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Abstract

In this work we study the inertial modes of a rotating spheroidal fluid shell proportional

to the Earth’s fluid core. We start with the long standing problem of the modes of an

incompressible and inviscid spherical fluid shell. Traditionally, a second order equation

describing the pressure field of the flow, subject to the impermeability boundary condition,

is solved for the eigenfrequencies and eigenfunctions of the flow. These equations are scalar

hyperbolic boundary value second-order Partial Differential Equations (PDEs) which are

ill-posed problems in the sense that the existence of the analytical solutions depends on the

geometry of the container. The problem admits analytical solutions in a sphere but not in a

spherical shell.

We use the Galekin method to solve the momentum and the continuity equation together

and compute the frequencies, pressure and displacement eigenfunctions for some of the

low order, wavenumbers m = 0 and m = 1, inertial modes of this model. To show that our

approach is correct we compute the inertial modes of a homogeneous, incompressible and

inviscid fluid sphere for which analytical solutions for the inertial modes exist.

We also compute the inertial modes of a more realistic uniformly rotating, compressible,

self gravitation and inviscid fluid core model. Finally, we extend the governing equations to

include first order terms in the ellipticity. In order to minimize effects of the derivatives of

the material properties which are poorly determined in the existing Earth models, a Clairaut

coordinate system is used to map the elliptical equipotential surfaces into the spherical ones.

Also, the divergence theorem is used to implement the boundary equations.
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exact frequencies for the Poincaré model are shown in column 2. . . . . . . 41

4.2 Some frequencies of the wavenumbers m = 0 and m = 1 inertial modes of
a uniformly rotating spherical shell models. The exact frequencies for the
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Chapter 1

Introduction

Undoubtedly, it is almost impossible to have direct access to the Earth’s deep interior.

Hence, our knowledge of the structural features and the composition of the internal structure

of the Earth has to be obtained from indirect evidences. At present, two sets of evidences

are mostly being considered: (i) observations of geophysical phenomena such as planetary

motion of the Earth, traveling speed of Earthquake waves through the Earth, heat flux in

the Earth’s interior, gravitational attraction, and the magnetic field; and (ii) comparison of

the Earth with other astronomical objects such as solar system planets, the sun, stars, and

through meteorites which may be fragments of an old planet.

1.1 Structure of the Earth

Ideally, the interior of the Earth may be described as a sequence of concentric layers.

As illustrated in Figure 1.1, there are three main structural components of the Earth, which

are distinguished by sharp discontinuities at the boundary interfaces: (i) a very thin surface

layer of crust; (ii) the mantle, extending over half distance towards the Earth’s center; and

(iii) the core, which makes up the rest of the Earth’s interior.

Using Earthquake records, called seismograms, Oldham (1914) discovered that the core

itself is divided into two layers: the inner core with a radius of 1221.5 km, and the outer

core with a thickness of about 2258.5 km [according to PREM; the Preliminary Reference

Earth Model (Dziewonski, 1981)](see Figure Figure 1.1). The outer core is liquid; it does

not transmit the shear waves, and the speed of the pressure waves is reduced sharply in this
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Figure 1.1: Cross section of the Earth with Inner-core (IC), outer-core (OC), mantle and
crust. The paths curve because the speeds of these waves change as they travel through
layers of different densities. Solid lines marked P are compressional waves; dashed lines
marked S are shear waves.

region. Shear (S) and pressure (P) waves are the two main seismic wave generated by either

Earthquakes or artificial large blasts near the Earth’s surface. In 1936, Lehmann discovered,

from seismic data available, that the inner core was solid.

The schematic ray paths of Earthquake waves are illustrated in Figure 1.1. The Earth-

quake waves are curved when they pass through the Earth’s interior. This curvature is a

refraction which indicates the change in velocity of these traveling body waves with re-

spect to the distance from the surface of the Earth. Change in the speed of the waves is a

result of change in the density (and other material properties), with Earth depth (Robertson,

1966).
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1.2. EARTH’S FREE OSCULATIONS: OBSERVATION AND THEORY

1.2 Earth’s Free Osculations: Observation and Theory

In order to obtain information about the detailed structure of the Earth, analyzing the

variations of P and S wave velocities with depth is not sufficient. For instance, density pro-

file within the Earth and the stability parameter (Pekeris, 1972), which is directly related to

the density gradient in the core, cannot so far be accurately inferred from the seismological

data. Therefore, to get a better insight into the Earth’s deep interiors, traditional seismol-

ogy is complemented with the normal mode theory. These modes are the Earth’s natural

vibrations, the free oscillations, which are excited as a result of a large Earthquake or other

natural phenomena such as the gravitational pull of the Moon on the Earth’s core. These

vibrations are similar to the vibrations of a drum. When one hits the drum, it vibrates.

The observation of the free oscillations of the Earth was greatly enhanced in the 1960s

with the invention of more sensitive and novel instruments, and by developing more precise

recording and processing techniques (see Benioff, 1959; Alsop, 1961; Bolt, 1962). These

studies resulted in new data on the internal structure of the Earth.

The conservation laws of physics applied to the Earth’s interiors constitute the theoreti-

cal treatment of the free oscillations. This gives solutions consisting of the eignfrequencies

of these natural vibrations, known as normal modes (Alterman, 1974).

For the Spherically symmetric, non-rotating, perfectly elastic and isotropic (SNREI)

Earth model, theoretical angular frequencies can be precisely calculated. For this model,

the components of the displacement vector can be described by the spherical harmonics

Y m
n (θ,φ) and a function of the coordinate r. Then, the corresponding wave functions can be

solved for spheroidal and toroidal oscillations (Alterman, 1959).

Calculating theoretical eignfrequencies is of great interest to many geophysicists. These

researchers investigate the so-called inverse normal mode problem to compute the collec-

tion of all possible Earth models whose frequencies are overlapping with the observed fre-

quencies of the free oscillations of the Earth. These findings are essential in in geophysical

and astronomical studies and provides information about (i) the Earth’s origin and evolu-

3



1.3. CLASSIFICATION OF THE NORMAL MODES

tion; (ii) the position of the Earth’s inner core-outer core boundary; (iii) the core-mantle

boundary; and (iv) the material properties of the Earth’s interior such as density ρ, bulk

modulus κ, the shear modulus µ, viscosity ν, and stratification parameter β (see Dorman,

1965; Derr, 1969; Dziewonski, 1971; Gilbert, 1975).

The rotation of the Earth and its gravitational interactions with the Moon and the Sun

generate the standard model to investigate the instabilities in the Earth fluid core. One of

the most significant results of this consideration is that it may generate turbulent flow in

the electrically conducting fluid enclosed in the liquid core, which may play a role in the

geodynamo. Especially, some of these instabilities are induced by the elliptic shape of the

boundaries due to the tides (see Lumb et al., 1993; Kerswell, 1994). It is believed that

the dynamo generated in the planetary fluid cores is the source of magnetic field of the

Earth and other planets (Ronald, 1998). If an elliptical instability is excited in the core

of planetary fluid cores, the energy it releases is sufficient to sustain the dynamo over the

Earth’s life time. Elliptical instability is excited as a result of interactions between the

inertial modes of the rotating body (Seyed-Mahmoud, 2000).

1.3 Classification of the Normal Modes

The Earth is a rotating, self gravitating body in nearly hydrostatic equilibrium. The

rotation of this body results in periodic perturbations in the shape, direction, and its rate

of the rotation.These perturbations are known as tides, precession/nutation, and change in

length of day. The spectrum of the Earth’s free oscillations may be categorized as follow.

a) For short period oscillations called seismic normal modes with frequencies in the

range of 5 min to 1 hour, and have elasticity as the main restoring force (Martinec, 1987).

For these oscillations, deviation from sphericity of the real Earth are small enough that can

be treated as first-order perturbations in the theoretical calculations of the normal mode

eignfrequencies of SNREI Earth model. This assumption has been well established (see

Alterman, 1974; Backus, 1962; Dahlen, 1968).

4



1.4. NORMAL MODES OF A UNIFORMLY ROTATING EARTH MODEL

b) Translational modes of oscillation of the inner core, usually named the Slichter

modes, are subject to gravitational and may be buoyancy restoring forces due to a den-

sity jump across the inner core boundary (ICB) (Slichter, 1961; Smith, 1976). For these

modes, the period of oscillations is long enough (around 5.5 hours) that the effects of the

Earth’s rotation cannot be confidently regarded as a simple small perturbation. (Rochester,

1993).

c) Gravity waves (or the core undertones) are driven by buoyancy force that is the result

of non-neutral density distribution in the ICB. The period of these oscillations is found to

be up to 13 hours for most realistic Earth models (Dehant, 1990). This period is comparable

to the Earth’s rotational speed and hence the SNREI Earth model may not be valid for the

computation of some of these modes (Crossley, 1975, 1980; Mamboukou, 2013).

d) For the long period oscillations, such as wobble and nutation and those confined

mainly to the liquid outer core, the so-called inertial modes of the liquid outer core, the

eignperiods are longer than 12 hours. Since, the Coriolis Effect is the driving force, the

full effects of rotation and, in some cases, of ellipticity, must be taken into account ( (Shen,

1983; Seyed-Mahmoud and Moradi, 2014; Guo, 2004).

There are five main rotational modes: (1) the Tilt-Over Mode (TOM) or Free Diurnal

Nutation (FDN) of the whole Earth; (2) Chandler Wobble (CW), which is dominantly due

to the rigid rotation of the Earth’s elliptical mantle (Observed period of CW is about 430

days); (3) Inner Core Wobble (ICW) with a computed period of a few years (ICW has

not been observed yet); (4) Free Inner Core Nutation (FICN); and (5) Free Core Nutation

(FCN) (Mathews, 1991). Other than for the TOM, the eignperiods of all the rotational

modes strongly depend on the ellipticity of the rotating Earth model (Rogister, 2004).

1.4 Normal Modes of a Uniformly Rotating Earth Model

Exploring the dynamic of the rotating Earth influenced by an ellipsoidal liquid-filled

interior with rigid boundary has a long history. Long term motion of a fluid inside a rotating

5



1.4. NORMAL MODES OF A UNIFORMLY ROTATING EARTH MODEL

container is a rigid rotation. Any disturbance to this motion causes relative motions of the

fluid with respect to the walls of the container. This can result in either periodic changes

of the orientation of the axis of rotation (wobble, nutation), or the intensity modulation of

the angular velocity (length of a day) because of the relative motions of the fluid layers due

to viscosity. Relative motions can also occur because of the deformation of the container

induced by external forces (such as gravitational tides on a planet).

Assuming that the relative motion of the fluid versus the rigid rotation is small, equa-

tions of fluid motions for a homogeneous and incompressible fluid can be linearize as so-

called Poincaré equations. The solutions for the Poincaré equation in the rigid boundary

container are time periodic waves, called inertial modes, which must satisfy impermeability

condition imposed by the boundaries.

For a cylindrical geometry, global solutions were investigated in the original work of

Kelvin (1880). Calculation of these commonly called Kelvin modes were published by

several authors (see e.g., Kerswell, 1993) on a basis of Bessel functions. Herreman (2009)

extended this analysis to calculate the analytical eigenfrequencies of Kelvin modes in a

cylindrical shell. The equations governing the inviscid inertial modes of an incompressible

and homogeneous fluid sphere were established by Bryan (1889) and Poincaré (1910) using

spherical harmonics and elliptic coordinates to analytically solve the equations of motion

by separation of the variables (see also Zhang, 2004).

Experimentally, Aldridge (1969) found some of the axi-symmetric inertial modes by

using pressure measurements in a librating sphere1 at the excitation frequencies of these

modes. Melchior and Ducarme (1986) and Aldridge (1987), claimed they had detected

these modes in Earth’s core, excited through a small perturbation in Earth’s rotation after

large, deep Earthquakes. Zrn et al. (1987) made a critical analysis of these observations but

confirmed that inertial modes exist in planetary and stellar systems. The mechanical energy

that drives deformation results in the excitation of inertial waves and also different types of

1 longitudinal libration are small periodic oscillations of the spinning rate of a globally rotating sphere.
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SPHERICAL SHELL CONTAINER

instabilities (e.g., elliptic instability, shear instability and centrifugal instability) (Le Bars,

2015).

Concerning a spheroidal geometry, Hopkins (1839) was among the first to find the free

nutation of the Earth and numerically determined its amplitude by solving the equation of

the motion for position of the Earth’s pole. Chandler (1894) discovered the Chandler Wob-

ble with a period of 427 days by studying the observed astronomical data. The theoretical

period for a solid homogeneous, ellipsoidal Earth is 304 days. But if a homogeneous and

incompressible liquid core is added then the period actually becomes 270 days. Once elas-

ticity, presence of the oceans, the Earth’s atmosphere, and electromagnetic and gravitational

coupling at the CMB is considered, the period for a realistic Earth model becomes close to

the observed value (Mathews and Shapiro, 1992).

Hough (1895) showed that for such a system a second free wobble of a nearly diurnal

period exists in addition to the Euler (Chandler) wobble. The existence of this second free

wobble was confirmed by Poincaré (1910), by using the natural coordinates for a rotating

fluid (oblate spheroidal systems). It was from subsequent analyses of latitude and time

data that Popov (1963), for the first time, observed this nearly diurnal wobble. Greenspan

(1964), Kudlick (1966) calculated inertial oscillations of a rotating, incompressible, homo-

geneous, Newtonian fluid bounded by a spherical rigid shell.

1.5 Normal Modes of a Uniformly Rotating Fluid in a Rigid Spherical

Shell Container

The Earth’s core is a thick nearly spherical rotating fluid shell, therefore, the inertial

modes are most likely excited in this body. In fact, except for the toroidal modes, the solu-

tions of the Poincaré equation are associated with the impermeability boundary conditions

on the inner and outer surfaces of the container. This overconstrained boundary conditions

makes the hyperbolic equation to be mathematically ill-posed. Ill-posed here means that

the existence of the analytical solutions depends on the geometry of the container. The

7
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problem admits analytical solutions in a sphere but not in a spherical shell.

Longuet-Higgins (1964, 1965) considered the container to be a thin spherical shell and

was able to determine the free oscillations of the rotating fluid in the spherical shell, by

neglecting radial motions, so that the governing equation reduced to Laplace’s tidal equa-

tion. He showed that, there are no general explicit solutions available for Poincaré equation

in shell geometry and the success in determining the free oscillation modes depends on

possibility of separation of the variables.

Stewartson (1969) studied the perturbations of the solutions found by Longuet-Higgins

that arise when the thickness of the shell is allowed to increase from zero. They found that

the non-integrable singularity, in the pressure, appears in the equation when the character-

istic cones of the hyperbolic equation touch the inner boundary of the shell. Stewartson

(1971, 1972) used ray theory to study the propagation of characteristics and thus get in-

formation about probable pathological character of inviscid solutions and low-frequency

modes trapped in the equatorial region of a very thin shell. They found that the periodic

patterns depend on the excitation frequency and also on the number of reflections on the

shell walls.

Henderson (1996) described the problem of the spherically rotating fluid shell in a weak

1 form as a variational principle. He used finite element method and placed the mesh ele-

ments along the characteristics surfaces and found the approximate solutions for Poincaré

model in the shell. These solutions were merely continuous and neither smooth nor differ-

entiable.

Rieutord (1987, 1991) (see also, Rieutord, 1997), used an iterative procedure based on

the incomplete Arnoldi-Chebyshev method to numerically solved the equation of motion

for a spherical shell. They added the viscous term to the model and showed that inertial

modes in a spherical shell are determined by a web of rays that reflect at the boundaries2.

