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A b s t r a c t 

There has been extensive research activities in the last couple of years to 

efficiently determine large sparse Jacobian matrices. It is now well known 

that the estimation of Jacobian matrices can be posed as a graph coloring 

problem. Unidirectional coloring by Coleman and More [9] and bidirectional 

coloring independently proposed by Hossain and Steihaug [23] and Coleman 

and Verma [12] are techniques that employ graph theoretic ideas. 

In this thesis we present heuristic and exact bidirectional coloring tech­

niques. For bidirectional heuristic techniques we have implemented variants 

of largest first ordering, smallest last ordering, and incidence degree order­

ing schemes followed by the sequential algorithm to determine the Jacobian 

matrices. 

A "good" lower bound given by the maximum number of nonzero entries in 

any row of the Jacobian matrix is readily obtained in an unidirectional determi­

nation. However, in a bidirectional determination no such "good" lower bound 

is known. A significant goal of this thesis is to ascertain the effectiveness of the 

existing heuristic techniques in terms of the number of matrix-vector products 

required to determine the Jacobian matrix. For exact bidirectional techniques 

we have proposed an integer linear program to solve the bidirectional color­

ing problem. Part of exact bidirectional coloring results were presented at 

the "Second International Workshop on Combinatorial Scientific Computing 

(CSC05), Toulouse, France." 
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C h a p t e r 1 

I n t r o d u c t i o n 

Problems in science and engineering often require to minimize a nonlinear 

function or to find the numerical solution of a system of nonlinear equations 

F(x) = 0 where F = ( A , / 2 , f m ) T is a mapping F : 9?n - • 5 R m . New­

ton's method (or a variant of Newton's method) can be employed to solve the 

aforementioned problems [14]. 

Newton's method is an iterative method which may require a large number 

of iterations to converge to the solution with desired accuracy. At each iter­

ation one needs to calculate the matrix of first partial derivatives also known 

as the Jacobian matrix J(x) = {§§:},! < j < n, 1 < i < m at the current 

point x. For very large problems these matrices are often sparse i.e. they con­

tain nonzero entries at very few positions in the matrix, and for complicated 

functions, computing the Jacobian matrix may dominate the overall compu­

tational cost per iteration. Assuming that the sparsity pattern of the matrix 

is known and it does not change from iteration to iteration, it is important 

to design efficient methods that take advantage of known sparsity and other 

structure information like symmetry so that the computations involving known 

zero entries are avoided in determining the matrix. 

The problem of exploiting sparsity in computing the Jacobian matrix can 

be viewed as a partitioning problem [13]. With the known sparsity structure 

of the given sparse matrix A, we can partition the columns of A into p (p < n) 
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C h a p t e r 1 I n t r o d u c t i o n 

groups such that each column belong to exactly one group and the columns in 

the same group are structurally orthogonal i.e. they do not contain more than 

one nonzero in the same row position. This type of partitioning is called uni­

directional partitioning and may not be able to exploit the sparsity effectively. 

Alternately, one can partition the rows and the columns of A simultaneously 

to obtain pi (j>\ < m) row groups and P2 (P2 < n) column groups. Both 

of the above partitioning problems can be posed as graph coloring problems 

[10, 12, 17, 23]. 

Other methods to partition the matrices are column segmenting approach 

[22, 26, 27, 28] and bidirectional partitioning technique via greedy approach 

using distance 3/2 bi-coloring scheme [18]. 

The graph coloring problem that we are concerned with in this thesis deals 

with the assignment of minimum number of positive integers called labels 

(colors) to the vertices of a graph such that no two vertices connected by an 

edge get the same label (color). 

Graph coloring plays an important role in a variety of fields of computer 

science. It models many real-world problems or acts as a part in the overall 

solution of the problems. Some of the areas where graph coloring is used are 

register allocation [20], frequency assignment and networks [29], timetabling 

and scheduling [38], and pattern matching. 

In our thesis, the graph coloring problem acts as a tool to determine the 

Jacobian matrices. By representing the Jacobian matrices as graphs and then 

partitioning the vertices of the graph using graph coloring, we can partition the 

rows and columns into groups such that the nonzero entries in each row and 

column can be solved from a small linear system. This partition information 

can then be used by Finite Differencing (FD) or Automatic Differentiation 

(AD) software to estimate the nonzeros of the Jacobian matrix. 

Including this introductory chapter, this thesis contains seven chapters. 

The outline of the remaining chapters proceeds as follows: 
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C h a p t e r 1 I n t r o d u c t i o n 

In Chapter 2, we introduce Jacobian matrices followed by the description 

of Newton's method to solve a system of nonlinear equations and for uncon­

strained minimization. We then describe unidirectional and bidirectional par­

titioning techniques, followed by the methods to recover nonzeros. Finally we 

describe the methods to compute partial derivatives. 

In Chapter 3, we provide basic graph theory definitions and notations. We 

then give the problem definition where we describe graph coloring as related 

to the partitioning problem. This is followed by a brief description of com­

putational complexities involved with graph coloring, and finally we give the 

description of graph coloring methods. 

In Chapter 4, we feature the existing heuristic techniques for unidirectional 

and bidirectional p-coloring. We then describe Largest First Ordering (LFO), 

Smallest Last Ordering (SLO), Incidence Degree Ordering (IDO), and the 

sequential algorithms as modified by us for bidirectional p-coloring. 

In Chapter 5, we introduce exact methods for finding optimal solution of 

the bidirectional p-coloring. We then explicate a new integer linear program­

ming model for bidirectional ^-coloring. Finally we give the computational 

complexity of the ILP model followed by implementation details. 

In Chapter 6, we present experimental results that demonstrate the perfor­

mance of the algorithms presented in Chapters 4 and 5. We give a comparison 

of various graph coloring techniques for matrix partitioning. The data for the 

experiments was provided by the matrix market collection [3]. 

Finally, in Chapter 7, we provide concluding remarks, as well as possible 

and proposed directions for future research in this area. 

Detailed experimental results are presented in Appendix A and a sample 

ILP model for bidirectional ^-coloring is given in Appendix B. t 
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C h a p t e r 2 

P r e l i m i n a r i e s 

In this chapter we will identify the problem of determination of sparse Jacobian 

matrices. In section 2.1 we will introduce Jacobian matrices and give the mo­

tivation to determine them. In section 2.2, we will give techniques to partition 

the Jacobian matrices, followed by section 2.3, in which we will demonstrate 

methods to recover the nonzeros. In section 2.4, we will describe the methods 

to compute partial derivatives and finally in section 2.5, we will conclude this 

chapter. 

2 . 1 Jacobian Matrices 

The Jacobian matrix is the first-order partial derivative matrix of a vector-

valued function. Let F = (/i , / 2 , f m ) T be a mapping F : Sftn —»• Um. If F is 

continuously differentiate then the Jacobian matrix of F at x is given by 

Derivative information is needed, for example in the solution of systems of 

nonlinear equations and in the unconstrained minimization problems. New­

ton's methods are one of the classical methods to solve the systems of nonlinear 

equations and to obtain unconstrained minimization respectively. 

J(x) = F\x) = (2.1) 

a f n / m ( x ) / 

4 



C h a p t e r 2 P r e l i m i n a r i e s 

2 . 1 . 1 N e w t o n ' s M e t h o d f o r S y s t e m s o f N o n l i n e a r E q u a ­

t i o n s 

Given F : K n —• 3 ? m , the solution to the associated system of nonlinear equa­

tions is attained by finding € 5ft n such that F(x^) = 0 where F is as­

sumed to be continuously differentiable [ 1 4 ] . In inexact Newton's method, the 

solution of the resulting linear system is approximated by a linear iterative 

method. Following are the steps for solving this nonlinear system. 

Algori thm 1 Newton's Method for Systems of Nonlinear Equations 
Let x < ° > € ftn; 

for j * — 0 , convergence do 

j ( x { j } ) s O } = -F(x^); 

> Compute the Jacobian matrix at current point and solve for step 

xti+1} = + s^; > Update the current point 

end for 

J(x) is known as the Jacobian matrix of F at x. 

The following example illustrates Newton's Method to solve the systems of 

nonlinear equations. 

Given 

F(x) = 
x\ + xi — 3 

with roots at ( 1 , 2 ) T and ( 2 , 1 ) T . 

The Jacobian matrix is given by 

" 1 1 

- 2xi 2x2 

Let x^ = ( 0 , 3 ) r . Then the first two iterations of Newton's method are 

" 1 1 • 
5<°> = -

• o • 
, gives — 

- 0 6 . . 4 . 



C h a p t e r 2 P r e l i m i n a r i e s 

+ # = (0.667,2.333) T, 

j ( x { i } ) s { i } = : 

" 1 1 ' 
= -

• o • 

4 1 4 loo 

3 3 9 
gives s { i } _ 

1 5 
_ 4 _ 

' 1 5 ,{2} = x{1] + s{1} _ (0.933,2.067) T. 

If the initial approximation a;̂ 0^ is sufficiently close to the root, it is expected 

that the successive iterates will converge to the root. 

2 . 1 . 2 N e w t o n ' s M e t h o d f o r U n c o n s t r a i n e d M i n i m i z a ­

t i o n 

Another important problem from optimization where the derivative informa­

tion is required is the unconstrained minimization problem 

min / : $ n -> K, (2.2) 

where / is assumed to be twice continuously differentiable. The algorithm for 

Newton's method for unconstrained minimization is given as follows. 

Algori thm 2 Newton's Method for Unconstrained Minimization _ _ _ _ _ _ _ _ 

for j <— 0, minimization do 

V 2/foK = - V / ( _ , ) , 
, N 

Xj+i — Xj + Sj . 
end for 

> Update the current point 

Here V2f(x) is the Hessian matrix and V/ (~ ) is the gradient of / . The 

Hessian of / can be viewed as the Jacobian of V / ( _ ) . 

At every iteration of Newton's method we need to determine the Jacobian 

matrix at the current point. In many large problems the Jacobian matrix 

is sparse i.e. there are very few nonzeros in the matrix. By exploiting this 

sparsity, we can efficiently determine the Jacobian matrix and thus significantly 

6 



C h a p t e r 2 P r e l i m i n a r i e s 

reduce the overall computational cost of the solution process. In the next 

section we will discuss methods to partition the Jacobian matrices. 

2 . 2 M a t r i x P a r t i t i o n i n g 

In 1974, Curtis, Powell and Reid [13] noted that the sparsity of the Jacobian 

matrices can be exploited if the columns of the matrix can be partitioned into 

groups such that columns in each group are structurally orthogonal to each 

other. 

A = 

>2 

i i 
0 0 

aHi 
akxl 
ak2l 

3 

3 = 

1 
0 

6 = 

"•k-il 
ak2l 

0 
0 

O j 2 j 
al23 

ai*3 

ak3l 
I 1 

0 

ak3l 
0 
0 

a*33 

Figure 2.1: Example by Curtis, Powell and Reid 

Let A € K m x n be the given matrix. In Figure 2.1 we see that columns j 

and I of A are structurally orthogonal i.e. there does not exist a row index i 

for which both ay ^ 0 and an ^ 0. The corresponding vector s is initialized 

as ~] • ej, where 6j is the j ' th coordinate vector and the sum for this vector is 

taken over a set of structurally orthogonal columns. Vector b is obtained as 

the product b = As by using FD or AD forward mode. We see that b contains 

the unique nonzero entries of columns j or I (or a zero) at each position. More 

generally, consider structurally orthogonal partitioning of A into p groups. We 

can then define a seed matrix S G 5 ? n x p where each column of S corresponds to 

a group of structurally orthogonal columns and is defined by — ) • ej as discussed 

7 



C h a p t e r 2 P r e l i m i n a r i e s 

earlier. Then the nonzeros of A can be recovered from the product B — AS 

obtained through forward automatic differentiation or finite differencing. 

2 . 2 . 1 U n i d i r e c t i o n a l P a r t i t i o n i n g 

A partitioning scheme in which either the columns or the rows are partitioned 

into structurally orthogonal groups is known as unidirectional partitioning. 

As shown in Figure 2.2, matrix A can be partitioned into two column groups 

such that all the nonzeros of A can be obtained from the product AS. 

X ' 1 0 " 
X X 0 1 
X X , s = 0 1 
X X 0 1 
X X 0 1 

Figure 2.2: Column Partitioning 

In Figure 2.3, we see that by partitioning the matrix A into two row groups, 

we can obtain all the nonzeros of A from the product WTA. 

A = 

X X X X X 

X 

X 

X 

X 

, w 1 1 0 0 0 0 
0 1 1 1 1 

Figure 2.3: Row Partitioning 

2 . 2 . 2 B i d i r e c t i o n a l P a r t i t i o n i n g 

For a given matrix A G K m x n , if seed matrices S € 9f t" x p i and W G Rmxp2 

can be obtained such that all the nonzeros of A can be determined uniquely 

from the products B = AS and CT = WTA, then the resulting partitioning is 

known as bidirectional partitioning. 

8 



C h a p t e r 2 P r e l i m i n a r i e s 

Considering Figure 2.4, we notice that unidirectional partitioning (either 

row or column) will require at least 5 groups. But if we determine row 1 and 

column 1 separately and collect the remaining nonzeros in one column(row) 

group then we require only 3 groups. 

X X X X X 1 0 " 
X X 0 1 
X X ,s = 0 1 
X X 0 1 
X X 0 1 

Figure 2.4: Bidirectional Partitioning 

2 . 3 M e t h o d s f o r R e c o v e r i n g N o n z e r o s 

In this section we briefly describe the techniques to recover the nonzeros from 

the product B = AS, where A is the Jacobian matrix to be determined. 

For a given matrix A G 3 f t m x n , we want to obtain seed matrices S G 5 f t n x p i 

and WT G W2Xm such that all the nonzeros of A can be determined from the 

products B _ AS and CT = WTA. 

In the following we outline a procedure for unidirectional determination of 

a Jacobian matrix A G 3 ? m x n . 

• Obtain B = AS as p matrix-vector products using finite differencing or 

forward automatic differentiation. 

• Identify the reduced seed matrix as G 3 R / 3 i X p , where pi is the number 

of nonzeros in row % of A. 

• Solve for the nonzeros in row % of A 

Si a = (3 (2.3) 

9 



C h a p t e r 2 P r e l i m i n a r i e s 

where a contains the nonzero unknowns in row i and (5 is the correspond­

ing vector in matrix B. 

If, for every row of A the reduced system (2.2) is a permuted identity matrix 

then we have a direct method [23]. If the reduced system can be permuted to a 

triangular system then we have a substitution method [24], otherwise we have 

an elimination method [25]. 

2.3.1 D i r e c t M e t h o d 

In direct determination method, all the nonzeros of A can be read-off from the 

matrix B and CT without any further arithmetic operation. Let us demon­

strate the direct determination method with the help of the following example. 

Let 

an ai2 O13 Ol4 Ol5 1 0 

0.21 022 0 0 0 0 1 

o 3 i 0 O33 0 0 ,s = 0 1 

041 0 0 044 0 0 1 

051 0 0 0 055 0 1 

,WT = 1 0 0 0 0 

Thus we can obtain the matrices B and CT by the matrix-vector product AS 

and vector-matrix product WTA respectively. 

Oil 0 1 2 + Oi3 + O14 + Oi5 

B = 

021 a 2 2 

031 033 

041 044 

a 5 i 055 

an 012 ai3 014 ai5 

The nonzeros of A can thus be read off from B and CT. 

10 



C h a p t e r 2 P r e l i m i n a r i e s 

2.3.2 S u b s t i t u t i o n M e t h o d 

In a substitution method the unknown elements of the matrix A are determined 

by solving a triangular system of equations i.e. the ordering of the nonzeros 

of A is such that every nonzero is determined using formerly computed values. 

Let us comprehend this method with the help of an example illustrated in [24]. 

