2×C2×C2) : C2 Non-CCA Prop. 2.3
k = 207 C2× ((C4×C4) : C2) Non-CCA Prop. 2.3
k = 208 C2× ((C2×C2).(C2×C2×C2)) Non-CCA Prop. 2.9
k = 209 C2× ((C4×C4) : C2) Non-CCA Prop. 2.3
k = 210 (C4×C4×C2) : C2 Non-CCA Prop. 2.3
k = 211 C2× ((C4×C4) : C2) Non-CCA Prop. 2.3
k = 212 C2× (C4 : Q8) Non-CCA Prop. 2.9
k = 213 (C4×C4×C2) : C2 Non-CCA Prop. 2.3
k = 214 (C4×Q8) : C2 Non-CCA Prop. 2.3
k = 215 (C2×C2×D8) : C2 Non-CCA Prop. 2.3
k = 216 (C2×C2×D8) : C2 Non-CCA Prop. 2.3
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k = 217 (C2×C2×Q8) : C2 Non-CCA Prop. 2.3
k = 218 (C2× ((C4×C2) : C2)) : C2 Non-CCA Prop. 2.3
k = 219 (C4×D8) : C2 Non-CCA Prop. 2.3
k = 220 (C4×D8) : C2 Non-CCA Prop. 2.3
k = 221 (C4×D8) : C2 Non-CCA Prop. 2.3
k = 222 (C4×Q8) : C2 Non-CCA Prop. 2.3
k = 223 (C4×Q8) : C2 Non-CCA Prop. 2.3
k = 224 ((C2×Q8) : C2) : C2 Non-CCA Prop. 2.3
k = 225 (C4 : Q8) : C2 Non-CCA Prop. 2.3
k = 226 D8×D8 Non-CCA Prop. 2.3
k = 227 (C2×C2×D8) : C2 Non-CCA Prop. 2.3
k = 228 (C4×D8) : C2 Non-CCA Prop. 2.3
k = 229 (C2×C2×Q8) : C2 Non-CCA Prop. 2.3
k = 230 Q8×D8 Non-CCA Prop. 2.9
k = 231 (C4×D8) : C2 Non-CCA Prop. 2.3
k = 232 (C4×D8) : C2 Non-CCA Prop. 2.3
k = 233 (C4×Q8) : C2 Non-CCA Prop. 2.3
k = 234 (C4×D8) : C2 Non-CCA Prop. 2.3
k = 235 (C4×Q8) : C2 Non-CCA Prop. 2.3

n = 64 k = 236 (C4×D8) : C2 Non-CCA Prop. 2.3
k = 237 (C4×Q8) : C2 Non-CCA Prop. 2.3
k = 238 Q8 : Q8 Non-CCA Prop. 2.3
k = 239 Q8×Q8 Non-CCA Prop. 2.9
k = 240 (C4×D8) : C2 Non-CCA Prop. 2.3
k = 241 ((C4×C2×C2) : C2) : C2 Non-CCA Prop. 2.3
k = 242 ((C4×C4) : C2) : C2 Non-CCA Prop. 2.3
k = 243 ((C2×C2).(C2×C2×C2)) : C2 Non-CCA Prop. 2.3
k = 244 ((C4×C4) : C2) : C2 Non-CCA Prop. 2.3
k = 245 (C2×C2).(C2×C2×C2×C2) Non-CCA Prop. 2.3
k = 246 C8×C2×C2×C2 Non-CCA Prop. 2.12
k = 247 C2×C2× (C8 : C2) Non-CCA Prop. 2.3
k = 248 C2× ((C8×C2) : C2) Non-CCA Prop. 2.9
k = 249 (C2× (C8 : C2)) : C2 Non-CCA Prop. 2.3
k = 250 C2×C2×D16 Non-CCA Prop. 2.15
k = 251 C2×C2×QD16 Non-CCA Prop. 2.9
k = 252 C2×C2×Q16 Non-CCA Prop. 2.9
k = 253 C2× ((C8×C2) : C2) Non-CCA Prop. 2.9
k = 254 C2× ((C2×D8) : C2) Non-CCA Prop. 2.9
k = 255 C2× ((C2×Q8) : C2) Non-CCA Prop. 2.9
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k = 256 (C2× (C8 : C2)) : C2 Non-CCA Prop. 2.3
k = 257 (C2×D16) : C2 Non-CCA Prop. 2.3
k = 258 (C2×QD16) : C2 Non-CCA Prop. 2.3
k = 259 (C2×Q16) : C2 Non-CCA Prop. 2.3
k = 260 C4×C2×C2×C2×C2 Non-CCA Prop. 2.12

n = 64 k = 261 C2×C2×C2×D8 Non-CCA Prop. 2.15
k = 262 C2×C2×C2×Q8 Non-CCA Prop. 2.9
k = 263 C2×C2× ((C4×C2) : C2) Non-CCA Prop. 2.9
k = 264 C2× ((C2×D8) : C2) Non-CCA Prop. 2.9
k = 265 C2× ((C2×Q8) : C2) Non-CCA Prop. 2.9
k = 266 (C2× ((C4×C2) : C2)) : C2 Non-CCA Prop. 2.3
k = 267 C2×C2×C2×C2×C2×C2 CCA Prop. 2.12
k = 1 C17 : C4 Non-CCA Cor. 2.4
k = 2 C68 CCA Prop. 2.12

n = 68 k = 3 C17 : C4 Non-CCA Prop. 2.3
k = 4 D68 CCA Cor. 2.16
k = 5 C34×C2 CCA Prop. 2.12
k = 1 C9 : C8 CCA
k = 2 C72 CCA Prop. 2.12
k = 3 Q8 : C9 Non-CCA Prop. 2.3
k = 4 C9 : Q8 Non-CCA Cor. 2.4
k = 5 C4×D18 Non-CCA Prop. 2.3
k = 6 D72 CCA Cor. 2.16
k = 7 C2× (C9 : C4) Non-CCA Prop. 2.9
k = 8 (C18×C2) : C2 Non-CCA Prop. 2.3
k = 9 C36×C2 Non-CCA Prop. 2.12

k = 10 C9×D8 CCA Prop. 2.10
n = 72 k = 11 C9×Q8 Non-CCA Prop. 2.9

k = 12 C3× (C3 : C8) Non-CCA
k = 13 (C3×C3) : C8 CCA
k = 14 C24×C3 CCA Prop. 2.12
k = 15 ((C2×C2) : C9) : C2 Non-CCA Prop. 2.3
k = 16 C2× ((C2×C2) : C9) CCA
k = 17 C2×C2×D18 CCA Prop. 2.15
k = 18 C18×C2×C2 CCA Prop. 2.12
k = 19 (C3×C3) : C8 Non-CCA Prop. 2.3
k = 20 (C3 : C4)×S3 Non-CCA Prop. 2.9
k = 21 (C3× (C3 : C4)) : C2 Non-CCA Prop. 2.3
k = 22 (C6×S3) : C2 Non-CCA Prop. 2.3
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k = 23 (C6×S3) : C2 Non-CCA Prop. 2.3
k = 24 (C3×C3) : Q8 Non-CCA Prop. 2.3
k = 25 C3×SL(2,3) Non-CCA Prop. 2.9
k = 26 C3× (C3 : Q8) Non-CCA Prop. 2.9
k = 27 C12×S3 Non-CCA Prop. 2.3
k = 28 C3×D24 Non-CCA
k = 29 C6× (C3 : C4) Non-CCA Prop. 2.9
k = 30 C3× ((C6×C2) : C2) Non-CCA Prop. 2.9
k = 31 (C3×C3) : Q8 Non-CCA Cor. 2.4
k = 32 C4× ((C3×C3) : C2) Non-CCA
k = 33 (C12×C3) : C2 CCA Prop. 2.15
k = 34 C2× ((C3×C3) : C4) Non-CCA Prop. 2.9
k = 35 (C6×C6) : C2 Non-CCA Prop. 2.3

n = 72 k = 36 C12×C6 Non-CCA Prop. 2.12
k = 37 C3×C3×D8 CCA Prop. 2.10
k = 38 C3×C3×Q8 Non-CCA Prop. 2.9
k = 39 (C3×C3) : C8 Non-CCA
k = 40 (S3×S3) : C2 Non-CCA Prop. 2.3
k = 41 (C3×C3) : Q8 Non-CCA Prop. 2.3
k = 42 C3×S4 Non-CCA Prop. 2.9
k = 43 (C3×A4) : C2 Non-CCA Prop. 2.3
k = 44 A4×S3 CCA
k = 45 C2× ((C3×C3) : C4) Non-CCA Prop. 2.9
k = 46 C2×S3×S3 Non-CCA Prop. 2.9
k = 47 C6×A4 CCA
k = 48 C2×C6×S3 Non-CCA Prop. 2.9
k = 49 C2×C2× ((C3×C3) : C2) CCA Prop. 2.15
k = 50 C6×C6×C2 CCA Prop. 2.12
k = 1 C19 : C4 Non-CCA Cor. 2.4

n = 76 k = 2 C76 CCA Prop. 2.12
k = 3 D76 CCA Cor. 2.16
k = 4 C38×C2 CCA Prop. 2.12
k = 1 C5 : C16 CCA
k = 2 C80 CCA Prop. 2.12
k = 3 C5 : C16 Non-CCA

n = 80 k = 4 C8×D10 Non-CCA Prop. 2.3
k = 5 C40 : C2 Non-CCA Prop. 2.3
k = 6 C40 : C2 Non-CCA Prop. 2.3
k = 7 D80 CCA Cor. 2.16
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k = 8 C5 : Q16 Non-CCA Cor. 2.4
k = 9 C2× (C5 : C8) CCA

k = 10 (C5 : C8) : C2 CCA
k = 11 C4× (C5 : C4) Non-CCA Prop. 2.9
k = 12 (C5 : C4) : C4 Non-CCA Prop. 2.3
k = 13 C20 : C4 Non-CCA Cor. 2.4
k = 14 (C20×C2) : C2 Non-CCA Prop. 2.3
k = 15 (C5×D8) : C2 CCA
k = 16 (C5 : C8) : C2 Non-CCA Prop. 2.3
k = 17 (C5×Q8) : C2 Non-CCA Prop. 2.3
k = 18 C5 : Q16 Non-CCA Prop. 2.3
k = 19 (C2× (C5 : C4)) : C2 Non-CCA Prop. 2.3
k = 20 C20×C4 CCA Prop. 2.12
k = 21 C5× ((C4×C2) : C2) Non-CCA Prop. 2.9
k = 22 C5× (C4 : C4) Non-CCA Prop. 2.9
k = 23 C40×C2 CCA Prop. 2.12
k = 24 C5× (C8 : C2) CCA Prop. 2.10
k = 25 C5×D16 CCA Prop. 2.10
k = 26 C5×QD16 Non-CCA Prop. 2.9

n = 80 k = 27 C5×Q16 Non-CCA Prop. 2.9
k = 28 (C5 : C8) : C2 Non-CCA Prop. 2.3
k = 29 (C5 : C8) : C2 Non-CCA Prop. 2.3
k = 30 C4× (C5 : C4) Non-CCA Prop. 2.9
k = 31 C20 : C4 Non-CCA Prop. 2.3
k = 32 C2× (C5 : C8) Non-CCA Prop. 2.9
k = 33 (C5 : C8) : C2 Non-CCA Prop. 2.3
k = 34 (C2× (C5 : C4)) : C2 Non-CCA Prop. 2.3
k = 35 C2× (C5 : Q8) Non-CCA Prop. 2.9
k = 36 C2×C4×D10 Non-CCA Prop. 2.9
k = 37 C2×D40 Non-CCA Prop. 2.15
k = 38 (C20×C2) : C2 Non-CCA Prop. 2.3
k = 39 D8×D10 Non-CCA Prop. 2.3
k = 40 (C2× (C5 : C4)) : C2 Non-CCA Prop. 2.3
k = 41 Q8×D10 Non-CCA Prop. 2.9
k = 42 (C4×D10) : C2 Non-CCA Prop. 2.3
k = 43 C2×C2× (C5 : C4) Non-CCA Prop. 2.9
k = 44 C2× ((C10×C2) : C2) Non-CCA Prop. 2.9
k = 45 C20×C2×C2 Non-CCA Prop. 2.12
k = 46 C10×D8 Non-CCA Prop. 2.9
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k = 47 C10×Q8 Non-CCA Prop. 2.9
k = 48 C5× ((C4×C2) : C2) Non-CCA Prop. 2.9

n = 80 k = 49 (C2×C2×C2×C2) : C5 CCA
k = 50 C2×C2× (C5 : C4) Non-CCA Prop. 2.9
k = 51 C2×C2×C2×D10 CCA Prop. 2.15
k = 52 C10×C2×C2×C2 CCA Prop. 2.12
k = 1 C81 CCA Prop. 2.12
k = 2 C9×C9 CCA Prop. 2.12
k = 3 (C9×C3) : C3 CCA
k = 4 C9 : C9 CCA
k = 5 C27×C3 CCA Prop. 2.12
k = 6 C27 : C3 CCA
k = 7 (C3×C3×C3) : C3 Non-CCA

n = 81 k = 8 (C9×C3) : C3 CCA
k = 9 (C9×C3) : C3 CCA

k = 10 (C3×C3).(C3×C3)∗ CCA
k = 11 C9×C3×C3 CCA Prop. 2.12
k = 12 C3× ((C3×C3) : C3) CCA
k = 13 C3× (C9 : C3) CCA
k = 14 (C9×C3) : C3 CCA
k = 15 C3×C3×C3×C3 CCA Prop. 2.12
k = 1 (C7 : C4) : C3 Non-CCA Prop. 2.3
k = 2 C4× (C7 : C3) Non-CCA Prop. 2.9
k = 3 C7× (C3 : C4) Non-CCA Prop. 2.9
k = 4 C3× (C7 : C4) Non-CCA Prop. 2.9
k = 5 C21 : C4 Non-CCA Cor. 2.4
k = 6 C84 CCA Prop. 2.12
k = 7 C2× ((C7 : C3) : C2) Non-CCA Prop. 2.9

n = 84 k = 8 S3×D14 CCA
k = 9 C2×C2× (C7 : C3) Non-CCA Prop. 2.9

k = 10 C7×A4 CCA Prop. 2.10
k = 11 (C14×C2) : C3 CCA
k = 12 C6×D14 CCA Prop. 2.10
k = 13 C14×S3 CCA Prop. 2.10
k = 14 D84 CCA Cor. 2.16
k = 15 C42×C2 CCA Prop. 2.12
k = 1 C11 : C8 CCA

n = 88 k = 2 C88 CCA Prop. 2.12
k = 3 C11 : Q8 Non-CCA Cor. 2.4
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k = 4 C4×D22 Non-CCA Prop. 2.3
k = 5 D88 CCA Cor. 2.16
k = 6 C2× (C11 : C4) Non-CCA Prop. 2.9
k = 7 (C22×C2) : C2 Non-CCA Prop. 2.3

n = 88 k = 8 C44×C2 Non-CCA Prop. 2.12
k = 9 C11×D8 CCA Prop. 2.10

k = 10 C11×Q8 Non-CCA Prop. 2.9
k = 11 C2×C2×D22 CCA Prop. 2.15
k = 12 C22×C2×C2 CCA Prop. 2.12
k = 1 C5×D18 CCA Prop. 2.10
k = 2 C9×D10 CCA Prop. 2.10
k = 3 D90 CCA Cor. 2.16
k = 4 C90 CCA Prop. 2.12

n = 90 k = 5 C3×C3×D10 CCA Prop. 2.10
k = 6 C15×S3 Non-CCA
k = 7 C3×D30 Non-CCA
k = 8 C5× ((C3×C3) : C2) CCA Prop. 2.10
k = 9 (C15×C3) : C2 CCA Prop. 2.15

k = 10 C30×C3 CCA Prop. 2.12
k = 1 C23 : C4 Non-CCA Cor. 2.4

n = 92 k = 2 C92 CCA Prop. 2.12
k = 3 D92 CCA Cor. 2.16
k = 4 C46×C2 CCA Prop. 2.12
k = 1 C3 : C32 CCA
k = 2 C96 CCA Prop. 2.12
k = 3 ((C4×C2) : C4) : C3 CCA
k = 4 C16×S3 Non-CCA Prop. 2.3
k = 5 C48 : C2 Non-CCA Prop. 2.3
k = 6 D96 CCA Cor. 2.16
k = 7 C48 : C2 Non-CCA Prop. 2.3