1The term ,Weakness, used to indicate the sudden change in the normal component of the pressure gradient
and in the tangential component of the velocity along a characteristic line.

2Kinetic energy is not evenly distributed in the volume of the shell but concentrated on conical surfaces
which have some thickness however. The intersection of these surfaces with a meridional section forms the

8



1.6. NORMAL MODES OF A REALISTIC EARTH MODEL

They showed that the web of rays depends on viscosity and the pattern of rays bifurcates

as viscosity tends to zero and no asymptotic smooth solution exists for the limit of zero

viscosity. The different scales which occur in a solution are related to the appearance of

many internal layers which are resulted from singularities of the boundary layers. These

singularities are like the ones arising at the critical latitude (see Kerswell, 1995). Shear

layers were studied previously by Stewartson (1957) on the basic setup of coaxial rotating

disks, and by Kerswell (1995) and Hollerbach (1995) by connecting them to the problem

of precession of fluids. Despite the fact that these inertial layers to play a minor role in the

linear theory, they are important when nonlinear effects are considered (Le Bars, 2015).

Dintrans (1999) concluded that individual eigenmodes do not follow any precise asymp-

totic law as viscosity tends to zero; only statistical properties of these modes satisfy some

simple rules (scalings) 1.

In spite of their considerable progress in the Poincaré problem, all the above mentioned

attempts were a partial answer to the question of the nature of the spectrum of normal modes

in a rotating shell of inviscid fluid. Progress toward more realistic Earth models (including

minor effects of ellipticity, inhomogeneity and elasticity) requires better understanding of

this basic model. In this thesis we will show that we have found numerical solutions for the

inviscid fluid shell by directly solving the momentum and the continuity equations.

1.6 Normal Modes of a Realistic Earth Model

The above mentioned models are too simplified to be able to completely describe the

complex behavior of the real Earth. Even so, they allow us to approximately model the

Earth’s free wobble/nutation, elliptical instability, geodynamo and other naturally occurring

phenomena. First of all, the boundaries of the Earth’s fluid core are not rigid, instead,

web of rays.
1This problem is in fact related to another eigenvalue problem in physics, namely quantum chaos. In

semi-classical systems, quantum chaos appears when the wave function and its associated energy eigenvalue
strongly depend on a control parameter of the system. For this system, changing the control parameter result
in a chaotic evaluation of the energy eigenvalues of the system.

9



1.6. NORMAL MODES OF A REALISTIC EARTH MODEL

they are comprised of a deformable solid mantle as well as an inner core. Secondly, the

effect of self-gravitation of the Earth is not completely negligible. Moreover, the Earth

is not homogeneous and its properties vary with depth. Therefore, realistic theoretical

calculations must accurately take into account (1) the elastic-gravitational behavior of the

mantle and inner core, (2) the compressibility and density distribution of the outer fluid

core, (3) gravitational and pressure interactions in ICB and core-mantle boundaries (CMB),

and finally (4) non-neutral stratification in the fluid OC.

By modifying the Earth model to include a fluid OC, a deformable mantle (MT) and a

solid IC, important contributions were made to the theory of the free oscillations (Lamb,

1895; Jeffreys, 1948, 1949). Jeffreys (1957) considered Earth model with radially stratified

elastic mantle and homogeneous incompressible liquid OC, and calculated the frequency of

the Earth’s nutation modes. Molodensky (1961) (see also Molodensky, 2004) added the ef-

fects of core compressibility in his calculations and considered the known elastic properties

of the mantle. Alterman (1974), and Toomre (1974) reviewed the history of the nearly diur-

nal wobble problem and modified Lamb’s notation slightly by developing a special method

for harmonic analysis. Shen (1976) extended the theory by adding non-neutral stratifica-

tion in the liquid core. Their extension to Molodonsky’s (1961) theory relied principally

upon a truncated surface spherical harmonic representation of the response of the fluid core.

Generally speaking, these studies rely on the Liouville equations, that are Euler’s equations

which are modified to allow for deformation and internal flow.

Using the linear momentum description (LMD), Smith (1974) derived the elastic-gravitational

normal modes theory. In this theory, the variation in self-gravitation and the deformation

in the solid Earth are expressed in the spheroidal and toroidal representation. Also, the

effects of rotation and ellipticity are treated explicitly. Wahr (1981) used by Smith’s formu-

lation to study the effects of the Earth’s rotation and ellipticity on the body tides. Smylie

and Rochester (1981) derived equations of the core dynamics by finding an alternative

scalar second order partial differential equation (The subseismic PDE). Dehant (1990) used

10
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Wahr’s numeric code and allowed material anelasticity in the equations of motion.

Wu and Rochester (1990) showed that the dynamics of the inviscid liquid core can be

described precisely by two scalar second order PDEs with scalar potentials, the Two Poten-

tial Description of the core dynamics. Rochester (1993) proposed a non-orthogonal coor-

dinate system, named the Clairaut coordinate system. Then, they modified field variables

and removed derivatives of material properties across elliptical boundaries. The subseismic

description of core dynamics is used Smylie et al. (1992) to study the Earth’s wobble/nuta-

tion modes. The effect of the viscosity of fluid core is also studied in some recent works by

Greiner-Mai et al. (2000); Guo (2004), and Lubkov (2007).

Seyed-Mahmoud (1994) introduced three-potential descriptions (3PD) of the core by

using a set of three scalar PDEs in three potentials as independent variables, which exactly

describe the linearized dynamics of the inviscid liquid core. The variational principle of

free oscillations in a rotating, inviscid, and elliptically stratified fluid outer core is developed

byXU et al. (2004), and Rogister (2004). Seyed-Mahmoud (2006),(also Seyed-Mahmoud,

2007) implemented the Galerkin method to find the normal modes of a rotating spherical

liquid core for a realistic core model. Taking advantage of the Clairaut coordinate system

and considering first order terms in ellipticity, Seyed-Mahmoud and Moradi (2014) also

studied inertial modes of an elliptical Earth model. Recently, using the same coordinate

system Rochester et al. (2014) built a new mathematical formulation and included second

order terms in the ellipticity to described the Earth’s wobble/nutation modes.

1.7 Outlines

In this thesis we first give the theoretical derivation of the partial differential equations

(PDEs) governing the inertial modes of free oscillations of a realistic Earth model. We will

then use a Galerkin method to solve these equations for the frequencies and eigenfunctions

of the inertial modes of several core models.

In chapter 2, using the conventional approach of spheroidal/toroidal representation of

11
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vector displacement fields, and following Rochester formulation (lecture notes provided by

my supervisor), we derive PDEs and the BCs governing the free oscillations of the self-

gravitating, spherical, rotating Earth model. In section 2.5 we make the assumption that

the core is homogeneous and incompressible in order to numerically solve the governing

equations for a spherical shell. We use a Galerkin method and FORTRAN programming to

numerically solve for some of the low order (wavenumber 0 and 1) inertial modes of (a) a

homogeneous and incompressible core model, and (b) a more realistic core model which

is compressible and stratified. To validate our approach, we compare the frequencies and

the displacement and pressure patterns for these modes to those of a fluid sphere for which

analytical solutions exists.

In chapter 4, we extend our model to include the effects of elasticity, incompressibility

and inhomogeneity. We show that the divergence theorem may be used to (a) remove the

dependence of the equations on the gradient of the density, which is poorly constrained

within Earth, and (b) to take advantage of the natural nature of the boundary conditions.

In chapter 5, we expand our equations to include the first order effect of ellipticity in the

Earth model. In order to minimize the effects of derivatives on material properties, a (non-

orthogonal) Clairaut coordinate system (Jeffreys, 1942; Kopal, 1980; Seyed-Mahmoud,

2006) is used. Finally, our conclusions are presented in chapter 6, and we discuss our

results and compare them with previously obtained results.

12



Chapter 2

Normal Modes of an Incompressible
Fluid Core Model

2.1 Hydrostatic Earth Model

Neglecting the effects of thermal convection and magnetic field 1, the reference state

of the Earth is considered to be one of hydrostatic equilibrium. This reference frame has

its origin in the Earth’s center and rotates with the constant angular velocity of Ω about

a fix axis in space defined by a unit vector ê3. In this reference state, the dynamics of the

self-gravitating, rotating, spheroidal Earth which is subjected to a small elastic deformation,

can be described by, (i) five conservation laws: conservation of mass, momentum, angular

momentum, mechanical energy, and gravitational flux; and (ii) a Hook’s law. In this chapter

we show that to first order in deformation variables, these laws can be expressed by linear

PDEs.

2.2 Equations of Motion

2.2.1 Hydrostatic equilibrium

It is convenient to use Earth’s properties, (mean radios R = 6371 km, average density

< ρ >= 5.54 g.cm−3, and speed of rotation Ω = 7.292× 10−5rad.s−1), to introduce non-

1As far as the effect of deformations on the rotation at the Earth is small and can be taken to be isentropic,
these assumptions are valid
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2.2. EQUATIONS OF MOTION

dimensionalized parameters as,

rND =
r
R

; uND =
u
R

; ρND =
ρ

< ρ >
; ∇ND = R∇

where r, u and ρ are position of the mass element, displacement vector and density, respec-

tively, that will be explained later. In our notation, for brevity, we drop subscript ND, by

keeping in mind that all quantities are dimensionless afterwards. In the equilibrium config-

Figure 2.1: A small displacement u leads the mass element dm to move to the new position,
p = r+u, and to have the density of ρ(p) = ρ0(r+u)+ρ1(r+u).

uration, the dimensionless mass element dm, at position r from the origin has the density of

ρ0(r). A small displacement u= u(r, t) leads the mass element to move to the new position,

p = r+u, and to have the density of ρ(p) = ρ0(r+u)+ρ1(r+u), where ρ1 is Eulerian

change in the density at p, due to deformation. To first order in the small quantities, u and

ρ1, conservation of mass requires that in every point in the volume to have

ρ1 =−∇.(ρ0u). (2.1)

14
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Also, conservation of momentum for every mass element at the displaced position p is

expressed by the Newton’s second law of motion,

dv
dt

= F+
1
ρ

∇.T̃ (2.2)

In (2.2), v is the non-dimensionalized velocity (vND = u/RΩ) of the displaced mass el-

ement, dm, relative to the inertial frame, ρ is the dimensionless density of the mass ele-

ment at the instant of deformation, F is a dimensionless long range body force (FND =

F/< ρ > RΩ2), and T̃ is a stress tensor 1.

We are assuming that there are no external forces (such as gravity forces from the Moon

and other external bodies) present. Also we are considering that the reference state is sym-

metric, i.e., density is a function or r only. Therefore F and T̃ depend on the internal gravity

and pressure, respectively. The gravitational force on the non-displaced mass element lo-

cated at r, in the reference frame, is originated from the mass enclosed by r. This force can

be written as F = ∇V0(r), where V0(r) is the dimensionless gravitational potential at point r

in the equilibrium configuration. As indicated, the only stress is due to the pressure, p0(r),

and can be expressed as T̃ =−p01̃ (where 1̃ is the unit tensor).

On the other hand, the mass element experiences a centripetal acceleration

dv
dt

= Ωê3× (Ωê3× r) (2.3)

Therefore the equation (2.2) can be written as

Ωê3× (Ωê3× r) = ∇V0−
1
ρ0

∇p0 (2.4)

1 Physically stress tensor defines short range surface forces including normal (tensile or compressive)
stress and shear stresses.
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2.2. EQUATIONS OF MOTION

Defining gravity g0 as a result of gravitational and centrifugal acceleration

g0 = ∇(V0 +
1
2
|Ωê3× r|2) (2.5)

(2.4) result in basic equation of hydrostatic equilibrium

∇p0 = ρ0g0 (2.6)

in which, g0 is the dimensionless gravity (g0ND =
g0

4RΩ2 ). Expression (2.6) implies

∇×g0 = 0. (2.7)

Equations (2.7) and (2.6) basically show that everywhere in the interior and surface of a

fluid in hydrostatic equilibrium, gravity equipotentals coincide with the surfaces of equal

pressure (isobars) and equal density (isopycnics).

2.2.2 Deformation from hydrostatic equilibrium

In the deformed Earth, dm acquires an additional stress, S̃, which is due to the deforma-

tion during the displacement.

Suppose two neighboring mass elements at locations xi and xi + dxi experience a dis-

placement ui and ui +
∂ui
∂x j

dx j, respectively. Therefore, in the Cartesian coordinate system

the distance between these two mass elements changes from
√

dxidxi, before deformation,

to √
(dxi +

∂ui

∂x j
dx j)(dxi +

∂ui

∂xk
dxk),

after displacement. So, to the first order in ui, square of the distance separating the two

mass elements becomes

2
∂ui

∂x j
dx jdxi = 2

(
dx jê j

)
·
(

ê j
∂ui

∂x j
êi

)
.
(

dxiêi

)
(2.8)
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The middle term in the right hand side of the (2.8) is deformation dyadic

∇u = ê j
∂ui

∂x j
êi, (2.9)

and means that deformation takes place when (2.9) is nonzero. Hence, a pure translation or

a pure rigid rotation of matter will not cause a change in the distance between neighbouring

mass elements. From (2.8) it can be seen that only symmetric part of ∇u contributes to

deformation1,

ẽ =
1
2

[
∇u+(∇u)T

]
(2.10)

which called strain tensor.

Elastic behavior of a perfectly elastic and isotropic matter ( i.e. that its elastic properties

at a point are the same in all directions) is perfectly represented by the most general form

of Hooke’s law, conversations of the angular momentum and energy, as a linear relation

between stress tensor, S̃, and strain, ẽ.

S̃ = ρ0(α
2−2β

2)(∇.u) 1̃+2ρ0β
2 ẽ, (2.11)

where α and β are dimensionless speeds of propagation of the compressional and shear

waves in the Earth, respectively (αND = α/RΩ, βND = β/RΩ). 1̃ and ẽ are the unit and

strain tensors, where in the spherical polar coordinate system are given by the following

matrices

1̃ =


r̂r̂ 0 0

0 θ̂θ̂ 0

0 0 φ̂φ̂

 ẽ =


err erθ erφ

eθr eθθ eθφ

eφr eφθ eφφ

 . (2.12)

1i j’th component of ∇uT is ji’th component of ∇u
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In (2.12),

err =
∂ur

∂r

2erθ = 2eθr =
∂uθ

∂r
− uθ

r
+

1
r

∂ur

∂θ

2erφ = 2eφr =
∂uφ

∂r
−

uφ

r
+

1
r sinθ

∂ur

∂φ

eθθ =

[
ur

r
+

1
r

∂uθ

∂θ

]
2eθφ = 2eφθ =

1
r

∂uφ

∂θ
−

uφ cotθ

r
+

1
r sinθ

∂uθ

∂φ

eφφ =

[
1

r sinθ

∂uφ

∂φ
+

ur

r
+

uθ cotθ

r

]

(2.13)

Physically, the terms ρ0(α
2− 2β2) and 2ρ0β2 in equation (2.11), are measure of the in-

compressibility (pressure deformation) and rigidity (shear deformation) of an elastic ma-

terial. It should be mentioned that, by definition, a fluid has no rigidity, i.e. can not be

twisted.Therefore, shear waves do not travel in the Earth’s fluid core; β = 0.