Let 

A l l 0 O13 

021 0,22 0 

0 a 3 2 a 3 3 

The second row of A can be determined by solving for a 2 i and a 2 2 in the 

following reduced system 

A , and let S 

1 0 

1 1 

0 1 

0 2 1 0,22 0 

1 0 

1 1 

0 1 

l>21 "22 

Eliminating row 3 of 5 and transposing the system, we get 

1 1 a 2 i &21 

0 1 a 2 2 &22 

which is an upper triangular system. The nonzeros of the other two rows 

of A can be found in the similar way. Substitution method usually require 

fewer number of function evaluation or AD passes but is subject to numerical 

instability. 

It can be verified that the above example cannot be determined with fewer 

than 3 matrix-vector products in any direct methods. 

2.3.3 E l i m i n a t i o n M e t h o d 

Elimination method is a general method where no special structure is assumed 

for a seed matrix. Any square submatrix of the seed matrix S, however, must 

11 
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be nonsingular. Let us view this method with the help of the following example. 

Let, 

a n 0 ai3 au 0 

A = 0 a 2 2 a 23 0 a 25 

a 3 i a 3 2 0 a 3 4 0 

The successive column merging technique [25] gives the following seed matrix 

1 0 0 

2 1 0 

S = 1 2 1 

0 1 2 

0 0 1 

The matrix B could be obtained by the product B = AS, giving 

on + ai3 2ai3 + a u a i 3 + 2an 

2 a 2 2 4- a 23 a 2 2 + 2a 23 a 2 3 + a 25 

a 3 i + 2 a 3 2 a 3 2 + 034 2034 

Then the unknowns for example in row 1 of A can be determined as follows 

B = 

1 1 0 a n 

0 2 1 — 012 

0 1 2 014 013 

2 . 4 C o m p u t i n g P a r t i a l D e r i v a t i v e s 

2 . 4 . 1 F i n i t e D i f f e r e n c e A p p r o x i m a t i o n 

Let A denote the Jacobian matrix J(x) of a continuously differentiate map­

ping F : 5ft n —• K m . An approximation to the j t h column of A, denoted by a,j, 

can be obtained from 

d 1 
(2.4) 

12 
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where ej is the j t h coordinate vector and e is a positive increment. Assuming 

F(x) has already been evaluated, we can estimate the partial derivatives in the 

j t h column of matrix A through the additional function evaluation F(x + s e j ) . 

Note that, if the sparsity information is not exploited then we will need n extra 

function evaluations to determine A. 

The advantage of finite difference is that it is easy to implement. The finite 

difference method can be used as a black box i.e, to obtain an approximation to 

the derivatives, we do not need to access the function code. We just need to call 

the subroutine that implements the mathematical function. The disadvantage 

of finite differencing is that it is prone to numerical instability. If e is taken 

to be too large then the approximation is not accurate due to truncation error 

and if e is taken to be too small then F(x + eej) — F(x) may cause loss of 

precision to round-off errors associated with finite precision calculations. 

2.4.2 A u t o m a t i c D i f f e r e n t i a t i o n 

Automatic Differentiation (AD) is a chain rule based technique for evaluat­

ing the derivatives of functions defined by computer programs. Unlike finite 

difference approximation (FD), the derivatives computed using AD are free 

from truncation errors. We will now present a brief description of basic AD 

techniques. For a comprehensive introduction to AD we refer to the excellent 

reference [19] by Andreas Griewank. 

A program for evaluating the function 

z = F(x),F :Rn (2.5) 

can be seen as a series of scalar assignments 

Vi = (t>i{vj)j-,u (2.6) 

where j i indicates that Vj is computed before Vi. Variables Vj are ordered 

13 
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such that they can be divided into three vectors: 

x — (vi,V2, •••,vn)T (independent variables), 

y = (vn+i,vN+2, •••vn+p)T (intermediate variables), 

z = (vn+P+i,vN+P+2, ...,vn+p+m)T (dependent variables). ( 2 . 7 ) 

fa represent elementary functions, which can be arithmetic operations or tran­

scendental functions. If all these elementary functions fa are well defined and 

have continuous elementary partials 

<kj = — fa,3 < h ( 2 . 8 ) 

then by the repeated application of the chain rule, the nonzeros of the Jacobian 

matrix J(x) can be computed from the elementary partials cy. AD has two 

basic modes of operation namely forward and reverse. 

Forward M o d e 

In forward mode, intermediate partial derivatives are accumulated in the same 

order as the function values are computed. A forward pass is equivalent to 

the calculation of the matrix vector product Jv where v is a n-vector. By 

initializing v to be unit coordinate vector all the columns of 

J can be determined by n forward passes. 

Reverse M o d e 

In reverse mode, the intermediate partial derivatives are accumulated in reverse 

order of function evaluation. A reverse pass corresponds to the computation 

wTJ where w is a m-vector. By initializing w to be unit coordinate vectors 

ti,i — 1 , 2 , m all the rows of J can be determined by m reverse passes. 

In the above descriptions we noticed that the nonzeros of A can be effi­

ciently determined from B and CT. By obtaining seed matrices S € K n x p i 

1 4 
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and WT G W2Xm such that p\ and p2 is minimized, we can reduce the number 

of function evaluations in FD and the number of forward and reverse passes 

in AD, thus minimizing the computational cost of determining the Jacobian 

matrix. 

2.5 Summary 

In this chapter we discussed numerical algorithms where efficient computation 

of partial derivatives is crucial. We introduced unidirectional and bidirec­

tional partitioning that exploits sparsity and used examples illustrating dif­

ferent techniques to "recover" the nonzero entries from the products AS and 

WTA, We briefly described FD and AD techniques to obtain approximation 

to the nonzero entries. In the next chapter we will present graph coloring 

technique to partition the Jacobian matrices. 

15 



C h a p t e r 3 

B a c k g r o u n d 

In this chapter we will give the problem definition and all the pertinent ter­

minology that will be used in this and the subsequent chapters. In section 3.1 

we will give graph notations followed by section 3.2 in which we will define the 

problem of bipartitioning the Jacobian matrix using graph coloring. We will 

discuss the complexity issues associated with bidirectional p-coloring in section 

3.3 and in section 3.4 we will describe the graph coloring methods. Finally, in 

section 3.5 we will summarize this chapter. 

3 . 1 G r a p h T h e o r e t i c D e f i n i t i o n s a n d N o t a t i o n s 

A graph G is an ordered pair (V, E) where V is a finite and nonempty set called 

vertices and E is a set of unordered pairs of distinct vertices called edges. Two 

vertices u and v are adjacent if and only if {u, v} G E. The degree of a vertex 

v is the number, denoted deg(u), of edges with v as an endpoint. A path V of 

length I is a sequence { v i , V 2 , o f distinct vertices in G such that Vj is 

adjacent to VI+I, for 1 < i < I. 

A bipartite graph Gb = (U U V, E) contains two disjoint sets of vertices U 

and V such that every edge in G has adjacent vertices in U and V respectively. 
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3 . 2 P r o b l e m D e f i n i t i o n 

3 . 2 . 1 G r a p h C o l o r i n g 

Graph coloring is an assignment of colors or labels to the vertices of the graph 

such that no two adjacent vertices receive the same color. 

A p-coloring of a graph G = (V, E) is a function <fi : V —> {1,2, such 

that cf)(u) ^ <f>(v) if {u, v} e E. The chromatic number x(G) is the smallest 

p for which G has a p-coloring. A coloring that uses x(G) colors is known as 

optimal coloring. 

Figure 3.1 illustrates p-coloring of the graph G using p = 3 colors. 

Figure 3.1: p-coloring Example 

3 . 2 . 2 F o r m u l a t i n g t h e P a r t i t i o n i n g P r o b l e m a s a G r a p h 

C o l o r i n g P r o b l e m 

Direct determination as proposed in this thesis is based on partitioning the 

rows and columns of the Jacobian matrix such that the nonzero entries can 

be recovered from the matrix-vector products computed via AD or FD. We 

can conveniently reformulate the partitioning problem as a coloring problem 

of an associated graph. In this section we will discuss graph formulation of the 

partitioning problem. 

Consider a m x n matrix A . The column intersection graph of A is a graph 

G ( A ) = ( V , E ) where for each column j , j = l ,2 , . . . , n of A there is a vertex 

17 
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V i V 2 V s V 4 V s . 
X X X 

X 
X 

X 

X 

X 

X 

X 

X 
X 

( b ) G{A) 

Figure 3.2: Sparse Matrix and its Column Intersection Graph Representation 

3.2(a) depicts the matrix A and Figure 3.2(b) represents its corresponding 

column intersection graph. 

The following result [9, 35] states the connection between the unidirectional 

partitioning problem and graph coloring. 

Theorem 3.1 </> is a unidirectional partitioning of the columns (or rows) of 

A if and only if 4> induces a coloring of the graph G(A) (or G(AT)). 

As has been observed in [12, 23], unidirectional partitioning may not yield 

the most effective exploitation of matrix sparsity. In the unidirectional par­

titioning the graph defined for a sparse matrix A represents the sparsity of 

either columns G ( A ) or rows G ( A T ) but not both. To represent both row and 

column sparsity a different graph is needed. Specifically, we need to record the 

zero-nonzero structure of rows and columns. A bipartite graph is a convenient 

data structure for this purpose. 

The bipartite graph associated with matrix A e K m x n is a graph Gb{A) = 

(U UV,E) where U = {m, u 2 , •••Um}, V = {v\, v2, vn} and {ui,Vj} G E 

whenever is a nonzero element of A , for 1 < i < m , 1 < j < n . The size 

of the graph Gb(A) is proportional to the size of the matrix A , such that the 

number of vertices \U\ + \ V\ = m + n and number of edges \E\ — nnz(A), 

where nnz(A) is the number of nonzeros in A. 
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Vi V 2 V3V4 v 5 

U, X X X X X 

u 2 X x 

u 3 X X 
U4 X x 

u 5 ^ x X 

(B)A 

Figure 3.3: Sparse Matrix and its Bipartite Graph Representation 

Figure 3.3(a) shows a sparse matrix A and Figure 3.3(b) represents its 

associated bipartite graph. 

A mapping (f> : U U V —> {1,2, ...,p} is called a bidirectional p-coloring of 

bipartite graph Gb = (U U V, E) if (j> is p-coloring of Gb and every path of 

length 3 in Gb uses at least 3 different colors such that 

{(j){u) :ueU}n {(j)(v) : v £ V} = 0. (3.1) 

The chromatic number for bidirectional p-coloring is denoted by x(Gb)-

It has been proved that bidirectional partitioning of A is equivalent to 

bidirectional j>coloring of Gb(A) [12, 23]. 

3 . 3 I n t r a c t a b i l i t y 

Computational complexity is concerned with analyzing the resources needed 

to solve computational problems. Complexity theory is used as a tool to an­

alyze algorithms, so that the bounds on the resources required for solving the 

computational problem can be determined. 

A decision problem is one whose solution is either "yes" or "no". A decision 

problem 7r for which the answer (yes or no) can be decided in polynomial time 

i.e. the worst case running time for an algorithm solving the problem ir is 

0(nk), where n is the size of the inputs and k is some constant, then that 
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problem is said to be in the class P [16, 30]. The problems within class P are 

known as tractable. If k is sufficiently small then these problems can be solved 

in a reasonable amount of time. 

A decision problem 7r for which a solution can be guessed and verified in 

polynomial time belongs to the class NP. Some problems in NP are shown to be 

the members of the equivalence class NP-complete (NPC). A decision problem 

7r belongs to the class NPC if n € NP and for every other problem ir' in NP 

there exists a polynomial time algorithm that transforms TT' to ir such that if 

the solution to 7r is 'yes' then the solution to 7r' is also 'yes' and viceversa. The 

problems in class NPC are most difficult to solve and no algorithm to date is 

known which can solve these problems in deterministic polynomial time. 

A Combinatorial optimization problem (COP) is either a "minimization 

problem" or a "maximization problem". For each instance J of a problem, 

there exists a finite set S(I) of "candidate solutions" for / . A function m 

is called a "solution value" for each candidate solution if it assigns to each 

instance and each candidate solution a rational number. In a minimization 

(maximization) problem, an optimal solution for an instance / is a candidate 

solution <7* such that for all possible candidate solutions, <r* has the minimum 

(maximum) solution value. 

The optimization version of the decision problems in NPC belong to the 

class NP-hard i.e. a problem is considered as hard as NPC. Also no algorithm 

to date exist which can solve NP-hard problems in polynomial time. The class 

of NPC and NP-hard are regarded as intractable because problems in these 

classes have no known polynomial time algorithms. 

In our thesis we are concerned with the optimization version of the coloring 

and partitioning problems (unidirectional and bidirectional). 
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3 . 4 G r a p h C o l o r i n g M e t h o d s 

We can apply both heuristic techniques as well as exact methods to color 

the vertices of the graph. We have applied heuristic techniques to solve the 

partitioning problem because they are solvable in polynomial time and give 

good solutions but we want to know how good are the heuristics doing and 

this has motivated us to investigate exact coloring techniques. We will give a 

short description of both the techniques below. 

3.4.1 H e u r i s t i c M e t h o d s 

Algorithms which give solution in given time, and do not guarantee any upper 

or lower bounds but they often find "good" solutions are called heuristics or 

inexact methods. The performance measurement for these methods is usually 

done by benchmarking i.e. measuring the quality of performance on different 

sets of inputs. The weakness of this performance measuring is that it is dif­

ficult to predict the results of arbitrary sets of inputs. In our thesis we have 

adapted three well-known heuristic algorithms namely largest first ordering 

(LFO), smallest last ordering (SLO) and incidence degree ordering (EDO) for 

bidirectional p-coloring. 

3.4.2 Exac t M e t h o d s 

Algorithms that give optimal solution for the given problem are known as exact 

methods. These algorithms give upper and lower bounds of the problems and 

confirm that no better solution could be found. Exact methods are "hard" 

and often not solvable in polynomial time. In our thesis we have formulated 

an integer linear programming (ILP) model to implement the bidirectional 

p-coloring. 
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3 . 5 S u m m a r y 

In this chapter we introduced the notations as used in our thesis. We defined 

graph coloring and discussed the formulation of the partitioning problem as 

a graph coloring problem. We reviewed unidirectional and bidirectional p-

coloring schemes. We presented intractability and described heuristic and 

exact graph coloring methods. In the next chapter we will discuss heuristic 

algorithms for bidirectional p-coloring. 
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C o l o r i n g H e u r i s t i c s 

In this chapter we will study heuristic techniques to determine the sparse Ja­

cobian matrices. In section 4.1 we will discuss existing unidirectional and 

bidirectional heuristic techniques, in section 4.2 we will detail heuristic tech­

niques developed for bidirectional graph coloring, and finally in section 4.3 we 

will summarize the chapter. 

4 . 1 B a c k g r o u n d 

4.1.1 U n i d i r e c t i o n a l G r a p h C o l o r i n g 

In 1983, Coleman and More [10] suggested that the column partitioning prob­

lem could be posed as a graph coloring problem. They proposed algorithms in 

which they ordered the vertices of the column intersection graph G(A) using 

the largest first ordering (LFO), smallest last ordering (SLO), and incidence 

degree ordering (IDO) schemes, and then applied the sequential algorithm on 

these ordered vertices [9]. 

4.1.2 B i d i r e c t i o n a l G r a p h C o l o r i n g 

Unidirectional coloring deals with either the rows or columns of the sparse 

matrix A while bidirectional coloring involves both rows and columns of A. As 
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discussed in section 2.3 it is desirable to minimize p such that all the nonzeros of 

A are determined uniquely. The following subsections discuss existing heuristic 

techniques for bidirectional p-coloring. 

Complete Direct Cover 

Hossain and Steihaug [23] proposed row-column consistent partitioning of A 

in which the entire set of rows and columns is partitioned. They introduced 

complete direct cover for Jacobian matrices as described below. 

