GRAPH COLORING IN SPARSE
DERIVATIVE MATRIX COMPUTATION

MINI GOYAL
M.Sc, Banasthali Vidyapith, 2003

A Thesis
Submitted to the School of Graduate Studies
of the University of Lethbridge
in Partial Fulfilment of the
Requirements for the Degree
MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge
LETHBRIDGE, ALBERTA, CANADA

©Mini Goyal, 2005

Abstract

There has been extensive research activities in the last couple of years to
efficiently determine large sparse Jacobian matrices. It is now well known
that the estimation of Jacobian matrices can be posed as a graph coloring
problem. Unidirectional coloring by Coleman and Moré [9] and bidirectional
coloring independently proposed by Hossain and Steihaug [23] and Coleman
and Verma, [12] are techniques that employ graph theoretic ideas.

In this thesis we present heuristic and exact bidirectional coloring tech-
nigues. For bidirectional heuristic techniques we have implemented variants
of largest first ordering, smallest last ordering, and incidence degree order-
ing schemes followed by the sequential algorithm to determine the Jacobian
matrices.

A “good” lower hound given by the maximum number of nonzero entries in
any row of the Jacobian matrix is readily obtained in an unidirectional determi-
nation. However, in a bidirectional determination no such “good” lower bound
is known. A significant goal of this thesis is to ascertain the effectiveness of the
existing heuristic techniques in terms of the number of matrix-vector products
required to determine the Jacobian matrix. For exact bidirectional technigues
we have proposed an integer linear program to solve the bidirectional color-
ing problem. Part of exact bidirectional coloring results were presented at
the “Second International Werkshop on Combinatorial Scientific Computing

(CSCO05), Toulouse, France.”

Acknowledgments

I express my deep acknowledgement and profound sense of gratitude to my su-
pervisor Dr. Shahadat Hossain, Assistant Professor, University of Lethbridge,
for his inspiring guidance, helpful suggestions and persistent encouragement
as well as close and constant supervision throughout the period of my Muasters

Degree.

T would also like to thank my M.Sc. supervisory committee members Dr. Daya

Gaur and Dr. Jim Liu for their guidance and suggestions.

It gives me immense pleasure to acknowledge the financial support from NSERC
and the University of Lethbridge Assistaniship and Travel Support. I thank all
the staff, and my colleagues at the University of Lethbridge for their helpful

nature and co-operation.

I dedicate this thesis to my parents, family and Mr. Rohul Jha.

i

Contents

1 Introduction

2 Preliminaries
2.1 Jacobian Matrices
2.1.1 Newton's Method for Systems of Nonlinear Equations . .
2,1.2 Newton’s Method for Unconstrained Minimization . .
2.2 Matrix Partitioning . . . - oo
2.2.1 Unidirectional Partitioning

2.2.2 Bidirectional Partitioning

2.3 Methods for Recovering Nonzeros
2.3.1 Direct Method
2.3.2 Substitution Method
2.3.3 Elimination Method,

2.4 Computing Partial Derivatives . ., o

2.4.1 Finite Difference Approximation
2.4.2 Automatic Differentiation

2.5 SUMmMAary e

3 Background
3,1 Graph Theoretic Definitions and Notations
3.2 Problem Definition
3.21 CGraphColoring o o o

it

3.2.2 Formulating the Partitioning Problem as a Graph Col-

oring Problem o o0

3.3 Imtractability e
3.4 Graph Coloring Methods
3.4.1 Heuristic Methods
342 Exact Methods

35 Summary e e e

Coloring Heuristics

4.1 Background e e
4.1.1 Unidirectional Graph Coloring
41.2 Bidirectional Graph Coloring

4.2 Bidirectional Heuristic Techniques

42,1 Largest First Ordering
4.2.2 Smallest Last Ordering
4.2.3 Incidence Degree Ordering
4.2.4 Sequential Algorithm

4.3 SUMIMALY . v« v v v v e v e e e e e e

Optimal Bidirectional Coloring
5.1 Background e
51.1 DSATUR o o e e e e e e
5.1.2 Branch and Cut Algorithm for Graph Coloring
5.2 Exact Bidirectional Coloring oo o oo
5.2.1 Integer Linear Programming
5.2.2 Integer Linear Programming Model for Bidirectional p-
coloring . . . o . e e e
5.2.3 Complexities
5.24 Implementation oo

5.3 SUMMATY . . v v v v e e e e e e e e

iv

6 Experimental Results
6.1 Introduction e
6.2 Unidirectional Heuristic and Exact Coloring
6.3 Bidirectional Heuristies,
6.4 Heuristic and Exact Bidirectional
6.5 Unidirectional and Bidirectional
6.6 FinalResults,

6.7 SUIMIMATY . . v . v v o o e e e e e e e e

7 Conclusion and Future Work
7.1 Conelusion . . . v v v v e e e e e e e

7.2 Future Research Directions
Bibliography
A Extended Heuristic Bidirectional Coloring Results

B Example of ILP Model Implementation

52
o2
55
57
60
61
64
66

67
67
68

70

75

82

List of Figures

2.1
2.2
2.3
24

3.1
3.2
3.3

4.1
4.2

5.1

Example by Curtis, Powelland Reid 7
Column Partitioning 8
Row Partitioning 8
Bidirectional Partitioning 9
p-coloring Exampleo o 17
Sparse Matrix and its Column Intersection Graph Representation 18
Sparse Matrix and its Bipartite Graph Representation. 19
Sparse Matrix A and its Bipartite Graph Gi(4) 26
Example to Illustrate Sequential Algorithm 35
ILP Formulation for Bidirectional p-coloring 44

vi

List of Tables

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Al
A2
A3

Matrix Statistics oL o 53
DSM vs DSATUR e 56
Comparison of minLSI with Direct Cover Algorithm 58
Comparison of minL3I with Bicoloring Algorithm 59
Comparison of Heuristic and Exact Bidirectional Coloring 61

Comparison of Unidirectional and Bidirectional Coloring Heuristics . 62

Comparison of Exact Unidirectional and Bidirectional Coloring . . . 64
Summary of all the Coloring Techniques 64
LFOResult v v i e e e e e e e e 76
SLOResult v v i e e e e 78
IDOResult . . . v o o et e e e e e e 80

vil

Symbols

{m) Number of equationscoiiiiiiiiiiiiii 1
(n) Number of Unknownsovovvininirr oo aaen, 1
(J or A) Sparse Jacobian matrix ... 1
(ai;) Element in matrix Aatrow i column j ... 7
(x) Chromatic number ot 17
{p) Number of nonzeros in any rowof A 28

(k} Number of nonzeros in any column of A

viii

Chapter 1

Introduction

Problems in science and engineering often require to minimize a nonlinear
function or to find the numerical solution of a system of nonlinear equations
F(z} = 0 where F' = (f1, f2, ..., fm)® is & mapping F : ®* — R™. New-
ton’s method (or a variant of Newton’s method) can be employed to solve the
aforementioned problems [14].

Newton's method is an iterative method which may require a large number
of iterations to converge to the solution with desired accuracy. At each iter-
ation one needs to caleulate the matrix of first partial derivatives also known
as the Jacobian matrix J(z) = {g;%},l <j<nl<i<matthe current
point z. For very large problems these matrices are often sparse i.e. they con-
tain nonzero entries at very few positions in the matrix, and for complicated
functions, computing the Jacobian matrix may dominate the overall compu-
tational cost per iteration. Assuming that the sparsity pattern of the matrix
is known and it does not change from iteration to iteration, it is important
to design efficient methods that take advantage of known sparsity and other
structure information like symmetry so that the computations involving known
zero entries are avoided in determining the matrix.

The problem of exploiting sparsity in computing the Jacobian matrix can
be viewed as a partitioning problem [13]. With the known sparsity structure

of the given sparse matrix A, we can partition the columns of A into p (p < n)

CHAPTER 1 INTRODUCTION

groups such that each column belong to exactly one group and the columns in
the same group are structurally orthogonal i.e. they do not contain more than
one nonzero in the same row position. This type of partitioning is called uni-
directional partitioning and may not be able to exploit the sparsity effectively.
Alternately, one can partition the rows and the columns of A simultaneously
to obtain p; (g1 < m) row groups and p2 (p; € n) column groups. Both
of the above partitioning problems can be posed as graph coloring problems
10, 12, 17, 23].

Other methods to partition the matrices are column segmenting approach
[22, 26, 27, 28] and bidirectional partitioning technique via greedy approach
using distance 3/2 bi-coloring scheme [18].

The graph coloring problem that we are concerned with in this thesis deals
with the assignment of minimum number of positive integers called labels
(colors) to the vertices of a graph such that no two vertices connected by an
edge get the same label (color).

Graph coloring plays an important role in a variety of fields of computer
science. It models many real-world problems or acts as a part in the overall
solution of the problems. Some of the areas where graph coloring is used are
register allocation [20], frequency assignment and networks [29], timetabling
and scheduling [38], and pattern matching.

In our thesis, the graph coloring problem acts ag a tool to determine the
Jacobian matrices. By representing the Jacobian matrices as graphs and then
partitioning the vertices of the graph using graph coloring, we can partition the
rows and columns into groups such that the nonzero entries in each row and
column can be solved from a small linear system. This partition infermation
can then be used by Finite Differencing (FD) or Automatic Differentiation
(AD) software to estimate the nonzeros of the Jacobian matrix,

Including this introductory chapter, this thesis contains seven chapters.

The outline of the remaining chapters proceeds as follows:

CHAPTER 1 INTRODUCTION

In Chapter 2, we introduce Jacobian matrices followed by the description
of Newton’s method to solve a system of nonlinear equations and for uncon-
strained minimization. We then describe unidirectional and bidirectional par-
titioning techniques, followed by the methods to recover nonzeros. Finally we
describe the methods to compute partial derivatives.

In Chapter 3, we provide basic graph theory definitions and notations. We
then give the problem definition where we describe graph coloring as related
to the partitioning problem. This is followed by a brief description of com-
putational complexities involved with graph coloring, and finally we give the
description of graph coloring methods,

In Chapter 4, we feature the existing heuristic techniques for unidirectional
and bidirectional p-coloring. We then describe Largest First Ordering (LFO),
Smallest Last Ordering (SLO), Incidence Degree Ordering (IDO), and the
sequential algorithms as modified by us for bidirectional p-coloring.

In Chapter 3, we introduce exact methods for finding optimal solution of
the bidirectional p-coloring. We then explicate a new integer linear program-
ming model for bidirectional p-coloring. Finally we give the computational
complexity of the ILP model followed by implementation details.

In Chapter 6, we present experimental results that demonstrate the perfor-
mance of the algorithms presented in Chapters 4 and 5. We give a comparison
of various graph coloring techniques for matrix partitioning. The data for the
experiments was provided by the matrix market collection [3].

Finally, in Chapter 7, we provide concluding remarks, as well as possible
and proposed directions for future research in this area.

Detailed experimental results are presented in Appendix A and a sample

ILP model for bidirectional p-coloring is given in Appendix B. t

Chapter 2

Preliminaries

In this chapter we will identify the problem of determination of sparse Jacobian
matrices. In section 2.1 we will introduce Jacobian matrices and give the mo-
tivation to determine them. In section 2.2, we will give techniques to partition
the Jacobian matrices, followed by section 2.3, in which we vs_rjll demonstrate
methods to recover the nonzeros. In section 2.4, we will describe the methods
to compute partial derivatives and finally in section 2.5, we will conclude this

chapter.

2.1 Jacobian Matrices

The Jacobian matriz is the first-order partial derivative matrix of a vector-
valued function. Let F = (f1, f2, ..., fm)? be a mapping F : R* — R™, If F is
continuously differentiable then the Jacobian matrix of F at z is given by
g?;fl(ﬂ?) gjfj;fl(w)
J(z)=F(z) = : : (2.1)
s fm(@) o fu(2)
Derivative information is needed, for example in the solution of systems of
nonlinear equations and in the unconstrained minimization problems. New-

ton’s methods are one of the classical methods to solve the systems of nonlinear

equations and to obtain unconstrained minimization respectively.

4

C'HAPTER 2 PRELIMINARIES

2.1.1 Newton’s Method for Systems of Nonlinear Equa-

tions

Given F : R" — R™, the solution to the associated system of nonlinear equa-
tions is attained by finding 20} € ®" such that F(z®}) = 0 where F is as-
sumed to be continuously differentiable [14]. In inexact Newton's method, the
solution of the resulting linear system is approximated by a linear iterative

method. Following are the steps for solving this nonlinear system.

Algorithm 1 Newton’s Method for Systems of Nonlinear Equations
Let 2(% € 7

for j — 0, convergence do
> Compute the Jacobian matrix at current point and solve for step st}
gli+th = gt 4 5l > Update the current point

end for

J(x) is known as the Jacobian matrix of F at 2.
The following example illustrates Newton’s Method to solve the systems of
nonlinear equations.

Given

Flz) = |:2131+55‘2—3:|

zi+zi-5
with roots at (1,2)7 and (2, 1)7.

The Jacobian matrix is given by

Lo 2]
2m1 2:2?2l

Let x1% = (0,3)7. Then the first two iterations of Newton’s method are

{0}y g10} {0} 11 {0} 0 ; {0} 3
J(@) = —Fat) s == , glves st = ,
06 4 -2

3

CHAPTER 2 PRELIMINARIES

ol = 2% 4+ 50 = (0.667,2.333)7,

{1h {1 1 11 1 0 : 1 14_5
J(zthsth = —p(zh) . . s = — g | gives st =)
ERY

2@ = 21 4 s = (0,933, 2.067)7.
If the initial approximation 2{% is sufficiently close to the root, it is expected

that the successive iterates will converge to the root.

2.1.2 Newton’s Method for Unconstrained Minimiza-
tion

Another important problem from optimization where the derivative informa-

tion is required is the unconstrained minimization problem

min f: k" — R, (2.2)

zekn

where f is assumed to be twice continuously differentiable. The algorithm for

Newton'’s method for unconstrained minimization is given as follows.

Algorithm 2 Newton's Method for Uneonstrained Minimization
Let zp € R

for j — 0. minimization do
Vi (z5)s) = —V f(z5),
T4l = @5 + 85 > Update the current point

end for

Here V2f(z) is the Hessian matrix and V f(z) is the gradient of f. The
Hessian of f can be viewed as the Jacobian of V f(z).

At every iteration of Newton’s method we need to determine the Jacobian
matrix at the current point. In many large problems the Jacobian matrix
is sparse i.e. there are very few nonzeros in the matrix. By exploiting this

sparsity, we can efficiently determine the Jacobian matrix and thus significantly

CHAPTER 2 PRELIMINARIES

reduce the overall computational cost of the solution process. In the next

section we will discuss methods to partition the Jacobian matrices.

2.2 DMatrix Partitioning

In 1974, Curtis, Powell and Reid [13] noted that the sparsity of the Jacobian
matrices can be exploited if the columns of the matrix can be partitioned into
groups such that columns in each group are structurally orthogonal to each

other.

0 0
; . Biy g
t g ' Qg l
k1 2kl | 1 !
1 J a
ke TPy o 32‘
A= 8= h = 0
: Pigi
iz Qg do1 Gpgl
kg Syl
3 o D
. §]
13 Biq i ' Qigj

Figure 2.1: Example by Curtis, Powell and Reid

Let A € R™*" be the given matrix, In Figure 2.1 we see that columns j
and ! of A are structurelly orthogonal i.e. there does not exist a row index ¢
for which both a;; # 0 and ay # 0. The corresponding vector s is initialized
as)_, €;, where ¢; is the jth coordinate vector and the sum for this vector is
taken over a set of structurally orthogenal columns. Vector b is obtained as
the product b = As by using FD or AD forward mode. We see that b contains
the unique nonzero entries of columns j or ! (or a zero) at each position. More
generally, consider structurally orthogonal partitioning of A into p groups. We
can then define a seed matriz § € R™*? where each column of S corresponds to

a group of structurally orthogonal columns and is defined by Ej e; as discussed

CHAPTER 2 PRELIMINARIES

earlier. Then the nonzeros of A can be recovered from the product B = AS

obtained through forward automatic differentiation or finite differencing.

2.2,1 Unidirectional Partitioning

A partitioning scheme in which either the columns or the rows are partitioned
into structurally crthogonal groups is known as unidirectional partitioning.
As shown in Figure 2.2, matrix A can be partitioned into two column groups

such that all the nonzeros of A can be obtained from the product AS.

s
I
X X X X X
X
n
I
o O o O =
[T R -]

Figure 2.2: Column Partitioning

In Figure 2.3, we see that by partitioning the matrix A into two row groups,

we can obtain all the nonzeros of A from the product W7 A.