n = 96 k = 8 C3 : Q32 Non-CCA Cor. 2.4
k = 9 C4× (C3 : C8) CCA

k = 10 (C3 : C8) : C4 CCA
k = 11 C12 : C8 CCA
k = 12 (C12×C4) : C2 Non-CCA Prop. 2.15
k = 13 (C3× ((C4×C2) : C2)) : C2 Non-CCA
k = 14 (C3 : C8) : C4 Non-CCA Prop. 2.3
k = 15 (C3 : C8) : C4 Non-CCA Prop. 2.3
k = 16 (C2× (C3 : C8)) : C2 Non-CCA Prop. 2.3
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k = 17 (C3 : Q8) : C4 Non-CCA Prop. 2.3
k = 18 C2× (C3 : C16) CCA
k = 19 (C3 : C16) : C2 CCA
k = 20 C8× (C3 : C4) Non-CCA Prop. 2.9
k = 21 (C3 : C4) : C8 Non-CCA Prop. 2.3
k = 22 C24 : C4 Non-CCA Prop. 2.3
k = 23 (C3 : Q8) : C4 Non-CCA Prop. 2.3
k = 24 C24 : C4 Non-CCA Prop. 2.3
k = 25 C24 : C4 Non-CCA Cor. 2.4
k = 26 C3 : (C4.D8)∗ CCA Prop. 2.3
k = 27 (C24×C2) : C2 Non-CCA Prop. 2.3
k = 28 (C24×C2) : C2 Non-CCA Prop. 2.3
k = 29 C3 : (C4.D8)∗ CCA
k = 30 (C3× (C8 : C2)) : C2 CCA
k = 31 C3 : ((C2×C2).(C4×C2))∗ Non-CCA Prop. 2.3
k = 32 (C3× (C8 : C2)) : C2 Non-CCA Prop. 2.3
k = 33 (C3×D16) : C2 CCA
k = 34 (C3 : C16) : C2 Non-CCA Prop. 2.3
k = 35 (C3×Q16) : C2 Non-CCA Prop. 2.3

n = 96 k = 36 C3 : Q32 Non-CCA Prop. 2.3
k = 37 (C2× (C3 : C8)) : C2 Non-CCA Prop. 2.3
k = 38 (C12×C2) : C4 Non-CCA Prop. 2.3
k = 39 (C2× (C3 : C8)) : C2 Non-CCA Prop. 2.3
k = 40 ((C3 : C8) : C2) : C2 CCA
k = 41 ((C2× (C3 : C4)) : C2) : C2 Non-CCA Prop. 2.3
k = 42 (C3×Q8) : C4 Non-CCA Prop. 2.3
k = 43 C3 : ((C2×C2).(C4×C2))∗ Non-CCA Prop. 2.3
k = 44 (C4× (C3 : C4)) : C2 Non-CCA Prop. 2.3
k = 45 C3× ((C4×C2) : C4) Non-CCA Prop. 2.9
k = 46 C24×C4 CCA Prop. 2.12
k = 47 C3× (C8 : C4) CCA Prop. 2.10
k = 48 C3× ((C8×C2) : C2) Non-CCA Prop. 2.9
k = 49 C3× (((C4×C2) : C2) : C2) Non-CCA Prop. 2.9
k = 50 C3× ((C8 : C2) : C2) CCA Prop. 2.10
k = 51 C3× ((C2×C2).(C4×C2))∗ Non-CCA Prop. 2.9
k = 52 C3× ((C8×C2) : C2) Non-CCA Prop. 2.9
k = 53 C3× (Q8 : C4) Non-CCA Prop. 2.9
k = 54 C3× ((C4×C4) : C2) Non-CCA Prop. 2.9
k = 55 C3× (C4 : C8) CCA Prop. 2.10
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k = 56 C3× (C8 : C4) Non-CCA Prop. 2.9
k = 57 C3× (C8 : C4) Non-CCA Prop. 2.9
k = 58 C3× (C4.D8)∗ CCA Prop. 2.10
k = 59 C48×C2 CCA Prop. 2.12
k = 60 C3× (C16 : C2) CCA Prop. 2.10
k = 61 C3×D32 CCA Prop. 2.10
k = 62 C3×QD32 Non-CCA Prop. 2.9
k = 63 C3×Q32 Non-CCA Prop. 2.9
k = 64 ((C4×C4) : C3) : C2 Non-CCA Prop. 2.3
k = 65 A4 : C8 Non-CCA Prop. 2.3
k = 66 SL(2,3) : C4 Non-CCA Prop. 2.3
k = 67 SL(2,3) : C4 Non-CCA Prop. 2.3
k = 68 C2× ((C4×C4) : C3) Non-CCA
k = 69 C4×SL(2,3) Non-CCA Prop. 2.9
k = 70 ((C2×C2×C2×C2) : C3) : C2 Non-CCA
k = 71 ((C4×C4) : C3) : C2 Non-CCA
k = 72 ((C4×C4) : C3) : C2 CCA
k = 73 C8×A4 Non-CCA Prop. 2.3
k = 74 ((C8×C2) : C2) : C3 Non-CCA Prop. 2.3

n = 96 k = 75 C4× (C3 : Q8) Non-CCA Prop. 2.9
k = 76 C12 : Q8 Non-CCA Cor. 2.4
k = 77 C3 : ((C2×C2).(C2×C2×C2)) Non-CCA Prop. 2.3
k = 78 C4×C4×S3 Non-CCA Prop. 2.9
k = 79 (C12×C4) : C2 Non-CCA Prop. 2.3
k = 80 C4×D24 Non-CCA Prop. 2.3
k = 81 (C12×C4) : C2 CCA
k = 82 (C12×C4) : C2 Non-CCA Prop. 2.3
k = 83 (C12×C4) : C2 Non-CCA Prop. 2.3
k = 84 (C4× (C3 : C4)) : C2 Non-CCA Prop. 2.3
k = 85 (C2× (C3 : Q8)) : C2 Non-CCA Prop. 2.3
k = 86 (C4× (C3 : C4)) : C2 Non-CCA Prop. 2.3
k = 87 ((C4×C2) : C2)×S3 Non-CCA Prop. 2.9
k = 88 (C2×C4×S3) : C2 Non-CCA Prop. 2.3
k = 89 (C2×C2×C2×S3) : C2 Non-CCA Prop. 2.3
k = 90 (C2×C4×S3) : C2 Non-CCA Prop. 2.3
k = 91 (C2×C4×S3) : C2 Non-CCA Prop. 2.3
k = 92 (C2× (C3 : Q8)) : C2 Non-CCA Prop. 2.3
k = 93 (C2×C2× (C3 : C4)) : C2 Non-CCA Prop. 2.3
k = 94 (C3 : Q8) : C4 Non-CCA Prop. 2.3
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k = 95 C12 : Q8 Non-CCA Prop. 2.3
k = 96 C3 : ((C2×C2).(C2×C2×C2)) Non-CCA Prop. 2.3
k = 97 C3 : ((C2×C2).(C2×C2×C2)) Non-CCA Prop. 2.3
k = 98 (C4 : C4)×S3 Non-CCA Prop. 2.9
k = 99 (C4× (C3 : C4)) : C2 Non-CCA Prop. 2.3

k = 100 (C2×C4×S3) : C2 Non-CCA Prop. 2.3
k = 101 (C2×C4×S3) : C2 Non-CCA Prop. 2.3
k = 102 (C2×C4×S3) : C2 Non-CCA Prop. 2.3
k = 103 (C2× (C3 : Q8)) : C2 Non-CCA Prop. 2.3
k = 104 (C3× (C4 : C4)) : C2 Non-CCA Prop. 2.3
k = 105 (C3× (C4 : C4)) : C2 Non-CCA Prop. 2.3
k = 106 C2×C8×S3 Non-CCA Prop. 2.9
k = 107 C2× (C24 : C2) Non-CCA Prop. 2.9
k = 108 (C24×C2) : C2 Non-CCA Prop. 2.3
k = 109 C2× (C24 : C2) Non-CCA Prop. 2.9
k = 110 C2×D48 CCA Prop. 2.15
k = 111 (C24×C2) : C2 Non-CCA Prop. 2.3
k = 112 C2× (C3 : Q16) Non-CCA Prop. 2.9
k = 113 (C8 : C2)×S3 Non-CCA Prop. 2.3

n = 96 k = 114 (C8×S3) : C2 Non-CCA Prop. 2.3
k = 115 (C2×D24) : C2 Non-CCA Prop. 2.3
k = 116 (C3× (C8 : C2)) : C2 Non-CCA Prop. 2.3
k = 117 D16×S3 Non-CCA Prop. 2.3
k = 118 (D8×S3) : C2 Non-CCA Prop. 2.3
k = 119 (C8×S3) : C2 Non-CCA Prop. 2.3
k = 120 QD16×S3 Non-CCA Prop. 2.9
k = 121 (D8×S3) : C2 Non-CCA Prop. 2.3
k = 122 (Q8×S3) : C2 Non-CCA Prop. 2.3
k = 123 (C8×S3) : C2 Non-CCA Prop. 2.3
k = 124 Q16×S3 Non-CCA Prop. 2.9
k = 125 (C3×Q16) : C2 Non-CCA Prop. 2.3
k = 126 (C8×S3) : C2 Non-CCA Prop. 2.3
k = 127 C2×C2× (C3 : C8) Non-CCA Prop. 2.3
k = 128 C2× ((C3 : C8) : C2) Non-CCA Prop. 2.3
k = 129 C2×C4× (C3 : C4) Non-CCA Prop. 2.9
k = 130 C2× ((C3 : C4) : C4) Non-CCA Prop. 2.9
k = 131 (C2× (C3 : Q8)) : C2 Non-CCA Prop. 2.3
k = 132 C2× (C12 : C4) Non-CCA Prop. 2.9
k = 133 (C4× (C3 : C4)) : C2 Non-CCA Prop. 2.3
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k = 134 C2× ((C12×C2) : C2) Non-CCA Prop. 2.9
k = 135 C4× ((C6×C2) : C2) Non-CCA Prop. 2.9
k = 136 (C12×C2×C2) : C2 Non-CCA Prop. 2.3
k = 137 (C12×C2×C2) : C2 Non-CCA Prop. 2.3
k = 138 C2× ((C3×D8) : C2) CCA
k = 139 (C6×D8) : C2 Non-CCA Prop. 2.3
k = 140 C2× ((C3 : C8) : C2) Non-CCA Prop. 2.3
k = 141 D8× (C3 : C4) Non-CCA Prop. 2.9
k = 142 (C2×C2× (C3 : C4)) : C2 Non-CCA Prop. 2.3
k = 143 (C2× (C3 : Q8)) : C2 Non-CCA Prop. 2.3
k = 144 (C2×C2×C2×S3) : C2 Non-CCA Prop. 2.3
k = 145 (C6×D8) : C2 Non-CCA Prop. 2.3
k = 146 (C2×C2× (C3 : C4)) : C2 Non-CCA Prop. 2.3
k = 147 (C6×D8) : C2 Non-CCA Prop. 2.3
k = 148 C2× ((C3×Q8) : C2) Non-CCA Prop. 2.9
k = 149 (C6×Q8) : C2 Non-CCA Prop. 2.3
k = 150 C2× (C3 : Q16) Non-CCA Prop. 2.9
k = 151 (C3 : C4) : Q8 Non-CCA Prop. 2.3
k = 152 Q8× (C3 : C4) Non-CCA Prop. 2.9

n = 96 k = 153 (C6×Q8) : C2 Non-CCA Prop. 2.3
k = 154 (C6×Q8) : C2 Non-CCA Prop. 2.3
k = 155 (C2× (C3 : C8)) : C2 Non-CCA Prop. 2.3
k = 156 (C2×D24) : C2 Non-CCA Prop. 2.3
k = 157 (C2× (C3 : C8)) : C2 Non-CCA Prop. 2.3
k = 158 (C2× (C3 : Q8)) : C2 Non-CCA Prop. 2.3
k = 159 C2× ((C2× (C3 : C4)) : C2) Non-CCA Prop. 2.9
k = 160 (C6×C2×C2×C2) : C2 Non-CCA Prop. 2.3
k = 161 C12×C4×C2 Non-CCA Prop. 2.12
k = 162 C6× ((C4×C2) : C2) Non-CCA Prop. 2.9
k = 163 C6× (C4 : C4) Non-CCA Prop. 2.9
k = 164 C3× ((C4×C4) : C2) Non-CCA Prop. 2.9
k = 165 C12×D8 Non-CCA Prop. 2.9
k = 166 C12×Q8 Non-CCA Prop. 2.9
k = 167 C3× ((C2×C2×C2×C2) : C2) Non-CCA Prop. 2.9
k = 168 C3× ((C4×C2×C2) : C2) Non-CCA Prop. 2.9
k = 169 C3× ((C2×Q8) : C2) Non-CCA Prop. 2.9
k = 170 C3× ((C4×C2×C2) : C2) Non-CCA Prop. 2.9
k = 171 C3× ((C4×C4) : C2) Non-CCA Prop. 2.9
k = 172 C3× ((C2×C2).(C2×C2×C2)) Non-CCA Prop. 2.9
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k = 173 C3× ((C4×C4) : C2) Non-CCA Prop. 2.9
k = 174 C3× ((C4×C4) : C2) CCA Prop. 2.10
k = 175 C3× (C4 : Q8) Non-CCA Prop. 2.9
k = 176 C24×C2×C2 Non-CCA Prop. 2.12
k = 177 C6× (C8 : C2) Non-CCA Prop. 2.9
k = 178 C3× ((C8×C2) : C2) Non-CCA Prop. 2.9
k = 179 C6×D16 CCA Prop. 2.10
k = 180 C6×QD16 Non-CCA Prop. 2.9
k = 181 C6×Q16 Non-CCA Prop. 2.9
k = 182 C3× ((C8×C2) : C2) Non-CCA Prop. 2.9
k = 183 C3× ((C2×D8) : C2) Non-CCA Prop. 2.9
k = 184 C3× ((C2×Q8) : C2) Non-CCA Prop. 2.9
k = 185 A4 : Q8 Non-CCA Prop. 2.3
k = 186 C4×S4 Non-CCA Prop. 2.9
k = 187 (C2×S4) : C2 Non-CCA Prop. 2.3
k = 188 C2× (C2.S4)∗ Non-CCA Prop. 2.9
k = 189 C2×GL(2,3) Non-CCA Prop. 2.9
k = 190 (C2×SL(2,3)) : C2 Non-CCA Prop. 2.3
k = 191 (C2.S4) : C2∗ Non-CCA Prop. 2.3

n = 96 k = 192 (C2.S4) : C2∗ Non-CCA Prop. 2.3
k = 193 (SL(2,3) : C2) : C2 Non-CCA Prop. 2.3
k = 194 C2× (A4 : C4) Non-CCA Prop. 2.9
k = 195 (C2×C2×A4) : C2 Non-CCA Prop. 2.3
k = 196 C2×C4×A4 Non-CCA Prop. 2.9
k = 197 D8×A4 Non-CCA Prop. 2.3
k = 198 C2×C2×SL(2,3) Non-CCA Prop. 2.9
k = 199 Q8×A4 Non-CCA Prop. 2.9
k = 200 C2× (SL(2,3) : C2) Non-CCA Prop. 2.9
k = 201 (SL(2,3) : C2) : C2 Non-CCA Prop. 2.3
k = 202 (C2×SL(2,3)) : C2 Non-CCA Prop. 2.3
k = 203 (C2×C2×Q8) : C3 Non-CCA Prop. 2.3
k = 204 ((C2×D8) : C2) : C3 Non-CCA Prop. 2.3
k = 205 C2×C2× (C3 : Q8) Non-CCA Prop. 2.9
k = 206 C2×C2×C4×S3 Non-CCA Prop. 2.9
k = 207 C2×C2×D24 Non-CCA Prop. 2.15
k = 208 C2× ((C12×C2) : C2) Non-CCA Prop. 2.9
k = 209 C2×D8×S3 Non-CCA Prop. 2.9
k = 210 C2× ((C2× (C3 : C4)) : C2) Non-CCA Prop. 2.9
k = 211 (C6×D8) : C2 Non-CCA Prop. 2.3
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k = 212 C2×Q8×S3 Non-CCA Prop. 2.9
k = 213 C2× ((C4×S3) : C2) Non-CCA Prop. 2.9
k = 214 (C6×Q8) : C2 Non-CCA Prop. 2.3
k = 215 ((C4×C2) : C2)×S3 Non-CCA Prop. 2.9
k = 216 (D8×S3) : C2 Non-CCA Prop. 2.3
k = 217 (Q8×S3) : C2 Non-CCA Prop. 2.3
k = 218 C2×C2×C2× (C3 : C4) Non-CCA Prop. 2.9
k = 219 C2×C2× ((C6×C2) : C2) Non-CCA Prop. 2.9
k = 220 C12×C2×C2×C2 Non-CCA Prop. 2.12

n = 96 k = 221 C2×C6×D8 Non-CCA Prop. 2.9
k = 222 C2×C6×Q8 Non-CCA Prop. 2.9
k = 223 C6× ((C4×C2) : C2) Non-CCA Prop. 2.9
k = 224 C3× ((C2×D8) : C2) Non-CCA Prop. 2.9
k = 225 C3× ((C2×Q8) : C2) Non-CCA Prop. 2.9
k = 226 C2×C2×S4 Non-CCA Prop. 2.9
k = 227 ((C2×C2×C2×C2) : C3) : C2 Non-CCA Prop. 2.3
k = 228 C2×C2×C2×A4 CCA
k = 229 C2× ((C2×C2×C2×C2) : C3) CCA
k = 230 C2×C2×C2×C2×S3 CCA Prop. 2.15
k = 231 C6×C2×C2×C2×C2 CCA Prop. 2.12
k = 1 D98 CCA Cor. 2.16
k = 2 C98 CCA Prop. 2.12