Let Sc be a collection of subsets of columns and Sr be a collection of subset 

of rows. The set {Sc,Sr} is called complete direct cover of A if 

• The intersection of any two subsets is empty. 

• For each nonzero element ay, there is a subset X € Sc U Sr such that ay-

is directly determined by X. 

An algorithm to compute complete direct cover aims to find groups of rows 

and columns that satisfy the direct cover property. The algorithm terminates 

when all the nonzeros are determined. Maximum number of colors needed to 

determine Jacobian matrix directly using complete direct cover algorithm is 

| S c | + | S r | + 2 [23]. 

Bicoloring 

Coleman and Verma [11, 12] studied the same problem and suggested that it is 

sufficient to partition subsets of rows and columns such that A is determined 

directly. The vertices that are not involved in the determination of any nonzero 

entry are assigned the neutral color zero. The bipartite coloring scheme applied 

by them is illustrated below. 

Let Gb — (U U V, E) be a bipartite graph. The mapping cf) : U U V —• 

{0,1, ...,p} is a bipartite p-coloring of Gb if the following conditions hold. 
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• If u G U and v G V, then cf>(u) <j>{v) or <f>{u) = <f>(v) = 0. 

• If {u,v} G E, then ^(u) ^ 0 or <f>(v) ^ 0. 

• If vertices u and u are adjacent to vertex w with <j>{w) — 0, then 4>{u) ̂  

• Every path of three edges uses at least three colors. 

They introduced the concept of bicoloring in which A is permuted and 

partitioned. Minimum nonzero count ordering (MNCO) algorithm is built to 

partition J to obtain matrix Jc from bottom up and Jr from right to left. At 

every iteration in MNCO either a new column is added to J c or a new row is 

added to Jr. The coloring is then obtained by partitioning the columns in J c 

and partitioning the rows in Jr. This double coloring approach is named as 

bicoloring. 

4 . 2 B i d i r e c t i o n a l H e u r i s t i c T e c h n i q u e s 

In this section we will discuss our bidirectional heuristic techniques. We ini­

tially order the vertices of the bipartite graph Gb(A) using one of largest first 

ordering (LFO), smallest last ordering (SLO), and incidence degree ordering 

(IDO). We then apply sequential algorithm on the ordered vertices to obtain 

bidirectional p-coloring of Gb(A). 

From Figure 4.1, the degrees of row and column vertices can be enumerated 

as follows. 

deg(ui) = 3,deg(u2) = 2,deg(uz) = 2,deg{ui) = 2>,deg{uz) = 2 

deg{vi) = 2,deg(v2) = 3,deg(v3) = 2,deg(v4) = Z,deg(v5) = 2 

25 



C h a p t e r 4 C o l o r i n g H e u r i s t i c s 

(a) A (b) Gb(A) 

Figure 4.1: Sparse Matrix A and its Bipartite Graph Gb(A) 

We will illustrate the algorithms using the example matrix given in Figure 

4.1. 

4.2.1 Largest F i r s t O r d e r i n g 

In largest first ordering (LFO) we first sort the vertices in U and V of the bipar­

tite graph Gb(A) in nonincreasing order of their degrees such that deg(u\) > 

... > deg(um) and deg(v\) > ... > deg(vn). The two sets of sorted vertices are 

then merged into one ordering. 

Algorithm 3 depicts the sorting routine applied in Algorithm 4 to sort the 

row vertices. The same routine is applied to sort the column vertices also. In 

Algorithm 3, pmax and pmin represent the maximum and minimum number of 

nonzeros in any row or column of A, respectively. The array ndegr holds the 

degree of row vertices such that ndegr(i) is the degree of row i of A. 

In Algorithms 3 and 4, RowDeg represents the array containing the in­

dices of the row vertices in nonincreasing order of their degrees and ColDeg 

represents the array containing the indices of the column vertices in nonin­

creasing order of their degrees. The arrays RowDeg and ColDeg computed by 

Algorithm 3 for the matrix given in Figure 4.1(a) is as follows. 

26 



C h a p t e r 4 C o l o r i n g H e u r i s t i c s 

RowDeg ColDeg 

index 1 2 3 4 5 

U 1 4 2 3 5 

index 1 2 

CO 4 5 

V 2 4 1 3 5 

In Algorithm 3, while sorting the vertices of Gb(A), we take advantage of prior 

knowledge of matrix structure. 

Algori thm 3 Sorting Algorithm 

9 

10 

11 

procedure S o r t i n g ( R o w s ) 

icr = 0; 

for j «- pmax,Pmin do 

for i <— l , m do 

if ndegr(i) = = j then 

RowDeg(icr) = i; 

icr + +; 

end if 

end for 

end for 

end procedure 

The outer for loop at line 3 runs (pmax - Pmin) times and the inner for loop 

at line 4 runs m times, implying that the running time of the sorting algorithm 

is 0(jn{pmax ~ Pmin))' Since pmin 

> 0, this sorting runs in 0(mpmax) time. 

In Algorithm 4, arrays ListRow and ListCol contain the ordering infor­

mation of row and column vertices respectively and together they determine 

the combined ordering in which the vertices are processed by the sequential 

algorithm. ListCol(i) denotes that column vertex Vi will be processed by the 

sequential ordering algorithm after the vertices that are ordered before Vi in 

largest first ordering. This combined ordering is computed by the statements 

on lines 6-15. The counter inc is incremented by one at each iteration of the 

while loop. 
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Algori thm 4 Largest First Ordering 
1: procedure LFQ(Gb(A)) 

2: inc <— 1; 

3: icr <— 1, ice <— 1; 

4: Sort the vertices in U in nonincreasing order of their degrees and put 

the result in RowDeg; 

5: Sort the vertices in V in nonincreasing order of their degrees and put 

the result in ColDeg; 

6: while inc < m + n do > Ordering row and column vertices 

7: if Degree of vertex at RowDeg(icr) > Degree of vertex at 

ColDeg(icc) then 

8: ListRow(RowDeg(icr)) <— inc; 

9: icr + +; 

10: else 

11: ListCol(ColDeg(icc)) «— inc; 

12: ice + +; 

13: end if 

14: inc 4- +; 

15: end while 

16: end procedure 

The combined ordering computed by LFO for matrix in Figure 4.1(a) is 

shown below. 

ListRow ListCol 

u 1 2 CO
 

4 5 

Ordering 1 5 6 2 7 

V 1 2 CO
 

4 5 

Ordering 8 3 9 4 10 

In Algorithm 4, the running time for sorting of row vertices is 0 ( m p m a x ) 

and that of column vertices is 0{nKmax) • Statements on lines 6-15 orders the 

vertices in 0(m + n). Thus the total running time for the largest first ordering 
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algorithm is 0 ( m a x { m p m Q X , nKmax, (m+ri)}) which is 0(max{mpmax, nKmax}). 

Without loss of generality, let m — max{m,n} and / 9 m a x = max{pmax, Kmax}, 

then the run time complexity of LFO algorithm is 0(mpmax). 

Before we examine the smallest last ordering and incidence degree ordering, 

we will require additional graph terminology. Given a graph Gb = (U U V, E) 

and a nonempty subset U\ of U and Vi of V, the subgraph G^ \U\ U Vi] induced 

by U\ U V\ has the vertex set U\ U V\ and the edge set 

{{u, v} £ E : u e U\, and v € Vi}. 

4.2.2 Smal lest Last O r d e r i n g 

In smallest last ordering (SLO) the row or column vertex chosen at the kth 

stage has minimal degree in the graph induced by the unordered vertices i.e. 

fcth vertex Wk is determined after tUfc+i,Wk+2, •••,'wm+n-\,wm+n, where Wi is 

either a row vertex Uj or a column vertex vi, have been selected by choosing 

uik so that its degree in the subgraph induced by 

([/ U V) \ {Wk+i, Wk+2, Wm+n-l,Wm+n} 

is minimal. 

In Algorithm 5 , inc is the ordering counter which starts from m+n. Arrays 

ListRow and ListCol, as described for LFO, store the ordering information of 

row and column vertices respectively. Lines 3 and 4 find the minimum degree 

row vertex umindeg and column vertex vmindeg- Lines 7 and 1 4 decrease the 

degrees of the vertices adjacent to Ummdeg and vmindeg respectively. Lines 8 and 

1 5 order the minimum degree vertex and lines 1 1 and 1 7 recompute vmindeg 

and umindeg among the remaining unordered vertices. 
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Algori thm 5 Smallest Last Ordering 
1: procedure SLO(Gb(A)) 

2: inc <— m + n; 

3: Find umindeg <— minimum degree row vertex in U; 

4: Find vmindeg *— minimum degree column vertex in V; 

5: while inc > 0 do 

6: if deg{umindeg) < deg(iWdeg) then 

7: Find all column vertices adjacent to w m i n d e g and decrease their 

degree by 1; 

8: L i s t R o w ( w m m d e g ) < — inc\ 

9: inc ; 

10: Assign next minimum degree row vertex as umindeg\ 

11: Recompute vmindeg; 

12: end if 

13: if deg(vmi„deg) < deg(umindeg) then 

14: Find all row vertices adjacent to vmindeg and decrease their de­

gree by 1; 

15: L i s t C o l ( u T O i n d e g ) *- inc; 

16: inc ; 

17: Recompute Ummdeg\ 

18: Assign next minimum degree column vertex as vmindeg; 

19: end if 

20: end while 

21: end procedure 

shown below. 

The combined ordering computed by SLO for matrix in Figure 4.1(a) is 
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ListRow ListCol 

u i—
» 2 

CO 4 5 

Ordering 6 10 2 4 8 

V 1 2 CO
 

4 5 

Ordering 9 5 CO
 

1 7 

The running time of smallest last ordering can be calculated as follows. The 

running time of steps at line numbers 3 and 4 is 0(m) and 0(n) respectively. 

The while statement on line 5 executes maximum of ( m + n ) time in worst case. 

Inside the while loop, line 11 takes 0(n) time and line 17 takes 0(m) time while 

the remaining lines run for constant time. Thus the total running time of the 

while loop from statements in lines 5-20 is 0 (max{m,n}(m + n)). Therefore, 

the running time of smallest last ordering algorithm is 0 (max{m,n}(m + n)). 

Without loss of generality, let m — max{m,n} , then the run time complexity 

of SLO algorithm is 0 ( m 2 ) . 

4.2.3 Inc idence Degree O r d e r i n g 

In incidence degree ordering (IDO) a row or column vertex u>k is determined 

after W\,W2, Wk-2,Wk-i, where u>i is either a row vertex Uj or a column 

vertex vi, have been selected. The choice of Wk from among the set of unordered 

vertices is such that it is adjacent to maximum number of already ordered 

vertices {w\,u)2,Wk-2,Wk-i}- The incidence degree of Wk is the degree of 

u>k in this subgraph. 

In Algorithm 6, inc is the ordering counter which starts from 1. ListRow 

and ListCol, as described for LFO, store the row and column vertices already 

in the incidence degree and their ordering information. Lines 3, 4 find initial 

maximum degree row vertex UinCdeg and maximum degree column vertex v i n c d e g . 

Statements in lines 5-11 initialize U j n c d e g or Vincdeg as the first incidence degree 

vertex according to initial maximum degree amongst the two. The remaining 

incidence degree vertices and their orderings are computed in the statements 

of the while loop from lines 13-26. In line 14, degrees of all the column vertices 
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adjacent to already ordered row vertices are computed, and in line 15, degrees 

of all the row vertices adjacent to already ordered column vertices are com­

puted. Lines 16 and 17 calculate Umcdeg and Vincdeg, Le. the unordered row and 

column vertices that are adjacent to the maximum number of already ordered 

column and row vertices respectively. Statements in lines 18-24 find the new 

incidence degree row or column vertex and stores it in ListRow or ListCol with 

the ordering assigned to it. 

The combined ordering computed by IDO for matrix in Figure 4.1(a) is 

shown below. 

ListRow ListCol 

u 1 2 

CO 4 5 

Ordering 1 5 9 6 co
 

V 1 2 3 4 5 

Ordering 2 4 10 7 8 

The running time of line 3 and 4 is 0(m) and 0(n) respectively. The 

while statement on 13 is executed m + n times. Lines 14 and 17 are executed 

for maximum of n times each and lines 15 and 16 are executed for maximum 

of m times each, the remaining lines run for constant time. Thus the total 

running time of the while loop is 0 (max{m,n}(m + n)), where max{m,n} 

denotes maximum of m,n. Therefore, the running time of incidence degree 

ordering algorithm is 0(max{m, n}(m + n)). Without loss of generality, let 

m = max{m, n} and, then the run time complexity of IDO algorithm is 0(m2). 
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Algori thm 6 Incidence Degree Ordering 
1: procedure lDO(Gb(A)) 

2: inc <— 1; 

3: Find Uincdeg *— maximum degree row vertex in U; 

4: Find Vincdeg maximum degree column vertex in V; 

5: if deg(uincdeg) > deg(vincdeg) then 

6: ListRow (Uincdeg) *~ inc\ 

7: Remove U{ncdeg from set of unordered vertices; 

8: else 

9: ListCol(i>i„cdeg) +- inc; 

10: Remove vincdeg from set of unordered vertices; 

11: end if 

12: inc + +; 

13: while inc ^ (m + n) do 

14: Find all unordered column vertices vl\, v l 2 , v l n adjacent to ver­

tices in ListRow and compute their incidence degrees; 

15: Find all unordered row vertices u l i , u l 2 , u l m adjacent to vertices 

in ListCol and compute their incidence degrees; 

16: Find Uincdeg *— maximum degree row vertex from u l i , ...,ulm; 

17: Find Vincdeg *— maximum degree column vertex from v i i , v l n ; 

18: if Uincdeg ^ Vincdeg then 

19: Lis tRow(u i n c d e f l ) «- inc; 

20: Remove Uincdeg from set of unordered vertices; 

21: else 

22: L i s tCo l ( iw e f l ) <— inc; 

23: Remove Vincdeg from set of unordered vertices; 

24: end if 

25: inc + +; 

26: end while 

27: end procedure 
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In the following subsection we will describe the method to find bidirectional 

p-coloring using aforesaid ordering techniques. 

4.2.4 Sequent ia l A l g o r i t h m 

After the vertices have been ordered using one of the ordering algorithms, the 

sequential algorithm will access the vertices in the given order and will assign 

the smallest available color to the vertices. 

Algorithm 7, illustrates the sequential algorithm to assign colors to the 

vertices of Gb(A). Variables maxor and maxoc represent the highest order 

number, in the combined ordering assigned to a row and a column vertex 

respectively. In lines 5 and 6 we construct two arrays Ordr and Ordc of size 

m + n each to access the vertices corresponding to the combined ordering. To 

explain if the row and column vertices are ordered in the range 1 , 2 , m + n, 

then for each position I G {1,2, ...,m + n} there can be exactly one vertex, 

either a row or a column, which is assigned the position I. This is implemented 

as Ordr(i) > 0, implying that the vertex in position I is a row vertex and 

consequently Ordc(Z) is set to -1 indicating that there is no column vertex which 

is assigned position / in the combined ordering. Similarly, if Ordc(l) > 0 then 

Ordr(Z) = - 1 . Finally, during the running of the algorithm Ordr(Z) = 0 implies 

that the row vertex that was assigned order I has already been processed 

(colored). 

The arrays Ordr and Ordc computed by Algorithm 7, using LFO for matrix 

in Figure 4.1(a) is shown below. 

Ordr 

Ordering 1 2 

CO 4 5 6 7 8 9 10 

U 1 4 -1 -1 2 3 5 -1 -1 -1 
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Ordc 

Ordering 1 2 

CO 4 5 
CO 7 8 9 10 

V -1 -1 2 4 -1 -1 -1 1 3 5 

Let C be a group of columns. We say that C induces direct determination 

of the nonzero entries contained in those columns if for any j , k, I such that j , I 

are the indices of columns included in C, we have auj ^ 0 and ^ 0, then 

there exists a row group C from which the nonzero entries ay and au have 

been determined. 