Figure 2.3: Row Partitioning

2.2.2 Bidirectional Partitioning

For a given matrix A € R™*", if seed matrices § € R"*P and W € R™*P2
can be obtained such that all the nonzeros of A can be determined uniquely
from the products B = AS and C7 = WT A, then the resulting partitioning is

known as bidirectionel partitioning.

CHAPTER 2 PRELIMINARIES

Considering Figure 2.4, we notice that unidirectional partitioning (either
row or column) will require at least 5 groups. But if we determine row 1 and
column 1 separately and collect the remaining nonzeros in one column{row)

group then we require only 3 groups.

.
il
X X X X X
x
w
li
L A =

Figure 2.4: Bidirectional Partitioning

2.3 Methods for Recovering Nonzeros

In this section we briefly describe the techniques to recover the nonzeros from
the product B = AS, where A is the Jacobian matrix to be determined.

For a given matrix A € R™*", we want to obtain seed matrices § € R
and W7 & RP2X™ guch that all the nonzeros of A can be determined from the
products B = AS and CT = WTA.

In the following we outline a procedure for unidirectional determination of

a Jacobian matrix A € <",

e Obtain B = AS as p matrix-vector products using finite differencing or

forward automatic differentiation.

o Identify the reduced seed matrix as S; € R?*?, where p; is the number

of nonzeros in row i of A.

» Solve for the nonzeros in row i of A4

Si O = ,8 (23)

CHAPTER 2 PRELIMINARIES

where a contains the nonzero unknowns in row ¢ and 3 is the correspond-

ing vector in matrix B.

If, for every row of A the reduced system (2.2) is a permuted identity matrix
then we have a direct method [23]. If the reduced system can be permuted to a
triangular system then we have a substitution method [24], otherwise we have

an elimination method [23].

2.3.1 Direct Method

In direct determination method, all the nonzeros of A can be read-off from the
matrix B and CT without any further arithmetic operation. Let us demon-
strate the direct determination method with the help of the following example.

Let
By - - -
a)n Q12 Q13 Qg 415 1
ang ax 0 0 0 0
A=|ay 0 am 0 0 [, 8=1]0 Wi=110000].
0
0

a41 0 0 Qg 0

— o = = O

as1 0 0 0 55

Thus we can obtain the matrices B and CT by the matrix-vector product AS

and vector-matrix product W7 A respectively.

a11 @1z + 13 + a4 + a1
az1)
B=1| agy a3z ,CT = 411 Giz @iz 44 dis
@41 Qyd
! asg i

The nonzeros of A can thus be read off from B and C7.

10

CHAPTER 2 PRELIMINARIES

2.3.2 Substitution Method

In a substitution method the unknown elements of the matrix A are determined
by solving a triangular system of equations i.e. the ordering of the nonzeros
of A is such that every nonzero is determined using formerly computed values.
Let us comprehend this method with the help of an example illustrated in [24].

Let
ann 0 a3 1 0

A = an Qoo 0 s and let S = 1 1
0 {3z daz 01
The second row of A can be determined by solving for as, and ay, in the

following reduced system

10
[a2l ag 0 11 =[521 bzz]'
01

Eliminating row 3 of S and transposing the system, we get

11 [153] b21

01 dq2 bzg

which is an upper triangular system. The nonzeros of the other two rows
of A can be found in the similar way. Substitution method usually require
fewer number of function evaluation or AD passes but is subject to numerical
instability.

It can be verified that the above example cannot be determined with fewer

than 3 matrix-vector products in any direct methods,

2.3.3 Elimination Method

Elimination method is a general method where no special structure is assumed

for a seed matrix. Any square submatrix of the seed matrix 5, however, must

11

CHAPTER 2 PRELIMINARIES

be nonsingular. Let us view this method with the help of the following example.

Let,
an 0 apz ay O

A= 0 ax aa 0 azx
a1 as2 0 az O

The successive column merging technique [25] gives the following seed matrix

100
210
121
012
001

1Y

The matrix B could be obtained by the product B = AS, giving

o1 +a1s 2013+ de 013+ 2014
B = | 2a3 +ax 022+ 2023 agz + ags

as1 + 2az; as2 + Gz 2034

Then the unknowns for example in row 1 of A can be determined as follows

110 a1l bll
0 21 ma | = | b2
01 2 a14 b3

2.4 Computing Partial Derivatives

2.4.1 Finite Difference Approximation

Let A denote the Jacobian matrix J{z) of a continuously differentiable map-
ping F': R” — R™. An approximation to the jth column of A, denoted by aj,

can be obtained from

aj = %F(:ﬂ) = é[F(m + ze;) — F(z)],1 £ j < n, (2.4)

12

CHAPTER 2 PRELIMINARIES

where e; is the jth coordinate vector and ¢ is a positive increment. Assuming
F{z) has already been evaluated, we can estimate the partial derivatives in the
jth column of matrix A through the additional function evaluation F'(z +ze;).
Note that, if the sparsity information is not exploited then we will need n extra
function evaluations to determine A.

The advantage of finite difference is that it is easy to implement. The finite
diffefence method can be used as a black box i.e, to obtain an approximation to
the derivatives, we do not need to access the function code. We just need to call
the subroutine that implements the mathematical function. The disadvantage
of finite differencing is that it is prone to numerical instability. If ¢ is taken
to be too large then the approximation is not accurate due to truncation error
and if ¢ is taken to be too small then F(z + ee;) — F(x) may cause loss of

precision to round-off errors associated with finite precision calculations,

2.4.2 Automatic Differentiation

Automatic Differentiation (AD)} is a chain rule based technique for evaluat-
ing the derivatives of functions defined by computer programs. Unlike finite
difference approximation {FD}), the derivatives computed using AD are free
from truncation errors. We will now present a brief description of basic AD
techniques. For a comprehensive introduction to AD we refer to the excellent
reference [19] by Andreas Griewank.

A program for evaluating the function
z=F(z),F: R* > R™ (2.5)
can be seen as a series of scalar assignments
Vi = @i (V)i (2.6)

where j — 1 indicates that v; is computed before v;. Variables v; are ordered

13

CHAPTER 2 PRELIMINARIES

such that they can be divided into three vectors:
z = (v1, Vg, ...,)7 (independent variables),

Y = (Unst1, Untas ...fuﬂ+p)T (intermediate variables),
2 = (Vngpls Vnbpt2s oo Undpim) (dependent variables). (2.7)

@, represent elementary functions, which can be arithmetic operations or tran-
scendental functions. If all these elementary functions ¢; are well defined and

have coutinuous elementary partials
a o
Gy = 3—%_@,] <t (2.8)

then by the repeated application of the chain rule, the nonzeros of the Jacobian
matrix J(z) can be computed from the elementary partials c;;. AD has two

basic modes of operation namely forward and reverse.

Forward Mode

In forward mode, intermediate partial derivatives are accumulated in the same
order as the function values are computed. A forward pass is equivalent to
the calculation of the matrix vector product Jv where v is a n-vector. By
initializing v to be unit coordinate vector e;,i = 1,2, ..., n, all the columns of

J can be determined by n forward passes.

Reverse Mode

In reverse mode, the intermediate partial derivatives are accumulated in reverse
order of function evaluation. A reverse poss corresponds to the computation
w?J where w is a m-vector. By initializing w to be unit coordinate vectors
et = 1,2,...,m all the rows of J can be determined by m reverse passes.

In the above descriptions we noticed that the nonzeros of A can be effi-

ciently determined from B and C?. By obtaining seed matrices § € R™*m

14

CHAPTER 2 PRELIMINARIES

and W7 & ®P2*™ such that p; and p; is minimized, we can reduce the number
of function evaluations in FD and the number of forward and reverse passes
in AD, thus minimizing the computational cost of determining the Jacobian

matrix.

2.5 Summary

In this chapter we discussed numerical algorithms where efficient computation
of partial derivatives is crucial. We introduced unidirectional and bidirec-
tional partitioning that exploits sparsity and used examples illustrating dif-
ferent techniques to “recover” the nonzero entries from the products AS and
WTA, We briefly described FD and AD techniques to obtain approximation
to the nonzero entries. In the next chapter we will present graph coloring

technique to partition the Jacobian matrices,

15

Chapter 3

Background

In this chapter we will give the problem definition and all the pertinent ter-
minclogy that will be used in this and the subsequent chapters. In section 3.1
we will give graph notations followed by section 3.2 in which we will define the
problem of bipartitioning the Jacoblan matrix using graph coloring. We will
discuss the complexity issues associated with bidirectional p-coloring in section
3.3 and in section 3.4 we will describe the graph coloring methods. Finally, in

section 3.5 we will summarize this chapter.

3.1 Graph Theoretic Definitions and Notations

A graph G is an ordered pair (V| E) where V is a finite and nonempty set called
vertices and E is a set of unordered pairs of distinct vertices called edges. Two
vertices u and v are adjacent if and only if {u,v} € E. The degree of a vertex
v is the number, denoted deg{v), of edges with v as an endpoint. A path P of
length I is a sequence {vy, vz, ..., 141} of distinct vertices in G such that v; is
adjacent to vy, for 1 < i <L

A bipartite graph Gy = (U UV, E) contains two disjoint sets of vertices U

and V such that every edge in G has adjacent vertices in I/ and V respectively.

16

CHAPTER 3 BACKGROUND

3.2 Problem Definition

3.2.1 Graph Coloring

Graph coloring is an assignment of colors or labels to the vertices of the graph
such that no two adjacent vertices receive the same color.

A p-coloring of a graph G = (V, E) is a function ¢ : V — {1,2,...,p} such
that o(u) # o(v) if {u,v} € E. The chromatic number x(G) is the smallest
p for which (7 has a p-coloring. A coloring that uses ¥ (&) colors is known as
optimal coloring.

Figure 3.1 illustrates p-coloring of the graph G using p = 3 colors.

Figure 3.1: p-coloring Example

3.2.2 Formulating the Partitioning Problem as a Graph

Coloring Problem

Direct determination as proposed in this thesis is based on partiticning the
rows and columns of the Jacobian matrix such that the nonzerc entries can
be recovered from the matrix-vector products computed via AD or FD. We
can conveniently reformulate the partitioning problem as a coloring problem
of an associated graph. In this section we will discuss graph formulation of the
partitioning problem.

Consider a m x n matrix 4. The column intersection graph of A is a graph

G(A) = (V, E) where for each column j,j = 1,2,...,n of A there is a vertex

17

CHAPTER 3 BACKGROUND

v eV and {we, v} € E if there is a row i such that a; # 0 and ag # 0. Figure

Vi Ve Ve Vi Vs

x x
X b4
x X X
_x x
(a) 4

Figure 3.2: Sparse Matrix and its Column Intersection Graph Representation

3.2(a) depicts the matrix A and Figure 3.2(b) represents its corresponding
column intersection graph.
The following result [9, 35] states the connection between the unidirectional

partitioning preblem and graph coloring.

Theorem 3.1 ¢ is a unidirectional partitioning of the columns {(or rows) of

A if and only if ¢ induces a colaring of the graph G(A) (or G{AT)).

As has been observed in [12, 23], unidirectional partitioning may not yield
the most effective exploitation of matrix sparsity. In the unidirectional par-
titioning the graph defined for a sparse matrix A represents the sparsity of
either columns G{A) or rows G{AT) but not both. To represent both row and
column sparsity a different graph is needed. Specifically, we need to record the
zero-nonzero structure of rows and columns. A bipartite graph is a convenient
data structure for this purpose.

The bipartite graph associated with matrix A € R™*" ig a graph G,(A} =
(7 UV, E) where U = {ug,vo,..un},V = {v1.02,..,0,} and {u;,v,} € £
whenever a,; is a nonzero element of A, for 1 < <m,1 < j < n. The size
of the graph G4(A4) is proportional to the size of the matrix A, such that the
number of vertices |/| + [V| = m + n and number of edges & = nnz(A4),

where nnz{A) is the number of nonzeros in A.

18

CHAPTER 3 BACKGROUND

Vi VaVaVa Vs
uf X x x x x
Ui x X
u,| x X
Ug| X X
Ug| x X
(a) A (b) Ga(4)

Figure 3.3: Sparse Matrix and its Bipartite Graph Representation

Figure 3.3{a) shows a sparse matrix A and Figure 3.3(h) represents its
agsociated bipartite graph.

A mapping ¢ : U UV — {1,2,...,p} is called a bidirectional p-coloring of
bipartite graph Gy = (U UV, I2) if ¢ is p-coloring of Gy and every path of

length 3 in Gy uses at least 3 different colors such that
{o(w):uelUtn{o(v):ve V=10 (3.1)

The chromatic number for bidirectional p-coloring is denoted by x(Gs).
It has been proved that bidirectional partitioning of A is equivalent to

bidirectional p-coloring of G(A) [12, 23..

3.3 Intractability

Computational complezity is concerned with analyzing the resources needed
to solve computational problems. Complexity theory is used as a tool to an-
alyze algorithms, so that the bounds on the resources required for solving the
computational problem can be determined.

A decision problem is one whose solution is either “yes” or “no”. A decision
problem = for which the answer (yes or no) can be decided in polynomial time
i.e. the worst case running time for an algorithm solving the problem 7 is

O(n®), where n is the size of the inputs and k is some constant, then that

19

CHAPTER 3 BACKGROUND

problem is said to be in the class P [16, 30]. The problems within class P are
known as tractable. If k is sufficiently small then these problems can be solved
in a reasonable amount of time.

A decision problem # for which a solution can be guessed and verified in
polynomial time belongs to the class NP. Some problems in NP are shown to be
the members of the equivalence class NP-complete (NPC). A decision problem
7 belongs to the class NPC if # € NP and for every other problem #* in NP
there exists a polynomial time algorithm that transforms 7’ to # such that if
the solution to 7 is 'ves’ then the solution to 7' is also 'yes’ and viceversa. The
problems in class NPC are most difficult to solve and no algorithm to date is
known which can solve these problems in deterministic polynomial time.

A Combinatorial optimization problem (COP) is either a “minimization
preblem” or a “maximization problem”. For each instance 7 of a problem,
there exists a finite set S{J) of “candidate solutions” for J. A function m
is called a “solution value” for each candidate solution if it assigns to each
instance and each candidate solution a rational number. In a minimization
(maximization) problem, an optimal solution for an instance I is a candidate
solution o* such that for all possible candidate solutions, o* has the minimum
(maximum) solution value.

The optimization version of the decision problems in NPC belong to the
class NP-hard i.e. a problem is considered as hard as NPC. Also no algorithm
to date exist which can solve NP-hard problems in polynomial time. The class
of NPC and NP-hard are regarded as intractable because problems in these
classes have no known polynomial time algorithms.

In our thesis we are concerned with the optimization version of the coloring

and partitioning problems (unidirectional and bidirectional).

20

CHAPTER 3 BACKGROUND

3.4 Graph Coloring Methods

We can apply both heuristic techniques as well as exact methods to color
the vertices of the graph. We have applied heuristic techniques to solve the
partitioning problem because they are solvable in polynomial time and give
good sclutions but we want to know how good are the heuristics doing and
this has motivated us to investigate exact coloring techniques. We will give a

short description of both the techniques below.

3.4.1 Heuristic Methods

Algorithms which give solution in given time, and do not guarantee any upper
or lower bounds but they cften find "good” solutions are called heuristics or
ineract methods. The performance measurement for these methods is usually
done by benchmarking i.e. measuring the quality of performance on different
sets of inputs. The weakness of this performance measuring is that it is dif-
ficult to predict the results of arbitrary sets of inputs. In our thesis we have
adapted three weli-known heuristic algorithms namely largest first ordering
(LFO), smallest last ordering (SLO) and incidence degree ordering (IDO) for

bidirectional p-coloring,.

3.4.2 Exact Methods

Algorithms that give optimal solution for the given problem are known as ezact
methods. These algorithms give upper and lower bounds of the problems and
confirm that no better solution could be found. Exact methods are "hard”
and often not solvable in polynomial time. In our thesis we have formulated
an integer linear programming (ILP) model to implement the bidirectional

p-coloring,.

21

CHAPTER 3 BACKGROUND

3.5 Summary

In this chapter we introduced the notations as used in our thesis. We defined
graph coloring and discussed the formulation of the partitioning problem as
a graph coloring problem. We reviewed unidirectional and bidirectional p-
coloring schemes. We presented intractability and described heuristic and
exact graph coloring methods. In the next chapter we will discuss heuristic

algorithms for bidirectional p-coloring,.

22

Chapter 4

Coloring Heuristics

In this chapter we will study hewristic techniques to determine the sparse Ja-
cobilan matrices. In section 4.1 we will discuss existing unidirectional and
bidirectional heuristic techniques, in section 4.2 we will detail heuristic tech-
niques developed for bidirectional graph coloring, and finally in section 4.3 we

will swmmarize the chapter.

