
MACHINE LEARNING IN THE CLASSIFICATION OF COMPUTER CODE

NAZIA TASNIM
Bachelor of Science, Military Institute of Science and Technology, 2010

A thesis submitted
in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Nazia Tasnim, 2020

MACHINE LEARNING IN THE CLASSIFICATION OF COMPUTER CODE

NAZIA TASNIM

Date of Defence: August 27, 2020

Dr. Jacqueline E. Rice Professor Ph.D.
Thesis Supervisor

Dr. Wendy Osborn Associate Professor Ph.D.
Thesis Examination Committee
Member

Dr. John Sheriff Assistant Professor Ph.D.
Thesis Examination Committee
Member

Dr. Yllias Chali Professor Ph.D.
Chair, Thesis Examination Com-
mittee

Dedication

Dedicated to my parents, husband and daughter.

iii

Abstract

Machine learning approaches are a well-established method to analyze natural language.

Sociolinguistic characteristics, such as the author’s gender, experience, and age, have com-

pelling effects on natural language use. Previous research has shown that a computer pro-

gram can be analyzed using similar linguistics-based approaches. In this research, we are

using machine learning techniques to analyze computer programs based on the author’s

programming experience. We use machine learning and statistical approaches to determine

which features are most significant in the classification of a computer program according

to the author’s programming experience. Several experiments have been carried out on

a dataset consisting of computer programs written in C++, and the results are encourag-

ing. The experimental results estimate that the author’s programming experience can be

predicted with an accuracy of 69%.

iv

Acknowledgments

All praise be to the almighty Allah for giving me the opportunity and strength to complete

this research and master’s program.

I would like to express my sincerest appreciation towards my supervisor Dr. Jacqueline

E. Rice, for her continuous guidance and encouragement. Dr. Rice offered her valuable

suggestions and recommendations throughout the master’s program. Without her inspira-

tion and advice, this research endeavour was not possible. Thank you, Dr. Rice, for your

continued support and encouragement towards me.

I want to express my sincere appreciation of Dr. Wendy Osborn and Dr. John Sheriff

for being part of my supervisory committee. I am thankful for their guidance and feedback.

I must express my gratitude to my parents and my in-laws for their unconditional love

and support. My family encouraged me a lot throughout my master’s program.

I am thankful to my husband, Ahmed Shoeb Al Hasan and daughter, Tasmia Hasan

Rayya, for being with me and support me throughout this research. I would especially like

to thank my husband for always being with my side in all the difficult times of my life.

Without his support and motivation, this journey was not possible.

I am grateful to the School of Graduate Studies and Dr. Rice for providing financial

assistance for my graduate study and research work.

My appreciation also extends to all the members of my research group, my friends,

well-wishers and my family-like members in Canada, especially, Ashif Rahman and Tanzim

Haque.

v

Contents

Contents vi

List of Tables ix

List of Figures xi

1 Introduction 1
1.1 Motivation . 3
1.2 Contributions . 4
1.3 Organization of Thesis . 5

2 Background and Literature Review 6
2.1 Sociolinguistics . 6
2.2 Machine Learning . 6

2.2.1 Types of Machine Learning . 7
2.3 Data . 10

2.3.1 Data Preparation Plan . 12
2.4 Classification Algorithms . 14

2.4.1 Decision Tree . 15
2.4.2 Naı̈ve Bayes . 22
2.4.3 Random Forest . 27
2.4.4 K Nearest Neighbor Algorithm . 28
2.4.5 Logistic Regression . 31
2.4.6 Bagging Classifier . 32

2.5 Evaluation of Machine Learning Algorithms 33
2.5.1 Holdout Method . 33
2.5.2 Cross-Validation . 34
2.5.3 Performance Measurement . 34

2.6 Python . 37
2.6.1 Feature Selection . 37

2.7 Related Work . 38
2.8 Summary . 40

3 Methodology 41
3.1 Data Collection . 41

3.1.1 Data Collection Process . 41
3.1.2 Drawbacks of the Data Source . 43

3.2 Dataset Creation . 44

vi

CONTENTS

3.2.1 Balanced Data Set . 48
3.3 Document Representation . 50
3.4 Feature Selection . 50
3.5 Summary . 53

4 Experiments and Results 54
4.1 Preliminaries . 54

4.1.1 Programming Environment . 56
4.1.2 Parameter Settings . 57

4.2 Experiments . 58
4.2.1 Experiment 1 . 58
4.2.2 Experiment 2 . 60
4.2.3 Experiment 3 . 62
4.2.4 Experiment 4 . 64
4.2.5 Experiment 5 . 65
4.2.6 Experiment 6 . 66

4.3 Results . 67
4.3.1 Experiment 1 . 67
4.3.2 Experiment 2 . 70
4.3.3 Experiment 3 . 72
4.3.4 Experiment 4 . 74
4.3.5 Experiment 5 . 76
4.3.6 Experiment 6 . 78

4.4 Discussion . 80
4.4.1 Cross-Validation Method . 80
4.4.2 Holdout Method . 82
4.4.3 Summary of Results . 84

4.5 Threats to Validity . 85

5 Analysis of Features 87
5.1 Feature Reduction . 87
5.2 Statistical Approach . 89
5.3 Visual Analysis of Programs . 94
5.4 Relationship Between Features . 96

5.4.1 Beginner-written Programs . 96
5.4.2 Expert-written Programs . 98

6 Conclusion and Future Work 103
6.1 Future Research Directions . 106

Bibliography 108

A Python Library 112
A.1 Reading Text Data . 112
A.2 Natural Language Toolkit . 112
A.3 Scikit-learn . 113

vii

CONTENTS

A.4 math . 113
A.5 NumPy . 113
A.6 Merits . 113
A.7 Demerits . 114

viii

List of Tables

2.1 Ten days observation of weather conditions. 11
2.2 Frequency of the classes (Yes and No) . 16
2.3 Frequency of Yes and No for Play depending on Weather 17
2.4 Frequency of Yes and No for Play depending on Humidity 18
2.5 Frequency of Yes and No for Play depending on Wind 19
2.6 Sub table for Sunny attribute. 21
2.7 Sub table for Rainy attribute. 22
2.8 Training data for KNN. 29
2.9 Distance from training data to new data. 30
2.10 Three nearest neighbors of new point (6,9). 30
2.11 Confusion matrix . 35

3.1 Attributes of the collected data from Codeforces. 45
3.2 Selected attributes of the dataset. 47
3.3 Information about the dataset. 49
3.4 The fifteen features selected to characterize the programs in our dataset. . . 52

4.1 Details of the test environment. 56
4.2 Performance evaluation of six models with 15 features. 67
4.3 Confusion matrix for decision tree with 15 features. 68
4.4 Confusion matrix for naı̈ve Bayes with 15 features. 68
4.5 Confusion matrix for random forest with 15 features. 68
4.6 Confusion matrix for K nearest neighbor with 15 features. 69
4.7 Confusion matrix for logistic regression with 15 features. 69
4.8 Confusion matrix for bagging classifier with 15 features. 69
4.9 Performance evaluation of six models with 7 features. 70
4.10 Confusion matrix for decision tree with 7 features. 70
4.11 Confusion matrix for naı̈ve Bayes with 7 features. 70
4.12 Confusion matrix for random forest with 7 features. 71
4.13 Confusion matrix for K nearest neighbor with 7 features. 71
4.14 Confusion matrix for logistic regression with 7 features. 71
4.15 Confusion matrix for bagging classifier with 7 features. 71
4.16 Performance evaluation of six models with 4 features. 72
4.17 Confusion matrix for decision tree with 4 features. 72
4.18 Confusion matrix for naı̈ve Bayes with 4 features. 73
4.19 Confusion matrix for random forest with 4 features. 73
4.20 Confusion matrix for K nearest neighbor with 4 features. 73
4.21 Confusion matrix for logistic regression with 4 features. 73

ix

LIST OF TABLES

4.22 Confusion matrix for bagging classifier with 4 features. 73
4.23 Performance evaluation of six models with 15 features. 74
4.24 Confusion matrix for decision tree with 15 features. 75
4.25 Confusion matrix for naı̈ve Bayes with 15 features. 75
4.26 Confusion matrix for random forest with 15 features. 75
4.27 Confusion matrix for K nearest neighbor with 15 features. 75
4.28 Confusion matrix for logistic regression with 15 features. 75
4.29 Confusion matrix for bagging classifier with 15 features. 76
4.30 Performance evaluation of six models with 7 features. 76
4.31 Confusion matrix for decision tree with 7 features. 77
4.32 Confusion matrix for naı̈ve Bayes with 7 features. 77
4.33 Confusion matrix for random forest with 7 features. 77
4.34 Confusion matrix for K nearest neighbor with 7 features. 77
4.35 Confusion matrix for logistic regression with 7 features. 77
4.36 Confusion matrix for bagging classifier with 7 features. 78
4.37 Performance evaluation of six models with 4 features. 78
4.38 Confusion matrix for decision tree with 4 features. 79
4.39 Confusion matrix for naı̈ve Bayes with 4 features. 79
4.40 Confusion matrix for random forest with 4 features. 79
4.41 Confusion matrix for K nearest neighbor with 4 features. 79
4.42 Confusion matrix for logistic regression with 4 features. 79
4.43 Confusion matrix for bagging classifier with 4 features. 80
4.44 Models with highest and lowest accuracy rate in experiment 1 to 3. 81
4.45 Best and worst models in classifying beginner-written programs for exper-

iments 1 to 3. 81
4.46 Best and worst models in classifying expert-written programs for experi-

ments 1 to 3. 82
4.47 Models with highest and lowest accuracy rate in experiments 4 to 6. 82
4.48 Best and worst models in classifying beginner-written programs for exper-

iments 4 to 6. 83
4.49 Best and worst models in classifying expert-written programs for experi-

ments 4 to 6. 83

5.1 Performance evaluation of six models based on five-fold cross-validation
technique. 88

5.2 T-test (ρ) values of features. 91
5.3 Comparison of feature usage in expert-written and beginner-written programs. 93
5.4 First comparison between expert-written and beginner-written programs. . . 94
5.5 Second comparison between expert-written and beginner-written programs. 95
5.6 Strongly connected features of beginner-written programs. 97
5.7 Strongly related features of expert-written programs. 98
5.8 Strongly related features of expert-written programs (continued). 99

x

List of Figures

2.1 Supervised learning model [51] . 8
2.2 Decision tree after the first split. 21
2.3 Decision tree after split using Humidity attribute. 22
2.4 Final decision tree. 23
2.5 Random forest . 28
2.6 Bagging classifier methodology. 33

3.1 Data collection process. 42
3.2 Document representation process. 51

4.1 Steps for experiment 1. 59
4.2 Steps for experiment 2. 60
4.3 Steps for experiment 3. 62
4.4 Steps for experiment 4. 64
4.5 Steps for experiment 5. 65
4.6 Steps for experiment 6. 66

5.1 Correlation based on raw frequency of features in beginner-written programs.101
5.2 Correlation based on raw frequency of features in expert-Written programs. 102

xi

Chapter 1

Introduction

Language is a tool used by people to communicate with each other. There are many dif-

ferent languages in the world, such as English, Mandarin, French, and Bengali. We refer

to these languages as natural languages [40]. Languages tend to be different based on geo-

graphic locations. Moreover, differences in languages are also observed based on people’s

age, gender and religion [28]. Apart from that, there are differences between the written

version and the spoken version of any language. In general, the written version of a lan-

guage is more formal than the spoken version [28].

In this modern era there is another kind of language known as artificial language. Ar-

tificial languages used to communicate with computers are called programming languages.

There are different programming languages such as C, C++, Java, and Python. Program-

mers can use different languages to give the same instructions to a computer. Moreover,

programs written to solve a specific problem may differ if the programs are written by

different programmers, even if they are using the same programming language. This differ-

ence among the similar programs may occur due to the above social factors discussed for

natural languages.

A programming language is used to write the instructions for computers for a specific

task [21]. There are two parts to a programming language: syntax and semantics. Syntax

consists of the rules that define the structure of a programming language. Syntax defines

how a valid instruction can be written in a programming language. Semantics is the mean-

ing of the instruction written using the syntax of a programming language. An instruction

1

1. INTRODUCTION

can be syntactically correct, although that instruction may still be semantically wrong.

i n t x = 1 0 ;

i n t y = 0 ;

f l o a t z = x / y ;

The code segment shown above is syntactically correct in the C++ programming lan-

guage. However, semantically it is incorrect. The last instruction in the code segment

instructs the computer to divide ten by zero, which will create an error.

Every language has its own syntax and semantics. Any program written using a spe-

cific programming language must follow the syntax and semantics of that programming

language.

Sociolinguistic characteristics such as the author’s gender, experience, and age have

compelling effects on natural language use [48], [49]. Just as each speaker of a natural

language will demonstrate their individuality through their language choices [40], so each

programmer using a programming language will do the same. However, it is more diffi-

cult to identify the unique coding style, or style of language choice of a programmer as

they are required to follow the syntax and semantics of a programming language to write

functioning programs and, as well as being restricted by having to solve a specific problem.

Every programming language has its syntax and semantics. So it is necessary to follow

the syntax and semantics of a programming language to write a program. A programmer

needs to follow the syntax of a programming language as the syntax is the fundamental rule

of a programming language. However, particular areas of coding (or writing a computer

program) can be examined to determine a programmer’s unique coding style. For instance,

a programmer can demonstrate a unique coding style in the layout and structure of a pro-

gram, such as the number of lines, the number of blank lines, and the number of comments

in a program. Moreover, the use of data structures and algorithms, preferred system calls,

and the type of compiler used may reflect the unique coding style of a programmer [52].

Our research focuses on computer programs and how machine learning techniques can

2

1.1. MOTIVATION

be applied to analyze computer programs [36], [48], [27]. Existing research confirms that

the gender (male/female) and region of the author of a computer program can be determined

by machine learning techniques [32]. Machine learning is the research area that studies

computer algorithms which create models by learning from training data. These models

develop through knowledge. More details will be given in Chapter 2.

Our research assesses the impact of sociolinguistic characteristics, such as the author’s

programming experience with computer programs, by examining the computer programs

created using a particular programming language. In other words, our research investigates

whether it is possible to determine whether the author is a beginner programmer or is more

experienced by analyzing a program that they have written.

For this research we consider only programs written in C++. These programs are text

files, and machine learning is widely used for text categorization problems [49]. Different

machine learning approaches are used in this work to determine the author’s programming

experience. Python is used as the programming language for the implementation of our re-

search. Python has vast libraries containing different machine learning approaches, evalua-

tion methods of machine learning models, text processing methods, and feature extraction

methods. Several machine learning techniques including the decision tree, naı̈ve Bayes,

random forest, k nearest neighbor, logistic regression and bagging classifier are used to

build the models.

This research will allow us to determine whether programming features or characteris-

tics and machine learning techniques can be used to determine the programmer’s level of

experience.

1.1 Motivation

According to Misek-Falkoff [32], a computer program can be analyzed using the tech-

niques of linguistics. We have also seen that machine learning can be used to analyze com-

puter programs to find out the impact of sociolinguistic characteristics. For instance, Naz

3

1.2. CONTRIBUTIONS

and Rice [37] retrieved information about the influence of the author’s gender on computer

programs using machine learning techniques. In their work open-source implementations of

machine learning algorithms were applied to C++ programs to identify the features affected

by the author’s gender. In another study Rafee [44] used machine learning and statistical

techniques to assess the impact of two sociolinguistic characteristics, the author’s gender

and the author’s region, on computer programs.

Our research aim is to determine whether the author is a beginner or an experienced

programmer by analyzing a computer program. We have seen that the original author of a

program may be determined by finding the author’s gender, region, experience [25]. Thus

our work on categorizing a programmer’s experience may refine the use of such techniques,

as well as being useful in its own right. The research outcome may also aid in plagiarism

detection by finding out the original author (by detecting the gender, region ,and experience)

of a computer program.

1.2 Contributions

Machine learning approaches were successfully used to analyze natural language [49].

In this research we are using machine learning techniques to analyze computer programs

based on the author’s experience. In our work various machine learning algorithms are used

including decision tree, naı̈ve Bayes, random forest, k nearest neighbor, logistic regression

and bagging classifier. The contributions of this thesis are as follows:

• Application of machine learning techniques to analyze computer programs based on

the author’s programming experience.

• Understanding the impacts of sociolinguistic characteristics such as the author’s pro-

gramming experience on computer programs.

• Determining which factors are most significant in the classification of a computer

program by the author’s programming experience.

4

1.3. ORGANIZATION OF THESIS

• Determining the best-suited machine learning approaches for the classification of

computer programs based on the author’s programming experience.

• Possible application in industrial or academic settings to determine the original author

of a computer program, and categorize a programmer’s experience.

1.3 Organization of Thesis

There are six chapters in the thesis. Chapter 1 introduces the research work, followed by

discussion of the motivation of this work along with the contributions made by this thesis.

This chapter ends with explaining the organization of the remainder of the thesis.

Chapter 2 discusses the background and literature review. Sociolinguistics, machine

learning, Python and classification algorithms are described in this chapter.

Methodologies to categorize computer programs based on the author’s programming

experience are illustrated in Chapter 3. At the start of the chapter, data collection procedures

are described. Next the approaches we used to classify beginner and experienced programs

are introduced.

Details of all experiments and the numerical results are shown in Chapter 4. The pro-

gramming environment and threats to validity are also described in this chapter.

Chapter 5 describes the analysis of features to identify an author’s programming expe-

rience by analyzing a computer program from our dataset.

Chapter 6 concludes the thesis with a summary and highlight of the research. Some

future research directions are also offered in this chapter.

5

Chapter 2

Background and Literature Review

In this chapter, we will discuss the background and literature review. We will explain

sociolinguistics, machine learning, Python, and classification algorithms here.

2.1 Sociolinguistics

Sociolinguistics studies the relationship between society and language [19]. Sociolin-

guistics is an important field of study, offering a focus on the role of language in society.

According to R. Wardhaugh, “Sociolinguistics is concerned with investigating the rela-

tionships between language and society with the goal being a better understanding of the

structure of language and of how languages function in communication” [55].

Language is the most influential characteristic of social conduct. Language is used

by people conveys information about their identity, origin, and association. A person’s

character or background can be determined based on their language, dialect, and other

factors [19].

Sociolinguistics is the branch of linguistics that deals with the study of language in

society and the sociocultural context. It can also be said that sociolinguistics studies the

linguistic signs of culture and power [50].

2.2 Machine Learning

Machine learning is based on computer algorithms which can create mathematical mod-

els by learning from training data. Machine learning is a sub-field of computational intelli-

6

2.2. MACHINE LEARNING

gence, and offers solutions in image recognition, natural language processing, data mining,

and expert systems.