(a) A (b) Cb(A) 

Figure 4.2: Example to Illustrate Sequential Algorithm 

In Algorithm 7, u m i n o r d and Vminord are the vertices with minimum ordering 

among the ungrouped row and column vertices respectively. The while loop 

from 7-23 assigns the colors to the vertices. In line 8, we calculate the total 

number of nonzeros the row vertex uminord can cover along with all other 

ungrouped row vertices which can be grouped with u m i n o r d , such that if the 

group C is formed, then it induces direct determination of the nonzero entries 

in the group. In line 9, we calculate the total number of nonzeros the column 

vertex vminord can cover along with all other ungrouped column vertices which 

can be grouped with vminord, such that if the group C is formed, then it induces 

direct determination of the nonzero entries in the group. In line 10 we check if 
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the number of nonzeros covered by vertex uminorci is more than the number of 

nonzeros covered by vertex vminord and if this is the case then a new row group 

is formed otherwise a new column group is formed. We use tagging scheme as 

described by Gustavson [21] to form groups. Initially all the row or column 

vertices which can be part of one group are tagged and then the edges incident 

from these vertices are deleted. The process of forming groups or assigning 

colors continues until all the edges are accounted. 

If we exit on line 20, and there still exist some row and column vertices 

which were not colored then on line 24 we assign the next available row color 

to all the remaining uncolored row vertices, similarly on line 25 we assign 

next available column color to all the remaining uncolored column vertices. 

The colors assigned on lines 24 and 25 are redundant colors, i.e. the nonzero 

entries in these color groups are already determined by other groups. 

Proposi t ion 4.1 The sequential algorithm (Algorithm 7) computes a bidirec­

tional coloring ofGb(A). 

Proof. To show that the sequential algorithm produces a bidirectional coloring 

of the graph Gb(A) we need to show that the vertices in every path of length 

3 uses atleast three different colors. Now consider an arbitrary path — Vj — 

Uk — vi as shown in Figure 4.2(b). Since the grouping of rows and columns 

as described in line 11 and 15 are such that the groups formed induce direct 

determination of the nonzeros and given the columns (or rows if it is a row 

group) in the first group are structurally orthogonal, we must have that either 

columns j and I are included in different column groups or the rows i and k are 

included in different row groups. Therefore, the total number of colors used 

on the vertices Ui,Vj,Uk, vi are atleast three. Hence, the proof. • 
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Algori thm 7 Sequential Algorithm 
1: procedure SEQUENTlAL(Gb(A)) 

2: lor *— 1; loc <— 1; 

3: Find maxor; 

4: Find maxoc; 

5: Construct Array Ordr and calculate ummord\ 

6: Construct Array Ordc and calculate Vminord', 

7: while lor < maxor && loc < maxoc do 

8: Calculate the number of nonzeros covered by uminord', 

9: Calculate the number of nonzeros covered by vminor<i; 

10: if Number of nonzeros covered by vertex uminord > Number of 

nonzeros covered by vertex uTOmord then 

11: Form a new row group; 

12: Delete edges in Gb(A) adjacent to the rows in this group; 

13: Set lor to the next minimum ordering number amongst the un­

grouped row vertices; 

14: else 

15: Form a new column group; 

16: Delete edges in Gb(A) adjacent to the columns in this group; 

17: Set loc to the next minimum ordering number amongst the un­

grouped column vertices; 

18: end if 

19: if Gb(A) contains no more edges then 

20: Exit from the while loop; 

21: end if 

22: Find next Uminord and Vminord, 

23: end while 

24: Assign next available row color to all the uncolored row vertices; 

25: Assign next available column color to all the uncolored column vertices; 

26: end procedure 
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The running time of Algorithm 7, can be discussed as follows. The running 

time of lines 5 is O(m) and lines 6 is 0(n). Since maxor or maxoc is equal 

to m + n thus the while statement at line 7 executes m + n times. Lines 11 

and 12 runs m times each and lines 15 and 16 runs n times each. Rest of the 

lines takes constant time. Thus the total running time of the while loop 7-23 

is 0(max{m, n}(m + n)), where max{m,n} denotes maximum of m ,n . There­

fore, the total running time of sequential algorithm is 0 (max{m,n}(m + n)). 

Without loss of generality, let m = max{m,n} , then the run time complexity 

of sequential algorithm is 0 ( m 2 ) . 

To check the validity of above algorithms, a validity check algorithm has 

been implemented that checks that groups formed follow the definition of bidi­

rectional p-coloring as stated in section 3.2.2. 

4 . 3 S u m m a r y 

In this chapter we described unidirectional and bidirectional p-coloring tech­

niques. We discussed existing heuristic algorithms for unidirectional and bidi­

rectional ^-coloring. We also described largest first ordering, smallest last 

ordering and, incidence degree ordering as adapted by us for bidirectional p-

coloring of A. In chapter 6, we will show the experimental results of the 

heuristics and will have the comparative study of various coloring heuristics. 

In the next chapter we will explain exact coloring method for bidirectional 

p-coloring. 
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In this chapter we will describe exact bidirectional p-coloring techniques. In 

section 5.1 we will review the current literature. In section 5.2 we will discuss 

our exact coloring formulation together with complexity of the ILP model and 

implementation details. Finally, in section 5.3 we will conclude this chapter. 

5 . 1 B a c k g r o u n d 

Exact coloring refers to coloring the graph such that the number of colors 

assigned to the vertices of the graph is minimum and no better solution can 

be found. Finding this optimal solution is NP-hard [16]. In the following 

subsection we will discuss a selection of relevant optimal coloring algorithms. 

5.1.1 D S A T U R 

DSATUR algorithm was developed by Brelaz [8] which is based on Randall-

Brown's exact graph coloring algorithm [37]. DSATUR divides the graph col­

oring instance into a series of subproblems. A subproblem in DSATUR is a 

partial coloration of the graph. At each step there is an upper bound (UB) 

on the number of colors required to color the graph. If the subproblem uses p 

colors such that p < UB, then a better coloring is found and UB is set to p. If 

the graph is not completely colored and the number of colors used is less than 
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UB, then new subproblems are created. An uncolored vertex Vi is chosen for 

branching and for each feasible color out of p colors a subproblem is created 

to assign that color to v*. Another subproblem is created to assign color p+ 1 

to Vi. 

The choice of branch node i is critical and could affect the performance 

of the algorithm. Brelaz suggested to choose the node adjacent to the largest 

number of differently colored nodes. Sewell [39] suggested a modification to 

DSATUR noting that if the first p nodes colored form a clique, then these 

nodes would never be recolored. Thus it is useful to find a maximal clique in 

the graph and color those nodes first. This approach is a large improvement 

when the clique value and the coloring number of the graph are close. 

Mehrotra and Trick [33] implemented the DSATUR algorithm by finding a 

large clique in the graph. The algorithm generates 10,000 clique subproblems 

and the rest of the nodes are dynamically ordered according to the number 

of adjacent colors and subproblems are created as in basic DSATUR. The 

subproblems are then solved in depth-first search manner to find the optimal 

coloring. 

5.1.2 B r a n c h and C u t A l g o r i t h m fo r G r a p h C o l o r i n g 

Branch-and-cut methods [34] are exact algorithms consisting of a combination 

of a cutting plane method with a branch-and-bound algorithm. These methods 

solve a sequence of linear programming relaxations of the integer programming 

problem. Cutting plane methods improve the relaxation of the problem to 

closely approximate the integer programming problem, and branch-and-bound 

algorithms proceed by a sophisticated divide and conquer approach to solve 

problems. 

Diaz and Zabala [15] proposed a branch-and-cut strategy to find optimal 

solution of general graph coloring problem. The problem is modelled with an 
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integer linear programming (ILP) formulation. 

5 . 2 E x a c t B i d i r e c t i o n a l C o l o r i n g 

In this section we present the optimal bidirectional determination of Jaco­

bian matrices using integer linear programming (ILP) method. The following 

subsection will discuss integer linear programming concept, followed by the 

presentation of the ILP model. Subsection thereafter will discuss the com­

plexities of the model and the final subsection will present the implementation 

details. 

5.2.1 In tege r L i nea r P r o g r a m m i n g 

A linear programming problem [31] is a mathematical program in which the 

objective function is linear in the unknowns and the constraints consists of 

linear equalities and linear inequalities. It can be expressed in the following 

standard form. 

minimize cTx 

subject to Ax = b 

x>0 

where x € is the vector of variables to be determined, A € *f t m x n is a matrix 

of known coefficients, and c G R " and b € 5Rm are vectors of known coefficients. 

The expression cTx is called the objective function, and the equations Ax = b 

are called the constraints. The variable x satisfying these constraints is said 

to be feasible for these constraints. 

Integer linear programming (ILP) models [40] are the ones whose variables 

are constrained to take integers or whole numbers (as opposed to fractional 

values). The zero-one (or 0-1 or binary) variables restrict their integer variables 

to the values zero and one. 
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Integer programming is a much harder problem than ordinary linear pro­

gramming problem. The problem of determining whether an ILP has an objec­

tive value less than a given target is a member of the class of "NP-complete" 

problems, all of which are very hard to solve. Since any NP-complete problem 

is reducible to any other, virtually any combinatorial problem of interest can 

be attacked in principle by solving some equivalent ILP. 

Most available general-purpose large-scale ILP codes use "branch-and-bound" 

to search for an optimal integer solution by solving a sequence of related LP 

"relaxations" that allow some fractional values. It requires more computer 

time and memory to solve a ILP problem than to solve the corresponding LP 

relaxation. The difficulty of any particular ILP problem is hard to predict. 

Some problems with fewer variables can be challenging while other problems 

with larger number of variables can be solved readily. The best explanations 

of why a particular ILP is difficult often rely on some insight into the system 

to be modelled and it is observed that the way the model is formulated is as 

important as the actual choice of a solver. 

5 . 2 . 2 I n t e g e r L i n e a r P r o g r a m m i n g M o d e l f o r B i d i r e c ­

t i o n a l p - c o l o r i n g 

We have attempted to find the optimal solution of bidirectional p-coloring for 

determining Jacobian matrices by developing an Integer Linear Programming 

(ILP) model. The detailed description of the model follows. 

Let A € R m x n be a sparse matrix with known sparsity pattern and Gb(A) = 

(U U V, E) the corresponding bipartite graph where U and V are the sets of 

vertices corresponding to the rows and columns of A respectively. We assume 

that the vertices in U are indexed 1,2, .. . ,m and the vertices in V are indexed 

m + l,m + 2, ...,m+n and the quantities pu and pv denote upper bound on the 

number of colors we allow for the row and column vertices respectively. Below 
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is the description of binary variables (0-1) as used in the ILP formulation of 

bi-directional p-coloring. 

• 0-1 variable uij denotes whether (uij = 1) or not (vjj = 0) color j , 1 < 

j < Pu has been assigned to some vertex u €.U. 

• 0-1 variable vjj denotes whether (vjj — 1) or not (uij = 0) color j , p y + 1 < 

j < P u + P v has been assigned to some vertex v € V. 

• 0-1 variable denotes whether (xij = 1) or not (xij = 0) vertex i, 

1 < i < m has been assigned color j , 1 < j < p u -

• 0-1 variable xitj denotes whether (xy = 1) or not (xitj = 0) vertex i, 

m + l < i < m + n has been assigned color j,pu + 1 < j < pu + py. 

ILP model for the computation of bidirectional chromatic number of Gb(A) 

is as follows: 
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PU+PV 

minimize ^ vjj (5.1) 

Pu 

^ 2 x i , j = 1) for i G (7 (5.2) 

PU+PV 

Hj = 1) for i G V (5.3) 
j=pv+l 

xp,i + + xr,j + ^ j ' ^ (^i + wj' + ! ) * (5.4) 

*for each path p — q — r — s of length 3 and for each color pair 

{j, / } » 1 < J < Pu,Pu + 1 < j ' < Pu + Pv-

Wj < J^Xij for 
i€U 

Wj < J2Xi,j for -,Pu+Pv 

Xij < mvjj for j = h-,Pu 
i€U 

J2Xi,j < n w j for j = p u + l,.. ;PU +PV 
iev 

Wj+l < Wj for j = 

Wj+l < Wj for j =pu + l,.. ;PU +PV 

Wj G {0,1}, for l < j < P u + P v 

x i t j G {0,1}, for i € U U V , l < j < p u + . 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

Figure 5.1: ILP Formulation for Bidirectional ^-coloring 

Expression (5.1) represents the objective function to be minimized. Con­

straints (5.2) and (5.3) ensure that each vertex in the respective set of biparti-

tion receives exactly one color. Constraint (5.4) enforce the coloring condition 
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for bidirectional p-coloring. Constraints (5.5) and (5.6) state that color uij can 

only be greater than 0, if it has been assigned to a vertex. Constraints (5.7) 

and (5.8) ensure that the number of vertices assigned color j cannot be greater 

than the total number of vertices in the set U and V respectively. Constraint 

(5.9) and (5.10) ensure minimal color assignment to the vertices i.e. they 

ensure that the colors are assigned in ascending order of their ordering. 

Proposi t ion 5.1 Any feasible solution of the bidirectional ILP induces a col­

oring of Gb(A) such that each vertex in Gb(A) receives exactly one color. 

Proof. We know that 2 y are the binary variables and thus can have value 

either 1 or 0. The sum Yl%tPv
 xhi for i G £/ U V can be exactly 1 only if one 

of the variables xitj has value 1. Constraints (5.2) and (5.3) ensures that in 

any feasible solution of above ILP model only one of x , j , 1 < j < pu + Pv 

assumes the value of 1 for each i G U U V. Consequently, vertex i receiving 

only 1 color. Thus by analogous reasoning it follows that each vertex in U U V 

is assigned exactly one color via constraints (5.2) and (5.3). • 

A path P is called bi-colored if the vertices forming P are colored with only 

two colors. 

Proposi t ion 5.2 The bidirectional ILP has a feasible solution if and only if 

it induces a coloring <f> of Gb in which no path of length 3 in Gb is bi-colored. 

Proof. We know that the vertices in U and V are assigned two disjoint sets of 

colors and any path of length 3 will have at least 2 colors. We will base the 

proof on the fact that be assigned values either 1 or 0 in constraint 

(5.4) of the above ILP model. 