4.1 Background

4.1.1 Unidirectional Graph Coloring

In 1983, Coleman and Moré [10] suggested that the column partitioning prob-
lem could be posed as a graph coloring problem. They proposed algorithms in
which they ordered the vertices of the column intersection graph G(A) using
the largest first ordering (LFQ), smallest last ordering (SLO), and incidence
degree ordering (IDO) schemes, and then applied the sequential algorithm on

these ordered vertices [9].

4.1.2 Bidirectional Graph Coloring

Unidirectional coloring deals with either the rows or columns of the sparse

matrix 4 while bidirectional coloring involves both rows and columns of A. As

23

CHAPTER 4 COLORING HEURISTICS

discussed in section 2.3 it is desirable to minimize p such that all the nonzeros of
A are determined uniquely. The following subsections discuss existing heuristic

techniques for bidirectional p-coloring.

Complete Direct Cover

Hossain and Steihaug [23] proposed row-column consistent partitioning of A
in which the entire set of rows and celumns is partitioned. They introduced
complete direct cover for Jacobian matrices as described below.

Let 5. be a collection of subsets of columns and S, be a collection of subset

of rows. The set {S., Sy} is called complete direct cover of A if
e The intersection of any two subsets is empty.

o For each nonzerc element a;;, there is a subset X € §;U S, such that a;;

is directly determined by X.

An algorithm to compute complete direct cover aims to find groups of rows
and columns that satisfy the direct cover property. The algorithm terminates
when all the nonzeros are determined. Maximum number of colors needed to
determine Jacobian matrix directly using complete direct cover algorithm is
|Sel + 15¢] + 2 [23].

Bicoloring

Coleman and Verma [11, 12] studied the same problem and suggested that it is
sufficient to partition subsets of rows and columns such that A is determined
directly. The vertices that are not involved in the determination of any nonzero
entry are assigned the neutral color zero. The bipartite coloring scheme applied
by them is illustrated below.

Let Gy = (U UV, E) be a bipartite graph. The mapping ¢ : YUV —
{0,1,...,p} is a bipartite p-coloring of G, if the following conditions hold.

24

CHAPTER 4 CoOLORING HEURISTICS

o IfuecU and veV,then ¢(u) # ¢(v) or ¢(u) = ¢(v) = 0.
o If {u,v} € E, then ¢(u) # 0 or ¢(v) # 0.

o If vertices u and v are adjacent to vertex w with ¢(w) = 0, then ¢(u) #

¢(v).
o Every path of three edges uses at least three colors.

They introduced the concept of bicoloring in which A is permuted and
partitioned. Minimum nonzero count ordering (MNCO) algorithm is built to
partition J to obtain matrix J, from bottom up and J, from right to left. At
gvery iteration in MNCO either a new column is added to J, or a new row is
added to J.. The coloring is then obtained by partitioning the columns in J.
and partitioning the rows in J.. This double coloring approach is named as

bicoloring.

4.2 Bidirectional Heuristic Techniques

In this section we will discuss our bidirectional heuristic techniques. We ini-
tially order the vertices of the bipartite graph Gy(A) using one of largest first
ordering (LFQ), smallest last ordering (SLO), and incidence degree ordering
(IDO). We then apply sequential algorithm on the ordered vertices to obtain
bidirectional p-coloring of Gy(A).

From Figure 4.1, the degrees of row and coclumn vertices can be enumerated
as follows.
deg(uy) = 3, deg(uz) = 2, deg(us) = 2, deg({uq) = 3, deg{us) = 2
deg(vy) = 2,deg(vq) = 3, deg(vs) = 2, deg(vs) = 3, deg(vs) = 2

25

CHAPTER 4 CoLorING HEURISTICS

Vi V2 Ve V, Vg

Uy x x
Uy x X
u, x x X
Ugl x x
(a) A (b) G(A)

Figure 4.1: Sparse Matrix A and its Bipartite Graph Gy(A)}

We will illustrate the algorithms using the example matrix given in Figure

4.1.

4.2.1 Largest First Ordering

In largest first ordering (LFO) we first sort the vertices in I/ and V of the bipar-
tite graph Gi(A) in nonincreasing order of their degrees such that deg(u,) >
... 2 deg(uy,) and deg(vy) > ... = deg(v,). The two sets of sorted vertices are
then merged into one ordering.

Algorithm 3 depicts the sorting routine applied in Algorithm 4 to sort the
row vertices. The same routine is applied to sort the column vertices also. In
Algorithm 3, pmer and pmiy represent the maximum and minimum number of
nonzeros in any row or column of A, respectively. The array ndegr holds the
degree of row vertices such that ndegr(i) is the degree of row ¢ of A.

In Algorithms 3 and 4, RowDeg represents the array containing the in-
dices of the row vertices in nonincreasing order of their degrees and ColDeg
represents the array containing the indices of the column vertices in nonin-
creasing order of their degrees. The arrays RowDeg and ColDeg computed by

Algorithm 3 for the matrix given in Figure 4.1(a) is as follows.

26

CHAPTER 4 COLORING HEURISTICS

RowDeg ColDeg
index | 1|2|3|4|5 index [1{2(3(4]|5
U 11{4(2{3:5 V 1214|135

In Algorithm 3, while sorting the vertices of G,(A), we take advantage of prior

knowledge of matrix structure.

Algorithm 3 Sorting Algorithm
1: procedure SORTING{Rows)

2: icr =0,

3 for j « pmaz, Pmin do

&: fori—1,m do

5 if ndegr(i) == j then
6: RowDeg(icr) = i}
T icr + 4

8: end if

9: end for

10: end for

11: end procedure

The outer for loop at line 3 runs (Pmaz — Pmin) times and the inner for loop
at line 4 runs m times, implying that the running time of the sorting algorithm
is O(m(Pmaz — Pmin)). SINCE Prmin > 0, this sorting runs in O(mpme,) time.

In Algorithm 4, arrays ListRow and ListCol contain the ordering infor-
mation of row and column vertices respectively and together they determine
the combined ordering in which the vertices are processed by the sequential
algorithm. ListCol(i} denotes that column vertex v; will be processed by the
sequential ordering algorithm after the vertices that are ordered before v; in
largest first ordering. This combined ordering is computed by the statements
on lines 6-15. The counter ine is incremented by one at each iteration of the

while loop.

27

CHAPTER 4 CoOLORING HEURISTICS

Algorithm 4 Largest First Ordering

1: procedure LFO(G,(A))

2:
3
4;

inc+— 1;
icr +— 1,icc « 1;

Sort the vertices in U/ in nonincreasing order of their degrees and put

the result in RowDeg;

Sort the vertices in V' in nonincreasing order of their degrees and put

the result in ColDeg;

while inc <m + n do > Ordering row and column vertices

9

10:

11:

12:

13:

14:

15:

if Degree of vertex at RowDeg(icr) > Degree of vertex at
ColDeg(icc) then
ListRow(RowDeg{icr)) « inc;
ier + +;
else
ListCol(ColDeg(icc)) + inc;
ice + +;
end if
me + +;

end while

16: end procedure

The combined ordering computed by LFO for matrix in Figure 4.1(a) is

shown below.

ListRow ListCol
U 112(3]4]|5 v 112(3|4] 5
Ordering |1 |5(6 |2 |7 Ordering |8 1319 (4|10

In Algorithm 4, the running time for sorting of row vertices is O{mpmaz)

and that of column vertices is O(nKkmqe) . Statements on lines 6-15 orders the

vertices in O{m +n). Thus the total running time for the largest first ordering

28

CHAPTER 4 CoOLORING HEURISTICS

algorithm is O(max{mpmaz, MEmaz, (M-+n)}) which is O(max{mpmaezs Mmaz })-
Without loss of generality, let m = max{m,n} and pmar = max{pmaez: Kmaz
then the run time complexity of LFO algorithm is O(mpgmaz).

Before we examine the smallest last ordering and incidence degree ordering,
we will require additional graph terminology. Given a graph G, = (U UV, E)
and a nonempty subset U; of U and Vi of V, the subgraph Gy, [U1 UWL] induced
by U; U V; has the vertex set Iy UV} and the edge set

{{v,v} € E:uely, and v e Wi}

4.2.2 Smallest Last Ordering

In smallest last ordering {(SLO) the row or column vertex chosen at the kth
stage has minimal degree in the graph induced by the unordered vertices i.e.
kth vertex wy is determined after Wit Wi+2, oy Winen=1, Wman, Where w; is
either a row vertex wu; or a column vertex v;, have been selected by choosing

wy, s0 that its degree in the subgraph induced by

(U U V) \ {wk+11 Wie2y ooy Wngn—1, wm-i—n}

is minimal.

In Algorithm 3, inc is the ordering counter which starts from m+n. Arrays
ListRow and ListCol, as described for LFQO, store the ordering information of
row and column vertices respectively. Lines 3 and 4 find the minimum degree
TOW VErteX Upmindeg and column verteX Umingeq. Lines 7 and 14 decrease the
degrees of the vertices adjacent to ¥mindeg 1A Upmingeg Yespectively. Lines 8 and
15 order the minimum degree vertex and lines 11 and 17 recompute ¥pmindeg

and Uminde; aMoNg the remaining uncrdered vertices.

29

CHAPTER 4 COLORING HEURISTICS

Algorithm 5 Smallest Last Ordering

1: procedure SLO{Gy(A))

2
3:
4:

10:
11:
12:
13:
14:

15:
16:
17
18:
1%
20:

ne «— m-+n;
Find Ymingeg +— minimum degree row vertex in U;
Find ¥pinde, < minimum degree column vertex in V;
while inc > 0 do
if deg(Umindeg) < deg(Vmindey) then
Find all column vertices adjacent to Uminde, and decrease their
degree by 1;
ListRow(Umindeg) «— ne;
ine — —;
Assign next minimum degree row vertex as Umindeg;
Recompute Umindeg;
end if
if deg(Vmindeg) < deg(Umindeg) then
Find all row vertices adjacent to Uminde, and decrease their de-
gree by 1;
ListCol(Umindeg) + in¢;
inc— —;
Recompute tmingeg;
Assign next minimum degree column vertex as Vmindeg)
end if

end while

21: end procedure

The combined ordering computed by SLO for matrix in Figure 4.1(a) is

shown below.

30

CHAPTER 4 CoLORING HEURISTICS

ListRow ListCol
7 1] 2/3|14|5 1’4 112|13(4¢(5
Ordering | 6 |10 |2 |4 | 8 Ordering |9 |5 |3 |17

The running time of smallest last ordering can be calculated as follows. The
running time of steps at line numbers 3 and 4 is O(m) and O(n) respectively.
The while statement on line 5 executes maximum of (m+n) time in worst case.
Inside the while loop, line 11 takes O(n) time and line 17 takes O(m) time while
the remaining lines run for constant time. Thus the total running time of the
while loop from statements in lines 5-20 is O(max{m,n}(m + n)). Therefore,
the running time of smallest last ordering algorithm is O(max{m,n}(m +n)).
Without loss of generality, let m = max{m,n}, then the run time complexity
of SLO algorithm is O(m?}.

4.2.3 Incidence Degree Ordering

In incidence degree ordering (IDQ) a row or column vertex wy is determined
after wq,wy, ..., Wx—2, Wx—1, Where w; is either a row vertex u; or a column
vertex u;, have been selected. The choice of wy from among the set of unordered
vertices is such that it is adjacent to maximum number of already ordered
vertices {wy,wy, ..., Wx—2, Wr—1}. The incidence degree of wy is the degree of
1wy, in this subgraph.

In Algorithm 6, inc is the ordering counter which starts from 1. ListRow
and ListCol, as described for LFO, store the row and column vertices already
in the incidence degree and their ordering information. Lines 3, 4 find initial
maximum degree row vertex Uincdeg and maximum degree column vertex Vincgeg.
Statements in lines 5-11 initialize Uincdeg OF Vincdeg 85 the first incidence degree
vertex according to initial maximum degree amongst the two. The remaining
incidence degree vertices and their orderings are computed in the statements

of the while loop from lines 13-26. In line 14, degrees of all the column vertices

31

CHAPTER 4 COLORING HEURISTICS

adjacent to already ordered row vertices are computed, and in line 15, degrees
of all the row vertices adjacent to already ordered column vertices are com-
puted. Lines 16 and 17 caleulate wincaeq a0d Vinedeg, i.€. the unordered row and
column vertices that are adjacent to the maximum number of already ordered
column and row vertices respectively. Statements in lines 18-24 find the new
incidence degree row or column vertex and stores it in ListRow or ListCol with
the ordering assigned to it.

The combined ordering computed by IDO for matrix in Figure 4.1(a) is

shown below,

ListRow ListCol
U 11213145 v 112 3[4]5
Ordering |1 |5|9|6|3 Ordering |2 4|10 |7 | 8

The running time of line 3 and 4 is O(m) and O{n) respectively. The
while statement on 13 is executed m + n times. Lines 14 and 17 are executed
for maximum of n times each and lines 15 and 16 are executed for maximum
of m times each, the remaining lines run for constant time. Thus the total
running time of the while loop is O(max{m,n}{m + n)), where max{m,n}
denotes maximum of m,n. Therefore, the runming time of incidence degree
ordering algorithm is O{max{m,n}(m + n)). Without loss of generality, let

m = max{m,n} and, then the run time complexity of IDO algorithm is O(m?).

32

CHAPTER 4

Algorithm 6 Incidence Degree Ordering

1: procedure IDO{G;(A))

2:
3:
4;

10:
11:
12:
13:
14:

16:
17:
18:
19:
20:
2L
22:
23:

24;

26:

27

ine — 1;
Find incgeg «+— maximum degree row vertex in U;
Find vincdeq +— maximum degree column vertex in V;
if deg(Uincdeg) 2 deg(Vincdey) then

ListRow (Uinedeg) « i€

Remove wnegey from set of unordered vertices;
else

ListCol(Vinedeg) + tnc;

Remove vipcqey from set of unordered vertices;
end if
e+ +;
while inc # (m +n) do

Find all unordered column vertices vly, vls, ..., v1, adjacent to ver-

tices in ListRow and compute their incidence degrees;

Find all unordered row vertices ul;, uls, ..., ul,, adjacent to vertices

in ListCol and compute their incidence degrees;

Find Uinegey +— maximum degree row vertex from uly, ..., ulpy;

Find vineqey +~ maximum degree column vertex from v1y,...,v1,;

if Uinedeg = Vinedeg then

ListRoW(tUinedeg) +— NC;

Remove wincgeg from set of unordered vertices;
else

ListCol(¥incdeg) +— inC;

Remove Vincgey from set of unordered vertices;
end if
inc+ +;

end while

end procedure

33

CoLoriNg HEURISTICS

CHAPTER 4 CoLORING HEURISTICS

In the following subsection we will describe the method to find bidirectional

p-coloring using aforesaid ordering techniques,

4.2.4 Sequential Algorithm

After the vertices have been ordered using one of the ordering algorithms, the
sequential algorithm will access the vertices in the given order and will assign
the smallest available color to the vertices.

Algorithm 7, illustrates the sequential algorithm to assign colors to the
vertices of Gy(A). Variables mazor and mazoc represent the highest order
number, in the combined ordering assigned to a row and a column vertex
respectively. In lines 5 and 6 we construct two arrays Ordr and Orde of size
m +n each to access the vertices corresponding to the combined ordering. To
explain if the row and column vertices are ordered in the range 1,2,...,m + n,
then for each position { € {1,2,...,m + n} there can be exactly one vertex,
either a row or a column, which is assigned the position [. This is implemented
as Ordr({) > 0, implying that the vertex in position ! is a row vertex and
consequently Ordce({) is set to -1 indicating that there is no column vertex which
is assigned position { in the combined ordering. Similarly, if Ordc(l) > 0 then
Ordr(l) = —1. Finally, during the running of the algorithm Ordr{{) = 0 implies
that the row vertex that was assigned order ! has already been processed
(colored).

The arrays Ordr and Ordc computed by Algorithm 7, using LFO for matrix

in Figure 4.1{a) is shown below.

Ordering | 1| 2| 3| 4(5|6|7| 8| 9|10
U 1/4}-1]-1{2|35|-1|-1|-1

34

CHAPTER 4 CoLoRING HEURISTICS

Orde
Ordering | 1| 2|3|4| 5| 6! 7|8|9|10
id -1(-1{2[(4|-1]-1/-1:1|31} 5

Let C be a group of columns. We say that C induces direct determination
of the nonzerc entries contained in those columns if for any 7, &, ! such that 7,
are the indices of columns included in C, we have ay; # 0 and ax # 0, then
there exists a row group C’ from which the nonzero entries ax; and oy have

been determined.