Eventually, the total stress on the disturbed mass element at the displaced position, p, is

T̃ =−p0(r)1+ S̃. (2.14)

In the deformed Earth, moreover, the total force on the mass element is resulted from both

gradient of the gravitational flux and its perturbation. The total gravitational potential ex-

perienced by the disturbed mass element at p is V0(p)+V1(p), where, V1 is the Eulerian

change in the gravitational potential due to the displacement field, u. The net body force on

the disturbed mass element, dm, evaluated at p is

F = ∇V0 +∇V1. (2.15)
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2.2.3 Rigid rotational oscillations

Suppose the displacement, u, experienced by the mass element, dm, undergo a small

oscillation in time with the frequency of ω, and write

u(r, t) = Re[u(r)eiωt ]. (2.16)

The acceleration of the mass element, dm, at p, relative to the inertial frame, is combi-

nation of the translational, Coriolis and centrifugal accelerations and is expressed by the

Lagrangian formulation as

dv
dt

=
d2p
dt2 =−σ

2u+ iσê3×u+
1
4

ê3× (ê3×p). (2.17)

where σ =
ω

2Ω
, is non-dimensionalized frequency of the oscillation. Substituting (2.15)

and (2.17), the equation of motion, (2.2), at the disturbed position, p, can be written as

−σ
2u+ iσê3×u = g0 +∇V1 +

1
ρ

∇.T̃, (2.18)

in which g0, dimensionless gravity, is defined similar to (2.5) as a result of the gravitational

and centrifugal accelerations at p

g0 = ∇V0−
1
4

ê3× (ê3×p) = ∇(V0 +
1
2
|ê3× r|2) =

[
−g0(r)+

2
3

r
]
r̂, . (2.19)

in which

g0(r) =−
dV0

dr
= G

M(r)
r2

(2.20)
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is dimensionless gravitational acceleration1. From (2.20)

dg0

dr
=−2g0(r)

r
+4πGρ0(r) (2.21)

All quantities on the right hand side (RHS) of the equation (2.18) are evaluated at the

disturbed position, p. To first order in u, these quantities can be evaluated with respect to

the coordinates of r, using the following Taylor expansions

∇p = ∇r− (∇u).∇r (2.22)

ψ(p) = ψ(r)+u.∇ψ. (2.23)

Operating (2.22) and (2.23) on the (2.14), we obtain

∇.T̃ =−∇p0 +(∇u).(∇p0)+∇.S̃. (2.24)

Also operating (2.22), To first order in u,(2.19) can be evaluated at r as

g0(p) = g0(r)+u.∇g0(r). (2.25)

Using (2.1) and (2.23), the density of the disturbed mass element can be evaluated at r as

ρ(p) = ρ0(r)+u.∇ρ0 +ρ1r = ρ0(r)−ρ0∇.u. (2.26)

Multiplying (2.18)by ρ (from (2.26)), and substituting (2.24) and (2.25), we get

(
ρ0(r)−ρ0∇.u

)(
σ

2u− iσê3×u+g0 +u.∇g0 +∇V1
)
−∇p0 +(∇u).(∇p0)+∇.S̃ = 0.

(2.27)
1Recall that the parameters g0, G, ρ and M are non-dimensionalized as G = G/Ω2, g0 = g0/(rΩ2), ρ =

ρ/ < ρ > and M = M/(r3 < ρ >), respectively.
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Dropping the terms of higher than the first order in u and V1, and using (2.6), the equation

of motion evaluated at r becomes

σ
2u− iσê3×u−g0∇.u+∇(u.g0)+∇V1 +

1
ρ0

(
∇.S̃
)
= 0 , (2.28)

in which we used (2.7) to simplify the third term as

u.∇g0 +(∇u).g0 = ∇(u.g0). (2.29)

2.3 Poission’s Equation

Conservation of the gravitational flux through the Earth evaluated at p is

∇
2V =−4πGρ. (2.30)

where G is non-dimensionalized gravitational constant (GND = G < ρ > /(RΩ)2). Using

(2.1), (2.23), and the fact that the equation (2.30) is valid in the equilibrium configuration

at r (i.e. ∇2V0 =−4πGρ0), The Poisson’s equation (2.30) can be evaluated at p as

∇
2V1 =−4πG∇(ρ0u) . (2.31)

The PDEs (2.28) and (2.31) are governing the small periodic oscillations of a spherically-

symmetric isotropic elastic rotating Earth model, slightly disturbed from hydrostatic equi-

librium. These equations involve all five conservation laws. Complete solutions of these

equations require implementing of the correct boundary conditions. Note that the response

of the real Earth to the stress is not perfectly elastic which means that any free oscillation is

damping in time. This feature cause the parameters to be function of frequency. However,

at this point we shall not consider the effect of anelasticity. Besides, in the equations we

derived the effect of the viscosity is ignored.
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2.4 Boundary Conditions at the Interfaces

The boundaries are referred to the surfaces where one or more of the material properties

(such as ρ0,α and β) are discontinuous. In the spherically symmetric Earth in hydrostatic

equilibrium, these surfaces are spheres of the equipotentials of V0(r). Suppose the unit

normal vector on the equilibrium boundary at r, to be n̂, and on the deformed boundary at

p, to be N̂. We also denote ∆ to refer to the difference between the outer and inner parts of

the boundary.

Conservation of the mass requires a continuity of displacement, u, at the deformed

boundary p in a solid-solid interfaces. to first order in u, this kinematic boundary condition

at the equilibrium boundary can be regarded as

∆u = 0 . (2.32)

However, at a solid-fluid interface, for an inviscid fluid, in the absence of viscosity, there

is no friction between fluid layers to prevent tangential slip. Therefore, only the normal

component of the u is required to be continuous at the deformed boundary.

Figure 2.2: The normal component of the u is required to be continuous at the solid-fluid
boundary.

∆(N̂.u) = 0. (2.33)
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Again, neglecting the quantities higher than the first order in the u, the kinematic boundary

condition at a solid/fluid interface can be evaluated at the equilibrium boundary as

∆(n̂.u) = 0 . (2.34)

The next is the dynamic boundary conditions. Newton’s third law for the short range force

across the deformed boundary results in

∆(N̂.T) = 0. (2.35)

The equilibrium boundary is an isobar, ρo(r+) = ρo(r−). Therefore, using (2.14), to the

first order in u, (2.35) reduces to

∆(n̂.S) = 0 , (2.36)

evaluated at the equilibrium boundary.

We also need to establish a boundary condition on the gravitational field. The body

forces depend on the derivatives of an Eulerian change in the gravitational potential, ∇V1.

Therefore, ∇V1 must exist in the boundary which requires V1 to be continuous at the de-

formed boundary. Sine V1 is evaluated at the equilibrium position, then,

∆V1 = 0 . (2.37)

Last boundary condition is resulted from the Poisson’s equation, (2.31), which can be writ-

ten as

∇.(∇V1−4πGρ0u) = 0. (2.38)

To extract the boundary condition on the gravitational flux, we consider a small cylindrical

surface with the following characteristics: (1) An infinitely small side area, and (2) the

upper and lower surfaces normal to the deformed boundary (see Figure 2.3). Applying the
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Figure 2.3: A small cylindrical Gaussian surface with an infinitely small side area (h→ 0),
and the bellow and above surfaces normal to the deformed boundary.

divergence theorem on the (2.38) in this surface, results in

N̂.[∇V1−4πGρ0u]+− N̂.[∇V1−4πGρ0u]− = 0. (2.39)

to first order in u and V1, (2.39) reduces to

∆[n.(∇V1−4πGρ0u)] = 0 . (2.40)

In summary, the boundary conditions of (2.32) [or (2.34)], (2.36), (2.37) and (2.39) are

essential to calculate the solutions of the (2.28) and (2.31) across a surfaces of discontinuity

in any material properties.

2.5 The Poincaré Earth Model

2.5.1 Single scalar equation representation

For an incompressible inviscid fluid, PDEs (2.28) and (2.31) reduce to equation of the

motion (Greenspan, 1968),

σ
2u− iσê3×u+∇P = 0, (2.41)

and continuity equation,

∇.u = 0, (2.42)
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where u and P are respectively dimensionless displacement vector field and pressure, and

have wave-like time dependence with frequency of ω, (σ = ω/2Ω). Note that the dimen-

sionless pressure in (2.41) is (PND = P/ρ). Solutions of the equations (2.41) and (2.42) are

subject to inviscid impermeability boundary condition

n.u = 0. (2.43)

In terms of the pressure, equations (2.41) and (2.42) reduce to a boundary value so-called

Poincaré equation,

∇
2P− 1

σ2

(
ê3.∇

)2P = 0. (2.44)

−σ
2n̂.∇P+(n̂.ê3)(ê3.∇P)+ iσ(ê3× n̂).∇P = 0 (2.45)

for σ≤ 1. This equation is hyperbolic (Greenspan, 1964) and since pressure perturbations

for contained fluids must meet impermeability boundary conditions, the problem is mathe-

matically ill-posed.

For some containers (such as full sphere or cylinder) the Poincaré equation is separable

and admits analytical solutions, while, for most of the other geometries (such as spherical

shell) above mentioned property implies the solutions of the problem to be ill-posed, i.e.

the boundary conditions become over constrained and solutions of the equations can not

be uniquely determined in these geometries . In these cases, the determinant of the matrix

of coefficients becomes unstable with respect to the frequency and forbids the existence of

eigenvalues and eigenmodes. Considering viscosity (Rieutord, 1995) and compressibility

(Seyed-Mahmoud, 2007) may regularize the singularities.

2.5.2 Four equation description

Instead of solving the second order hyperbolic equations of (2.44) and (2.45), in the

next chapter, we use Galerkin method to directly solve system of linear equations (2.41) and

(2.42). We will show that, this approach may remove part of the singularity of the problem
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2.5. THE POINCARÉ EARTH MODEL

and result in the convergence of matrix of coefficients for most of the inertial modes. Also,

implementation of a Galerkin allows us to apply divergence theorem to make boundary

conditions to be satisfied naturally. This condition may also remove the singularities that

arise from impermeability BCs in the Poincaré method.

From (2.41), equation (2.42) can be written as

∇.
(
− iσê3×u+∇P

)
= 0 (2.46)

Therefore, the dynamics of our Earth model is described by the set of four scalar second-

order PDEs, three components(2.44) and a (2.46), along with the corresponding boundary

condition (2.43). These PDEs governing the four dependent variables (the three compo-

nents of u, and the P. For the sake of brevity, we write these dependent variables as the

column matrix, Ψ = [Ψ1,Ψ2,Ψ3,Ψ4]
T .

Also, we define coefficient matrices K and B to represent three scalar components of PDEs

(2.43) and (2.46) and BC (2.43), respectively.

KΨ = 0 ; BΨ = 0 (2.47)

It the next chapter we will show that, without involving in the complexity of the real equa-

tions, this notation permits us to simply show the basics of the Galerkin method that we use

to obtain approximate solutions Ψ of PDEs and BCs governing Earth dynamic.
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Chapter 3

Galerkin Method and Integration of the
Governing Equations

In this chapter we introduce the Galerkin method to numerically solve these PDEs for the

normal modes of the Earth. The Galerkin method is the equivalent of the method of varia-

tional principles. It is a numerical method for converting a continuous differential equations

to a discrete problem and then applying some constraints to characterize the space with a

finite set of basis functions.

The formulation we will use in this chapter is pretty much routine and was used by many

other authors (see for example Smith, 1974; Rieutord, 1995), however the uniqueness of this

study is in the implementation of the Galerkin method for solving the equations.

3.1 Spheroidal and Toroidal Vector Fields

The objectives are this work is to first solve for the eigenfrequencies and the displace-

ment and pressure eigenfunctions of the inertial modes of the rotating fluid body. Math-

ematically, any continuous function can be represented as an infinite sum of independent

terms. For example, Taylor expansion represents a function as an infinite sum of the values

that calculated from the derivatives of the function at certain point (Thomas and Finney,

1992). In the spherical coordinate system, it is more convenient to factor dependent vari-

ables into a radial (r-dependent part) and a spherical part (depending on θ and φ). Solutions

of spherical parts can be then written in terms of the spherical harmonics. We also represent

the vector displacement, u, by its radial r̂, transverse spheroidal ∇Y m
n , and toroidal r×∇Y m

n
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3.1. SPHEROIDAL AND TOROIDAL VECTOR FIELDS

components. We will show that this representation allow us to use the properties of the

spherical harmonics (section A.1) to separated our vector equation into three linear scalar

PDEs. Therefore, non-dimensionalized solutions (displacement vector u and pressure P) of

(2.41) and (2.46) have the form

u =
∞

∑
n=0

n

∑
m=−n

[
r̂Um

n (r)+ rV m
n (r)∇−W m

n (r)r×∇
]
Y m

n (θ,φ) (3.1)

and

P =
∞

∑
n=0

n

∑
m=−n

Xm
n (r)Y m

n (θ,φ), (3.2)

where Y m
n (θ,φ) are the spherical harmonics of degree n and azimutal order m. In the spher-

ical polar coordinate, components of u in (3.1) are

ur =
∞

∑
n=0

n

∑
m=−n

Um
n (r)Y m

n (θ,φ)

uθ =
∞

∑
n=0

n

∑
m=−n

[
V m

n (r)
∂

∂θ
+ im

W m
n (r)

sinθ

]
Y m

n (θ,φ)

uφ =
∞

∑
n=0

n

∑
m=−n

[
im

V m
n (r)
sinθ

−W m
n (r)

∂

∂θ

]
Y m

n (θ,φ).

(3.3)

We can write radial parts of (3.2) and (3.3) in terms of linear combination of Legendre

functions of degree l

Um
n (r) =

∞

∑
l=0

Um
n,l Pl(x)

V m
n (r) =

∞

∑
l=0

V m
n,l Pl(x)

W m
n (r) =

∞

∑
l=0

W m
n,l Pl(x)

Xm
n (r) =

∞

∑
l=0

Xm
n,l Pl(x)

(3.4)

in which Um
n,l , V m

n,l , W m
n,l and Xm

n,l are all constants that will be defined by solutions of PDEs.

Parameter x is the dimensionless distance that has been modified to satisfy x ∈ [−1,+1].
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3.3. INTEGRATIONAL FORM OF THE GOVERNING PDES

Where x =−1 corresponds to r = 0, and x = 1 to r = R 1.

3.2 The Galerkin Method

Assume Ψ to be the exact solutions of the set of PDEs (like (2.47)). In general the

Galerkin method indicates that Ψ is also the acceptable approximate solution of those equa-

tions if for any arbitrary weight function φ>, we can write

∫
φ
>K̃Ψ dV = 0, (3.5)

We consider Φ> = Ψ∗> = [u∗(r,θ,φ),P∗(r,θ,φ)]> and define F as,

F =
N,L

∑
n,l

N,L

∑
q, j

∫
Φ
∗
q, jK̃Ψn,l dV, (3.6)

where, similar to (3.2) and (3.4), j, q and k indicate radial, spherical and azimuthal parts,

respectively. Condition (3.5) requires,

∂F
∂U∗q, j

= 0 ;
∂F

∂V ∗q, j
= 0 ;

∂F
∂W ∗q, j

= 0 ;
∂F

∂X∗q, j
= 0 (3.7)

This condition result in N× L linear equations for each component, which in total gives

4×N×L linear equations that must be solved for 4×N×L unknowns.

3.3 Integrational Form of the Governing PDEs

Plugging equations (2.41) and (2.46) into the Galerkin integral, (3.5), we obtain

∫
u∗.
[

σ
2u− iσê3×u+∇P

]
dV = 0 (3.8)

1For each layer, x is defined as x = (2r−LB−HB)/(HB−LB), where LB and HB are lower and higher
boundaries of each layer, respectively. For example for innercore with radius of a = 1221.5 km, HB = a and
LB = 0, therefore, r ∈ [0,a]→ x ∈ [−1,1].
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3.3. INTEGRATIONAL FORM OF THE GOVERNING PDES

∫
P∗∇.