Mitchell offered a formal definition of machine learning in [33]: “A computer program

is said to learn from experience E with respect to some task T and some performance

measure P, if its performance on T, as measured by P, improves with experience E.” For

example, when a program predicts traffic patterns at a busy intersection (task T) it can

apply a machine learning algorithm to data about past traffic patterns (experience E) and,

if it has successfully “learned”, it will then do better at predicting future traffic patterns

(performance measure P). Using past traffic patterns the machine learning model can learn

several things such as peak times for heavy traffic flow and the number of vehicles causing

congestion.Assuming that traffic patterns are reasonably consistent over time. When the

model has learned the traffic patterns based on previous patterns it will be able to predict

traffic patterns more accurately in the future.

2.2.1 Types of Machine Learning

Based on the idea of learning, machine learning tasks can be classified into three general

classifications [44].

Supervised Learning

Supervised learning is a category of machine learning algorithms that develops the re-

lation between inputs and outputs based on a given dataset of training samples [14]. The

input-output pair of training samples are also known as labeled training data as the output

is considered as the label of the input data. An artificial system is developed in super-

vised learning which learns the mapping between input and output based on training data.

Then this artificial system predicts the output of new input data based on the learning from

training data. Haykin [17] referred supervised learning as the learning with a teacher. The

most widely recognized form of supervised learning is classification. Naı̈ve Bayes, deci-

sion tree, k nearest neighbor, neural network and support vector machine (svm) are popular

7

2.2. MACHINE LEARNING

classification algorithms.

For example, a supervised machine learning model can be developed to assign bug

reports to the appropriate developers to fix the bugs [1]. In this system, the input files are

bug reports, which are text files. Bug reports contain different information such as the bug

report title, the description of the bug, comments, and the ID of the developer who solved

the bug. Bug reports which are already solved are called RESOLVED bug reports. A

RESOLVED bug report contains the ID of the developer who has solved the issue reported

in that bug report. Developer IDs mentioned in the bug reports may be used as labels or

classes to develop a supervised machine learning model. The trained model will then assign

bug reports to appropriate developers for new bug reports that are submitted [1].

Figure 2.1: Supervised learning model [51]

Figure 2.1 shows the steps of the supervised learning model.

8

2.3. DATA

Unsupervised Learning

In unsupervised learning there are no labels attached to the data. The learning algorithm

must identify any structure or pattern in the input data. The principal objective of unsuper-

vised learning is to find unknown structures in the data. This is known as feature learning.

Clustering is the most well-known form of unsupervised learning.

For example, the input dataset of bug reports may not contain the RESOLVED bug

reports [1]. That means there may be no bug reports with the developer ID who has solved

the issues. In this case, there will be no label. For this scenario, a machine learning model

may create clusters of developers such as cluster1, cluster2 and analyze a new bug report

and the model then assign a report to a cluster.

Reinforcement Learning

Reinforcement learning is another category of machine learning. A reinforcement learn-

ing algorithm maps what to do and how to do it while maximizing rewards. The difference

between supervised learning and reinforcement learning is that in supervised learning, the

training data has the answer key with it, so the model is trained with the correct answer

whereas in reinforcement learning, there is no answer, but the reinforcement agent decides

what to do to perform the given task. Without a training dataset, it will learn from its

experience. The objective of unsupervised and reinforcement learning is different. The

goal of unsupervised learning models is to determine any hidden structure in the input data

whereas reinforcement learning knows its expected reward in the beginning and takes ac-

tion to achieve that reward or goal. Learning to play chess is an example of reinforcement

learning [47]. In a chess game, the final reward is already known, which is to checkmate

the opponent. The two most essential characteristics of reinforcement learning are trial and

error search and delayed reward [53].

9

2.3. DATA

2.3 Data

Data are the facts or details from which information is derived. In general, we use the

following terms:

Data: Data are raw values which represent something specific, yet which are not organized

and give no additional information in regards to context and pattern.

Information: Information is structured data with meaning. Therefore, information hence

paints a more meaningful picture; it is data with importance and reason [2].

For example, there are 26 letters in the English alphabet: a to z. The characters i, d, b, r

are data. However, those data have no meaning. When a word “bird” is created with these

characters, then it has meaning. So the word “bird” is the information.

Knowledge: “Knowledge is a fluid mix of framed experience, values, contextual informa-

tion, expert insight, and grounded intuition that provides an environment and framework

for evaluating and incorporating new experiences and information. It originates and is ap-

plied in the mind of the knowers. In organizations, it often becomes embedded not only in

documents or repositories but also in organizational routines, practices, and norms”[4]. In

other words, information with experience, judgement, and skill is known as knowledge.

Machine learning algorithms require data. Machine learning approaches process the

data into information and then build knowledge based on the retrieved information. Knowl-

edge gained from the training data set is then used to make decisions based on real-world

data.

For instance, bug reports contain different information such as the bug report title, the

description of the bug, the comments, and the ID of the developer who solved the bug [1].

There can be a bug report having a description, “The program is crashing”. Here, “The

program is crashing” is data. Suppose developer 1 is the ID of the developer who has

resolved this issue. Then the derived information is that the bug “The program is crashing”

is resolved by developer 1. The machine learning model for assigning bug reports to the

appropriate developers may assign any bug having the words “program” and “crashing”

10

2.3. DATA

together in a sentence to developer 1. This is the knowledge gained by the model based on

data and information.

Some standard terms are used to represent different aspects of data [44]:

Instance: A row of a data table is known as instance and it consists of features or

attributes.

Feature: A column of a data table is called a feature or an attribute.

Feature Vector: A vector that stores the feature values of an instance is known as

feature vector.

Table 2.1 shows an example of ten days of observation of weather conditions. In this

table the features (attributes) are weather, temperature, humidity and wind. There are 10

instances in Table 2.1 listing the weather conditions of 10 days. The feature vector for day

1 (or the 1st instance) is [Sunny, Hot, High, Weak].

Table 2.1: Ten days observation of weather conditions.

Day Weather Temperature Humidity Wind Play?
1 Sunny Hot High Weak No
2 Cloudy Hot High Weak Yes
3 Sunny Mild Normal Strong Yes
4 Cloudy Mild High Strong Yes
5 Rainy Mild High Strong No
6 Rainy Cool Normal Strong No
7 Rainy Mild High Weak Yes
8 Sunny Hot High Strong No
9 Cloudy Hot Normal Weak Yes
10 Rainy Mild High Strong No

Machine learning algorithms require datasets as input. A dataset is an accumulation

of related data. For example, the collection of bug reports in a single file is a dataset. In

machine learning applications, datasets are usually partitioned into two subsets:

1. Training Dataset: A collection of data that is used as input to a supervised machine

learning algorithm to train the machine learning model is known as a training dataset.

11

2.3. DATA

2. Testing Dataset: A collection of data used to measure the accuracy of a supervised

machine learning model is known as a testing dataset.

Suppose, in the bug assignment example, 80% of the bug reports can be used to train

the system, while the other 20% may be used to test the system.

2.3.1 Data Preparation Plan

Data are required to train and evaluate a proposed system. The data preparation plan

elaborates on the procedures for collecting data. Data preparation affects the reliability of

predictions. So, it is essential to process and arrange the data correctly in order to have

reliable predictions from a machine learning model. There are four stages associated with

preparing a dataset for use with a machine learning algorithm.

1. Collect data: From available sources, collect data for the proposed system. For

instance, bug reports may be collected from Bugzilla, which is an open-source bug

repository of Mozilla.

2. Choose data: Choose data that is relevant to the problem. Selecting data that are

not relevant to the problem may hamper the training of the learning model. For

example, there are different statuses of bug reports such as NEW, RESOLVED, and

VERIFIED [1]. For the bug assignment problem, only the RESOLVED bug reports

are considered as these bug reports contain the developer ID who has solved the issue.

Bug reports having other statuses are filtered out.

3. Process data: After selecting the data, the next steps are to format, clean and sample

the data.

Step 1 is to format the data. The raw data which has been gathered from various

sources may not be in a useful configuration for use by the machine learning algo-

rithm. The data may need to be formatted according to the needs of the machine

learning algorithm.

12

2.3. DATA

For example, an input file may contain the bug reports for the bug assignment system,

each of which are text descriptions. A machine learning algorithm is not capable of

working with text data. The necessary data must be converted to a format such as

integers, strings or other compatible formats for machine learning algorithms in an

array or vector.

Step 2 is to clean the data. There might be some missing or incomplete data in the

raw dataset. Also, there might be different forms of the same data which need to be

mapped to the original form. A process might be necessary to fix the missing data or

remove the incomplete data or map all the different forms of data to the original form

to make the dataset consistent and helpful for the issue being addressed.

For instance in the bug report example, there might be many spelling mistakes. Some-

times people will write “cannot run” or “can not run” or “can’t run”. These are the

same messages, so these strings must be updated to “can not run” so that the machine

learning model can identify that all of the messages are conveying the same message.

This is a way to clean the data.

Step 3 is to sample the data. There might be more data available than is required.

The use of more data will increase the running time and memory requirements of

the learning approach. It may be appropriate to use a reduced dataset which will

represent the input dataset. This is called sampling.

For instance, suppose there are 10000 bug reports in the dataset. Instead of taking

10000 bug reports, a subset consisting of 4000 bug reports may be used to train the

model and predict the developers for bug reports. If the subset (4000 bug reports)

was chosen carefully the trained model will be able to predict developers for the

entire dataset (10000 bug reports). This is called data sampling.

4. Transform data: The last step of data preparation is to transform the data. The

data must be changed according to the requirements of the learning algorithm and the

13

2.4. CLASSIFICATION ALGORITHMS

knowledge of the problem domain. Scaling, feature aggregation, and feature decom-

position are the most fundamental transformation techniques. Scaling is performed

to convert every feature value into a similar scale in the preprocessed data. Some-

times multiple features in the preprocessed data are aggregated into a single feature

to be efficient for the machine learning model. This procedure is known as feature

aggregation. Alternatively, to make the machine learning model more productive, a

complex feature may be required to be divided into multiple features. This method is

called feature decomposition.

For example, the bug report data can be stored in arrays or vectors. After removing

the stop words, there will be words that convey a message. During the process of

text mining, the nonessential words that are removed from a sentence are called stop

words [16]. For example, there can be a bug report having a description, “The pro-

gram is crashing”. After removing the stop words from “The program is crashing”,

“program” and “crashing” will be in the array. Bug reports which are already solved

by a developer will have the ID of the developer. The machine learning model for

this problem will be trained on RESOLVED bug reports. A feature vector must be

created, consisting of the list of words after removing the stop words. The numeric

feature value of a word is determined by dividing the frequency of a word in the

dataset by the total number of words in the dataset. In this way, the numeric feature

values of all the words in the dataset will be in the same range which is known as

data scaling.

2.4 Classification Algorithms

The process which predicts the class of data is known as classification. Classification

algorithms are also known as classifiers. A classifier learns from training data about how a

new data relates to any class. Classification algorithms are widely used in machine learning.

The machine learning approaches which we used to build our models are discussed below.

14

2.4. CLASSIFICATION ALGORITHMS

2.4.1 Decision Tree

The decision tree algorithm is one type of supervised learning algorithm. The primary

goal of the decision tree algorithm is to provide a model that learns straightforward decision

rules. The value of a leaf node is predicted using rules which are inferred from the feature

data. A vector of feature values is provided as input in the decision tree and the output is a

single value.

A greedy approach is used in the decision tree to partition the instances into distinct

classes. In the tree, interior nodes are the features or attributes. The values of the features

or attributes are labelled on the branches starting from the nodes. Each level of the tree

splits the data while each leaf node has a specific value. Based on the entropy, the decision

tree partitions the dataset into subsets. The purpose of the entropy is to determine the best

attribute from the set of attributes. The entropy of an attribute can be calculated using the

following equation [47]:

E(S) =
c

∑
i=1
−Pi log2 Pi.

Here, Pi is the frequency probability of an attribute for class “i”. Entropy of two vari-

ables can be computed using [47]:

E(S,T) = ∑
i∈T

PiEi.

Where Ei is the entropy of an attribute “i”. The best attribute to use for an internal

node can be found using information gain. The difference between the original information

requirement and the new information requirement is known as information gain [29]. The

equation of information gain is as follows:

Gain(S,T) = Entropy(S)−Entropy(T)

Information gain is determined based on how much information an attribute can obtain

about the class label. The higher the value of information gain of an attribute, the more rel-

15

2.4. CLASSIFICATION ALGORITHMS

evant it is for the classification. For every subset, this procedure is repeatedly implemented.

This is known as a recursive partition. The recursive procedure stops when all the nodes of

a subset have the same value as the target variable.

For example [13], using a decision tree we might decide whether we want to play bad-

minton on a specific day. The decision to play or not will depend on the weather, humidity,

and wind.

Table 2.1 in Section 2.3 shows the previous ten days of weather observations. We are

not considering temperature for this example. The decision of whether to play or not can

be made using this table. However, it will be difficult to decide if none of the rows of the

table matches the condition of the day in question. This decision can be reached with the

help of a decision tree based upon the information considered most relevant.

Decision tree is used for classification. The last column of table 2.1 is “Play?” which

represents the class Yes and No.

Entropy needs to be computed to find the root node. Table 2.2 shows the frequency of

the classes (Yes and No).

Table 2.2: Frequency of the classes (Yes and No)

Play
Yes No
5 5

The entropy of column Play is:

E(Play) = E(5,5)

=−(5
10
· log2

5
10

)− (
5
10
· log2

5
10

)

= 1

For other attributes such as Weather, Humidity, and Wind, entropy needs to be calcu-

lated after each split. Table 2.3 shows the frequency of Yes and No for Play depending on

16

2.4. CLASSIFICATION ALGORITHMS

Weather.

Table 2.3: Frequency of Yes and No for Play depending on Weather

Weather Play Total
Yes No

Sunny 1 2 3
Cloudy 3 0 3
Rainy 1 3 4

E(Play, Weather) can be calculated as follows:

E(Play,Weather) = P(Sunny) ·E(Sunny)+P(Cloudy) ·E(Cloudy)+P(Rain) ·E(Rain)

(2.1)

Now the entropy of Sunny is:

E(Sunny) = E(1,2)

=−(1
3
· log2

1
3
)− (

2
3
· log2

2
3
)

= 0.918

Then, the entropy of Cloudy is:

E(Cloudy) = E(3,0)

=−(3
3
· log2

3
3
)− (

0
3
· log2

0
3
)

= 0

17

2.4. CLASSIFICATION ALGORITHMS

And, the entropy of Rainy is:

E(Rainy) = E(1,3)

=−(1
4
· log2

1
4
)− (

3
4
· log2

3
4
)

= 0.811

Replacing the values of E(Sunny), E(Cloudy) and E(Rainy) in equation 2.1:

E(Play,Weather) = (
3

10
·0.918)+(

3
10
·0)+(

4
10
·0.811)

= 0.599

Table 2.4 shows the frequency of Yes and No for Play depending on Humidity.

Table 2.4: Frequency of Yes and No for Play depending on Humidity

Humidity Play Total
Yes No

High 3 4 7
Normal 2 1 3

E(Play, Humidity) can be calculated as follows:

E(Play,Humidity) = P(High) ·E(High)+P(Normal) ·E(Normal) (2.2)

Now the entropy of High is:

E(High) = E(3,4)

=−(3
7
· log2

3
7
)− (

4
7
· log2

4
7
)

= 0.985

18

2.4. CLASSIFICATION ALGORITHMS

Then, the entropy of Normal is:

E(Normal) = E(2,1)

=−(2
3
· log2

2
3
)− (

1
3
· log2

1
3
)

= 0.918

Replacing the values of E(High) and E(Normal) in equation 2.2:

E(Play,Humidity) = (
7
10
·0.985)+(

3
10
·0.918)

= 0.965

Table 2.5 shows the frequency of Yes and No for Play depending on Wind.

Table 2.5: Frequency of Yes and No for Play depending on Wind

Wind Play Total
Yes No

Weak 3 1 4
Strong 2 4 6

E(Play, Wind) can be calculated as follows:

E(Play,Wind) = P(Weak) ·E(Weak)+P(Strong) ·E(Strong) (2.3)

Now the entropy of Weak is:

E(Weak) = E(3,1)

=−(3
4
· log2

3
4
)− (

1
4
· log2

1
4
)

= 0.811

19

2.4. CLASSIFICATION ALGORITHMS

Then, the entropy of Strong is:

E(Strong) = E(2,4)

=−(2
6
· log2

2
6
)− (

4
6
· log2

4
6
)

= 0.918

Replacing the values of E(Weak) and E(Strong) in equation 2.3:

E(Play,Wind) = (
4

10
·0.811)+(

6
10
·0.918)

= 0.875

Information gain after splitting using the Weather attribute is given by:

Gain(Play,Weather) = E(Play)−E(Play,Weather)

= 1−0.599

= 0.401

After splitting using the Humidity attribute, information gain is given by:

Gain(Play,Humidity) = E(Play)−E(Play,Humidity)

= 1−0.965

= 0.035

20

2.4. CLASSIFICATION ALGORITHMS

Information gain during the split using the Wind attribute is as follows:

Gain(Play,Wind) = E(Play)−E(Play,Wind)

= 1−0.875

= 0.125

Information gain of Weather is the maximum after the split among all the attributes. For

that, Weather is the root node. Figure 2.4 shows the tree after first split.

Figure 2.2: Decision tree after the first split.

From figure 2.6 we can see that, we have one leaf node. This leaf node is generated

from Cloudy as it only corresponds to Yes class. The tree needs to be split further using

Sunny and Rainy attributes.

Sunny attribute can be split using Humidity or Wind. Table 2.6 shows the sub table for

Sunny.

Table 2.6: Sub table for Sunny attribute.

Weather Humidity Wind Play?
Sunny Normal Strong Yes
Sunny High Weak No
Sunny High Strong No

From table 2.6, we can see that Sunny can be split using Humidity as it creates a ho-

21

2.4. CLASSIFICATION ALGORITHMS

mogeneous group. When Humidity is Normal, the class is Yes and when humidity is High,

the class value is No. Wind can not be used for splitting Sunny, as Wind have not created

homogeneous group. Figure 2.4 shows the tree after splitting using Humidity.

Figure 2.3: Decision tree after split using Humidity attribute.

Same procedure can be applied to split Rainy attribute. Rainy attribute can be split using

Humidity or Wind. Table 2.7 shows the sub table for Rainy weather.

Table 2.7: Sub table for Rainy attribute.