I OO
wx o @ G

(a) A (b) Go(4)

Figure 4.2: Example to Illustrate Sequential Algorithm

In Algorithm 7, %minorq 80d Uminerq are the vertices with minimum ordering
among the ungrouped row and column vertices respectively. The while loop
from 7-23 assigns the colors to the vertices. In line 8, we calculate the total
number of nonzeros the row vertex Uminorg can cover along with all other
ungrouped row vertices which can be grouped with Umnord, Such that if the
group €' is formed, then it induces direct determination of the nonzero entries
in the group. In line 9, we calculate the total number of nonzeros the column
Vertex Uminorg Call cover along with all other ungrouped column vertices which
can be grouped with ¥minera, such that if the group C is formed, then it induces

direct determination of the nonzero entries in the group. In line 10 we check if

35

CHAPTER 4 CoLORING HEURISTICS

the number of nonzeros covered by vertex wmmorg 15 more than the number of
nonzeros covered by vertex Vminerg and if this is the case then a new row group
is formed otherwise a new column group is formed., We use tagging scheme as
described by Gustavson [21] to form groups. Initially all the row or column
vertices which can be part of one group are tagged and then the edges incident
from these vertices are deleted. The process of forming groups or assigning
colors continues umtil all the edges are accounted.

If we exit on line 20, and there still exist some row and column vertices
which were not colored then on line 24 we assign the next available row color
to all the remaining uncolored row vertices, similarly on line 25 we assign
next available column color to all the remaining uncolored column vertices.
The colors assigned on lines 24 and 25 are redundant colors, i.e. the nonzero

entries in these color groups are already determined by other groups.

Proposition 4.1 The sequential algorithm (Algorithm 7} computes a bidirec-

tional coloring of Gy(A).

Proof. To show that the sequential algorithm produces a bidirectional coloring
of the graph Gy(A) we need to show that the vertices in every path of length
3 uses atleast three different colors. Now consider an arbitrary path w; — v; —
uy — v; as shown in Figure 4.2(b). Since the grouping of rows and columns
83 described in line 11 and 15 are such that the groups formed induce direct
determination of the nonzeros and given the columns {or rows if it is a row
group) in the first group are structurally orthogonal, we must have that either
columns 7 and ! are included in different column groups or the rows i and & are
included in different row groups. Therefore, the total number of colors used

on the vertices u;, v;, ug, v; are atleast three. Hence, the proof. |

36

CHAPTER 4 CoLoRING HEURISTICS

Algorithm 7 Sequential Algorithm

1: procedure SEQUENTIAL(G)(A))

2
3
4

10:

11
12
13:

14:
15:
16:
17:

18:
1%
20:
21:
22:
23:
24:

25:

lor — 1; loc «+ 1,
Find maxor,
Find mazoc;
Comnstruct Array Ordr and calculate wminord;
Construct Array Ordc and calculate Vminord;
while lor < mazor &8& loc € mazoc do
Calculate the number of nonzeros covered by Uminord;
Calculate the number of nonzeros covered by Ymingrd;
if Number of nonzeros covered by vertex Uminerg = Number of
nonzeros covered by vertex vminerg then
Form a new row group;
Delete edges in Gy(A) adjacent to the rows in this group;
Set lor to the next minimum ordering number amongst the un-
grouped row vertices;
else
Form a new column group;
Delete edges in Gp(A) adjacent to the columns in this group;
Set loc to the next minimum ordering number amongst the un-
grouped column vertices;
end if
if Gy(A) contains no more edges then
Exit from the while loop;
end if
Pind next Uminord a0d Yminord;
end while
Agsign next available row color to all the uncolored row vertices;

Assign next available column color to all the uncolored column vertices;

26: end procedure

37

CHAPTER 4 CoLORING HEURISTICS

The running time of Algorithm 7, can be discussed as follows. The running
time of lines 5 is O(m) and lines 6 is O(n). Since mazor or mazoc is equal
to m 4+ n thus the while statement at line 7 executes m + n times. Lines 11
and 12 runs m times each and lines 15 and 16 runs n times each. Rest of the
lines takes constant time. Thus the total running time of the while loop 7-23
is O(max{m,n}(m+n)), where max{m,n} denotes maximum of m,n. There-
fore, the total running time of sequential algorithm is O(max{m,n}(m + n)).
Without loss of generality, let m = max{m,n}, then the run time complexity
of sequential algorithm is O(m?).

To check the validity of above algorithms, a validity check algorithm has
been implemented that checks that groups formed follow the definition of bidi-

rectional p-coloring as stated in section 3.2.2.

4.3 Summary

In this chapter we described unidirectional and bidirectional p-coloring tech-
niques. We discussed existing heuristic algorithms for unidirectional and bidi-
rectional p-coloring. We also described largest first ordering, smallest last
ordering and, incidence degree ordering as adapted by us for bidirectional p-
coloring of A. In chapter 6, we will show the experimental results of the
heuristics and will have the comparative study of various coloring heuristics.
In the next chapter we will explain exact coloring method for bidirectional

p-coloring.

38

Chapter 5

Optimal Bidirectional Coloring

In this chapter we will describe exact bidirectional p-coloring technigues. In
section 5.1 we will review the current literature. In section 3.2 we will discuss
our exact coloring formulation together with complexity of the ILP model and

implementation details. Finally, in section 5.3 we will conclude this chapter.

5.1 Background

Exact coloring refers to coloring the graph such that the number of colors
assigned to the vertices of the graph is minimum and no better solution can
be found. Finding this optimal solution is NP-hard {16]. In the following

subsection we will discuss a selection of relevant optimal coloring algorithms.

5.1.1 DSATUR

DSATUR algorithm was developed by Brélaz [8] which is based on Randall-
Brown's exact graph coloring algorithm [37]. DSATUR divides the graph col-
oring instance into a series of subproblems. A subproblem in DSATUR is a
partial coloration of the graph. At each step there is an upper bound (UB)
on the number of colors required to color the graph. If the subproblem uses p
colors such that p < UB, then a better coloring is found and UB is set to p. If

the graph is not completely colored and the number of colors used is less than

39

CHAPTER 5 OPTIMAL BIDIRECTIONAL COLORING

UB, then new subproblems are created. An uncolored vertex v; is chosen for
branching and for each feasible color out of p colors a subproblem is created
to assign that color to v;. Another subproblem is created to assign color p+1
1o ;.

The choice of branch node ¢ is critical and could affect the performance
of the algorithm. Brélaz suggested to choose the node adjacent to the largest
number of differently colored nodes. Sewell [39] suggested a medification to
DSATUR, noting that if the first p nodes colored form a clique, then these
nodes would never be recolored. Thus it is useful to find a maximal clique in
the graph and color those nodes first. This approach is a large improvement
when the clique value and the coloring number of the graph are close.

Mehrotra and Trick {33] implemented the DSATUR algorithm by finding a
large clique in the graph. The algorithm generates 10,000 cligue subproblems
and the rest of the nodes are dynamically ordered according to the number
of adjacent colors and subproblems are created as in basic DSATUR. The
subproblems are then solved in depth-first search manner to find the optimal

coloring,.

5.1.2 Branch and Cut Algorithm for Graph Coloring

Branch-and-cut methods [34] are exact algorithms consisting of a combination
of a cutting plane method with a branch-and-bound algorithm. These methods
sclve a sequence of linear programming relaxations of the integer programming
problem. Cutting plane methods improve the relaxation of the problem to
closely approximate the integer programming problem, and branch-and-bound
algorithms proceed by a sophisticated divide and conquer approach to solve
problems.

Diaz and Zabala [15] proposed a branch-and-cut strategy to find optimal

solution of general graph coloring problem. The problem is modelled with an

40

CHAPTER 5 OPTIMAL BIDIRECTIONAL COLORING

integer linear programming (ILP} formulation.

5.2 Exact Bidirectional Coloring

In this section we present the optimal bidirectional determination of Jaco-
bian matrices using integer linear programming (ILP) method. The following
subsection will discuss integer linear programming concept, followed by the
presentation of the ILP model. Subsection thereafter will discuss the com-
plexities of the model and the final subsection will present the implementation

details.

5.2.1 Integer Linear Programming

A linear programming problem [31] is a mathematical program in which the
objective function is linear in the unknowns and the constraints consists of
linear equalities and linear inequalities. It can be expressed in the following

standard form.

minimize Tz

subject to Az =b

z2>0

where z € R"™ is the vector of variables to be determined, A € R™*" is a matrix
of known coefficients, and ¢ € R™ and b € R™ are vectors of known coefficients.

The expression ¢?

z is called the objective function, and the equations Az = b
are called the constraints. The variable z satisfying these constraints is said
to be feasible for these constraints.

Integer linear programming (ILP) models [40] are the ones whose variables
are constrained to take integers or whole numbers (as opposed to fractional
values). The zero-one (or 0-1 or binary) variables restrict their integer variables

to the values zero and one.

41

CHAPTER 5 OPTIMAL BIDIRECTIONAL COLORING

Integer programming is a much harder problem than ordinary linear pro-
gramming problem. The problem of determining whether an ILP has an objec-
tive value less than a given target is a member of the class of "NP-complete”
problems, all of which are very hard to solve. Since any NP-complete problem
is reducible to any other, virtually any combinatorial problem of interest can
be attacked in principle by solving some equivalent ILP.

Most available general-purpose large-scale ILP codes use " branch-and-bound”
to search for an optimal integer solution by solving a sequence of related LP
"relaxations” that allow some fractional values. It requires more computer
time and memory to solve a ILP problem than to solve the corresponding LP
relaxation. The difficulty of any particular ILP problem is hard to predict.
Some problems with fewer variables can be challenging while other problems
with larger number of variables can be solved readily. The best explanations
of why a particular ILP is difficult often rely on some insight into the system
to be modelled and it is observed that the way the model is formulated is as

important as the actual choice of a solver.

5.2.2 Integer Linear Programming Model for Bidirec-

tional p-coloring

We have attempted to find the optimal solution of bidirectional p-coloring for
determining Jacobian matrices by developing an Integer Linear Programming
(ILP) model. The detailed description of the model follows.

Let A € R™*" be a sparse matrix with known sparsity pattern and Gy(4) =
(U UV, E) the corresponding bipartite graph where U/ and V' are the sets of
vertices corresponding to the rows and columns of A respectively. We assume
that the vertices in U are indexed 1, 2,...,m and the vertices in V are indexed
m+1,m+2,...,m+n and the quantities py and py denote upper bound on the

number of colors we allow for the row and column vertices respectively. Below

42

CHAPTER 5 OPTIMAL BIDIRECTIONAL COLORING

is the description of binary variables (0-1) as used in the ILP formulation of

bi-directional p-coloring.

e (-1 variable w; denotes whether (w; = 1) or not (w; = 0) color 7, 1 £

J < pu has been assigned to some vertex u € U.

s (-1 variable w; denotes whether (w; = 1) or not (w; = 0) color j, py+1 £

§ < py + pv has been assigned to some vertex v € V.

¢ 0-1 variable x;; denotes whether (z;; = 1) or not (z;; = 0) vertex 1,

1 €1 £ m has been assigned color j,1 < j < py.

e 0-1 variable x;; denotes whether (z;; = 1) or not (z;; = 0) vertex {,

m—+1<i<m+n has been assigned color j,py +1 <7 <py+pv.

ILP model for the computation of bidirectional chromatic number of G,(A)

is as follows:

43

CHAPTER 5 OPTIMAL BIDIRECTIONAL COLQRING

pu+pv
minimize Z w; (5.1)
i=1

Py
chqj,j = 1, forieU (5.2)

j=1

putpv
Z z;; = 1, forieV (5.3)

J=py+1
xplj + x‘?)jr + xrﬁj + a;s:j'. S (w.? + wj’ + 1)* (5'4)

*for each path p — ¢ — r — s of length 3 and for each color pair

{1 7/V1<j<prpuv+1<5 <pv+pv.

wy < Zmi,j for j=1,..,pv {5.5)
el
wy; < Zﬂﬁi,j for j=py+1,..pv+pv (5.6)
i€V
domy<mu; fori=1,..,p0 (5.7)
iU
Z Tij < Ny for j=pv+1,..,pv+pv (5.8)
iev
Wj+1 < wy for J=1.,pu (5‘9)
wipr Lwy; forj=py+1,..,pv+pv (5.10)
w; € {0, 1}, for 1 <j=lpy+pv (5.11)
zi; € {0,1}, forieUUV1<ji<py+pv (5.12)

Figure 5.1: ILP Formulation for Bidirectional p-coloring

Expression (5.1) represents the objective function to be minimized. Con-
straints (5.2) and (5.3) ensure that each vertex in the respective set of biparti-

tion receives exactly one color. Constraint (5.4) enforce the coloring condition

44

CHAPTER 5 OPTIMAL BIDIRECTIONAL COLORING

for bidirectional p-coloring. Constraints (5.5) and (5.6) state that color w; can
only be greater than 0, if it has been assigned to a vertex. Constraints (3.7)
and (5.8) ensure that the number of vertices assigned color j cannot be greater
than the total number of vertices in the set I/ and V' respectively. Constraint
(5.9) and (5.10) ensure minimal color assignment to the vertices i.e. they

ensure that the colors are assigned in ascending order of their ordering.

Proposition 5.1 Any feasible solution of the bidirectional ILP induces a col-

oring of Gy(A) such that each vertexr in Gy{A) receives exactly one color.

Proof. We know that x;; are the binary variables and thus can have value
either 1 or 0. The sum Y 5297V x;; for i € U UV can be exactly 1 only if one
of the variables z;; has value 1. Constraints (5.2) and (5.3) ensures that in
any feasible solution of above ILP model only one of z;;, 1 £ j < pr +pv
assumes the value of 1 for each : € UV U V. Consequently, vertex ¢ receiving
anly 1 color. Thus by analogous reasoning it follows that each vertex in YUV

is assigned exactly one color via constraints (5.2) and (5.3). O

A path P is called bi-colored if the vertices forming P are colored with only

two colors.

Proposition 5.2 The bidirectional ILP has a feasible solution if and only if

it induces a coloring ¢ of Gy in which no path of length 3 in Gy is bi-colored.

Proof. We know that the vertices in U and V are assigned two disjoint sets of
colors and any path of length 3 will have at least 2 colors. We will base the
proof on the fact that z;; can be assigned values either 1 or 0 in constraint
(5.4) of the above ILP model.

Constraint (5.4) with path p — ¢ —r — s of length 3 where p,¢q,r,s e UUV
and the color pair {4,7'}, j € {1,..,pv} and j' € {pv + 1,....pv + pv} is

associated with the feasible solution of bidirectional ILP. The following cases

45

CHAPTER 5 OPTIMAL BIDIRECTIONAL COLORING

will illustrate the possible ways to assign coloring to x;; using constraint (5.4)

i

ii

iii

iv

v

Tpj + Tgt + Trj + sy S (w5 +wy + 1)

Tps = Try = 1 and 2,5 = x5 = 1 such that ¢{p) = ¢(r) = j and
¢(Q’) = (b(s) = j’- Then -Tp,j + mq,j’ + mr,j + xs,jf = 1 + 1 + 1 + 1 = 4
while w; + wyp = 1+ 1 making the linear program infeasible and thus

preventing bi-coloring of path P,

Zp; = Trj = 0 and 2y = 255 = 1 such that ¢(p) = ¢(r) =1 # j and
d(g) = d(s) = 7. Then 25+ 45 + Zrj +Tsy =0+ 1+0+1 =2 while

l+1=2ifz;;=1forsomeiec UUV
wj+tUjf=
0+1=1ifz;;=0forallieUUV

and hence satisfying the constraint (5.4) for {J, 7'} while bi-coloring the
path P. But then the color pair {{, 7'} the inequality reduces to case (i)
and hence making the solution infeasible as a result preventing bi-coloring
of path P. Similarly, the assignment z,; =z, = 0and xp; = 2,; =1
such that ¢(p} = ¢(r) = 7 and ¢(¢) = ¢(s) = I' # j corresponds to an

infeasible solution too and thus disallowing bi-coloring of P,

Ty = Tr; = 0 and g4 = 2,5 = 0 such that ¢(p) = ¢(r) =1 # j' and
o(q) = ¢(s) =1 # j/. However, in this assignment of variables for the
pair {{,!'} results in the inequality which can be reduced to case (i), thus

making the solution infeasible.

Tp; = L,z;; = 0 and g = 255 = 1 such that ¢(p) = j,o(r) =1 # 3
and ¢(q) = ¢(s) =7 Thenzp; +zgj0 +Trj+ 2o =1+1+0+1=3
and w; +wy = 1+1 and hence satisfying constraint (5.4) for {4, j'} while
path P is colored using 3 different colors j,1, j’.