Constraint (5.4) with path p — q — r — soi length 3 where p, q, r, s G U U V 

and the color pair {j,j'}, j G {l,...,pu} and f G {pu + l,-,Pu + Pv} is 

associated with the feasible solution of bidirectional ILP. The following cases 
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will illustrate the possible ways to assign coloring to Xij using constraint (5.4) 

i xPj = xrj = 1 and xqji = xSj> = 1 such that <p(p) = <j>(r) = j and 

4>(q) = <f>(s) = f. Then xPij + xqj> + xrj + xs>y = 1 + 1 + 1 + 1 = 4 

while Wj + Wji = 1 + 1 making the linear program infeasible and thus 

preventing bi-coloring of path P. 

ii xPij = xr,j — 0 and xg,ji — xaj> — 1 such that <j>(p) = </>(r) — I ^ j and 

4>(q) = 4>(s) = f. Then xPtj + xQiji + xr<j + xs,j> = 0 + 1 + 0 + 1 = 2 while 

and hence satisfying the constraint (5.4) for {j, j'} while bi-coloring the 

path P. But then the color pair {I, j'} the inequality reduces to case (i) 

and hence making the solution infeasible as a result preventing bi-coloring 

of path P. Similarly, the assignment xq<j> = xs>j> = 0 and xPtj = xrj = 1 

such that <f>(p) = (f>(r) = j and <f>(q) = (f>(s) = I' ^ j corresponds to an 

infeasible solution too and thus disallowing bi-coloring of P. 

iii xPtj — xr>j = 0 and = xr,j> — 0 such that (f>(p) = </>(r) = I ^ j ' and 

<f)(q) = (j>(s) = I' 7^ / . However, in this assignment of variables for the 

pair {I, I'} results in the inequality which can be reduced to case (i), thus 

making the solution infeasible. 

iv xPtj = I, xrj = 0 and xqji = xa,j> = 1 such that <j)(p) = j,<p(r) — I ^ j 

and <f)(q) = (p(s) = f. Then xPtj + xqji + xr<j + xs>ji = 1 + 1 + 0 + 1 = 3 

and Wj + Wji = 1 + 1 and hence satisfying constraint (5.4) for {j , j ' } while 

path P is colored using 3 different colors 

v xPtj = 0, xrj = 0 and xqj> = xSji = 1 such that 4>(p) = k ^ j , <j>(r) = I ^ 

j and 4>(q) = 4>(s) — f. Then xPj + xqj< + xrj + xSj> = 0 + 1 + 0 + 1 = 2 

Xpj + Xqji + Xrj + Xsji < (uij + Wji + 1) 
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and 

Wj +Wj> = 
1 + 1 = 2 if xitj = 1 for some i €UUV 

0 + 1 = 1 if x^j = 0 for all i G U U V 

and hence satisfying constraint (5.4) while path P is colored using 3 

different colors k, l,f. This case is symmetric to case(ii). 

vi xPj — Q,xrj = 0 and xqj> = l,xSj> = 0 such that <f>(p) — k ^ j,<f>(r) = 

I ^ j and <j)(q) = j ' , (j>(s) = I' ^ f. Then xPj + xqj> + xrj + xaj> = 

0 + 1 + 0 + 0 = 2 and 

Wj + Wji — 
1 + 1 = 2 if xu = 1 for some % G U U V 

0 + 1 = 1 if x^j = 0 for all i G U U V 

and hence satisfying constraint (5.4) while path P is colored using 4 

different colors k,l,j',l'. This case is symmetric to case(ii). 

vii xPj = 0,xrj = 0 and xqji = 0,xSj> = 0 such that 4>(p) = k ^ j,<t>{r) = 

I ^ j and <j)(q) = k ^ f, <p(s) = I' ^ f. Then xPj + x ? ) y + xrj + x s >j/ = 

0 + 0 + 0 + 0 = 0 and 

1 + 1 = 2 if x^j = 1 for some i G t7 U V 

and a?j/j/ = 1 for some i' £ UUV 

0 + 1 = 1 if x^j = 0 for all i G U U V 

and Xi'ji = 1 for some i' G 17 U V 
Wj + U>,'' = { 

1 + 0 = 1 if Xij = 1 for some i G U U V 

and Xj/j' = 0 for all i' G t7 U V 

0 + 0 = 0 if Xij = 0 for a l i i G (7 U V 

and Xj ' j ' = 0 for a lH' G 17 U V 

and hence satisfying constraint (5.4) while path P is colored using 4 

different colors k,l,k',l'. 

The above cases represents all the distinct assignments to variables x^j 
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associated with each path of length 3. In each case the infeasible solution cor­

responds to an invalid bidirectional p-coloring while a feasible solution corre­

sponds to a valid bidirectional p-coloring. By proposition 1, a feasible solution 

induces a coloring of Gb where each vertex receives exactly one color. Hence 

this proves the proposition. • 

We call color j positive if Wj — 1. 

Proposi t ion 5.3 A vertex is assigned a color if and only if that color is pos­

itive 

Proof. Suppose color j with 1 < j < pu is positive. Then uij = 1. For 

inequality (5.5) to hold we must have some vertex Vi,i £ U such that xy = 1. 

Since the color j can be used by at most \U\ — m vertices, constraint (5.7) also 

holds. With a similar reasoning for constraint (5.6) and (5.8) we can show the 

result for i £ V with pu < j <Pu +Pv-

Conversely, suppose color j , 1 < j < pu, is not positive. Then Wj = 0. For 

inequality (5.7) to hold we must have that for all 1 < i < m, xy = 0. With 

a similar reasoning for constraint (5.8) we can show the result for i £ V with 

Pu < j < Pu + Pv- Hence the proof. • 

Denote by zm\n the value of the objective function in the optimum solution 

< 7 m i n of the ILP of Figure 5.1. 

Since a feasible solution to the ILP of Figure 5.1 induces a bidirectional 

p-coloring of Gb{A) the following result is the direct consequence of the propo­

sitions 5.1, 5.2 and 5.3. 

Theorem 5.4 Given A £ K m x n , crmin is the optimum solution of the ILP 

corresponding to Gb(A) if and only if crmin induces a bidirectional p-coloring of 

Gb(A) such that zmin = x(Gb{A)). 
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5.2.3 Comp lex i t i e s 

In this section we will derive the computational complexity associated with 

the optimal bidirectional coloring. Following are the attributes related to our 

ILP model. 

• Maximum number of variables for row color is pu and for column color 

is pv- Each row vertex can be assigned maximum of pu colors. Thus 

for m rows maximum number of variables will be m x py. Similarly, 

each column vertex can be assigned maximum of pv colors. Thus for n 

columns maximum number of variables will be n x pv. Total number of 

variables in the ILP model are: 

(n + l)pv + (m + l)pu (5.13) 

• Number of 3-paths: 

num3paths — E ( ^ * — 1) 
i = l 

E to - 1 ) (5.14) 

pi represents the number of nonzeros in row i and Kj denotes the number 

of nonzeros in column j . Path of length 3 in a bipartite is denoted by 

"num3paths" and is of the order 0 (nnz 2 ) , where nnz are the number of 

nonzeros in the matrix. 

• (5.2) have m constraints, (5.3) have n constraints, (5.4) have (num3paths* 

Pu * Pv) constraints, (5.5) and (5.7) have pn constraints each and (5.6) 

and (5.8) have pv constraints each. (5.9) have pu — 1 constraints and 

(5.10) have pv — 1 constraint. Thus the total number of constraints are: 

(num3paths *pu *Pv) + (m + n) + 2(pv +pv) + (pu +Pv - 2) (5.15) 

While solving a coloring problem, there are two kinds of symmetries [6, 36] 

that can be present in a solution. In the ILP model, the colors can be arbitrarily 
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permuted (instance-independent symmetries), and some graphs may remain 

unchanged under some permutations (instance-dependent symmetries). These 

symmetries affect the time and space complexities of the ILP model. One 

such kind of instance-independent symmetry occurring in our ILP model is 

discussed below. 

Definition 5.5 Null Color Symmetry [36]. Consider a p-coloring problem 

with colors l...p for a graph. Assuming that G can be optimally colored with 

p — 1 colors, consider a solution where color i is not used: 

where n, denotes the number of vertices receiving color i. This assignment is 

equivalent to another assignment, 

where i ^ j and n» = n j . The color i for which = 0 is called null color. For 

example, the assignment (1,0,2,3) is equivalent to (1,3,2,0), (0,1,2,3), (1,2,0,3). 

This is due to the existence of null colors, which create symmetries in an 

instance of p-coloring because any color can be swapped with a null color. 

Constraints (5.9) and (5.10) deals with removing the null-color symmetries 

occurring in our ILP formulation. 

Proposi t ion 5.6 The ILP in Figure 5.1 does not allow null colors. 

Proof. In a minimum coloring assignment, of the row vertices by constraint 

(5.9), color j can be positive only if color j —1 is positive and thus the colors not 

used in a solution automatically appear at the end of the coloring assignment 

and hence eliminating null colors. Similar argument can be applied to using 

constraint (5.10) for column vertices. Hence the proof. • 

(ni . . . ,n,_i, (rii = ) 0 , n i + i , . . . ,n p ) , 

50 



C h a p t e r 5 O p t i m a l B i d i r e c t i o n a l C o l o r i n g 

5.2.4 I m p l e m e n t a t i o n 

In this section we will discuss the implementation details of the model described 

above. 

Given a sparse matrix in Harwell-Boeing or Matrix Market format [2], we 

designed a program in C + + that generated the corresponding ILP instance for 

the bi-directional coloring of the associated graph. The generated ILP model 

was compatible with the CPLEX MIP solver [4]. A sample of the ILP model 

for a 2 x 2 arrowhead matrix is given in Appendix B. 

5 . 3 S u m m a r y 

In this chapter we described the optimal bidirectional ^-coloring. We presented 

an ILP model for bidirectional p-coloring and discussed the complexities in­

volved. We also looked into the implementation details of this model. We 

will present the experimental results for this implementation as well as for the 

heuristic bidirectional coloring in chapter 6. 
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In this chapter we will present computational results for coloring algorithms 

proposed in this thesis. For the purpose of comparison we also include unidi­

rectional heuristic and exact coloring results. A more elaborate presentation 

of computational results is given in Appendix A. In section 6.1 we will pro­

vide the relevant features of the test problems. In section 6.2 we will give the 

heuristic and exact unidirectional coloring test results, followed by section 6.3 

where we will give test results of various bidirectional heuristic techniques. In 

section 6.4 we will compare experimental results of heuristic and exact bidi­

rectional coloring, followed by section 6.5 where we will compare results of 

unidirectional and bidirectional coloring. In section 6.6 we will summarize the 

coloring techniques for the determination of Jacobian matrices and finally in 

section 6.7 we will conclude the chapter. 

6 . 1 I n t r o d u c t i o n 

The details of the experimentation environment are as follows. 

Machine: SUNW,Sun-Blade-100;sparc;sun4u 

Operating system: SunOS Release 5.9 Generic.l 12233-12 

Desktop: CDE 1.5.5, x l l Version 6.6.1 
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Physical memory (RAM): 256 Megabytes 

Virtual memory (Swap): 681 Megabytes 

For experimenting with our heuristic and exact techniques, matrices from 

Harwell-Boeing test matrices [1, 2, 3], and netlib library [5] were taken. Table 

6.1 illustrates the properties of the matrices. 

Table 6.1: Matrix Statistics 

Matr ix n m nnz D N S M pmax Pmin "max 

a b b 3 1 3 176 313 1557 2 .83 6 1 26 2 

adl i t t l e 138 56 4 2 4 5.49 27 1 11 1 

agg 615 488 2862 0 .954 19 2 4 3 1 

agg2 758 516 4 7 4 0 1.21 49 2 43 1 

agg3 758 516 4756 1.22 49 2 43 1 

a r c l 3 0 130 130 1282 7 .59 124 1 124 1 

a sh219 85 219 438 2.35 2 2 9 2 

ash292 292 292 2208 2 .59 14 4 14 4 

ash331 104 331 662 1.92 2 2 12 3 

a sh608 188 608 1216 1.06 2 2 12 2 

a sh958 292 958 1916 0 .685 2 2 13 3 

b lend 114 74 522 6.19 29 2 16 1 

bore3d 334 233 1448 1.86 73 1 28 1 

bpO 822 822 3276 0.485 266 1 20 1 

bplOOO 822 822 4661 0.69 308 1 21 1 

b p l 2 0 0 822 822 4726 0 .699 311 1 21 1 

b p 1 4 0 0 822 822 4790 0 .709 311 1 21 1 

b p l 6 0 0 822 822 4841 0 .716 304 1 21 1 

b p 2 0 0 822 822 3802 0 .563 283 1 21 1 

b p 4 0 0 822 822 4028 0 .596 295 1 21 1 

b p 6 0 0 822 822 4 1 7 2 0 .617 302 1 21 1 

b p 8 0 0 822 822 4 5 3 4 0 .671 304 1 21 1 

c a n l 0 5 4 1054 1054 12196 1.1 35 6 35 6 

c a n l 0 7 2 1072 1072 12444 1.08 35 6 35 6 

c an256 256 256 2916 4 .45 83 4 83 4 

c a n 2 6 8 268 268 3082 4 .29 37 4 3 7 4 

c a n 2 9 2 292 292 2540 2.98 35 4 35 4 

c a n 6 3 4 634 634 7228 1.8 28 2 28 2 

c a n 7 1 5 715 715 6665 1.3 105 2 105 2 

curt i s54 54 54 291 9.98 12 3 16 3 
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Matrix n m nnz DNSM Pmax Pmin Kmax ^min 

dwtl007 1007 1007 8575 0.846 10 3 10 3 

dwtl242 1242 1242 10426 0.676 12 2 12 2 

dwt2680 2680 2680 25026 0.348 19 4 19 4 

dwt419 419 419 3563 2.03 13 6 13 6 

dwt59 59 59 267 7.67 6 2 6 2 

erisll76 1176 1176 18552 1.34 99 2 99 2 

fs541-l 541 541 4285 1.46 11 1 541 5 

fs541-2 541 541 4285 1.46 11 1 541 5 

gent113 113 113 655 5.13 20 1 27 1 

ibm32 32 32 126 12.3 8 2 7 2 

impcol-a 207 207 572 1.33 8 1 5 1 

impcol-b 59 59 312 8.96 7 2 12 1 

impcol-c 137 137 411 2.19 8 1 8 1 

impool-d 425 425 1339 0.741 10 1 10 1 

impcol-e 225 225 1308 2.58 12 1 23 1 

israel 316 174 2443 4.44 119 2 136 1 

lundA 147 147 2449 11.3 21 5 21 

lundB 147 147 2441 11.3 21 5 21 

scagr25 671 471 1725 0.546 10 1 9 1 

scagr7 185 129 465 1.95 10 1 9 1 

shlO 663 663 1687 0.384 422 1 4 1 

shl200 663 663 1726 0.393 440 1 4 1 

shl400 663 663 1712 0.389 426 1 4 1 

stair 614 356 4003 1.83 36 34 1 

standata 1274 359 3230 0.706 745 10 1 

strO 363 363 2454 1.86 34 1 34 1 

str200 363 363 3068 2.33 30 1 26 1 

str400 363 363 3157 2.4 33 1 34 1 

str600 363 363 3279 2.49 33 1 34 1 

tuff 628 333 4561 2.18 113 25 1 

vtp-base 346 198 1051 1.53 38 1 12 1 

watt2 1856 1856 11550 0.335 128 1 65 

west0067 67 67 294 6.55 6 1 10 

west0381 381 381 2157 1.49 25 1 50 1 

west0497 497 497 1727 0.699 28 1 55 1 

will 199 199 199 701 1.77 6 1 9 2 

wi!157 57 57 281 8.65 11 2 11 2 

n - Number of columns in A 

m - Number of rows in A 

nnz - Number of nonzeros in A 
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DNSM - Matrix Density 

Pmax - Maximum number of nonzeros in any row 

Pmin - Minimum number of nonzeros in any row 

«max - Maximum number of nonzeros in any column 

«min - Minimum number of nonzeros in any column 

6 . 2 U n i d i r e c t i o n a l H e u r i s t i c a n d E x a c t C o l o r ­

i n g 

In this section we will be presenting the computational test results of unidirec­

tional heuristic and exact coloring. In unidirectional coloring a lower bound on 

the number of colors is the size of the largest clique in the graph as computed 

by DSM. The DSATUR [33] algorithm was implemented in C while DSM [9] 

was implemented in Fortran, and the running time of DSM was calculated 

using Perl code. 

In table 6.2, column 2 depicts the lower bound found by DSM. Columns 3 

and 4 give the number of colors and time taken by DSM and columns 5 and 6 

illustrate the number of colors and time taken by DSATUR algorithm. 

We observe that DSATUR algorithm is able to solve almost all the problems 

except fs541-l, fs541-2, dwtl007 and dwt268Q. Leaving the above mentioned 

test problems, we find that the total of lower bound for all the matrices is 

6429, the total number of colors for all matrices by DSM is 6444 and the total 

number of colors for all matrices by DSATUR algorithm is 6436. Thus we see 

that DSM is almost optimal. 

The running time for both the algorithms is given in seconds. DSM takes 13 

seconds to execute all the matrices while DSATUR takes 66.4 seconds. Since 

the algorithms were implemented in different languages. We cannot compare 

the running times of DSM and DSATUR accurately. However, roughly speak­

ing we can say that the running times for the two algorithms are quite close 

to each other. 