Weather Humidity Wind Play?
Rainy High Weak Yes
Rainy Normal Strong No
Rainy High Strong No

We can see from table 2.7, Rainy can be split using Wind as it creates a homogeneous

group. When Wind is Weak, the class is Yes and when Wind is strong, the class value is

No. Figure 2.4 shows the final decision tree after splitting using Wind.

2.4.2 Naı̈ve Bayes

The naı̈ve Bayes approach is the most straightforward machine learning algorithm. Like

other machine learning algorithms, this model also uses feature values. Based on instances,

the feature values are created. An instance is one complete row of the data table containing

22

2.4. CLASSIFICATION ALGORITHMS

Figure 2.4: Final decision tree.

all the attribute values. For example, one bug report is an instance in the data set containing

500 bug reports. Class labels are also used in this approach. The naı̈ve Bayes approach

is composed of a group of algorithms based on a common principle. The naı̈ve Bayes

classifiers expect that values of the attributes are independent of one another. Unlike other

machine learning approaches, the benefit of naı̈ve Bayes is that this approach can estimate

the parameters which are essential for classification from a small amount of training data.

The probability of the features or attributes in a naı̈ve Bayes model is processed utilizing

Bayes’ theorem. The conditional probability of Bayes’ theorem can be expressed as follows

[35]:

Here,

• p(Ck|x) = the probability of an instance x belonging to a class Ck,

• p(x|Ck) = the probability of x given that the class is Ck,

23

2.4. CLASSIFICATION ALGORITHMS

• p(Ck) = the prior probability of class Ck, and

• p(x) = the probability that an instance x will be observed within the population of all

programs.

Table 2.1 in Section 2.3 lists the weather conditions. The attributes of Table 2.1 are

weather, temperature, humidity, and wind. Using naı̈ve Bayes, we may determine whether

we will play badminton on a specific day or not.

• The estimate of the weather being sunny given that we are playing badminton is

P(sunny|p) = 1
5 .

• The estimate of the weather being sunny given that we are not playing badminton is

P(sunny|n) = 2
5 .

• In the same way, for cloudy weather, P(cloudy|p) = 3
5 ,

and P(cloudy|n) = 0
5 .

• For rainy weather, P(rainy|p) = 1
5 and P(rainy|n) = 3

5

• The estimate of the temperature being hot given that we are playing badminton is

P(hot|p) = 2
5 .

• The estimate of the temperature being hot given that we are not playing badminton is

P(hot|n) = 2
5 .

• If the temperature is mild, P(mild|p) = 3
5 and P(mild|n) = 2

5 .

24

2.4. CLASSIFICATION ALGORITHMS

• In the same manner, for cool temperature, P(cool|p) = 0
5

and P(cool|n) = 1
5 .

• The estimate of humidity being high given that we are playing badminton is

P(high|p) = 3
5 .

• The estimate of humidity being high given that we are not playing badminton is

P(high|n) = 4
5 .

• For normal humidity, P(normal|p) = 2
5 and P(normal|n) = 1

5 .

• The estimate of playing with weak wind is P(weak|p) = 3
5 .

• The estimate of not playing with weak wind is P(weak|n) = 1
5 .

• For strong wind, P(strong|p) = 2
5 and P(strong|n) = 4

5 .

• Thereg probability of playing is P(p) = 5
10 = 1

2 .

• The probability of not playing is P(n) = 5
10 = 1

2 .

• Now suppose there is a new instance, X =< rain,hot,high,weak >. Then the proba-

bility of sample X being classified as playing is:

P(X |p) ·P(p) =
P(rainy|p) ·P(hot|p) ·P(high|p) ·P(weak|p) ·P(p)

P(X)
(2.4)

• The probability of sample X being classified as not playing is:

P(X |n) ·P(n) = P(rainy|n)(hot|n) ·P(high|n) ·P(weak|n) ·P(n)
P(X)

(2.5)

25

2.4. CLASSIFICATION ALGORITHMS

P(X) is common in both probabilities of playing and the probability of not playing.

For that, we can ignore P(X) and calculate the proportional probabilities using equa-

tion 2.4 and 2.5.

P(X |p) ·P(p) = P(rainy|p) ·P(hot|p) ·P(high|p) ·P(weak|p) ·P(p)

=
1
5
· 2

5
· 3

5
· 3

5
· 1

2

= 0.0144

P(X |n) ·P(n) = P(rainy|n)(hot|n) ·P(high|n) ·P(weak|n) ·P(n)

=
3
5
· 2

5
· 4

5
.
1
5
· 1

2

= 0.0192

These numbers can be converted to probability by making the sum equal to 1 since

P(X |p) ·P(p)+P(X |n) ·P(n) = 1.

P(X |p) ·P(p) =
0.0144

0.0144+0.192

= 0.43

P(X |n) ·P(n) = 0.0192
0.192+0.0144

= 0.57

26

2.4. CLASSIFICATION ALGORITHMS

Since P(X |n) ·P(n) > P(X |p) ·P(p) or 0.57 > 0.43, sample X will be classified as not

playing. So, when the weather is rainy, the temperature is hot, humidity is high, and the

wind is weak, we predict that there will be no playing of badminton.

2.4.3 Random Forest

Random forest is a collection of decision trees. The decision trees in the forest are

created using random data samples of the original dataset. This approach is known as

random forest because samples of data are selected randomly from the dataset to create the

decision trees to build the forest [23].

Random forest is an ensemble method. The machine learning approach that merges

multiple instances of base classifier to construct a predictive model is known as an ensem-

ble method [20]. The decision tree is the base classifier for the random forest. Multiple

instances of base classifier are built using a decision tree by training the models with the

help of different samples of data and different samples of features. For every instance of

base classifier, sample data (subset of data) are taken from the original dataset, with the data

samples being different for each instance of base classifier. Every instance of base classifier

has different data samples to train the classifier. Also, different feature samples are col-

lected for each instance of classifier from the original feature set. Thus all the instances

of base classifier models or decision trees are built based on their data samples and feature

samples. When test data is evaluated using the random forest, all the decision trees pro-

duce the classification result. For a binary classification problem, majority voting is used

to derive the outcome. For continuous values, the average of the decision trees’ outcomes

is taken as the final classification result of the random forest [23]. Random forest shows

lower variance than the decision tree. It also tends to show fewer errors during prediction

for test data than the decision tree.

Figure 2.5 is showing an example of a random forest. It shows that the n data and fea-

ture samples (SD1 : SF1,SD2 : SF2, ...SDn : Sn) are created from an original training dataset

27

2.4. CLASSIFICATION ALGORITHMS

Figure 2.5: Random forest

(OTD). Multiple instances of decision tree classifiers (DT1,DT2,DTn) make predictions

(P1,P2,Pn) using the sample datasets and feature sets (SD1 : SF1,SD2 : SF2, ...SDn : Sn).

Next, the predicted results go through a voting procedure. The highest voted or ranked

predicted result is considered the final prediction.

2.4.4 K Nearest Neighbor Algorithm

K nearest neighbor (KNN) is one of the most popular machine learning approaches.

A point m is assigned to a class with the most similar points within K nearest to m in the

training set [3]. The nearest point is evaluated based on distance. The most commonly

used distance function in KNN is Euclidean distance. Equation 2.6 shows the formula for

Euclidean distance [14].

Distance =

√
n

∑
i=1

(xi− yi)2 (2.6)

Here n is a positive integer representing the number of samples in the dataset. When

K = 1 in KNN, the new data point is assigned to the class of that single nearest neighbor.

The function is locally evaluated, and until the classification, every one of the calculations

is carried out slowly. To make the algorithm increasingly proficient and successful, it is

valuable to assign weight to the contribution of neighbors. By assigning weights, the nearest

neighbor will contribute more than a distant one.

For example, we have a training dataset displayed in Table 2.8.

Assume that there is a new data point X = 6 and Y = 9. Using KNN with K = 3, we

can determine the class of the new data point.

28

2.4. CLASSIFICATION ALGORITHMS

Table 2.8: Training data for KNN.

X Y Class
1 2 0
4 5 0
7 8 1
10 11 1
13 15 1

The first point of the training set is (1,2). The Euclidean distance between (1,2) and

(6,9) can be calculated using the following steps:

SquaredDifference1 = (X1−X2)
2

SquaredDifference2 = (Y1−Y2)
2 (2.7)

or

SquaredDifference1 = (6−1)2 = 25

SquaredDifference2 = (9−2)2 = 49 (2.8)

Summation of the squared differences is:

SumSquaredDifference = SquaredDifference1 +SquaredDifference2

SumSquaredDifference = 25+49 = 74 (2.9)

To find the distance, we need to find the square root of SumSquaredDifference:

Distance =
√

SumSquaredDifference

Distance =
√

74

Distance = 8.60 (2.10)

29

2.4. CLASSIFICATION ALGORITHMS

The distances between the new data point and the data points in the training dataset are

listed in Table 2.9.

Table 2.9: Distance from training data to new data.

X Y Class Distance
1 2 0 8.60
4 5 0 4.47
7 8 1 1.41
10 11 1 4.47
13 15 1 9.21

Suppose that we take three nearest neighbors for K = 3. The three nearest neighbors of

the new point (6,9) are listed in Table 2.10.

Table 2.10: Three nearest neighbors of new point (6,9).

X Y Class Distance
4 5 0 4.47
7 8 1 1.41
10 11 1 4.47

For binary classification, K must be an odd number in K-nearest neighbor so that there

can not be a tie in the voting of nearest neighbors. In our example, among the three nearest

neighbors, two are from class 1 and the other is from class 0. By using majority voting, the

new data point (6,9) is classified in class 1.

KNN can be used for multi-class (more than two classes) classifications. For multi-class

classification, the value of K can be any positive odd integers. For binary classification, the

majority vote is used. But for multi-class classification, the plurality voting is considered

[47]. In the majority voting, one class needs to have more than half of the vote. However,

in the plurality voting, the classifier having the most votes is considered as the winner. If a

tie occurs during the voting, then the new input data can be randomly classified into one of

the classes, which got majority votes in the tie. Apart from random selection, K’s value can

be changed dynamically until one class gets the majority votes [3].

30

2.4. CLASSIFICATION ALGORITHMS

2.4.5 Logistic Regression

Logistic regression is a prominent machine learning approach for binary classification.

It is a predictive analysis algorithm, as it predicts based on probability [24].

Logistic regression uses a statistical function called a logistic function. This function

can map any real values within 0 and 1. The formula of the logistic function is given below

[24]:

y =
1

1+ e−x (2.11)

Here,

• y = predicted output (a value between 0 and 1),

• e = base of the logarithm, and

• x = numerical values that need to be transformed between 0 and 1.

The formula used in logistic regression is as follows:

y =
eB0+B1×x

1+ eB0+B1×x (2.12)

where

• x = the vector of all of the scaled features,

• y = predicted output,

• B0 = bias or intercept term, and

• B1 = coefficient for single input value.

The coefficient values (B) for input data (x) are learned from the training data. Max-

imum likelihood estimation is used to estimate these coefficients. Maximum likelihood

estimation is commonly used in various machine learning approaches. In binary classifica-

tion, a coefficient value close to 1 would identify one class, and the coefficient value close

to 0 (less than 0.5) would identify the other class [24].

31

2.4. CLASSIFICATION ALGORITHMS

Suppose a model can predict whether a computer programmer is an expert (probability

greater or equal to 0.5) or a beginner (probability less than 0.5) based on the length of the

computer program written by the programmer. Assume that there is a computer program

with 200 lines. We also assume that the coefficients B0 = -50 and B1= 0.5 are learned from

the training data. Then the probability that the computer programmer is an expert given the

length of the program is 200 or more lines can be calculated using equation 2.12

y =
e−50+0.5×200

1+ e−50+0.5×200 = 0.73 (2.13)

As the value of y = 0.73 is greater than 0.5, we can predict that the programmer is an

expert. On the other hand, if the probability were to be less than 0.5, that would mean the

programmer is likely a beginner.

2.4.6 Bagging Classifier

A bagging classifier is an ensemble method. Bagging is the acronym of bootstrap aggre-

gating [5]. A bagging classifier creates multiple predictors using a base classifier (Decision

Tree). These predictors are the multiple instances of base classifier. To create n predictors,

the original dataset is sampled n times. The n predictors are trained using the n samples

of the datasets. Next test data is classified using the n predictors. Finally, the prediction is

aggregated using voting or averaging. Developing n models or predictors using a sample

dataset is called bootstrap, and voting to get the final prediction is known as aggregating.

Random forest is also an ensemble method where the base classifier is a decision tree by

default. In a random forest, both data and features are sampled to train the instances of

base classifiers. However, in the bagging classifier, the base classifier can be any machine

learning algorithm. Also, only data are sampled to train the multiple instances of base

classifier.

Figure 2.6 illustrates the working procedure of the Bagging classifier. It demonstrates

that the original training dataset (OTD) randomly creates n sample datasets (SD1,SD2,SDn).

32

2.5. EVALUATION OF MACHINE LEARNING ALGORITHMS

Figure 2.6: Bagging classifier methodology.

Then models (predictors) are trained using the sample datasets. Next the predictors (Pr1,Pr2, ...Prn)

make predictions (P1,P2, ...Pn) using the sample datasets (SD1,SD2,SDn). Finally, the

predicted results are combined using voting. The highest voted or ranked result is consid-

ered the final prediction.

2.5 Evaluation of Machine Learning Algorithms

Evaluation of the machine learning model is vital. Techniques to evaluate a machine

learning approach are described below.

2.5.1 Holdout Method

In the holdout method, the dataset is partitioned into two sets (training and testing) inde-

pendent of each other. The training set is used to train and develop the learning model. The

learning models are evaluated by testing them using the test set. The test set is independent

of the training set. The split of data between the training set and test set can be of variable

percentage [22].

It is beneficial to use the holdout method when there is a constraint of resources. The

holdout method requires less computational power and time to execute as it splits the dataset

once. However, due to a lack of data (not entire dataset), the performance evaluation is

subject to higher variance. The training partition may contain more data of one class label

than another, which can make the model biased towards the class which has more data. This

drawback (being biased) can be overcome by using the cross-validation method [11].

33

2.5. EVALUATION OF MACHINE LEARNING ALGORITHMS

2.5.2 Cross-Validation

In this method, a dataset is divided into many folds where each fold contains the same

number of data items [26]. If there are n folds, then a machine learning model will be

trained using n−1 folds and tested using the remaining fold. This will repeatedly happen

n times. Each time a different fold is used for testing. Accuracy is measured by taking the

average of all the iterations.

The cross-validation method overcomes the drawback of the holdout method. Models

are trained and tested using all of the data in n iterations. There is no possibility of bias

towards a class using a cross-validation method. During the cross-validation method, data

are split into n sets and models are trained in each iteration using n− 1 sets and models

are tested using remaining 1 set. As there are n iterations, models are trained and tested n

times. Due to this, cross-validation requires more computational cost and time to execute

than the holdout technique.

2.5.3 Performance Measurement

The performance measurement of a machine learning model is essential to assess the

accuracy of the solution. Performance measures are used to assess how well the model

performs. There are standard performance measurement units to measure the efficiency of

a learning model, including accuracy, precision, recall and F-measure [22], [18].

A model’s performance can also be measured using a confusion matrix. The confusion

matrix shows how well a classifier correctly classifies samples according to their classes.

A function defined in Python (confusion matrix()) can be used to calculate the confusion

matrix in the format shown in Table 2.11.

Here, the dimension of the confusion matrix is n×n where n is the number of classes.

Confusion matrix contains the values of TN, FP, FN and TP. For convenience, we have

added the row and the column headings as well as the last column (N, P) and last row (N’,

P’, P+N) with the matrix to show the row and column totals. In our work there are two

34

2.5. EVALUATION OF MACHINE LEARNING ALGORITHMS

Table 2.11: Confusion matrix

Expertise Beginner
(Predicted)

Expert
(Predicted)

Total

Beginner
(Actual)

TN FP N

Expert
(Actual)

FN TP P

Total N’ P’ P+N

classes: expert and beginner. Expert-written programs are considered positive samples and

beginner-written programs are treated as negative samples. The notations TP, TN, FP, FN,

P, N, P’, N’ shown in Table 2.11 are explained as follows:

• True positive (TP) are positive samples that are correctly classified as positive by the

model. In Table 2.11, true positive refers to the expert-written programs which are

predicted as expert-written.

• True negative (TN) are negative samples that are correctly classified as negative by

the model. In Table 2.11, true negative indicates the beginner-written programs which

are identified as beginner-written.

• False positive (FP) are negative samples that are misclassified by the model as posi-

tive samples. In our work false positive refers to the beginner-written programs which

are misclassified as expert-written.

• False negative (FN) are positive samples that are misclassified by the model as neg-

ative samples. In Table 2.11, expert-written programs which are misclassified as

beginner-written are considered false negatives.

In Table 2.11, P refers to the total number of actual positive samples, N indicates the total

number of actual negative samples, P’ specifies the number of predicted positive samples

(P’=TP+FP) and N’ is the number of predicted negative samples (N’=TN+FN). Accuracy,

precision, recall and F-measure can be described based on the confusion matrix as follows:

35

2.5. EVALUATION OF MACHINE LEARNING ALGORITHMS

• Accuracy is the number of instances (as a percentage) that are classified accurately

by the machine learning model. The accuracy of a model can be calculated as:

Accuracy =
T P+T N

P+N
(2.14)

• Precision measures the fraction of relevant instances among all the predicted in-

stances. Precision can be determined using the following equation:

Precision =
T P

T P+FP
(2.15)

• Recall is the percentage of correctly classified positive data instances. Using the

following formula, recall can be computed as

Recall =
T P

T P+FN
=

T P
P

(2.16)

• F-measure is the harmonic mean of precision and recall [22]. To measure F-measure,

both precision and recall are required. F-measure is calculated as

F−measure =
2×Precision×Recall

Precision+Recall
(2.17)

Accuracy is the preferred measure when the dataset is balanced, and F measure is the

better measurement when the dataset is imbalanced [15]. As an example of how the metrics

may be used, suppose a phrase “machine leaning” is searched in a search engine. The

engine may return 50 web pages where 20 of them are relevant. In this case, TP = 20 and

FP = 30. Then we might say that the precision is:

Precision =
T P

T P+FP
=

20
20+30

= 0.4

36

2.6. PYTHON

The search engine may return 60 relevant pages of machine learning where the search

phrase “machine learning” is not present. Here, TP = 20 and FN = 60. The recall will

be:

Recall =
T P

T P+FN
=

20
20+60

= 0.25

The F-measure can be calculated using the precision and recall:

F−measure =
2×Precision×Recall

Precision+Recall

=
2×0.4×0.25

0.4+0.25

= 0.31 (2.18)

2.6 Python

Python is a programming language and data analysis tool. It is an open-source, object-

oriented programming language. Machine learning algorithms can be implemented using

different programming languages such as C, C++, R, Javascript, and Python. However,

Python tends to be preferred as it is an open-source programming language and has a vast

library of packages available. A few of the Python libraries that we used are described in

Appendix A.