Tp; = 0,2,; = 0 and x4 =z, = 1 such that ¢(p) =k # j,¢(r) =1 #
jand ¢(q) =¢(s) =7 Then axp; + 2oy +Try+ sy =04+1+0+1=2

46

CHAPTER 5 OPTIMAL BIDIRECTIONAL COLORING

vi

vii

and
l+1=2ifz;;=1forsomeiceUUV
wj+wj»=

O0+1l=1lifz;=0forallicUUV
and hence satisfying constraint (5.4) while path P is colored using 3

different colors k, !, j'. This case is symmetric to case(ii).

Zpj = 0,2p; = 0 and 24 = 1,2, = 0 such that o(p) =k # j,0(r)
[# jand (ob(Q) = jraﬁb(s) =" # j. Then Ipj + Togr + Tpj + Tsjr =
0+14+0+0=2and

N 1+1=2ifz;;=1forsomeicUUV
w5 Wi =
T D-+1=1ifz;;=0forallic VUV

and hence satisfying constraint (5.4) while path P is colored using 4

different colors k,{, j',I'. This case is symmetric to case(ii).

Zpj = 0,2p; = 0 and zgy = 0,24, = 0 such that ¢(p) =k # 7,0(r) =
l# jand ¢(g) =k # J,0(8) =1 # 7. Then z,; + 2450 + 2, + 255 =
04+0+0+0=0and

’
1+1=2 ifa;=1forsomeicUUV

and xy =1 forsome ' € UUV
0+1=1 if:n,;,_,-=0forallz'€UUV

and z;y; = 1 for some ' e U UV
1.Uj+’LUjf=<
140=1 ifay;=1forsomeieUUV

and zy o =0forald e VUV
0+0=0 ifzg;=0forallicUUV

and zyp =0foralld e VUV

\

and hence satisfying constraint {5.4) while path P is colored using 4
different colors k,i, &', ',

The above cases represents all the distinct assignments to variables z; ;

47

CHAPTER 5 OPTIMAL BIDIRECTIONAL COLORING

associated with each path of length 3. In each case the infeasible solution cor-
responds to an invalid bidirectional p-coloring while a feasible solution corre-
sponds to a valid bidirectional p-coloring. By proposition 1, a feasible solution
induces a coloring of G where each vertex receives exactly one color. Hence

this proves the proposition. O

We call color j positive if w; = 1.

Proposition 5.3 A vertex is assigned a color if and only if that color is pos-

itive

Proof. Suppose color j with 1 € 7 < py is positive. Then w; = 1. For
inequality (5.5) to hold we must have some vertex v;,¢ € U such that 2;; = 1.
Since the color § can be used by at most |U| = m vertices, constraint (5.7) also
holds. With a similar reasoning for constraint (5.6) and (5.8) we can show the
result for ¢ € V with py <7 < pr +pv.

Conversely, suppose color j,1 < j < py, is not positive. Then w; = 0, For
inequality (3.7) to hold we must have that for all 1 < i < m, x;; = 0. With
a similar reasoning for constraint (5.8) we can show the result for i € V with

pv < j < py + pv. Hence the proof. O

Dencte by znmix the value of the objective function in the optimum solution
Cmin Of the ILP of Figure 5.1.

Since a feasible solution to the ILP of Figure 5.1 induces a bidirectional
p-coloring of Gy(A} the following result is the direct consequence of the propo-
sitions 5.1, 5.2 and 5.3.

Theorem 5.4 Given A € R™*", ..., 1s the optimum solution of the ILP
corresponding to Gy(A) if and only if Omm induces o bidirectional p-coloring of

Gy(A) such that 2min = x{Gs(A)).

48

CHAPTER 5 OpPTIMAL BIDIRECTIONAL COLORING

5.2.3 Complexities

In this section we will derive the computational complexity associated with
the optimal bidirectional coloring. Following are the attributes related to our

ILP model.

¢ Maximum number of variables for row color is py and for column color
is pv. Each row vertex can be assigned maximum of py colors. Thus
for m rows maximum number of variables will be m x py. Similarly,
each column vertex can be assigned maximum of py colors. Thus for n
columns maximum number of variables will be n x py. Total number of

variables in the ILP model are:

(n+Vpy + (m+ Lpy (5.13)
¢ Number of 3-paths:
num3paths = Z(p{ - 1) z (k; ~1) (5.14)
i=t Fiag #0

p; represents the number of nonzeros in row ¢ and «; denotes the number
of nonzercs in column j. Path of length 3 in a bipartite is denoted by
“num3paths” and is of the order O(nnz?), where nnz are the number of

nonzeros in the matrix,

e (5.2) have rn constraints, (5.3) have n constraints, (5.4) have (num3paths+
py * py) constraints, (5.5) and (5.7) have py constraints each and (5.6)
and (5.8} have py constraints each. (5.9) have py — 1 constraints and

(5.10) have py — 1 constraint. Thus the total number of constraints are:

(num3paths * py * py) + (m 4+ n) + 2(py + pv) + (pr +pv — 2) (5.15)

While solving a coloring problem, there are two kinds of symmetries [6, 36]

that can be present in a solution. In the ILP model, the colors can be arbitrarily

49

CHAPTER 5 OPTIMAL BIDIRECTIONAL COLORING

permuted (instance-independent symmetries), and some graphs may remain
unchanged under some permutations (instance-dependent symmetries). These
symmetries affect the time and space complexities of the ILP model. One
such kind of instance-independent symmetry occurring in our ILP model is

discussed below,

Definition 5.5 Null Color Symmetry [36]. Consider a p-coloring problem
with colors 1...p for a graph. Assuming that &G can be optimally colored with

p — 1 colors, consider a solution where color ¢ is not used:
(nla ey Th—1, (n'i =)Oan‘i+15 “')np)a

where n; denotes the number of vertices receiving color 4. This assignment is

equivalent to another assignment,

(nf, “'vn}—la (ng =)0, n;-i-l! e nlp)?

where § # j and n, = n;, The color i for which n; = 0 is called null color. For
example, the assignment (1,0,2,3) is equivalent to (1,3,2,0), (0,1,2,3), (1,2,0,3).
This is due to the existence of null colors, which create symmetries in an

instance of p-coloring because any color can be swapped with a null color.

Constraints (5.9) and (3.10) deals with removing the null-color symmetries

occurring in our ILP formulation.
Proposition 5.6 The ILP in Figure 5.1 does not allow null colors.

Proof. In a minimum coloring assignment, of the row vertices by constraint
(5.9), color j can be positive only if color j—1 is positive and thus the colors not
used in a solution automatically appear at the end of the coloring assignment,
and hence eliminating null colors. Similar argument can be applied to using

constraint'(5.10) for column vertices. Hence the proof. O

50

CHAPTER § OPTIMAL BIDIRECTIONAL COLORING

5.2.4 Implementation

In this section we will discuss the implementation details of the model described
above.

Given a sparse matrix in Harwell-Boeing or Matrix Market format [2], we
designed a program in C++ that generated the corresponding ILP instance for
the bi-directional coloring of the associated graph. The generated ILP model
was compatible with the CPLEX MIP solver [4]. A sample of the ILP model

for a 2 x 2 arrowhead matrix is given in Appendix B.

5.3 Summary

In this chapter we described the optimal bidirectional p-coloring. We presented
an ILP model for bidirectional p-coloring and discussed the complexities in-
volved. We also looked into the implementation details of this model. We
will present the experimental results for this implementation as well as for the

heuristic bidirectional coloring in chapter 6.

51

Chapter 6

Experimental Results

In this chapter we will present computational results for coloring algorithms
proposed in this thesis. For the purpose of comparison we also include unidi-
rectional heuristic and exact coloring results. A more elaborate presentation
of computational results is given in Appendix A. In section 6.1 we will pro-
vide the relevant features of the test problems. In section 6.2 we will give the
heuristic and exact unidirectional coloring test results, followed by section 6.3
where we will give test results of various bidirectional heuristic techniques. In
section 6.4 we will compare experimental results of heuristic and exact bidi-
rectional coloring, followed by section 6.5 where we will compare results of
unidirectional and bidirectional coloring. In section 6.6 we will summarize the
coloring techniques for the determination of Jacobian matrices and finally in

section 6.7 we will conclude the chapter.

6.1 Introduction

The details of the experimentation environment are as follows.
Machine: SUNW,Sun-Blade-100;sparc;sundu
Operating system: SunOS Release 5.9 Generic_112233-12

Desktop: CDE 1.5.5, x11 Version 6.6.1

52

CHAPTER 6 EXPERIMENTAL RESULTS

Physical memory (RAM): 256 Megabytes
Virtual memory (Swap): 681 Megabytes

For experimenting with our heuristic and exact techniques, matrices from
Harwell-Boeing test matrices {1, 2, 3], and netlib library [5] were taken. Table

6.1 illustrates the properties of the matrices.

Table 6.1: Matrix Statistics

Matrix n m nnz DNSM pmax Pmin Smax Smin
abb313 176 313 1557 2.83 8 1 26 2
adlittle 138 56 424 3.49 27 1 1 1
agg 615 488 2862 0.954 19 2 43 1
agg2 768 518 4740 1.21 49 2 43 1
aggd 758 516 4756 1.22 49 2 43 1
arcl30 130 130 1282 7.69 124 1 124 1
agh219 85 219 438 2.35 2 2 9 2
ash202 292 292 2208 2.59 14 4 14 4
agh33l 104 331 662 1.2 2 2 12 3
ash608 188 608 1216 1.08 2 12 2
ash958 292 938 1916 0.685 2 2 13 3
blend 114 T4 522 6.19 29 2 16 1
boredd 334 233 1448 1.88 73 1 28 1
bp0 822 822 3276 0.485 266 1 20 1
bp1000 822 822 4661 0.69 308 1 21 1
bpl200 822 a8zz2 4726 0.699 311 1 21 1
bplddd 822 822 4790 0.709 311 1 21 1
bpld00 822 822 4841 0.716 304 1 2] 1
bhp200 822 822 3802 0.563 283 1 21 1
bp40Q0 822 822 4028 0.596 295 1 21 1
bp60d 822 822 4172 0.617 302 1 21 1
bp800 822 822 4534 0.671 304 1 21 1
canl(bd 1054 1054 12196 1.1 35 6 35 6
canl072 107v2 1072 12444 1.08 35 6 35 6
can286 266 256 2918 4.45 83 4 83 4
can268 268 268 3082 4.20 ar 4 37 q
can292 202 292 2540 2.98 a5 4 35 4
can634 634 634 7228 1.8 28 2 28 2
can715 715 715 6665 1.3 105 2 105 2
curtisb4 54 54 201 9.98 12 3 16 3

53

CHAPTER 6 EXPERIMENTAL RESULTS

Matrix n m nnz DNSM pmax Pmin Smex Smin
dwt1007 1007 1007 8575 0.846 10 3 10 3
dwtl1242 1242 1242 10426 0.676 12 2 12 2
dwt2680 2680 2680 256026 0.348 19 4 19 4
dwt419 419 4119 3563 2,03 13 6 13]
dwt59 59 59 267 7.67 6 2] 2
eris1176 1176 1176 18552 1.34 99 2 99 2
{s541-1 541 541 4285 1.46 11 1 541 5
fs541-2 541 541 4285 1.46 11 1 541 b
gent113 113 113 655 5.13 20 1 27 1
ibm32 32 32 126 12.3 8 2 7 2
impcol-a 207 207 572 1.33 8 1 5 1
impcol-b 59 59 312 8.96 2 12 1
impceol-c 137 137 411 2.19 8 1 a 1
impeol-d 425 425 1339 0.741 10 1 10 1
impcol-a 223 223 1308 2.58 12 1 23 1
israel 316 174 2443 4.44 119 2 136 1
lundA 147 147 2449 11.3 21 5 21 5
lundB 147 147 2441 11.3 21 5 21 3
scagr2s 671 471 1725 0,546 10 1 9 1
sScagrt 183 129 465 1.96 10 1 9 1
shi0 663 663 1687 0.384 422 1 4 1
sh]200 663 €63 1726 0.393 440 1 4 1
shl400 663 663 1712 0.389 426 1 4 1
stair 614 356 4003 1.83 36 2 34 1
standata 1274 359 3230 0.706 745 2 10 1
strQ 363 363 2454 1.86 34 1 34 1
str200 363 363 3088 2.33 30 1 26 1
strd00 363 363 3157 2.4 33 1 34 1
stréo0 363 363 3279 2,49 33 1 34 1
tuff 628 333 4561 2.18 113 0 25 1
vtp-base 346 193 1051 1.53 38 1 12 1
watt2 1856 1866 11550 0.336 128 1 65 2
west0067 67 67 294 6,55 6 1 10 b4
west(381 381 361 2157 1.49 25 1 50 1
west0497 497 497 1727 0.659 28 1 55 1
will199 199 199 701 177 6 1 9 2
will37 57 87 281 8.65 11 2 11 2

n - Number of columns in A
m - Number of rows in A

nnz - Number of nonzeros in A4

54

CHAPTER 6 EXPERIMENTAL RESULTS

DNSM - Matrix Density

Pmax - Maximum number of nonzeros in any row
Pmin - Minimum number of nonzeros in any row
Kmax - Maximum number of nanzercs in any column

fmin - Minimum number of nonzeros in any column

6.2 TUnidirectional Heuristic and Exact Color-
ing

In this section we will be presenting the computational test results of unidirec-
tional heuristic and exact coloring. In unidirectional coloring a lower bound on
the number of colors is the size of the largest clique in the graph as computed
by DSM. The DSATUR [33] algorithm was implemented in C while DSM [9)
was implemented in Fortran, and the running time of DSM was calculated
using Perl code.

In table 6.2, column 2 depicts the lower bound found by DSM. Columns 3
and 4 give the number of colors and time taken by DSM and columns 5 and 6
illustrate the number of colors and time taken by DSATUR algorithm,

We observe that DSATUR, algorithm is able to solve almost all the problems
except fsb41-1, £8541-2, dwt1007 and dwt2680. Leaving the above mentioned
test problems, we find that the total of lower bound for all the matrices is
6429, the total number of colors for all matrices by DSM is 6444 and the total
number of colors for all matrices by DSATUR, algorithm is 6436. Thus we see
that DSM is almost optimal.

The running time for both the algorithms is given in seconds. DSM takes 13
seconds to execute all the matrices while DSATUR takes 66.4 seconds. Since
the algorithms were implemented in different languages. We cannot compare
the running times of DSM and DSATUR accurately. However, roughly speak-
ing we can say that the running times for the two algorithms are quite close

to each other.