n = 98 k = 3 C7×D14 Non-CCA
k = 4 (C7×C7) : C2 CCA Prop. 2.15
k = 5 C14×C7 CCA Prop. 2.12
k = 1 C25 : C4 Non-CCA Cor. 2.4
k = 2 C100 CCA Prop. 2.12
k = 3 C25 : C4 Non-CCA Prop. 2.3
k = 4 D100 CCA Cor. 2.16
k = 5 C50×C2 CCA Prop. 2.12
k = 6 C5× (C5 : C4) Non-CCA Prop. 2.9

n = 100 k = 7 (C5×C5) : C4 Non-CCA Cor. 2.4
k = 8 C20×C5 CCA Prop. 2.12
k = 9 C5× (C5 : C4) Non-CCA Prop. 2.9

k = 10 (C5×C5) : C4 Non-CCA Prop. 2.3
k = 11 (C5×C5) : C4 Non-CCA Prop. 2.3
k = 12 (C5×C5) : C4 Non-CCA Prop. 2.3
k = 13 D10×D10 Non-CCA
k = 14 C10×D10 Non-CCA
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n = 100 k = 15 C2× ((C5×C5) : C2) CCA Prop. 2.15
k = 16 C10×C10 CCA Prop. 2.12
k = 1 C13 : C8 CCA
k = 2 C104 CCA Prop. 2.12
k = 3 C13 : C8 Non-CCA Prop. 2.3
k = 4 C13 : Q8 Non-CCA Cor. 2.4
k = 5 C4×D26 Non-CCA Prop. 2.3
k = 6 D104 CCA Cor. 2.16

n = 104 k = 7 C2× (C13 : C4) Non-CCA Prop. 2.9
k = 8 (C26×C2) : C2 Non-CCA Prop. 2.3
k = 9 C52×C2 Non-CCA Prop. 2.12

k = 10 C13×D8 CCA Prop. 2.10
k = 11 C13×Q8 Non-CCA Prop. 2.9
k = 12 C2× (C13 : C4) Non-CCA Prop. 2.9
k = 13 C2×C2×D26 CCA Prop. 2.15
k = 14 C26×C2×C2 CCA Prop. 2.12

n = 105 k = 1 C5× (C7 : C3) Non-CCA Prop. 2.9
k = 2 C105 CCA Prop. 2.12
k = 1 C27 : C4 Non-CCA Cor. 2.4
k = 2 C108 CCA Prop. 2.12
k = 3 (C2×C2) : C27 CCA
k = 4 D108 CCA Cor. 2.16
k = 5 C54×C2 CCA Prop. 2.12
k = 6 C3× (C9 : C4) Non-CCA Prop. 2.9
k = 7 C9× (C3 : C4) Non-CCA Prop. 2.9
k = 8 ((C3×C3) : C4) : C3 Non-CCA Prop. 2.3
k = 9 (C9 : C4) : C3 Non-CCA Prop. 2.3

k = 10 (C9×C3) : C4 Non-CCA Cor. 2.4
n = 108 k = 11 ((C3×C3) : C3) : C4 Non-CCA Prop. 2.3

k = 12 C36×C3 CCA Prop. 2.12
k = 13 C4× ((C3×C3) : C3) CCA Prop. 2.10
k = 14 C4× (C9 : C3) CCA Prop. 2.10
k = 15 ((C3×C3) : C3) : C4 Non-CCA Prop. 2.3
k = 16 S3×D18 CCA
k = 17 (((C3×C3) : C3) : C2) : C2 Non-CCA
k = 18 C9×A4 CCA
k = 19 (C18×C2) : C3 CCA
k = 20 C3× ((C2×C2) : C9) CCA
k = 21 ((C2×C2) : C9) : C3 CCA
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k = 22 (C6×C6) : C3 CCA
k = 23 C6×D18 CCA
k = 24 C18×S3 CCA
k = 25 C2× (((C3×C3) : C3) : C2) Non-CCA Prop. 2.9
k = 26 C2× ((C9 : C3) : C2) CCA
k = 27 C2× ((C9×C3) : C2) CCA Prop. 2.15
k = 28 C2× (((C3×C3) : C3) : C2) CCA
k = 29 C18×C6 CCA Prop. 2.12
k = 30 C2×C2× ((C3×C3) : C3) CCA Prop. 2.10
k = 31 C2×C2× (C9 : C3) CCA Prop. 2.10
k = 32 C3×C3× (C3 : C4) Non-CCA Prop. 2.9

n = 108 k = 33 C3× ((C3×C3) : C4) Non-CCA Prop. 2.9
k = 34 (C3×C3×C3) : C4 Non-CCA Cor. 2.4
k = 35 C12×C3×C3 CCA Prop. 2.12
k = 36 C3× ((C3×C3) : C4) Non-CCA Prop. 2.9
k = 37 (C3×C3×C3) : C4 Non-CCA Prop. 2.3
k = 38 C3×S3×S3 Non-CCA Prop. 2.9
k = 39 ((C3×C3) : C2)×S3 Non-CCA
k = 40 (C3× ((C3×C3) : C2)) : C2 Non-CCA
k = 41 C3×C3×A4 CCA
k = 42 C3×C6×S3 Non-CCA Prop. 2.9
k = 43 C6× ((C3×C3) : C2) Non-CCA
k = 44 C2× ((C3×C3×C3) : C2) CCA Prop. 2.15
k = 45 C6×C6×C3 CCA Prop. 2.12
k = 1 C7 : C16 CCA
k = 2 C112 CCA Prop. 2.12
k = 3 C8×D14 Non-CCA Prop. 2.3
k = 4 C56 : C2 Non-CCA Prop. 2.3
k = 5 C56 : C2 Non-CCA Prop. 2.3
k = 6 D112 CCA Cor. 2.16
k = 7 C7 : Q16 Non-CCA Cor. 2.4

n = 112 k = 8 C2× (C7 : C8) CCA
k = 9 (C7 : C8) : C2 CCA

k = 10 C4× (C7 : C4) Non-CCA Prop. 2.9
k = 11 (C7 : C4) : C4 Non-CCA Prop. 2.3
k = 12 C28 : C4 Non-CCA Cor. 2.4
k = 13 (C28×C2) : C2 Non-CCA Prop. 2.3
k = 14 (C7×D8) : C2 CCA
k = 15 (C7 : C8) : C2 Non-CCA Prop. 2.3
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k = 16 (C7×Q8) : C2 Non-CCA Prop. 2.3
k = 17 C7 : Q16 Non-CCA Prop. 2.3
k = 18 (C2× (C7 : C4)) : C2 Non-CCA Prop. 2.3
k = 19 C28×C4 CCA Prop. 2.12
k = 20 C7× ((C4×C2) : C2) Non-CCA Prop. 2.9
k = 21 C7× (C4 : C4) Non-CCA Prop. 2.9
k = 22 C56×C2 CCA Prop. 2.12
k = 23 C7× (C8 : C2) CCA Prop. 2.10
k = 24 C7×D16 CCA Prop. 2.10
k = 25 C7×QD16 Non-CCA Prop. 2.9
k = 26 C7×Q16 Non-CCA Prop. 2.9
k = 27 C2× (C7 : Q8) Non-CCA Prop. 2.9
k = 28 C2×C4×D14 Non-CCA Prop. 2.9

n = 112 k = 29 C2×D56 Non-CCA Prop. 2.15
k = 30 (C28×C2) : C2 Non-CCA Prop. 2.3
k = 31 D8×D14 Non-CCA Prop. 2.3
k = 32 (C2× (C7 : C4)) : C2 Non-CCA Prop. 2.3
k = 33 Q8×D14 Non-CCA Prop. 2.9
k = 34 (C4×D14) : C2 Non-CCA Prop. 2.3
k = 35 C2×C2× (C7 : C4) Non-CCA Prop. 2.9
k = 36 C2× ((C14×C2) : C2) Non-CCA Prop. 2.9
k = 37 C28×C2×C2 Non-CCA Prop. 2.12
k = 38 C14×D8 Non-CCA Prop. 2.9
k = 39 C14×Q8 Non-CCA Prop. 2.9
k = 40 C7× ((C4×C2) : C2) Non-CCA Prop. 2.9
k = 41 C2× ((C2×C2×C2) : C7) CCA
k = 42 C2×C2×C2×D14 CCA Prop. 2.15
k = 43 C14×C2×C2×C2 CCA Prop. 2.12
k = 1 C29 : C4 Non-CCA Cor. 2.4
k = 2 C116 CCA Prop. 2.12

n = 116 k = 3 C29 : C4 Non-CCA Prop. 2.3
k = 4 D116 CCA Cor. 2.16
k = 5 C58×C2 CCA Prop. 2.12
k = 1 C5× (C3 : C8) CCA Prop. 2.10
k = 2 C3× (C5 : C8) CCA Prop. 2.10

n = 120 k = 3 C15 : C8 CCA
k = 4 C120 CCA Prop. 2.12
k = 5 SL(2,5) Non-CCA Prop. 2.3
k = 6 C3× (C5 : C8) Non-CCA Prop. 2.9
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k = 7 C15 : C8 Non-CCA Prop. 2.3
k = 8 (C3 : C4)×D10 Non-CCA Prop. 2.9
k = 9 S3× (C5 : C4) Non-CCA Prop. 2.9

k = 10 (C5× (C3 : C4)) : C2 Non-CCA Prop. 2.3
k = 11 (C10×S3) : C2 Non-CCA Prop. 2.3
k = 12 (C6×D10) : C2 Non-CCA Prop. 2.3
k = 13 (C10×S3) : C2 Non-CCA Prop. 2.3
k = 14 C15 : Q8 Non-CCA Prop. 2.3
k = 15 C5×SL(2,3) Non-CCA Prop. 2.9
k = 16 C3× (C5 : Q8) Non-CCA Prop. 2.9
k = 17 C12×D10 Non-CCA Prop. 2.9
k = 18 C3×D40 CCA Prop. 2.10
k = 19 C6× (C5 : C4) Non-CCA Prop. 2.9
k = 20 C3× ((C10×C2) : C2) Non-CCA Prop. 2.9
k = 21 C5× (C3 : Q8) Non-CCA Prop. 2.9
k = 22 C20×S3 Non-CCA Prop. 2.9
k = 23 C5×D24 CCA Prop. 2.10
k = 24 C10× (C3 : C4) Non-CCA Prop. 2.9
k = 25 C5× ((C6×C2) : C2) Non-CCA Prop. 2.9

n = 120 k = 26 C15 : Q8 Non-CCA Cor. 2.4
k = 27 C4×D30 Non-CCA Prop. 2.3
k = 28 D120 CCA Cor. 2.16
k = 29 C2× (C15 : C4) Non-CCA Prop. 2.9
k = 30 (C30×C2) : C2 Non-CCA Prop. 2.3
k = 31 C60×C2 Non-CCA Prop. 2.12
k = 32 C15×D8 CCA Prop. 2.10
k = 33 C15×Q8 Non-CCA Prop. 2.9
k = 34 S5 Non-CCA Prop. 2.3
k = 35 C2×A5 Non-CCA
k = 36 S3× (C5 : C4) Non-CCA Prop. 2.9
k = 37 C5×S4 Non-CCA Prop. 2.9
k = 38 (C5×A4) : C2 Non-CCA Prop. 2.3
k = 39 A4×D10 CCA
k = 40 C6× (C5 : C4) Non-CCA Prop. 2.9
k = 41 C2× (C15 : C4) Non-CCA Prop. 2.9
k = 42 C2×S3×D10 CCA
k = 43 C10×A4 CCA Prop. 2.10
k = 44 C2×C6×D10 CCA Prop. 2.10
k = 45 C2×C10×S3 CCA Prop. 2.10
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n = 120 k = 46 C2×C2×D30 CCA Prop. 2.15
k = 47 C30×C2×C2 CCA Prop. 2.12
k = 1 C31 : C4 Non-CCA Cor. 2.4

n = 124 k = 2 C124 CCA Prop. 2.12
k = 3 D124 CCA Cor. 2.16
k = 4 C62×C2 CCA Prop. 2.12
k = 1 (C7 : C9) : C2 CCA
k = 2 C2× (C7 : C9) CCA Prop. 2.10
k = 3 C7×D18 CCA Prop. 2.10
k = 4 C9×D14 CCA Prop. 2.10
k = 5 D126 CCA Cor. 2.16
k = 6 C126 CCA Prop. 2.12
k = 7 C3× ((C7 : C3) : C2) Non-CCA Prop. 2.9

n = 126 k = 8 S3× (C7 : C3) Non-CCA Prop. 2.9
k = 9 (C3× (C7 : C3)) : C2 Non-CCA

k = 10 C6× (C7 : C3) Non-CCA Prop. 2.9
k = 11 C3×C3×D14 CCA Prop. 2.10
k = 12 C21×S3 Non-CCA Prop. 2.9
k = 13 C3×D42 Non-CCA
k = 14 C7× ((C3×C3) : C2) CCA Prop. 2.10
k = 15 (C21×C3) : C2 CCA Prop. 2.15
k = 16 C42×C3 CCA Prop. 2.12
k = 1 C11× (C3 : C4) Non-CCA Prop. 2.9
k = 2 C3× (C11 : C4) Non-CCA Prop. 2.9
k = 3 C33 : C4 Non-CCA Cor. 2.4
k = 4 C132 CCA Prop. 2.12

n = 132 k = 5 S3×D22 CCA
k = 6 C11×A4 CCA Prop. 2.10
k = 7 C6×D22 CCA Prop. 2.10
k = 8 C22×S3 CCA Prop. 2.10
k = 9 D132 CCA Cor. 2.16

k = 10 C66×C2 CCA Prop. 2.12
k = 1 C17 : C8 CCA
k = 2 C136 CCA Prop. 2.12
k = 3 C17 : C8 Non-CCA Prop. 2.3

n = 136 k = 4 C17 : Q8 Non-CCA Cor. 2.4
k = 5 C4×D34 Non-CCA Prop. 2.3
k = 6 D136 CCA Cor. 2.16
k = 7 C2× (C17 : C4) Non-CCA Prop. 2.9
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k = 8 (C34×C2) : C2 Non-CCA Prop. 2.3
k = 9 C68×C2 Non-CCA Prop. 2.12

k = 10 C17×D8 CCA Prop. 2.10
n = 136 k = 11 C17×Q8 Non-CCA Prop. 2.9

k = 12 C17 : C8 CCA
k = 13 C2× (C17 : C4) Non-CCA Prop. 2.9
k = 14 C2×C2×D34 CCA Prop. 2.15
k = 15 C34×C2×C2 CCA Prop. 2.12
k = 1 C7× (C5 : C4) Non-CCA Prop. 2.9
k = 2 C5× (C7 : C4) Non-CCA Prop. 2.9
k = 3 C35 : C4 Non-CCA Cor. 2.4
k = 4 C140 CCA Prop. 2.12
k = 5 C7× (C5 : C4) Non-CCA Prop. 2.9

n = 140 k = 6 C35 : C4 Non-CCA Prop. 2.3
k = 7 D10×D14 CCA
k = 8 C10×D14 CCA Prop. 2.10
k = 9 C14×D10 CCA Prop. 2.10

k = 10 D140 CCA Cor. 2.16
k = 11 C70×C2 CCA Prop. 2.12
k = 1 C9 : C16 CCA
k = 2 C144 CCA Prop. 2.12
k = 3 (C4×C4) : C9 CCA
k = 4 C9 : Q16 Non-CCA Cor. 2.4
k = 5 C8×D18 Non-CCA Prop. 2.3
k = 6 C72 : C2 Non-CCA Prop. 2.3
k = 7 C72 : C2 Non-CCA Prop. 2.3
k = 8 D144 CCA Cor. 2.16
k = 9 C2× (C9 : C8) CCA

n = 144 k = 10 (C9 : C8) : C2 CCA
k = 11 C4× (C9 : C4) Non-CCA Prop. 2.9
k = 12 (C9 : C4) : C4 Non-CCA Prop. 2.3
k = 13 C36 : C4 Non-CCA Cor. 2.4
k = 14 (C36×C2) : C2 Non-CCA Prop. 2.3
k = 15 (C9 : Q8) : C2 Non-CCA Prop. 2.3
k = 16 (C9×D8) : C2 CCA
k = 17 C9 : Q16 Non-CCA Prop. 2.3
k = 18 (C9×Q8) : C2 Non-CCA Prop. 2.3
k = 19 (C2× (C9 : C4)) : C2 Non-CCA Prop. 2.3
k = 20 C36×C4 CCA Prop. 2.12
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k = 21 C9× ((C4×C2) : C2) Non-CCA Prop. 2.9
k = 22 C9× (C4 : C4) Non-CCA Prop. 2.9
k = 23 C72×C2 CCA Prop. 2.12
k = 24 C9× (C8 : C2) CCA Prop. 2.10
k = 25 C9×D16 CCA Prop. 2.10
k = 26 C9×QD16 Non-CCA Prop. 2.9
k = 27 C9×Q16 Non-CCA Prop. 2.9
k = 28 C3× (C3 : C16) Non-CCA
k = 29 (C3×C3) : C16 CCA
k = 30 C48×C3 CCA Prop. 2.12
k = 31 (Q8 : C9).C2∗ Non-CCA Prop. 2.3
k = 32 (Q8 : C9) : C2 Non-CCA Prop. 2.3
k = 33 ((C2×C2) : C9) : C4 Non-CCA Prop. 2.3
k = 34 C4× ((C2×C2) : C9) Non-CCA Prop. 2.3
k = 35 C2× (Q8 : C9) Non-CCA Prop. 2.9
k = 36 (Q8 : C9) : C2 Non-CCA Prop. 2.3
k = 37 C2× (C9 : Q8) Non-CCA Prop. 2.9
k = 38 C2×C4×D18 Non-CCA Prop. 2.3
k = 39 C2×D72 Non-CCA Prop. 2.15