2.6.1 Feature Selection

Computer programs are text files. For machine learning these files must be represented

using numeric feature values. All the features present in the dataset may not be significant,

and the inclusion of non-significant features may lead to a time-consuming learning process

as well as inferior results [18]. Thus selecting a relevant set of features is essential as it may

make the learning process faster. Also, using a small and relevant set of features may lead to

a better result compared to the result that used all available features [48]. To select the most

37

2.7. RELATED WORK

useful features we used two feature selection methods defined in Python. These methods

are as follows:

1. infogain: infogain is a statistical method that computes the information gain of fea-

tures with respect to the class. Information gain is determined using the difference

between the original information about the proportion of classes and the new infor-

mation based on the identified useful attributes. The following equation determines

the information gain [22], [56]:

In f oGain(Class,Attribute) = Entropy(Class)−Entropy(Class|Attribute) (2.19)

The information gain value is determined based on how much information an at-

tribute can obtain about the class label. Here information is the relevance between

the attribute and class label. The higher the value of information gain of an attribute,

the more relevant it is for the classification. Attributes that have higher values of

information gain are considered more useful, and this subset of original features can

enhance the performance of learning models.

2. selectkbest: This is a univariate feature selection method defined in scikit-learn

[41]. A univariate feature selection method evaluates each feature by determining

the strength of the relationship between a feature and the class variable. selectkbest

is defined using the univariate statistical test. The Chi-square test is performed in the

selectkbest method [54]. Scores are calculated for all the features depending on the

classes. Features with higher score values are considered to be more important for the

classification. This method returns the K highest scoring features among all features.

2.7 Related Work

Sociolinguistics is the study of language with social factors, including the differences in

region, class, and occupational dialect as well as gender differences [37]. Sociolinguistics

38

2.7. RELATED WORK

plays a vital role in analyzing differences in the use of natural languages based on social

variables [40], [28].

Existing studies show that machine learning can be used to determine the gender of

an author of a natural language text. Argamon et al. [48] investigated gender differences

in English literature. They experimented with English literature in the British National

Corpus (BNC), including books and articles in the BNC. The algorithm was used to train a

learning model on that literature. The resulting model was 90% accurate. The same group

of researchers later implemented a model using a support vector machine and applied this

to French literature [49]. The accuracy of that model was 90%.

Information about the influence of the author’s gender on computer programs was de-

termined by Naz and Rice [37] using machine learning techniques. Open-source imple-

mentations of machine learning algorithms were applied to C++ programs to retrieve the

information about the features affected by the author’s gender. M. M. H. Rafee [44] used

machine learning and statistical techniques to assess the impact of an author’s gender and

region on computer programs. In this study, the accuracy of the models in predicting the

author’s gender was 83.1%, and the accuracy in predicting the author’s region was 92.5%.

Coding style analysis is another way to identify the author of a computer program. This

type of analysis differentiates programs written by a particular author. This area of research

is also known as authorship analysis. Krsul et al. [27] used supervised and unsupervised

machine learning techniques to analyze the authorship of computer programs. They used

Gaussian Likelihood Classifiers and MLP Neural Networks to identify the author of a pro-

gram with more than 98% accuracy for a specific set of programmers. Steven et al. [6] used

statistical analysis to find the author of a program. They used the combination of n-grams

with text similarity measures to find the author of computer programs written using C. The

accuracy of their model for finding the original author was 67%.

Chris Piech et al. [42] presented a machine learning methodology based on K-Means

clustering to show the progress of how novice programmers work on their programming

39

2.8. SUMMARY

assignments. As well Qin et al. [43] developed a model to find the maturity of a software

project. In this study time series machine learning was implemented on the traits data

(commit, open-issue, closed-issue, contributor) of GitHub to develop the model.

2.8 Summary

Sociolinguistic characteristics can be analyzed using machine learning approaches. The

effect of sociolinguistic characteristics on the text document and computer program were

carried out on earlier research works. We have discussed the related research works and

background studies, including sociolinguistics, machine learning, data, and Python. The

next chapter will describe the required methodologies to categorize computer programs

based on the author’s programming experience.

40

Chapter 3

Methodology

In this chapter, we discuss data collection, transformation, and feature selection process. We

also illustrate the procedure to transform the text-based dataset into a numerical dataset. .

3.1 Data Collection

Data collection is a significant step towards classifying computer programs. We col-

lected computer programs from Codeforces.com and built a database containing computer

programs with sociolinguistic characteristics such as the author’s gender, and experience.

Codeforces.com is a programming contest website which holds contests on a regular basis.

Five problems are given in a contest, and contestants are required to solve them within two

hours. The score for submission depends on time and number of attempts. A contestant

gets a higher score when a problem is solved within a short time and with fewer submis-

sion attempts. Different programmers submit their solutions (i.e. computer programs) of

programming contest problems. Other users can access Codeforces.com to collect these

computer programs. Codeforces.com also stores identifying information of different pro-

grammers and their contributions. For this research, source code is essential as we want

to analyze the computer programs using a machine learning model to determine whether a

computer program is written by a beginner or an expert programmer.

3.1.1 Data Collection Process

Codeforces.com has an API [10] which facilitates the retrieval of user and submission

information. We retrieved the list of users who participated in a contest using the API. We

41

3.1. DATA COLLECTION

proceeded with the users whose country and gender information was available. For each

user, submission records were retrieved using the API.

Figure 3.1: Data collection process.

42

3.1. DATA COLLECTION

Unfortunately, the API did not facilitate collection of the programs. However, in a

user’s profile, there are several tabs which contain contests, groups and submissions for

that user. Programs are stored in the submission tab of a user’s profile. The source code of

a submission can retrieved by clicking on the submission id.

Programs were collected using two methods. The first method used the Selenium web

driver [10], which can open a user’s submission record in a web page and then open the

pop up by following the link embedded in the submission id. The submission page contains

different information on a submission such as submission number, time of submission, the

programming language used, problem name, verdict, and running time. The source code

could be retrieved from the pop-ups. If the submission id did not contain a link, then the

Selenium web driver could not retrieve the source code of that submission.

In the second method, a web link (URL) was manually created using the user and sub-

mission information. This method is used when the Selenium web driver was unable to

retrieve the source code, The program could be retrieved if this manually created URL lead

to a web page containing it.

The collected source code was added to the database, along with user and submission

information. For each user, 50 programs were added to the database. This number was

used because Codeforce.com returns 50 submissions for a user in one web page. During

dataset creation, each user’s number of programs got reduced from 50 because programs

written using C++ were only used. Also, each user’s number of programs reduced again as

the dataset got balanced over experience, gender, and region.

3.1.2 Drawbacks of the Data Source

While Codeforces.com provides the user data and computer programs that we required,

there are a few drawbacks to this data source:

Time required for collection

Collecting source code using the Selenium web driver is a time-consuming process.

43

3.2. DATASET CREATION

Sometimes the Selenium web driver encountered issues with processing the pop-ups. When

there is an issue, the pop-ups must be refreshed to complete the data collection process.

Also, the alternate method that constructs URL to obtain the source code sometimes did

not lead to a web page containing the source code. Therefore, time would be wasted to

create and visit the link without getting the source code.

Style restrictions

Codeforces contains a large number of programs. However, these programs are sub-

mitted for programming contests, which may not reflect “normal” coding. Contest coders

may not follow the style guidelines as the contestants’ main aim is to solve a problem in an

optimized manner.

Repeatability

The last drawback is that programs are retrieved from HTML pages. We may need

to change the data collection program developed for this if there are any changes in the

Codeforces website. For example, programs are stored in a pop-up, the link of which

is embedded in the submission id. If Codeforces.com ceases embedding the link in the

submission id, we will need to change our data collection program.

3.2 Dataset Creation

Dataset creation is a significant part of pursuing a sociolinguistic analysis of computer

programs using machine learning.

We have collected data from Codeforces to create a data repository for our research

work. Collected data are stored in our research repository using the CSV file format. The

CSV file containing the Codeforces data has 52263 rows. There are 45002 computer pro-

grams written in C++, 2703 programs written in Python, and 4558 programs written in

Java. These computer programs are written by programmers from 77 different countries.

The collected data contains 23 attributes [10], which are shown in Table 3.1.

All the attributes (fields) except Rating, Submission id, and Gender Probability are of

44

3.2. DATASET CREATION

Table 3.1: Attributes of the collected data from Codeforces.

Field Type
Handle String
First Name String
Last Name String
Gender String
Gender Probability Float
Country String
City String
Organization String
Contribution String
Rank String
Rating Int
Max Rank String
Max Rating Int
Registered String
Submission id Int
Source Code String
Programming Language String
Problem Name String
Participant Type String
Time String
Year Int
Month Int
Day Int

string type. Rating and Submission Id are of integer type, and Gender Probability is of float

type. The handle is a unique string denoting the user’s login id. First Name and Last Name

are the strings containing the user’s name. Gender defines whether the programmer is male

or female. The gender probability is given by an API named genderize.io that takes the first

name and returns the gender of the input name. It uses the number of instances they had for

that name and the number of names that were male or female. Gender probability contains

a float value ranging from 0.0 to 1.0. So a gender probability of 1.0 male means that for

the given name, 100% of their samples were male, and a gender probability of 0.8 female

means that 80% of people with that name were female and 20% were male. The country,

45

3.2. DATASET CREATION

city, and organization reflect the geographical information of the programmer. Contribution

shows a programmer’s contribution to the Codeforces community. A programmer can write

blogs and make comments in the Codeforces community. Other programmers can vote (like

or unlike) those blogs and comments. The value of the contribution field can be positive or

negative and is determined by considering votes (likes and unlikes) for a user’s blogs and

comments. An upvote (like) increases the contribution by 2 points and a downvote (unlike)

decreases the contribution by 1 point.

Rating is an integer type attribute that contains a value from 0 to 4000. Rating is cal-

culated based on the Codeforces.com rating system, which is close to the Elo rating [31].

The attribute Rank indicates the expertise of the programmer. Max Rank and Max Rating

stores the best rank and rating achieved by a programmer on the Codeforces.com web site.

These attributes are used to assess the expertise of a programmer. Registered defines the

time when a programmers joined Codeforces.

Submission information of a program is represented by Submission id, Source Code,

Programming Language, Participant Type, Time, Year, Month, Day. The participant type

denotes the role of the programmer. In Codeforces, a programmer can participate in a

contest and submit the source code of a problem of that contest. In this case, the participant

type is a contestant. Also, a programmer can solve any problems posted in Codeforces

and submit the source code. In this scenario, the programmer is considered as a problem

solver but not a contestant. Every submission has a unique submission id. The time of the

submission is broken into Time, Year, Month, and Day.

For our research, we are using 12 attributes from those listed in Table 3.1. The se-

lected attributes are listed in Table 3.2. Handle, first name, last name, and gender are the

user’s basic information. Gender probability is needed to determine the gender as gender

information is not available in Codeforces.com. The country represents the region of the

programmer. The attributes rank and rating can determine the programmer’s experience.

The fields submission id and problem name aid to identify duplicate entries. Programming

46

3.2. DATASET CREATION

Table 3.2: Selected attributes of the dataset.

Field Type
Handle String
First Name String
Last Name String
Gender String
Gender Probability Float
Country String
Rank String
Rating Int
Submission id Int
Source Code String
Programming Language String
Problem Name String

language is required as we are focusing on programs written using C++. In addition, the

field source code contains the computer program on which we will perform our analysis.

We are not considering the rest of the 24 attributes listed in Table 3.1 as they are less rel-

evant to our research. For example, city information is not needed in our dataset. We are

focusing on the region: Europe and Asia. We can determine the region from the country.

We do not need the city attribute from Table 3.1 to determine the region. However, we keep

more columns than needed in our dataset because we may need them in future experiments.

We prepared our data set in CSV format. There is information for 952 programmers

in our dataset. For each programmer, we used eight programs. We considered only the

programs written using C++ during dataset creation, and the programs using Python and

Java got discarded. Moreover, we balanced the dataset over experience, gender, and region,

which lead to eight programs from each user. These eight programs were randomly selected

from each user.

In Codeforces.com, a programmer’s experience is reflected by the rating and the rank.

Programmers with a rating of more than 2900 are the most experienced in Codeforces.com

[30]. The rank of the most experienced programmers is Legendary Grandmaster. Program-

47

3.2. DATASET CREATION

mers having ratings from 0 to 1199 are given the rank of Newbie. There are ten categories

of programmers based on their rating in Codeforces.com [30]. We decided to divide these

ten categories into two larger groups: expert and beginner. For this work, we group pro-

grammers as beginners if their rating was less than 1600 as Codeforces used 1600 as the

“novice” category when our research work started. Now the rating for “novice” changed

on Codeforces to 1900. Those with ratings of 1600 or higher were considered expert pro-

grammers.

3.2.1 Balanced Data Set

The performance of machine learning approaches can deteriorate if the dataset is un-

balanced. If the data are not taken from all the categories equally, then it is unbalanced.

In our work we are focus on three sociolinguistic features: the author’s region, gender and

experience. We are attempting to classify computer programs into two classes: expert and

beginner. The dataset is considered balanced when it consists of an equal number of pro-

grams written by experts and beginners. The dataset is unbalanced when it contains more

programs written by one class than another. The issue of unbalanced data can be resolved

by under-sampling or oversampling of data [12].

To build our dataset we used under-sampling. In under-sampling, data are randomly re-

moved from the majority class of the dataset to make it balanced. This procedure is known

as random under-sampling. The class, with a higher number of elements of classification

data, is known as the majority class. The class with a lesser number of elements is referred

to as the minority class. Suppose there are two classes of programmers: expert and begin-

ner. There are 70 expert programmers and 30 beginner programmers in a dataset of 100

programmers. In this scenario, the expert class is the majority class as it has more pro-

grammers than beginner class. The beginner class is the minority class in this classification

data. One of the significant drawbacks of under-sampling is that important information

might be deleted from the dataset, which may affect the classification process. We used

48

3.3. DOCUMENT REPRESENTATION

under-sampling instead of oversampling as duplicate data of the minority class are created

to make the dataset balanced in oversampling. Oversampling may lead to a more accurate

result, but this accuracy is based on duplicate data [12]. We instead randomly removed data

from the dataset to make it balanced over our three areas of interest: experience, gender and

region.

We collected half of our data from expert programmers and the remaining half from the

beginners in order to make the dataset balanced when considering programmer’s experi-

ence. We are basing our measure of experience on the rating system used in Codeforces.

We also made our data set balanced over gender and region by taking equal numbers of

programs written by males and females as well as taking those programs equally from two

regions, Asia and Europe. For Asia programs are collected from Bangladesh, China, Hong

Kong, India, Indonesia, Iran, Iraq, Japan, Jordan, Kazakhstan, Kyrgyzstan, Malaysia, the

Philippines, Singapore, Taiwan, Tajikistan, United Arab Emirates, Uzbekistan, and Viet-

nam. For Europe, collected programs are written by the programmers of Andorra, Arme-

nia, Austria, Belarus, Bulgaria, Croatia, Czechia, France, Georgia, Germany, Greece, Italy,

Latvia, Lithuania, Macedonia, Poland, Portugal, Romania, Russia, Serbia, Spain, Sweden,

Switzerland, Turkey, Ukraine, and the United Kingdom. Details of the dataset are shown in

Table 3.3.

Table 3.3: Information about the dataset.

Region Expert: rating >= 1600 Beginner: rating < 1600
Male Female Male Female

Europe 119 119 119 119
Asia 119 119 119 119
Total 238 238 238 238

Total Programmers: 952

Our dataset contains programs from 952 programmers. For each programmer, eight

programs are stored in the dataset. Therefore there are 7616 programs in the dataset.

49

3.4. FEATURE SELECTION

3.3 Document Representation

Machine learning approaches require input in the form of a vector of numeric feature

values. The models then provide discrete or nominal values as output. In our research, input

feature values are numeric, and class labels are nominal. The two-class labels are Beginner

and Expert. All the collected C++ programs are text documents. Steven [10] collected the

data from Codeforces.com and stored it in a shared data repository in CSV format. We

created the dataset in a CSV file by taking programs from the shared repository. Using a

python script, we created a CPP file for each program. Then a tool named LOCMetrics [39]

was applied to each C++ program to retrieve the values of selected features. The selected

features are listed in Table 3.4. Next, each C++ program was represented by the retrieved

feature values. Lastly, the Python library’s normalized function was applied to the feature

values to bring all of the numeric feature values into the same range (0 to 1). In this way,

the text-based dataset was transformed into a numerical dataset. This process is illustrated

in Figure 3.2.

The information representing each computer program was stored in a row in the dataset.

A row of data consists of 15 columns containing 15 feature values of a program. A new col-

umn representing the class label (beginner or expert) was added to each computer program

row in the experimental dataset. Then this dataset was used to train and test the machine

learning models using Python.

3.4 Feature Selection

Rafee [44] used machine learning to assess the impact of sociolinguistic characteris-

tics, including the author’s gender and region on computer programs. From this study, the

accuracy of the models in predicting the author’s gender was 83.1%, and the accuracy in

predicting the author’s region was 92.5%.

We selected fifteen features based on [44] for our research work, as our research goal is

also to categorize the computer programs based on sociolinguistic characteristics. However,

50

3.4. FEATURE SELECTION

Figure 3.2: Document representation process.

our focus was to determine whether a computer program is written by a beginner program-

mer or by an experienced programmer. The list and the description of the selected features

are given in Table 3.4.

We use the C++ program listed below to illustrate the features listed in Table 3.4.

inc lude<i o s t r e a m >

us ing namespace s t d ;

i n t add (i n t x , i n t y) / / f u n c t i o n t o add two i n t e g e r v a l u e s

{

re turn x+y ;

}

51

3.4. FEATURE SELECTION

Table 3.4: The fifteen features selected to characterize the programs in our dataset.