(
− iσê3×u+∇P

)
dV = 0 (3.9)

Now we can apply the divergence theorem on gradient terms to remove derivatives and

write (3.8) as

∫ {
u∗.
(

σ
2u− iσê3×u

)
− (∇.u∗)P

}
dV +

∫
S

{
n̂.u∗P

}
dS = 0 (3.10)

Also, (3.9) can be simplified as

∫
∇P∗.

(
− iσê3×u+∇P

)
dV −

∫
S

P∗n̂.
(
− iσê3×u+∇P

)
dS = 0 (3.11)

We follow Rochester (lecture notes provided by my supervisor) and write spheroidal and

Figure 3.1: Divergence theorem is used in equations (3.10) and (3.11) to reduce the order
of the equations by one, and to make impermeability boundary condition to be satisfied
naturally.

toroidal components of the ê3×u term in equations (3.10) and (3.11) as

ê3×u =−sinθ uφr̂− cosθ uφθ̂+(sinθ ur + cosθ uθ)φ̂

=
∞

∑
n

n

∑
m=−n

[Dm
n r̂+ rEm

n ∇r−Fm
n r×∇]Y m

n ,
(3.12)
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where

Dm
n =− imV m

n +W m
n sinθ

∂

∂θ

n(n+1)Em
n =− im(Um

n +V m
n )+W m

n [n(n+1)cosθ+ sinθ
∂

∂θ
]

n(n+1)Fm
n =[2Um

n −n(n+1)V m
n ]cosθ+(Um

n −V m
n )sinθ

∂

∂θ
− imW m

n

(3.13)

In (3.13) we used recurrence relations for spherical harmonic functions and their derivatives

section A.1.

Similarly, the term ∇.u∗ is

∇.u∗ =
∞

∑
q

q

∑
k=−q

[
dUk

q

dr
+

2Uk
q −q(q+1)V k

q

r

]
Y k

q (3.14)

3.3.1 Implementation of Galerkin method on the equation of motion

Substituting (3.2), (3.3), (3.12) and (3.14) in to the equations (3.10) and (3.11) result in

∫
∑
n

∑
m

∑
q

∑
k

{[
Uk

q
∗r̂+

(
V k

q
∗ ∂

∂θ
− ik

W k
q
∗

sinθ

)
θ̂−
(

ik
V k

q
∗

sinθ
+W k

q
∗ ∂

∂θ

)
φ̂

]
Y k

q
∗

×

[
σ

2
[
Um

n Y m
n r̂+

(
V m

n
∂

∂θ
+ im

W m
n

sinθ

)
Y m

n θ̂+

(
im

V m
n

sinθ
−W m

n
∂

∂θ

)
Y m

n φ̂

]
− iσ

[
Dm

n Y m
n r̂+

(
(Em

n
∂

∂θ
+ im

Fm
n

sinθ

)
Y m

n θ̂+

(
im

Em
n

sinθ
−Fm

n
∂

∂θ

)
Y m

n φ̂

]
−
[

dUk
q
∗

dr
+

2Uk
q
∗−q(q+1)V k

q
∗

r

]
Y k

q
∗
[

Xm
n Y m

n

]]}
dV

+
∫

S
∑
n

∑
q

∑
m

{
Uk

q
∗
Y k

q
∗
[

Xm
n Y m

n

]}
dS = 0

(3.15)
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Expanding (3.15), substituting Y m
n from (A.10) and integrating over φ using (A.12) result in

∫
∑
n

∑
q

∑
m

{
σ

2
[
Um

q
∗Um

n Pm
q Pm

n +
(

V m
q
∗V m

n +W m
q
∗W m

n

)[∂Pm
q

∂θ

∂Pm
n

∂θ
+

m2

sin2
θ

Pm
q Pm

n

]
+ im

(
V m

q
∗W m

n −W m
q
∗V m

n

)[ Pm
q

sinθ

∂Pm
n

∂θ
+

∂Pm
q

∂θ

Pm
n

sinθ

]]
− iσ

[
Um

q
∗Dm

n Pm
q Pm

n +
(

V m
q
∗Em

n +W m
q
∗Fm

n

)[∂Pm
q

∂θ

∂Pm
n

∂θ
+

m2

sin2
θ

Pm
q Pm

n

]
+ im

(
V m

q
∗Fm

n −W m
q
∗Em

n

)[ Pm
q

sinθ

∂Pm
n

∂θ
+

∂Pm
q

∂θ

Pm
n

sinθ

]]
−
[

dUm
q
∗

dr
+

2Um
q
∗−q(q+1)V m

q
∗

r

]
Pm

q

[
Xm

n Pm
n

]}
r2dr sinθdθ

+
∫

S
∑
n

∑
q

∑
m

{
Um

q
∗Pm

q Xm
n Pm

n

}
r2 sinθdθ = 0

(3.16)

Using recurrence formulas (A.4) and (A.5), equations (3.16) becomes simplified to

∫
∑
n

∑
q

∑
m

{
σ

2
[
Um

q
∗Um

n Pm
q Pm

n +
(

V m
q
∗V m

n +W m
q
∗W m

n

)
n(n+1)Pm

q Pm
n

]
− iσ

[
Um

q
∗Dm

n Pm
q Pm

n +
(

V m
q
∗Em

n +W m
q
∗Fm

n

)
n(n+1)Pm

q Pm
n

]
−
[

dUm
q
∗

dr
+

2Um
q
∗−q(q+1)V m

q
∗

r

]
Pm

q

[
Xm

n Pm
n

]}
r2dr sinθdθ

+
∫

S
∑
n

∑
q

∑
m

{
Um

q
∗Pm

q Xm
n Pm

n

}
r2 sinθdθ = 0

(3.17)
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By rearrangement of the terms in (3.17), we get

∫
∑
n

∑
q

∑
m

{
Um

q
∗Pm

q

(
σ

2Um
n Pm

n − iσDm
n Pm

n

)
−
[

dUm
q
∗

dr
+

2Um
q
∗

r

]
Pm

q Xm
n Pm

n

+V m
q
∗Pm

q n(n+1)
(

σ
2V m

n Pm
n − iσEm

n Pm
n +

Xm
n
r

Pm
n

)
+W m

q
∗Pm

q n(n+1)
(

σ
2W m

n Pm
n − iσFm

n Pm
n

)}
r2dr sinθdθ

+
∫

S
∑
n

∑
q

∑
m

{
Um

q
∗Pm

q Xm
n Pm

n

}
r2 sinθdθ = 0

(3.18)

Plugging (3.13) into (3.18), the Glerkin integrals of Poincaré equation becomes

∑
n

∑
q

∑
m

∫ (
Um

q
∗Pm

q

[
σ

2Um
n −σmV m

n − iσW m
n sinθ

∂

∂θ

]
Pm

n

−
[

dUm
q
∗

dr
+

2Um
q
∗

r

]
Pm

q Xm
n Pm

n

+V m
q
∗Pm

q

[
−σmUm

n Pm
n +V m

n

(
n(n+1)σ2−σm

)
Pm

n

+W m
n

[
n(n+1)σcosθ+σsinθ

∂

∂θ

]
Pm

n +n(n+1)
Xm

n
r

]

+W m
q
∗Pm

q

[
−Um

n

[
2σcosθ+σsinθ

∂

∂θ

]
Pm

n

+V m
n

[
σn(n+1)cosθ+σsinθ

∂

∂θ

]
Pm

n

+W m
n

[
n(n+1)σ2−σm

]
Pm

n

])
r2dr sinθdθ

+∑
n

∑
q

∑
m

∫
S

{
Um

q
∗Pm

q Xm
n Pm

n

}
r2 sinθdθ = 0

(3.19)
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With the same approach incompressibility condition, (3.11), can be written as

∑
n

∑
q

∑
m

∫ (
∂Xm

q
∗

∂x

[
−σmV m

n − iσW m
n sinθ

∂

∂θ
+

∂Xm
n

∂r

]

+
Xm

q
∗

x

[
−σmUm

n −σmV m
n −W m

n

(
−n(n+1)σcosθ−σsinθ

∂

∂θ

)
+n(n+1)

Xm
n
x

])
Pm

n Pm
q r2dr sinθdθ

−∑
n

∑
q

∑
m

∫
S

{
Um

q
∗Pm

q

[
−σmV m

n − iσW m
n sinθ

∂

∂θ
+

∂Xm
n

∂r
Pm

n

]}
r2 sinθdθ = 0

(3.20)

where, as we mentioned before, Y m
n (θ,φ) are the spherical harmonics of degree n and order

m, and Um
n (r) , V m

n (r) , W m
n (r), and Xm

n (r) are functions of r only. Because of the symmetry

around ê3 it can be seen that in (3.19) and (3.20), equations with different order m are

decoupled, While, rotation causes terms of degree n to form a coupled chain (appears in the

form of sin and cos functions).

Invoking the linear independence of the Pm
n and use of (3.7) condition in the next chapter

we will introduce numerical method to solve PDEs (3.19) and (3.20).

3.4 Implementation of Boundary Conditions

Integral equations (3.19) and (3.20) are linear PDEs that governing Earth’s normal

modes. Complete solution of these PDEs requires adding the boundary conditions to the

integrals, both at the inner-core boundary (ICB) and core-mantle boundary(CMB).

3.4.1 Regularity of dependent variables at r = 0

To guarantee that the solutions are finite at r = 0 we follow Seyed-Mahmoud (Seyed-

Mahmoud et al., 2015) and make derivatives of radial terms (Legendre expansions) to van-

34



3.4. IMPLEMENTATION OF BOUNDARY CONDITIONS

ish at the center of the Earth. Suppose in general we have such an expression.

F(x) = ∑
n

cnPn(x) = ∑
n

cnPn(x) = c0 + c1r+ c2P2(x)+ · · ·+ cNPN(x) (3.21)

where x ∈ [−1,+1] and cn are constants. We set P0(x) = 1 and P1(x) = x. The boundary

condition at r = 0 requires.

F ′(x) = c1 + c2P′2(x)+ · · ·+ cNP′N(x) = 0

∴ c1 =−c2P′2(x)−·· ·− cNP′N(x)
(3.22)

Substituting (3.22) into (3.21) result in

F(x) = c0 +
(
− c2P′2(r)−·· ·− cNP′N(r)

)
r+ c2P2(r)+ · · ·+ cNPN

= c0 + ∑
n=2

cn

(
Pn(r)− rP′n(r)

) (3.23)

Using (3.23) in a spherical container, grantees that our results will remain finite in the limit

of r→ 0.

3.4.2 At solid-fluid boundary

Both at the ICB and CMB, shear stress vanishes due to fluidity of the outer core. The

normal displacement, normal component of the stress, gravitational potential perturbation

and its gradient are continuous. Therefore implementing the Galerkins’ method on BCs

from section 2.4 result is following boundary equations

∆(n̂.u) = 0

∴
∫

S
∑
n

∑
q

∑
m

Um
q
∗Pm

q

(
Um

n Pm
n

∣∣∣∣∣
−

−Um
n Pm

n

∣∣∣∣∣
+

)
r2 sinθ dθ = 0

(3.24)

Where − and + refer to upper part and lower part of the boundaries, respectively.
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Chapter 4

Numerical integration of the PDEs

In this chapter, we describe the method that we use to integrate the Galerkin equations

we derived in chapter 3. We first, validate our numerical method by computing the eigen-

frequencies and the eigenfunctions of an incompressible, homogeneous fluid which com-

pletely fills a rotating spherical cavity which described by so-called Poincaré equation

(2.44) and the accompanying impermeability boundary condition (2.45) for which analyti-

cal solutions exists. We show that the computed frequencies (given to 3 decimal points) and

the pattern of the eigenfunctions are identical to their analytically computed counterparts.

In subsection 4.2.2, our numerical result for frequencies and displacement eigenvectors and

pressure eigenvalues of the inertial modes of spherical shell container with rigid boundaries

are given.

4.1 Coefficient Matrix

We are interested to study the normal modes of the Earth with azimuthal order of 0 and

1 which are associated with Earth’s length of day and wobble/nutation modes, respectively.

We consider finite number of basis functions for integration but increase the number as ap-

propriate to make sure the results are converged. We set L truncation for radial and N for

azimuthal expansions and apply the Galerkin method. L and N are then increased indepen-

dently until convergence is achieved. The equations (3.19) and (3.20) form a (4NL×4NL)
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4.1. COEFFICIENT MATRIX

matrix, by setting the trial functions, (3.4) as

U(r) =
N

∑
n=1

Um
n (r) =

N

∑
n=1

( L

∑
l=1

Um
n,l Pl(x)

)
Y m

n =
N

∑
n=1

L

∑
l=1

aL(n−1)+lPl(x)Y m
n (θ,φ)

V (r) =
N

∑
n=1

V m
n (r) =

N

∑
n=1

( L

∑
l=1

V m
n,l Pl(x)

)
Y m

n =
N

∑
n=1

L

∑
l=1

aL(N+n−1)+lPl(x)Y m
n (θ,φ)

W (r) =
N

∑
n=1

W m
n (r) =

N

∑
n=1

( L

∑
l=1

W m
n,l Pl(x)

)
Y m

n =
N

∑
n=1

L

∑
l=1

aL(2N+n−1)+lPl(x)Y m
n (θ,φ)

X(r) =
N

∑
n=1

Xm
n (r) =

N

∑
n=1

( L

∑
l=1

Xm
n,l Pl(x)

)
Y m

n =
N

∑
n=1

L

∑
l=1

aL(3N+n−1)+lPl(x)Y m
n (θ,φ)

(4.1)

where m is either 0 or 1.

4.1.1 Integration with respect to θ

We take advantage of the orthogonality property of the associated Legendre polynomi-

als in which
∫

Pm
n (x)Pm

q (x) dx ∝ δn,q. Using following relations, we can simplify integration

over θ.

cosθPm
n =

n+m
2n+1

Pm
n−1 +

n−m+1
2n+1

Pm
n+1 (4.2)

sinθ
∂Pm

n
∂θ

=
n(n−m+1)

2n+1
Pm

n+1−
(n+1)(n+m)

2n+1
Pm

n−1 (4.3)

P2Pm
n =

3
2
(n+m)(n+m−1)
(2n+1)(2n−1)

Pm
n−2 +

n(n+1)−3m2

(2n+3)(2n−1)
Pm

n +
3
2
(n+2−m)(n−m+1)

(2n+1)(2n+3)
Pm

n+2

(4.4)
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P2 cosθPm
n =

3(n+m)(n+m−1)(n+m−2)
2(2n+1)(2n−1)(2n−3)

Pm
n−3

+

[
3(n+m)(n+m−1)(n−m−1)

2(2n+1)(2n−1)(2n−3)
+

(n(n+1)−3m2)(n+m)

(2n+3)(2n−1)(2n+1)

]
Pm

n−1

+

[
(n(n+1)−3m2)(n−m+1)
(2n+3)(2n−1)(2n+1)

+
3(n+2−m)(n−m+1)(n+m+2)

2(2n+1)(2n+3)(2n+5)

]
Pm

n+1

+
3(n+2−m)(n−m+1)(n−m+3)

2(2n+1)(2n+3)(2n+5)
Pm

n+3

(4.5)
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+
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3
2
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(2n+3)(2n+5)
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P1
2

∂Pm
n

∂θ
=

3(n+1)(n+m)(n+m−1)
(2n+1)(2n−1)

Pm
n−2 +

3n(n+1)−9m2

(2n+3)(2n−1)
Pm

n

− 3n(n+2−m)(n−m+1)
(2n+1)(2n+3)

Pm
n+2

(4.7)

We developed FORTRAN subroutines to integrate the equations with respect to θ.