55

CHAPTER 6 EXPERIMENTAL RESULTS

Table 6.2: DSM vs DSATUR

Matrix Lower Bound DSM DSM Time DSATUR DSATUR Time

abb313 10 10 0 10 0.1
adlittle 27 27 Q 27 0.0
agg 19 19 0 19 0.6
agg2 45 49 0 49 0.8
aggd 49 49 0 49 0.8
arcl30 124 124 0 124 0.0
ash219 3 4 0 4 0.0
ash202 14 14 0 14 0.2
ash331 6 6 0 6 0.0
ash608 5 6 0 0.1
ash958 6 6 0] 0.1
blend 29 29 1 29 0.0
boredd 73 73 0 73 0.1
bp(266 266 1 266 0.7
bpl000 308 308 i 308 0.8
bpl200 31 311 0 311 0.8
bpl40C 311 311 0 311 0.8
bpl6OG 304 304 1 304 0.8
bp200 283 283 1 283 08
bp400 295 2495 0 205 0.7
bp6d0 302 302 0 302 0.8
bp800 304 304 1 304 0.8
canlf34 35 35 0 35 4.7
canl072 35 35 0 35 4.9
can256 83 a3 0 83 0.1
can268 ar 37 0 37 0.4
can292 35 35 0 35 0.1
canf34 28 28 0 28 1.0
can7l3 105 105 i3 105 0.6
curtiss4 12 12 5 12 0.0
dwt1007 10 11 1} - -
dwt1242 12 15] - -
dwt268C 19 19 1 19 25.0
dwt419 14 15 0 1% 6.0
dwits8 g [0 6 0.0
erisl176 29 99 1 99 1.8
fs541-1 11 13 0 - -
faB841-2 11 13 0 - -
gent113 20 20 0 20 0.0
ibm32 8 8 0 8 Q.0

56

CHAPTER 6 ExXPERIMENTAL RESULTS

Matrix Lower Bound DSM DSM Time DSATUR DSATUR Time

impeel-a 8 8 0 8 0.1
impeol-b 10 11 0 10 0.0
impcol-c 8 8 0 8 0.0
impeol-d 10 11 0 10 0.3
impcoel-e 20 21 0 21 0.1
israel 119 119 0 119 0.1
lundA 21 22 0 21 0.1
lundB 21 24 0 21 0.1
scagrs 10 10 0 10 0.8
scagIT 10 10 0 10 0.1
shif 422 422 s} 422 0.5
shl200 440 440 0 440 0.5
shl400 426 426 0 426 0.5
stair 36 36 1 36 0.5
standata 745 745 1 745 1.9
5trQ 34 34 0 3H 0.1
str200 30 30 0 30 0.1
strd00 33 33 V] 33 0.1
stré00 33 33 0 33 0.2
tuff 113 114 0 114 1.0
vtp-basge 38 38 0 38 0.1
watt2 128 128 1 128 4.2
westQ06T 7 9 1 8 0.0
west0381 27 29 1 28 0.2
west(497 28 28 0 28 0.3
will199 T 7 0 7 0.1
wills'T 11 11 0 1 0.6
Total 6429 6444 13 6436 66.4

- Represents that no result was found in 10 hours

6.3 Bidirectional Heuristics

In this section we present experimental test results of the heuristic techniques
we implemented and compare these results with the existing bidirectional
heuristics. Our heuristic algorithms were implemented in C++ on Sun So-

laris Unix platform.

o7

CHAPTER 6 EXPERIMENTAL RESULTS

Table 6.3 compares our bidirectional heuristics results with complete direct
cover (23] results. For each matrix we have taken the minimum of the number
of colors obtained from LFQ, SLO and IDQ and this result is reported in the
column named minLSI. Direct cover results are listed under the column named
CDC. We find that for most of the matrices the number of colors are almost
comparable. The total number of colors for all matrices in minLSI are 571(33)
and total number of colors for all matrices in Direct Cover are 580(33). Also
we notice that LFO results are more in agreement with that of complete direct
cover as is expected since complete direct cover ordering is also based on the
number of nonzeros {degrees) in rows and columns. The number inside the
parentheses are the extra or redundant colors which were given to the vertices
already covered by other colors. There could be at most two extra redundant

colors, one for row and one for column vertices as described in section 4.2.4.

Table 6.3: Comparison of minLSI with Direct Cover Algorithm

Matrix LFO SLO IDO | minLSI | CDC
aub313 | 13(1) 10Q1) 10(1) | 10{1) | 13(1)
arcl30 | 26{1) 131(1) 43(1) | 26(1) | 26(1)
ash219 | 5(1) 5(1) a1y | s | 5(1)
esh202 | (1) 8(1) 8(1) 8(1) [10(1)
ashazl | 6(1) e(L) 8L} ¢ 6(1) | 6(1)
ashé08 | 7(1) ey 8L | s | ()
ash9ss | 7(1) 6(1) 6(3) 6(1) | 6(1)
bpo 16(1) 2001 20(1) | 16(1) | 16(1)
bpl000 | 23(1) 25(1) 21(3) | 21(1) | 2201
bpl200 | 23(1) 21(1) 21(1} | 21(1) | 22(1)
bpl400 | 28(1) 21) 22(1) | 2141y | 2201)
bplé00 | 28(1) 21(1) 21(1) | 21(1) | 21(L)
bp200 | 17(1) 2000 21 | 17y | 18
bpd00 | 20(1) 2uD) 2uD) | 2003 | 1901
bp6OO | 2201} (1) 21(1) | 201 | 18()
w800 | 23(1) 22(0) 2 | 2w | 2
curtiss4 | 16(1) 16(1) 12(1) | 12(1) | 10(3)
erisll76 | 80(1) 81(1) 8L(1) | &0y | 80(1)
fs541-1 | 16(1) 14{1) 15(1) | 14(1) | 15(2)

58

CHAPTER 6 EXPERIMENTAL RESULTS

Matrix | LFO SLO IDO | minlSI | CDC
f£541-2 | 16(1) 14(1) 15(1) 14(1) 15(1)
gent113 | 19(1) 27(1) 24(1) 19(1) 18(1)
1bm32 8(1) 81y &) 8(1) 8{1)
lundA | 13(1) 13(1) 13(1) 13(1) | 14(1)
lundB | 15(1) 121} 13(1) 1200 | 140
4
3

)
shla 41 41} 41 4(1) (1)
shi2o0 | 4(1) &1} 4(1) 4(1) 4{1)
shl400 a1 4 4D 4(1) 4{1)
strd 26(1) 26(1) 270 | 261 | 24
str200 | 33(1) 30(1) 32(1) | d0(1) | 3101)
strd00 | 36(1) 33(1) 34{1) | 33(1) 6i1)
Stré00 | 38(1) 38(1) 36(1) | 331} | 351
willlgs | (1) s(1) 8{1) B(1) 701)
wills7 | 12¢(1) 11{1) 13{1) 11{1) 0{1)
Total 571(33) | 580(33)

In Table 6.4 we compare our bidirectional heuristics results with bicoloring
algorithm [12]. Again for each matrix we have taken the minimum of the
number of colors obtained from LFO, SLO and IDO and this result is reported
in column named minLSI. The results of bicoloring are reported in the column
named Bi-col. For nearly all the considered matrices the results of minLSI
and bicoloring are comparable except for israel, watt2 and west0497 where the
results of minLSI are far better than that of bicoloring. The total number of
colors for all matrices from minLSI is 595(29) and the total number of groups

for bicoloring is 602.

Table 6.4: Comparison of minLSI with Bicoloring Algorithm

Matrix | LFO 510 IDQ | minLSI | Bi-col
adlittle | 11(2) 12¢1) 12(1) | 11(1) 11
aBg 22(1) 20{1) 21 20(1) 19
agg? 33(1) 8I{1) 50(1) | 81(1) 26
agg3 34(1) 29{1) 36(1) 29(1) 27
arcl30 | 26(1) 18L{1) 43(1) | 261 25
blend | 20(1) 1%1) 221) | 17(1) 16

39

CHAPTER 6 EXPERIMENTAL RESULTS

Matrix LFO SLO IDO | minLS8I | Bi-col
boredd | 25(1) 28(1) 28(1) | 25(1) 28
canl054 | 30(1) 88(1) 38(1) | 30(1) 31
canl072 | 3L(1) 36(1) 37 | 31 32
can256 | 28(1) 30(1) 56{1) 29(1) 32
can268 | 30(1) 40{1) 36(1) 30(1) 18
can202 | 18(1) 23(1) 3T() 19(1) 17
canf34 | 20¢1) 29(1) 29(1) 20(1) 28
can7l5 | 21{1) 84(1) 27(1) | 21(1) 22
gent113 | 19(1) 27(1) 24(1) | 18(1) 19
impcol-c 6(1) 10(1) 9(1) 6(1) 6
impeol-d 6(1) 12(1) 12(1) 6(1)

impeole | 22(1) 23(1) 23(1) 22(1) 21
israel 50(1} 55(1) 54(1) | 50{1) 61
scagr2s 81 91 8D 8(1) 8
scagt? | B(1) 91 o(D) 8(1) 8
stair 38(1) 48(1) 36(1) | 36(1) 36
standata (1) 10{1) 1Q{1) 9(1) 9
tuff 20(1) 26(2) 25(2) | 2001 2
vtp-base | 12(1) 16{1) 17(1) 12(1) 12
watt2 13(1) 65(1) 14{1) | 13(1) 20
west0067 | 11{1) 11(1) 10f1) 10(1) 9
west0381 | 12(1) 12(1) 14(1) | 12(D) 12
west0407 | 18(1) 16(1) 20(1) | 16(1) 22
Total 505(20) | 602

6.4 Heuristic and Exact Bidirectional

ILP instances were generated using Perl and C++ on Sun Solaris Unix plat-
form. The generated ILP model was compatible with CPLEX MIP solver
(4, 32] which was run under Windows XP Home Edition with AMD Athlon
processor with 1GB RAM. Each problem was run for a maximum of 10 hours.

For small matrices the coloring results obtained are generally better than
the heuristic coloring results. The current formulation of our ILP avoids null
colors via a set of inequalities. By implementing null color symmetry breaking

in our ILP model we have reduced the running time by approximately 3 folds.

60

CHAPTER 6 EXPERIMENTAL RESULTS

Table 6.5 shows the results of minLSI and the ILP formulation. Due to time
and memory constraints, we were able to get the results only for six matrices.
We find that for 3 out of 6 matrices the number of colors found by exact
ILP are fewer than the bidirectional heuristics. Also we see that the resuits
of ash331, ash608 and impcol-a are same for both heuristic and bidirectional

coloring and thereby optimal.

Table 6.5: Comparison of Heuristic and Exact Bidirectional Coloring

Matriz minLSI exact [LP

RG! CG| TG| RG! CG| TG
bm3z | (1) | 70) [(1) | (L) 600) | 7(D)
ash219 | 0(1) | 5(0) | 5{1) | 0(1) | 4(0) | 4(1)
ash331 | 0(1) [6(0) | 6(1) | 0(1) | 6(0) | &(1)
ash608 | 0(1) | 6(0) | 6(1) | 0(1) | 6(0) | 6(1)
impeol-a | 5{1) | 1(1) | 6(2) | 6(0) [0(1) | 6(1)
impeol-c | 1(1) | 5(0) | 6(1) | 1{1) | 3(0) | 4(1)
Total 37(7) 33(6)

RG - Tatal number of row groups
CG « Total number of column groups

TG - RG + CG

6.5 Unidirectional and Bidirectional

In this section we compare the results of unidirectional and bidirectional heuris-
tics. In Table 6.6 we see that for most of the matrices bidirectional technigues
are far superior to unidirectional techniques with regard to the number of col-
ors to completely determine the Jacobian matrices. Over 67 test problems,
the total number of colors required by DSM and minLSI is 6496 and 1254(68)
respectively. This is approximately a b fold reduction in the number of colors,

The total running time of all matrices for unidirectional matrices is 13
seconds while the total running time of all matrices for bidirectional heuristic

is 19017 seconds.

61

CHAPTER 6 EXPERIMENTAL RESULTS

Table 6.6: Comparison of Unidirectional and Bidirectional Coloring Heuristies

Matrix BSM DSM Time minLSI minLSI Time

abb313 10 o 10(1) 7
adlittle a7 0 11 1
agg 19 g 20(1) 88
agg? 49 0 31(1) 137
aged 49 ¢ 29(1) 139
arcl30 124 0 26(1) 2
ash219 4 0 5(1) 1
ash202 14 0 14(1) 13
ash33t 0 6(1) 4
ash803 0 (1) 25
ash958 ¢ 6(1) 95
blend 29 1 17(1) 1
boredd 73 o] 25(1) 14
bpQ 266 1 18(1) 309
bpl000 308 1 21D 283
bp1200 311 0 2 282
bpldoo 311 0 21 286
bp1600 304 1 211 288
bp200 283 1 17(1) 287
bp400 295 0 20(1) 286
bp600 302 Q 21(1) 288
bp80o 304 1 211 282
canl054 a5 0 30(1) 487
canl72 35 0 31{1) 512
can256 83 0 29(1) 8
can268 a7 o 30(1) 10
can202 s 0 18(1) 12
can634 28 0 291 114
canTl5 105 0 21{1) 146
curtis54 12 Q 12{1) 0
dwt1007 11 0 1D 409
dwt1242 15 0 15(1) 72
dwt2680 19 1 21(1) 8419
dwtd19 13 0 16(1) 34
dwi59 0 7(1) 0
eris1176 99 1 e3(L 732
faddt-1 13 0 14(1) 82
£5541-2 13 0 141 84
gent113 20 0 19(1) 1
ibma2 8 0 8(1) 0

62

CHAPTER 6 EXPERIMENTAL RESULTS

Matriz DSM DSM Time minLST minLSI Time

impeol-a 8 0 6(2) 4
impcol-b 11 0 11{1) 0
impecol-¢ 8 0 6(1) 1
impeol-d 11 0 6(1) 35
impcol-e 21 0 22{1) 5
israel 119 i 50(1)]
lundA 22 0 26(1) 1
lundB 24 9 26(1) 1
scagr2s 10 0 8(1) 94
scagry 10 0 8(1} 2
shle 422 0 4(1) 177
shl200 440 0 4(1) 169
shl400 426 0 4(1) 175
stair 36 1 36¢1) 55
standata 745 1 9(1) 250
str0 34] 26{1) 26
5tr200 30 0 30{1) 24
8400 33 0 33(1) 27
Str600 33 0 33(1) 26
tuff 114 a 20(1) 52
vtp-base 38] 12(1) 11
watt? 128 1 13(1) 2840
west0067 9 1 10(1) 0
west(381 29 1 12(1) 28
west0497 28 0 16(1) 61
will199 7 0 8(1) 4
willsy 11 q 11(1) 0
Total 6406 13 1254(68) 19017

Finally, in Table 6.7 we see that 4 out of 6 matrices have fewer number of
colors in case bidirectional exact coloring as compared to unidirectional exact
coloring. Notably, for the problem impcol-¢c we find that the number of colors
required by bidirectional p-coloring is one-half of the number of colors required

by unidirectional p-coloring.

63

CHAPTER 6 EXPERIMENTAL RESULTS

Table 6.7: Comparison of Exact Unidirectional and Bidirectional Coloring

Matrix | DSATUR | ILP
Thmaz 81 701
ash219 4| 4(1)
ash331 6| 6(1)
ash608 6| 6(1)
impcol-a 8| 6(1)
impcol-c 8| 4(1)
Total 40 | 33(6)

6.6 Final Results

Table 6.8 summarizes the results of Unidirectional heuristic and exact color-
ing, bidirectional heuristic results for LFO, SLO, IDQ, and bidirectional exact

coloring.

Table 6.8: Summary of all the Coloring Techniques

Matrix DSM DSATUR LFO SLO IDC Bi-Dir

abb313 10 10 13(1) 10(1) 10(1)
adlittle 27 27 11{1) 12(1) 12(1)
agg 19 19 22(1) 2001) 21(1)
agg? 49 49 33(1) 31(1) 50(1)
age3 49 48 3D 29(1) 36(1)
arc130 124 124 26(1) 13101} 43(1)
ash219 4 4 5(1) 5(1y 5(1} 4(1)
ash202 14 14 15(1) 15(1) 14(1)
ash331 8 5 6(1) 61} 8(1) &1
ash608 6 6 701y 6L 6(1) 6(1)
ash958 6 6 71y 6(1) 6(1) -
blend 29 29 20(1) 171y 22(1)
bare3d 73 73 25(1) 28(1) 28(1)
bpC 266 266 18(1) 20(1) 20{1)
bpl000 308 308 23(1) 25(1) 21(1)
bpl200 311 311 23(1) 21 2L(1)
bpldac 311 311 28(1) 1) 22(1)
bp1600 304 304 28(1) 21(1) 2L
bp200 283 283 17(1) 20(1) 21(1)

64

CHAPTER 6 EXPERIMENTAL RESULTS

Matrix DSM DSATUR LFO SLO IDO Bi-Dir

bp400 295 205 20(1) 21(1) 21(1) .
bp600 302 302 22(1) 2101y 21(1) -
bp800 304 304 23(1) 22(1) 21{1) -
can1054 35 35 30(1) 38(1) 38(1) .
canl1072 35 35 31(1) 36(1) 371 .
can256 83 83 20(1) 30(1) 56(1) -
can268 37 37 30(1) 40(1) 36(1) -
can202 35 35 19(1) 23(1) 37(1) -
canf34 28 28 20{1) 231} 29(1) -
can713 108 W05 21(1) 341D 27(1} -
curtis54 12 12 16(1) 16(1) 121 -
dwt1007 11 - 1(1) 1Y) 11(1) -
dwt1242 15 - 16(1) 15(1) 18(1) .
Awt2680 19 19 2201 211 21(1) -
dwt419 15 15 18(1) 17(1) 19(1) -
dwt59 8 6§ 81 TL (D) -
eris1176 99 99 93(1) 93(1) 100{1) -
fab41-1 13 - 16(1) 14(1) 15(1) -
fsbd1-2 13 . 16(1) 14(1) 15(1) -
gent113 20 20 19(1) 27(1) 24(1) .
ibm32 8 8 8(1) 91 8(1) T(1}
impeol-a 8 8 8{1) 62 3(1) 6(1)
impeol-b 11 10 11 1{1) 12(1) -
impcol-c 8 8 6(1) 10(1) (1} 4(1)
impecol-d 11 10 61 12(1) 12(D) -
impeol-e 21 21 22(1y 23(1) 23(1) -
israel 119 119 50(1) 86(1) 54(0) -
lundA 22 21 26(1) 28(1) 28(1) -
lundB 24 21 28(1) 28(1) 28(1) -
scagrs 10 10 8(1) 9(1) (1) -
scagr? 10 10 8(1} 9(1) 9(1) -
shl0 422 422 4(1) 4(1) 4{1) -
sh1200 440 440 4y 4 4(1) -
shl400 426 426 4(1) 4(1) 4{1) -
stair 36 36 3s(1) 48(1) 361 -
standata 745 743 9(1) 19(1) 10{1) -
str0 34 34 26(1) 26(1) 271) -
§tr200 30 30 33(1) 30(1) 221 .
57400 33 33 36(1) 33(1) 34(1) -
st0B00 33 33 38(1) 33(1) 36(1) -
tuff 114 114 20{1) 26{2) 253(2) -

65

CHAPTER 6 EXPERIMENTAL RESULTS

Matrix DSM DSATUR LFO 8LO IDO Bi-Dir

vtp-base as 38 1201} 18(1) 17(L)

watt2 128 128 13(1) 65(1) 14(1)

west0067 9 8 111y 111y 10(1) -
west0381 29 28 12(1) 12(1) 14(D) -
west0407 28 28 18(1) 16{1) 26(1) -
will109 7 7 9 B(1) &) -
wills7 11 111 1 1) -

- Represents that no result was found in 10 hours

6.7 Summary

In this chapter we presented the experimental results of unidirectional and
bidirectional p-coloring. In most of the cases bidirectional techniques were
found to be superior to the unidirectional techniques in terms of the number of
colors needed to color the graph associated with the Jacobian matrix. For uni-
directional coloring, the results of exact and heuristic methods are nearly the
same. Also in case of unidirectional and bidirectional exact coloring method,
exact bidirectional method needed fewer colors than the unidirectional exact
method. On the basis of limited test results, we see that the heuristic bidirec-
tional coloring results are not far from the exact bidirectional results. But this
requires further investigation. In the next chapter we will conclude this thesis

and give suggestions for future research.