Feature Description
Lines of code (LOC) Number of lines including number of source

code lines, comment lines and blank lines
Source lines of code (SLOC) Number of code lines excluding blank lines and

comments lines
Percentage of source lines of
code (SLOC%)

Percentage of source line code with respect to
total number of lines

Blank lines of code (BLOC) Number of empty lines
Percentage of blank lines of
code (BLOC%)

Percentage of empty lines with respect to total
number of lines

Comment lines of code
(CLOC)

Number of comment lines. Comment lines are
not executable by the compiler. Comment lines
are used to describe a code

Percentage of comment lines
of code (CLOC%)

Percentage of non-executable lines with respect
to total number of lines

Mixed lines of code with
both source and comments
(C SLOC)

Number of lines having both executable and
non-executable lines

Percentage of mixed lines
(C SLOC%)

Percentage of lines having both executable and
non-executable lines with respect to total num-
ber of lines

Total words in all comments
(CWORD)

Total number of words in all the comments of a
program

Physical executable lines of
code (SLOC P)

Number of lines of a source code excluding
comments

Logical executable lines of
code (SLOC L)

Number of executable statements

The number of functions de-
fined (Functions)

Number of functions defined in a program

Lines of code in functions
(FLOC)

Total number of lines from all the functions of
a program

Average lines of code per
functions (FLOC average)

Number of lines of codes in functions divided
by number of functions of a program

/ / main f u n c t i o n

i n t main ()

{

i n t sum ;

52

3.5. SUMMARY

sum = add (5 , 1 0) ;

cou t<<sum ;

re turn 0 ;

}

In the code above,

• lines of code (LOC) = 16,

• source lines of code (SLOC) = 13,

• blank lines of code (BLOC) = 2,

• comment lines of code (CLOC) = 1,

• mixed lines of code with both source and comments (C SLOC) = 1,

• total words in all comments (CWORD) = 8,

• physical executable lines of code (SLOC P) = 13,

• logical executable lines of code (SLOC L) = 8,

• the number of functions defined (Functions) = 2,

• lines of code in functions (FLOC) = 7, and

• average lines of code per functions (FLOC average) = 3.5.

3.5 Summary

This chapter explained the data collection process, the feature selection method, and

the procedure to transform the text-based dataset into a numerical dataset. These were

the necessary steps to categorize computer programs based on the author’s programming

experience. In the next chapter, we will discuss the experiments and the results.

53

Chapter 4

Experiments and Results

In this chapter we discuss the various experiments which were conducted. We also present

the results of the experiments. The chapter concludes with the discussion of the results and

their implications.

4.1 Preliminaries

To summarize the previous chapter (Chapter 3: Methodology), for our research we

collected computer programs from Codeforces.com. This is a programming contest web-

site. Programmers from different regions participate in the programming contests hosted

by Codeforces.com. Programmers submit their solutions to problems on this website, and

the submitted programs are viewable to all. The submitted source codes were written in

different programming languages. However, we considered only programs written in C++

for our research. We categorized computer programs based on the author’s programming

experience using machine learning approaches. Computer programs that were treated as

text documents were converted to numeric feature values. We extracted features’ numeric

values from a text document using the Locmetrics tool. These feature values were used as

input for machine learning models. By analyzing the computer programs, machine learning

models classified the programmers in two classes: expert and beginner.

We conducted six experiments. In each experiment we used six machine learning al-

gorithms. The library functions of Python for these machine learning algorithms are given

below:

54

4.1. PRELIMINARIES

(i) Decision Tree (tree.DecisionTreeClassifier()),

(ii) Naı̈ve Bayes (GaussianNB()),

(iii) Random Forest (RandomForestClassifier()),

(iv) K Nearest Neighbor (KNeighborsClassifier()),

(v) Logistic Regression (LogisticRegression()), and

(vi) Bagging and classification via Decision Tree (BaggingClassifier()).

These machine learning algorithms were applied to a training set to build the various

classification models. The models were then evaluated using metrics such as accuracy,

precision, recall and F measure. The models were trained using 7616 computer programs

with class labels expert and beginner. Short descriptions of the six experiments are given

below:

(i) In experiment 1, we used 15 features, and evaluated the models using a cross-validation

technique, as described in Chapter 2.

(ii) In experiment 2, the number of features was reduced from 15 to 7 using infogain, a

tool from the Python library that we described in Chapter 2. As in experiment 1, the

models were evaluated using a cross-validation technique.

(iii) In experiment 3, the number of features was reduced from 15 to 4 using a univariate

selection method (select4best), a tool from the Python library that we described in

Chapter 2. Again, the performance of the models was determined using a cross-

validation technique.

(iv) All computer programs were again categorized using 15 features in experiment 4.

This experiment is similar to experiment 1; however, the evaluation method is dif-

ferent as the holdout method was used instead of a cross-validation technique. The

holdout method is described in Chapter 2.

55

4.1. PRELIMINARIES

(v) In experiment 5, the top seven features ranked by infogain were used to classify the

programs. The trained models were then evaluated on the test set using the holdout

method.

(vi) In experiment 6, select4best was applied to select the 4 best features. The select4best

method is described in Chapter 2. Machine learning algorithms were then applied to

the training set to build the models. Again the models were evaluated on the test set

using a holdout method.

In summary, all six experiments used 7616 computer programs. The performances of

the machine learning models developed in experiments 1, 2, and 3 were evaluated using the

cross-validation technique, and the performances of machine learning models developed in

experiments 4, 5 and 6 were evaluated using the holdout method.

4.1.1 Programming Environment

All experiments were carried out on an HP Pavilion machine. The details of the device

are listed in Table 4.1.

Table 4.1: Details of the test environment.

Processor Operating System RAM HDD
Intel Core i5 7200U
CPU 2.70 GHz

Windows 10 8 GB 1 TB

Python 3.8.0 was used to apply the machine learning approaches to build the models.

Microsoft Excel c© was used for the statistical analysis of the features.

Python is a popular programming language for the application of machine learning

approaches. It is an open-source platform. As indicated earlier, various functions from

the Python libraries were used in our research work. In addition, some filters defined in

the Python library were used in the data processing, and various built-in evaluation metrics

of the Python library were used to evaluate the performance of the models. Two feature

56

4.1. PRELIMINARIES

selection methods in Python, infogain and selectkbest (using k=4), were used for feature

reduction.

Microsoft Excel c© was used to analyze the features statistically. The goal was to de-

termine which features are significant in identifying an expert-written program versus a

beginner-authored program. The details of the statistically significant features are given in

Chapter 5.

4.1.2 Parameter Settings

In the experiments, various built-in libraries of Python were used. The description of

these libraries is given below.

• Randomize:

We used a randomize filter [46] to randomly shuffle the dataset before the applying

machine learning algorithms. The first 3808 programs listed in the dataset were writ-

ten by beginners, and the remaining 3808 programs were written by experts. We

shuffled the dataset so that each data point have their own impact on the model.

Shuffling makes sure that the model is not getting biased from the same points before

them. For each execution, the dataset was shuffled in a new order before applying

machine learning algorithms.

• Normalize:

The Normalize [8] method was applied to prepare the data for machine learning. We

used the normalized method to scale the values of all features into the same range (0

to 1). If the feature values are not normalized, then the features having higher values

dominate the result. For example, in our dataset, there were two features lines of

code (LOC) and the number of functions defined (Functions). Suppose there might

be a computer program that has 1000 lines of code and 2 functions. The feature

value of LOC (1000) is larger than the number of functions defined (2). The LOC

will influence the result if the data are not normalized. In this scenario, the number

57

4.2. EXPERIMENTS

of functions defined is also vital for determining whether a beginner or an expert

programmer has written the program. Both LOC and Functions must be scaled to a

single unit such as 0 to 1 so that both features have equal importance in the result.

Therefore, data must be normalized before applying machine learning approaches.

• infogain:

In experiment 2 and experiment 5, infogain was used to reduce the number of fea-

tures. Less relevant features and noisy data were removed from the decision making

process. Also, infogain returns the information gain value of each feature with re-

spect to its class. We selected seven features having the top seven infogain values

from all of features.

• selectkbest:

selectkbest is a univariate selection method. The univariate feature selection method

evaluates each feature by determining the strength of the relationship between the

feature and the class variable. In our research, we used k=4. That means, the 4 best

features were returned.

• Cross-Validation:

We applied a cross-validation [41] method to evaluate the six machine learning mod-

els. We have used 5 fold cross-validation. The dataset was divided into 5 folds where

a fold is a group of equal-sized data [26]. Models were evaluated in 5 iterations. In

each iteration, the training set contained four folds of data and the test set contained

one fold of data. Details of the cross-validation method are given in Chapter 2.

4.2 Experiments

4.2.1 Experiment 1

The goal of experiment 1 was to categorize the computer programs based on the author’s

programming experience. The experiment was conducted on 7616 computer programs. In

58

4.2. EXPERIMENTS

this experiment, 15 features were used. Six machine learning algorithms were applied on

the dataset to build the models. The steps of experiment 1 are displayed in Figure 4.1.

Figure 4.1: Steps for experiment 1.

Machine learning models classified the computer programs in two classes: expert and

beginner. The results are listed in Section 4.3.

59

4.2. EXPERIMENTS

4.2.2 Experiment 2

Numeric feature values of 15 features were retrieved, and each computer program was

represented by these feature values. infogain was applied to each feature to get the infogain

values of each feature with respect to class labels. Based on the infogain values, the top

seven features were selected. This reduced the number of features from 15 to 7. The steps

carried out for experiment 2 are shown in Figure 4.2.

Figure 4.2: Steps for experiment 2.

The top 7 features according to rank were:

• Percentage of source lines of code (SLOC%)

• Percentage of blank lines of code (BLOC%)

60

4.2. EXPERIMENTS

• Percentage of comment lines of code (CLOC%)

• Average lines of code per functions (FLOC AVERAGE)

• Lines of code (LOC)

• Physical executable lines of code (SLOC-P)

• Source lines of code (SLOC)

A new dataset was created using the numeric values of these 7 features for each pro-

gram. Then six machine learning algorithms were applied. The performance of these mod-

els was evaluated using 5 fold cross-validation technique. The results are described in

Section 4.3.

61

4.2. EXPERIMENTS

4.2.3 Experiment 3

In experiment 3, computer programs were analyzed to determine whether a program is

written by a beginner or an expert. The steps of experiment 3 are given in Figure 4.3.

Figure 4.3: Steps for experiment 3.

selectkbest (using k=4) method was applied to the 15 original features with respect to

their class labels. selectkbest returned 4 features which were:

• Lines of code (LOC)

• Physical executable lines of code (SLOC-P)

• Logical executable lines of code (SLOC-L)

• Source lines of code (SLOC)

62

4.2. EXPERIMENTS

A new dataset was created using the feature values for LOC, SLOC-P, SLOC-L and

SLOC. Then the six machine learning algorithms were applied to build classifying models.

These models were evaluated using a 5 fold cross-validation technique. The results are

shown in Section 4.3.

63

4.2. EXPERIMENTS

4.2.4 Experiment 4

In experiment 4, computer programs were analyzed using 15 features. The steps for

experiment 4 are shown in Figure 4.4.

Figure 4.4: Steps for experiment 4.

Experiment 4 is similar to experiment 1. However, the evaluation method of experiment

4 is different from experiment 1. Instead of 5 fold cross-validation, the holdout method was

used to evaluate the machine learning models. The dataset was partitioned into two sets:

training set (80% of data) and test set (20% of data). The six machine learning algorithms

were applied on the training set to build the models. Then the models were evaluated on

the test set. Results are given in Section 4.3.

64

4.2. EXPERIMENTS

4.2.5 Experiment 5

In experiment 5, computer programs were analyzed using seven features to find out the

author’s experience. The steps for experiment 5 are shown in Figure 4.5.

Figure 4.5: Steps for experiment 5.

The number of features was reduced from 15 to 7 using infogain. The selected fea-

tures were SLOC%, BLOC%, CLOC%, FLOC AVERAGE, LOC, SLOC-P, and SLOC. A

new dataset was created using the values of the selected 7 features. Then the six machine

learning algorithms were applied on the training set to build the models. The models were

evaluated on the test set using the evaluation metrics. Section 4.3 contains the result of

65

4.2. EXPERIMENTS

experiment 5.

4.2.6 Experiment 6

In this experiment, four features were used. These features (LOC - lines of code, SLOC-

P - physical executable lines of code, SLCO-L - logical executable lines of code, SLOC -

source lines of code) were selected using the selectkbest (with k=4) method. The steps for

experiment 6 are displayed in Figure 4.6.

Figure 4.6: Steps for experiment 6.

The new dataset containing values of LOC, SLOC-P, SLOC-L and SLOC were divided

66

4.3. RESULTS

into training and test set. machine learning algorithms were applied on the training set to

build the models. Then the developed models were tested on the test set using the hold-out

method. Results of experiment 6 are given in Section 4.3

4.3 Results

The results of the six experiments are discussed in this section. As a reminder, the

goal of all six experiments was to categorize computer programs based on the author’s

programming experience. All the experiments were conducted on a dataset consisting of

7616 computer programs. In these experiments the class labels were beginner and expert.

The performance of the machine learning models developed in experiments 1, 2, and 3

were evaluated using a cross-validation technique, and the performance of machine learning

models developed in experiments 4, 5 and 6 were evaluated using a holdout method.

4.3.1 Experiment 1

Experiment 1 used 15 features and evaluated the results using the 5-fold cross-validation

technique. The performance of the resulting models is reported in Table 4.2.

Table 4.2: Performance evaluation of six models with 15 features.

Model Accuracy (%) Precision(%) Recall(%) F-Measure(%)
Decision Tree 64% 64% 64% 63%
Naı̈ve Bayes 50% 50% 99% 66%
Random Forest 64% 67% 56% 61%
K Nearest Neighbor 64% 65% 63% 64%
Logistic Regression 65% 69% 55% 61%
Bagging Classifier 67% 68% 62% 65%

The model developed using bagging classifier had an accuracy of 67%. That means

the bagging classifier model accurately classified 67% of the data. The logistic regression

model also performed well with an accuracy of 65%, unlike naı̈ve Bayes, which classified

only 50% of the data accurately.

67

4.3. RESULTS

Considering the F-measure score, naı̈ve Bayes model performed well (F-measure =

66%) as it had a very high recall (99%). However, the bagging classifier model also had a

good F-measure score (65%).

Confusion matrices of the six models developed in experiment 1 are shown in Tables

4.3, 4.4, 4.5, 4.6, 4.7 and 4.8. Confusion matrices illustrate how many programs are cor-

rectly classified to their class label (expert or beginner). Confusion matrices are represented

using the format shown in Table 2.11 in Section 2.5.3.

Table 4.3: Confusion matrix for decision tree with 15 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 2450 1358 3808
Expert (Actual) 1392 2416 3808
Total 3842 3774 7616

Table 4.4: Confusion matrix for naı̈ve Bayes with 15 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 39 3769 3808
Expert (Actual) 56 3752 3808
Total 95 7521 7616

Table 4.5: Confusion matrix for random forest with 15 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 2743 1065 3808
Expert (Actual) 1686 2122 3808
Total 4429 3187 7616

The logistic regression model given the best performance for classifying beginner-

written programs by classifying 2874 programs correctly out of 3808 programs. The naı̈ve

Bayes model performed abysmally by classifying only 39 beginner-written programs cor-

rectly among 3808 programs. Naı̈ve Bayes model is sometimes biased towards a specific

class [45]. In this case, naı̈ve Bayes appears biased towards class expert.

68

4.3. RESULTS

Table 4.6: Confusion matrix for K nearest neighbor with 15 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 2509 1299 3808
Expert (Actual) 1407 2401 3808
Total 3916 3700 7616

Table 4.7: Confusion matrix for logistic regression with 15 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 2874 934 3808
Expert (Actual) 1731 2077 3808
Total 4605 3011 7616

Table 4.8: Confusion matrix for bagging classifier with 15 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 2694 1114 3808
Expert (Actual) 1433 2375 3808
Total 4127 3489 7616

Naı̈ve Bayes performed very well to classify expert-written programs. This model cor-

rectly classified 3752 expert-written programs among 3808 programs. Logistic regression

model classified the least number of expert-written programs (2077) correctly. However,

the accuracy of the logistic regression model was better than naı̈ve Bayes as the logistic

regression performed better to classify the beginner-written programs.

69

4.3. RESULTS

4.3.2 Experiment 2

The number of features was reduced to seven from fifteen in experiment 2. Seven

features were selected using infogain. The performance of the models evaluated using the

5 fold cross-validation method is reported in Table 4.9.

Table 4.9: Performance evaluation of six models with 7 features.

Model Accuracy (%) Precision(%) Recall(%) F-Measure(%)
Decision Tree 61% 62% 58% 60%
Naı̈ve Bayes 58% 55% 87% 67%
Random Forest 63% 66% 53% 59%
K Nearest Neighbor 62% 62% 61% 62%
Logistic Regression 65% 69% 52% 60%
Bagging Classifier 63% 64% 60% 62%

The logistic regression model performed better than other models with accurate classi-

fication of 65% of the programs. The Bagging classifier and random forest also performed

well with an accuracy of 63%. The Naı̈ve Bayes model had the lowest accuracy of 58%.

The F-measure score of naı̈ve Bayes was the topmost (67%). The F-measure of the

random forest was the lowest with 59%.

Confusion matrices of the six models for experiment 2 are listed in Tables 4.10 to 4.15.

Table 4.10: Confusion matrix for decision tree with 7 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 2446 1362 3808
Expert (Actual) 1610 2198 3808
Total 4056 3560 7616

Table 4.11: Confusion matrix for naı̈ve Bayes with 7 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 1064 2744 3808
Expert (Actual) 492 3316 3808
Total 1556 6060 7616

70

4.3. RESULTS

Table 4.12: Confusion matrix for random forest with 7 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 2748 1060 3808
Expert (Actual) 1778 2030 3808
Total 4526 3090 7616

Table 4.13: Confusion matrix for K nearest neighbor with 7 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 2394 1414 3808
Expert (Actual) 1475 2333 3808
Total 3869 3747 7616

Table 4.14: Confusion matrix for logistic regression with 7 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 2931 877 3808
Expert (Actual) 1819 1989 3808
Total 4750 2866 7616

Table 4.15: Confusion matrix for bagging classifier with 7 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 2540 1268 3808
Expert (Actual) 1525 2283 3808
Total 4065 3551 7616

The logistic regression model performed better than other models to correctly classify

beginner-written programs. It classified 2931 programs correctly as beginners out of 3808

programs. The naı̈ve Bayes model was inferior to other models in classifying beginner-

written programs. It classified only 1064 programs correctly as beginner-written among

3808 programs.

The naı̈ve Bayes model was the superior model to classify expert-written programs.

It correctly classified 3316 programs as experts out of 3808 programs whereas logistic

regression performed poorly by correctly classifying 1989 programs as experts among 3808

71

4.3. RESULTS

programs.

4.3.3 Experiment 3

In experiment 3, the select4best method was applied to reduce the number of features to

four from fifteen. The performance of the models using the 5 fold cross-validation method

are shown in Table 4.16.

Table 4.16: Performance evaluation of six models with 4 features.

Model Accuracy (%) Precision(%) Recall(%) F-Measure(%)
Decision Tree 60% 61% 56% 58%
Naı̈ve Bayes 63% 63% 64% 63%
Random Forest 63% 66% 54% 59%
K Nearest Neighbor 60% 60% 59% 59%
Logistic Regression 63% 67% 53% 59%
Bagging Classifier 61% 61% 58% 60%

Naı̈ve Bayes, random forest and logistic regression performed well to categorize pro-

grams based on the author’s programming experience with an accuracy of 63%. The accu-

racy (60%) of decision tree and k nearest neighbor was lowest among all models.

Naı̈ve Bayes was also the leading model based on F-measure (63%). The performance

of the decision tree was inferior to other models based on the F-measure (58%) score.

Confusion matrices of the six models for experiment 3 are listed in Tables 4.17 to 4.22.

Table 4.17: Confusion matrix for decision tree with 4 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 2438 1370 3808
Expert (Actual) 1678 2130 3808
Total 4116 3500 7616

The logistic regression model correctly classified the most beginner-written programs.

Logistic regression classified 2803 programs correctly as beginner of a total 3808 beginner-

written programs. K nearest neighbor performed poorly with respect to the other models,

classifying 2319 programs as beginner among 3808 programs.

72

4.3. RESULTS

Table 4.18: Confusion matrix for naı̈ve Bayes with 4 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 2354 1454 3808
Expert (Actual) 1360 2448 3808
Total 3714 3902 7616

Table 4.19: Confusion matrix for random forest with 4 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 2742 1066 3808
Expert (Actual) 1761 2047 3808
Total 4503 3113 7616

Table 4.20: Confusion matrix for K nearest neighbor with 4 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 2319 1489 3808
Expert (Actual) 1572 2236 3808
Total 3891 3725 7616

Table 4.21: Confusion matrix for logistic regression with 4 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 2803 1005 3808
Expert (Actual) 1803 2005 3808
Total 4606 3010 7616

Table 4.22: Confusion matrix for bagging classifier with 4 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 2415 1393 3808
Expert (Actual) 1589 2219 3808
Total 4004 3612 7616

The naı̈ve Bayes model performed better than other models to categorize expert-written

programs. This model identified 2448 programs correctly as experts out of 3808 expert-

written programs. On the other hand, logistic regression identified only 2005 programs as

73

4.3. RESULTS

expertly written (of 3808 programs).

4.3.4 Experiment 4

The dataset of 7616 programs was analyzed and classified using 15 features in experi-

ment 4. The models were evaluated using the holdout method. The dataset was partitioned

into two sets: a training set and a test set. The learning models were trained on a training

set (80% of data) and then evaluated using a test set (20% of data). Table 4.23 demonstrates

the performance of six machine learning models in experiment 4.

Table 4.23: Performance evaluation of six models with 15 features.

Model Accuracy (%) Precision(%) Recall(%) F-Measure(%)
Decision Tree 64% 66% 62% 64%
Naı̈ve Bayes 63% 67% 57% 62%
Random Forest 65% 68% 60% 64%
K Nearest Neighbor 65% 67% 64% 66%
Logistic Regression 65% 69% 58% 63%
Bagging Classifier 69% 73% 65% 68%

The accuracy of the bagging classifier model was 69%. That means the bagging classi-

fier model correctly classified 69% programs to their class label. The F-measure value of

this model was 68%, which is superior to the other models.

The accuracy of naı̈ve Bayes was lowest among all models. It classified 63% of pro-

grams correctly. In addition, the F-measure score (62%) of the naı̈ve Bayes model was

minimum compared to other models.

Confusion matrices of the models developed using decision tree, naı̈ve Bayes, random

forest, k nearest neighbor, logistic regression and bagging classifier are shown in the Tables

4.24 to 4.29.

The bagging classifier model performed better than other models to classify beginner-

written programs correctly. It correctly classified 545 programs among 738 beginner-

written programs. The decision tree model’s performance was lowest as it correctly classi-

fied only 489 programs out of 738 beginner-written programs.

74

4.3. RESULTS

Table 4.24: Confusion matrix for decision tree with 15 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 489 249 738
Expert (Actual) 302 484 786
Total 791 733 1524

Table 4.25: Confusion matrix for naı̈ve Bayes with 15 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 516 222 738
Expert (Actual) 336 450 786
Total 852 672 1524

Table 4.26: Confusion matrix for random forest with 15 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 514 224 738
Expert (Actual) 312 474 786
Total 826 698 1524

Table 4.27: Confusion matrix for K nearest neighbor with 15 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 493 245 738
Expert (Actual) 281 505 786
Total 774 750 1524

Table 4.28: Confusion matrix for logistic regression with 15 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 536 202 738
Expert (Actual) 332 454 786
Total 868 656 1524

The bagging classifier model performed better than other models in classifying expert-

written programs. It correctly classified 509 programs as an expert out of 786 expert-written

programs. The performance of naı̈ve Bayes was inferior to other models for classifying

75

4.3. RESULTS

Table 4.29: Confusion matrix for bagging classifier with 15 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 545 193 738
Expert (Actual) 277 509 786
Total 822 702 1524

expert-written programs. The naı̈ve Bayes model correctly classified 450 expert-written

programs of a total of 786 expert-written programs.

4.3.5 Experiment 5

In experiment 5, the number of features was reduced to 7 from 15 using infogain. A

new dataset was created using the feature values of SLOC%, BLOC%, CLOC%, FLOC

AVERAGE, LOC, SLOC-P, SLOC. Table 4.30 reports the performance of six machine

learning models using the holdout method.

Table 4.30: Performance evaluation of six models with 7 features.

Model Accuracy (%) Precision(%) Recall(%) F-Measure(%)
Decision Tree 61% 63% 59% 61%
Naı̈ve Bayes 67% 69% 64% 66%
Random Forest 66% 71% 56% 63%
K Nearest Neighbor 63% 64% 63% 63%
Logistic Regression 67% 70% 61% 65%
Bagging Classifier 63% 64% 61% 62%

Logistic regression and naı̈ve Bayes performed better than the other models in experi-

ment 5, with an accuracy of 67%. The naı̈ve Bayes model also had the top F-measure score

(66%).

The accuracy of the decision tree model was lower than other models. This model had

an accuracy of 61%. The F-measure score of the decision tree was 61%, which was the

lowest among all the models.

The confusion matrices of six models are shown in Table 4.31 to 4.36.

76

4.3. RESULTS

Table 4.31: Confusion matrix for decision tree with 7 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 470 276 746
Expert (Actual) 316 462 778
Total 786 738 1524

Table 4.32: Confusion matrix for naı̈ve Bayes with 7 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 521 225 746
Expert (Actual) 283 495 778
Total 804 720 1524

Table 4.33: Confusion matrix for random forest with 7 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 570 176 746
Expert (Actual) 340 438 778
Total 910 614 1524

Table 4.34: Confusion matrix for K nearest neighbor with 7 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 469 277 746
Expert (Actual) 289 489 778
Total 758 766 1524

Table 4.35: Confusion matrix for logistic regression with 7 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 548 198 746
Expert (Actual) 307 471 778
Total 855 669 1524

Random forest identified the highest number of beginner-written programs compared

to other models. This model identified 570 beginner-written programs correctly out of 746

programs. K nearest neighbor performed poorly in identifying beginner-written programs

77

4.3. RESULTS

Table 4.36: Confusion matrix for bagging classifier with 7 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 483 263 746
Expert (Actual) 307 471 778
Total 790 734 1524

as it correctly classified only 469 programs among 746 programs.

The naı̈ve Bayes model was the top model in classifying expert-written programs. It

correctly categorized 495 programs as expert-written out of 778 programs. Random forest

performed poorly in this regard, correctly classifying only 438 programs as expert-written

out of 778 programs.

4.3.6 Experiment 6

In experiment 6, the dataset was classified using four features. The feature set was

reduced to four from fifteen by using the select4best method, and then the machine learning

models were trained. The evaluation results are listed in Table 4.37.

Table 4.37: Performance evaluation of six models with 4 features.

Model Accuracy (%) Precision(%) Recall(%) F-Measure(%)
Decision Tree 55% 55% 48% 51%
Naı̈ve Bayes 50% 49% 84% 62%
Random Forest 58% 55% 66% 60%
K Nearest Neighbor 54% 53% 53% 53%
Logistic Regression 56% 55% 59% 57%
Bagging Classifier 56% 56% 53% 54%

None of the models had accuracy over 60%. Random forest performed better than other

models with an accuracy of 58%. Naı̈ve Bayes model lead in the F-measure score (62%).

The naı̈ve Bayes model had the lowest accuracy of 50% among all the models. The

decision tree model performed particularly poorly given the F-measure score (51%).

Confusion matrices of all the models are listed in Table 4.38 to 4.43.

78

4.3. RESULTS

Table 4.38: Confusion matrix for decision tree with 4 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 489 293 782
Expert (Actual) 386 356 742
Total 875 649 1524

Table 4.39: Confusion matrix for naı̈ve Bayes with 4 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 143 639 782
Expert (Actual) 122 620 742
Total 265 1259 1524

Table 4.40: Confusion matrix for random forest with 4 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 386 396 782
Expert (Actual) 251 491 742
Total 637 887 1524

Table 4.41: Confusion matrix for K nearest neighbor with 4 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 440 342 782
Expert (Actual) 352 390 742
Total 792 732 1524

Table 4.42: Confusion matrix for logistic regression with 4 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 421 361 782
Expert (Actual) 307 435 742
Total 728 796 1524

The decision tree performed adequately to classify beginner-written programs by cor-

rectly classifying 489 programs as beginners out of 782 programs. On the contrary, naı̈ve

Bayes performed appallingly by correctly classifying only 143 programs as beginner-written

79

4.4. DISCUSSION

Table 4.43: Confusion matrix for bagging classifier with 4 features.

Expertise Beginner
(Predicted)

Expert
(Predicted) Total

Beginner (Actual) 468 314 782
Expert (Actual) 350 392 742
Total 818 706 1524

among 782 programs.

Naı̈ve Bayes performed reasonably well to classify expert-written programs. It correctly

classified 620 expert-written programs out of 742 programs. The decision tree model per-

formed appallingly by correctly classifying only 356 expert-written programs among 742

programs.

4.4 Discussion

The goal of this work is to classify computer programs into two classes: expert and

beginner. We evaluated the performance of the models in experiments 1, 2 and 3 using the

cross-validation method and we used the holdout method to evaluate the models built in ex-

periments 4, 5 and 6. In the holdout method, the dataset is split into two partitions where the

training set contains 80% data, and the test set is consist of 20% data. The training partition

may contain more data of one class label than another, which can make the model bias to-

wards the class. This drawback can be overcome by using the cross-validation method [11].

Therefore, we used both evaluation methods to determine the difference between them.

4.4.1 Cross-Validation Method

In the cross-validation method, the entire dataset was used in n iterations to train and

test the machine learning models. The first three experiments were evaluated using the five-

fold cross-validation method. Table 4.44 shows the best and worst model of experiments 1,

2 and 3 based on accuracy.

The bagging classifier model accurately identified more programs compared to other

80

4.4. DISCUSSION

Table 4.44: Models with highest and lowest accuracy rate in experiment 1 to 3.

Experiment Model with highest
accuracy

Model with lowest ac-
curacy

Experiment 1 Bagging Classifier Naı̈ve Bayes
Experiment 2 Logistic Regression Naı̈ve Bayes
Experiment 3 Naı̈ve Bayes,

Logistic Regression,
Random Forest

Decision Tree,
K Nearest Neighbor

models in experiment 1. In all three experiments, the logistic regression model performed

well. This model correctly classified more programs in experiment 2 compared to other

models based on accuracy. Random forest and naı̈ve Bayes performed well, along with

logistic regression in experiment 3.

Although naı̈ve Bayes produced a good result in experiment 3, this model performed

poorly in experiment 1 and experiment 2. In other words, naı̈ve Bayes only performed well

with four features selected using select4best method. Naı̈ve Bayes did not perform well

with 15 features (experiment 1) and 7 features (experiment 2). Therefore, feature reduction

increased the accuracy for the naı̈ve Bayes model. Because with more features, likelihood

might be distributed and may not follow the Gaussian or other distribution.

Table 4.45 shows the best and worst model of experiments 1, 2 and 3 based on correctly

identifying beginner-written programs.

Table 4.45: Best and worst models in classifying beginner-written programs for experi-
ments 1 to 3.

Experiment Best model Worst model
Experiment 1 Logistic Regression Naı̈ve Bayes
Experiment 2 Logistic Regression Naı̈ve Bayes
Experiment 3 Logistic Regression K Nearest Neighbor

The logistic regression model correctly classified most beginner-written programs com-

pared to other models in all three experiments. In experiments 1 and 2, the naı̈ve Bayes

model performed poorly when attempting to classify beginner-written programs correctly.

In experiment 3, k nearest neighbor performed poorly when attempting to classify beginner-

81

4.4. DISCUSSION

written programs correctly.

Table 4.46 shows the best and worst model of experiments 1, 2 and 3 based on identi-

fying expert-written programs.

Table 4.46: Best and worst models in classifying expert-written programs for experiments
1 to 3.

Experiment Best model Worst model
Experiment 1 Naı̈ve Bayes Logistic Regression
Experiment 2 Naı̈ve Bayes Logistic Regression
Experiment 3 Naı̈ve Bayes Logistic Regression

Naı̈ve Bayes model correctly classified most expert-written programs compared to other

models in all three experiments because the naı̈ve Bayes model sometimes develops a bias

towards a class [45]. The logistic regression model correctly classified the least number of

expert-written programs compared to other models (in experiments 1 to 3). However, the

difference between the logistic regression and the rest of the models in terms of correctly

classified expert-written programs was not significant.

4.4.2 Holdout Method

Experiments 4, 5 and 6 were evaluated using the holdout method. In this method, the

dataset was partitioned into two sets: training set (80% of data) and test set (20% of data).

Machine learning models were built using a training set and evaluated using a test set.

Experiments 4, 5 and 6 were conducted using 15, 7 and 4 features respectively.

Table 4.47 shows the best and worst model of experiments 4, 5 and 6 based on accuracy.

Table 4.47: Models with highest and lowest accuracy rate in experiments 4 to 6.

Experiment Model with highest
accuracy

Model with lowest ac-
curacy

Experiment 4 Bagging Classifier Naı̈ve Bayes
Experiment 5 Naı̈ve Bayes,

Logistic Regression
Decision Tree

Experiment 6 Random Forest Naı̈ve Bayes

82

4.4. DISCUSSION

The bagging classifier model performed well based on accuracy in experiment 4 using

15 features as bagging performs better using all available features [34]. Naı̈ve Bayes and

logistic regression were the leading model in experiment 5. Logistic regression performs

reliably with noisy data [47]. Random forest had the highest accuracy in experiment 6 using

4 features. The reduction of less important features from 15 to 4 possibly significantly

impacted the classification performance of random forest.

Table 4.48 shows the best and worst model of experiments 4, 5 and 6 based on identi-

fying beginner-written programs.

Table 4.48: Best and worst models in classifying beginner-written programs for experi-
ments 4 to 6.

Experiment Best model Worst model
Experiment 4 Bagging Classifier Decision Tree
Experiment 5 Random Forest K Nearest Neighbor
Experiment 6 Decision Tree Naı̈ve Bayes

Bagging classifiers performed reasonably well to identify beginner-written programs in

experiment 4. Random forest was the leading model to correctly identify beginner-written

programs in experiment 5 using 7 features. The decision tree performed well using 4 fea-

tures in experiment 6 to classify beginner-written programs correctly. However, decision

tree performed poorly using 15 features in experiment 4 to classify beginner-written pro-

grams correctly.

Table 4.49 shows the best and worst model of experiments 4, 5 and 6 based on identi-

fying expert-written programs.

Table 4.49: Best and worst models in classifying expert-written programs for experiments
4 to 6.

Experiment Best model Worst model
Experiment 4 Bagging Classifier Naı̈ve Bayes
Experiment 5 Naı̈ve Bayes Random Forest
Experiment 6 Naı̈ve Bayes Decision Tree

The bagging classifier performed well to classify expert-written programs in experiment

83

4.4. DISCUSSION

4. The naı̈ve Bayes model was the leading model to identify expert-written programs in

experiments 5 and 6. However, naı̈ve Bayes did not perform well using 15 features in

experiment 4 to classify expert-written programs correctly.

4.4.3 Summary of Results

By considering all six experiments, the most interesting results are as follows:

• The logistic regression model performed better than other models based on accuracy

as it had the best accuracy in three experiments. Logistic regression yielded better

results when models were evaluated using five-fold cross-validation, as the training

set consisted of the entire dataset instead of the holdout method, where the training

set contained 80% of data. Therefore, logistic regression performs better when the

training size is bigger [38]. The confusion matrices of logistic regression for ex-

periments 1 to 6 are given in Tables 4.7, 4.14, 4.21, 4.28, 4.35 and 4.42. Logistic

regression showed a stable performance to classify both expert-written and beginner-

written programs correctly.

In most cases, when a model did very well to classify one class of programs correctly,

it did not perform well to classify other classes of programs. For example, from

Table 4.4, we can see that, in experiment 1, the naı̈ve Bayes model performed better

to correctly classify expert-written programs by correctly classifying 3752 expert-

written programs among 3808 programs. However, naı̈ve Bayes performed poorly to

identify beginner-written programs as it identified only 39 beginner-written programs

among 3808 programs. In experiment 1, from Table 4.7 we can see that logistic

regression correctly classified 2077 expert-written programs among 3808 programs

and correctly identified 2874 beginner-written programs among 3808 programs. In

all of the experiments logistic regression showed a reliable performance to classify

programs of both classes correctly.

• The bagging classifier model performed better using 15 features. Experiments 1 and 4

84

4.5. THREATS TO VALIDITY

were carried out using 15 features. It had better accuracy (67%) than other models in

experiment 1. Also, the bagging classifier model was the leading model in experiment

4, with an accuracy of 69%. It was the superior model to identify beginner-written

and expert-written programs in experiment 4 correctly as bagging performs better

using all available features [34].

• The naı̈ve Bayes model was the leading model to classify expert-written programs

correctly. This model was superior to other models to correctly classify expert-written

program in all experiments except experiment 4. The naı̈ve Bayes model sometimes

developed a bias towards a class [45]. We can see from Table 4.39 that naı̈ve Bayes

was biased towards class expert, as it also misclassified 639 out of 782 beginner-

written programs as expert-written in experiment 6.

• The logistic regression model performed better compared to other models to identify

beginner-written programs correctly. It was the top model in experiments 1,2, and 3

to correctly classify beginner-written programs.

• The random forest model performed well in experiments 3 and 6, where a reduced

number of features (4 features) were used. In both experiments, the random forest

model was the leading model based on accuracy. The reduction of less important

features from 15 to 4 possibly significantly impacted the classification performance

of random forest.

4.5 Threats to Validity

There are some potential threats to validity with some of this work in analyzing com-

puter programs [7].

• The dataset of our research was not large as it consisted of 7616 C++ programs. In

most of the cases, the machine learning model might be trained more effectively if

the dataset was bigger.

85

4.5. THREATS TO VALIDITY

• Only C++ programs are considered for this research. We were unable to demonstrate

different types of results as other kinds of programming languages were not consid-

ered. This could be a threat to the validity of the results of the machine learning

models.

• Another threat to validity is the coding style of the participants of Codeforces.com.

Programs are only submitted for the programming contests. So, there might be dif-

ferences between the coding style of contest programs and regular programs.

• Our models were trained using a limited number of features. We might have left out

some important features of C++.

• Our dataset is balanced over the regions that we categorized. We collected data from

Asia and Europe. Computer programs were collected from 19 countries in Asia and

26 countries in Europe, but the dataset is not balanced over all of the countries. This

could be another potential threat to validity.

• For each programmer, 50 programs were stored in the data repository. We took eight

programs randomly among those 50 in our dataset. There might be some programs

from expert programmers that were written during their beginner days. Still, those

codes were considered as expert-written, which is a potential threat.

• There is a possibility that someone may not write code and borrowed it from some

other programmer to submit in the Codeforces programming contest. This act is a

violation of ethics. Still, if it happens, there is a possibility that an expert-written pro-

gram might be labeled as beginner-written in the source, which is a threat to validity.

86

Chapter 5

Analysis of Features

In this chapter we discuss the features and their importance in determining the expert-

written or beginner-written programs. We analyze the feature reduction methods and how

the reduced number of features impact the models. Moreover, we describe a statistical ap-

proach to determine the most relevant features to categorize programs based on the author’s

experience.

5.1 Feature Reduction

As described in Chapter 3, we selected fifteen features based on [44]. Experiments 1

and 4 were carried out using 15 features to categorize computer programs based on the

author’s programming experience. Then the feature set was reduced to seven features by

selecting seven features using the infogain. This feature selection method provides the rank

of features based on the class. We used the top seven features in experiments 2 and 5. These

features were:

(i) percentage of source lines of code (SLOC%),

(ii) percentage of blank lines of code (BLOC%),

(iii) percentage of comment lines of code (CLOC%),

(iv) average lines of code per functions (FLOC AVERAGE),

(v) lines of code (LOC),

87

5.1. FEATURE REDUCTION

(vi) physical executable lines of code (SLOC-P), and

(vii) source lines of code (SLOC).

Following this, we used a univariate selection method, selectkbest (using k=4), to select

the four best features among all fifteen features. Select4best returned the following features:

(i) lines of code (LOC),

(ii) physical executable lines of code (SLOC-P),

(iii) logical executable lines of code (SLOC-L), and

(iv) source lines of code (SLOC).

Experiments 3 and 6 were conducted using the above four features. The machine learn-

ing models were evaluated using a five-fold cross-validation method in experiments 1 to 3.

The holdout method was used to evaluate the models in experiments 4 to 6.

We compared the six models’ performance to determine the significance of reduced fea-

ture sets. Table 5.1 shows the comparative performance of six models with fifteen features,

seven features and four features using a five-fold cross-validation method.

Table 5.1: Performance evaluation of six models based on five-fold cross-validation tech-
nique.

Model Accuracy
based on
15 features

Accuracy
based on
7 features

Accuracy
based on
4 features

Decision Tree 64% 61% 60%
Naı̈ve Bayes 50% 58% 63%
Random Forest 64% 63% 63%
K Nearest Neighbor 64% 62% 60%
Logistic Regression 65% 65% 63%
Bagging Classifier 67% 63% 61%

As described in Chapter 4, bagging classifiers yielded a better result (accuracy=67%)

than other models when using fifteen features. Logistic regression performed well com-

pared to other models using only the seven features returned by the infogain. It correctly

88

5.2. STATISTICAL APPROACH

predicted 65% of the programs. Along with logistic regression, naı̈ve Bayes and random

forest performed well using the reduced set of four features returned by select4best. These

three models had an accuracy of 63% using four features.

The performance of all the machine learning models decreased or remained the same as

the number of features reduced except with the naı̈ve Bayes model. For example, the ac-

curacy values of the decision tree model were 64%, 61% and 60%, respectively for fifteen,

seven and four features. The performance of naı̈ve Bayes model improved as the number of

features was reduced. The accuracy values of the naı̈ve Bayes model were 50%, 58% and

63% respectively by using fifteen features, seven features and four features.

The bagging classifier performed better than other models using 15 features in exper-

iment 1. Logistic regression was the leading model in experiments 2 and 3 (using seven

features and four features). Tables 4.7, 4.14 and 4.21 show the confusion matrices of the

logistic regression model for three feature sets (respectively for fifteen, seven and four fea-

tures). Logistic regression correctly predicted the most (2931 out of 3808) programs as

beginner-written using seven features. It was the best predictor for beginner-written pro-

grams among all six models and using all three feature sets. Logistic regression worked well

using fifteen features to correctly classify most number (2874 among 3808) of programs as

beginner-written. However, the naı̈ve Bayes model predicted the most (3752 among 3808)

expert-written programs among all six models using fifteen features.

Among all machine learning models, the bagging classifier showed the highest accuracy

using cross-validation method, which was 67% in experiment 1. However, the accuracy

of 67% may not be good enough for industrial use. Nevertheless, there is a scope for

improvement. Using a larger set of data and features may increase the accuracy rate.

5.2 Statistical Approach

In this research, we categorized programs into two classes: expert and beginner. We

built six machine learning models to categorize programs based on the author’s program-

89

5.2. STATISTICAL APPROACH

ming experience. These models were built using up to fifteen features. Our goal was to

determine which features are most significant to classify programs in these two classes.

These features might refer to the different programming styles of experts and beginners.

We wanted to determine whether the difference was realistic or it occurred randomly. We

performed the statistical test T-test to determine whether the differences are significant or

not.

The T-test compares two groups based on their means. This method is known as a

bivariate statistical test [9]. The T-test computes the difference between the two groups by

calculating their means. In addition, it represents the significance of the differences.

There are two hypotheses in a T-test: the null hypothesis and the alternative hypothesis.

The null hypothesis is denoted by H0, and Ha represents the alternative hypothesis. The null

hypothesis, H0, is tested in contrast to the alternative hypothesis, Ha. The two hypotheses

are as follows:

• the null hypothesis (H0) defines that, there is no difference between two classes (µ1 =

µ2) as it might occur by chance, and

• the alternative hypothesis (Ha) states that there are differences between two classes

(µ1 6= µ2).

The outcome of the T-test may accept or reject the null hypothesis. The alternative

hypothesis is accepted when the null hypothesis is rejected. The ρ value is computed in a T-

test, which shows whether the difference occurs by chance or is real [9]. A threshold value,

0.05, is used to illustrate the statistical significance between two classes. The relationship

between the ρ value and the hypotheses is as follows:

• the null hypothesis (H0) is rejected when ρ < 0.05; it means that the statistical differ-

ence between the two classes is real, and

• the null hypothesis (H0) gets accepted when ρ> 0.05; which means that the statistical

difference occurs by chance.

90

5.2. STATISTICAL APPROACH

Table 5.2: T-test (ρ) values of features.

Features ρ value
Lines of code (LOC) 2.3089×10−57

Source lines of code (SLOC) 1.8661×10−61

Percentage of source lines of code
(SLOC%)

0.9932

Blank lines of code (BLOC) 5.6244×10−39

Percentage of blank lines of code
(BLOC%)

0.0213

Comment lines of code (CLOC) 0.6110
Percentage of comment lines of code
(CLOC%)

0.0077

Mixed lines of code with both source and
comments (C SLOC)

0.0002

Percentage of mixed lines (C SLOC%) 0.1192
Total words in all comments (CWORD) 0.0625
Physical executable lines of code
(SLOC P)

1.8661×10−61

Logical executable lines of code
(SLOC L)

2.0891×10−60

The number of functions defined (Func-
tions)

1.4839×10−26

Lines of code in functions (FLOC) 1.2852×10−38

Average lines of code per functions
(FLOC average)

0.0447

We conducted a T-test using Microsoft Excel c© to determine the significance of our

features for expert-written and beginner-written programs. We carried out a two-tailed T-

test to determine the differences between the two classes and identify whether the difference

is statistically significant. The features were treated as dependent variables, and the two

classes, experts and beginners, are considered as independent variables in the T-test. Table

5.2 shows the ρ values returned by the T-test.

From Table 5.2, we can see that eleven features have ρ values less than 0.05. These

features are:

(i) lines of code (LOC),

91

5.2. STATISTICAL APPROACH

(ii) source lines of code (SLOC),

(iii) blank lines of code (BLOC),

(iv) percentage of blank lines of code (BLOC%),

(v) percentage of comment lines of code (CLOC%),

(vi) mixed lines of code with both source and comments (C SLOC),

(vii) physical executable lines of code (SLOC P),

(viii) logical executable lines of code (SLOC L),

(ix) the number of functions defined (Functions),

(x) lines of code in functions (FLOC), and

(xi) average lines of code per functions (FLOC average).

The above features are said to be statistically significant as their ρ values are less than

0.05. The null hypothesis is rejected for these eleven features. For the remaining features,

which have ρ values greater than zero, we cannot reject the null hypothesis. These fea-

tures (SLOC%, CLOC, C SLOC%, CWORD) are therefore not considered as statistically

significant to classify expert-written and beginner-written programs.

A comparative analysis was conducted on eleven statistically significant features. Table

5.3 demonstrates the usage of statistically significant features in both expert-written and

beginner-written programs.

Beginner programmers used more blank lines in the program compared to expert pro-

grammers. 66% of the total blank lines were present in the beginner-written programs,

whereas 34% of the total blank lines were present in the expert-written programs. There-

fore, blank lines of code (BLOC) is a significant feature that can differentiate between

beginner-written and expert-written programs. Another feature, average lines of code per

92

5.3. VISUAL ANALYSIS OF PROGRAMS

Table 5.3: Comparison of feature usage in expert-written and beginner-written programs.

Features Expert-Written
Programs

Beginner-Written
Programs

Lines of code (LOC) 55% 45%
Source lines of code (SLOC) 59% 41%
Blank lines of code (BLOC) 34% 66%
Percentage of blank lines of code
(BLOC%)

52% 48%

Percentage of comment lines of code
(CLOC%)

57% 43%

Mixed lines of code with both source and
comments (C SLOC)

57% 43%

Physical executable lines of code
(SLOC p)

59% 41%

Logical executable lines of code
(SLOC L)

60% 40%

The number of functions defined (Func-
tions)

61% 39%

Lines of code in functions (FLOC) 57% 43%
Average lines of code per functions
(FLOC average)

49% 51%

function (FLOC average), had a higher values of usage in beginner-written programs at

51%.

Apart from BLOC and FLOC average, the other nine statistically significant features

were more used in the expert-written programs than in beginner-written programs. Expert

programmers used more functions than beginner programmers. Expert programmers de-

fined 61% of total functions, while beginner programmers defined 39% of total functions.

The programs written by expert programmers could be described as more structured as they

tended to utilize more user-defined functions than beginner programmers. Moreover, the

number of executable statements (SLOC L) was higher in expert-written programs. 60%

of SLOC L were present in the expert-written program. Also, the usage of LOC, SLOC,

BLOC%, CLOC%, C SLOC, SLOC P, and FLOC were higher in expert-written programs

than beginner-written programs.

93

5.3. VISUAL ANALYSIS OF PROGRAMS

5.3 Visual Analysis of Programs

In this section, we visually explored the programs to discover the differences between

expert-written and beginner-written programs. We analyzed the eleven statistically signif-

icant features by investigating four randomly-selected programs. Among these programs,

two were the expert-written programs, and two were the beginner-written programs. The

comparison took place among expert and beginner written programs having an almost sim-

ilar length of codes.

For the first visual analysis, we compared a beginner-written program that was 450 lines

long with an expert-written program which was 447 lines long. As our second comparison,

we studied another pair of programs written by a beginner and an expert that were both 100

lines long.

Table 5.4 shows the first comparison between beginner and expert-written program.

Table 5.4: First comparison between expert-written and beginner-written programs.

Features Expert-Written
Program

Beginner-Written
Program

Lines of code (LOC) 447 450
Source lines of code (SLOC) 416 393
Blank lines of code (BLOC) 5 55
Percentage of Blank lines of code
(BLOC%)

1.12% 12.22%

Percentage of comment lines of code
(CLOC%)

5.82% 0.44%

Mixed lines of code with both source and
comments (C SLOC)

0 0

Physical executable lines of code
(SLOC P)

416 393

Logical executable lines of code
(SLOC L)

296 286

The number of functions defined (Func-
tions)

21 2

Lines of code in functions (FLOC) 269 7
Average lines of code per functions
(FLOC average)

12.81 3.5

94

5.3. VISUAL ANALYSIS OF PROGRAMS

Table 5.4 shows that the values of SLOC, SLOC P, SLOC L features were greater in

the expert-written programs than beginner-written programs. But the use of the BLOC and

BLOC% in the expert-written program were significantly less compared to the beginner-

written program. Conversely, the feature values of CLOC%, functions, FLOC and FLOC

average were higher in the expert-written program than in the beginner-written program.

Then we visually compared two programs written by expert and beginner individually

having the same length of code. The second comparison is represented in Table 5.5.

Table 5.5: Second comparison between expert-written and beginner-written programs.

Features Expert-Written
Program

Beginner-Written
Program

Lines of code (LOC) 100 100
Source lines of code (SLOC) 75 90
Blank lines of code (BLOC) 3 10
Percentage of blank lines of code
(BLOC%)

3% 10%

Percentage of comment lines of code
(CLOC%)

22% 0%

Mixed lines of code with both source and
comments (C SLOC)

0 0

Physical executable lines of code
(SLOC P)

75 90

Logical executable lines of code
(SLOC L)

46 72

The number of functions defined (Func-
tions)

12 1

Lines of code in functions (FLOC) 34 88
Average lines of code per functions
(FLOC average)

2.83 88

From Table 5.5, we can see that the value of the feature SLOC, BLOC, SLOC P and

SLOC L was higher in the beginner-written program. However, in the expert-written pro-

gram, the feature value of comment lines and functions was higher.

From both comparisons, it can be speculated that the expert-written programmer used

more functions and comments, and less blank lines than the beginner-written programmer.

95

5.4. RELATIONSHIP BETWEEN FEATURES

We can see that expert-written programmers were more structured as they used more func-

tions than beginner-written programmers. Also, expert-written programmers used more

comments in the program, which enhances the readability of the program.

5.4 Relationship Between Features

In this section, we investigate the relationship between pairs of features in order to find

out the strength of the relationship between features. We are interested in finding out the

linear relationship between features for both beginner-written programs and expert-written

programs. The γ value was calculated to discover whether there was a relationship between

a pair of features or not. There can be three kinds of relationships between a pair of features

based on the γ value [56]:

(i) A pair of features is positively correlated when γ > 0. A pair of features is strongly

related when the γ value is higher.

(ii) A pair of features is negatively correlated when γ < 0. It indicates that when a feature

from a pair occurs, the other feature may not occur.

(iii) There is no correlation between features when γ = 0. This means that the features are

not dependent on each other.

5.4.1 Beginner-written Programs

Figure 5.1 shows the correlation matrix of beginner-written programs based on original

feature frequencies. There are 63 positively correlated pairs of features in the beginner-

written programs (correlation, γ > 0). Among them, 13 pairs are strongly related as their

correlation (γ) values are greater than 0.5. The strongly connected features of beginner-

written programs are shown in Table 5.6.

There are five pairs of features of beginner-written programs which are not dependent

on each other (γ = 0). These pairs are:

96

5.4. RELATIONSHIP BETWEEN FEATURES

Table 5.6: Strongly connected features of beginner-written programs.

Pair No. Feature1 Feature2
1 Lines of code (LOC) Blank lines of code (BLOC)
2 Source lines of code (SLOC) Physical executable lines of

code (SLOC P)
3 Source lines of code (SLOC) Logical executable lines of

code (SLOC L)
4 Source lines of code (SLOC) Lines of code in functions

(FLOC)
5 Comment lines of code

(CLOC)
Percentage of comment lines
of code (CLOC%)

6 Comment lines of code
(CLOC)

Total words in all comments
(CWORD)

7 Percentage of comment lines
of code (CLOC%)

Total words in all comments
(CWORD)

8 Mixed lines of code with
both source and comments
(C SLOC)

Percentage of mixed lines
(C SLOC%)

9 Physical executable lines of
code (SLOC P)

Logical executable lines of
code (SLOC L)

10 Physical executable lines of
code (SLOC P)

Lines of code in functions
(FLOC)

11 Logical executable lines of
code (SLOC L)

The number of functions de-
fined (Function)

12 Logical executable lines of
code (SLOC L)

Lines of code in functions
(FLOC)

13 Lines of code in functions
(FLOC)

Average lines of code per
functions (FLOC average)

• Percentage of source lines of code (SLOC%) and the number of functions defined

(Function).

• Blank lines of code (BLOC) with comment lines of code (CLOC), mixed lines of code

with both source and comments (C SLOC), total words in all comments (CWORD)

and the number of functions defined (Function).

In beginner-written programs, source lines of code (SLOC) and physical executable

lines of code (SLOC P) are highly related as γ = 1. Apart from that, lines of code (LOC)

97

5.4. RELATIONSHIP BETWEEN FEATURES

and blank lines of code (BLOC) are strongly connected in beginner-written programs with

a γ value of 0.99. Both logical executable lines of code (SLOC L) and lines of code in

functions (FLOC) appeared in four pairs of related features for beginner-written programs.

5.4.2 Expert-written Programs

The γ values of correlation matrix for expert-written programs are represented in Figure

5.2.

There are 81 pairs of features in expert-written programs that are positively correlated

(γ > 0). Twenty four pairs among them are strongly related (γ > 0.5) which are listed in

Tables 5.7 and 5.8.

Table 5.7: Strongly related features of expert-written programs.

Pair No. Feature1 Feature2
1 Lines of code (LOC) Source lines of code (SLOC)
2 Lines of code (LOC) Blank lines of code (BLOC)
3 Lines of code (LOC) Physical executable lines of

code (SLOC P)
4 Lines of code (LOC) Logical executable lines of

code (SLOC L)
5 Lines of code (LOC) The number of functions de-

fined (Function)
6 Lines of code (LOC) Lines of code in functions

(FLOC)
7 Source lines of code (SLOC) Physical executable lines of

code (SLOC P)
8 Source lines of code (SLOC) Logical executable lines of

code (SLOC L)
9 Source lines of code (SLOC) The number of functions de-

fined (Function)
10 Source lines of code (SLOC) Lines of code in functions

(FLOC)
11 Blank lines of code (BLOC) Percentage of blank lines of

code (BLOC%)
12 Blank lines of code (BLOC) Physical executable lines of

code (SLOC P)

98

5.4. RELATIONSHIP BETWEEN FEATURES

Table 5.8: Strongly related features of expert-written programs (continued).

Pair No. Feature1 Feature2
13 Blank lines of code (BLOC) Logical executable lines of

code (SLOC L)
14 Blank lines of code (BLOC) Lines of code in functions

(FLOC)
15 Comment lines of code

(CLOC)
Percentage of comment lines
of code (CLOC%)

16 Comment lines of code
(CLOC)

Total words in all comments
(CWORD)

17 Percentage of comment lines
of code (CLOC%)

Total words in all comments
(CWORD).

18 Mixed lines of code with
both source and comments
(C SLOC)

Percentage of mixed lines
(C SLOC%)

19 Physical executable lines of
code (SLOC P)

Logical executable lines of
code (SLOC L)

20 Physical executable lines of
code (SLOC P)

The number of functions de-
fined (Function)

21 Physical executable lines of
code (SLOC P)

Lines of code in functions
(FLOC)

22 Logical executable lines of
code (SLOC L)

The number of functions de-
fined (Function)

23 Logical executable lines of
code (SLOC L)

Lines of code in functions
(FLOC)

24 The number of functions de-
fined (Function)

Lines of code in functions
(FLOC)

In the expert-written programs, there are three pair of features which are independent

of each other. These pairs are:

• Percentage of blank lines of code (BLOC%) and mixed lines of code with both source

and comments (C SLOC).

• Percentage of comment lines of code (CLOC%) and average lines of code per func-

tions (FLOC average).

• Percentage of mixed lines (C SLOC%) and lines of code in functions (FLOC).

In both beginner and expert-written programs, source lines of code (SLOC) and physical

99

5.4. RELATIONSHIP BETWEEN FEATURES

executable lines of code (SLOC P) are highly related as γ = 1. In expert-written programs,

lines of code (LOC) are very strongly related to source lines of code (SLOC) and physical

executable lines of code (SLOC P) with γ = 0.97. Moreover, lines of code (LOC), physical

executable lines of code (SLOC P), logical executable lines of code (SLOC L) and lines

of code in functions (FLOC) appeared in six pairs of related features for expert-written

programs.

100

5.4. RELATIONSHIP BETWEEN FEATURES

Figure 5.1: Correlation based on raw frequency of features in beginner-written programs.

101

5.4. RELATIONSHIP BETWEEN FEATURES

Figure 5.2: Correlation based on raw frequency of features in expert-Written programs.

102

Chapter 6

Conclusion and Future Work

Argamon demonstrated that sociolinguistic characteristics such as the author’s gender, age,

and experience have an undeniable effect on natural language use [48], [49]. In [32], Misek-

Falkoff stated that a computer program could be analyzed using the techniques of linguis-

tics. A natural language speaker shows individuality through language choice, and in the

same way, a computer programmer also represents their individualism through their pro-

gramming language choice. This research aims to determine the effects of the author’s

programming experience, a sociolinguistic characteristic, in the development of computer

programs.

The focus of our research is to determine how machine learning techniques can be ap-

plied to analyze computer programs. We carried out experiments on programs written in

C++. C++ programs are text files, and for text categorization, machine learning approaches

are widely used [49]. Naz [36] previously used machine learning techniques to classify

computer programs based on the author’s gender. Rafee [32] improved the learning tech-

niques to categorize the programs based on the author’s gender, and also classified programs

based on the author’s region. In our research, we investigated whether the author is a be-

ginner or an expert by analyzing the program that they have written.

We created a dataset containing 7616 computer programs written in C++. These C++

programs were collected from Codeforces.com. Our dataset was balanced over the author’s

experience, gender and region: half of the programs were written by beginner programmers,

and the remaining half were written by expert programmers. Programs were collected from

103

6. CONCLUSION AND FUTURE WORK

two regions: Asia and Europe. Moreover, among 7616 programs, 3808 programs were

male-written, and 3808 were female-written. We selected the program’s structural attributes

such as the total number of lines, the number of blank lines and the number of comments

as the features to analyze the programs based on the author’s programming experience.

Fifteen of these features were selected, which assisted in the determination of the program-

mer’s unique coding style. The programs were converted to numeric representation using

the feature values. We used six machine leaning techniques including decision tree, naı̈ve

Bayes, random forest, k nearest neighbor, logistic regression and bagging classifier to build

six models. We performed six experiments using six machine learning models with a dif-

ferent number of features. We used both holdout and a cross-validation method to evaluate

the performance of the models.

In experiments 1 and 4, fifteen features were used to classify the programs based on

the author’s programming experience. Machine learning models were evaluated using five-

fold cross-validation technique in experiment 1. 67% programs were correctly classified in

experiment 1. In experiment 4, models were evaluated using the holdout method. In the

holdout method, the dataset was partitioned into two sets: training set (80% data) and test

set (20% data). Models were built by training them using the training set. Then the models

were evaluated using the test set. We achieved an accuracy of 69%, which means 69% of

the total data were correctly classified.

We used infogain in experiments 2 and 5 to reduce the number of features from fifteen to

seven. The top seven features selected using infogain were source lines of code percentage

(SLOC%), blank lines of code percentage (BLOC%), comment lines of code percentage

(CLOC%), average lines of code per functions (FLOC AVERAGE), lines of code (LOC),

physical executable lines of code (SLOC-P), and source lines of code (SLOC). The perfor-

mance of the models was evaluated using five-fold cross-validation method in experiment

2. We accomplished an accuracy of 65% in experiment 2, meaning 65% of data were

correctly classified as beginner-written and expert-written programs. The models in ex-

104

6. CONCLUSION AND FUTURE WORK

periment 5 were evaluated using the holdout method. We achieved an accuracy of 67%

in this experiment. Later, we performed a T-test which yielded eleven statistically signifi-

cant features from fifteen features. Six features out of seven used in experiments 2 and 5

were statistically significant. Only the source lines of code percentage (SLOC%) was not

statistically significant.

The number of features was reduced to four from fifteen using the select4best method in

experiments 3 and 6. The four best features were lines of code (LOC), physical executable

lines of code (SLOC-P), logical executable lines of code (SLOC-L) and source lines of

code (SLOC). All of these features were statistically significant, according to the T-test.

The machine learning models were evaluated using five-fold cross-validation technique in

experiment 3. We achieved an accuracy of 63% in experiment 3. That means 63% of

programs were correctly classified based on the author’s programming experience. The

same four features were used in experiment 6 to build the models. Instead of the cross-

validation technique, the holdout method was used to evaluate the models in experiment 6.

58% of computer programs were correctly classified as expert-written and beginner-written

programs in experiment 6.

We performed statistical analysis on the selected fifteen features of the computer pro-

grams. T-test was performed on the features based on class labels: expert and beginner.

Based on the ρ values of the T-test, eleven features were statistically significant. These fea-

tures were the lines of code (LOC), the source lines of code (SLOC), the blank lines of code

(BLOC), the blank lines of code percentage (BLOC%), the comment lines of code percent-

age (CLOC%), the mixed lines of code with both source and the comments (C SLOC), the

physical executable lines of code (SLOC p), the logical executable lines of code (SLOC L),

the number of functions defined (Functions), the lines of code in functions (FLOC), and the

average lines of code per functions (FLOC average).

We also carried out a visual analysis of some randomly selected programs. We visually

compared the statistically significant features of programs based on the author’s program-

105

6.1. FUTURE RESEARCH DIRECTIONS

ming experience. The highlights of the feature analysis are given below:

• Beginner programmers used more blank lines of codes than expert programmers.

• The average lines of code per function were higher in beginner-written programs than

expert-written programs.

• Apart from blank lines of codes and average lines of code per function, the rest of the

nine statistically significant features were more used in expert-written programs than

beginner-written programs.

• From the visual analysis, it appeared that expert programmers were more structured

as they used more functions than beginner programmers.

• Moreover, the code readability of expert programmers was higher as they used more

comments in the programs than beginner programmers.

6.1 Future Research Directions

This research has opened the path for many future research directions. Some of the

future research recommendations are as follows:

• We categorized computer programs based on the author’s programming experience. It

would be compelling to investigate the effect of another sociolinguistic characteristic,

such as the author’s native language on computer programs.

• In this research, we used programs written in C++ in the experiments. However, there

are other popular programming languages, such as Python and Java. In the future, we

would like to conduct experiments on other programming languages.

• There were 7616 programs in our dataset. The machine learning models were built

by training them using the programs of our dataset. A larger dataset would train the

models more efficiently. Therefore, we plan to extend the dataset.

106

6.1. FUTURE RESEARCH DIRECTIONS

• We classified the programs in two classes: beginner and expert. There are more

categories of programmers apart from beginners and experts. We wish to categorize

the programs in more classes such as beginner, intermediate, expert and master.

• We used six supervised machine learning algorithms, including decision tree, naı̈ve

Bayes, random forest, k nearest neighbor, logistic regression, and bagging classifier

to categorize computer programs based on the author’s programming experience. A

neural network is a modern supervised learning technique that may achieve higher

accuracy to classify computer programs.

• For categorizing programs we applied supervised machine learning approaches. In

the future, we would like to use unsupervised machine learning techniques to classify

the programs based on the author’s programming experience.

• We built our dataset by collecting programs from two regions: Asia and Europe. It

would be interesting to collect the programs from other regions such as North Amer-

ica, South America, Africa and Australia and test our models on those programs.

• We used a T-test to find out the statistically significant features of this research. Other

statistical analysis techniques, such as principal component analysis, can be used to

determine significant features in the future.

• All the programs collected in our dataset were from the Codeforces.com. The source

codes collected from Codeforces were the solutions to programming contest prob-

lems. There might be differences between the coding style of contest codes and reg-

ular codes. We plan to collect computer programs from other sources such as Github,

where regular codes can be found.

107

Bibliography

[1] John Anvik, Lyndon Hiew, and Gail C. Murphy. Who should fix this bug? 28th
nternational Conference on Software Engineering (ICSE), pages 361–370, 2006.

[2] Rajeev K. Bali, Nilmini Wickramasinghe, and Brian Lehaney. Knowledge Manage-
ment Primer. Taylor Francis e-Library, 2 edition, 2010.

[3] M. Bicego and M. Loog. Weighted k-nearest neighbor revisited. 23rd International
Conference on Pattern Recognition (ICPR), pages 1642–1647, 2016.

[4] John Blackwell and Paul Gamble. Knowledge Management, A State of the Art Guide.
Kogan Page, 2001.

[5] Leo Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.

[6] Steven Burrows and S. M. M. Tahaghoghi. Source code authorship attribution using n
grams. In proceedings of 12th Australasian Document Computing Symposium, pages
32–39, 2007.

[7] R. P. L. Buse and W. Weimer. Learning a metric for code readability. IEEE Transac-
tions on Software Engineering, 36(4):546–558, 2010.

[8] Naomi R. Ceder. The Quick Python Book. Manning, 2 edition, 2010.

[9] Lynne M Connelly. t-tests. MedSurg Nursing, 20(6):341, 2011.

[10] Steven Deutekom. Collecting source code samples for sociolinguistic research. Tech-
nical Report, 2019.

[11] Pedro Domingos. A few useful things to know about machine learning. Communica-
tions of the ACM, 55(10):78–87, 2012.

[12] Alberto Fernández, Salvador Garcı́a, Mikel Galar, Ronaldo C. Prati, Bartosz
Krawczyk, and Francisco Herrera. Learning from Imbalanced Data Sets. Springer,
2018.

[13] Sachin S. Gavankar and Sudhirkumar D. Sawarkar. Eager decision tree. 2nd Interna-
tional Conference for Convergence in Technology (I2CT), pages 837–840, 2017.

[14] Hemant Kumar Gianey and Rishabh Choudhary. Comprehensive review on super-
vised machine learning algorithms. International Conference on Machine learning
and Data Science, pages 123–140, 2017.

108

BIBLIOGRAPHY

[15] Qiong Gu, Li Zhu, and Zhihua Cai. Evaluation measures of the classification perfor-
mance of imbalanced data sets. International Symposium on Intelligence Computation
and Applications, 2009.

[16] Tanzim Ul Haque, Nudrat Nawal Saber, and Faisal Muhammad Shah. Sentiment anal-
ysis on large scale amazon product reviews. International Conference on Innovative
Research and Development (ICIRD), 2018.

[17] Simon O. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall,
1998.

[18] Geoffrey Holmes, Andrew Donkin, and Ian H. Witten. Weka: A machine learning
workbench. Proceedings of ANZIIS ’94 - Australian New Zealnd Intelligent Informa-
tion Systems Conference, 1994.

[19] Richard A. Hudson. Sociolinguistics. Cambridge University Press, 2 edition, 1996.

[20] José Antonio Iglesias, Agapito Ledezma, and Araceli Sanchis. An ensemble method
based on evolving classifiers: estacking. 2014 IEEE Symposium on Evolving and
Autonomous Learning Systems (EALS), 2014.

[21] C. A. Ratanamahatana J. F. Pane and B. A. Myers. Studying the language and structure
in non-programmers’ solutions to programming problems. International Journal of
Human-Computer Studies, 54(2):237–264, 2001.

[22] M. Kamber J. Han and J. Pei. Data Mining Concepts and Techniques. Elsevier and
Morgan Kaufmann Publishers, 3 edition, 2012.

[23] Veena N. Jokhakar and S. V. Patel. A random forest based machine learning approach
for mild steel defect diagnosis. IEEE International Conference on Computational
Intelligence and Computing Research, pages 123–140, 2016.

[24] Frank E. Harrell Jr. Regression Modeling Strategies With Applications to Linear Mod-
els, Logistic and Ordinal Regression, and Survival Analysis. Springer, 2nd edition,
2015.

[25] Vaibhavi Kalgutkar, Ratinder Kaur, Hugo Gonzalez, Natalia Stakhanova, and Alina
Matyukhina. Code authorship attribution: Methods and challenges. ACM Comput.
Surv., 52(1), 2019.

[26] John D. Kelleher, Brian Mac Namee, and Aoife D’Arcy. Fundamentals of Machine
Learning for Predictive Data Analytics. The MIT Press, 1 edition, 2015.

[27] I. Krsul and E. Spafford. Authorship analysis: Identifying the author of a program.
Computers and Security, 16(3):233–248, 1997.

[28] W. Labov. The linguistic variable as a structural unit. Washington Linguistics Re-
viewty, 3:4–22, 1966.

109

BIBLIOGRAPHY

[29] Yue Liu, Lingjie Hu, Fei Yan, and Bofeng Zhang. Information gain with weight based
decision tree for the employment forecasting of undergraduates. IEEE International
Conference on Green Computing and Communications and IEEE Internet of Things
and IEEE Cyber, Physical and Social Computing, pages 2210–2213, 2013.

[30] Mike Mirzayanov. The second revolution of colors and titles.
https://codeforces.com/blog/entry/20638, Accessed on 2020-15-01.

[31] Mike Mirzayanov. Codeforces rating system. https://codeforces.com/blog/entry/102,
Accessed on 2020-31-08.

[32] L. D. Misek-Falkoff. The new field of software linguistics. ACM SIGMETRICS Per-
formance Evaluation Review, 11(2):35–51, 1982.

[33] Tom Mitchell. Machine Learning. McGraw Hill, 1997.

[34] M. Arthur Munson and Rich Caruana. On feature selection, bias-variance, and bag-
ging. Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, 2009.

[35] M.Narasimha Murty and V.Susheela Devi. Pattern Recognition: An Algorithmic Ap-
proach. Springer, Universities Press, 2011.

[36] Fariha Naz. Do sociolinguistic variations exist in programming? Master’s Thesis,
University of Lethbridge, 2015.

[37] Fariha Naz and Jacqueline E. Rice. Sociolinguistics and programming. 5th Interna-
tional Conference on Computer and Knowledge Engineering (ICCKE), pages 74–79,
2015.

[38] Andrew Y. Ng and Michael I. Jordan. On discriminative vs. generative classifiers: A
comparison of logistic regression and naive bayes. Advances in Neural Information
Processing Systems, 14, 2001.

[39] Vu Nguyen, Sophia Deeds-Rubin, Thomas Tan, and Barry Boehm. A SLOC count-
ing standard. Center for Systems and Software Engineering, University of Southern
California, 2007.

[40] W. O’Grady and J. Archibald. Contemporary Linguistic Analysis: An Introduction.
Pearson Education Canada, 6th edition, 2008.

[41] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine learning in python.
Journal of Machine Learning Research, pages 2825–2830, 2011.

[42] Chris Piech, Mehran Sahami, Daphne Koller, Stephen Cooper, and Paulo Blikstein.
Modeling how students learn to program. SIGCSE ’12: Proceedings of the 43rd ACM
technical symposium on Computer Science Education, pages 153–160, 2012.

110

BIBLIOGRAPHY

[43] Hongming Zhu Qin Liu, Xiaolong Li and Hongfei Fan. Acquisition of open source
software project maturity based on time series machine learning. 10th International
Symposium on Computational Intelligence and Design, pages 296–299, 2017.

[44] Md Mahmudul Hasan Rafee. Computer program categorization with machine learn-
ing. Master’s Thesis, University of Lethbridge, 2017.

[45] Jason D. M. Rennie, Lawrence Shih, Jaime Teevan, and David R. Karger. Tackling the
poor assumptions of naive bayes text classifiers. Twentieth International Conference
on Machine Learning, 2003.

[46] Willi Richert and Luis Pedro Coelho. Building Machine Learning Systems with
Python. Packt Publishing, 2013.

[47] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (3rd ed.).
Prentice Hall, 2009.

[48] J. Fine S. Argamon, M. Koppel and A. R. Shimoni. Gender, genre, and writing style
in formal written texts. TEXT, 23:321–346, 2003.

[49] R. