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Abstract

Turing patterns have been studied for over 50 years as a pattern forming mechanism.

To date the current focus has been on the reaction mechanism, with little to no

emphasis on the diffusion terms.

This work focuses on combining the simplest reaction mechanism possible and

the use of nonlinear cross diffusion to form Turing patterns. We start by using two

methods of bifurcation analysis to show that our model can form a Turing instability.

A diffusion model (along with some variants) is then presented along with the results

of numerical simulations. Various tests on both the numerical methods and the model

are done to ensure the accuracy of the results. Finally an additional model that is

closed to mass flow is introduced along with preliminary results.
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Chapter 1

Introduction

In 1952 Alan Turingi published the paper ‘The Chemical Basis of Morphogenesis’.3

This paper in turn spurred an entire new field of nonlinear dynamics investigating

what are now known as Turing patterns.

So just what is a Turing pattern? The typical definition is pattern formation via

the combination of chemical reactions with diffusion. Of course that really does not

illustrate how they are formed. Rather the way to think of it is as the combination

of short range activation with long range inhibitionii. In the typical Turing pattern

there are two components A and I. Component A is an activator and will stimulate

both its own production and that of I. Component I will do the opposite: it will

inhibit the production of both A and I. Now without diffusion our system would

just remain at the steady state and nothing would really occur. However, if we add

diffusion, specifically where I diffuses faster, we can actually make patterns.

The pattern formation first requires a single area where the system is slightly away

from the steady state, say above the steady state (see figure 1.1). In this area then

both A and I are produced, however since diffusion is occurring, they both diffuse

away, with I moving faster and further. In this case we get a growing region where the

levels of A are building which is surrounded by a region where I has coalesced, and

has done the opposite and actually lowered the levels of A and I (which is sustained

by the continuous flow of I from the previous high point). By the very formation

of a low point in both A and I, material from the unaffected region outside starts

to diffuse to the lower area, and since I diffuses faster, we again have an area where

A starts to grow, and so on. Now of course, the reactions have to be nonlinear

so as to prevent A from growing without bound, and to prevent I from driving the

concentrations to zero, but beyond that it should be pretty easy create such a system,

right? Wrong.

Before we get to the actual experimental results, we should first give a formal

iYes, THE Alan Turing of computer science fame. He is often called the father of modern
computer science and is responsible for the Turing machine,1 the Turing test,2 and in his final work
Turing patterns.

iiThis is not the only mechanism available for pattern formation, just the easiest to explain. One
can also have what is known as activator and substrate depletion.4
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CHAPTER 1. INTRODUCTION

A I

Figure 1.1: A simple example of how the typical activator-inhibitor mechanism works
for pattern formation in one dimension, with both A and I shown, where the dashed
line represents the steady state. In the first panel, an excess of A is added to a point.
This stimulates the production of both A and I, and since I diffuses faster, it does not
remain at the high point long enough to inhibit production of A, but rather diffuses
out further as shown in the second panel. In the third panel one sees how away from
the high point in A there is now a lower level of both A and I due to the inhibitor,
which results in the diffusion from the neighboring areas. Again however, I moves
faster, leaving an area with less inhibitor which in turn results in higher level in A
(final panel).

definition of exactly what a Turing pattern is. In addition to the destabilization of

the steady state by the process described above, Turing patterns have the two fol-

lowing properties:5 spontaneous symmetry breaking and a characteristic wavelength

independent of geometry. So what does this mean you ask. Well, spontaneous sym-

metry breaking is where the system will break free of the steady state on its own,

that is, no external effect is required to drive the system to pattern formation. As

for a characteristic wavelength independent of geometry, that is where the pattern’s

wavelength is not related to the size of system, but is instead inherent to the reaction

and diffusion terms.

2



CHAPTER 1. INTRODUCTION

So while Turing patterns were first postulated in 1952, the first actual experimen-

tal pattern was created 38 years later in 19906 via what is known as a gel reactor.

These reactors provide a constant flow of reagents into a gel mediumiii where the

pattern formation actually occurs. The reaction itself was a variant of a chlorite-

iodide reaction where chloride and iodide ions in different oxidation states react with

each other over time in a multistep mechanism. The progress of the reaction is made

visible by the change in color of starch indicator preloaded into the gel, which in this

case is the formation of patterns in the gel’s surface.

Turing’s original paper was aimed at explaining how biological patterns form.

The classical examples given are always animal coat patterns (figure 1.2), but Turing

patterns are also cited where any sort of repeating pattern occurs, in everything

from embryonic development to brain structure.8 The first real evidence of Turing

patterns in biology was in 19959 when it was noticed that the patterns on angelfish

(Pomacanthus) have the same size regardless of animal size, that is, as the animal

grows, more stripes are inserted (fitting in perfectly with the characteristic wavelength

definition). Furthermore, in 2006 the first in vivo experiments10 were conducted on

mice that showed some evidence of a reaction-diffusion mechanism with an inhibitor

being responsible for follicle spacing in mice.

All Turing patterns, regardless of the application, require diffusion. The most

common way, by far, to represent diffusion is to use what is called Fickian diffusion

first developed by Adolf Fick in 1855.12 The technique he used was measuring the

concentrations of salt in a column, and he was able to show that there is a diffusion

constant which is independent of concentration, similar to Fourier’s heat conductivity.

The interesting thing is that the situations under which Fickian diffusion can occur

are actually quite rare. For example, in multicomponent system, one can show13 that

the diffusion rate should differ from the Fickian form and that there should be cross

diffusioniv. Furthermore, when one starts to involve ionic species, the effect becomes

even more pronounced, leading to very interesting diffusion effects both with and

iiiThe gel medium is an important factor insuring that it is actually diffusion driving the pattern
formation, rather than artificial flows such as convection currents. The use of gels also allows the
experimentalist the ability to vary the diffusivities of the system,7 which is an important factor in
creating Turing patterns.

ivCross diffusion is where a component is transported via a gradient in another.

3



CHAPTER 1. INTRODUCTION

Figure 1.2: The two classic examples of patterns in biology, a leopard with its spots
and a zebra with its stripes (images used with permission from wikipedia commons11).

without14,15 external electric fields. Even without making the terms nonlinear, the

addition of cross diffusion alone has led to pattern formation in both physics16 and

ecology.17 Concentration-dependent diffusion coefficients have been studied in the

Gray-Scott model18,19 in a regime where non-Turing spatial patterns are observed.

Another interesting fact is that the vast majority of systems4,20, 21 displaying Tur-

ing bifurcations are located (in parameter space) next to Andonov-Hopf bifurcationsv.

Furthermore, it has been shown22 that any conventional system with either a Turing

instability or an Andronov-Hopf bifurcation will be able to form the other. And while

these bifurcations are interesting, this means that these systems are already close to

a point where they are no longer stablevi.

In this thesis we shall introduce a novel mechanism for Turing patterns. The goal

here is to form patterns with only linear chemical reactions. To start with we do some

pen and paper analysis in chapter 2 to determine the conditions required for a Turing

instabilityvii with linear reactions. In addition to the standard bifurcation analysis,

a cellular technique is used, and both methods show that cross diffusion is required.

vAn Andronov-Hopf bifurcation is the point where a system starts or stops (depending on direc-
tion) forming limit cycles (continuous oscillations in variable levels).

viAnother interesting point is that with current models and experimental systems one can predict
the wavelength of Turing patterns based on the average diffusion coefficients and the period of the
limit cycle.7

viiThe destabilization of the steady state which is required for any system to evolve into a Turing
pattern

4



CHAPTER 1. INTRODUCTION

With this in hand we present the diffusion model in chapter 3 which was used to

numerically create Turing patterns. Of course, running numerical simulations without

checks is never good, so in chapter 4 we carry out some tests and run some interesting

simulations to really flesh out both our numerical methods and our understanding of

our models. For chapter 5, a new model is introduced in which the system is closed

to mass flow, and while the results are only preliminary, they are quite exciting.

With the exception of chapter 5, a quick summary of the results is available in paper

form.23 We then close with the conclusion and an appendix briefly going through the

numerical methods used.

5



Chapter 2

Bifurcation Analysis

2.1 What is Bifurcation Analysis?

Bifurcation analysis is where we determine, via pen and paper, how the behavior of a

given system varies as a function of one (or more) of the parameters. These changes

in behavior can be jumps in equilibrium values, collapse or creation of limit cycles

(oscillating reactions), or any of an ever growing array of possible bifurcations. If the

qualitative behavior of the system changes, we call this a bifurcation. In our case

the system itself is defined as a series of differential equations (DE’s), where each

DE determines the behavior, through time, of a variable as a function of itself, other

variables, and system parameters.

These system parameters are things that we can change, such as temperature,

pressure, rate constants, volume, etc. Depending on the parameter, it is either some-

thing that can be changed directly (temperature), or something that we can change

indirectly (kinetic parameters, diffusion coefficientsi). While there are many different

types of bifurcations, the type we are looking for is the transition from a stable ho-

mogeneous (in space) steady state to a stable spatial pattern via a Turing instability.

We first introduce our linear reaction model and show that in the absence of

diffusion, it is globally stable. We then add diffusion followed by cross diffusion and

gauge the effects. Finally, a cellular technique is introduced (two-cell model) which

will further confirm our results.