66

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis we studied methods to determine sparse Jacobian matrices. We
saw that by partitioning the Jacobian matrices, the sparsity information could
be efficiently exploited. Two ways to partition the matrices were described
namely unidirectional partitioning and bidirectional partitioning. We observed
that the partitioning problem could be formulated as a graph coloring problem,

Unidirectional and bidirectional p-coloring techniques were described to
color the vertices of column intersection graph and bipartite graph respectively
such that the nonzero entries of the Jacobian matrices could be determined di-
rectly. We discussed the existing unidirectional exact and heuristic techniques
and bidirectional heuristic technigues, We detailed our heuristic bidirectional
p-coloring methods and proposed an exact ILP model for bidirectional deter-
mination. To the best of our knowledge this is the first attempt at using ILP
techniques to solve the bidirectional determination of Jacobian matrices.

We tested the unidirectional and bidirectional p-coloring algorithms on se-
lected problems from Harwell-Boeing test matrices (1, 2, 3] and netlib library
[5]. We found that in most of the cases the bidirectional techniques did far

better than the unidirectional methods. On the test problems considered our

67

CHAPTER T CONCLUSION AND FUTURE WORK

bidirectional heuristic techniques require fewer (although not by a large mar-
gin) row and column groups than the complete direct cover [23] and bicoloring
(12]. Qur bidirectional p-coloring results were compared to the results obtained
from exact ILP formulation. In 3 out of 6 cases the results were the same.
However only a few of the ILP instances could be solved in the allotted time.
Therefore, it is not quite clear how the bidirectional heuristics are performing
in general. We note that while the bidirectional heuristics required more CPU
time as compared with DSM, it is to be emphasized that the coloring step is

done only once in an iterative scheme e.g. the Newton’s method.

7.2 Future Research Directions

For future research on this work we would like to give the following suggestions.

¢ In case of bidirectional heuristic techniques we would like to improve the
code such that the time taken by incidence degree ordering algorithm is

decreased and in turn the overall running time is decreased.

o We would like to profile the code for bidirectional heuristic techniques
by looking into variants of the ordering algorithms and by employing
different tie-breaking strategies. We would also like to implement an

efficient data structure so that the running time can be decreased further.

e Memory requirement in the ILP model can be improved by implementing
heuristics such that the complete branch and bound tree is not stored
while the CPLEX solver is searching for the solution. This can be done

by changing the settings of the solver and experimenting accordingly.

e As evidenced by the computational tests, by removing the null color
symmetry we were able to reduce the running time. Another idea to

break symmetries existing in the model is by ordering [7] the colors.

68

CHAPTER 7 CONCLUSION AND FUTURE WORK

Fixing colors of the clique vertices in the bipartite graph can also help
in reducing symmetries. Both the ideas could result in a reduction of

running time.

e We would like to perform more elaborate numerical testing for exact ILP

bidirectional p-coloring.

69

Bibliography

(1] ftp://ftp.cerfacs.fr/pub/algo/matrices/harwell_boeing/ (2005).
[2! http://math.nist.gov/matrixmarket/collections/hb.html (2005).
(3] http://math.nist.gov/matrixmarket /matrices.html (2005).

[4] http://www.ilog.com/products/cplex/ (2005).

[6] http://www.netlib.org/lp/data/ (2005).

[6] F.A. Aloul. Solving difficult SAT instances in the presence of symmetry.
In IEEE Trans. on CAD, volume 22, pages 1117-1137. 2003.

[7} Rob H. Bisseling, Jaroslaw Byrka, Selin Cerav-Erbas, Nebojsa Gvozden-
ovié, Mathias Lorenz, Rudi Pendavingh, Colin Reeves, Matthias Roger,
and Arie Verhoeven. Partitioning a call graph. Technical report, Univer-
siteit Utrecht, June 2005.

[8] Daniel Brélaz. New methods to color the vertices of a graph. Commun.
ACM, 22(4):251-256, 1979.

[9] Thomas F. Coleman, Burton S. Garbow, and Jorge J. Moré. Software
for estimating sparse Jacobian matrices. ACM Trans. Math. Softw.,
10(3):329-345, 1984.

70

ftp://ftp.cerfacs.fr/pub/algo/matrices/harwelLboeing/
http://math.nist.gov/raatrixrnarket/collections/hb.html
http://math.nist.gov/matrixmarket/matrices.html
http://www.ilog.com/products/cplex/
http://www.netlib.org/lp/data/

[10]

1]

[12]

13]

[14]

[16]

17}

[18]

Thomas F. Coleman and Jorge J. Moré. Estimation of sparse Jacobian
matrices and graph coloring problems. STAM J. Numer. Anal., 20(1):187-
209, 1983,

Thomas F. Coleman and Arun Verma. Structure and efficient Jacobian
calculation. Technical report, Computer Science Department, Cornell

University, 1996.

Thomas F. Coleman and Arun Verma. The efficient computation of sparse
Jacobian matrices using automatic differentiation. SIAM J. Sci. Comput.,

19(4):1210-1233, July 1998.

A. R. Curtis, M. J. D. Powell, and J. K. Reid. On the estimation of sparse
Jacobian matrices. J. Inst. Math. Appl., 13:117-119, 1974,

J. E. Dennis and Robert B. Schnabel. Numerical Methods for Uncon-
strained Optimization and Nonlinear Equaetions. Prentice-Hall, Englewood
Cliffs, NJ, 1983.

Isabel Méndez Dfaz and Paual Zabala. A branch-and-cut algorithm for
graph coloring. Technical report, Universidad de Buenos Aires - Ar-

gentina, 2002.

Michael R. Garey and David S. Johnson. Computers and Intractability;
A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New
York, NY, USA, 1990.

Assefaw Hadish Gebremedhin, Fredrik Manue, and Alex Pothen. Graph
coloring in optimization revisited. Technical report, Department of Infor-

matics, University of Bergen, 2003.

Assefaw Hadish Gebremedhin, Fredrik Manne, and Alex Pothen, What
color is your Jacobian? Graph coloring for computing derivatives, Tech-
nical report, Accepted by SIAM Review, 2004.

71

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Andreas Griewank. Pualuating derivatives: principles and techniques of
algorithmic differentiation. Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, USA, 2000.

Rajiv Gupta, Mary Lou Soffa, and Denise Ombres. Efficient register
allocation via coloring using clique separators. ACM Trans. Program.

Lang. Syst., 16(3):370-386, 1994.

F. G. Gustavson. Sparse Matriz Computations, chapter Finding the block
lower triangular form of a sparse matrix, pages 275-289. Academic Press,

New York, 1976,

A. K. M. Shahadat Hossain. On The Computation of Sparse Jacobian
Mauatrices and Newton Steps. PhD thesis, Department of Informaties, Uni-
versity of Bergen, Norway, 1997.

A. K. M. Shahadat Hossain and Trond Steihaug. Computing a sparse Ja-
cobian matrix by rows and columns. Qptimization Methods and Software,
10:33-48, 1998.

Shahadat Hossain and Trond Steihaug. Reducing the number of AD passes
for computing a sparse Jacobian matrix. In Automatic Differentiation of
Algorithms: From Simulation to Optimization, Computer and Information

Science, chapter 31, pages 263-270. Springer, New York, NY, 2001.

Shahadat Hossain and Trond Steihaug. Sparsity issues in the computation
of Jacobian matrices. In IS5AC ‘02: Proceedings of the 2002 international
symposium on Symbolic and algebraic computation, pages 123-130, New
York, NY, USA, 2002. ACM Press.

Shahadat Hossain and Trond Steihaug. Optimal direct determination of
sparse Jacobian matrices. Technical Report 254, University of Lethbridge
and University of Bergen, October 2003.

72

[27]

(28]

29

[30]

31

32]

[33]

[34]

Shahadat Hossain and Trond Steihaug. Graph coloring in the estimation
of sparse derivative matrices: Instances and applications, 2004. University
of Lethbridge, Canada.

Shahadat Hossain and Zhenshuan Zhang. CsegGraph: Column segment
graph generator, 2003. University of Lethbridge, Canada.

Sven O. Krumke, Madhav V. Marathe, and S. S. Ravi. Models and ap-
proximation algorithms for channel assignment in radio networks. Wirel.

Netw., 7(6):575-584, 2001,

Yaw-Ling Lin and Steven S. Skiena. Algorithms for square roots of graphs.
SIAM J. Discret. Math., 8(1):99-118, 1995.

David G. Luenberger. Introduction to linear and nonlinear programming.

Addison-Wesley Publishing Company, 1973.

Irvin Lustig. Embedding cplex using the ILOG CPLEX callable library.

Technical report, http://optimization.ilog.com.

Anuj Mehrotra and Michael A, Trick, A column generation approach for
graph coloring, INFORMS Journal on computing, 8(4):344-354, 1996.

John E. Mitchell. Branch-and-cut algorithms for combinatorial optimiza-
tion problems. In Notebook of Applied Optimization,. Oxford University
Press, 2000.

G. N. New8am and J. D. Ramsdell. Estimation of sparse Jacobian matri-

ces. In STAM J. Alg. Disc. Meth., volume 4, pages 404-417. 1983.

Arathi Ramani, Fadi A. Aloul, Igor L. Markov, and Karem A. Sakallah.
Breaking instance-independent symmetries in exact graph colering. In De-

sign Automation and Test Conference in Europe, pages 324-329, February
2004.

73

http://optimization.ilog.com

[37] J Randall-Brown. Chromatic scheduling and the chromatic number prob-
lems. In Management Science, volume 4 of Part I, pages 456-463. De-
cember 1972,

[38] Timothy Anton Redl. A Study of University Timetabling that Blends
Graph Coloring with the Satisfaction of Various Essential and Preferential
Conditions. PhD thesis, Rice University, 2004.

[39] Edward C. Sewell. An improved algorithm for exact graph coloring. In
DIMACS Series on Discrete Mathematics and Theoretical Computer Sci-
ence. 1993.

40] Robert J. Vanderbei. Linear Programming, foundations end extensions.
Kluwer Academic Publishers, 2003.

74

Appendix A

Extended Heuristic

Bidirectional Coloring Results

This appendix gives complete results of heuristic bidirectional coloring tech-

niques.

75

Table A.1; LFO Result

Matrix n m nnz DNSM pPmax Pmin Kmax Kmin cG RG TG
abh3l3 176 313 1567 2.83 6 1 26 21200y 1(1) 13(1)
adlittle 138 56 424 5.49 27 1 11 1 001} 11(0) 11(1)
8k 615 488 2862 0,954 19 2 48 1o22(0) o(1) 22(1)
age2 758 516 4740 1.21 49 2 43 131(0) 21 33(1)
aggl 78 516 4756 1.22 49 2 43 1 32(0) 2(1) 34(1)
arcl3o 130 130 1282 7.659 124 1 124 1 18(1) 10(0) 28(1)
ash219 85 219 438 2,35 2 2 9 2 5(0) o) 5{1)
ash?292 202 292 2208 2.59 14 4 14 4 0(1) 15(0) 15(1)
ash331 104 331 662 1.92 2 12 3 80) o) 6(1)
ash608 188 608 1218 1.06 2 12 2 7(0) a1) 7(1)
ash058 202 058 1916 0.685 2 13 3 7(0) o 7(1)
blend 14 74 522 6.19 29 2 16 1 14(0) 61 20{1)
bore3d 334 233 1448 1.88 73 1 28 1 31) 220) 25(1)
bp0 822 822 3276 0.485 266 1 20 1 2(1) 14(0) 16(1)
bpl0O0 822 822 4661 069 308 1 21 118(0) 4(l) 23(1)
bpl200 822 822 4726 0.689 311 1 21 1 181) 50 28{1)
bp1400 822 822 4790 0.708 311 1 21 1 23(1) 5(0) 28(1)
bpl6D0 822 822 484t 076 304 1 21 1 15{1) 13(0) 2B{1)
bp200 822 822 3802 0563 283 1 21 1 7(0) 0(1) 17(1)
bpd00 822 822 4028 0596 295 1 21 1 18(1) 5(0) 20(1)
bp600 822 822 4172 0817 302 1 21 1 1301} 80y 22(1)
bp800 822 822 4534 0.671 304 1 21 1 2000} 31y 23(1)
cenl034 1034 1054 12196 11 35 6 35 6 81} 22(0) 30(1)
canl0T2 1072 1072 12444 1.08 35 8 35 6 9(1) 22(0) 31(1)
can2sé 936 256 2916 4.45 83 4 83 4 B(1) 21(0) 29(D)
cen266 268 268 3082 4.29 37 4 37 4 7(1) 23(0) 30(1)
can292 292 202 2540 2,98 35 4 35 4 31 18(0) 19(1)
can63d 634 634 7208 1.8 28 2 28 2 0() 20(0) 29(1)
can7l5 TI5 715 6665 13 105 2105 2 1Y) 20000 21(D)
curtisdd 54 B4 291 9.98 12 3 16 3 0(1) 16(0) 16(1)
dwt1007 1007 1007 8575 0.846 10 3 10 3 0(1) 11(0) 11(1)
dwtl242 1242 1242 10426 0.676 12 2 12 2 0{1) 16(0) 16{1)
dwt2680 2680 2680 25028 0.348 19 4 19 4 01 (O 2201
dwt419 419 419 3563 2.03 13 6 13 6 0(1) 16(0) 16(1)
dwt59 59 59 267 7.67 6 2 6 2 01y B0 8(1)
erisl176 1176 1176 18552 1.34 99 2 99 2 85(0) 8(1) 93(1)
fafidl-1 541 541 4285 1.46 11 1 541 5 13(0) 3(1) 16(1)
fs541-2 B4l 541 4285 1.46 11 1 54t 5 13(0) 3(1) 16(1)
gentlls 113 113 655 513 20 1 27 1 160 3(1) 18{1)
ibm32 32 32 126 12.3 8 2 7 2 7O 11 8{1)