55 



C h a p t e r 6 E x p e r i m e n t a l R e s u l t s 

Table 6.2: DSM vs DSATUR 

Matrix Lower Bound DSM DSM Time DSATUR DSATUR Time 

abb313 10 10 0 10 0.1 

adlittle 27 27 0 27 0.0 

agg 19 19 0 19 0.6 

agg2 49 49 0 49 0.8 

agg3 49 49 0 49 0.8 

arcl30 124 124 0 124 0.0 

ash219 3 4 0 4 0.0 

ash292 14 14 0 14 0.2 

ash331 6 6 0 6 0.0 

ash608 5 6 0 6 0.1 

ash958 6 6 0 6 0.1 

blend 29 29 1 29 0.0 

bore3d 73 73 0 73 0.1 

bpO 266 266 1 266 0.7 

bplOOO 308 308 1 308 0.8 

bpl200 311 311 0 311 0.8 

bpl400 311 311 0 311 0.8 

bpl600 304 304 1 304 0.8 

bp200 283 283 1 283 0.8 

bp400 295 295 0 295 0.7 

bp600 302 302 0 302 0.8 

bp800 304 304 1 304 0.8 

canl054 35 35 0 35 4.7 

canl072 35 35 0 35 4.9 

can256 83 83 0 83 0.1 

can268 37 37 0 37 0.4 

can292 35 35 0 35 0.1 

can634 28 28 0 28 1.0 

can715 105 105 0 105 0.6 

curtis54 12 12 0 12 0.0 

dwtl007 10 11 0 - -
dwtl242 12 15 0 - -
dwt2680 19 19 1 19 25.0 

dwt419 14 15 0 15 6.0 

dwt59 6 6 0 6 0.0 

erisll76 99 99 1 99 1.8 

fs541-l 11 13 0 - -
fs541-2 11 13 0 - -
gent113 20 20 0 20 0.0 

ibm32 8 8 0 8 0.0 
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Matrix Lower Bound DSM DSM Time DSATUR DSATUR Time 

impcol-a 8 8 0 8 0.1 

impcol-b 10 11 0 10 0.0 

impcol-c 8 8 0 8 0.0 

impcol-d 10 11 0 10 0.3 

impcol-e 20 21 0 21 0.1 

israel 119 119 0 119 0.1 

lundA 21 22 0 21 0.1 

lundB 21 24 0 21 0.1 

scagr25 10 10 0 10 0.8 

scagr7 10 10 0 10 0.1 

shlO 422 422 0 422 0.5 

shl200 440 440 0 440 0.5 

shl400 426 426 0 426 0.5 

stair 36 36 1 36 0.5 

standata 745 745 1 745 1.9 

strO 34 34 0 34 0.1 

str200 30 30 0 30 0.1 

str400 33 33 0 33 0.1 

str600 33 33 0 33 0.2 

tuff 113 114 0 114 1.0 

vtp-base 38 38 0 38 0.1 

watt2 128 128 1 128 4.2 

west0067 7 9 1 8 0.0 

west0381 27 29 1 28 0.2 

west0497 28 28 0 28 0.3 

willl99 7 7 0 7 0.1 

will57 11 11 0 11 0.0 

Total 6429 6444 13 6436 66.4 

- Represents that no result was found in 10 hours 

6 . 3 B i d i r e c t i o n a l H e u r i s t i c s 

In this section we present experimental test results of the heuristic techniques 

we implemented and compare these results with the existing bidirectional 

heuristics. Our heuristic algorithms were implemented in C + + on Sun So­

laris Unix platform. 
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Table 6.3 compares our bidirectional heuristics results with complete direct 

cover [23] results. For each matrix we have taken the minimum of the number 

of colors obtained from LFO, SLO and IDO and this result is reported in the 

column named minLSI. Direct cover results are listed under the column named 

CDC. We find that for most of the matrices the number of colors are almost 

comparable. The total number of colors for all matrices in minLSI are 571(33) 

and total number of colors for all matrices in Direct Cover are 580(33). Also 

we notice that LFO results are more in agreement with that of complete direct 

cover as is expected since complete direct cover ordering is also based on the 

number of nonzeros (degrees) in rows and columns. The number inside the 

parentheses are the extra or redundant colors which were given to the vertices 

already covered by other colors. There could be at most two extra redundant 

colors, one for row and one for column vertices as described in section 4.2.4. 

Table 6.3: Comparison of minLSI with Direct Cover Algorithm 

Matrix LFO SLO IDO minLSI CDC 

abb313 13(1) 10(1) 10(1) 10(1) 13(1) 

arcl30 26(1) 131(1) 43(1) 26(1) 26(1) 

ash219 5(1) 5(1) 5(1) 5(1) 5(1) 

ash292 9(1) 8(1) 8(1) 8(1) 10(1) 

ash331 6(1) 6(1) 6(1) 6(1) 6(1) 

ash608 7(1) 6(1) 6(1) 6(1) 7(1) 

ash958 7(1) 6(1) 6(1) 6(1) 6(1) 

bpO 16(1) 20(1) 20(1) 16(1) 16(1) 

bplOOO 23(1) 25(1) 21(1) 21(1) 22(1) 

bpl200 23(1) 21(1) 21(1) 21(1) 22(1) 

bpl400 28(1) 21(1) 22(1) 21(1) 22(1) 

bpl600 28(1) 21(1) 21(1) 21(1) 21(1) 

bp200 17(1) 20(1) 21(1) 17(1) 18(1) 

bp400 20(1) 21(1) 21(1) 20(1) 19(1) 

bp600 22(1) 21(1) 21(1) 21(1) 18(1) 

bp800 23(1) 22(1) 21(1) 21(1) 21(1) 

curtis54 16(1) 16(1) 12(1) 12(1) 10(1) 

erisll76 80(1) 81(1) 81(1) 80(1) 80(1) 

fs541-l 16(1) 14(1) 15(1) 14(1) 15(1) 
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Matrix LFO SLO IDO minLSI CDC 

6541-2 16(1) 14(1) 15(1) 14(1) 15(1) 

gent l l3 19(1) 27(1) 24(1) 19(1) 18(1) 

ibm32 8(1) 9(1) 8(1) 8(1) 8(1) 

lundA 13(1) 13(1) 13(1) 13(1) 14(1) 

lundB 15(1) 12(1) 13(1) 12(1) 14(1) 

shlO 4(1) 4(1) 4(1) 4(1) 4(1) 

shl200 4(1) 4(1) 4(1) 4(1) 4(1) 

shl400 4(1) 4(1) 4(1) 4(1) 4(1) 

strO 26(1) 26(1) 27(1) 26(1) 24(1) 

str200 33(1) 30(1) 32(1) 30(1) 31(1) 

str400 36(1) 33(1) 34(1) 33(1) 36(1) 

str600 38(1) 33(1) 36(1) 33(1) 35(1) 

willl99 9(1) 8(1) 8(1) 8(1) 7(1) 

will57 11(1) 11(1) 11(1) 11(1) 9(1) 

Total 571(33) 580(33) 

In Table 6.4 we compare our bidirectional heuristics results with bicoloring 

algorithm [12]. Again for each matrix we have taken the minimum of the 

number of colors obtained from LFO, SLO and IDO and this result is reported 

in column named minLSI. The results of bicoloring are reported in the column 

named Bi-col. For nearly all the considered matrices the results of minLSI 

and bicoloring are comparable except for israel, watt2 and west0497 where the 

results of minLSI are far better than that of bicoloring. The total number of 

colors for all matrices from minLSI is 595(29) and the total number of groups 

for bicoloring is 602. 

Table 6.4: Comparison of minLSI with Bicoloring Algorithm 

Matrix LFO SLO IDO minLSI Bi-col 

adlittle 11(1) 12(1) 12(1) 11(1) 11 

agg 22(1) 20(1) 21(1) 20(1) 19 

agg2 33(1) 31(1) 50(1) 31(1) 26 

agg3 34(1) 29(1) 36(1) 29(1) 27 

arcl30 26(1) 131(1) 43(1) 26(1) 25 

blend 20(1) 17(1) 22(1) 17(1) 16 
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Matrix LFO SLO IDO minLSI Bi-col 

bore3d 25(1) 28(1) 28(1) 25(1) 28 

canl054 30(1) 38(1) 38(1) 30(1) 31 

canl072 31(1) 36(1) 37(1) 31(1) 32 

can256 29(1) 30(1) 56(1) 29(1) 32 

can268 30(1) 40(1) 36(1) 30(1) 18 

can292 19(1) 23(1) 37(1) 19(1) 17 

can634 29(1) 29(1) 29(1) 29(1) 28 

can715 21(1) 34(1) 27(1) 21(1) 22 

gent l l3 19(1) 27(1) 24(1) 19(1) 19 

impcol-c 6(1) 10(1) 9(1) 6(1) 6 

impcol-d 6(1) 12(1) 12(1) 6(1) 6 

impcol-e 22(1) 23(1) 23(1) 22(1) 21 

israel 50(1) 55(1) 54(1) 50(1) 61 

scagr25 8(1) 9(1) 9(1) 8(1) 8 

scagr7 8(1) 9(1) 9(1) 8(1) 8 

stair 38(1) 48(1) 36(1) 36(1) 36 

standata 9(1) 10(1) 10(1) 9(1) 9 

tuff 20(1) 26(2) 25(2) 20(1) 21 

vtp-base 12(1) 16(1) 17(1) 12(1) 12 

watt2 13(1) 65(1) 14(1) 13(1) 20 

west0067 11(1) 11(1) 10(1) 10(1) 9 

west0381 12(1) 12(1) 14(1) 12(1) 12 

west0497 18(1) 16(1) 29(1) 16(1) 22 

Total 595(29) 602 

6 . 4 H e u r i s t i c a n d E x a c t B i d i r e c t i o n a l 

ILP instances were generated using Perl and C + + on Sun Solaris Unix plat­

form. The generated ILP model was compatible with CPLEX MIP solver 

[4, 32] which was run under Windows XP Home Edition with AMD Athlon 

processor with 1GB RAM. Each problem was run for a maximum of 10 hours. 

For small matrices the coloring results obtained are generally better than 

the heuristic coloring results. The current formulation of our ILP avoids null 

colors via a set of inequalities. By implementing null color symmetry breaking 

in our ILP model we have reduced the running time by approximately 3 folds. 
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Table 6.5 shows the results of minLSI and the ILP formulation. Due to time 

and memory constraints, we were able to get the results only for six matrices. 

We find that for 3 out of 6 matrices the number of colors found by exact 

ILP are fewer than the bidirectional heuristics. Also we see that the results 

of ash331, ash608 and impcol-a are same for both heuristic and bidirectional 

coloring and thereby optimal. 

Table 6.5: Comparison of Heuristic and Exact Bidirectional Coloring 

Matrix minLSI exact ILP Matrix 
RG CG TG RG CG TG 

ibm32 1(1) 7(0) 8(1) 1(1) 6(0) 7(1) 
ash219 0(1) 5(0) 5(1) 0(1) 4(0) 4(1) 
ash331 0(1) 6(0) 6(1) 0(1) 6(0) 6(1) 
ash608 0(1) 6(0) 6(1) 0(1) 6(0) 6(1) 

impcol-a 5(1) 1(1) 6(2) 6(0) 0(1) 6(1) 
impcol-c 1(1) 5(0) 6(1) 1(1) 3(0) 4(1) 

Total 37(7) 33(6) 

RG - Total number of row groups 

CG - Total number of column groups 

TG - RG + CG 

6 . 5 U n i d i r e c t i o n a l a n d B i d i r e c t i o n a l 

In this section we compare the results of unidirectional and bidirectional heuris­

tics. In Table 6.6 we see that for most of the matrices bidirectional techniques 

are far superior to unidirectional techniques with regard to the number of col­

ors to completely determine the Jacobian matrices. Over 67 test problems, 

the total number of colors required by DSM and minLSI is 6496 and 1254(68) 

respectively. This is approximately a 5 fold reduction in the number of colors. 

The total running time of all matrices for unidirectional matrices is 13 

seconds while the total running time of all matrices for bidirectional heuristic 

is 19017 seconds. 
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Matrix DSM DSM Time minLSI minLSI Time 

abb313 10 0 10(1) 7 

adlittle 27 0 11(1) 1 

agg 19 0 20(1) 88 

agg2 49 0 31(1) 137 

agg3 49 0 29(1) 139 

arcl30 124 0 26(1) 2 

ash219 4 0 5(1) 1 

ash292 14 0 14(1) 13 

ash331 6 0 6(1) 4 

ash608 6 0 6(1) 25 

ash958 6 0 6(1) 95 

blend 29 1 17(1) 1 

bore3d 73 0 25(1) 14 

bpO 266 1 16(1) 309 

bplOOO 308 1 21(1) 283 

bpl200 311 0 21(1) 282 

bpl400 311 0 21(1) 286 

bpl600 304 1 21(1) 288 

bp200 283 1 17(1) 287 

bp400 295 0 20(1) 286 

bp600 302 0 21(1) 288 

bp800 304 1 21(1) 282 

canl054 35 0 30(1) 487 

canl072 35 0 31(1) 512 

can256 83 0 29(1) 8 

can268 37 0 30(1) 10 

can292 35 0 19(1) 12 

can634 28 0 29(1) 114 

can715 105 0 21(1) 146 

curtis54 12 0 12(1) 0 

dwtl007 11 0 11(1) 409 

dwtl242 15 0 15(1) 772 

dwt2680 19 1 21(1) 8419 

dwt419 15 0 16(1) 34 

dwt59 6 0 7(1) 0 

erisll76 99 1 93(1) 732 

fs541-l 13 0 14(1) 82 

fs541-2 13 0 14(1) 84 

gent l l3 20 0 19(1) 1 

ibm32 8 0 8(1) 0 

62 

Table 6.6: Comparison of Unidirectional and Bidirectional Coloring Heuristics 



C h a p t e r 6 E x p e r i m e n t a l R e s u l t s 

Matrix DSM DSM Time minLSI minLSI Time 

impcol-a 8 0 6(2) 4 

impcol-b 11 0 11(1) 0 

impcol-c 8 0 6(1) 1 

impcol-d 11 0 6(1) 35 

impcol-e 21 0 22(1) 5 

israel 119 0 50(1) 9 

lundA 22 0 26(1) 1 

lundB 24 0 26(1) 1 

scagr25 10 0 8(1) 94 

scagr7 10 0 8(1) 2 

shlO 422 0 4(1) 177 

shl200 440 0 4(1) 169 

shl400 426 0 4(1) 175 

stair 36 1 36(1) 55 

standata 745 1 9(1) 250 

strO 34 0 26(1) 26 

str200 30 0 30(1) 24 

str400 33 0 33(1) 27 

str600 33 0 33(1) 26 

tuff 114 0 20(1) 52 

vtp-base 38 0 12(1) 11 

watt2 128 1 13(1) 2840 

west0067 9 1 10(1) 0 

west0381 29 1 12(1) 28 

west0497 28 0 16(1) 61 

willl99 7 0 8(1) 4 

will57 11 0 11(1) 0 

Total 6496 13 1254(68) 19017 

Finally, in Table 6.7 we see that 4 out of 6 matrices have fewer number of 

colors in case bidirectional exact coloring as compared to unidirectional exact 

coloring. Notably, for the problem impcol-c we find that the number of colors 

required by bidirectional p-coloring is one-half of the number of colors required 

by unidirectional p-coloring. 
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Matrix DSATUR ILP 
ibm32 8 7(1) 
ash219 4 4(1) 
ash331 6 6(1) 
ash6Q8 6 6(1) 

impcol-a 

oo 6(1) 
impcol-c 8 4(1) 

Total 40 33(6) 

6 . 6 F i n a l R e s u l t s 

Table 6.8 summarizes the results of Unidirectional heuristic and exact color­

ing, bidirectional heuristic results for LFO, SLO, IDO, and bidirectional exact 

coloring. 

Table 6.8: Summary of all the Coloring Techniques 

Matrix DSM DSATUR LFO SLO IDO Bi-Dir 

abb313 10 10 13(1) 10(1) 10(1) -
adlittle 27 27 11(1) 12(1) 12(1) -
agg 19 19 22(1) 20(1) 21(1) -
agg2 49 49 33(1) 31(1) 50(1) -
agg3 49 49 34(1) 29(1) 36(1) -
arcl30 124 124 26(1) 131(1) 43(1) -
ash219 4 4 5(1) 5(1) 5(1) 4(1) 

ash292 14 14 15(1) 15(1) 14(1) -
ash331 6 6 6(1) 6(1) 6(1) 6(1) 

ash608 6 6 7(1) 6(1) 6(1) 6(1) 

ash958 6 6 7(1) 6(1) 6(1) -
blend 29 29 20(1) 17(1) 22(1) -
bore3d 73 73 25(1) 28(1) 28(1) -
bpO 266 266 16(1) 20(1) 20(1) -
bplOOO 308 308 23(1) 25(1) 21(1) -
bpl200 311 311 23(1) 21(1) 21(1) -
bpl400 311 311 28(1) 21(1) 22(1) -
bpl600 304 304 28(1) 21(1) 21(1) -
bp200 283 283 17(1) 20(1) 21(1) -
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Matrix DSM DSATUR LFO SLO IDO Bi-Dir 

bp400 295 295 20(1) 21(1) 21(1) -
bp600 302 302 22(1) 21(1) 21(1) -
bp800 304 304 23(1) 22(1) 21(1) -
canl054 35 35 30(1) 38(1) 38(1) -
canl072 35 35 31(1) 36(1) 37(1) -
can256 83 83 29(1) 30(1) 56(1) -
can268 37 37 30(1) 40(1) 36(1) -
can292 35 35 19(1) 23(1) 37(1) -
can634 28 28 29(1) 29(1) 29(1) -
can715 105 105 21(1) 34(1) 27(1) -
curtis54 12 12 16(1) 16(1) 12(1) -
dwtl007 11 - 11(1) 11(1) 11(1) -
dwtl242 15 - 16(1) 15(1) 16(1) -
dwt2680 19 19 22(1) 21(1) 21(1) -
dwt419 15 15 16(1) 17(1) 19(1) -
dwt59 6 6 8(1) 7(1) 7(1) -
erisll76 99 99 93(1) 93(1) 100(1) -
fs541-l 13 - 16(1) 14(1) 15(1) -
fs541-2 13 - 16(1) 14(1) 15(1) -
gent113 20 20 19(1) 27(1) 24(1) -
ibm32 8 8 8(1) 9(1) 8(1) 7(1) 

impcol-a 8 8 8(1) 6(2) 8(1) 6(1) 

impcol-b 11 10 " ( 1 ) 11(1) 12(1) -
impcol-c 8 8 6(1) 10(1) 9(1) 4(1) 

impcol-d 11 10 6(1) 12(1) 12(1) -
impcol-e 21 21 22(1) 23(1) 23(1) -
israel 119 119 50(1) 55(1) 54(1) -
lundA 22 21 26(1) 28(1) 28(1) -
lundB 24 21 26(1) 26(1) 28(1) -
scagr25 10 10 8(1) 9(1) 9(1) -
scagr7 10 10 8(1) 9(1) 9(1) -
shlO 422 422 4(1) 4(1) 4(1) -
shl200 440 440 4(1) 4(1) 4(1) -
shl400 426 426 4(1) 4(1) 4(1) -
stair 36 36 38(1) 48(1) 36(1) -
standata 745 745 9(1) 10(1) 10(1) -
strO 34 34 26(1) 26(1) 27(1) -
str200 30 30 33(1) 30(1) 32(1) -
str400 33 33 36(1) 33(1) 34(1) -
str600 33 33 38(1) 33(1) 36(1) -
tuff 114 114 20(1) 26(2) 25(2) -
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C h a p t e r 6 E x p e r i m e n t a l R e s u l t s 

Matrix DSM DSATUR LFO SLO IDO Bi-Dir 

vtp-base 38 38 12(1) 16(1) 17(1) 

watt2 128 128 13(1) 65(1) 14(1) 

west0067 9 oo
 

11(1) 11(1) 10(1) 

west0381 29 28 12(1) 12(1) 14(1) 

west0497 28 28 18(1) 16(1) 29(1) 

wiU199 7 7 9(1) 8(1) 8(1) 

wi!157 11 11 11(1) 11(1) 11(1) 

- Represents that no result was found in 10 hours 

6 . 7 S u m m a r y 

In this chapter we presented the experimental results of unidirectional and 

bidirectional p-coloring. In most of the cases bidirectional techniques were 

found to be superior to the unidirectional techniques in terms of the number of 

colors needed to color the graph associated with the Jacobian matrix. For uni­

directional coloring, the results of exact and heuristic methods are nearly the 

same. Also in case of unidirectional and bidirectional exact coloring method, 

exact bidirectional method needed fewer colors than the unidirectional exact 

method. On the basis of limited test results, we see that the heuristic bidirec­

tional coloring results are not far from the exact bidirectional results. But this 

requires further investigation. In the next chapter we will conclude this thesis 

and give suggestions for future research. 

66 



C h a p t e r 7 

C o n c l u s i o n a n d F u t u r e W o r k 

7.1 Conclusion 

In this thesis we studied methods to determine sparse Jacobian matrices. We 

saw that by partitioning the Jacobian matrices, the sparsity information could 

be efficiently exploited. Two ways to partition the matrices were described 

namely unidirectional partitioning and bidirectional partitioning. We observed 

that the partitioning problem could be formulated as a graph coloring problem. 

Unidirectional and bidirectional p-coloring techniques were described to 

color the vertices of column intersection graph and bipartite graph respectively 

such that the nonzero entries of the Jacobian matrices could be determined di­

rectly. We discussed the existing unidirectional exact and heuristic techniques 

and bidirectional heuristic techniques. We detailed our heuristic bidirectional 

p-coloring methods and proposed an exact ILP model for bidirectional deter­

mination. To the best of our knowledge this is the first attempt at using ILP 

techniques to solve the bidirectional determination of Jacobian matrices. 

We tested the unidirectional and bidirectional p-coloring algorithms on se­

lected problems from Harwell-Boeing test matrices [1, 2, 3] and netlib library 

[5]. We found that in most of the cases the bidirectional techniques did far 

better than the unidirectional methods. On the test problems considered our 
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C h a p t e r 7 C o n c l u s i o n and F u t u r e W o r k 

bidirectional heuristic techniques require fewer (although not by a large mar­

gin) row and column groups than the complete direct cover [23] and bicoloring 

[12]. Our bidirectional p-coloring results were compared to the results obtained 

from exact ILP formulation. In 3 out of 6 cases the results were the same. 

However only a few of the ILP instances could be solved in the allotted time. 

Therefore, it is not quite clear how the bidirectional heuristics are performing 

in general. We note that while the bidirectional heuristics required more CPU 

time as compared with DSM, it is to be emphasized that the coloring step is 

done only once in an iterative scheme e.g. the Newton's method. 

7 . 2 F u t u r e R e s e a r c h D i r e c t i o n s 

For future research on this work we would like to give the following suggestions. 

• In case of bidirectional heuristic techniques we would like to improve the 

code such that the time taken by incidence degree ordering algorithm is 

decreased and in turn the overall running time is decreased. 

• We would like to profile the code for bidirectional heuristic techniques 

by looking into variants of the ordering algorithms and by employing 

different tie-breaking strategies. We would also like to implement an 

efficient data structure so that the running time can be decreased further. 

• Memory requirement in the ILP model can be improved by implementing 

heuristics such that the complete branch and bound tree is not stored 

while the CPLEX solver is searching for the solution. This can be done 

by changing the settings of the solver and experimenting accordingly. 

• As evidenced by the computational tests, by removing the null color 

symmetry we were able to reduce the running time. Another idea to 

break symmetries existing in the model is by ordering [7] the colors. 
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C h a p t e r 7 C o n c l u s i o n and F u t u r e W o r k 

Fixing colors of the clique vertices in the bipartite graph can also help 

in reducing symmetries. Both the ideas could result in a reduction of 

running time. 

• We would like to perform more elaborate numerical testing for exact ILP 

bidirectional p-coloring. 
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A p p e n d i x A 

E x t e n d e d H e u r i s t i c 

B i d i r e c t i o n a l C o l o r i n g R e s u l t s 

This appendix gives complete results of heuristic bidirectional coloring tech­

niques. 
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Table A.l : LFO Result 
Matr ix n m nnz D N S M Pmax Pmin ^max C G R G T G 

abb313 176 313 1557 2.83 6 1 26 2 12(0) 1(1) 13(1) 

adlittle 138 56 424 5.49 27 1 11 1 0(1) 11(0) 11(1) 

agg 615 488 2862 0.954 19 2 43 1 22(0) 0(1) 22(1) 

agg2 758 516 4740 1.21 49 2 43 1 31(0) 2(1) 33(1) 

agg3 758 516 4756 1.22 49 2 43 1 32(0) 2(1) 34(1) 

arc130 130 130 1282 7.59 124 1 124 1 16(1) 10(0) 26(1) 

ash219 85 219 438 2.35 2 2 9 2 5(0) 0(1) 5(1) 

ash292 292 292 2208 2.59 14 4 14 4 0(1) 15(0) 15(1) 

ash331 104 331 662 1.92 2 2 12 3 6(0) 0(1) 6(1) 

ash608 188 608 1216 1.06 2 2 12 2 7(0) 0(1) 7(1) 

ash958 292 958 1916 0.685 2 2 13 3 7(0) 0(1) 7(1) 

blend 114 74 522 6.19 29 2 16 1 14(0) 6(1) 20(1) 

bore3d 334 233 1448 1.86 73 1 28 1 3(1) 22(0) 25(1) 

bpO 822 822 3276 0.485 266 1 20 1 2(1) 14(0) 16(1) 

bplOOO 822 822 4661 0.69 308 1 21 1 19(0) 4(1) 23(1) 

bpl200 822 822 4726 0.699 311 1 21 1 18(1) 5(0) 23(1) 

bpHOO 822 822 4790 0.709 311 1 21 1 23(1) 5(0) 28(1) 

bpl600 822 822 4841 0.716 304 1 21 1 15(1) 13(0) 28(1) 

bp200 822 822 3802 0.563 283 1 21 1 7(0) 10(1) 17(1) 

bp400 822 822 4028 0.596 295 1 21 1 15(1) 5(0) 20(1) 

bp600 822 822 4172 0.617 302 1 21 1 13(1) 9(0) 22(1) 

bp800 822 822 4534 0.671 304 1 21 1 20(0) 3(1) 23(1) 

canl054 1054 1054 12196 1.1 35 6 35 6 8(1) 22(0) 30(1) 

canl072 1072 1072 12444 1.08 35 6 35 6 9(1) 22(0) 31(1) 

can256 256 256 2916 4.45 83 4 83 4 8(1) 21(0) 29(1) 

can268 268 268 3082 4.29 37 4 37 4 7(1) 23(0) 30(1) 

can292 292 292 2540 2.98 35 4 35 4 3(1) 16(0) 19(1) 

can634 634 634 7228 1.8 28 2 28 2 0(1) 29(0) 29(1) 

can715 715 715 6665 1.3 105 2 105 2 1(1) 20(0) 21(1) 

curtis54 54 54 291 9.98 12 3 16 3 0(1) 16(0) 16(1) 

dwtl007 1007 1007 8575 0.846 10 3 10 3 0(1) 11(0) 11(1) 

dwtl242 1242 1242 10426 0.676 12 2 12 2 0(1) 16(0) 16(1) 

dwt2680 2680 2680 25026 0.348 19 4 19 4 0(1) 22(0) 22(1) 

dwt419 419 419 3563 2.03 13 6 13 6 0(1) 16(0) 16(1) 

dwt59 59 59 267 7.67 6 2 6 2 0(1) 8(0) 8(1) 

erisll76 1176 1176 18552 1.34 99 2 99 2 85(0) 8(1) 93(1) 

fs541-l 541 541 4285 1.46 11 1 541 5 13(0) 3(1) 16(1) 

fs541-2 541 541 4285 1.46 11 1 541 5 13(0) 3(1) 16(1) 

gent l l3 113 113 655 5.13 20 1 27 1 16(0) 3(1) 19(1) 

ibm32 32 32 126 12.3 8 2 7 2 7(0) 1(1) 8(1) 
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M a t r i x n m nnz D N S M Pmax Pmin Kmax Kmin C G R G T G 

impcol-a 207 207 572 1.33 8 1 5 1 8(0) 0(1) 8(1) 

impcol-b 59 59 312 8.96 7 2 12 1 10(0) 1(1) 11(1) 

impcol-c 137 137 411 2.19 8 1 8 1 5(0) 1(1) 6(1) 

impcol-d 425 425 1339 0.741 10 1 10 1 5(0) 1(1) 6(1) 

impcol-e 225 225 1308 2.58 12 1 23 1 20(0) 2(1) 22(1) 

israel 316 174 2443 4.44 119 2 136 1 11(1) 39(0) 50(1) 

lundA 147 147 2449 11.3 21 5 21 0(1) 26(0) 26(1) 

lundB 147 147 2441 11.3 21 5 21 0(1) 26(0) 26(1) 

scagr25 671 471 1725 0.546 10 1 9 1 3(0) 5(1) 8(1) 

scagr7 185 129 465 1.95 10 1 9 1 3(0) 5(1) 8(1) 
shlO 663 663 1687 0.384 422 1 4 1 0(1) 4(0) 4(1) 

shl200 663 663 1726 0.393 440 1 4 1 0(1) 4(0) 4(1) 

shl400 663 663 1712 0.389 426 1 4 1 0(1) 4(0) 4(1) 

stair 614 356 4003 1.83 36 34 1 26(0) 12(1) 38(1) 

standata 1274 359 3230 0.706 745 10 1 K D 8(0) 9(1) 

strO 363 363 2454 1.86 34 1 34 1 18(1) 8(0) 26(1) 

str200 363 363 3068 2.33 30 1 26 1 26(0) 7(1) 33(1) 

str400 363 363 3157 2.4 33 1 34 1 32(0) 4(1) 36(1) 

str600 363 363 3279 2.49 33 1 34 1 31(0) 7(1) 38(1) 

tuff 628 333 4561 2.18 113 25 1 4(1) 16(0) 20(1) 

vtp-base 346 198 1051 1.53 38 1 12 1 7(1) 5(0) 12(1) 
watt2 1856 1856 11550 0.335 128 1 65 1(1) 12(0) 13(1) 

west0067 67 67 294 6.55 6 1 10 3(1) 8(0) 11(1) 

west0381 381 381 2157 1.49 25 1 50 1 4(1) 8(0) 12(1) 

west0497 497 497 1727 0.699 28 1 55 1 8(1) 10(0) 18(1) 

willl99 199 199 701 1.77 6 1 9 2 9(0) 0(1) 9(1) 

will57 57 57 281 8.65 11 2 11 2 1(1) 10(0) 11(1) 

n - Number of columns in A 

m - Number of rows in A 

nnz - Number of nonzeros in A 

DNSM - Matrix Density 

pmax - Maximum number of nonzeros in any row 

Pmin - Minimum number of nonzeros in any row 

«max - Maximum number of nonzeros in any column 

«min - Minimum number of nonzeros in any column 

RG - Total number of row groups 

CG - Total number of column groups 

TG - RG + CG 
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Table A.2: SLO Result 

M a t r i x n m nnz D N S M Pmax Pmin ^ max Kmin C G R G T G 

abb-313 176 313 1557 2.83 6 1 26 2 10(0) 0(1) 10(1) 

adlittle 138 56 424 5.49 27 1 11 1 0(1) 12(0) 12(1) 

agg 615 488 2862 0.954 19 2 43 1 20(0) 0(1) 20(1) 

agg2 758 516 4740 1.21 49 2 43 1 25(0) 6(1) 31(1) 

agg3 758 516 4756 1.22 49 2 43 1 25(0) 4(1) 29(1) 

arcl30 130 130 1282 7.59 124 1 124 1 124(0) 7(1) 131(1) 

ash219 85 219 438 2.35 2 2 9 2 5(0) 0(1) 5(1) 

ash292 292 292 2208 2.59 14 4 14 4 15(0) 0(1) 15(1) 

ash331 104 331 662 1.92 2 2 12 3 6(0) 0(1) 6(1) 

ash608 188 608 1216 1.06 2 2 12 2 6(0) 0(1) 6(1) 

ash.958 292 958 1916 0.685 2 2 13 3 6(0) 0(1) 6(1) 

blend 114 74 522 6.19 29 2 16 1 0(1) 17(0) 17(1) 

bore3d 334 233 1448 1.86 73 1 28 1 0(1) 28(0) 28(1) 

bpO 822 822 3276 0.485 266 1 20 1 0(1) 20(0) 20(1) 

bplOOO 822 822 4661 0.69 308 1 21 1 2(1) 23(0) 25(1) 

bpl200 822 822 4726 0.699 311 1 21 1 0(1) 21(0) 21(1) 

bpl400 822 822 4790 0.709 311 1 21 1 0(1) 21(0) 21(1) 

bpl600 822 822 4841 0.716 304 1 21 1 0(1) 21(0) 21(1) 

bp200 822 822 3802 0.563 283 1 21 1 6(1) 14(0) 20(1) 

bp400 822 822 4028 0.596 295 1 21 1 8(0) 13(1) 21(1) 

bp600 822 822 4172 0.617 302 1 21 1 0(1) 21(0) 21(1) 

bp800 822 822 4534 0.671 304 1 21 1 1(1) 21(0) 22(1) 

canl054 1054 1054 12196 1.1 35 6 35 6 2(1) 36(0) 38(1) 

canl072 1072 1072 12444 1.08 35 6 35 6 36(0) 0(1) 36(1) 

can256 256 256 2916 4.45 83 4 83 4 26(0) 4(1) 30(1) 

can268 268 268 3082 4.29 37 4 37 4 40(0) 0(1) 40(1) 

can292 292 292 2540 2.98 35 4 35 4 5(1) 18(0) 23(1) 

can634 634 634 7228 1.8 28 2 28 2 29(0) 0(1) 29(1) 

can715 715 715 6665 1.3 105 2 105 2 12(1) 22(0) 34(1) 

curtis54 54 54 291 9.98 12 3 16 3 0(1) 16(0) 16(1) 

dwtl007 1007 1007 8575 0.846 10 3 10 3 0(1) 11(0) 11(1) 

dwtl242 1242 1242 10426 0.676 12 2 12 2 15(0) 0(1) 15(1) 

dwt2680 2680 2680 25026 0.348 19 4 19 4 21(0) 0(1) 21(1) 

dwt419 419 419 3563 2.03 13 6 13 6 17(0) 0(1) 17(1) 

dwt59 59 59 267 7.67 6 2 6 2 7(0) 0(1) 7(1) 

erisll76 1176 1176 18552 1.34 99 2 99 2 87(0) 6(1) 93(1) 

fs541-l 541 541 4285 1.46 11 1 541 5 2(1) 12(0) 14(1) 

fs541-2 541 541 4285 1.46 11 1 541 5 2(1) 12(0) 14(1) 

gent113 113 113 655 5.13 20 1 27 1 0(1) 27(0) 27(1) 

ibm32 32 32 126 12.3 8 2 7 2 8(0) 1(1) 9(1) 
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M a t r i x n m nnz D N S M Pmax Pmin ftmax ^min C G R G T G 

impcol-a 207 207 572 1.33 8 1 5 1 1(1) 5(1) 6(2) 

impcol-b 59 59 312 8.96 7 2 12 1 10(0) K l ) 11(1) 

impcol-c 137 137 411 2.19 8 1 8 1 8(0) 2(1) 10(1) 

impcol-d 425 425 1339 0.741 10 1 10 1 11(0) 1(1) 12(1) 

impcol-e 225 225 1308 2.58 12 1 23 1 20(0) 3(1) 23(1) 

israel 316 174 2443 4.44 119 2 136 1 20(1) 35(0) 55(1) 

lundA 147 147 2449 11.3 21 5 21 27(0) 1(1) 28(1) 

lundB 147 147 2441 11.3 21 5 21 25(0) 1(1) 26(1) 

scagr25 671 471 1725 0.546 10 1 9 1 0(1) 9(0) 9(1) 

scagr7 185 129 465 1.95 10 1 9 1 0(1) 9(0) 9(1) 

shlO 663 663 1687 0.384 422 1 4 1 0(1) 4(0) 4(1) 

shl200 663 663 1726 0.393 440 1 4 1 0(1) 4(0) 4(1) 

shWOO 663 663 1712 0.389 426 1 4 1 0(1) 4(0) 4(1) 

stair 614 356 4003 1.83 36 34 1 32(0) 16(1) 48(1) 

standata 1274 359 3230 0.706 745 10 1 0(1) 10(0) 10(1) 

strO 363 363 2454 1.86 34 1 34 1 19(0) 7(1) 26(1) 

str200 363 363 3068 2.33 30 1 26 1 30(0) 0(1) 30(1) 

str400 363 363 3157 2.4 33 1 34 1 33(0) 0(1) 33(1) 

str600 363 363 3279 2.49 33 1 34 1 33(0) 0(1) 33(1) 

tuff 628 333 4561 2.18 113 25 1 1(1) 25(1) 26(2) 

vtp-base 346 198 1051 1.53 38 1 12 1 4(1) 12(0) 16(1) 

watt2 1856 1856 11550 0.335 128 1 65 0(1) 65(0) 65(1) 

west0067 67 67 294 6.55 6 1 10 9(0) 2(1) 11(1) 

west0381 381 381 2157 1.49 25 1 50 1 4(1) 8(0) 12(1) 

west0497 497 497 1727 0.699 28 1 55 1 9(0) 7(1) 16(1) 

willl99 199 199 701 1.77 6 1 9 2 8(0) 0(1) 8(1) 

will57 57 57 281 8.65 11 2 11 2 11(0) 0(1) 11(1) 

n - Number of columns in A 

m - Number of rows in A 

nnz - Number of nonzeros in A 

DNSM - Matrix Density 

Pmax - Maximum number of nonzeros in any row 

Pmin - Minimum number of nonzeros in any row 

Kmax - Maximum number of nonzeros in any column 

«min - Minimum number of nonzeros in any column 

RG - Total number of row groups 

CG - Total number of column groups 

TG - RG + CG 
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Table A.3: IDO Result 

M a t r i x n m nnz D N S M Pmax Pmin ^max Kmin C G R G T G 

abb-313 176 313 1557 2.83 6 1 26 2 10(0) 0(1) 10(1) 

adlittle 138 56 424 5.49 27 1 11 1 0(1) 12(0) 12(1) 

agg 615 488 2862 0.954 19 2 43 1 21(0) 0(1) 21(1) 

agg2 758 516 4740 1.21 49 2 43 1 48(0) 2(1) 50(1) 

agg3 758 516 4756 1.22 49 2 43 1 33(0) 3(1) 36(1) 

arcl30 130 130 1282 7.59 124 1 124 1 35(0) 8(1) 43(1) 

ash219 85 219 438 2.35 2 2 9 2 5(0) 0(1) 5(1) 

ash292 292 292 2208 2.59 14 4 14 4 0(1) 14(0) 14(1) 

ash331 104 331 662 1.92 2 2 12 3 6(0) 0(1) 6(1) 

ash608 188 608 1216 1.06 2 2 12 2 6(0) 0(1) 6(1) 

ash958 292 958 1916 0.685 2 2 13 3 6(0) 0(1) 6(1) 

blend 114 74 522 6.19 29 2 16 1 21(0) 1(1) 22(1) 

bore3d 334 233 1448 1.86 73 1 28 1 0(1) 28(0) 28(1) 

bpO 822 822 3276 0.485 266 1 20 1 0(1) 20(0) 20(1) 

bplOOO 822 822 4661 0.69 308 1 21 1 0(1) 21(0) 21(1) 

bpl200 822 822 4726 0.699 311 1 21 1 0(1) 21(0) 21(1) 

bpl400 822 822 4790 0.709 311 1 21 1 0(1) 22(0) 22(1) 

bpl600 822 822 4841 0.716 304 1 21 1 0(1) 21(0) 21(1) 

bp200 822 822 3802 0.563 283 1 21 1 0(1) 21(0) 21(1) 

bp400 822 822 4028 0.596 295 1 21 1 0(1) 21(0) 21(1) 

bp600 822 822 4172 0.617 302 1 21 1 0(1) 21(0) 21(1) 

bp800 822 822 4534 0.671 304 1 21 1 0(1) 21(0) 21(1) 

canl054 1054 1054 12196 1.1 35 6 35 6 3(1) 35(0) 38(1) 

can1072 1072 1072 12444 1.08 35 6 35 6 1(1) 36(0) 37(1) 

can256 256 256 2916 4.45 83 4 83 4 53(0) 3(1) 56(1) 

can268 268 268 3082 4.29 37 4 37 4 34(0) 2(1) 36(1) 

can292 292 292 2540 2.98 35 4 35 4 2(1) 35(0) 37(1) 

can634 634 634 7228 1.8 28 2 28 2 0(1) 29(0) 29(1) 

can715 715 715 6665 1.3 105 2 105 2 22(0) 5(1) 27(1) 

curtis54 54 54 291 9.98 12 3 16 3 12(0) 0(1) 12(1) 

dwtl007 1007 1007 8575 0.846 10 3 10 3 11(0) 0(1) 11(1) 
dwtl242 1242 1242 10426 0.676 12 2 12 2 0(1) 16(0) 16(1) 

dwt2680 2680 2680 25026 0.348 19 4 19 4 21(0) 0(1) 21(1) 

dwt419 419 419 3563 2.03 13 6 13 6 0(1) 19(0) 19(1) 

dwt59 59 59 267 7.67 6 2 6 2 7(0) 0(1) 7(1) 

erisll76 1176 1176 18552 1.34 99 2 99 2 1(1) 99(0) 100(1) 

fs541-l 541 541 4285 1.46 11 1 541 5 1(1) 14(0) 15(1) 

fs541-2 541 541 4285 1.46 11 1 541 5 1(1) 14(0) 15(1) 

gent113 113 113 655 5.13 20 1 27 1 17(0) 7(1) 24(1) 

ibm32 32 32 126 12.3 8 2 7 2 7(0) 1(1) 8(1) 
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M a t r i x n m nnz D N S M Pmax Pmin ^max Kmin C G R G T G 

impcol-a 207 207 572 1.33 8 1 5 1 8(0) 0(1) 8(1) 

impcol-b 59 59 312 8.96 7 2 12 1 11(0) 1(1) 12(1) 

impcol-c 137 137 411 2.19 8 1 8 1 9(0) 0(1) 9(1) 

impcol-d 425 425 1339 0.741 10 1 10 1 10(0) 2(1) 12(1) 

impcol-e 225 225 1308 2.58 12 1 23 1 20(0) 3(1) 23(1) 

israel 316 174 2443 4.44 119 2 136 1 19(1) 35(0) 54(1) 

lundA 147 147 2449 11.3 21 5 21 0(1) 28(0) 28(1) 

lundB 147 147 2441 11.3 21 5 21 0(1) 28(0) 28(1) 

scagr25 671 471 1725 0.546 10 1 9 1 0(1) 9(0) 9(1) 

scagr7 185 129 465 1.95 10 1 9 1 0(1) 9(0) 9(1) 

shlO 663 663 1687 0.384 422 1 4 1 0(1) 4(0) 4(1) 

shl200 663 663 1726 0.393 440 1 4 1 0(1) 4(0) 4(1) 

shl400 663 663 1712 0.389 426 1 4 1 0(1) 4(0) 4(1) 

stair 614 356 4003 1.83 36 34 1 0(1) 36(0) 36(1) 

standata 1274 359 3230 0.706 745 10 1 0(1) 10(0) 10(1) 

strO 363 363 2454 1.86 34 1 34 1 20(0) 7(1) 27(1) 

str200 363 363 3068 2.33 30 1 26 1 29(1) 3(0) 32(1) 

str400 363 363 3157 2.4 33 1 34 1 33(0) 1(1) 34(1) 

str600 363 363 3279 2.49 33 1 34 1 33(0) 3(1) 36(1) 

tuff 628 333 4561 2.18 113 25 1 0(1) 25(1) 25(2) 

vtp-base 346 198 1051 1.53 38 1 12 1 4(1) 13(0) 17(1) 

watt2 1856 1856 11550 0.335 128 1 65 1(1) 13(0) 14(1) 

west0067 67 67 294 6.55 6 1 10 9(0) 1(1) 10(1) 

west0381 381 381 2157 1.49 25 1 50 1 4(1) 10(0) 14(1) 

west0497 497 497 1727 0.699 28 1 55 1 28(0) 1(1) 29(1) 

willl99 199 199 701 1.77 6 1 9 2 8(0) 0(1) 8(1) 

will57 57 57 281 8.65 11 2 11 2 0(1) 11(0) 11(1) 

n - Number of columns in A 

m - Number of rows in A 

nnz - Number of nonzeros in A 

DNSM - Matrix Density 

Pmax - Maximum number of nonzeros in any row 

Pmin - Minimum number of nonzeros in any row 

«max - Maximum number of nonzeros in any column 

«min - Minimum number of nonzeros in any column 

RG - Total number of row groups 

CG - Total number of column groups 

TG - RG + CG 
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A p p e n d i x B 

E x a m p l e o f I L P M o d e l 

I m p l e m e n t a t i o n 

A sample of the ILP model for a 2 x 2 arrowhead matrix is given below. 

/ / M o d e l File 

range boolean 0..1; 

enum rown ...; 

enum coin ...; 

enum rowc ...; 

enum cole 

/ / D e c i s i o n Variables 

var boolean xr[rown,rowc]; 

var boolean xc[coln,colc]; 

var boolean wr[rowc]; 

var boolean wc[colc]; 

/ / O b j e c t i v e Function 

minimize 

sum(r in rowc) wr[r] + sum(c in cole) wc[c] 

/ /Constra ints 

subject to ( 
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forall(r in rown) sum(row in rowc) xr[r,row] = 1; 

forall(c in coin) sum(col in cole) xc[c,col] = 1; 

forall(r in rowc, c in cole) ( 

xr[rO,r] + xc[cO,c] + xr[rl,r] + xc[cl,c] < = wr[r] + wc[c] + 1 

xr[rO,r] + xc[cl,c] + xr[rl,r] + xc[cO,c] < = wr[r] + wc[c] + 1 

xr[rl,r] + xc[cO,c] + xr[rO,r] + xc[cl,c] < = wr[r] + wc[c] + 1 

xr[rl,r] + xc[cl,c] + xr[rO,r] + xc[cO,c] < = wr[r] + wc[c] + 1 

); 

forall(r in rowc) wr[r] < = sum(row in rown) xr[row,r]; 

forall(c in cole) wc[c] < = sum(col in coin) xc[col,c]; 

wr[rcO] > = wr[rcl]; 

wc[ccO] > = wc[ccl]; 

forall(r in rowc) sum(row in rown) xr[row,r] < = 2*wr[r]; 

forall(c in cole) sum(col in coin) xc[col,c] < = 2*wc[c]; 

); 
/ / D a t a File 

rown = (rO,rl); 

coin = (cO,cl); 

rowc = (rcO,rcl); 

cole = (ccO,ccl); 
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