4.1.2 Integration with respect to r

We use FORTRAN subroutine from Numerical Precipices (see Seyed-Mahmoud, 1994)

to produce Legendre polynomials and their derivatives as a trial function for r dependency.

Next, we use the orthogonality properties to simplify the integrals. Finally, we use IMSL

(IMSL, 1989) subroutine to integrate equations with respect to r.

4.2 Eigenfrequencies and Eigenfunctions of the Normal Modes

Once we integrate over volume and surface boundaries of the Earth, we have 4NL linear

equations in 4NL unknowns. This system of equations can be presented in matrix form as
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a 4NL×4NL matrix of coefficients governing 4NL variables, an,l ,



U1,1 U1,2 · · · U1,L U2,1 · · · UN,L V1,1 · · · VN,L · · · XN,L

(3.19) − (3.20)





a1

a2

...

aL

aL+1

...

aNL

aNL+1

...

a2NL

...

a4NL



= 0

The eigenfrequencies of the Earth’s inertial modes are the eigenvalues of this matrix (σ),

which correspond to the zeros of the determinant. Nmin and Lmin are minimum numbers of

iterations required for converged results in radial and azimuthal terms, respectively. Using

(3.2) and (3.3), we calculate the displacement eigenvectors, u, and eigenvalues of pressure,

P and compare them with those for a fluid sphere for which analytical solutions exists.

4.2.1 Norman Modes of the Poincaré Earth Model

In the first stage, we check the validity of our numerical approach, by computing some

of the low order (m = 0 and m = 1) inertial modes of the Poincaré Earth model for a spher-

ical container. We check the convergence of the results by using different number of terms

Lmin and Nmin. The criteria we use to check the convergence of the frequencies is that, for
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a given Nmin, we increase Lmin until the modal frequency of interest shows convergence (do

not change by increasing N and L). We then fix Lmin and increase Nmin till the value of a

frequency reconverges. Such a stable frequency (for any N > Nmin and L > Lmin) is identi-

fied temporarily as a modal frequency. We will then plot the displacement patterns to make

sure that the identified frequency indeed corresponds to a model frequency.

We search the entire range of frequencies,−1< σ< 1, (for m= 0 and m= 1 modes) for

full-spherical Earth model. We use increment of 10−5 to minimize the possibility of over

stepping a frequency. To present the modes, we use the same notation that was defined by

Greenspan (1968) in which for the (n,k,m) mode, n and m refer to the degree (meridional)

and the order (azimuthal) dependence, respectively, and k = 1, . . . ,n−|m| . Because of the

truncation, we expect a number of spurious frequencies to appear in the computed frequency

spectrum, arising from zeros of the determinant of the coefficients matrix.

In Table 4.1 the non-dimensional eigenfrequencies that we calculated for a spherical

model are given. The frequencies obtained using our model converged, to 3 decimal points,

to the exact analytic solutions of Poincaré equations and displacement patterns of the iden-

tified modes are identical to those of the Poincaré model. This indicates the reliability of

our numerical approach.

4.2.2 Normal Modes of the Uniformly Rotating Spherical Fluid Shell

We now use our approach to calculate the normal modes of the uniformly rotating in-

compressible fluid contained within a rigid spherical shell proportional to the Earth’s fluid

core. Note that, unlike the spherical case, no general analytical solutions exist for the in-

ertial modes of a fluid shell of zero viscosity. This is due to the hyperbolic nature of the

Poincaré equation, (Rieutord, 1997).

We use the same criteria described in previous section, and search in the range of σ ∈

(−1,1) for modal frequencies of the spherical shell. We expect that these frequencies are

in the vicinity of the frequencies of the spherical model. Table 4.2 shows some of the
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Table 4.1: Convergence pattern for some of the frequencies with m = 1 modes. The exact
frequencies for the Poincaré model are shown in column 2.

σ

Mode Poincaré (N=4, L=6) (N=4, L=7) (N=4, L=8) (N=5, L=7) (N=5, L=8)
(2,1,1) 0.500 0.500 0.500 0.500 0.500 0.500
(3,1,1) -0.088 -0.088 -0.088 -0.088 -0.088 -0.088
(3,2,1) 0.755 0.755 0.755 0.755 0.755 0.755
(4,1,1) -0.410 -0.410 -0.410 -0.410 -0.410 -0.410
(4,2,1) 0.306 0.306 0.306 0.306 0.306 0.306
(4,3,1) 0.854 0.854 0.854 0.854 0.854 0.854
(5,1,1) -0.592 – – – -0.592 -0.592
(5,2,1) -0.034 -0.052 -0.052 -0.053 -0.034 -0.034
(5,3,1) 0.523 0.521 0.529 0.534 0.523 0.523
(5,4,1) 0.903 0.884 0.893 0.900 0.903 0.903
(6,1,1) -0.702 – – -0.688 -0.702 -0.702
(6,2,1) -0.269 – – -0.262 -0.269 -0.269
(6,3,1) 0.220 – – 0.282 0.220 0.220
(6,4,1) 0.653 – – 0.587 0.653 0.653
(6,5,1) 0.931 – – 0.941 0.931 0.931

frequencies we have computed for a spherical shell model for the m = 0 and m = 1 modes.

The counterpart frequencies for the Poincaré model is also shown in the table (column 3).

Seyed-Mahmoud et al., (2006, 2007) used the so-called 3PD approach (Seyed-Mahmoud,

1994) to compute the frequencies of the rotating compressible and stratified fluid spherical

shell with rigid boundaries. The authors could not get the converged frequencies for some

of the modes and they reported the range of fluctuations (in the third decimal place) about

respective mean frequencies. The authors also could not get converged frequencies for

some other modes, for example (3,1,1), (3,2,1), (4,1,1), (5,1,1), (5,2,1), (5,3,1) and (5,4,1)

modes.

The 3PD equations contain the Poincaré operator, therefore the ill-poseness of the prob-

lem may still manifest itself in their approach. This is probably the reason that authors did

not get convergence results for some of the modes. They argue that because of the geome-

try of the displacement eigenfunctions of these modes near inner core boundary, they may
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Table 4.2: Some frequencies of the wavenumbers m = 0 and m = 1 inertial modes of a
uniformly rotating spherical shell models. The exact frequencies for the Poincaré model is
also shown in column 3.

Mode σshell σPoincare Mode σshell σPoincare

(3,1,0) 0.456 0.447 (4,2,1) 0.303 0.306
(4,1,0) 0.663 0.655 (4,3,1) 0.860 0.854
(5,2,0) 0.750 0.765 (5,1,1) -0.586 -0.592
(6,2,0) 0.842 0.830 (5,2,1) 0.024 0.034
(2,1,1) 0.500 0.500 (5,3,1) 0.571 0.523
(3,1,1) -0.068 -0.088 (5,4,1) 0.916 0.903
(3,2,1) 0.673 0.755 (6.1.1) -0.696 -0.702
(4,1,1) -0.402 -0.410

Table 4.3: The convergence pattern for the frequency of the (7,5,1) mode of a spherical
fluid shell

Lmin σ(Nmin = 8) Nmin σ(Lmin = 14)
10 0.743 8 0.743
11 0.743 9 0.744
12 0.743 10 0.745
14 0.743 10 0.744
16 0.744 12 0.744
18 0.744 13 0.744

not satisfy boundary conditions. Therefore, they concluded that these modes may not have

counterparts in the spherical shell.

Our results show that many of these frequencies indeed converge and the displacement

vectors curve near the ICB to satisfy the BC there. Tables 4.3 and 4.4 show the conver-

gence pattern for (7,5,1) and (5,4,1) modes. Notice that these mode were considered as non

converged modes by Seyed-Mahmoud et al., (2006 ; 2007).

In Figures 4.1 we plotted the displacement eigenvectors, u, and pressure eigenfunction

contours, P, for the (4,2,1) mode of a full sphere and spherical shell model. The displace-

ment patterns calculated in meridional plane, φ = 0, and plotted using TecPlot10.0 Soft-

ware. In the pressure contours, red indicate the higher pressure and blue is the indicator of

the lower pressure.
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Table 4.4: The convergence pattern for the frequency of the (5,4,1) mode of a spherical
fluid shell

Lmin σ(Nmin = 8) Nmin σ(Lmin = 14)
10 0.940 7 0.934
11 0.940 8 0.941
12 0.940 9 0.940
13 0.940 10 0.940
14 0.940 11 0.940

The displacement vectors in a sphere are not nearly parallel to the inner core boundary,

where the inner core boundary would be in a shell. The displacement patterns (position and

orientation of the cells) is regular and imitate the displacement pattern of (4,2,1) mode of

the Poincaré model.

In figure 4.2, we show the meridional displacement vectors and the pressure eigen-

function contours for some the wave numbers m = 0 and m = 1, inertial modes of a full-

sphere(left) and their counterparts for a spherical shell (right).
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Figure 4.1: The displacement eigenvectors u in a meridional plane, φ = 0, for the (4,2,1)
mode of rotating incompressible fluid in the full-sphere and spherical shell container with
rigid boundaries. The non-dimensional pressure eigenfunctions are superimposed as con-
tours. Note that the displacement patterns for this mode in the shell they rearrange them-
selves to satisfy the impermeability BC.
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Figure 4.2: The displacement eigenvectors u in a meridional plane, φ = 0, for some of the
low order, azimuthal wavenumbers, m= 0 and m= 1, of rotating incompressible fluid in the
full-sphere and spherical shell containers with rigid boundaries. non-dimensional pressure
eigenfunctions are superimposed as contours. Note that in both we have numerically solved
the momentum and the continuity equations for both geometries. The displacement patterns
for a sphere are identical to those for a Poincaré model and those for a shell closely match
those of a sphere.
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Chapter 5

PDEs Governing the Free Oscillations of
a Compressible Earth Model

In this chapter, we follow the methodology we explained in chapter 3 and chapter 4, to

compute the eigenfrequencies and eigenfunctions of a compressible, stratified fluid which

completely fills a rotating spherical cavity (described by set of equations (2.28) and (2.31)).

5.1 Galerkin Formulation of the Momentum Equation

We assume that non-dimensionalized solutions (displacement vector u and perturba-

tion in the gravitational potential V1) of the equations (2.28) and (2.31) are (3.4) and (3.2),

respectively, except in (3.2) P is replaced by V1. The terms ê3× u and ∇.u in the equa-

tion (2.28) were derived as (3.12) and (3.14), respectively. For a rotating Earth, the non-

dimensionalized gravity, g0 is a result of (dimensionless) gravitational and centrifugal ac-

celerations and is define as (Rochester and Crossley, 2009).

g0 = ∇(V0 +
1
2
|ê3× r|2) =

[
−g0(r)+

2
3

r
]
r̂, (5.1)

where g0 = −∇V0 = GM(r)/r2, is dimensionless gravitational acceleration1. Using (5.1),

the fourth and fifth terms in the LHS of (2.28) can be combined as

∇x(V1 +u.g0) = ∑∑

[
Gm

n r̂+ rHm
n ∇

]
Y m

n . (5.2)

1The parameters g0, G, ρ and M are non-dimensionalized as G = G/Ω2, g0 = g0/(rΩ2), ρ = ρ/ < ρ >
and M = M/(r3 < ρ >), respectively.
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in which Gm
n and Hm

n are

Gm
n =

∂Xm
n

∂r
− ∂Um

n
∂r

g0 +Um
n

2g0

r
−4πGρ0Um

n +
2
3

r
∂Um

n
∂r

+
2
3

Um
n

Hm
n =

1
r

(
Xm

n −Um
n g0 +

2
3

Um
n r

) (5.3)

where we used the conservation of the gravitational flux on V0. The term ∇.S̃ in (2.28) is

given by (2.11). In the Earth’s fluid core β = 0 and thus (2.11) reduces to

1
ρ0

∇x.S̃ =
1
ρ0

∇.

[
ρ0α

2(∇.u) 1̃
]
=

1
ρ0

∇

[
ρ0α

2(∇.u)
]
=

1
ρ0

dρ

dr
α

2

[
dUm

n
dr

+
2Um

n −n(n+1)V m
n

r

]
Y m

n r̂+∇

[
α

2
[dUm

n
dr

+
2Um

n −n(n+1)V m
n

r

]
Y m

n

]
.

(5.4)

Substituting the terms (3.12), (3.14), (5.2) and (5.4), into the (2.28) and plugging into the

Galerkin integral, (3.5), and using divergence theorem, we get

∫
∑
n

∑
q

∑
k

{[
Uk

q
∗r̂+

(
V k

q
∗ ∂

∂θ
− ik

W k
q
∗
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)
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−ik

V k
q
∗
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−W k

q
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∂θ
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]
Y k

q
∗
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σ
2
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∂θ
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(
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2Um
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(5.5)
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Recall that the equations with different order m are decoupled, and hence we dropped the

summation over m. By substituting Y m
n from (A.10), integrating over φ, rearranging, using

recurrence formulas (A.4) and (A.5), and finally implementing (3.7); (5.5) is simplified into

the following three linear integral equations

∑
n

∑
q
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(5.6)
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(5.7)

and,

∑
n

∑
q

∫
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q
∗Pm

q

{
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(5.8)

In (5.6)-(5.8), we apply π degree phase shift to the variables W m
n and W m

q as W m
n →−iW m

n

and W m
q
∗→+iW m

q
∗. This phase shift make all variables to be real.
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5.2 Galerkin Formulation of the Poisson’s Equation

Applying the Galerkin method and the divergence theorem on the scalar equation (2.31)),

and then using (A.10), (A.12), (A.4) and (A.5) to integrate over φ we get

∫
∑
n

∑
q
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(
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n
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n −4πGρ0Um

n Pm
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)
r2 sinθdθ = 0

(5.9)

Integral equations (5.6)-(5.8), and (5.9) are four linear PDEs that governing normal modes

of stratified fluid core. Complete solution of these PDEs requires adding appropriate bound-

ary conditions to the integrals.

5.3 The Governing Boundary Conditions

In addition to the boundary conditions we derived for incompressible fluid in sec-

tion 3.4, compressibility imposes additional boundary conditions as following. Both in the

ICB and CMB, the shear stress vanishes. The normal displacement, normal stress, gravi-

tational potential perturbation and its gradient are continuous. Therefore implementing the

Galerkins’s method on BCs from section 2.4 result into the following boundary equations

(n̂.u) = 0 ∴
∫

S
∑
n

∑
q

Um
q
∗Pm

q

(
Um

n Pm
n

∣∣∣∣∣
S

)
r2 sinθ dθ = 0 (5.10)

Where S refer to ICB and CMB. Outside the fluid core the perturbation in gravitational po-

tential, V1, must satisfy Laplace’s equation 1 and remain finite when r→ ∞. General solu-

tions for Laplace’s equation in spherical coordinate can be written in terms of the spherical

1Outside of the fluid core in the rigid mantle, there is no change in the density and, therefore, Poission’s
equation, (2.30), reduces to Laplace’s equation.
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harmonics as

V1(r > R) =
∞

∑
n=0

am
n

rn+1Y m
n (θ,φ) (5.11)

At the surface of the Earth, r = R, both V1 and n̂.∇V1 should be continues. Thus from (3.2)

and (A.13) for continuity of V1 we can write,

∞

∑
n=0

Xm
n (R)Y m

n (θ,φ) =
∞

∑
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am
n
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Continuity of r̂.∇V1 requires that

∞
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n (R)′Y m

n (θ,φ) =
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where Xm
n (R)′ denotes to

dXm
n (r)
dr

∣∣∣∣∣
R

. Finally, combining (5.12) and (5.13), and using or-

thogonality properties of spherical harmonics we get the final boundary condition for V1.