76

Matrix n m nnz DNSM pmax fmin Smax Kmin CcG RG TG
impcol-a 207 207 572 1.33 1 5 1 8(0) o(1) 8(1)
impcol-b 59 59 312 8.96 7 2 12 1 10{0) 1) 11(1)
impecal-c 137 137 411 2.19 1 8 1 s800) 1) 8
impeol-d 425 425 1339 0.741 10 1 10 1 50 1) &)
impcal-e 226 225 1308 2.58 12 1 23 12000 21 22(1)
israel 316 174 2443 444 119 2 136 1 (D) 39 50(1)
lundA 147 147 2449 11.3 21 5 21] 0(1) 26(0) 26(1)
lundB 147 147 2441 113 21 5 21 5 0(1) 26(0) 26(1)
scagr2s 671 471 1725 0.546 10 1 9 1 3(0) 5(1) 8(1)
scagr? 185 120 465 1.95 10 1 9 1 3{0) 5(1) 8(1)
shlo 665 663 1687 0.38¢ 422 1 4 1o 4@ 4
sh1200 663 663 1720 0,303 440 1 4 1 0(1) 40 4D
shl400 883 663 1712 0.389 426 1 4 1 0(1) 4{0) 4{1)
stair 614 356 4003 1.83 36 2 34 1 26(0) 12(1) 38(1)
standata 3274 359 3230 0706 745 2 10 1 1) 8y 91
strQ 363 363 2454 1.86 34 1 34 1 18(1) 8(0) 26(1)
str200 363 363 3068 2,33 30 1 26 1 26(0) 7(1} 33(1)
§trd00 363 363 3157 2.4 33 1 34 1 32(0) 4(1) 38(1)
82600 363 363 3279 2.49 33 1 34 1 3100 7(1) 38(1)
tuff 628 333 4561 218 113 0 25 14y 16(0) 2001
vtp-base 346 198 1051 1.53 38 1 12 1 7(1) (0} 12(1)
watt2 1856 1856 11550 0.335 128 1 65 2 11} 12(0} 13(1)
west0087 67 67 294 6.55 6 1 10 2 3(1) 8(0)y 11(1)
west0381 381 a8l 2157 1.49 25 1 50 1 4(1) 8(0y 12(1)
west0497 497 407 1727 0.699 28 1 55 181y 10(0) 18{1)
wilil99 199 199 701 177 8 1 9 2 90) 0(1} 9(1)
wills7 57 &7 281 8.65 1 2 1 2 1{1) 10(0) 11(1)

n - Number of columns in 4

m - Number of rows in A

nnz - Number of nonzeros in A
DNSM - Matrix Density

Pmax - Maximum number of nonzeros in any row

Pmin - Minimum number of nonzercs in any row

Kmax ~ Maximum number of nonzeros in any column

Kmin - Minimum number of nonzeros in any column

RG - Total number of row groups

CG - Total number of column groups

TG - RG + CG

77

Table A.2: SLO Result

Matrix n m nnz DNSM pmex Pmin Fmax Smin cG RG TG
abb313 176 313 1557 2.83 6 1 26 2 16{0} o1} 10(1)
adlittle 138 56 424 5.49 27 1 11 1 0{1) 12(0) 12(1)
age 615 488 2862 0.954 19 2 43 1 20(0) 0(1) 20(1)
agg2 758 516 4740 1.21 49 2 43 1 25(0} 6(1) 31(1)
age3 758 516 4756 1.22 49 2 43 12500 4(1) 29(1)
arc130 130 130 1282 7.59 124 1 124 1 124(0) 7(1) 131(1)
ash219 83 219 438 2.35 2 2 9 2 3(0) 01} 5(1)
ash202 292 292 2208 2.59 14 4 14 4 15(0) 0(1) 15(1)
ash331 104 331 662 1.92 2 12 3 6(0) 0{1) 6(1)
ash608 188 608 1216 1.06 2 12 2 6(0) 0{1) 6(1)
ash958 292 958 1916 0.685 2 2 13 3 6(0) 0(1}) 6(1)
blend 114 74 522 6.19 29 2 16 1 o(1) 17(0) 17(1)
bore3dd 334 233 1448 1.86 73 1 28 1 0{1) 28(0) 28(1)
bpo 822 822 3276 0.485 266 1 20 1 0{1) 20(0) 2001)
bp1000 822 822 4661 0.69 308 1 21 1 2(1) 23(0) 25(1)
bp1200 822 822 4726 0,698 311 1 21 1 0(1) 210) 21{D)
bp1400 822 822 4790 0.709 imn 1 21 1 0(1) 21(0) 21(1)
bp1600 822 822 4841 0.716 304 1 21 1 o1y 21Dy 21{1)
bp200 822 822 3802 0.563 283 1 21 1 6(1) 14(0) 20(1)
bpdQ0 822 822 4028 0.596 295 1 21 1 8(0) 13(1) 21(1)
bp600 822 822 4172 0.617 302 1 21 1 0(1y 21(0) 21(1)
bp80o 822 822 4534 0.671 304 1 21 1 1(1} 21(0) 22(1)
canl054 1054 1054 12196 1.1 a5 6 35 6 2(1y 36(0) 38(1)
canld72 1072 1072 12444 1.08 35 6 33 6 36(0) (1) 36(1)
can25§ 256 256 2016 445 83 4 83 4 26(0) 4(1) 30(1}
can268 268 268 3082 4.29 37 4 3ar 4 40(0) 0(1) 40(1}
can292 292 292 2540 2.98 35 4 35 4 5(1) 18(0) 23(1})
can6d4 634 634 7228 1.8 28 2 28 2 20(0) 01) 29(1)
can713 715 715 6665 1.3 105 2 105 2 12(1) 22(0) 34(1)
curtiab4d 54 54 291 9.98 12 3 16 3 o(1) 18(0) 16(1}
dwt1007 1007 1007 8575 0.846 10 3 10 3 0(1) 11(0) 11{1)
dwtl242 1242 1242 10426 C.676 12 2 12 2 15(0) 0(1) 15(1)
dwt2680 2680 2680 25026 0.348 19 4 19 4 21(0) 0(1) 21(1)
dwtd19 419 419 3563 2.03 i3 6 13 6 17(0) 0(1) 17(1)
dwt59 59 39 267 7.67] 2 6 2 7(0) 0(1) 71
erisl176 1176 1176 18552 1.34 99 2 99 2 870y 6(1) 93(1)
fs541-1 541 541 4285 1.46 11 1 341 5 2(1) 12(0) 14(1)
f8541-2 541 541 4285 1486 11 1 541 5 2(1) 120} 1401
gent113 13 113 655 5.13 20 1 27 1 0(1) 27(0) 27(1)
ibm32 32 32 126 12.3 8 2 7 2 8(0) (1) 9(1)

78

Matrix n m nhz DNSM pmax Pmin ®max Smin ca RG TG
impcol-a 207 207 572 1.33 8 1 5 1141 51 82
impeol-b 59 59 312 8.96 7 2 12 1 10{0) 1{1) 11(1)
impeol-c 137 137 411 2.19 8 1 8 1 80) 2(1) 10(1)
impecol-d 426 425 1339 0.741 10 1 10 1110y {1 12
impcol-e 225 225 1308 2.58 12 1 23 1 20(0) 3(1) 23(1)
israel 316 174 2443 444 119 2 136 1 20(1) 35(0) 55{(1)
lundA 147 147 2449 11.3 21 5 21 a3 27y (1) 28(L}
lundB 147 147 2441 11.3 21 5 21 5 25(0) 11} 26(1)
scagr2h 871 471 1725 0.546 10 1 9 1 0{1) 9{0) 9(1}
scagr? 185 129 465 1.95 10 1 9 1 ofly 8o e
shl0 663 663 1887 0.384 422 1 4 1 0{1) 4{0) 4(1}
sh1200 663 663 1726 0.393 440 1 4 1oy 40 4
shl400 663 663 1712 0.389 426 1 4 1 0(1) 40 4
stalt 614 856 4003 1.83 36 2 34 1 32000 16(1) 48(1)
standata 1274 350 3230 0.706 745 2 10 1 001 1000 10(1)
str0 363 363 2454 1.86 34 1 34 1 19(0) 701 26(1)
$tr200 363 363 3068 2.33 30 1 26 1 30(0) 0(1) 30(1)
str400 363 363 3157 2.4 33 1 34 1 83(0) o) 33(1)
str600 363 363 3279 2.49 33 1 3 1 33(0) o(1y 33(1)
tuff 628 333 4561 218 113 o 25 1 1(1) 25(1) 26(2)
vtp-base 346 188 1051 1.53 38 1 12 1 41) 12(0) 18(1)
watt2 1856 1856 11550 0.335 128 1 85 2 0(1) 6500y 65(1)
west0087 67 67 294 6.55] 1 10 2 90y 2(1) 11D
west(381 381 381 2157 1.49 25 1 50 41} 8(0) 12(1)
west0497 497 497 1727 0.699 28 1 55 1 8@ 71 18(n)
will199 199 199 701 157] 1 9 2 8(0} o) 8(1)
wills7 57 57 281 8.65 11 P 11 210y o) 11(1)

n - Number of columns in A

m - Number of rows in 4

nnz - Number of nonzeros in A
DNSM - Matrix Density

Pmax = Maximum number of nonzercs in any row

Pmin - Minimum number of nonzeros in any row

Kmax - Maximum number of nonzeros in any column

Kmin - Minimum number of nonzeros in any column

RG - Total number of row groups

CG - Tatal number of column groups

TG - RG + CG

79

Table A.3: IDQ Result

Matrix n m nnz DNSM pmax Pmin Kmax Smin CcG RG TG
abb313 176 313 1657 2.83 G 1 26 2 10(0) 0(1} 101}
adlittle 138 56 424 5.49 27] 1 1001 120 121
agg 615 488 2862 0.954 19 2 43 1 21(0) (1) 21{1}
agg? 758 516 4740 1.21 49 2 43 1 48(0) 2(1) 50(1)
agg3 758 b518 4756 1.22 49 2 43 133(0) (1) 36(1)
arcldo 130 130 1282 7.59 124 1 124 1 35(0) 8(1) 43(1)
ash219 85 219 438 2.35 2 2 9 2 50 0(1) 5(1)
ash202 202 202 2208 2,50 14 4 14 4 o(1) 14(0) 14(1)
ash331 104 331 662 1.92 2 2 12 3 60 o) 6(1)
ash608 188 608 1216 1.06 2 2 12 2z 6(0) 0(1) 6(1)
asgh958 292 958 1916 0.685 2 2 13 3 6(0) 0(1) 6(1}
blend 114 74 522 6.19 29 2 16 1 21{0) 1(1) 22(1)
bore3d 334 233 1448 1.86 73 1 28 1 0(1) 28(0) 28(1)
bp0 822 822 3276 0.485 266 1 20 1 01} 20(0) 2001
bpl0G0 822 B22 4661 0.69 308 1 21 1 0(1) 210) 21(1)
bpl200 822 822 4726 0.699 311 1 21 1 0(1) 2100} 21(1)
bpl400 822 822 4790 0.700 311 1 21 1ol 22000 22(1)
bp1600 822 822 4841 0.716 304 1 21 1 o) 210) 21
bp200 822 822 3802 0.563 283 1 21 1 o) 21(0) 20
bpd0o 822 822 4028 0586 205 1 21 1 0) 21(0) 21{1)
bp600 822 822 4172 0.617 302 1 2 1 01) 210y 21{1)
bpd0g 822 822 4534 0.671 304 1 21 1 0(1) 21(0) 21(1)
canl054 1054 1054 12196 11 35 6 35 6 3(1) 35(0) 38(1)
canlO72 1072 1072 12444 1.08 35 6 35 6 1) 360 37
can256 256 256 2016 4.45 83 4 83 4 53(0) 31 56(1)
can268 268 268 3082 4.29 ar 4 37 4 34{(0) 2(1) 36(1)
can292 202 202 2540 2.08 35 4 as 4 2(1) 35(0) 37(1)
canf3d 634 634 7228 1.8 28 2 28 2 0o(1) 29(0) 29(1)
can715 716 TI5 6665 13 105 2 105 2 22000 S(1) 271
curtis54 54 54 201 9.98 12 3 16 3 12(0) (1) 12(1)
dwt1007 1007 1007 8575 0.846 10 3 10 311w 0(1) 11{1)
dwtl1242 1242 1242 10426 0.676 12 2 12 2 0(1) 16(0) 16(1)
dwt2680 2680 2680 25026 0.348 19 4 19 4 21{0) o) 21(1)
dwtdls 419 419 3563 2.03 13 8 13 6 0(1) 19(0) 18(1)
dwt59 59 59 267 7.67 6 2 6 2 70 o) 7(1)
erisll76 1176 1176 185532 1.34 99 2 99 2 1(1) 99(0) 100(1)
f541-1 541 541 4285 146 11 1 5 11) 140 15(1)
fs541-2 541 541 4285 1.46 11 1 541 5 {1} 14(0) 15(1}
gentild 113 113 655 5.13 20 1 27 1170) 7Y 24(D)
ibm32 2 a2 126 12.3 8 2 7 2 o) 1D 8(1)

80

Mairix n m nnz DNSM pmex Pmin Smax Kmin CcG RG TG
impeol-a 207 207 572 1.33 8 1 5 1 8{0) 0(1) 8(1}
impcol-b 59 59 312 8.96 7 2 12 1 11D 1) 12(1)
impeol-e 137 137 411 2.19 8 1 8 180 o) 9L
impeol-d 425 425 1339 0.741 10 1 10 110(0) 2(1) 12()
impeol-e 223 225 1308 2.58 12 1 23 120000 a1 23()
israel 318 174 2443 444 119 2 136 1 18(1) 35(0) 54(1)
lundA 47 147 2449 11.3 21 5 21 5 0(1) 28(0) 28(1)
lundB U 1ar 2441 113 21 5 21 5 0(1) 28(0) 281
scagr2h 671 471 1725 0.546 10 1 5 ooy 80) 9
scagr? 185 129 465 1.95 10 1 9 1 01 90 91
shl0 663 663 1687 0.384 422 1 4 101 40 41
sh1200 663 663 1726 0303 440 1 4 1 0(1) 40) 41
sh1400 663 663 1712 0.380 426 1 4 1o 4o 4
stair 614 336 4003 1.83 36 2 34 1 of1) 36(0) 36(1)
standeta 1274 359 3230 0706 745 2 10 1 001 10000 10(1)
strQ 363 363 2454 1.86 34 1 34 12000 T(1} 27(1)
str200 363 363 3068 2,33 30 1 26 1 291} 3(0) 321
strd00 363 363 3157 2.4 33 1 34 133(0 1L 34D
Str600 363 363 3279 2,49 33 1 34 1 33(0) 3(1) 381
tuff 628 333 4561 2.18 113 0 25 01y 25(1) 25(2)
vtp-base 346 1985 1051 1.53 38 1 12 141 130y 17Q)
watt2 1856 1856 11550 0.335 128 1 65 2 1) 130 1401)
west0087 67 67 204 6.55 8 1 10 2 s0y 1) 10Q)
west0381 381 381 2157 1.49 25 1 6O 1 4(1) 10(0) 14(1)
west0497 497 497 1727 0.699 28 1 53 1 28(0) 1(1) 29(1)
will199 199 199 701 177 6 1 2 80) 01 8()
willa? 57 57 281 8.65 11 2 11 2 0(1) 11(0) 11(1)

n - Number of columns in A

m - Number of rows in A

nnz - Number of nonzeras in A

DNSM - Matrix Density

Pmax - Maximum number of nonzeros in any row

Pmin - Minimum number of nonzeros in any row

Kmax - Maximum number of nonzeros in any column

Kmin - Minimum number of nonzeros in any column

RG - Totel number of row groups

CG - Tatal number of column groups

TG - RG + CG

81

Appendix B

Example of ILP Model

Implementation

A sample of the ILP model for a 2 x 2 arrowhead matrix is given below.

//Model File
range boolean 0..1;
enum rown ...;
enum coln ...
‘enum rowe ...
enum colc ...;
//Decision Variables
var boolean xrrown,rowc|;
var boolean xc{coln,colc];
var boolean wr{rowe];
var boolean we[colc];
//Objective Function
minimize

sum(r in rowe) wrfr] + sum(c in colc) welc]
//Constraints
subject to (

82

forall{r in rown) sum(row in rowe) xr[ryrow| = 1;
forall(c in coln) sum(col in cole) xc[c,col] = 1;
forall(r in rowe, ¢ in colc) (
xr[r0,r] + xc[el,¢] + xrfrlx] + xclel,c] <= wrfr) + we[c] + 1;
xrfr0,r] + xclel,e] + xrrl,r] + xclel,e] <= wrlr] + wele] + 1;
xr[rl,r] 4+ xcle0,¢] + xr[r0,r] + xclel,c] <= wrfr] + wele] + 1;
xrlrir] + xelel,e] + xr[r0,r] + xc[e0,¢] <= wrfr] + wele] + 1;
);
forall(r in rowc) wrlr] <= sum(row in rown) xr[row,r];
forall(c in colc) welc] <= sum{col in coln} xe[col,c|;
wrre0] >= wr(rcl];
welcel] >= weleel];
forall(r in rowe) sum(row in rown) xrirow,r] <= 2*wrirl;
forall{c in colc) sum(col in coln} xe[col,c] <= 2%we(c);

J;

//Data File

rown = (r0,rl);

coln = (c0,cl);

rowe = {rc0,rel);

cole = (cc0,ccl);

83