For the most part, we follow the general form of such analysis.24,25 In later

chapters, we will be able to compare the predictions made here with numeric results.

2.2 Linear Stability Analysis

We start by constructing a generic two-species mechanism for an open system with

only first-order reactions (where U and V are the two species and the various k terms

iThese are both of interest for Turing patterns. Typically these can be altered by changing either
the temperature or feed rates of a system (which affect the constant influx or efflux of a component).
For the diffusion coefficients, one can also change the type of medium used in the system.

6



CHAPTER 2. BIFURCATION ANALYSIS

rate constants):

k1

→ U

k2

→ , (2.1a)

U

k3

�
k4

V, (2.1b)

k5

→ V

k6

→ . (2.1c)

Converting this to rate equations (differential equations for the change in concentra-

tion over time - T )ii, where U and V represent the concentrations of their respective

species; we get:
∂U

∂T
= k1 + k4V − k2U − k3U, (2.2a)

∂V

∂T
= k5 + k3U − k4V − k6V. (2.2b)

In order to simplify further the analysis we nondimensionalize our system. This

has two advantages, first of all it typically eliminates one parameter for each mea-

surement scale and it helps reduce the clutter of carrying units around all the time.

We begin by determining the units associated with all the parameters and variables:

U = V = molL−1, (2.3)

T = s, (2.4)

k1 = k5 = mol L−1s−1, (2.5)

k2 = k3 = k4 = k6 = s−1. (2.6)

The goal is then to make all the units cancel and create dimensionless new parameters

and variables, where the parameters are now represented by Greek letters and the

iiWe used capital T here only to differentiate it from the dimensionless time t which we will use
for the remainder of this document.

7



CHAPTER 2. BIFURCATION ANALYSIS

variables by lowercase letters. We get the following series of equations (noting that

there are alternative ways of doing this, with no effect on the system’s behavioriii):

u =
Uk2

k5

, v =
V k2

k5

, t = Tk2, (2.7a)

α =
k1

k5
, β =

k4

k2
, γ =

k3

k2
, σ =

k6

k2
; (2.7b)

giving:
∂u

∂t
= α + βv − u − γu, (2.8a)

∂v

∂t
= 1 + γu − σv − βv. (2.8b)

By definition, a Turing bifurcation can only occur when the steady state is stable

in the absence of diffusion. Therefore we need to determine the steady-state values

for u and v by solving ∂u
∂t

= 0 and ∂v
∂t

= 0:

u∗ =
β + α σ + α β

σ + σ γ + β
, (2.9a)

v∗ =
1 + γ + γ α

σ + σ γ + β
. (2.9b)

Local stability analysis typically involves only the behavior of the system near the

steady state, specifically whether the system will return to the steady state after a

small displacement in both u and v (δu and δv). The general procedure is to first

linearize the system via a Taylor expansion, where we represent ∂u
∂t

as u̇:

u̇(u∗ + δu, v∗ + δv) = u̇(u∗, v∗) + δu
∂u̇(u∗, v∗)

∂u
+ δv

∂u̇(u∗, v∗)
∂v

(2.10)

+
(δu)2

2

∂2u̇(u∗, v∗)
∂u2

+ δuδv
∂2u̇(u∗, v∗)

∂u∂v
+

(δv)2

2

∂2u̇(u∗, v∗)
∂v2

+ . . .

Since the displacement from the steady state is to be small, any product of δiδj will

result in a negligible small term and the higher order terms will be even smaller, so

iiiIn some cases the scaling is a far greater issue. For example, when trying to apply the steady-
state approximation (SSA) to the Michaelis-Menten mechanism,26 one wants to scale the time such
that the SSA is easily applied.

8



CHAPTER 2. BIFURCATION ANALYSIS

we only consider the first line (as in the linear terms of δu and δv, for which local

stability analysis gets its other common name, linear stability analysis). One also

sees that the term u̇(u∗, v∗) by definition should be zero. If we plug in the actual

values into equation 2.10 we get (realizing that we are now measuring the change in

our displacement from equilibrium):

˙δu = δu(−1 − γ) + δv(β), (2.11a)

δ̇v = δu(γ) + δv(−σ − β). (2.11b)

Thus what we really have are two linear equations dictating the behavior of δu

and δv. For most systems, these are only accurate in the immediate area around

the steady state, for once the system gets too far away from the steady state, the

higher order terms are no longer negligible. However, our system is already linear,

thus there are no higher order terms. Regardless, we can now represent the linearized

system in a matrix form called the Jacobian:

J =




∂ẋ1

∂x1
. . . ∂ẋ1

∂xn
...

. . .
...

∂ẋn

∂x1
. . . ∂ẋn

∂xn


 . (2.12)

For our model, then this becomes:

J =

[
−1 − γ β

γ −σ − β

]
. (2.13)

The equation

δx(t) = δx(0)eλt, (2.14)

gives the behavior of one component for a system of linear differential equations

based on its eigenvalue λ.iv Thus we solve |J − λI| = 0 for λ, where |· | denotes the

determinant:

λ2 + λ(σ + β + 1 + γ) + σ + β + γσ = 0. (2.15)

ivThis is not always the case, if two (or more) components have identical eigenvalues (λ) the equa-
tion becomes slightly more complicated, but nevertheless still solvable with an additional term.27

9



CHAPTER 2. BIFURCATION ANALYSIS

λ =
1

2

(
−(σ + β + 1 + γ) ±

√
(σ + β + 1 + γ)2 − 4(σ + β + γσ)

)
. (2.16)

Since σ + β + 1 + γ > 0 and σ + β + γσ > 0, both eigenvalues are always negative,

and by equation 2.14 we can tell that the steady state is always stable in the absence

of diffusion. This of course is entirely expected for a linear chemical system.28,29

2.2.1 A Foray into the Phase Plane

For two-dimensional systems, one can visualize the behavior of the system quite easily

using phase-plane analysis. A phase plane is a diagram that illustrates the behavior

of a system, independent of time. What a phase plane does is that it shows how two

variables will change at any given value of themselves (for example, for a given set

of parameters, u = 2, and v = 0 will result in u decreasing and v increasing, which

in turn will be represented by an arrow in the plane showing a decrease in u and an

increase in v). This is done via a diagram with each axis being a variable, and given

that paper exists in two dimensions, this works best for two-dimensional systems. We

start by determining lines called nullclines. Nullclines are curves where one variable

remains constant, determined by solving u̇ = 0 or v̇ = 0. Thus along the u̇ = 0

nullcline, u remains constant. The point where the two lines intersect determines

where the steady-state is for our systemv. With the nullclines, we can now create a

vector field (see figure 2.1). The vector field is a series of arrows showing in which

direction the system will go from the current point, with the size of the arrow showing

’speed’ of the change. Thus a small arrow shows a slow change, while a large arrow

shows a quick change. The evolution of the system can also be shown with trajectories

(see figure 2.2), in which each line shows the history of a single trace (i.e. for each

line the system is started out at a point, and the system evolves over time and the

line shows how the state of the system changes). The vector field has the advantage

of showing how the system evolves from any point in its local neighborhood, while

the trajectories show how the system changes over its entire evolution.

vThis is not true of all systems. In some systems the intersection of two nullclines is where an
unstable node or focus is. Either way, it is where u̇ = v̇ = 0.

10



CHAPTER 2. BIFURCATION ANALYSIS

Figure 2.1: Phase plane diagram for the system described in equation 2.8. The left
to right nullcline is for u̇ = 0, given by the formula u = α+βv

1+γ
and the bottom to top

nullcline is for v̇ = 0, given by the formula v = 1+γu
σ+β

. The actual plot itself is from

XPPAUT30 which uses different sized arrows to represent the magnitudes of u̇ and v̇
at each point. We used a value of 1 for each of the parameters.

2.3 Turing Bifurcation Analysis

2.3.1 Diffusion

Having determined that in the absence of diffusion the steady state is stable, we next

check to see if the addition of diffusion will create a Turing instability. We start by

introducing very generic reaction-diffusion equations for u and v, where J represents

fluxvi:
∂u

∂t
= −∂Ju

∂z
+ α + βv − u − γu, (2.17a)

∂v

∂t
= −∂Jv

∂z
+ 1 + γu − σv − βv. (2.17b)

viHere and all through the following, we work in only one spatial dimension; it’s far easier nota-
tionally, and has no bearing on the final results.

11



CHAPTER 2. BIFURCATION ANALYSIS

Figure 2.2: A plot of the trajectories, which shows especially clearly how the tra-
jectories gather along the diagonal, then proceed to the equilibrium. Similar to the
previous plot, XPPAUT was used with a value of 1 for each the parameters, with the
nullcline being the same as the previous figure.