∞

∑
n=0

[
dXm

n
dr

+n(n+1)
Xm

n
r

]
r=R

Y m
n = 0 (5.14)

Note the equation (5.14) is written entirely in terms of the variables inside the fluid core.

Applying Galerkin’s method, equation (5.14) gives the BC for V1 on the surface of the Earth

as

∫
S
∑
n

∑
q

Xm
q
∗Pm

q

(dXm
n

dr
+n(n+1)

Xm
n
r

)
Pm

n r2 sinθ dθ = 0 (5.15)
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5.4 Removing Surface Integrals from Galerkin Integrals

We use the same weight functions for boundary equations that we used for governing

PDEs. Better to say: using (5.6) and (5.9), (5.10)-(5.14) are written as:
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+
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+
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rUm
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2Um

n −n(n+1)V m
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r
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Pm

n

]}
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∫
S
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q
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q
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2
3

rUm
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n
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2Um

n −n(n+1)V m
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r
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n

}
r2 sinθdθ = 0

(5.16)

∫
∑
n

∑
q
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V m
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+

Um
n −V m

n
r

]
Pm

n

+n(n+1)β2 d
dr

(
dV m

n
dr

+
Um

n −V m
n

r

)
Pm

n +2n(n+1)β
dβ
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n

r
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(
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r
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r
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(5.17)
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∫
∑
n

∑
q

W m
q
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q
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r
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r
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n(n+1)−2

]
W m

n Pm
n

}
r2dr sinθdθ = 0

(5.18)

∫
∑
n

∑
q
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∂Xm
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∗
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∂Xm

n
∂r

Pm
q Pm

n +
n(n+1)

r2 Xm
q
∗Xm

n Pm
q Pm

n

−4πGρ0
∂Xm
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∗

∂r
Um

n Pm
q Pm

n −4πGρ0
n(n+1)
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Xm

q
∗V m

n Pm
q Pm

n

}
r2 dr sinθdθ

−
∫

S
∑
n

∑
q

Xm
q
∗Pm

q

(
∂Xm

n
∂r

Pm
n −4πGρ0Um

n Pm
n

)
r2 sinθdθ = 0

(5.19)

Note that in (5.16) and (5.19) surface integrals are evaluated using the material properties

corresponding to the associated side of the boundary.

5.5 Material Properties of the Earth Model

In this thesis the material properties and position of the boundaries are taken from

the Preliminary Reference Earth Model (PREM). PREM is a spherical non-rotating Earth

model that first constructed by Dziewonski and Anderson (1981), by inverting a huge

amount of the seismological data (including the speed of body waves and frequencies of

normal modes). PREM satisfies the fundamental properties of the Earth such as the mean

radios, R = 6371 km and the average mass, M = 5.974× 1024 kg. In PREM the Earth

is divided into the 13 concentric spherical layers, and the material properties (density and

speed of the P and S waves) in each layer are functions of radius (which are represented by

polynomials).

For the case of spherical fluid core, when the IC is ignored, we modify the density profile

to satisfy a specified stratification. the core properties ρ and α are modified as necessary
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5.6. NUMERICAL INTEGRATION OF THE PDES

Table 5.1: Convergence pattern for some of the frequencies with m = 1 modes for stratified
earth model. Values in the brackets are the number of truncations (N,L). The exact fre-
quencies for the Poincaré model are shown in column 2. The non-dimensionalized eigenfre-
quencies of the neutrally stratified fluid core model obtained using 3PD (Seyed-Mahmoud,
2007) are shown in column 3 (we refer them as SM).

σ

Mode Poincaré SM (4,7) (4,8) (6,9) (6,11) (8,11) (8,13)
(2,1,1) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
(3,1,1) -0.088 – -0.080 -0.115 -0.113 0.112 0.112 0.112
(3,2,1) 0.755 0.748 – 0.751 0.753 0.754 0.752 0.753
(4,1,1) -0.410 – – -0.438 -0.436 -0.439 0.432 -0.432
(4,2,1) 0.306 0.310 – 0.320 0.320 0.319 0.319
(4,3,1) 0.854 0.849 0.826 0.843 0.852 0.853 0.853 0.853
(5,1,1) -0.592 -0.598 -0.611 -0.613 -0.616 -0.608 -0.609 -0.609
(5,2,1) -0.034 – -0.050 -0.051 -0.061 -0.530 -0.053 -0.053
(5,3,1) 0.523 – 0.532 0.531 0.535 0.531 0.531 0.531
(5,4,1) 0.903 0.928 0.906 0.903 0.906 0.904 0.904 0.904

Seyed-Mahmoud (1994).

5.6 Numerical Integration of the PDEs

We follow the same steps we introduced in section 4.1to form the coefficients matrix,

and solve for eigenfrequencies and displacement eigenvectors of stratified core Model.

In Table 5.1 the non-dimensional eigenfrequencies of stratified Earth model are given.

We could get converged results for all the modes that we searched for them. However,

for stratified model convergence requires more number of terms in the iteration chain than

for the Poincaré model. The frequencies obtained using our model are converging to the

values in the vicinity of the analytic solutions of the Poincaré equation, and displacement

patterns of the identified modes are match to those of the Poincaré model (see Figure A.1).

In Table 5.1 (column 3) we also show the numerical results for neutrally stratified fluid core

obtained by Seyed-Mahmoud (2007) using 3PD.

From the results it can be seen that all the models show similar trend. For instance in

all compared models (2,1,1) mode is not affected by stratification, while (4,2,1) mode has
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5.6. NUMERICAL INTEGRATION OF THE PDES

largest deviation from Poincaré model. This result shows that the effects of the density

stratification is most likely related to the displacement eigenfunctions of the modes. For

(2,1,1) mode the flow is solenoidal then the frequency of the mode is not affected by density

stratification. The modes that displacement goes through the center of the Earth in Poincaré

model are influenced more by the density stratification.
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Chapter 6

Governing Equations of an Elliptical
Earth Model

In the chapter 2 PDEs governing free oscillations of the spherically symmetric Earth model

were given. In chapter 3 and chapter 5, we introduced a Galerkin method to integrate

these equations numerically for an incompressible and a compressible spherical models,

respectively. In this chapter, we expand these PDEs to take into account the effects of

ellipticity. We will then use a non-orthogonal (Clairaut) coordinate system to reduce the

effects of the derivatives of the material properties which are poorly constrained in existing

Earth models.

6.1 Clairaut Coordinate System

To introduce the effects of ellipticity of the Earth in our governing PDEs (2.28) and

(2.31), we consider the surface of the reference (hydrostatic equilibrium) Earth model to

be an oblate spheroid with a small deviation from spherical Earth. Therefore, we can use a

first order theory to described this surface as,

r = r0

[
1− 2

3
ε(r0)P2(cosθ0)

]
(6.1)

where ε is the ellipticity of the spheroid and r0, is mean (equivoluminal) radius of this

surface. P2(cos) is second degree Legendre polynomial (Roberts, 1963; Rochester and

Crossley, 2009; Rochester et al., 2014).
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6.1. CLAIRAUT COORDINATE SYSTEM

Figure 6.1: Cross sectional area bounded by an equipotential surface of the (a) elliptical
Earth model with radius r described by eq. (6.1) and (b) equivoluminetric spherical Earth
model with radius r0.

We use the Clairaut coordinate system in which we adopt r0, the mean radius of isopyc-

nics, as a radial coordinate in the hydrostatic Earth model. Then, to first order in ellipticity

the following transformation rules are used to convert any function from spherical coordi-

nate (r,θ,φ) to Clairaut coordinates (r0,θ0,φ).

r = r0

[
1− 2

3
εP2

]
n̂ = r̂+

2
3

εP1
2 θ̂

1
r
=

1
r0

[
1+

2
3

εP2

]
θ = θ0

∂

∂θ0
=

2
3

r0εP1
2

∂

∂r0
+

∂

∂θ0

dV = r2
0

[
1− 2

3
(3ε+ r0ε

′)P2

]
dr0 sinθ0 dθ0 dφ

∂

∂r
=
[
1+

2
3
(ε+ r0ε

′)P2

]
∂

∂r0

∂2

∂r2 =
[4

3
ε
′P2

∂

∂r0
+
[
1+

4
3
(ε+ r0ε

′)P2

]
∂2

∂r2
0

]
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6.2. PDES GOVERNING THE FREE OSCILLATIONS OF AN ELLIPTICAL EARTH
MODEL

1
r

dV =
[
1− 2

3
(2ε+ r0ε

′)P2

]
r0 dr0 sinθ0dθ0 dφ

1
r2 dV =

[
1− 2

3
(ε+ r0ε

′)P2

]
dr0 sinθ0dθ0 dφ

dr0

dr
dV =

[
1− 4

3
εP2

]
r2

0 dr0 sinθ0dθ0 dφ(
dr0

dr

)2

dV = r2
0

[
1− 2

3
(ε− r0ε

′)P2

]
dr0 sinθ0dθ0 dφ

1
r

dr0

dr
dV =

[
1− 2

3
εP2

]
r0 dr0 sinθ0dθ0 dφ

(6.2)

Where ε′ is derivative of ellipticity, ε(r0), with respect to the r0, mean radius of equipoten-

tial surface, and P1
2 = dP2/dθ0.

Implementing the above-mentioned transformations, the governing PDEs for spherical

Earth model, transform to the elliptical Earth model.

6.2 PDEs Governing the Free Oscillations of an Elliptical Earth Model

We use the Galerkin method in a same way that we used in chapter 3 to solve the govern-

ing PDEs of rotating spherical Earth model, PDEs (2.28) and (2.31), and BCs section 2.4.

Material properties still given by PREM as a function of r0. Also, we expand field variables,

three components of u and a V1, as functions of r0 exactly as before,

u =
∞

∑
n=0

[
r̂Um

n (r0)+ r0V m
n (r0)∇−W m

n (r0)r0r̂×∇
]
Y m

n (θ0,φ), (6.3)

V1 =
∞

∑
n=0

Xm
n (r0)Y m

n (θ0,φ). (6.4)
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Similar to (3.8) and (3.9), application of the Galerkin method on the governing PDEs and

using divergance theorem result in

∫ {
u∗.
(

σ
2u−2iσê3×u−g0(∇.u)+(α2−2β

2)(∇.u)
1
ρ0

dρ0

dr
r̂+

1
ρ0

∇.

[
2ρ0β

2 e
])

− (∇.u∗)
(

V1 +u.g0 +(α2−2β
2)∇.u

)}
dV

+
∫

S

{
n̂.u∗

(
V1 +u.g0 +(α2−2β

2)(∇.u)
)}

dS = 0

(6.5)

∫
∇V ∗1 .

(
∇V1−4πGρ0u

)
dV −

∫
S
V ∗1

(
n̂.∇V1−4πGρ0n̂.u

)
dS = 0 (6.6)

All quantities in the (6.5) and (6.6), evaluated at elliptical surface r. Unit normal vector to

this surface to first order in ellipticity is n̂ =
∇r0

|∇r0|
= r̂+

2
3

εP1
2 θ̂. Using (6.2), we proceed

to replace these terms by quantities evaluated at r0.

6.3 Equation of Motion in the Clairaut Coordinate System

With the same approach explained in chapter 4, we expand the terms in the equations

(6.5) in terms or radial and polar parts and are mapped to Clairaut coordinate system using

(6.2). Term ê3×u is described by (3.12) in which Dm
n , Em

n and Fm
n are calculated in new

coordinate system as

Dm
n =− imV m

n +W m
n sinθ0

[
2
3

r0εP1
2

∂

∂r0
+

∂

∂θ0

]
n(n+1)Em

n =− im(Um
n +V m

n )

+W m
n

[
n(n+1)cosθ0 + sinθ0

[
2
3

r0εP1
2

∂

∂r0
+

∂

∂θ0

]]

n(n+1)Fm
n =

[
2Um

n −n(n+1)V m
n

]
cosθ0

+(Um
n −V m

n )sinθ0

[
2
3

r0εP1
2

∂

∂r0
+

∂

∂θ0

]
− imW m

n

(6.7)
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It will ease further simplifications of the integrating, if we multiplying dV to the coefficient.

Therefore,

Dm
n dV =r2

0

[
1− 2

3
(3ε+ r0ε

′)P2

]
×[

− imV m
n +W m

n sinθ0

[
2
3

r0εP1
2

∂

∂r0
+

∂

∂θ0

]]
dr0 sinθ0dθ0dφ

Em
n dV =

1
n(n+1)

r2
0

[
1− 2

3
(3ε+ r0ε

′)P2

]
×

[
− im(Um

n +V m
n )

+W m
n

[
n(n+1)cosθ0 + sinθ0

[2
3

r0εP1
2

∂

∂r0
+

∂

∂θ0

]]]
dr0 sinθ0dθ0 dφ

Fm
n dV =

1
n(n+1)

r2
0

[
1− 2

3
(3ε+ r0ε

′)P2

]
×

[
−
[
2Um

n +n(n+1)V m
n

]
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−V m
n sinθ0

[
2
3

r0εP1
2

∂

∂r0
+

∂

∂θ0

]
− imW m

n

]
dr0 sinθ0dθ0 dφ

(6.8)
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To first order in ellipticity and u the coefficients (6.8) reduce to

Dm
n dV =r2

0

[
− imV m

n +
2
3

imV m
n (3ε+ r0ε

′)P2 +W m
n sinθ0

∂
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2
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∂

∂θ0

]
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0
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n (3ε+ r0ε
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2im
3n(n+1)

V m
n (3ε+ r0ε

′)P2 +W m
n cosθ0 +

W m
n

n(n+1)
sinθ0

∂

∂θ0
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2
3
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n
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2

∂

∂r0
− 2

3
W m
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′)P2 cosθ0

− 2W m
n

3n(n+1)
(3ε+ r0ε

′)P2 sinθ0
∂

∂θ0

]
dr0 sinθ0dθ0 dφ

Fm
n dV =r2

0

[
− 2Um

n
n(n+1)

cosθ0 +
4Um

n
3n(n+1)

(3ε+ r0ε
′)P2 cosθ0

−V m
n cosθ0 +

2
3

V m
n (3ε+ r0ε

′)P2 cosθ0−
V m

n
n(n+1)

sinθ0
∂

∂θ0

− 2
3

r0
V m

n
n(n+1)

sinθ0εP1
2

∂

∂r0
+

2V m
n

3n(n+1)
(3ε+ r0ε

′)P2 sinθ0
∂

∂θ0

− imW m
n

n(n+1)
+

2imW m
n

3n(n+1)
(3ε+ r0ε

′)P2

]
dr0 sinθ0dθ0 dφ

(6.9)

Similarly, ∇.u becomes,

∇.u = ∑∑

[[
1+

2
3
(ε+ r0ε

′)P2

]
∂Um

n
∂r0

+
2Um

n −n(n+1)V m
n

r0

[
1+

2
3

εP2

]]
Y m

n (6.10)

To first order in the ellipticity and displacement we get,

∇.u dV =

[
dUm

n
dr0

[
1− 4

3
εP2

]
r2

0

+
(

2Um
n −n(n+1)V m

n

)
r0

[
1− 2

3
(2ε+ r0ε

′)P2

]]
dr0 sinθ0dθ0 dφ

(6.11)
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To first order in the ellipticity the Earth the equilibrium dimensionless gravity in the Earth’s

interior is given by Seyed-Mahmoud and Moradi (2014)

g0 =−
{[

1+
2
3
(ε+ r0ε

′)P2

]
g0−

2
3

r0

}
r̂−
{

2
3

εP1
2 g0

}
θ̂0. (6.12)

where, as in chapter 3, we used RΩ2 for nondimensionalizing and g0(r0) = GM0/r2
0 (M0 is

the mass enclosed by r0).