n = 144 k = 40 (C36×C2) : C2 Non-CCA Prop. 2.3
k = 41 D8×D18 Non-CCA Prop. 2.3
k = 42 (C2× (C9 : C4)) : C2 Non-CCA Prop. 2.3
k = 43 Q8×D18 Non-CCA Prop. 2.9
k = 44 (C4×D18) : C2 Non-CCA Prop. 2.3
k = 45 C2×C2× (C9 : C4) Non-CCA Prop. 2.9
k = 46 C2× ((C18×C2) : C2) Non-CCA Prop. 2.9
k = 47 C36×C2×C2 Non-CCA Prop. 2.12
k = 48 C18×D8 Non-CCA Prop. 2.9
k = 49 C18×Q8 Non-CCA Prop. 2.9
k = 50 C9× ((C4×C2) : C2) Non-CCA Prop. 2.9
k = 51 (C3×C3) : C16 Non-CCA
k = 52 (C3 : C8)×S3 Non-CCA Prop. 2.3
k = 53 (C3× (C3 : C8)) : C2 Non-CCA Prop. 2.3
k = 54 (C3× (C3 : C8)) : C2 Non-CCA Prop. 2.3
k = 55 (C3× (C3 : C8)) : C2 Non-CCA Prop. 2.3
k = 56 (C3×D24) : C2 Non-CCA
k = 57 (C3× (C3 : C8)) : C2 Non-CCA
k = 58 (C3× (C3 : Q8)) : C2 Non-CCA Prop. 2.3
k = 59 (C3× (C3 : C8)) : C2 Non-CCA Prop. 2.3
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k = 60 (C3× (C3 : Q8)) : C2 Non-CCA Prop. 2.3
k = 61 (C3×C3) : Q16 Non-CCA Prop. 2.3
k = 62 (C3×C3) : Q16 Non-CCA Prop. 2.3
k = 63 (C3 : C4)× (C3 : C4) Non-CCA Prop. 2.9
k = 64 (C6× (C3 : C4)) : C2 Non-CCA Prop. 2.3
k = 65 (C6× (C3 : C4)) : C2 Non-CCA Prop. 2.3
k = 66 (C3× (C3 : C4)) : C4 Non-CCA Prop. 2.3
k = 67 ((C3×C3) : C4) : C4 Non-CCA Prop. 2.3
k = 68 C3× ((C4×C4) : C3) CCA
k = 69 C24×S3 Non-CCA Prop. 2.3
k = 70 C3× (C24 : C2) Non-CCA Prop. 2.9
k = 71 C3× (C24 : C2) Non-CCA Prop. 2.9
k = 72 C3×D48 Non-CCA
k = 73 C3× (C3 : Q16) Non-CCA Prop. 2.9
k = 74 C6× (C3 : C8) Non-CCA
k = 75 C3× ((C3 : C8) : C2) Non-CCA
k = 76 C12× (C3 : C4) Non-CCA Prop. 2.9
k = 77 C3× ((C3 : C4) : C4) Non-CCA Prop. 2.9
k = 78 C3× (C12 : C4) Non-CCA Prop. 2.9

n = 144 k = 79 C3× ((C12×C2) : C2) Non-CCA Prop. 2.9
k = 80 C3× ((C3×D8) : C2) Non-CCA
k = 81 C3× ((C3 : C8) : C2) Non-CCA Prop. 2.3
k = 82 C3× ((C3×Q8) : C2) Non-CCA Prop. 2.9
k = 83 C3× (C3 : Q16) Non-CCA Prop. 2.9
k = 84 C3× ((C2× (C3 : C4)) : C2) Non-CCA Prop. 2.9
k = 85 C8× ((C3×C3) : C2) Non-CCA Prop. 2.3
k = 86 (C24×C3) : C2 Non-CCA Prop. 2.15
k = 87 (C24×C3) : C2 Non-CCA Prop. 2.3
k = 88 (C24×C3) : C2 CCA
k = 89 (C3×C3) : Q16 Non-CCA Cor. 2.4
k = 90 C2× ((C3×C3) : C8) CCA
k = 91 ((C3×C3) : C8) : C2 CCA
k = 92 C4× ((C3×C3) : C4) Non-CCA Prop. 2.9
k = 93 ((C3×C3) : C4) : C4 Non-CCA Prop. 2.3
k = 94 (C12×C3) : C4 Non-CCA Cor. 2.4
k = 95 (C12×C6) : C2 Non-CCA Prop. 2.3
k = 96 (C3×C3×D8) : C2 CCA
k = 97 ((C3×C3) : Q8) : C2 Non-CCA Prop. 2.3
k = 98 (C3×C3×Q8) : C2 Non-CCA Prop. 2.3
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k = 99 (C3×C3) : Q16 Non-CCA Prop. 2.3
k = 100 (C2× ((C3×C3) : C4)) : C2 Non-CCA Prop. 2.3
k = 101 C12×C12 CCA Prop. 2.12
k = 102 C3×C3× ((C4×C2) : C2) Non-CCA Prop. 2.9
k = 103 C3×C3× (C4 : C4) Non-CCA Prop. 2.9
k = 104 C24×C6 CCA Prop. 2.12
k = 105 C3×C3× (C8 : C2) CCA Prop. 2.10
k = 106 C3×C3×D16 CCA Prop. 2.10
k = 107 C3×C3×QD16 Non-CCA Prop. 2.9
k = 108 C3×C3×Q16 Non-CCA Prop. 2.9
k = 109 C2× (((C2×C2) : C9) : C2) Non-CCA Prop. 2.9
k = 110 C2×C2× ((C2×C2) : C9) CCA
k = 111 (C2×C2×C2×C2) : C9 CCA
k = 112 C2×C2×C2×D18 CCA Prop. 2.15
k = 113 C18×C2×C2×C2 CCA Prop. 2.12
k = 114 (C3×C3) : C16 Non-CCA Prop. 2.3
k = 115 (C2× ((C3×C3) : C4)) : C2 Non-CCA Prop. 2.3
k = 116 ((C3×C3) : C4) : C4 Non-CCA Prop. 2.3
k = 117 ((C3×C3) : C8) : C2 Non-CCA Prop. 2.3

n = 144 k = 118 ((C3×C3) : Q8) : C2 Non-CCA Prop. 2.3
k = 119 (C3×C3) : Q16 Non-CCA Prop. 2.3
k = 120 ((C3×C3) : C4) : C4 Non-CCA Prop. 2.3
k = 121 C3× (C2.S4)∗ Non-CCA Prop. 2.9
k = 122 C3×GL(2,3) Non-CCA Prop. 2.9
k = 123 C3× (A4 : C4) Non-CCA Prop. 2.9
k = 124 C3 : (C2.S4)∗ Non-CCA Prop. 2.3
k = 125 (C3×SL(2,3)) : C2 Non-CCA Prop. 2.3
k = 126 (C3×A4) : C4 Non-CCA Prop. 2.3
k = 127 (C3×SL(2,3)) : C2 Non-CCA Prop. 2.3
k = 128 S3×SL(2,3) Non-CCA Prop. 2.9
k = 129 A4× (C3 : C4) Non-CCA Prop. 2.9
k = 130 ((C3×C3) : C8) : C2 Non-CCA Prop. 2.3
k = 131 ((C3×C3) : C8) : C2 Non-CCA Prop. 2.3
k = 132 C4× ((C3×C3) : C4) Non-CCA Prop. 2.9
k = 133 (C12×C3) : C4 Non-CCA Prop. 2.3
k = 134 C2× ((C3×C3) : C8) Non-CCA Prop. 2.3
k = 135 ((C3×C3) : C8) : C2 Non-CCA Prop. 2.3
k = 136 (C2× ((C3×C3) : C4)) : C2 Non-CCA Prop. 2.3
k = 137 (C3 : Q8)×S3 Non-CCA Prop. 2.9
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k = 138 (C12×S3) : C2 Non-CCA Prop. 2.3
k = 139 (C4× ((C3×C3) : C2)) : C2 Non-CCA Prop. 2.3
k = 140 (C3× (C3 : Q8)) : C2 Non-CCA Prop. 2.3
k = 141 (C12×S3) : C2 Non-CCA Prop. 2.3
k = 142 (C12×S3) : C2 Non-CCA Prop. 2.3
k = 143 C4×S3×S3 Non-CCA Prop. 2.9
k = 144 D24×S3 Non-CCA Prop. 2.3
k = 145 (C2×S3×S3) : C2 Non-CCA Prop. 2.9
k = 146 C2× ((C3 : C4)×S3) Non-CCA Prop. 2.9
k = 147 (C6× (C3 : C4)) : C2 Non-CCA Prop. 2.3
k = 148 (C2× ((C3×C3) : C4)) : C2 Non-CCA Prop. 2.3
k = 149 C2× ((C3× (C3 : C4)) : C2) Non-CCA Prop. 2.9
k = 150 C2× ((C6×S3) : C2) Non-CCA Prop. 2.9
k = 151 C2× ((C6×S3) : C2) Non-CCA Prop. 2.9
k = 152 C2× ((C3×C3) : Q8) Non-CCA Prop. 2.9
k = 153 ((C6×C2) : C2)×S3 Non-CCA Prop. 2.9
k = 154 (C2×S3×S3) : C2 Non-CCA Prop. 2.3
k = 155 C12×A4 Non-CCA Prop. 2.9
k = 156 C6×SL(2,3) Non-CCA Prop. 2.9

n = 144 k = 157 C3× (SL(2,3) : C2) Non-CCA Prop. 2.9
k = 158 C6× (C3 : Q8) Non-CCA Prop. 2.9
k = 159 C2×C12×S3 Non-CCA Prop. 2.9
k = 160 C6×D24 Non-CCA Prop. 2.9
k = 161 C3× ((C12×C2) : C2) Non-CCA Prop. 2.9
k = 162 C3×D8×S3 Non-CCA Prop. 2.9
k = 163 C3× ((C2× (C3 : C4)) : C2) Non-CCA Prop. 2.9
k = 164 C3×Q8×S3 Non-CCA Prop. 2.9
k = 165 C3× ((C4×S3) : C2) Non-CCA Prop. 2.9
k = 166 C2×C6× (C3 : C4) Non-CCA Prop. 2.9
k = 167 C6× ((C6×C2) : C2) Non-CCA Prop. 2.9
k = 168 C2× ((C3×C3) : Q8) Non-CCA Prop. 2.9
k = 169 C2×C4× ((C3×C3) : C2) Non-CCA Prop. 2.3
k = 170 C2× ((C12×C3) : C2) Non-CCA Prop. 2.15
k = 171 (C12×C6) : C2 Non-CCA Prop. 2.3
k = 172 D8× ((C3×C3) : C2) Non-CCA Prop. 2.3
k = 173 (C3×C3×D8) : C2 Non-CCA Prop. 2.3
k = 174 Q8× ((C3×C3) : C2) Non-CCA Prop. 2.9
k = 175 (C3×C3×Q8) : C2 Non-CCA Prop. 2.3
k = 176 C2×C2× ((C3×C3) : C4) Non-CCA Prop. 2.9
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k = 177 C2× ((C6×C6) : C2) Non-CCA Prop. 2.9
k = 178 C12×C6×C2 Non-CCA Prop. 2.12
k = 179 C3×C6×D8 Non-CCA Prop. 2.9
k = 180 C3×C6×Q8 Non-CCA Prop. 2.9
k = 181 C3×C3× ((C4×C2) : C2) Non-CCA Prop. 2.9
k = 182 ((C3×C3) : C8) : C2 Non-CCA Prop. 2.3
k = 183 S3×S4 Non-CCA Prop. 2.9
k = 184 A4×A4 CCA
k = 185 C2× ((C3×C3) : C8) Non-CCA Prop. 2.3
k = 186 C2× ((S3×S3) : C2) Non-CCA Prop. 2.9

n = 144 k = 187 C2× ((C3×C3) : Q8) Non-CCA Prop. 2.9
k = 188 C6×S4 Non-CCA Prop. 2.9
k = 189 C2× ((C3×A4) : C2) Non-CCA Prop. 2.9
k = 190 C2×A4×S3 CCA
k = 191 C2×C2× ((C3×C3) : C4) Non-CCA Prop. 2.9
k = 192 C2×C2×S3×S3 Non-CCA Prop. 2.9
k = 193 C2×C6×A4 CCA
k = 194 C3× ((C2×C2×C2×C2) : C3) CCA
k = 195 C2×C2×C6×S3 Non-CCA Prop. 2.9
k = 196 C2×C2×C2× ((C3×C3) : C2) CCA Prop. 2.15
k = 197 C6×C6×C2×C2 CCA Prop. 2.12
k = 1 C49 : C3 CCA
k = 2 C147 CCA Prop. 2.12

n = 147 k = 3 C7× (C7 : C3) Non-CCA Prop. 2.9
k = 4 (C7×C7) : C3 CCA
k = 5 (C7×C7) : C3 CCA
k = 6 C21×C7 CCA Prop. 2.12
k = 1 C37 : C4 Non-CCA Cor. 2.4
k = 2 C148 CCA Prop. 2.12

n = 148 k = 3 C37 : C4 Non-CCA Prop. 2.3
k = 4 D148 CCA Cor. 2.16
k = 5 C74×C2 CCA Prop. 2.12
k = 1 C25×S3 CCA Prop. 2.10
k = 2 C3×D50 CCA Prop. 2.10
k = 3 D150 CCA Cor. 2.16

n = 150 k = 4 C150 CCA Prop. 2.12
k = 5 ((C5×C5) : C3) : C2 CCA
k = 6 ((C5×C5) : C3) : C2 CCA
k = 7 C2× ((C5×C5) : C3) CCA Prop. 2.10
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k = 8 C15×D10 Non-CCA Prop. 2.9
k = 9 C3× ((C5×C5) : C2) CCA Prop. 2.10

n = 150 k = 10 C5×C5×S3 CCA Prop. 2.10
k = 11 C5×D30 Non-CCA
k = 12 (C15×C5) : C2 CCA Prop. 2.15
k = 13 C30×C5 CCA Prop. 2.12
k = 1 C19 : C8 CCA
k = 2 C152 CCA Prop. 2.12
k = 3 C19 : Q8 Non-CCA Cor. 2.4
k = 4 C4×D38 Non-CCA Prop. 2.3
k = 5 D152 CCA Cor. 2.16

n = 152 k = 6 C2× (C19 : C4) Non-CCA Prop. 2.9
k = 7 (C38×C2) : C2 Non-CCA Prop. 2.3
k = 8 C76×C2 Non-CCA Prop. 2.12
k = 9 C19×D8 CCA Prop. 2.10

k = 10 C19×Q8 Non-CCA Prop. 2.9
k = 11 C2×C2×D38 CCA Prop. 2.15
k = 12 C38×C2×C2 CCA Prop. 2.12
k = 1 (C13 : C4) : C3 Non-CCA Prop. 2.3
k = 2 C4× (C13 : C3) CCA Prop. 2.10
k = 3 C13× (C3 : C4) Non-CCA Prop. 2.9
k = 4 C3× (C13 : C4) Non-CCA Prop. 2.9
k = 5 C39 : C4 Non-CCA Cor. 2.4
k = 6 C156 CCA Prop. 2.12
k = 7 (C13 : C4) : C3 Non-CCA Prop. 2.3
k = 8 C2× ((C13 : C3) : C2) CCA

n = 156 k = 9 C3× (C13 : C4) Non-CCA Prop. 2.9
k = 10 C39 : C4 Non-CCA Prop. 2.3
k = 11 S3×D26 CCA
k = 12 C2×C2× (C13 : C3) CCA Prop. 2.10
k = 13 C13×A4 CCA Prop. 2.10
k = 14 (C26×C2) : C3 CCA
k = 15 C6×D26 CCA Prop. 2.10
k = 16 C26×S3 CCA Prop. 2.10
k = 17 D156 CCA Cor. 2.16
k = 18 C78×C2 CCA Prop. 2.12
k = 1 C5 : C32 CCA

n = 160 k = 2 C160 CCA Prop. 2.12
k = 3 C5 : C32 Non-CCA
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k = 4 C16×D10 Non-CCA Prop. 2.3
k = 5 C80 : C2 Non-CCA Prop. 2.3
k = 6 D160 CCA Cor. 2.16
k = 7 C80 : C2 Non-CCA Prop. 2.3
k = 8 C5 : Q32 Non-CCA Cor. 2.4
k = 9 C4× (C5 : C8) CCA

k = 10 (C5 : C8) : C4 CCA
k = 11 C20 : C8 CCA
k = 12 (C20×C4) : C2 Non-CCA Prop. 2.3
k = 13 (C5× ((C4×C2) : C2)) : C2 Non-CCA Prop. 2.3
k = 14 (C5 : C8) : C4 Non-CCA Prop. 2.3
k = 15 (C5 : C8) : C4 Non-CCA Prop. 2.3
k = 16 (C2× (C5 : C8)) : C2 Non-CCA Prop. 2.3
k = 17 (C5 : Q8) : C4 Non-CCA Prop. 2.3
k = 18 C2× (C5 : C16) CCA
k = 19 (C5 : C16) : C2 CCA
k = 20 C8× (C5 : C4) Non-CCA Prop. 2.9
k = 21 (C5 : C4) : C8 Non-CCA Prop. 2.3
k = 22 C40 : C4 Non-CCA Prop. 2.3

n = 160 k = 23 (C5 : Q8) : C4 Non-CCA Prop. 2.3
k = 24 C40 : C4 Non-CCA Prop. 2.3
k = 25 C40 : C4 Non-CCA Cor. 2.4
k = 26 C5 : (C4.D8)∗ CCA
k = 27 (C40×C2) : C2 Non-CCA Prop. 2.3
k = 28 (C40×C2) : C2 Non-CCA Prop. 2.3
k = 29 C5 : (C4.D8)∗ CCA
k = 30 (C5× (C8 : C2)) : C2 CCA
k = 31 C5 : ((C2×C2).(C4×C2))∗ Non-CCA Prop. 2.3
k = 32 (C5× (C8 : C2)) : C2 Non-CCA Prop. 2.3
k = 33 (C5×D16) : C2 CCA
k = 34 (C5 : C16) : C2 Non-CCA Prop. 2.3
k = 35 (C5×Q16) : C2 Non-CCA Prop. 2.3
k = 36 C5 : Q32 Non-CCA Prop. 2.3
k = 37 (C2× (C5 : C8)) : C2 Non-CCA Prop. 2.3
k = 38 (C20×C2) : C4 Non-CCA Prop. 2.3
k = 39 (C2× (C5 : C8)) : C2 Non-CCA Prop. 2.3
k = 40 ((C5 : C8) : C2) : C2 CCA
k = 41 ((C2× (C5 : C4)) : C2) : C2 Non-CCA Prop. 2.3
k = 42 (C5×Q8) : C4 Non-CCA Prop. 2.3
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k = 43 C5 : ((C2×C2).(C4×C2))∗ Non-CCA Prop. 2.3
k = 44 (C4× (C5 : C4)) : C2 Non-CCA Prop. 2.3
k = 45 C5× ((C4×C2) : C4) Non-CCA Prop. 2.9
k = 46 C40×C4 CCA Prop. 2.12
k = 47 C5× (C8 : C4) CCA Prop. 2.10
k = 48 C5× ((C8×C2) : C2) Non-CCA Prop. 2.9
k = 49 C5× (((C4×C2) : C2) : C2) Non-CCA Prop. 2.9
k = 50 C5× ((C8 : C2) : C2) CCA Prop. 2.10
k = 51 C5× ((C2×C2).(C4×C2))∗ Non-CCA Prop. 2.9
k = 52 C5× ((C8×C2) : C2) Non-CCA Prop. 2.9
k = 53 C5× (Q8 : C4) Non-CCA Prop. 2.9
k = 54 C5× ((C4×C4) : C2) Non-CCA Prop. 2.9
k = 55 C5× (C4 : C8) CCA Prop. 2.10
k = 56 C5× (C8 : C4) Non-CCA Prop. 2.9
k = 57 C5× (C8 : C4) Non-CCA Prop. 2.9
k = 58 C5× (C4.D8)∗ CCA Prop. 2.10
k = 59 C80×C2 CCA Prop. 2.12
k = 60 C5× (C16 : C2) CCA Prop. 2.10
k = 61 C5×D32 CCA Prop. 2.10

n = 160 k = 62 C5×QD32 Non-CCA Prop. 2.9
k = 63 C5×Q32 Non-CCA Prop. 2.9
k = 64 (C5 : C16) : C2 Non-CCA Prop. 2.3
k = 65 (C5 : C16) : C2 Non-CCA Prop. 2.3
k = 66 C8× (C5 : C4) Non-CCA Prop. 2.9
k = 67 C40 : C4 Non-CCA Prop. 2.3
k = 68 C40 : C4 Non-CCA Prop. 2.3
k = 69 C40 : C4 Non-CCA Prop. 2.3
k = 70 C5 : (C4.D8)∗ Non-CCA Prop. 2.3
k = 71 C5 : (C4.D8)∗ Non-CCA Prop. 2.3
k = 72 C2× (C5 : C16) Non-CCA Prop. 2.9
k = 73 (C5 : C16) : C2 Non-CCA
k = 74 ((C2× (C5 : C4)) : C2) : C2 Non-CCA Prop. 2.3
k = 75 C4× (C5 : C8) Non-CCA Prop. 2.9
k = 76 C20 : C8 Non-CCA Prop. 2.3
k = 77 (C5 : C8) : C4 Non-CCA Prop. 2.3
k = 78 (C2× (C5 : C8)) : C2 Non-CCA Prop. 2.3
k = 79 (C5 : C4) : C8 Non-CCA Prop. 2.3
k = 80 C5 : ((C2×C2).(C4×C2))∗ Non-CCA Prop. 2.3
k = 81 (C20×C2) : C4 Non-CCA Prop. 2.3
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k = 82 (C20 : C4) : C2 Non-CCA Prop. 2.3
k = 83 (C4× (C5 : C4)) : C2 Non-CCA Prop. 2.3
k = 84 (C5×Q8) : C4 Non-CCA Prop. 2.3
k = 85 (C4× (C5 : C4)) : C2 Non-CCA Prop. 2.3
k = 86 ((C2× (C5 : C4)) : C2) : C2 Non-CCA Prop. 2.3
k = 87 (C2× (C5 : C8)) : C2 Non-CCA Prop. 2.3
k = 88 ((C5 : C8) : C2) : C2 Non-CCA Prop. 2.3
k = 89 C4× (C5 : Q8) Non-CCA Prop. 2.9
k = 90 C20 : Q8 Non-CCA Cor. 2.4
k = 91 C5 : ((C2×C2).(C2×C2×C2)) Non-CCA Prop. 2.3
k = 92 C4×C4×D10 Non-CCA Prop. 2.9
k = 93 (C20×C4) : C2 Non-CCA Prop. 2.3
k = 94 C4×D40 Non-CCA Prop. 2.3
k = 95 (C20×C4) : C2 CCA Prop. 2.15
k = 96 (C20×C4) : C2 Non-CCA Prop. 2.3
k = 97 (C20×C4) : C2 Non-CCA Prop. 2.3
k = 98 (C4× (C5 : C4)) : C2 Non-CCA Prop. 2.3
k = 99 (C2× (C5 : Q8)) : C2 Non-CCA Prop. 2.3

k = 100 (C4× (C5 : C4)) : C2 Non-CCA Prop. 2.3
n = 160 k = 101 ((C4×C2) : C2)×D10 Non-CCA Prop. 2.9

k = 102 (C2×C4×D10) : C2 Non-CCA Prop. 2.3
k = 103 (C2×C2×C2×D10) : C2 Non-CCA Prop. 2.3
k = 104 (C2×C4×D10) : C2 Non-CCA Prop. 2.3
k = 105 (C2×C4×D10) : C2 Non-CCA Prop. 2.3
k = 106 (C2× (C5 : Q8)) : C2 Non-CCA Prop. 2.3
k = 107 (C2×C2× (C5 : C4)) : C2 Non-CCA Prop. 2.3
k = 108 (C5 : Q8) : C4 Non-CCA Prop. 2.3
k = 109 C20 : Q8 Non-CCA Prop. 2.3
k = 110 C5 : ((C2×C2).(C2×C2×C2)) Non-CCA Prop. 2.3
k = 111 C5 : ((C2×C2).(C2×C2×C2)) Non-CCA Prop. 2.3
k = 112 (C4 : C4)×D10 Non-CCA Prop. 2.9
k = 113 (C4× (C5 : C4)) : C2 Non-CCA Prop. 2.3
k = 114 (C2×C4×D10) : C2 Non-CCA Prop. 2.3
k = 115 (C2×C4×D10) : C2 Non-CCA Prop. 2.3
k = 116 (C2×C4×D10) : C2 Non-CCA Prop. 2.3
k = 117 (C2× (C5 : Q8)) : C2 Non-CCA Prop. 2.3
k = 118 (C5× (C4 : C4)) : C2 Non-CCA Prop. 2.3
k = 119 (C5× (C4 : C4)) : C2 Non-CCA Prop. 2.3
k = 120 C2×C8×D10 Non-CCA Prop. 2.9
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k = 121 C2× (C40 : C2) Non-CCA Prop. 2.9
k = 122 (C40×C2) : C2 Non-CCA Prop. 2.3
k = 123 C2× (C40 : C2) Non-CCA Prop. 2.9
k = 124 C2×D80 CCA Prop. 2.15
k = 125 (C40×C2) : C2 Non-CCA Prop. 2.3
k = 126 C2× (C5 : Q16) Non-CCA Prop. 2.9
k = 127 (C8 : C2)×D10 Non-CCA Prop. 2.3
k = 128 (C8×D10) : C2 Non-CCA Prop. 2.3
k = 129 (C2×D40) : C2 Non-CCA Prop. 2.3
k = 130 (C5× (C8 : C2)) : C2 Non-CCA Prop. 2.3
k = 131 D16×D10 Non-CCA Prop. 2.3
k = 132 (D8×D10) : C2 Non-CCA Prop. 2.3
k = 133 (C8×D10) : C2 Non-CCA Prop. 2.3
k = 134 QD16×D10 Non-CCA Prop. 2.9
k = 135 (D8×D10) : C2 Non-CCA Prop. 2.3
k = 136 (Q8×D10) : C2 Non-CCA Prop. 2.3
k = 137 (C8×D10) : C2 Non-CCA Prop. 2.3
k = 138 Q16×D10 Non-CCA Prop. 2.9
k = 139 (C5×Q16) : C2 Non-CCA Prop. 2.3

n = 160 k = 140 (C8×D10) : C2 Non-CCA Prop. 2.3
k = 141 C2×C2× (C5 : C8) Non-CCA Prop. 2.3
k = 142 C2× ((C5 : C8) : C2) Non-CCA Prop. 2.3
k = 143 C2×C4× (C5 : C4) Non-CCA Prop. 2.9
k = 144 C2× ((C5 : C4) : C4) Non-CCA Prop. 2.9
k = 145 (C2× (C5 : Q8)) : C2 Non-CCA Prop. 2.3
k = 146 C2× (C20 : C4) Non-CCA Prop. 2.9
k = 147 (C4× (C5 : C4)) : C2 Non-CCA Prop. 2.3
k = 148 C2× ((C20×C2) : C2) Non-CCA Prop. 2.9
k = 149 C4× ((C10×C2) : C2) Non-CCA Prop. 2.9
k = 150 (C20×C2×C2) : C2 Non-CCA Prop. 2.3
k = 151 (C20×C2×C2) : C2 Non-CCA Prop. 2.3
k = 152 C2× ((C5×D8) : C2) CCA
k = 153 (C10×D8) : C2 Non-CCA Prop. 2.3
k = 154 C2× ((C5 : C8) : C2) Non-CCA Prop. 2.3
k = 155 D8× (C5 : C4) Non-CCA Prop. 2.9
k = 156 (C2×C2× (C5 : C4)) : C2 Non-CCA Prop. 2.3
k = 157 (C2× (C5 : Q8)) : C2 Non-CCA Prop. 2.3
k = 158 (C2×C2×C2×D10) : C2 Non-CCA Prop. 2.3
k = 159 (C10×D8) : C2 Non-CCA Prop. 2.3
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k = 160 (C2×C2× (C5 : C4)) : C2 Non-CCA Prop. 2.3
k = 161 (C10×D8) : C2 Non-CCA Prop. 2.3
k = 162 C2× ((C5×Q8) : C2) Non-CCA Prop. 2.9
k = 163 (C10×Q8) : C2 Non-CCA Prop. 2.3
k = 164 C2× (C5 : Q16) Non-CCA Prop. 2.9
k = 165 (C5 : C4) : Q8 Non-CCA Prop. 2.3
k = 166 Q8× (C5 : C4) Non-CCA Prop. 2.9
k = 167 (C10×Q8) : C2 Non-CCA Prop. 2.3
k = 168 (C10×Q8) : C2 Non-CCA Prop. 2.3
k = 169 (C2× (C5 : C8)) : C2 Non-CCA Prop. 2.3
k = 170 (C2×D40) : C2 Non-CCA Prop. 2.3
k = 171 (C2× (C5 : C8)) : C2 Non-CCA Prop. 2.3
k = 172 (C2× (C5 : Q8)) : C2 Non-CCA Prop. 2.3
k = 173 C2× ((C2× (C5 : C4)) : C2) Non-CCA Prop. 2.9
k = 174 (C10×C2×C2×C2) : C2 Non-CCA Prop. 2.3
k = 175 C20×C4×C2 Non-CCA Prop. 2.12
k = 176 C10× ((C4×C2) : C2) Non-CCA Prop. 2.9
k = 177 C10× (C4 : C4) Non-CCA Prop. 2.9
k = 178 C5× ((C4×C4) : C2) Non-CCA Prop. 2.9

n = 160 k = 179 C20×D8 Non-CCA Prop. 2.9
k = 180 C20×Q8 Non-CCA Prop. 2.9
k = 181 C5× ((C2×C2×C2×C2) : C2) Non-CCA Prop. 2.9
k = 182 C5× ((C4×C2×C2) : C2) Non-CCA Prop. 2.9
k = 183 C5× ((C2×Q8) : C2) Non-CCA Prop. 2.9
k = 184 C5× ((C4×C2×C2) : C2) Non-CCA Prop. 2.9
k = 185 C5× ((C4×C4) : C2) Non-CCA Prop. 2.9
k = 186 C5× ((C2×C2).(C2×C2×C2)) Non-CCA Prop. 2.9
k = 187 C5× ((C4×C4) : C2) Non-CCA Prop. 2.9
k = 188 C5× ((C4×C4) : C2) CCA Prop. 2.10
k = 189 C5× (C4 : Q8) Non-CCA Prop. 2.9
k = 190 C40×C2×C2 Non-CCA Prop. 2.12
k = 191 C10× (C8 : C2) Non-CCA Prop. 2.9
k = 192 C5× ((C8×C2) : C2) Non-CCA Prop. 2.9
k = 193 C10×D16 CCA Prop. 2.10
k = 194 C10×QD16 Non-CCA Prop. 2.9
k = 195 C10×Q16 Non-CCA Prop. 2.9
k = 196 C5× ((C8×C2) : C2) Non-CCA Prop. 2.9
k = 197 C5× ((C2×D8) : C2) Non-CCA Prop. 2.9
k = 198 C5× ((C2×Q8) : C2) Non-CCA Prop. 2.9
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k = 199 ((C2×Q8) : C2) : C5 Non-CCA Prop. 2.3
k = 200 C2× ((C5 : C8) : C2) Non-CCA Prop. 2.3
k = 201 C2× ((C5 : C8) : C2) Non-CCA Prop. 2.3
k = 202 ((C5 : C8) : C2) : C2 Non-CCA Prop. 2.3
k = 203 C2×C4× (C5 : C4) Non-CCA Prop. 2.9
k = 204 C2× (C20 : C4) Non-CCA Prop. 2.9
k = 205 (C4× (C5 : C4)) : C2 Non-CCA Prop. 2.3
k = 206 (C2× (C5 : C8)) : C2 Non-CCA Prop. 2.3
k = 207 D8× (C5 : C4) Non-CCA Prop. 2.9
k = 208 ((C5 : C8) : C2) : C2 Non-CCA Prop. 2.3
k = 209 Q8× (C5 : C4) Non-CCA Prop. 2.9
k = 210 C2×C2× (C5 : C8) Non-CCA Prop. 2.3
k = 211 C2× ((C5 : C8) : C2) Non-CCA Prop. 2.3
k = 212 C2× ((C2× (C5 : C4)) : C2) Non-CCA Prop. 2.9
k = 213 C2×C2× (C5 : Q8) Non-CCA Prop. 2.9
k = 214 C2×C2×C4×D10 Non-CCA Prop. 2.9
k = 215 C2×C2×D40 Non-CCA Prop. 2.9
k = 216 C2× ((C20×C2) : C2) Non-CCA Prop. 2.9
k = 217 C2×D8×D10 Non-CCA Prop. 2.9

n = 160 k = 218 C2× ((C2× (C5 : C4)) : C2) Non-CCA Prop. 2.9
k = 219 (C10×D8) : C2 Non-CCA Prop. 2.3
k = 220 C2×Q8×D10 Non-CCA Prop. 2.9
k = 221 C2× ((C4×D10) : C2) Non-CCA Prop. 2.9
k = 222 (C10×Q8) : C2 Non-CCA Prop. 2.3
k = 223 ((C4×C2) : C2)×D10 Non-CCA Prop. 2.9
k = 224 (D8×D10) : C2 Non-CCA Prop. 2.3
k = 225 (Q8×D10) : C2 Non-CCA Prop. 2.3
k = 226 C2×C2×C2× (C5 : C4) Non-CCA Prop. 2.9
k = 227 C2×C2× ((C10×C2) : C2) Non-CCA Prop. 2.9
k = 228 C20×C2×C2×C2 Non-CCA Prop. 2.12
k = 229 C2×C10×D8 Non-CCA Prop. 2.9
k = 230 C2×C10×Q8 Non-CCA Prop. 2.9
k = 231 C10× ((C4×C2) : C2) Non-CCA Prop. 2.9
k = 232 C5× ((C2×D8) : C2) Non-CCA Prop. 2.9
k = 233 C5× ((C2×Q8) : C2) Non-CCA Prop. 2.9
k = 234 ((C2×C2×C2×C2) : C5) : C2 Non-CCA Prop. 2.3
k = 235 C2× ((C2×C2×C2×C2) : C5) CCA
k = 236 C2×C2×C2× (C5 : C4) Non-CCA Prop. 2.9
k = 237 C2×C2×C2×C2×D10 CCA∼ Prop. 2.15
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n = 160 k = 238 C10×C2×C2×C2×C2 CCA Prop. 2.12
k = 1 D162 CCA Cor. 2.16
k = 2 C162 CCA Prop. 2.12
k = 3 C9×D18 Non-CCA
k = 4 ((C9×C3) : C3) : C2 CCA
k = 5 ((C9×C3) : C3) : C2 CCA
k = 6 (C9 : C9) : C2 CCA
k = 7 C3×D54 CCA
k = 8 C27×S3 CCA
k = 9 (C27 : C3) : C2 CCA

k = 10 ((C3×C3×C3) : C3) : C2 Non-CCA
k = 11 ((C3×C3×C3) : C3) : C2 Non-CCA
k = 12 ((C9×C3) : C3) : C2 CCA
k = 13 ((C9×C3) : C3) : C2 CCA
k = 14 ((C9×C3) : C3) : C2 CCA
k = 15 ((C9×C3) : C3) : C2 CCA
k = 16 (C9×C9) : C2 CCA Prop. 2.15
k = 17 ((C9×C3) : C3) : C2 CCA
k = 18 (C27×C3) : C2 CCA Prop. 2.15

n = 162 k = 19 ((C3×C3×C3) : C3) : C2 Non-CCA
k = 20 ((C9×C3) : C3) : C2 CCA
k = 21 ((C9×C3) : C3) : C2 CCA
k = 22 (C3.((C3×C3) : C3)) : C2∗ CCA
k = 23 C18×C9 CCA Prop. 2.12
k = 24 C2× ((C9×C3) : C3) CCA Prop. 2.10
k = 25 C2× (C9 : C9) CCA Prop. 2.10
k = 26 C54×C3 CCA Prop. 2.12
k = 27 C2× (C27 : C3) CCA Prop. 2.10
k = 28 C2× ((C3×C3×C3) : C3) Non-CCA Prop. 2.9
k = 29 C2× ((C9×C3) : C3) CCA Prop. 2.10
k = 30 C2× ((C9×C3) : C3) CCA Prop. 2.10
k = 31 C2× ((C3×C3).(C3×C3))∗ CCA Prop. 2.10
k = 32 C3×C3×D18 CCA
k = 33 C3×C9×S3 Non-CCA Prop. 2.9
k = 34 C3× (((C3×C3) : C3) : C2) Non-CCA Prop. 2.9
k = 35 ((C3×C3) : C3)×S3 CCA
k = 36 C3× ((C9 : C3) : C2) CCA
k = 37 (C9 : C3)×S3 CCA
k = 38 C3× ((C9×C3) : C2) Non-CCA
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k = 39 C9× ((C3×C3) : C2) CCA
k = 40 (C3× ((C3×C3) : C3)) : C2 Non-CCA
k = 41 C3× (((C3×C3) : C3) : C2) CCA
k = 42 (C3× (C9 : C3)) : C2 CCA
k = 43 ((C9×C3) : C3) : C2 Non-CCA
k = 44 ((C9×C3) : C3) : C2 CCA
k = 45 (C9×C3×C3) : C2 CCA Prop. 2.15
k = 46 (C3× ((C3×C3) : C3)) : C2 CCA

n = 162 k = 47 C18×C3×C3 CCA Prop. 2.12
k = 48 C6× ((C3×C3) : C3) CCA Prop. 2.10
k = 49 C6× (C9 : C3) CCA Prop. 2.10
k = 50 C2× ((C9×C3) : C3) CCA Prop. 2.10
k = 51 C3×C3×C3×S3 Non-CCA Prop. 2.9
k = 52 C3×C3× ((C3×C3) : C2) Non-CCA Prop. 2.9
k = 53 C3× ((C3×C3×C3) : C2) Non-CCA
k = 54 (C3×C3×C3×C3) : C2 CCA Prop. 2.15
k = 55 C6×C3×C3×C3 CCA Prop. 2.12
k = 1 C41 : C4 Non-CCA Cor. 2.4
k = 2 C164 CCA Prop. 2.12

n = 164 k = 3 C41 : C4 Non-CCA Prop. 2.3
k = 4 D164 CCA Cor. 2.16
k = 5 C82×C2 CCA Prop. 2.12
k = 1 (C7 : C8) : C3 Non-CCA
k = 2 C8× (C7 : C3) Non-CCA Prop. 2.9
k = 3 C7× (C3 : C8) CCA Prop. 2.10
k = 4 C3× (C7 : C8) CCA Prop. 2.10
k = 5 C21 : C8 CCA
k = 6 C168 CCA Prop. 2.12
k = 7 (C7 : Q8) : C3 Non-CCA Prop. 2.3
k = 8 C4× ((C7 : C3) : C2) Non-CCA Prop. 2.9

n = 168 k = 9 (C2× ((C7 : C3) : C2)) : C2 Non-CCA
k = 10 C2× ((C7 : C4) : C3) Non-CCA Prop. 2.9
k = 11 (C2×C2× (C7 : C3)) : C2 Non-CCA Prop. 2.3
k = 12 (C3 : C4)×D14 Non-CCA Prop. 2.9
k = 13 S3× (C7 : C4) Non-CCA Prop. 2.9
k = 14 (C7× (C3 : C4)) : C2 Non-CCA Prop. 2.3
k = 15 (C14×S3) : C2 Non-CCA Prop. 2.3
k = 16 (C6×D14) : C2 Non-CCA Prop. 2.3
k = 17 (C14×S3) : C2 Non-CCA Prop. 2.3
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k = 18 C21 : Q8 Non-CCA Prop. 2.3
k = 19 C2×C4× (C7 : C3) Non-CCA Prop. 2.9
k = 20 D8× (C7 : C3) Non-CCA Prop. 2.9
k = 21 Q8× (C7 : C3) Non-CCA Prop. 2.9
k = 22 C7×SL(2,3) Non-CCA Prop. 2.9
k = 23 (C7×Q8) : C3 Non-CCA Prop. 2.3
k = 24 C3× (C7 : Q8) Non-CCA Prop. 2.9
k = 25 C12×D14 Non-CCA Prop. 2.9
k = 26 C3×D56 CCA Prop. 2.10
k = 27 C6× (C7 : C4) Non-CCA Prop. 2.9
k = 28 C3× ((C14×C2) : C2) Non-CCA Prop. 2.9
k = 29 C7× (C3 : Q8) Non-CCA Prop. 2.9
k = 30 C28×S3 Non-CCA Prop. 2.9
k = 31 C7×D24 CCA Prop. 2.10
k = 32 C14× (C3 : C4) Non-CCA Prop. 2.9
k = 33 C7× ((C6×C2) : C2) Non-CCA Prop. 2.9
k = 34 C21 : Q8 Non-CCA Cor. 2.4
k = 35 C4×D42 Non-CCA Prop. 2.3
k = 36 D168 CCA Cor. 2.16

n = 168 k = 37 C2× (C21 : C4) Non-CCA Prop. 2.9
k = 38 (C42×C2) : C2 Non-CCA Prop. 2.3
k = 39 C84×C2 Non-CCA Prop. 2.12
k = 40 C21×D8 CCA Prop. 2.10
k = 41 C21×Q8 Non-CCA Prop. 2.9
k = 42 PSL(3,2) Non-CCA Prop. 2.3
k = 43 ((C2×C2×C2) : C7) : C3 Non-CCA
k = 44 C3× ((C2×C2×C2) : C7) CCA Prop. 2.10
k = 45 C7×S4 Non-CCA Prop. 2.9
k = 46 (C7×A4) : C2 Non-CCA Prop. 2.3
k = 47 C2×C2× ((C7 : C3) : C2) Non-CCA Prop. 2.9
k = 48 A4×D14 CCA
k = 49 ((C14×C2) : C3) : C2 CCA
k = 50 C2×S3×D14 CCA
k = 51 C2×C2×C2× (C7 : C3) Non-CCA Prop. 2.9
k = 52 C14×A4 CCA Prop. 2.10
k = 53 C2× ((C14×C2) : C3) CCA
k = 54 C2×C6×D14 CCA Prop. 2.10
k = 55 C2×C14×S3 CCA∼ Prop. 2.10
k = 56 C2×C2×D42 CCA Prop. 2.15
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n = 168 k = 57 C42×C2×C2 CCA Prop. 2.12
k = 1 C43 : C4 Non-CCA Cor. 2.4

n = 172 k = 2 C172 CCA Prop. 2.12
k = 3 D172 CCA Cor. 2.16
k = 4 C86×C2 CCA Prop. 2.12
k = 1 C11 : C16 CCA
k = 2 C176 CCA Prop. 2.12
k = 3 C8×D22 Non-CCA Prop. 2.3
k = 4 C88 : C2 Non-CCA Prop. 2.3
k = 5 C88 : C2 Non-CCA Prop. 2.3
k = 6 D176 CCA Cor. 2.16
k = 7 C11 : Q16 Non-CCA Cor. 2.4
k = 8 C2× (C11 : C8) CCA
k = 9 (C11 : C8) : C2 CCA

k = 10 C4× (C11 : C4) Non-CCA Prop. 2.9
k = 11 (C11 : C4) : C4 Non-CCA Prop. 2.3
k = 12 C44 : C4 Non-CCA Cor. 2.4
k = 13 (C44×C2) : C2 Non-CCA Prop. 2.3
k = 14 (C11×D8) : C2 CCA
k = 15 (C11 : C8) : C2 Non-CCA Prop. 2.3
k = 16 (C11×Q8) : C2 Non-CCA Prop. 2.3

n = 176 k = 17 C11 : Q16 Non-CCA Prop. 2.3
k = 18 (C2× (C11 : C4)) : C2 Non-CCA Prop. 2.3
k = 19 C44×C4 CCA Prop. 2.12
k = 20 C11× ((C4×C2) : C2) Non-CCA Prop. 2.9
k = 21 C11× (C4 : C4) Non-CCA Prop. 2.9
k = 22 C88×C2 CCA Prop. 2.12
k = 23 C11× (C8 : C2) CCA Prop. 2.10
k = 24 C11×D16 CCA Prop. 2.10
k = 25 C11×QD16 Non-CCA Prop. 2.9
k = 26 C11×Q16 Non-CCA Prop. 2.9
k = 27 C2× (C11 : Q8) Non-CCA Prop. 2.9
k = 28 C2×C4×D22 Non-CCA Prop. 2.9
k = 29 C2×D88 Non-CCA Prop. 2.15
k = 30 (C44×C2) : C2 Non-CCA Prop. 2.3
k = 31 D8×D22 Non-CCA Prop. 2.3
k = 32 (C2× (C11 : C4)) : C2 Non-CCA Prop. 2.3
k = 33 Q8×D22 Non-CCA Prop. 2.9
k = 34 (C4×D22) : C2 Non-CCA Prop. 2.3
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k = 35 C2×C2× (C11 : C4) Non-CCA Prop. 2.9
k = 36 C2× ((C22×C2) : C2) Non-CCA Prop. 2.9
k = 37 C44×C2×C2 Non-CCA Prop. 2.12

n = 176 k = 38 C22×D8 Non-CCA Prop. 2.9
k = 39 C22×Q8 Non-CCA Prop. 2.9
k = 40 C11× ((C4×C2) : C2) Non-CCA Prop. 2.9
k = 41 C2×C2×C2×D22 CCA Prop. 2.15
k = 42 C22×C2×C2×C2 CCA Prop. 2.12
k = 1 C5× (C9 : C4) Non-CCA Prop. 2.9
k = 2 C9× (C5 : C4) Non-CCA Prop. 2.9
k = 3 C45 : C4 Non-CCA Cor. 2.4
k = 4 C180 CCA Prop. 2.12
k = 5 C9× (C5 : C4) Non-CCA Prop. 2.9
k = 6 C45 : C4 Non-CCA Prop. 2.3
k = 7 D10×D18 CCA
k = 8 C5× ((C2×C2) : C9) CCA Prop. 2.10
k = 9 C18×D10 CCA Prop. 2.10

k = 10 C10×D18 CCA∼ Prop. 2.10
k = 11 D180 CCA Cor. 2.16
k = 12 C90×C2 CCA Prop. 2.12
k = 13 C3×C3× (C5 : C4) Non-CCA Prop. 2.9
k = 14 C15× (C3 : C4) Non-CCA Prop. 2.9
k = 15 C3× (C15 : C4) Non-CCA Prop. 2.9

n = 180 k = 16 C5× ((C3×C3) : C4) Non-CCA Prop. 2.9
k = 17 (C15×C3) : C4 Non-CCA Cor. 2.4
k = 18 C60×C3 CCA Prop. 2.12
k = 19 GL(2,4) CCA
k = 20 C3×C3× (C5 : C4) Non-CCA Prop. 2.9
k = 21 C3× (C15 : C4) Non-CCA Prop. 2.9
k = 22 (C15×C3) : C4 Non-CCA Prop. 2.3
k = 23 C5× ((C3×C3) : C4) Non-CCA Prop. 2.9
k = 24 (C15×C3) : C4 Non-CCA Prop. 2.3
k = 25 (C15×C3) : C4 Non-CCA Prop. 2.3
k = 26 C3×S3×D10 Non-CCA Prop. 2.9
k = 27 ((C3×C3) : C2)×D10 CCA
k = 28 C5×S3×S3 Non-CCA Prop. 2.9
k = 29 S3×D30 Non-CCA
k = 30 (C5× ((C3×C3) : C2)) : C2 Non-CCA
k = 31 C15×A4 CCA∼ Prop. 2.10

99



B. TABLE OF RESULTS

k = 32 C3×C6×D10 CCA Prop. 2.10
k = 33 C30×S3 Non-CCA Prop. 2.9

n = 180 k = 34 C6×D30 Non-CCA Prop. 2.9
k = 35 C10× ((C3×C3) : C2) CCA
k = 36 C2× ((C15×C3) : C2) CCA Prop. 2.15
k = 37 C30×C6 CCA Prop. 2.12
k = 1 C23 : C8 CCA
k = 2 C184 CCA Prop. 2.12
k = 3 C23 : Q8 Non-CCA Cor. 2.4
k = 4 C4×D46 Non-CCA Prop. 2.3
k = 5 D184 CCA Cor. 2.16

n = 184 k = 6 C2× (C23 : C4) Non-CCA Prop. 2.9
k = 7 (C46×C2) : C2 Non-CCA Prop. 2.3
k = 8 C92×C2 Non-CCA Prop. 2.12
k = 9 C23×D8 CCA Prop. 2.10

k = 10 C23×Q8 Non-CCA Prop. 2.9
k = 11 C2×C2×D46 CCA Prop. 2.15
k = 12 C46×C2×C2 CCA Prop. 2.12
k = 1 C47 : C4 Non-CCA Cor. 2.4

n = 188 k = 2 C188 CCA Prop. 2.12
k = 3 D188 CCA Cor. 2.16
k = 4 C94×C2 CCA Prop. 2.12
k = 1 C7 : C27 CCA
k = 2 C189 CCA Prop. 2.12
k = 3 C9× (C7 : C3) Non-CCA Prop. 2.9
k = 4 C63 : C3 CCA
k = 5 C63 : C3 CCA
k = 6 C3× (C7 : C9) CCA

n = 189 k = 7 (C7 : C9) : C3 CCA
k = 8 (C21×C3) : C3 CCA
k = 9 C63×C3 CCA Prop. 2.12

k = 10 C7× ((C3×C3) : C3) CCA Prop. 2.10
k = 11 C7× (C9 : C3) CCA Prop. 2.10
k = 12 C3×C3× (C7 : C3) Non-CCA Prop. 2.9
k = 13 C21×C3×C3 CCA Prop. 2.12
k = 1 C49 : C4 Non-CCA Cor. 2.4

n = 196 k = 2 C196 CCA Prop. 2.12
k = 3 D196 CCA Cor. 2.16
k = 4 C98×C2 CCA Prop. 2.12
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k = 5 C7× (C7 : C4) Non-CCA Prop. 2.9
k = 6 (C7×C7) : C4 Non-CCA Cor. 2.4
k = 7 C28×C7 CCA Prop. 2.12

n = 196 k = 8 (C7×C7) : C4 Non-CCA Prop. 2.3
k = 9 D14×D14 Non-CCA

k = 10 C14×D14 Non-CCA Prop. 2.9
k = 11 C2× ((C7×C7) : C2) CCA Prop. 2.15
k = 12 C14×C14 CCA Prop. 2.12
k = 1 C11×D18 CCA Prop. 2.10
k = 2 C9×D22 CCA Prop. 2.10
k = 3 D198 CCA Cor. 2.16
k = 4 C198 CCA Prop. 2.12

n = 198 k = 5 C3×C3×D22 CCA Prop. 2.10
k = 6 C33×S3 Non-CCA Prop. 2.9
k = 7 C3×D66 Non-CCA
k = 8 C11× ((C3×C3) : C2) CCA Prop. 2.10
k = 9 (C33×C3) : C2 CCA Prop. 2.15

k = 10 C66×C3 CCA Prop. 2.12
k = 1 C25 : C8 CCA
k = 2 C200 CCA Prop. 2.12
k = 3 C25 : C8 Non-CCA Prop. 2.3
k = 4 C25 : Q8 Non-CCA Cor. 2.4
k = 5 C4×D50 Non-CCA Prop. 2.3
k = 6 D200 CCA Cor. 2.16
k = 7 C2× (C25 : C4) Non-CCA Prop. 2.9
k = 8 (C50×C2) : C2 Non-CCA Prop. 2.3
k = 9 C100×C2 Non-CCA Prop. 2.12

k = 10 C25×D8 CCA Prop. 2.10
n = 200 k = 11 C25×Q8 Non-CCA Prop. 2.9

k = 12 C2× (C25 : C4) Non-CCA Prop. 2.9
k = 13 C2×C2×D50 CCA Prop. 2.15
k = 14 C50×C2×C2 CCA Prop. 2.12
k = 15 C5× (C5 : C8) Non-CCA
k = 16 (C5×C5) : C8 CCA
k = 17 C40×C5 CCA Prop. 2.12
k = 18 C5× (C5 : C8) Non-CCA Prop. 2.3
k = 19 (C5×C5) : C8 Non-CCA Prop. 2.3
k = 20 (C5×C5) : C8 Non-CCA Prop. 2.3
k = 21 (C5×C5) : C8 Non-CCA Prop. 2.3
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k = 22 (C5 : C4)×D10 Non-CCA Prop. 2.9
k = 23 (C5× (C5 : C4)) : C2 Non-CCA Prop. 2.3
k = 24 (C10×D10) : C2 Non-CCA Prop. 2.3
k = 25 (C10×D10) : C2 Non-CCA Prop. 2.3
k = 26 (C5×C5) : Q8 Non-CCA Prop. 2.3
k = 27 C5× (C5 : Q8) Non-CCA Prop. 2.3
k = 28 C20×D10 Non-CCA Prop. 2.3
k = 29 C5×D40 Non-CCA
k = 30 C10× (C5 : C4) Non-CCA Prop. 2.9
k = 31 C5× ((C10×C2) : C2) Non-CCA Prop. 2.9
k = 32 (C5×C5) : Q8 Non-CCA Cor. 2.4
k = 33 C4× ((C5×C5) : C2) Non-CCA Prop. 2.3
k = 34 (C20×C5) : C2 CCA Prop. 2.15
k = 35 C2× ((C5×C5) : C4) Non-CCA Prop. 2.9
k = 36 (C10×C10) : C2 Non-CCA Prop. 2.3

n = 200 k = 37 C20×C10 Non-CCA Prop. 2.12
k = 38 C5×C5×D8 CCA Prop. 2.10
k = 39 C5×C5×Q8 Non-CCA Prop. 2.9
k = 40 (C5×C5) : C8 Non-CCA
k = 41 D10× (C5 : C4) Non-CCA Prop. 2.9
k = 42 ((C5×C5) : C4) : C2 Non-CCA Prop. 2.3
k = 43 (D10×D10) : C2 Non-CCA Prop. 2.3
k = 44 (C5×C5) : Q8 Non-CCA Prop. 2.3
k = 45 C10× (C5 : C4) Non-CCA Prop. 2.9
k = 46 C2× ((C5×C5) : C4) Non-CCA Prop. 2.9
k = 47 C2× ((C5×C5) : C4) Non-CCA Prop. 2.9
k = 48 C2× ((C5×C5) : C4) Non-CCA Prop. 2.9
k = 49 C2×D10×D10 Non-CCA Prop. 2.9
k = 50 C2×C10×D10 Non-CCA Prop. 2.9
k = 51 C2×C2× ((C5×C5) : C2) CCA Prop. 2.15
k = 52 C10×C10×C2 CCA Prop. 2.12

The table below is read as follows; the first two columns represent the same as the
first two columns of the table above. The third column represents the number of unique
(up to automorphism) minimal generating sets there are for that group. Our algorithm ran
for more than a week on one group (C2×C2×C2×C2×D10, n = 160, k = 237) without
completing. However, after making some modifications to the algorithm, D. W. Morris
(personal communication) produced the answer that appears in this table with an asterisk.
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n k mgs

8 1 1
8 2 2
8 3 2
8 4 1
8 5 1

12 1 4
12 2 3
12 3 3
12 4 5
12 5 4
16 1 1
16 2 1
16 3 2
16 4 2
16 5 4
16 6 4
16 7 2
16 8 3
16 9 2
16 10 3
16 11 6
16 12 3
16 13 7
16 14 1
18 1 2
18 2 4
18 3 9
18 4 3
18 5 3
20 1 4
20 2 3
20 3 7
20 4 5
20 5 5
21 1 5
21 2 2
24 1 8
24 2 5
24 3 10

n k mgs

24 4 8
24 5 13
24 6 8
24 7 8
24 8 13
24 9 11
24 10 11
24 11 5
24 12 14
24 13 10
24 14 12
24 15 6
28 1 4
28 2 3
28 3 5
28 4 6
32 1 1
32 2 1
32 3 2
32 4 2
32 5 4
32 6 4
32 7 2
32 8 2
32 9 3
32 10 3
32 11 6
32 12 4
32 13 2
32 14 2
32 15 4
32 16 8
32 17 8
32 18 2
32 19 3
32 20 2
32 21 3
32 22 6
32 23 6

n k mgs

32 24 10
32 25 16
32 26 7
32 27 7
32 28 16
32 29 16
32 30 16
32 31 10
32 32 8
32 33 10
32 34 3
32 35 6
32 36 9
32 37 22
32 38 23
32 39 11
32 40 20
32 41 11
32 42 30
32 43 32
32 44 32
32 45 4
32 46 13
32 47 6
32 48 33
32 49 19
32 50 14
32 51 1
36 1 4
36 2 7
36 3 7
36 4 9
36 5 13
36 6 22
36 7 9
36 8 7
36 9 4
36 10 26
36 11 8

n k mgs

36 12 49
36 13 10
36 14 6
40 1 8
40 2 5
40 3 14
40 4 8
40 5 13
40 6 8
40 7 8
40 8 13
40 9 14
40 10 14
40 11 6
40 12 24
40 13 14
40 14 10
42 1 15
42 2 18
42 3 15
42 4 9
42 5 5
42 6 14
44 1 4
44 2 3
44 3 5
44 4 8
48 1 14
48 2 9
48 3 3
48 4 42
48 5 42
48 6 21
48 7 12
48 8 12
48 9 27
48 10 27
48 11 13
48 12 23
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n k mgs

48 13 14
48 14 23
48 15 23
48 16 23
48 17 23
48 18 23
48 19 13
48 20 6
48 21 14
48 22 15
48 23 29
48 24 29
48 25 14
48 26 24
48 27 14
48 28 39
48 29 39
48 30 41
48 31 24
48 32 24
48 33 24
48 34 35
48 35 62
48 36 35
48 37 104
48 38 106
48 39 106
48 40 43
48 41 43
48 42 16
48 43 62
48 44 29
48 45 70
48 46 29
48 47 85
48 48 78
48 49 20
48 50 5
48 51 26

n k mgs

48 52 9
50 1 2
50 2 6
50 3 12
50 4 3
50 5 3
52 1 4
52 2 3
52 3 7
52 4 5
52 5 9
54 1 2
54 2 10
54 3 12
54 4 34
54 5 12
54 6 23
54 7 8
54 8 37
54 9 15
54 10 4
54 11 26
54 12 15
54 13 26
54 14 4
54 15 4
56 1 8
56 2 5
56 3 8
56 4 13
56 5 8
56 6 8
56 7 13
56 8 17
56 9 17
56 10 7
56 11 9
56 12 17
56 13 16

n k mgs

60 1 28
60 2 22
60 3 16
60 4 25
60 5 27
60 6 37
60 7 24
60 8 55
60 9 17
60 10 52
60 11 90
60 12 31
60 13 43
63 1 13
63 2 4
63 3 13
63 4 6
64 1 1
64 2 1
64 3 2
64 4 4
64 5 4
64 6 6
64 7 6
64 8 6
64 9 6
64 10 4
64 11 3
64 12 2
64 13 3
64 14 2
64 15 4
64 16 4
64 17 2
64 18 2
64 19 1
64 20 3
64 21 2
64 22 2

n k mgs

64 23 2
64 24 2
64 25 3
64 26 4
64 27 4
64 28 7
64 29 8
64 30 8
64 31 12
64 32 6
64 33 6
64 34 4
64 35 4
64 36 4
64 37 4
64 38 3
64 39 3
64 40 6
64 41 6
64 42 3
64 43 3
64 44 8
64 45 8
64 46 6
64 47 2
64 48 2
64 49 4
64 50 14
64 51 14
64 52 2
64 53 3
64 54 2
64 55 1
64 56 3
64 57 3
64 58 10
64 59 10
64 60 3
64 61 10
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n k mgs

64 62 6
64 63 6
64 64 4
64 65 3
64 66 16
64 67 16
64 68 28
64 69 28
64 70 16
64 71 10
64 72 10
64 73 7
64 74 7
64 75 16
64 76 7
64 77 10
64 78 16
64 79 16
64 80 7
64 81 16
64 82 2
64 83 12
64 84 12
64 85 20
64 86 32
64 87 22
64 88 22
64 89 36
64 90 40
64 91 40
64 92 22
64 93 22
64 94 36
64 95 20
64 96 20
64 97 32
64 98 32
64 99 20
64 100 20

n k mgs

64 101 72
64 102 72
64 103 22
64 104 22
64 105 32
64 106 11
64 107 11
64 108 18
64 109 32
64 110 40
64 111 32
64 112 40
64 113 40
64 114 56
64 115 60
64 116 112
64 117 60
64 118 30
64 119 56
64 120 30
64 121 56
64 122 30
64 123 30
64 124 116
64 125 116
64 126 23
64 127 60
64 128 32
64 129 32
64 130 56
64 131 32
64 132 32
64 133 56
64 134 60
64 135 60
64 136 60
64 137 60
64 138 46
64 139 46

n k mgs

64 140 32
64 141 32
64 142 32
64 143 32
64 144 56
64 145 56
64 146 56
64 147 30
64 148 30
64 149 56
64 150 30
64 151 30
64 152 112
64 153 60
64 154 60
64 155 32
64 156 32
64 157 32
64 158 32
64 159 56
64 160 56
64 161 32
64 162 32
64 163 56
64 164 32
64 165 32
64 166 56
64 167 20
64 168 20
64 169 28
64 170 32
64 171 16
64 172 16
64 173 10
64 174 6
64 175 6
64 176 16
64 177 16
64 178 16

n k mgs

64 179 11
64 180 16
64 181 11
64 182 32
64 183 29
64 184 78
64 185 83
64 186 20
64 187 38
64 188 20
64 189 58
64 190 64
64 191 64
64 192 6
64 193 13
64 194 13
64 195 48
64 196 81
64 197 33
64 198 90
64 199 68
64 200 29
64 201 90
64 202 33
64 203 81
64 204 81
64 205 81
64 206 237
64 207 48
64 208 41
64 209 51
64 210 444
64 211 13
64 212 28
64 213 135
64 214 126
64 215 122
64 216 138
64 217 138
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n k mgs

64 218 122
64 219 426
64 220 426
64 221 222
64 222 222
64 223 444
64 224 40
64 225 122
64 226 122
64 227 444
64 228 237
64 229 166
64 230 90
64 231 90
64 232 426
64 233 444
64 234 444
64 235 237
64 236 122
64 237 237
64 238 90
64 239 19
64 240 122
64 241 148
64 242 29
64 243 214
64 244 219
64 245 16
64 246 17
64 247 74
64 248 204
64 249 187
64 250 38
64 251 70
64 252 38
64 253 279
64 254 300
64 255 300
64 256 481

n k mgs

64 257 315
64 258 610
64 259 315
64 260 5
64 261 23
64 262 10
64 263 101
64 264 133
64 265 94
64 266 177
64 267 1
68 1 4
68 2 3
68 3 7
68 4 5
68 5 11
72 1 8
72 2 13
72 3 26
72 4 16
72 5 29
72 6 16
72 7 16
72 8 29
72 9 49
72 10 49
72 11 19
72 12 58
72 13 29
72 14 18
72 15 26
72 16 39
72 17 37
72 18 37
72 19 8
72 20 107
72 21 58
72 22 57
72 23 107

n k mgs

72 24 57
72 25 40
72 26 96
72 27 174
72 28 96
72 29 97
72 30 174
72 31 23
72 32 41
72 33 23
72 34 24
72 35 41
72 36 28
72 37 28
72 38 12
72 39 14
72 40 22
72 41 9
72 42 151
72 43 111
72 44 53
72 45 14
72 46 225
72 47 59
72 48 194
72 49 24
72 50 12
76 1 4
76 2 3
76 3 5
76 4 12
80 1 14
80 2 9
80 3 26
80 4 42
80 5 42
80 6 21
80 7 12
80 8 12

n k mgs

80 9 27
80 10 27
80 11 13
80 12 23
80 13 14
80 14 23
80 15 23
80 16 23
80 17 23
80 18 23
80 19 13
80 20 7
80 21 17
80 22 18
80 23 35
80 24 35
80 25 17
80 26 30
80 27 17
80 28 39
80 29 41
80 30 39
80 31 41
80 32 41
80 33 39
80 34 39
80 35 42
80 36 76
80 37 42
80 38 132
80 39 134
80 40 134
80 41 52
80 42 52
80 43 18
80 44 76
80 45 53
80 46 138
80 47 53
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n k mgs

80 48 173
80 49 4
80 50 103
80 51 41
80 52 20
81 1 1
81 2 1
81 3 3
81 4 5
81 5 7
81 6 13
81 7 7
81 8 7
81 9 3
81 10 4
81 11 5
81 12 5
81 13 26
81 14 39
81 15 1
84 1 34
84 2 44
84 3 34
84 4 22
84 5 16
84 6 29
84 7 91
84 8 63
84 9 40
84 10 21
84 11 13
84 12 55
84 13 147
84 14 35
84 15 61
88 1 8
88 2 5
88 3 8
88 4 13

n k mgs

88 5 8
88 6 8
88 7 13
88 8 23
88 9 23
88 10 9
88 11 21
88 12 30
90 1 15
90 2 34
90 3 9
90 4 40
90 5 16
90 6 114
90 7 53
90 8 50
90 9 14
90 10 36
92 1 4
92 2 3
92 3 5
92 4 14
96 1 26
96 2 17
96 3 10
96 4 148
96 5 148
96 6 20
96 7 37
96 8 20
96 9 24
96 10 24
96 11 50
96 12 74
96 13 74
96 14 43
96 15 43
96 16 43
96 17 43

n k mgs

96 18 86
96 19 86
96 20 41
96 21 78
96 22 41
96 23 39
96 24 22
96 25 22
96 26 44
96 27 78
96 28 39
96 29 78
96 30 39
96 31 39
96 32 78
96 33 39
96 34 39
96 35 39
96 36 39
96 37 48
96 38 24
96 39 43
96 40 24
96 41 48
96 42 43
96 43 24
96 44 86
96 45 9
96 46 21
96 47 21
96 48 42
96 49 42
96 50 21
96 51 21
96 52 36
96 53 36
96 54 72
96 55 44
96 56 21

n k mgs

96 57 21
96 58 42
96 59 84
96 60 84
96 61 20
96 62 36
96 63 20
96 64 70
96 65 133
96 66 127
96 67 129
96 68 18
96 69 64
96 70 16
96 71 29
96 72 16
96 73 64
96 74 64
96 75 148
96 76 48
96 77 74
96 78 56
96 79 146
96 80 148
96 81 20
96 82 84
96 83 92
96 84 146
96 85 272
96 86 272
96 87 146
96 88 272
96 89 146
96 90 272
96 91 272
96 92 272
96 93 146
96 94 152
96 95 152
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n k mgs

96 96 272
96 97 152
96 98 152
96 99 152
96 100 152
96 101 272
96 102 152
96 103 272
96 104 152
96 105 272
96 106 313
96 107 313
96 108 544
96 109 168
96 110 88
96 111 268
96 112 88
96 113 570
96 114 552
96 115 286
96 116 286
96 117 271
96 118 520
96 119 271
96 120 520
96 121 520
96 122 520
96 123 520
96 124 271
96 125 520
96 126 271
96 127 73
96 128 182
96 129 49
96 130 90
96 131 148
96 132 51
96 133 82
96 134 90

n k mgs

96 135 272
96 136 146
96 137 148
96 138 175
96 139 298
96 140 175
96 141 152
96 142 144
96 143 85
96 144 144
96 145 152
96 146 272
96 147 85
96 148 175
96 149 298
96 150 175
96 151 85
96 152 63
96 153 152
96 154 85
96 155 215
96 156 292
96 157 544
96 158 292
96 159 49
96 160 56
96 161 32
96 162 80
96 163 82
96 164 142
96 165 256
96 166 99
96 167 94
96 168 256
96 169 256
96 170 252
96 171 142
96 172 128
96 173 160

n k mgs

96 174 32
96 175 80
96 176 115
96 177 304
96 178 355
96 179 151
96 180 288
96 181 151
96 182 490
96 183 508
96 184 508
96 185 171
96 186 315
96 187 171
96 188 168
96 189 168
96 190 311
96 191 169
96 192 311
96 193 169
96 194 172
96 195 315
96 196 101
96 197 101
96 198 40
96 199 41
96 200 100
96 201 40
96 202 100
96 203 102
96 204 198
96 205 128
96 206 230
96 207 128
96 208 1027
96 209 1031
96 210 1031
96 211 1756
96 212 386

n k mgs

96 213 386
96 214 657
96 215 2368
96 216 1233
96 217 1233
96 218 31
96 219 230
96 220 65
96 221 302
96 222 119
96 223 964
96 224 583
96 225 381
96 226 302
96 227 94
96 228 44
96 229 28
96 230 50
96 231 12
98 1 2
98 2 8
98 3 15
98 4 3
98 5 3

100 1 4
100 2 11
100 3 7
100 4 13
100 5 31
100 6 28
100 7 9
100 8 7
100 9 49
100 10 24
100 11 16
100 12 11
100 13 34
100 14 93
100 15 10
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n k mgs

100 16 7
104 1 8
104 2 5
104 3 14
104 4 8
104 5 13
104 6 8
104 7 8
104 8 13
104 9 26
104 10 26
104 11 10
104 12 24
104 13 24
104 14 40
105 1 31
105 2 17
108 1 4
108 2 19
108 3 19
108 4 21
108 5 64
108 6 34
108 7 98
108 8 34
108 9 66
108 10 27
108 11 139
108 12 42
108 13 11
108 14 76
108 15 30
108 16 156
108 17 241
108 18 39
108 19 71
108 20 15
108 21 26
108 22 14

n k mgs

108 23 132
108 24 395
108 25 134
108 26 261
108 27 46
108 28 234
108 29 55
108 30 14
108 31 97
108 32 57
108 33 99
108 34 17
108 35 13
108 36 20
108 37 14
108 38 458
108 39 141
108 40 89
108 41 24
108 42 129
108 43 169
108 44 18
108 45 9
112 1 14
112 2 9
112 3 42
112 4 42
112 5 21
112 6 12
112 7 12
112 8 27
112 9 27
112 10 13
112 11 23
112 12 14
112 13 23
112 14 23
112 15 23
112 16 23

n k mgs

112 17 23
112 18 13
112 19 8
112 20 20
112 21 21
112 22 41
112 23 41
112 24 20
112 25 36
112 26 20
112 27 49
112 28 90
112 29 49
112 30 160
112 31 162
112 32 162
112 33 62
112 34 62
112 35 21
112 36 90
112 37 87
112 38 234
112 39 87
112 40 299
112 41 34
112 42 63
112 43 38
116 1 4
116 2 3
116 3 7
116 4 5
116 5 17
120 1 70
120 2 58
120 3 52
120 4 57
120 5 133
120 6 96
120 7 82

n k mgs

120 8 123
120 9 123
120 10 123
120 11 123
120 12 123
120 13 123
120 14 123
120 15 72
120 16 102
120 17 186
120 18 102
120 19 103
120 20 186
120 21 175
120 22 328
120 23 175
120 24 176
120 25 328
120 26 66
120 27 121
120 28 66
120 29 68
120 30 121
120 31 192
120 32 192
120 33 74
120 34 178
120 35 193
120 36 417
120 37 276
120 38 98
120 39 57
120 40 339
120 41 224
120 42 653
120 43 133
120 44 247
120 45 486
120 46 132
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B. TABLE OF RESULTS

n k mgs

120 47 145
124 1 4
124 2 3
124 3 5
124 4 18
126 1 55
126 2 76
126 3 18
126 4 34
126 5 9
126 6 46
126 7 97
126 8 108
126 9 93
126 10 114
126 11 17
126 12 166
126 13 56
126 14 84
126 15 17
126 16 53
132 1 46
132 2 22
132 3 16
132 4 37
132 5 79
132 6 29
132 7 61
132 8 309
132 9 43
132 10 109
136 1 8
136 2 5
136 3 14
136 4 8
136 5 13
136 6 8
136 7 8
136 8 13

n k mgs

136 9 32
136 10 32
136 11 12
136 12 26
136 13 24
136 14 28
136 15 62
140 1 34
140 2 28
140 3 16
140 4 33
140 5 61
140 6 24
140 7 71
140 8 96
140 9 150
140 10 39
140 11 79
144 1 14
144 2 25
144 3 7
144 4 28
144 5 106
144 6 106
144 7 53
144 8 28
144 9 59
144 10 59
144 11 29
144 12 55
144 13 30
144 14 55
144 15 55
144 16 55
144 17 55
144 18 55
144 19 29
144 20 28
144 21 76

n k mgs

144 22 79
144 23 155
144 24 155
144 25 76
144 26 144
144 27 76
144 28 158
144 29 93
144 30 50
144 31 88
144 32 88
144 33 90
144 34 114
144 35 114
144 36 114
144 37 143
144 38 270
144 39 143
144 40 496
144 41 502
144 42 502
144 43 184
144 44 184
144 45 57
144 46 270
144 47 249
144 48 676
144 49 249
144 50 863
144 51 14
144 52 508
144 53 259
144 54 508
144 55 257
144 56 137
144 57 255
144 58 264
144 59 255
144 60 255

n k mgs

144 61 137
144 62 255
144 63 144
144 64 275
144 65 144
144 66 275
144 67 144
144 68 21
144 69 716
144 70 716
144 71 358
144 72 188
144 73 188
144 74 405
144 75 403
144 76 198
144 77 376
144 78 209
144 79 376
144 80 372
144 81 372
144 82 372
144 83 372
144 84 198
144 85 200
144 86 200
144 87 102
144 88 54
144 89 54
144 90 117
144 91 115
144 92 60
144 93 112
144 94 63
144 95 112
144 96 106
144 97 106
144 98 106
144 99 106
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B. TABLE OF RESULTS

n k mgs

144 100 60
144 101 22
144 102 57
144 103 62
144 104 115
144 105 115
144 106 56
144 107 103
144 108 56
144 109 256
144 110 150
144 111 27
144 112 149
144 113 99
144 114 26
144 115 76
144 116 38
144 117 38
144 118 76
144 119 38
144 120 35
144 121 555
144 122 555
144 123 571
144 124 484
144 125 484
144 126 496
144 127 206
144 128 206
144 129 208
144 130 23
144 131 23
144 132 22
144 133 24
144 134 23
144 135 23
144 136 22
144 137 1401
144 138 1401

n k mgs

144 139 1414
144 140 731
144 141 1356
144 142 1401
144 143 1358
144 144 1401
144 145 731
144 146 780
144 147 2666
144 148 1356
144 149 403
144 150 402
144 151 780
144 152 402
144 153 2666
144 154 1358
144 155 218
144 156 214
144 157 214
144 158 811
144 159 1518
144 160 811
144 161 2776
144 162 2800
144 163 2800
144 164 1025
144 165 1025
144 166 320
144 167 1518
144 168 114
144 169 208
144 170 114
144 171 356
144 172 364
144 173 364
144 174 142
144 175 142
144 176 50
144 177 208

n k mgs

144 178 88
144 179 218
144 180 88
144 181 266
144 182 132
144 183 1556
144 184 77
144 185 74
144 186 380
144 187 136
144 188 1494
144 189 916
144 190 523
144 191 77
144 192 1568
144 193 208
144 194 22
144 195 738
144 196 60
144 197 26
147 1 5
147 2 8
147 3 39
147 4 9
147 5 7
147 6 4
148 1 4
148 2 3
148 3 7
148 4 5
148 5 21
150 1 86
150 2 15
150 3 13
150 4 76
150 5 24
150 6 8
150 7 10
150 8 116

n k mgs

150 9 26
150 10 18
150 11 94
150 12 12
150 13 25
152 1 8
152 2 5
152 3 8
152 4 13
152 5 8
152 6 8
152 7 13
152 8 35
152 9 35
152 10 13
152 11 31
152 12 76
156 1 34
156 2 44
156 3 52
156 4 22
156 5 16
156 6 41
156 7 66
156 8 109
156 9 37
156 10 24
156 11 87
156 12 46
156 13 33
156 14 13
156 15 64
156 16 414
156 17 47
156 18 139
160 1 26
160 2 17
160 3 50
160 4 148
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B. TABLE OF RESULTS

n k mgs

160 5 148
160 6 20
160 7 37
160 8 20
160 9 24
160 10 24
160 11 50
160 12 74
160 13 74
160 14 43
160 15 43
160 16 43
160 17 43
160 18 86
160 19 86
160 20 41
160 21 78
160 22 41
160 23 39
160 24 22
160 25 22
160 26 44
160 27 78
160 28 39
160 29 78
160 30 39
160 31 39
160 32 78
160 33 39
160 34 39
160 35 39
160 36 39
160 37 48
160 38 24
160 39 43
160 40 24
160 41 48
160 42 43
160 43 24

n k mgs

160 44 86
160 45 10
160 46 24
160 47 24
160 48 48
160 49 48
160 50 24
160 51 24
160 52 42
160 53 42
160 54 84
160 55 50
160 56 24
160 57 24
160 58 48
160 59 96
160 60 96
160 61 23
160 62 42
160 63 23
160 64 134
160 65 134
160 66 128
160 67 128
160 68 69
160 69 69
160 70 69
160 71 69
160 72 142
160 73 142
160 74 71
160 75 71
160 76 75
160 77 71
160 78 71
160 79 71
160 80 71
160 81 71
160 82 132

n k mgs

160 83 132
160 84 132
160 85 132
160 86 71
160 87 71
160 88 71
160 89 176
160 90 55
160 91 88
160 92 65
160 93 174
160 94 176
160 95 22
160 96 98
160 97 110
160 98 174
160 99 328
160 100 328
160 101 174
160 102 328
160 103 174
160 104 328
160 105 328
160 106 328
160 107 174
160 108 180
160 109 180
160 110 328
160 111 180
160 112 180
160 113 180
160 114 180
160 115 328
160 116 180
160 117 328
160 118 180
160 119 328
160 120 369
160 121 369

n k mgs

160 122 656
160 123 196
160 124 102
160 125 324
160 126 102
160 127 682
160 128 664
160 129 342
160 130 342
160 131 327
160 132 632
160 133 327
160 134 632
160 135 632
160 136 632
160 137 632
160 138 327
160 139 632
160 140 327
160 141 82
160 142 210
160 143 56
160 144 104
160 145 176
160 146 58
160 147 96
160 148 104
160 149 328
160 150 174
160 151 176
160 152 203
160 153 354
160 154 203
160 155 180
160 156 172
160 157 99
160 158 172
160 159 180
160 160 328
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B. TABLE OF RESULTS

n k mgs

160 161 99
160 162 203
160 163 354
160 164 203
160 165 99
160 166 72
160 167 180
160 168 99
160 169 252
160 170 348
160 171 656
160 172 348
160 173 56
160 174 65
160 175 56
160 176 148
160 177 150
160 178 274
160 179 512
160 180 187
160 181 182
160 182 512
160 183 512
160 184 508
160 185 274
160 186 256
160 187 328
160 188 56
160 189 148
160 190 207
160 191 572
160 192 699
160 193 285
160 194 552
160 195 285
160 196 998
160 197 1020
160 198 1020
160 199 42

n k mgs

160 200 344
160 201 352
160 202 634
160 203 344
160 204 352
160 205 634
160 206 1210
160 207 1210
160 208 442
160 209 442
160 210 138
160 211 344
160 212 344
160 213 221
160 214 408
160 215 221
160 216 2029
160 217 2033
160 218 2033
160 219 3680
160 220 729
160 221 729
160 222 1313
160 223 4934
160 224 2530
160 225 2530
160 226 46
160 227 408
160 228 173
160 229 929
160 230 343
160 231 3236
160 232 2020
160 233 1274
160 234 21
160 235 14
160 236 487
160 237 108*
160 238 34

n k mgs

162 1 2
162 2 28
162 3 61
162 4 61
162 5 21
162 6 121
162 7 21
162 8 181
162 9 41
162 10 61
162 11 21
162 12 61
162 13 21
162 14 61
162 15 21
162 16 3
162 17 136
162 18 17
162 19 387
162 20 387
162 21 136
162 22 254
162 23 8
162 24 27
162 25 52
162 26 78
162 27 146
162 28 75
162 29 75
162 30 27
162 31 48
162 32 39
162 33 154
162 34 149
162 35 38
162 36 276
162 37 277
162 38 97
162 39 203

n k mgs

162 40 96
162 41 194
162 42 186
162 43 454
162 44 343
162 45 21
162 46 753
162 47 37
162 48 34
162 49 216
162 50 390
162 51 25
162 52 56
162 53 61
162 54 5
162 55 5
164 1 4
164 2 3
164 3 7
164 4 5
164 5 23
168 1 84
168 2 120
168 3 82
168 4 58
168 5 52
168 6 65
168 7 177
168 8 324
168 9 177
168 10 177
168 11 324
168 12 139
168 13 139
168 14 139
168 15 139
168 16 139
168 17 139
168 18 139
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B. TABLE OF RESULTS

n k mgs

168 19 209
168 20 209
168 21 83
168 22 88
168 23 74
168 24 108
168 25 198
168 26 108
168 27 109
168 28 198
168 29 286
168 30 546
168 31 286
168 32 287
168 33 546
168 34 74
168 35 137
168 36 74
168 37 76
168 38 137
168 39 284
168 40 284
168 41 106
168 42 95
168 43 142
168 44 43
168 45 451
168 46 111
168 47 578
168 48 61
168 49 99
168 50 941
168 51 111
168 52 199
168 53 121
168 54 312
168 55 1014
168 56 184
168 57 262

n k mgs

172 1 4
172 2 3
172 3 5
172 4 24
176 1 14
176 2 9
176 3 42
176 4 42
176 5 21
176 6 12
176 7 12
176 8 27
176 9 27
176 10 13
176 11 23
176 12 14
176 13 23
176 14 23
176 15 23
176 16 23
176 17 23
176 18 13
176 19 10
176 20 26
176 21 27
176 22 53
176 23 53
176 24 26
176 25 48
176 26 26
176 27 63
176 28 118
176 29 63
176 30 216
176 31 218
176 32 218
176 33 80
176 34 80
176 35 25

n k mgs

176 36 118
176 37 181
176 38 510
176 39 181
176 40 661
176 41 117
176 42 103
180 1 40
180 2 98
180 3 32
180 4 97
180 5 167
180 6 52
180 7 180
180 8 58
180 9 422
180 10 245
180 11 95
180 12 274
180 13 61
180 14 388
180 15 210
180 16 191
180 17 60
180 18 118
180 19 275
180 20 100
180 21 348
180 22 103
180 23 26
180 24 14
180 25 21
180 26 1089
180 27 213
180 28 1086
180 29 625
180 30 327
180 31 146
180 32 160

n k mgs

180 33 1669
180 34 574
180 35 439
180 36 115
180 37 172
184 1 8
184 2 5
184 3 8
184 4 13
184 5 8
184 6 8
184 7 13
184 8 41
184 9 41
184 10 15
184 11 35
184 12 106
188 1 4
188 2 3
188 3 5
188 4 26
189 1 37
189 2 10
189 3 71
189 4 71
189 5 71
189 6 27
189 7 46
189 8 25
189 9 26
189 10 7
189 11 47
189 12 56
189 13 16
196 1 4
196 2 15
196 3 17
196 4 57
196 5 34
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B. TABLE OF RESULTS

n k mgs

196 6 9
196 7 7
196 8 4
196 9 42
196 10 153
196 11 10
196 12 8
198 1 24
198 2 34
198 3 9
198 4 58
198 5 19
198 6 306
198 7 62
198 8 178
198 9 21
198 10 99
200 1 8
200 2 21
200 3 14
200 4 24
200 5 45
200 6 24
200 7 24
200 8 45
200 9 126
200 10 126
200 11 46
200 12 80
200 13 84
200 14 180
200 15 70
200 16 29
200 17 18
200 18 120
200 19 82
200 20 54
200 21 36
200 22 139

n k mgs

200 23 74
200 24 73
200 25 139
200 26 73
200 27 181
200 28 340
200 29 181
200 30 182
200 31 340
200 32 23
200 33 41
200 34 23
200 35 24
200 36 41
200 37 34
200 38 34
200 39 14
200 40 14
200 41 473
200 42 220
200 43 31
200 44 9
200 45 609
200 46 252
200 47 69
200 48 119
200 49 461
200 50 581
200 51 27
200 52 20
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