We allow the diffusion coefficients to depend on u and v. Fick’s first law12 would

then give the fluxes:

Ju = −Duu(u, v)
∂u

∂z
, (2.18a)

Jv = −Dvv(u, v)
∂v

∂z
, (2.18b)

where Duu and Dvv are the diffusion coefficients for u and v respectively. We consider

an arbitrarily small displacement from equilibrium (δu, δv) at a point in z. First

expanding Duu(u
∗ + δu, v∗ + δv) via Taylor expansion we get:

Duu(u
∗ + δu, v∗ + δv) = Duu(u

∗, v∗) + δu
∂Duu(u

∗, v∗)
∂u

+ δv
∂Duu(u

∗, v∗)
∂v

+ . . . (2.19)

12



CHAPTER 2. BIFURCATION ANALYSIS

We then plug the first terms of this expansion into our flux term to get:

Ju = −Duu(u∗, v∗)
∂(δu)

∂z
− δu

∂Duu(u
∗, v∗)

∂u

∂(δu)

∂z
− δv

∂Duu(u
∗, v∗)

∂v

∂(δu)

∂z
. (2.20)

Assuming that δu and δv are smooth in z and that our diffusion coefficients are

smooth near the steady state, we can see that only the first term of the expansion

above is not negligible, thus to first order we have:

Ju = −D∗
uu

∂(δu)

∂z
, (2.21a)

Jv = −D∗
vv

∂(δv)

∂z
, (2.21b)

where we let Dii(u
∗, v∗) = D∗

ii. Similarly to linear order, equation 2.17 becomes:

∂(δu)

∂t
= D∗

uu

∂2(δu)

∂z2
+ βδv − δu − γδu, (2.22a)

∂(δv)

∂t
= D∗

vv

∂2(δv)

∂z2
+ γδu − σδv − βδv. (2.22b)

We can now define a diffusion matrix D with our diffusion terms:

D =

[
D∗

uu 0

0 D∗
vv

]
. (2.23)

Similar to the stability analysis above, we solve for our eigenvalues, this time however,

the evolution through time and space is dictated by a different equation:31

δx(t) = δx(0)eλteikz. (2.24)

The added eikz term is used to represent a displacement in z, with a wavenumber

k. This based on Euler’s formula: eikz = cos(kz) + i sin(kz). Thus we need to solve

|J − k2D − λI| = 0, and find the conditions where λ is no longer negative for a real

value of k, giving not only the conditions where the system will become unstable, but

also the initial wavelength of the instability.
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(λ + D∗
uuk

2 + 1 + γ)(λ + D∗
vvk

2 + σ + β) + βγ = 0. (2.25)

∴ λ =
1

2
(−B ±

√
B2 − 4C), (2.26a)

B = k2(D∗
vv + D∗

uu) + σ + β + 1 + γ, (2.26b)

C = k4(D∗
uuD

∗
vv) + k2(γD∗

vv + βD∗
uu + σD∗

uu + D∗
vv) + σ + β + σγ. (2.26c)

We can readily see that both the B and C terms are positive for all values of k. Thus

both roots of equation 2.26a are negative, meaning that the homogeneous steady

state is always stable. Again this is not a great surprise. There is, after all, a reason

why Turing patterns are generally thought to be associated with nonlinear kinetics.

2.3.2 Diffusion and Cross Diffusion

We repeat the analysis again, but this time with cross diffusion (again given in a

general form with dependences on both u and v), so that the flux terms now read as:

Ju = −Duu(u, v)
∂u

∂z
− Duv(u, v)

∂v

∂z
, (2.27a)

Jv = −Dvv(u, v)
∂v

∂z
− Dvu(u, v)

∂u

∂z
. (2.27b)

As before, we only consider the case of a small displacement from the steady state,

resulting in the following linearized partial differential equations:

∂(δu)

∂t
= D∗

uu

∂(δu)

∂z2
+ D∗

uv

∂(δv)

∂z2
+ βδv − δu − γδu, (2.28a)

∂(δv)

∂t
= D∗

vv

∂(δv)

∂z2
+ D∗

vu

∂(δu)

∂z2
+ γδu − σδv − βδv. (2.28b)

In terms of our analysis, the only difference in having cross diffusion is in the

diffusion matrix D:

D =

[
D∗

uu D∗
uv

D∗
vu D∗

vv

]
. (2.29)

14



CHAPTER 2. BIFURCATION ANALYSIS

Again |J − k2D − λI| = 0 is solved:

(λ+D∗
uuk

2 +1+γ)(λ+D∗
vvk

2 +σ +β)− (D∗
uvk

2 −β)(Dvu(u∗, v∗)k2 −γ) = 0. (2.30)

∴ λ =
1

2
(−B ±

√
B2 − 4C), (2.31a)

B = k2(D∗
vv + D∗

uu) + σ + β + 1 + γ, (2.31b)

C = k4(D∗
uuD

∗
vv − D∗

uvD
∗
vu)

+ k2(γD∗
uv + γD∗

vv + βD∗
vu + βD∗

uu + σD∗
uu + D∗

vv) + σ + β + σγ. (2.31c)

It is not possible to make B negativevii, but this time there are two ways to make C

negative. If

D∗
uvD

∗
vu > D∗

uuD
∗
vv (2.32)

then C is negative at large wavenumbers. However, the large k (small wavelength)

regime is not one typically considered in studies of Turing bifurcations and we leave

it asideviii. The second case, and the regime on which we focused this study, is:

γD∗
uv + γD∗

vv + βD∗
vu + βD∗

uu + σD∗
uu + D∗

vv < 0, (2.33)

which leads to a Turing instability in the typical closed range of k. Note that there is

no requirement for unequal diffusion coefficients, but the cross diffusion coefficients

will have to be negative. Also this analysis only shows that the steady state can be

made unstable (Turing instability), not that there will be a stable Turing pattern.

viiDiffusion coefficients always have to be positive (whether linear or not) but cross-diffusion
coefficients can be either negative or positive.

viiiThe reason that this regime is not considered in Turing patterns is that the system, at least close
to the steady state, will actually tend to infinite wavenumbers. This makes this regime difficult to
model and unlikely to be seen in reality, although it has been investigated in systems with backward
diffusion.32
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2.4 Two-cell model

The two-cell model is a way of adding diffusion to a system and using linear stability

analysis, but without a diffusion matrix. In Turing’s original paper3 a two cell model

was used to illustrate the workings of a system, but typically these are only used from

compartmentalized systems, such as membrane problems33 or cellular networks.34 To

do this we consider two cells joined along a surface with a thickness of ∆z. Along this

surface, we allow diffusion (and cross diffusion) between the cells. However, since we

are considering only two discrete cells, we can express both the kinetics and diffusion

terms as ordinary differential equations (rather than partial differential equations).

∆z

Cell 1 Cell 2

StirrerStirrer

External FeedExternal Feed

Figure 2.3: A schematic of the two cell model. Each cell is stirred (preventing diffusion
within the cell), while the cells are separated by a distance ∆z. The external feed
adds and removes u and v as per the reaction scheme.

Assigning the cells are labels 1 and 2, we can then construct our linearized rate

equations:
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∂u1

∂t
= α + βv1 − u1 − γu1 + D∗

uu
u2−u1

∆z
+ D∗

uv
v2−v1

∆z
, (2.34a)

∂v1

∂t
= 1 + γu1 − σv1 − βv1 + D∗

vv
v2−v1

∆z
+ D∗

vu
u2−u1

∆z
, (2.34b)

∂u2

∂t
= α + βv2 − u2 − γu2 + D∗

uu
u1−u2

∆z
+ D∗

uv
v1−v2

∆z
, (2.34c)

∂v2

∂t
= 1 + γu2 − σv2 − βv2 + D∗

vv
v1−v2

∆z
+ D∗

vu
u1−u2

∆z
, (2.34d)

where ∆z is just another parameter (not a spatial term - just scaling the diffusion

terms). The homogeneous steady state of this system is the same as calculated before

(equation 2.9). So we now find the Jacobian of this very generic system:

J =




−1 − γ − D∗
uu

∆z
β − D∗

uv

∆z
D∗

uu

∆z
D∗

uv

∆z

γ − D∗
vu

∆z
−σ − β − D∗

vv

∆z
D∗

vu

∆z
D∗

vv

∆z
D∗

uu

∆z
D∗

uv

∆z
−1 − γ − D∗

uu

∆z
β − D∗

uv

∆z
D∗

vu

∆z
D∗

vv

∆z
γ − D∗

vu

∆z
−σ − β − D∗

vv

∆z


 . (2.35)

Similar to our first linear stability analysis, we solve |J − λI| = 0 to give:

1

(∆z)2
f(λ)g(λ) = 0, (2.36)

where:

f(λ) = λ2 + λ(1 + γ + β + σ) + β + σ + γσ, (2.37a)

g(λ) = λ2(∆z)2 + λ[(∆z)2β + 2Duu∆z + γ(∆z)2 + (∆z)2 + (∆z)2σ + 2∆zD∗
vv ]

+ [β(∆z)2 + 2β∆zD∗
vu + 2D∗

uuβ∆z − 4D∗
uvD

∗
vu + 2D∗

uuσ∆z + γ(∆z)2σ

+ 2D∗
uvγ∆z + σ(∆z)2 + 2∆zD∗

vv + 4D∗
uuD

∗
vv + 2γ∆zD∗

vv]. (2.37b)

Since we need equation 2.36 to be zero, either f(λ) or g(λ) must be equal to zero. This

gives us then two sets of quadratic equations to solve, with a total of four different

17



CHAPTER 2. BIFURCATION ANALYSIS

values of λ. f(λ) is the easiest to solve:

λ1,2 =
1

2
(−B ±

√
B2 − 4C), (2.38)

B = 1 + γ + β + σ, (2.39a)

C = β + σ + γσ. (2.39b)

Similar to above, B is always positive, and so is C, thus there is no way for λ1,2 to

have any positive values, leaving us with g(λ), which is a bit more complex:

λ3,4 =
−B ±√

B2 − 4AC

2A
, (2.40a)

A = (∆z)2, (2.40b)

B = (∆z)2β + 2D∗
uu∆z + γ(∆z)2 + (∆z)2 + (∆z)2σ + 2∆zD∗

vv , (2.40c)

C =β(∆z)2 + 2β∆zD∗
vu + 2D∗

uuβ∆z − 4D∗
uvD

∗
vu + 2D∗

uuσ∆z + γ(∆z)2σ

+ 2D∗
uvγ∆z + σ(∆z)2 + 2∆zD∗

vv + 4D∗
uuD

∗
vv + 2γ∆zD∗

vv .
(2.40d)

Yet again we come back to the quadratic equation. This time we have a term not

equal to one for A, but since it is (∆z)2, it does not affect the sign of the solution (but

will affect the magnitude). Likewise, B will also remain positive, leaving us again to

C. If C can be made negative, then one solution of λ will be positive, destabilizing

the homogeneous steady state.