The term [∇.(2ρ0β2 e)]/ρ0 can be extended as

∇.
(

2ρ0β
2ẽ
)
= ∇.

(
2µẽ
)
= ∇.

(
2µẽ
)

r
+∇.

(
2µẽ
)
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+∇.
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2µẽ
)
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Am
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n r̂+
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sinθ
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)
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(
im

1
sinθ

Bm
n Y m

n −Cm
n

∂Y m
n

∂θ

)
φ̂

}
(6.13)

In the new coordinate system, coefficients Am
n , Bm

n and Cm
n are

.

Am
n = 2
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dr0

dr

)2 dβ2

dr0
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+
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n
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r
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(
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(
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+
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r
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2 1
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1
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[
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]
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n

(6.14)
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Multiplying dV and neglecting the terms higher than the first order in u and ε we get

Am
n dV =

{
2r2

0

[
1− 2

3
(ε− r0ε

′)P2

]
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dr0
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[
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Bm
n dV =

{
r2

0

[
1− 2

3
(ε− r0ε

′)P2

]
2β

dβ

dr0

dV m
n

dr0
+

4
3

β
2r2

0ε
′P2

∂V m
n

∂r0

+β
2r2

0

[
1− 2

3
(ε− r0ε

′)P2

]
∂2V m

n

∂r2
0

+
[
1− 2

3
εP2

]
r0

[
2β

dβ

dr0

(
Um

n −V m
n

)

+β
2

d
(

Um
n −V m

n

)
dr0

]
+3β

2
[
1− 2

3
εP2

]
r0

dV m
n

dr0

+2β
2
[
1− 2

3
(ε+ r0ε

′)P2

][
2Um

n −n(n+1)V m
n

]}
dr0 sinθ0 dθ0 dφ

Cm
n dV =

{
r2

0

[
1− 2

3
(ε− r0ε

′)P2

]
2β

dβ

dr0

dW m
n

dr0
+

4
3

β
2r2

0ε
′P2

∂W m
n

∂r0

+β
2
[
1− 2

3
(ε− r0ε

′)P2

]
∂2W m

n

∂r2
0
−
[
1− 2

3
εP2

]
r0

[
2β

dβ

dr0
W m

n +β
2 dW m

n
dr0

]
+3β

2
[
1− 2

3
εP2

]
r0

dW m
n

dr0
−β

2
[
1− 2

3
(ε+ r0ε

′)P2

]
n(n+1)W m

n

}
dr0 sinθ0 dθ0 dφ

(6.15)

Substituting (6.3) and (6.4) into (6.5), integrating over φ and simplifying the terms using
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(A.4), (A.5) and (A.10) we get

∫
∑
n

∑
q

{
σ

2
[
Um

q Um
n Pm

q Pm
n +

(
V m

q V m
n +W m

q W m
n

)
n(n+1)Pm

q Pm
n

]
−2iσ

[
Um

q Dm
n Pm

q Pm
n +

(
V m

q Em
n +W m

q Fm
n

)
n(n+1)Pm

q Pm
n

]
+

[
Um

q Am
n Pm

q Pm
n +

(
V m

q Bm
n +W m

q Cm
n

)
n(n+1)Pm

q Pm
n

]
+
[
−g0 +

1
ρ0

dρ0

dr
(α2−2β

2)
]
Um

q Pm
q

[
dUm

n
dr

+
2Um

n −n(n+1)V m
n

r

]
Pm

n

−
[

dUm
q

dr
+

2Um
q −q(q+1)V m

q

r

]
Pm

q

[[
Xm

n Pm
n +u.g0

+(α2−2β
2)

[
dUm

n
dr

+
2Um

n −n(n+1)V m
n

r

]
Pm

n

]}
r2dr sinθ0dθ0

+
∫

S
∑
n

∑
q

{
Um

q Pm
q

[
Xm

n Pm
n +u.g0

+(α2−2β
2)

[
dUm

n
dr

+
2Um

n −n(n+1)V m
n

r

]
Pm

n

]}
r2 sinθ0dθ0 = 0

(6.16)

where all terms in (6.16) are evaluated at elliptical surface r. We use (6.9), (6.11), (6.12)

and (6.15) to substitute for Dm
n , Em

n , Fm
n , Am

n , Bm
n , Cm

n and g0 in terms of r0 and θ0. We follow

the same steps in chapter 4 to expand and simplify PDEs. Finally, we apply the Galerkin’s
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conditions (3.7) and relations (A.6) and (A.7) to get three scalar equations 1 as

∫
∑
n

∑
q

{
Um

q

[
σ

2Um
n r2

0−
2
3
(3ε+ r0ε

′)σ2Um
n r2

0P2−2σr2
0mV m

n +
4
3

σr2
0mV m

n (3ε+ r0ε
′)P2

−2σr2
0W m

n sinθ0
∂

∂θ0
+

4
3

σr2
0W m

n (3ε+ r0ε
′)P2 sinθ0

∂

∂θ0
+ r2

0

[
∂Xm

n
∂r0
− 4

3
(
∂Xm

n
∂r0

ε+Xm
n ε
′)P2

− ∂Um
n

∂r0
(g0 +

2
3

r0)−Um
n (−2g0

x
− 4g0

3r0
εP2 +4πGρ0 +

2
3
)

+
2
3

∂Um
n

∂r0

(
g0(ε− r0ε

′)+
4
3

r0ε

)
P2 +

2
3

Um
n

(
(−2g0

r0
− 4g0

3r0
εP2 +4πGρ0)(ε− r0ε

′)

+
4
3
(ε+ r0ε

′)
)

P2−
2
3

(
∂V m

n
∂r0

εg0−V m
n ε

2g0

x
+4πGρ0V m

n ε+V m
n ε
′g0

)
P1

2
∂

∂θ0

+2m

(
∂W m

n
∂r0

εg0−W m
n ε

2g0

x
+4πGρ0W m

n ε+W m
n ε
′g0

)
cosθ0

]

+
1
ρ

dρ

dr0
r0

[[
1+

2
3
(ε+ r0ε

′)P2

]
α

2r0
dUm

n
dr0

+
[
2+

4
3
(ε+ r0ε

′)P2

]
(α2−2β

2)Um
n −

4
3

α
2r0εP2

dUm
n

dr0

− 4
3
(α2−2β

2)(2ε+ r0ε
′)Um

n P2−n(n+1)(α2−2β
2)V m

n +
2
3

n(n+1)(α2−2β
2)εP2V m

n

]

+2

[
2r2

0

[
1− 2

3
(ε− r0ε

′)P2

]
2β

dβ

dr0

dUm
n

dr0
+

8
3

β
2r2

0ε
′P2

∂Um
n

∂r0
+2β

2r2
0

[
1− 2

3
(ε− r0ε

′)P2

]
∂2Um

n

∂r2
0

−n(n+1)β2
[
1− 2

3
εP2

]
r0

dV m
n

dr0
+4β

2
[
1− 2

3
εP2

]
r0

dUm
n

dr0
−4β

2Um
n

[
1− 2

3
(ε+ r0ε

′)P2

]
−n(n+1)β2

[
1− 2

3
(ε+ r0ε

′)P2

](
Um

n −3V m
n

)]]
Pm

q Pm
n

}
dr0 sinθ0 dθ0

+[cont]

1The equations are valid for azimutal numbers m = 0,±1 that we are interested.
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+
∫ {

Um
q

[
g0r2

0
∂Um

n
∂r0
− 2

3
r3

0
∂Um

n
∂r0

+2g0r0Um
n −

4
3

r2
0Um

n −n(n+1)g0r0V m
n

+
2
3
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n

]
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q +Um

q

[
− 2

3
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0

∂Um
n

∂r0
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4
9
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∂Um

n
∂r0
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3
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0
Um
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+
8
9
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2
3
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9
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2
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0
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n
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4
3

εg0r0Um
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9
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0
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n
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2
3
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4
9
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0εV m

n

+
2
3

g0(ε+ r0ε
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0
∂Um

n
∂r0

+
4
3
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′)r0Um

n −
2
3

n(n+1)g0(ε+ r0ε
′)r0V m

n

]
P2Pm

n Pm
q

− (α2−2β
2)
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0
∂Um

n
∂r0

dUm
q
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∂Um
n

∂r0
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n

dUm
q
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n Um
q −n(n+1)r0V m
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q
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q

)
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q Pm
n +

(
2
3

r2
0(ε+ r0ε

′)
∂Um

n
∂r0

dUm
q

dr0
+

4
3
(ε+ r0ε

′)r0
∂Um

n
∂r0

Um
q

+
4
3

r0Um
n ε

dUm
q

dr0
+

8
3

εUm
n Um

q −
2
3

n(n+1)V m
n εr0

dUm
q

dr0
− 4

3
n(n+1)V m

n εUm
q

− 4
3

εr2
0

∂Um
n

∂r0

dUm
q
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+

4
3
(2ε+ r0ε

′)r0
∂Um

n
∂r0

Um
q −

8
3

εr0Um
n

dUm
q
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+

8
3
(2ε+ r0ε

′)Um
n Um

q

+
4
3

n(n+1)V m
n εr0

dUm
q
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3
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n Um
q (2ε+ r0ε

′)

)
P2Pm

q Pm
n
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dr0 sinθ0dθ0

+
∫

S
∑
n

∑
q

Um
q (α2−2β

2)

(
∂Um

n
∂r0

+
2
3
(ε+ r0ε

′)
∂Um

n
∂r0
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2Um

n
r0

+
4
3
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n
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2
3
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(6.17)
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∫
∑
n

∑
q

{
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2
3

σ
2V m
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0
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+

2
3

Um
n

(
g0ε+

2
3

r0(2ε+ r0ε
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n
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+
4
3

β
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n

∂r0
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0

[
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3
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n
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3
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(
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n −V m
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2
[
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3
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n
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2
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n
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n
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0
∂Um

n
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q
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3
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0
∂Um

n
∂r0
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q −

4
3
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q

+
2
3
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q
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2 Pm
q
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[
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q
∂Um

n
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n
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n
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2
3
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n
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+
∫

S
∑
n

∑
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n
∂r0

+
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n
r0

−n(n+1)
1
r0

V m
n

)[
− 2

3
P1

2
dPm
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q )
]
εV m
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(6.18)
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∫
∑
n

∑
q
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2
3
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n
n(n+1)
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′)P2 cosθ0−V m

n cosθ0 +
2
3

V m
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+
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[
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[
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∫
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(6.19)

Similarly, using the relations (A.13) and (A.14), the Poisson’s equation (6.6), result in

∫
∑
n

∑
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∂r0
Pm

q

+4πGρ0Xm
q r0

[
1− 2

3
(2ε+ r0ε

′)P2

]
V m

n n(n+1)Pm
q Pm

n

}
dr0 sinθ0dθ0

−
∫
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∑
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∑
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(6.20)
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6.4 Boundary Conditions

We use a similar approach as in chapter 4 and chapter 5, to construct PDEs governing

the BC in elliptical interfaces. For geo-centre (3.23) is still valid for elliptical Earth model.

At Solid-Solid interfaces

∆u = 0

∴
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∑
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∫
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∑
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(6.21)

At Solid/Fluid Boundary

∆(n̂.u) = 0

∴
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∫
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(6.22)
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Across all surfaces of discontinuity, dynamic boundary condition ∆(n̂.S) = 0 gives follow-

ing PDE,
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+
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−
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6.4. BOUNDARY CONDITIONS

Boundary condition on the gravitational field is

∆[n̂.(∇V1−4πGρ0u)] = 0
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Chapter 7

Discussion

In this thesis we first reviewed the theoretical derivation of the partial differential equations

(PDEs) governing the free oscillations of a realistic Earth model. The reference state of

the Earth is considered to be one of hydrostatic equilibrium. This reference frame has its

origin in the Earth’s center and rotates with the constant angular velocity of Ω about a fix

axis in space defined by a unit vector ê3. Using the conventional approach of spheroidal

and toroidal representation of vector displacement fields, we derive the PDEs and the BCs

governing the free oscillations of a self-gravitating, spherical, rotating Earth model.

We used a Galerkin method and FORTRAN programming to numerically solve for

some of the low order (wavenumbers 0 and 1) inertial modes of (a) a homogeneous and in-

compressible core model, and (b) a more realistic, compressible, and stratified core model

of spherical and spherical shell geometry. To validate our approach, we compared the fre-

quencies and the displacement and pressure patterns of these modes with those of an incom-

pressible fluid sphere for which analytical solutions exists. We showed that the computed

frequencies (given to 3 decimal points) and the patterns of the eigenfunctions are identical

to their analytical counterparts. This model is described by so-called Poincaré equation and

the accompanying incompressibility boundary condition. As it is well-known (Greenspan,

1968), the Poincaré equation is a hyperbolic boundary value PDE which is mathematically

ill-posed. For some containers (full sphere and cylinder) the Poincaré equation is separable

and has exact analytical solutions while for most of the other geometries (like spherical

shell) the solutions of this problem are singular.
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7. DISCUSSION

In our approach we solved the momentum and the continuity equations and the relevant

boundary conditions. In chapter 4 we computed some of low-order inertial modes of this

geometry and showed that the results indeed converge.

Previous studies done by Aldridge (1969) and Henderson (1996), used the variational

principle for numerical studies of the axisymmetric inertial modes and did not get converged

values for most of the modal frequencies. Rieutord (1991, 1997) used iterative technique

for a fluid of small viscosity. They showed that as viscosity tends to zero, the frequencies

begin to fluctuate about a mean, and there are no solutions at the limit of zero viscosity.

Our results seem to contradict Rieutord (1987) conclusion in a sense that we could get the

converged values for most of the frequencies that we looked for.

We further computed the inertial modes of a compressible, self gravitating and stratified

spherical fluid core. We showed that the divergence theorem may be used to (a) remove the

dependence of the equations on the gradient of the density, which is poorly constrained at

the boundary interfaces, and (b) to take advantage of the natural nature of the boundary

conditions.

Finally, we derived integral equations of the Earth model that include the first order

effects of ellipticity in the Earth model. In order to minimize the effects of derivatives on

material properties, a (non-orthogonal) Clairaut coordinate system (Jeffreys, 1942; Seyed-

Mahmoud, 2006) is used.

We have shown that our approach is a novel and reliable technique for the study of the

normal modes of a realistic Earth model. Compressibility, elasticity and ellipticity terms

are included in our model, though, in this study we have set them to zero to investigate

more fundamental problems of the rotating fluids. We have given the necessary equations

and expanded them for a Galerkin formulation, to include the effects of elasticity, and the

ellipticity of the equipotential surfaces to compute the rotational modes, including those of

wobble and nutation for which the observed periods are know, for a realistic Earth model.

76



Bibliography

A. Aldridge, K.D.and Toomre. Axisymmetric inertial oscillations of a fluid in a rotating
spherical container. Journal of Fluid Mechanics, 37:307–323, 6 1969. ISSN 1469-
7645. doi: 10.1017/S0022112069000565. URL http://journals.cambridge.org/
article_S0022112069000565.

K.D. andLumb L.I. Aldridge. Inertial waves identified in the earth’s fluid outer core. Nature,
325:421–423, 1987.

G.H.and Ewing M. Alsop, L.E.and Sutton. Free oscillations of the earth observed on
strain and pendulum seismographs. Journal of Geophysical Research, 66(2):631–641,
1961. ISSN 2156-2202. doi: 10.1029/JZ066i002p00631. URL http://dx.doi.org/
10.1029/JZ066i002p00631.

H.and Pekeris C.L. Alterman, A.and Jarosch. Oscillations of the earth,. Proc.Soc.London,
A 252:80–95, 1959.

Y.and Merzer A.M. Alterman, Z.S.and Eyal. On free oscillations of the earth. Geophysical
surveys, 1(4):409–428, 1974. ISSN 0046-5763. doi: 10.1007/BF01452247. URL http:
//dx.doi.org/10.1007/BF01452247.

G.E. Backus. The propagation of short elastic surface waves on a slowly rotating earth.
Bulletin of the Seismological Society of America, 52(4):823–846, 1962. URL http:
//www.bssaonline.org/content/52/4/823.abstract.

J.C.and LaCoste L.and Munk W.H.and Slichter L.B. Benioff, H.and Harrison. Searching
for the earth’s free oscillations. Journal of Geophysical Research, 64(9):1334–1337,
1959. ISSN 2156-2202. doi: 10.1029/JZ064i009p01334. URL http://dx.doi.org/
10.1029/JZ064i009p01334.

A. Bolt, B.A.and Marussi. Eigenvibrations of the earth observed at trieste. Geophysi-
cal Journal of the Royal Astronomical Society, 6(3):299–311, 1962. ISSN 1365-246X.
doi: 10.1111/j.1365-246X.1962.tb00353.x. URL http://dx.doi.org/10.1111/j.
1365-246X.1962.tb00353.x.

G.H. Bryan. The waves on a rotating liquid spheroid of finite ellipticity. Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 180:187–219, 1889. ISSN 0264-3820. doi: 10.1098/rsta.1889.0006.

S.C. Chandler. The variation of terrestrial latitudes, by dr.s.c.chandler. Publications of the
Astronomical Society of the Pacific, 6(36):pp.180–182, 1894. ISSN 00046280. URL
http://www.jstor.org/stable/40670335.

77

http://journals. cambridge. org/article_S0022112069000565
http://journals. cambridge. org/article_S0022112069000565
http://dx. doi. org/10. 1029/JZ066i002p00631
http://dx. doi. org/10. 1029/JZ066i002p00631
http://dx. doi. org/10. 1007/BF01452247
http://dx. doi. org/10. 1007/BF01452247
http://www. bssaonline. org/content/52/4/823. abstract
http://www. bssaonline. org/content/52/4/823. abstract
http://dx. doi. org/10. 1029/JZ064i009p01334
http://dx. doi. org/10. 1029/JZ064i009p01334
http://dx. doi. org/10. 1111/j. 1365-246X. 1962. tb00353. x
http://dx. doi. org/10. 1111/j. 1365-246X. 1962. tb00353. x
http://www. jstor. org/stable/40670335


BIBLIOGRAPHY

D.J. Crossley. The free-oscillation equations at the centre of the earth. Geophysical
Journal of the Royal Astronomical Society, 41(2):153–163, 1975. ISSN 1365-246X.
doi: 10.1111/j.1365-246X.1975.tb04145.x. URL http://dx.doi.org/10.1111/j.
1365-246X.1975.tb04145.x.

M.G. Crossley, D.J.and Rochester. Simple core undertones. Geophysical Journal In-
ternational, 60(2):129–161, 1980. doi: 10.1111/j.1365-246X.1980.tb04287.x. URL
http://gji.oxfordjournals.org/content/60/2/129.abstract.

F.A. Dahlen. The normal modes of a rotating, elliptical earth. Geophysical Jour-
nal of the Royal Astronomical Society, 16(4):329–367, 1968. ISSN 1365-246X.
doi: 10.1111/j.1365-246X.1968.tb00229.x. URL http://dx.doi.org/10.1111/j.
1365-246X.1968.tb00229.x.

V. Dehant. On the nutations of a more realistic earth model. Geophysical Journal In-
ternational, 100(3):477–483, 1990. doi: 10.1111/j.1365-246X.1990.tb00700.x. URL
http://gji.oxfordjournals.org/content/100/3/477.abstract.

J.S. Derr. Internal structure of the earth inferred from free oscillations. Journal of
Geophysical Research, 74(22):5202–5220, 1969. ISSN 2156-2202. doi: 10.1029/
JB074i022p05202. URL http://dx.doi.org/10.1029/JB074i022p05202.

M.and Valdettaro L. Dintrans, B.and Rieutord. Gravito-inertial waves in a rotating stratified
sphere or spherical shell. Journal of Fluid Mechanics, 398:271–297, 11 1999. ISSN
1469-7645. doi: 10.1017/S0022112099006308. URL http://journals.cambridge.
org/article_S0022112099006308.

J.and Alsop L.E. Dorman, J.and Ewing. Oscillations of the earth: New core-mantle bound-
ary model based on low-order free vibrations. Proceedings of the National Academy
of Sciences, 54(2):364–368, 1965. URL http://www.pnas.org/content/54/2/364.
short.

A.M. Dziewonski. Upper mantle models from pure-path dispersion data. Journal of
Geophysical Research, 76(11):2587–2601, 1971. ISSN 2156-2202. doi: 10.1029/
JB076i011p02587. URL http://dx.doi.org/10.1029/JB076i011p02587.

D.L. Dziewonski, A.M.and Anderson. Preliminary reference earth model. Phys.Earth
Planet.Inter., 25:297–356, 1981.

A.M. Gilbert, F.and Dziewonski. An application of normal mode theory to the retrieval
of structural parameters and source mechanisms from seismic spectra. Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 278(1280):187–269, 1975. ISSN 0080-4614. doi: 10.1098/rsta.1975.0025.

H.P. Greenspan. On the transient motion of a contained rotating fluid. Journal of Fluid
Mechanics, 20:673–696, 12 1964. ISSN 1469-7645. doi: 10.1017/S002211206400146X.
URL http://journals.cambridge.org/article_S002211206400146X.

78

http://dx. doi. org/10. 1111/j. 1365-246X. 1975. tb04145. x
http://dx. doi. org/10. 1111/j. 1365-246X. 1975. tb04145. x
http://gji. oxfordjournals. org/content/60/2/129. abstract
http://dx. doi. org/10. 1111/j. 1365-246X. 1968. tb00229. x
http://dx. doi. org/10. 1111/j. 1365-246X. 1968. tb00229. x
http://gji. oxfordjournals. org/content/100/3/477. abstract
http://dx. doi. org/10. 1029/JB074i022p05202
http://journals. cambridge. org/article_S0022112099006308
http://journals. cambridge. org/article_S0022112099006308
http://www. pnas. org/content/54/2/364. short
http://www. pnas. org/content/54/2/364. short
http://dx. doi. org/10. 1029/JB076i011p02587
http://journals. cambridge. org/article_S002211206400146X


BIBLIOGRAPHY

H.P. Greenspan. The Theory of Rotating Fluids. Cambridge Monographs on Mechanics
and Applied Mathematics. At the University Press, 1968. ISBN 9780962699801. URL
http://books.google.ca/books?id=gtqjx/wuuDMC.

H. Greiner-Mai, Jochmann. H., and F. Barthelmes. Influence of possible inner-core
motions on the polar motion and the gravity field. Physics of the Earth and Plan-
etary Interiors, 117(14):81 – 93, 2000. ISSN 0031-9201. doi: http://dx.doi.org/
10.1016/S0031-9201(99)00089-8. URL http://www.sciencedirect.com/science/
article/pii/S0031920199000898.

P.M.and Zhang Z.X.and Ning J.S. Guo, J.Y.and Mathews. Impact of inner core rotation on
outer core flow: the role of outer core viscosity. Geophysical Journal International, 159
(1):372–389, 2004. ISSN 1365-246X. doi: 10.1111/j.1365-246X.2004.02416.x. URL
http://dx.doi.org/10.1111/j.1365-246X.2004.02416.x.

G.A. Henderson. Ph.d.thesis: A finite-element method for weak solutions of the poincaré
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Appendix A

Appendix

A.1 Some of the Properties of the Spherical Harmonics
An essential mathematical tool for theories of the dynamical behavior of the nearly

spherical Earth is that of surface spherical harmonics.Solving Laplace equation, ∇2V = 0,
with method of separation of variables using spherical polar coordinates V =R(r)Θ(θ)Φ(φ).
We can see that we find that Θ satisfies the associated Legendre equation, and the solutions
are associated Legendre polynomials Pm

n (cosθ), where

Pm
n (x) =

(−1)m(1− x2)m/2

2nn
dn+m

dxn+m (x2−1)n (A.1)

A.1.1 Recurrence relations
We note two recurrence relations connecting associated Legendre functions of the same

azimuthal order m:

xPm
n (x) =

n+m
2n+1

Pm
n−1(x)+

n+1−m
2n+1

Pm
n+1(x) (A.2)

(1− x2)
dPm

n (x)
dx

=
(n+1)(n+m)

2n+1
Pm

n−1(x)−
n(n+1−m)

2n+1
Pm

n+1(x) (A.3)

Therefore, for x = cosθ it can be shown that the following relations are valid, (Arfken,
1966) ∫ (∂Pm

q (cosθ)

∂θ

∂Pm
n (cosθ)

∂θ
+m2 Pm

q (cosθ)Pm
n (cosθ)

sin2
θ

)
sinθdθ

= n(n+1)
∫

Pm
q (cosθ)Pm

n (cosθ)sinθdθ =
2n(n+1)

2n+1
(n+m)!
(n−m)!

δnq

(A.4)

∫ (Pm
q (cosθ)

sinθ

∂Pm
n (cosθ)

∂θ
+

∂Pm
n (cosθ)

∂θ

Pm
n (cosθ)

sinθ

)
sinθdθ = Pm

n (cosθ)Pm
q (cosθ)

∣∣∣∣π
0

(= 0 i f m = 1)
(A.5)
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2P2(cosθ) = 3cos2
θ−1

P1
2 (cosθ) =−3 sinθcosθ

(A.6)

Following properties can be derived using the method of integration by parts.∫
P1

2 Pm
n

dPm
q

dθ
sinθ dθ =

∫
−3sin2

θcosθPm
n dPm

q = 3
∫

Pm
q d(sin2

θcosθPm
q )

=−
∫

P1
2 Pm

q
dPm

n
dθ

sinθ dθ+6
∫

P2Pm
q Pm

q sinθ dθ

(A.7)

∫
cosθsinθ

∂Pm
q

∂θ
Pm

n sinθdθ =
∫

cosθsin2
θPm

n dPm
q

=−
∫

cosθsin2
θPm

q dPm
n −

∫
[2cos2

θ− sin2
θ]sinθPm

q Pm
n dθ

=−
∫

cosθsinθPm
q

∂Pm
n

∂θ
sinθ dθ−2

∫
P2Pm

q Pm
n sinθdθ

(A.8)

∫ cosθ

sinθ

∂Pm
q

∂θ
Pm

a sinθdθ =
∫

cosθPm
a dPm

q

=−
∫ cosθ

sinθ
Pm

q
∂Pm

a
∂θ

sinθ dθ+
∫

Pm
q Pm

a sinθdθ

(A.9)

A.1.2 Orthogonality relations
Surface spherical harmonic of degree n and azimuthal order m, where −n≤ m≤n:

Y m
n (θ,φ) = Pm

n (cosθ)eimφ (A.10)

We have the orthogonality relations∫
π

0

∫ 2π

0
Y m

n Y−p
q sinθ dθdφ =

4π

2n+1
(−1)m

δnqδmp (A.11)

∫
ei(m−k)φdφ = 2πδm,k (A.12)

We mentioned that the spherical harmonics are solutions of the Laplace equation as

∇
2a =

1
r2

∂

∂r

(
r2 ∂a

∂r

)
+

1
r2 sinθ

∂

∂θ

(
sinθ

∂a
∂θ

)
+

1
r2 sin2

θ

∂2a
∂φ2

(A.13)

Thus

1
sinθ

∂

∂θ

(
sinθ

∂Y m
n

∂θ

)
+

1
sin2

θ

∂2Y m
n

∂φ2 =−n(n+1)Y m
n (A.14)

Finally, using (A.14) together with (A.12) we come up with two fundamental relations,

∑∑n(n+1)V m
n (r)Y m

n (θ,φ) =− 1
sinθ

[
∂

∂θ
(sinθ uθ)+

∂uφ

∂φ

]
(A.15)
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∑∑n(n+1)W m
n (r)Y m

n (θ,φ) =
1

sinθ

[
∂

∂θ
(sinθ uφ)−

∂uθ

∂φ

]
(A.16)

A.2 The Displacement Eigenvectors of s Stratified Core Model
A.3 Web of Characteristics

From the second-order derivative of the equation (2.44) the traces of the characteristic
surface of the Poincaré hyperbolic equation in the meridional plane, (s,z), are two families
of straight lines (Rochester, 1974)

z±ξs = c± (A.17)

where ξ =
(√

1
σ2 −1

)
, c−, c+ are constants that respectively define coordinate of the char-

acteristics of the positive and negative slopes. Recall that σ = ω/2Ω. From (A.17) these
straight lines making angle γ with the z (rotation axis).

γ =±arcsin(σ) (A.18)

Equation (2.44) may be extended in the characteristic coordinate as (Henderson, 1996)

∂2P
∂c+∂c−

+
1

2(c+− c−)

(
∂P
∂c+
− ∂P

∂c−

)
= 0 (A.19)

From (A.19), crossing the characteristic line c, derivative of the pressure ∂P/∂c is discon-
tinues along an entire characteristic line.

Note that the discontinuity is in the gradient of the pressure and appear as a crease (and
not as a shock) in the pressure contour. This is partially arise from numerical technique for
calculating pressure field, and partially come from the function we used to interpolate the
plots in TECPLOT software (see Figures A.3 and A.2 ).

Also, by finding the components of the displacement field in characteristic coordinate
it may be seen that the the displacement normal to the characteristic line is continuous
while tangential component of the displacement to the characteristic line is not continuous
(Henderson, 1996). Note that because of the exp(imφ) dependence of the φ variables the
results are valid for both axisymmetric or non-axisymmetric modes.
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Figure A.1: The displacement eigenvectors u in a meridional plane, φ = 0, for some of the
low order, azimuthal wavenumbers, m = 1, of rotating stratified fluid in the full-spherical
container with rigid boundaries. non-dimensional perturbation in gravitational potential, V1
eigenfunctions are superimposed as contours. Note that for density statification we used
modified PREM (Seyed-Mahmoud, 1994). The displacement patterns for a stratified fluid
closely match those for a Poincaré model (Figure 4.2).

90



A.3. WEB OF CHARACTERISTICS

Figure A.2: The displacement eigenvectors u in a meridional plane, φ = 0, foraxisymmetric
(4,1,0) mode of rotating incompressible fluid in (a) the full-sphere and (c) Spherical shell
containers with rigid boundaries. non-dimensional kinetic energy are as contours for the
(b) full-sphere and (d) Spherical shell, respectively. Note that characteristic line calculated
using equation (A.17) in which the frequency of the mode is σ = 0.655 and σ = 0.664
respectively for sphere and shell, and inner core outer core ratio η = 0.351.
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Figure A.3: The displacement eigenvectors u in a meridional plane, φ = 0, for non-
axisymmetric (6,4,1) mode of rotating incompressible fluid in (a) the full-sphere and (d)
Spherical shell containers with rigid boundaries. non-dimensional (a) & (e) pressure eigen-
functions and (b) & (f) kinetic energy are as contours for the full-sphere and Spherical
shell, respectively. The characteristic line calculated using equation (A.17) in which the
frequency of the mode is σ = 0.653 and σ = 0.659 respectively for sphere and shell.
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