There are two means by which we can make C negative. This should sound

familiar. If we set ∆z to be very small, we then require D∗
uvD

∗
vu > D∗

uuD
∗
vv to create

an instability - however this would require the pattern to have a very high wavenumber

(see section 3.4), which is typically not where we look for Turing instabilities. Rather

if we collect the C term by ∆z we get:

C =(∆z)2(γσ + σ + β)

+ ∆z(2D∗
uvγ + 2D∗

uuβ + 2γD∗
vv + 2D∗

vv + 2βD∗
vu + 2D∗

uuσ)

+ 4D∗
uuD

∗
vv − 4D∗

uvD
∗
vu

(2.41)

Since we know the kinetic terms to be positive, we need the ∆z term to be sufficiently
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negative so that for a range of ∆z (before the (∆z)2 term gets too large) C will be

negative, giving the inequality:

2(D∗
uvγ + D∗

uuβ + γD∗
vv + D∗

vv + βD∗
vu + D∗

uuσ) < 0 (2.42)

Of course we can divide out the 2, which then gives us the exact same condition as

equation 2.33.

As will be shown later, the two techniques (linear stability analysis of a spatial

system and the two-cell model) do not match perfectly with each other, but we have

now shown that both give the same conditions for an instability to occur.
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Chapter 3

Model

3.1 The First Working Model

In the previous chapter, two separate methods were presented which showed that

a linear reaction model combined with both diffusion and cross diffusion should be

able to create a Turing instability. However, if one only uses simple (concentration-

independent) diffusion and cross diffusion, the concentrations grow without bound.

This actually makes quite a bit of sense. In most systems the higher order terms in

equation 2.10 become significant as the system gets further away from equilibriumi.

However, since our system has no higher order terms in the kinetics, with simple

diffusion the higher order terms in equation 2.19 are also zero. If the parameters are

set to make the steady-state unstable, the system becomes globally unstable.

So what is then needed is a model which has either nonlinear chemical reactions

or some nonlinear diffusion coefficients. As one can surmise by the title of this

thesis (and by how much the other scenario has been done) we investigated nonlinear

diffusion coefficients. By both equations 2.33 and 2.42 we see that we need two things,

negative cross diffusion and positive diffusion coefficients. So in order to stabilize the

system away from the steady state, we need to either have the diffusion coefficient

rise away from the steady state or have the cross-diffusion coefficient drop off away

from the steady state. As was stated in chapter 1, to expect diffusion coefficients

to not change as a function of concentration is unreasonable, but in cases where the

system is well away from the bifurcation point (in diffusion strength), it would take

quite a change in diffusion coefficients to restabilize the system.

If we look at cross-diffusion however, we can see quite a few different mechanisms

where the cross-diffusion strength could change as a function of concentration, most

notably in biological systems. Consider for example, secondary active transport35

through cellsii; the transport rate will increase linearly with concentration until sat-

uration of the transporter sites is approached, at which point the system plateaus,

iThis is the mechanism by which typical Turing pattern forming systems are stabilized.
iiSecondary active transport is where the movement of one molecule down a gradient is used

to move another molecule against the gradient. The common example used for this mechanism is
systems that use sodium ion gradients to power the transport of sucrose.
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and any further increase in concentration on one side will not affect the flux in any

way (implying that the coefficient will instead drop).

The form that was eventually chosen was in the form of a Hill equation:36

Duv =
quu

m

Km
u + um

+ D◦
uv, (3.1a)

Dvu =
qvv

n

Kn
v + vn

+ D◦
vu. (3.1b)

Now, while both Duv and Dvu are given, in reality we set one to zero (see section

3.2 below for the exception) to avoid entering the area of parameter space where

Turing patterns at large wavenumbers are predicted, thus unless explicitly mentioned,

all cross-diffusion terms not given are zero. Also worth mentioning is that all the

parameters except for m, n, Ku, and Kv, can be negative or positive.

Referring to figure 3.1 we see the general schemes under which our system works.

Under the first scheme, the cross-diffusion goes to zero at low concentration, while

under the second scheme the cross-diffusion goes to zero at high concentration. As

a general rule, the first scheme has the largest parameter regime, but otherwise the

two schemes are for all purposes identical (as will be shown below and in the next

chapter).

3.1.1 Alternative Model

While the cross-diffusion model given in formula 3.1 is the one mostly used in this

thesis, there is a related form that also creates patterns, where we simply change the

dependence of the cross-diffusion terms:

Duv =
quv

m

Km
u + vm

+ D◦
uv, (3.2a)

Dvu =
qvu

n

Kn
v + un

+ D◦
vu. (3.2b)

These models give different looking patterns than the other model, but tend to be

far more fickle. All the parameters have to be chosen with great care because the

cross diffusion is not controlled by the component being shaped by it; instead the
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Figure 3.1: Plots of the cross-diffusion strength as a function of u (A & B) and the
resulting patterns (C & D respectively) from numerical simulation. In this figure and
all other figures the values for α, β, γ, and σ are 1 (giving u and v both steady-
state values of 1). For A and C the parameters used were: qu = −0.5, Ku = 0.8,
Duu = Dvv = 0.05, D◦

uv = 0, m = 16, and for B and D the parameters used were:
qu = 0.5, Ku = 1.2, Duu = Dvv = 0.05, D◦

uv = −0.5, m = 16. The thin line represent
u while the thicker, dotted line represents v. Note how by inverting the dependence
of the cross diffusion on concentration we also invert the final pattern.

control comes from the other component. Since the component not directly affected

by cross-diffusion has a much smaller range in concentration (see figure 3.2), the

parameters that determine the switching points, Ku and Kv, are the most sensitive

in this variant model (for example, for the parameters given in figure 3.2 the system

can only create patterns for 0.85 < Kv < 0.9).
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Figure 3.2: A plot of the resulting pattern from equation 3.2, using qv = −0.23,
Kv = 0.87, Duu = 0.05, Dvv = 0.01, D◦

vu = 0, n = 16. The dots represent u whilst
the line represent v. Notice how the plot is very similar to figure 3.1 C.

3.2 ρ Model

The ρ model was an attempt to create a model that would have cross diffusion acting

on both components. To do this two new parameters ρ and χ were defined as:

χ = (
quu

m

Km
u + um

+ D◦
uv)(

qvv
n

Kn
v + vn

+ D◦
vu), (3.3a)

Duv = χ, (3.3b)

Dvu = ρχ. (3.3c)

Now we have a system that is regulated by both u and v, and that has cross-

diffusion effects on both components. However when we look at equations 2.32 and

2.33 we see that we if ρ is too large the system will enter an entirely different regime

of infinite wavenumbers, which causes the numerical methods we use to fail. Thus

the values of ρ used are typically very small, in the range of ρ < 0.02. While this

model creates patterns that are identical to the other models, one advantage of this

model is that system can be more closely regulated. This is a result of being able to

put a lower bound and an upper bound on the range of concentrations for which the

cross-diffusion is active, thus even if the cross diffusion is overly strong, it is scaled

down at either extreme.
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3.3 Numerical Simulation

In the previous two sections, various numerical results have been shown and referred

to. The results were generated using C++ programs. These programs are finite

difference programs that model these system as a series of points. To iterate through

time, the simplest technique is used, explicit Euler. In the appendix we go through

and present a formal derivation of this technique (and explain why we use it) but

suffice to say that it only does first-order integration (which is the norm for reaction-

diffusion systems) and is very efficient. In addition to finite difference methods, a

finite element program37 integrated with an implicit Euler algorithm using adaptive

step sizes38 was also used as a check our results. See figure 4.6 to see how they

replicate each other.

3.4 Comparison of Numerical Results to Bifurca-

tion Analysis

In the previous chapter we had two different formulas (2.31 and 2.42) that we could

easily plug numbers into and determine a range of values for our wavenumber (inverse

of wavelength) for which the homogeneous steady state is destabilized. Thus we

can determine the steady state values of Duv, Dvu, Duu, and Dvv, for our common

parameter set: qu = −0.5, Ku = 0.8, Duu = Dvv = 0.05, D◦
uv = 0, m = 16, α = 1,

β = 1, γ = 1, and σ = 1. By equation 2.9 we know the steady-state concentrations of

both u and v, then by equation 3.1 we find D∗
uv = −0.4363, and D∗

vu = D∗
uu = 0.05.

By formula 2.31, we obtain:

λ = −2 − 0.05k2 ±
√

4 + 1.944k2

2
. (3.4)

Referring to figure 3.3 B, we see that there is a range of wavenumbers for which

the steady-state is unstable. Specifically our analysisiii shows an unstable range from

iiiDuring the course of the analysis, the value k was referred to as the wavenumber, as it is in all
the literature. However, the value actually corresponds to the number of radians per unit length,
2πk, so the all the values given and the values plotted in figure 3.3 are rescaled to reflect the actual
wavenumber.
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Figure 3.3: A comparison of numerical results vs analytical results. Plots A through C
use the parameter regime of figure 3.1 A, while D through F use qu = 0.23, Ku = 1.25,
Duu = 0.01 Dvv = 0.05, D◦

uv = −0.23, m = 16. The leading plots (A and D) show the
result of a Fourier transform on the final pattern from numerical simulation). B and
E show the range of k for which an instability should arise from Turing bifurcation
analysis, while C and F show the same by means of the two cell model. While the
latter analytic technique does not agree with numerical simulation (see text), both it
and the numerical results increase in wavenumber for the second set of parameters.

k = 0.54 to 1.61, with a maximum at k = 1.08. While the range of k is importantiv,

we are actually more interested in the value with the largest λ. This will be the

dominating wavenumber during the initial Turing instability.

Switching to the two cell model with the same parameters, and formula 2.42, we

get:

λ = −0.10

∆z
− 2 +

√
3.89049∆z + 4(∆z)2

2∆z
. (3.5)

Now the stability of the system is determined solely by the value of ∆z, but to

compare it to our previous values, we need it in terms of the wavenumber (k), by the

ivIn systems where the size is too small, as long as there is sufficient space for the smallest unstable
wavelength, a Turing instability will occur, but below this size no permanent patterns will form.
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conversion k = 1
2∆z

.v then take the inverse to get the wavenumber:

λ = 2k

(
−0.10 − 1

k
+

1

2

√
1.9452

k
+

1

k2

)
. (3.6)

Again referring to figure 3.3 C, we have a range of wavenumbers for which the

system becomes unstable, specifically, from k = 2.92 to 25.71, with a maximum at

k = 11.64.

The result from numerical simulation is a wavenumber maximum at k = 1.1, while

Turing bifurcation analysis predicts a value of 1.08. This shows a remarkable cor-

respondence between numerical results and the standard analytical technique. And

while the behavior of the kinetic terms away from the steady state are well behaved,

the cross-diffusion coefficients most definitely are not (see figure 3.1), showing how

strongly the initial instability drives the pattern formation. The two-cell model is

inherently quite limited in its predictive ability. In addition to only predicting the

wavenumber at the onset of pattern formation, we are assuming that the behavior of

the system can be described with only two cellsvi. However, one can see in figure 3.3

that the two-cell model does predict an increase in wavenumber for the second set of

parameters which is mirrored in the numerical results.

vThe logic behind the ∆z to wavelength conversion is simple. If one imagines a sine wave, the
distance between the upper and lower peaks would be equivalent to ∆z, but the wavelength of the
actual peaks is twice this.

viIdeally one would solve the system for the new steady-state values and determine the best
value of ∆z. However, the sheer complexity of the cross-diffusion coefficients makes this calculation
impossible, even with the aid of computer software.
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Chapter 4

Tests on the model

Having created a model that forms patterns we now want to see what it can do and

just how well it works. If the system cannot form patterns with the introduction

of perturbations or noise it would not be very robust, and would prove either that

the system is flawed, or that the numerical techniques used are in error. In addition,

testing the system also gives us some idea on how we might expect this type of system

to behave in the real world, and some information on actually implementing it.

In addition to just adding perturbations and noise, there is one more test, adding

dimensions. This does many things for us. It tells us just what patterns our system

can exhibit, for even in two dimensions one can get dots, hexagons, stripes, labyrinths,

and spiral patterns39,40 with Turing patterns. And while the planar system is a great

model for how patterns would form on a surface (say a thin gel or the skin of an

animal), three-dimensional simulations tell us the behavior when we go into realistic

simulations (i.e. not infinitely thin space).

4.1 Perturbations and Fluxes

The simplest test is to just add a perturbation to the system, where a perturbation is

a small “push” to the system. These test the system’s ability to absorb disturbances,

for it is rare for systems to be perfectly isolated and regulated. Some systems41 change

their behavior in a major way with the addition of perturbations (like changes in the

final pattern and changes in the wavelength), while in other systems these have no

discernible or important effect.

There are a variety of ways in which we can perturb our system. The simplest is

just a single pulse into the system over a given region of space (figure 4.1). As one

can see, the system is quite resilient to a single pulse be it just a single nonspecific

pulse, or directed pulses with the aim of starting a new peak, or disturbing a current

one. While the pulses shown here are limited in size, larger pulses have no effect,

except that the system takes more time to recover the original pattern.

Similarly multiple pulses either have no effect (the time in between being sufficient

for the system to recover), or behave similar to continuous flux. If a continuous flux
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Figure 4.1: A plot (in v) of the effect from various perturbations on the system. The
parameters for all three plots are qv = −0.5, Kv = 0.8, Duu = Dvv = 0.05, D◦

vu = 0,
n = 16. In panel A a single perturbation was introduced at t = 250 of 0.5 v per unit
length over a length of 2. For panel B, the system is hit with a pulse 0.4 wide of 0.7
v per unit length, directly on the gap between the two peaks (0.5 off of center). The
final panel, C, has a single negative pulse centered directly on a peak, 0.4 wide of -0.8
v per unit length. In all three panels we see that that a single pulse does not affect
the final pattern in any way.

is added to the system, it can rearrange the final pattern, as show in figure 4.2

Adding a continuous flux into or out of the sides has an almost identical effect

as a flux into a point in space. The only difference is that the distortion is more

pronounced. This makes sense, since the diffusion mechanisms which would normally

help contain the flux can only aid from one side, thus magnifying the effect of the

pulses. Similarly, turning the system into a ring has no real effect. While we had

initially thought that continuous pulses may be able to produce rotating waves, the

system’s ability to absorb perturbations makes it able to withstand perturbations

locally.

4.2 Noise

The addition of noise to a system is a standard approach in nonlinear dynamics,

and it is actually very important that we do it. First of all, many of the processes

studied in science are not just smooth deterministic occurrences, but rather a series of
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Figure 4.2: A plot (in v) of various perturbations on our system of various types. The
parameters for all four plots are qv = −0.5, Kv = 0.8, Duu = Dvv = 0.05, D◦

vu = 0,
n = 16. In the first panel, A, a series of single perturbations of 0.5 v per unit length
over a length of 2 are introduced. Panel B has a continuous pulse 2 wide of 0.2 v
per unit length per time, while in C a smaller pulse 0.4 wide of the same intensity
is introduced between two peaks. The final panel, D, has a negative pulse of -0.8
v per unit length per time introduced, 0.4 wide, centered directly on a peak. One
can clearly see that a continuous pulse into (or out of) the system can alter the local
pattern, but not the global behavior.

stochastic events that are simply smoothed out by large numbersi. In addition most

things that we take to be a constant are not. Consider for example, the temperature

of solvent in a beaker. While the average is at room temperature, local temperature

fluctuations can occur quite readily, and would have the effect of changing various

parameters randomly through space and time.

iConsider for example a simple chemical reaction of A + B forming C. If we were able to follow
the evolution of the reaction (say by detecting an NMR signal) we would see a smooth production of
C. However the reality is that each molecule of C is formed by the collision of one molecule of A and
one molecule of B. It’s just that for even a one molar solution of A and B there are 6.0221 × 1023

molecules of each component.
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For the actual application of noise to a system, there are three main techniques

that can be used. If the number of chemical species is very small, then one would

apply a stochastic algorithm.42 This is where each individual molecule/component is

modeled separately and each reaction is based on probabilities coupled to a random

number generator. However, given that our system is based on far larger numbers, we

instead forgo stochastic simulation, and instead use a second technique, adding noise

to each point. We do this by randomly adding or subtracting a small amount to the

rate of change of each component at each time step. The third and final technique is

to add noise to one or more parameters. For example, one could have a cross-diffusion

coefficient that varies slightly with each time step.

The algorithm used to create the noise is actually made of two components. First

the Marsaglia Zaman (MZ)43 random number generator is used to create random

numbers over the interval (0, 1).ii The second component is the Box-Muller algo-

rithm44 which takes two random numbers from the unit interval, and transforms

them to two normal deviatesiii. Thus our random numbers have a mean of zero and

a standard deviation of one.

4.2.1 Noise in Space

When we add noise to a point during a timestep, we cannot just add the random

noise as is. We have to multiply the noise by a coefficient A to scale the noise down

(effectively changing the standard deviation from one to A), for adding or subtracting

noise with a standard deviation of one when the equilibrium values are typically one

will lead to the noise being really the only factor in the system. In addition, our A

term has to be normalized for the discretization of our system. We do this by45,46iv:

η =
A

(dz)d/2
√

dt
, (4.1)

iiThis random number generator is very efficient using only subtraction operators and has an
estimated period of 21407. It actually combines two random number generators so as to avoid any
potential flaws with any single algorithm.

iiiThe algorithm itself is really quite simple. Given the two initial random numbers U1 and U2

from the interval (0, 1), we get our new values, X1 and X2 over a normal distribution by X1 =√−2 lnU1 cos(2πU2) and X2 =
√−2 lnU1 sin(2πU2).

ivPersonal communication with Dr. Mikko Karttunen.
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where A would be the idealized amplitude of the noise introduced, d the number of

spatial dimensions, and η the actual value we multiply the Gaussian noise by. The

time discretization results in a random walk over time. The average displacement

from the start point as a function of time increases as the square root of time, see

figure 4.3, thus the longer the timestep, the more averaged out the noise becomes.

Similarly, the effect of noise over a larger interval of z would actually become averaged

out, whereas over a smaller space, the noise would become larger. So in a one

dimensional simulation with dt = 0.001 and dz = 0.02, the amplitude of the noise

reported could be A = 0.0001, whereas the actual value used would be η = 0.0223.
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Figure 4.3: A simple plot where a random walk algorithm is run 10000 times for
10000 iterations each time. For each iteration the system randomly takes one step
forward or one step back. As one can see, the standard deviation increases with a
square root dependence on the number of iterations.

As one can see in figure 4.4, the addition of noise to the rates of change in u

and v over space has no real effect on the final pattern, but dramatically increases

the speed with which a pattern is formed over the entire space. This matches the

results of experimental papers6,47 where they are not initializing pattern formation,

but rather the system spontaneously forms patterns on its own due to the inherent
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noise of the real world.
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Figure 4.4: A plot (in u) comparing the effect that noise has on the system. The
parameters for all four plots are qu = −0.5, Ku = 0.8, Duu = Dvv = 0.05, D◦

uv = 0,
m = 16. In panel A there is no noise and just a single perturbation at the beginning
of the simulation, while in B we have the same perturbation but add noise with a
prenormalized amplitude of 1.41 × 10−5. For C we remove the initial perturbation
and in D we reduce the noise further to 1.41 × 10−6.

4.2.2 Noise on Parameters

The addition of the noise to parameters is the simplest type of noise to implement.

Given a parameter ω, we would simply use ω = ω′(1 + ηN), where N is the noise

term and ω′ is the original value. Again we use very small amplitude noise to prevent

parameters completely changing, as we just want subtle changes in values. The value

for the parameter being changed is adjusted each timestep for each location.
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In general, the addition of noise to parameters had very little effect, with the

largest effect coming from applying the noise to the entire cross diffusion term Duv

rather than to any individual parameter. In these cases the system would become

unstable with the application of noise that was too large (A > 0.005), but if the

parameter range was just outside where pattern formation would occur, the addition

of noise would promote pattern formation, but only within certain ranges of A.

4.3 Higher Dimensions

In terms of computation time, each dimension we add to our simulations drastically

slows down simulationsv, but at the same time we must carry out these calculations,

for we do not inhabit flatland.48

Two-dimensional simulations are the most common simulations to run simply

because they best represent the current experiments, and the main inspiration for

Turing patterns is natural pattern formation which is typically on the skin or over

a surface. As one can see by figure 4.5, our system creates spot type patterns, and

similarly to the one dimensional case (figure 3.1), we can either have a series of wells

below a plane, or a series of peaks above a plane, figure 4.6. While one can see that

the perturbation alone takes some time to create a pattern, the addition of noise in

figure 4.5 greatly decreases the time to create the final pattern. This effect of course

increases as the system size increases, since it takes longer for the first front to reach

the edges of the simulation. We can also see that our modeling methods are accurate

by the fact that simulations using two completely different techniques give virtually

identical results.

Three-dimensional simulations at first do not seem to make much physical sense.

After all, does the chemical reaction scheme not have terms for both the addition

and removal of both components regardless of location? The answer is yes, but these

reaction steps can still occur in a three-dimensional medium. The influx terms would

vThis is a result of the number of points required and the connections between the points. For
an equal density of points, a line 1 long will require 50 points say, with each point having two
connections (and thus two calculations), whereas a 1 by 1 sheet will then require 250 points with 4
to 8 connections. The worst case is a 1 by 1 by 1 cube, in which 125000 points are needed, with 6
to 25 connections.
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Figure 4.5: Two separate runs of the system are compared to each other. Both are
using the parameters qu = 0.45, Ku = 1.12, Duu = Dvv = 0.05, D◦

uv = −0.45, and
m = 16 (which leads to an inverted pattern compared to figure 4.6). The right
column is with only noise with a prenormalized amplitude of 1.5 × 10−4 whilst the
left column is without noise. Going from top to bottom, the time shots are at 50,
110, and 140. As one can see, the noise speeds up pattern formation.
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Figure 4.6: Again two separate runs of the system are shown here. Both are using
qu = −0.5, Ku = 0.8, Duu = Dvv = 0.05, D◦

uv = 0, and m = 16 in a 10 × 10 unit
simulation space. The left column is run in FreeFem++37 while the right is run in
C++ with a nine point mesh (see appendix for details). The time shots are at times
10, 30, 50, and 1000 going top to bottom.
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actually be the result of the slow degradation of another system component that is

highly concentrated. Thus while the actual reaction would be:

q

k

→ u, (4.2)

if q is very large, the rate of u formation would essentially be a constant, kq. Similarly,

the efflux term can be a similar degradation of u and v, where the reverse reaction is

negligible.

Having rationalized three-dimensional simulations of this model, what is the re-

sult? The system invariably produces spheres, and again in the same way that the

shapes are produced in lower dimensions we either have spheres of high concentration

or spheres of low concentration, of which we have the former case in figure 4.7.

Figure 4.7: A plot of the system in three dimensions for component u. The color
intensity runs from white being a concentration of at least 1 to black being a value of
up to 6.5, with all the open spaces having values outside this range. The parameters
used were qu = −0.45, Ku = 0.8, Duu = Dvv = 0.05, D◦

uv = 0, m = 16, on a 100 ×
100 × 100 grid.
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Closed Model

The closed model is an additional attempt on our part to expand the realm of Turing

patterns. In a nutshell, the closed model has the exact same diffusion system as our

regular model (equation 2.1), but the chemical reactions are simplified (by simply

setting the influx and efflux terms to zero) to:

U

k1

�
k2

V, (5.1)

which in turn gives the rate equations (after nondimensionalization):

∂u

∂t
= αv − u, (5.2a)

∂v

∂t
= u − αv. (5.2b)

This system is unlike any other used for Turing patterns, with the closest being the

temporary patterns in water drops47i.

This chapter will then read like a miniature version of the previous chapters, just

on a different model. To begin, a bifurcation analysis is carried out, both to show

the stability of the reaction system, and the conditions for the onset of a Turing

instability. With the conditions required established, we then show the results of

numerical simulation.

5.1 Linear Stability Analysis

Similar to section 2.2 we carry out a linear stability analysis of our new reaction

system, however this time we only cover the main points, since the reader can refer

back to the previous iteration for the finer points of this method.

iThe experiment is novel enough that it is worth briefly recounting here. An oil/water mixture is
made with soap-like additives added shielding the water drops from the oil, but the drops themselves
can contact each other and form water bridges where diffusion can occur. By preloading the system
with the reactants for the BZ reaction,49 the system forms patterns.
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We begin by determining the steady-state values for our system. Solving ∂u
∂t

= 0

and ∂v
∂t

= 0, we get:

u = αv. (5.3)

This means that steady state of the system will depend on how much u and v we

start with (which, considering the closed nature of the system, makes perfect sense).

We next determine the Jacobian matrix:

J =

[
−1 α

1 −α

]
. (5.4)

After solving |J − λI| = 0 , the eigenvalue equation is:

λ2 + (α + 1)λ, (5.5)

which has two solutions, λ = 0, and λ = −α−1. While the latter is obviously always

negative, the first eigenvalue really does not give us any information on the behavior

of the system. To solve this we could apply manifold theory and analytically solve

the system, or take the far simpler approach and do a quick phase plane analysis,

figure 5.1. We can see quite clearly that regardless of where the system starts, it

reaches a steady state. However, we can also see that unless one perturbs the system

in such a way so as to maintain the balance between u and v, the steady state will

shift. Thus the system will always return to the line of equilibria, but not always to

the same point on that line.

5.2 Turing Bifurcation Analysis

Having determined that the reaction system alone is stable, we next need to gauge

the effects that diffusion and cross diffusion have. Again, only the main points are

touched on since this technique was covered in section 2.3. Starting with our lin-

earized reaction-diffusion equation:

∂(δu)

∂t
= D∗

uu

∂2(δu)

∂z2
+ D∗

uv

∂2(δv)

∂z2
+ αδv − δu, (5.6a)
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Figure 5.1: Phase plane diagram for the system described in equation 5.2, with a
value of α = 1. The nullcline is not shown so that one can see the actual equilibrium
points along the diagonal. Note how the steady-state is dependent on where the
system starts, so that we actually have a line of equilibria, where any point is itself
is not stable, while as a whole, the line is. The actual plot itself is from XPPAUT30

which uses different sized arrows to represent the magnitude of u̇ and v̇ at each point.

∂(δv)

∂t
= D∗

vv

∂2(δv)

∂z2
+ D∗

vu

∂2(δu)

∂z2
+ δu − αδv, (5.6b)

we can then solve |J−k2D−λI| = 0 again, this time with our new Jacobian, to find:

(λ + D∗
uuk

2 + 1)(λ + D∗
vvk

2 + α) − (D∗
uvk

2 − α)(D∗
vuk

2 − 1) = 0. (5.7)

∴ λ =
1

2
(−B ±

√
B2 − 4C), (5.8a)

B = k2(D∗
vv + D∗

uu) + 1 + α, (5.8b)

C = k4(D∗
uuD

∗
vv − D∗

uvD
∗
vu) + k2(D∗

uv + D∗
vv + αD∗

vu + αD∗
uu). (5.8c)
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As we can see we need almost the exact same two conditions to make λ negativeii.

The first condition is exactly the same under high k with:

D∗
uvD

∗
vu > D∗

uuD
∗
vv. (5.9)

Of course we try and avoid that regime and instead focus on:

D∗
uv + D∗

vv + αD∗
vu + αD∗

uu < 0, (5.10)

which we can easily reach by having negative cross-diffusion coefficients. Also, com-

pared to the conditions required for the previous system (equation 2.33), this system

does not need nearly such negative cross diffusion coefficients to accomplish insta-

bility (which is logical considering the analysis above shows a less stable reaction

system). One can also see that by setting all the diffusion and coefficients to zero we

return to having one eigenvalue equaling zero, thus any diffusion we add only makes

the system more stable, whilst any negative cross-diffusion added to the system only

destabilizes the steady state.

5.3 Numerical Results

The actual implementation of this system is not quite as fully developed as the

main system used. Rather this system has only been amenable to one-dimensional

simulation, as shown in figure 5.2. In the same figure we can see a perfect example of

why testing our numerical methods is so important. The first panel shows how this

model without noise will lead to only two peaks being formed. Adding very small

amounts of noise leads to the system producing multiple peaks, which leads to the

next characteristic of this model: uneven peaks and the lack of a single wavelength.

While the simulations in a single dimension have proven to be stable, in higher

dimensions peaks tend to keep joining together and eventually coalesce into a single

peak, followed by the system creating negative concentrations. Even in a single

dimension simulations have been far from simple to run, with the parameters used the

iiThis of course only makes sense, since our overall system is essentially just a reduction of our
previous system.
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figure actually having a predicted wavenumber of zero from the bifurcation analysis.

A

Time

S
pa

ce

200 400 600 800 1000

2

4

6

8

10

12

14

16

18

20
B

Time
S

pa
ce

200 400 600 800 1000

2

4

6

8

10

12

14

16

18

20
C

Time

S
pa

ce

200 400 600 800 1000

2

4

6

8

10

12

14

16

18

20

Figure 5.2: Three separate plots of u in the closed model with α = 1, qu = −0.6,
Ku = 1.2, Duu = Dvv = 0.05, D◦

uv = 0, m = 16, over a length of 20 with 1000
mesh points. In panel A, we have only a single perturbation with no noise, where
we can see that the system creates two peaks at the edge of the initial perturbation
of 0.5 u over a space of 5 units, The general range in concentration is from 1.01 to
3.25. The addition of noise, with the same perturbation in panel B, show that the
previous panel is in fact a result of this system not being entirely robust, where the
concentration ranges from 0.4 to 10.1. We can say this because the noise is very small,
with a prenormalized amplitude of 1.5 × 10−4, and yet the effect is quite profound.
Removing the perturbation altogether in panel C, we see that pattern formation still
occurs but in both cases the pattern is not the typical fixed wavelength pattern, but
is instead quite irregular. In the last panel, the concentration ranges from 0.4 to 6.0.

While this method is not at all well behaved (numerically), these results still show

much promise. This is simply because to the author’s knowledge, there have been

no methods to date (either proposed or experimental) that have sustained patterns

with zero external fluxes.
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Conclusion

Turing patterns have been with us for over 50 years, and the field seems to be showing

no signs of slowing down any time soon. At the very least, the systems proposed here

will be novel additions to the vast repertoire of systems proposed for Turing patterns,

but hopefully people will realize that while yes, there is already 50 years of work done

in this field, the vast majority of it has focused on the reaction aspect of what is a

reaction-diffusion based system. While the systems presented here will most likely not

be directly applicable, they show that we can create patterns by using the simplest

chemical reactions possible and instead look at the diffusion and cross-diffusion terms.

So while the model presented here oversimplifies the chemical reactions, one could

argue that most of the work till now oversimplifies the diffusion. Thus one would

hope that eventually there will come models that will use experimental data on the

diffusion rates (fully modeled, not just a single constant coefficient) for the species

involved and be able to use the nonlinearities inherent to both the diffusive process

and the kinetics to realistically model systems.

On the biological side, one could see a form similar to the cross diffusion used in

this model in a cellular model where transporter proteins are involved (especially the

variant detailed in section 3.1.1 where cross-diffusion depends on its own levels) in

transporting a component against its own gradient. Even in cases where nonlinear

cross-diffusion may not be the best model, many systems have diffusion as a minor

component of transport, thus opening the possibility of emulating cellular transport

or chemotaxis50–52 processes with nonlinear diffusion.

Within the realm of the systems presented here, there are still many avenues of

investigation available. With the primary model, introducing minor nonlinear terms

to the reaction scheme would almost certainly lead to two things, different patterns,

and the ability to use a smoother function for the cross diffusion. Furthermore, one

could start looking at modeling known reactions, especially those with charged ions.

Another interesting area of research, which has not really been pursued in the

study of Turing patterns, is the high k regime. While these systems may seem

quite unrealistic (taken at face value, the condition 2.32 would give infinitely small

wavelength by the bifurcation analysis), and given that our system behaves quite
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differently away from the steady state, other effects could factor into the system’s

evolution. Of course, it could simply be the case that all that can occur is a Turing

instability which could result in a globally unstable system. Any results in this area

would be significant because this represents an entirely new area to Turing patterns,

though these small wavelength systems have been previous investigated in backward

diffusion systems.32

Of course the most interesting area is the closed model. This model, while not

being nearly as well behaved as the main system, has the ability to really prove what

nonlinear cross diffusion can do and shows that not only can linear systems make

patterns but that even closed systems can form patterns. Again, the addition of

nonlinear terms to the system (and perhaps the addition of more components to the

system) would most likely help stabilize the system.

The models shown in this thesis, and the suggestions for furthering them will not

be the mechanism by which the next gel reactor will be run nor will it be referenced 20

years from now as THE model for how a zebra forms its stripes. Rather, the purpose

of these models is to show that Turing patterns can be found in areas that have been

ignored for some time, and that a shift in the focus of modelers and experimentalists

from the reaction mechanisms to the diffusion could make a marked difference.
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7.1 Numerical Methods

Numerical methods are what we use when we have a mathematical problem that

cannot be solved analytically. Many problems in many fields fall under this umbrella,

such as the three-body problem in physics, multistep and/or multiple component

chemical reactions in chemistry, ecological modeling in biology and of course, reaction-

diffusion problems. The problem with all these systems is that while the system

behavior is defined by a (sometimes very large) set of very exacting rules, there are

no mathematical techniques that will give an analytical solution for the state of these

systems, with the exception of some very well behaved and limited situations.

So where analytic methods fail, numerical methods step in. While finding the

analytical solution to a reaction-diffusion system is generally not possible, we can

approximate it using one of many different numerical techniques. These techniques

are based on discretizing time and space in some form that is then usable. While

two techniques were used here, there is an ever expanding library of techniques, each

having advantages and disadvantages.

7.1.1 Finite Difference

Finite difference is the technique predominantly used in the field of reaction-diffusion

systems, and was the primary technique used in this research. The key to finite

difference is that we treat space as a series of discrete points in space rather than

a continuous plane. In a one-dimensional simulation then, each point (i) has two

neighbors (i + 1 and i − 1). Additionally, each point is related in time to the points

before and after by a gap in time dt (see figure 7.1).

It is from these two neighbors that the diffusion is determined, by first determining

the flux (J) between each point. Assuming only diffusion so that the example is

clearer (where dz is the space between the points),

Ji = −D(xi+1 − xi)

dz
, (7.1)
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Time (t)
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dt (h)
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Figure 7.1: A schematic of how the one dimensional systems are run. Each point in
space is discrete, and separated by a gap dz. Similarly, moving through time, each
time point is separated by a time dt (which is labeled h in the derivations).

dxi

dt
= −Ji − Ji−1

dz
. (7.2)

As one can see this almost exactly mirrors our derivation of the diffusion terms in

equations 2.18 and 2.17, except that now we have discrete values for our derivatives.

We now have means of connecting our points in space. How do we do this through

time? Well, it is actually quite similar: one point at a time. This is done with what

is called the explicit Euler method.38 We can derive this method very easily via a

Taylor series. Suppose we have a system that evolves through time as a function of

u, given in the form of a differential equation du
dt

= f(u), where the state of a system

at any point in time is u(t), and we are interested in the behavior of the system at
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the point t + h. To determine this we take a Taylor series of u(t + h):

u(t + h) = u(t) + h
du(t)

dt
+

1

2
h2 d2u(t)

dt2
+ . . . (7.3)

Thus, if we take only the first two terms of the expansion, we can find the state

of the system at the next time step based only on the state of the system and the

differential equation:

u(t + h) = u(t) + hf(u(t)). (7.4)

Now the Euler method can only work with very small values of h, since our error per

step is on the order of h2.

One interesting side effect of combining our method for diffusion with our method

for our time steps is that our timesteps have to be carefully chosen in relation to the

diffusive speed and dz. This condition is known as the Courant-Friedrichs-Lewy

condition,53 which has a very simple basis behind it. Imagine that we are modeling

a wave moving across space, at a rate of 1 unit of distance per unit of time. Now

let us imagine that our value of dz is 0.1, meaning that our wave will have to cross

10 mesh points per unit time, but if our time steps are too big (say h is 0.5), the

wave will not be able to cross the space in the time is should have, for the wave can

only move a maximum of one mesh point per timestep (and even then, it would be

better to have the wave’s movement not being just in step with the method, but have

numerous timesteps for each movement).

Also of concern is that with this form of integration (which tends to be less

accurate than higher order forms) artifacts can be created quite easily, leading to

false results.54 However, there are a few ways by which we can verify that our results

are not artifacts:

1. Varying numerical parameters. A wide variety of runs were done changing the

values of things such as dz and h (while making sure to obey the Courant-

Friedrichs-Lewy condition). While our numerical results match up very well

with our bifurcation analysis, it is prudent to ensure that our numerical methods

support higher k (i.e. that the mesh points are close enough to support a pattern

with high k).
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2. Adding noise to the system. In addition to speeding up pattern formation (see

section 4.2) and more accurately representing the real world, noise ensures that

the system is at least somewhat robust (that is that slight variations in the

system do not lead to wildly different outcomes).

3. Changing the grid. In two-dimensional simulations the easiest way to link

the grid in space is just to the immediate neighbors above and below and to

each side (the five point method - counting the middle), but we can also link

diagonally to the next four nearest points (the nine point method), and even

change the grid geometry via a hexagonal grid design (seven point method).

All of these lead to the exact same results in the end.

4. A completely different numerical technique. As will be shown below, we can

use a different method altogether which gives the exact same end results.

Having done all four, it can be said with certainty that our results are not just the

result of chance, but are actual valid results.

7.1.2 Finite Elements

The finite element method works quite differently. Rather than describing the con-

centration values through space as a series values at a series of points, here we use a

series of linear equationsi to describe the state of the system across space. Thus over

a space L, there may be twenty linear equations each describing the behavior of the

concentration of a space of L
20

, where special care is given to ensure that the end of

one equation lines up with the beginning of the next equation. This gives us what

is then referred to as a piecewise linear approximation. It should be noted now that

FreeFem++37 was used, as it carries out things such as mesh creation and actually

solving the spatial problem (but leaving us to integrate through time).

One ‘catch’ about using finite elements is that we cannot solve our equation in

the normal (strong) form, rather they have to be in the weak formii. So if we have

iThis is, by far, not the only choice, one can also use Fourier methods (sine waves) or higher
order equations such as quadratics. However, this is the easiest and most efficient to implement.

iiAlso known as the variational form, the weak form is where we ‘express the problem as infinitely
many scalar equations’.55 In this form we multiply the function by a test function a(z), which is
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our system (we only carry out the derivation for u̇, but the same carries over to v̇):

∂u

∂t
= α + βv − u − γu + Duu

∂2u

∂z2
+ Duv

∂2v

∂z2
, (7.5)

we can multiply it by a test function a(z) to get:

∂u

∂t
a(z) = αa(z) + βva(z) − ua(z) − γua(z) + Duu

∂2u

∂z2
a(z) + Duv

∂2v

∂z2
a(z). (7.6)

And now we can integrate with respect to z:

∫ L

0

∂u

∂t
a(z)dz =

∫ L

0

αa(z)dz +

∫ L

0

βva(z)dz

−
∫ L

0

ua(z)dz −
∫ L

0

γua(z)dz (7.7)

+

∫ L

0

Duu
∂2u

∂z2
a(z)dz +

∫ L

0

Duv
∂2v

∂z2
a(z)dz,

∫ L

0

∂u

∂t
a(z)dz =

∫ L

0

αa(z)dz +

∫ L

0

βva(z)dz

−
∫ L

0

ua(z)dz −
∫ L

0

γua(z)dz (7.8)

−
∫ L

0

Duu
∂u

∂z

∂a(z)

∂z
dz −

∫ L

0

Duv
∂v

∂z

∂a(z)

∂z
dz,

Now we have everything in weak form (the last term being done via integration by

parts where by the term ∂u
∂x

when evaluated at x = 0 and x = L is zero). We can see

now that if our entire system can be linear, as is each term in equation 7.8, we can then

represent our entire system with piecewise linear functions. And our test function,

of course, will also be piecewise linear. Also of note is that by taking the weak

form, we’ve removed the second derivative (which when the system is represented by

piecewise linear equations would always be zero). If there was no time involved, this

actually another piecewise linear equation.
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system would be easily solved via the Galerkin method55iii. However, the time term

is actually taken care of with the discretization and implementation of the algorithm

below.

The simple explicit Euler algorithm could be used again, but instead we use the

implicit Euler algorithm:

u(t + h) = u(t) + hf(u(t + h)). (7.9)

As one can see, while this method is similar to the explicit Euler method, we now

need some way to solve for u(t+h). What we do in the code is actually simpler than

trying to solve the equation. Instead we run the following:

utrial = u(t) + hf(ulast). (7.10)

The first integration has ulast=u(t) (thus making the first iteration an explicit Euler

step), but after the first step we set ulast = utrial, from the previous iteration. For each

step we then get an error calculation based on utrial-ulast, the system then repeats over

and over until the error shrinks down to a predetermined value. Another advantage

of this technique is that the error calculation allows us one further optimization,

adaptive step sizes.

To use adaptive step sizes we need a few things. First of all, the numerical

technique must support variable h (as implicit Euler does, but explicit Euler as used

in the previous section would not), since not only will adaptive step sizes shrink h

which works well for all techniques, but it also expands h, running us back to the

Courant-Friedrichs-Lewy condition. Also we need a means to gauge the change in

the system, for which we use the error calculation.

Before detailing how we implement adaptive step sizes, why do we want to use

it? Because it saves computer time, very large amounts of it in fact. When the

system is rapidly changing, the difference between u(t) and ulast, for a given step

size, is very large, thus it takes many iterations before the error shrinks to the value

for the system to move to the next time step. Similarly, when the system is only

iiiThe Galerkin method, in a nutshell, is where the problem is reexpressed in matrix form and
solved by linear algebra.
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changing slightly, the number of iterations before the step is complete will be very

small - so small that the step size (h) could be twice as large and still take the same

number of iterations. Thus if we can adjust h such that it is small when the system

is undergoing large changes, and large when the system is relatively stable, the time

it takes for a numerical simulation is dramatically cut back.

While it does take some tinkering to get the optimal settings for the adaptive step

sizes, the time used per run is easily cut by over 50% if not more. The way we carry

this out is quite simple. If the error remains within a certain range, the step size h

remains the same. If the error is too small (i.e. well below the value for which the

system goes to the next step), we increase h by 50%. Should the error become too

large (i.e. above the range for which h remains static), h is decreased by 33%. While

this particular algorithm may seem to be biased toward larger h, it has proven to be

quite robust.

Again, we have to ensure that our results are not false:

1. Remove the adaptive step sizes. We set the step size to a fixed value to get the

exact same results (albeit taking far longer to run).

2. Changing the numerical parameters. Similarly to the explicit technique, we can

change the meshiv that we use, and even the shape of the system. Instead of

the generic box that works best for the explicit technique we can use triangles,

rectangles, circles, et cetera, all of which work.

3. Implicit vs. explicit Euler. Before implementing the implicit technique, the

explicit one was used first, and while it was the least efficient way of simulating

the system, there were no changes in the end results.

One common method for improving simulations with finite element methods is the use

of mesh adaptation, which increases the mesh density around more interesting areas

(so the large flat areas in concentration would be less densely represented whilst the

slopes of peaks would have more mesh points). Unfortunately since the peak position

is not fixed, especially during the initial pattern formation, a mesh adaptation does

ivIn two dimensions instead of a series of connected equations, represented by lines, we have a
web of lines covering the two dimensional shape.
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not actually improve results, but instead leads to uneven mesh distribution that does

not correlate to the actual pattern, which in turn distorts the results. The better

way to ensure a proper mesh for our equations is to err on the side of higher mesh

density.
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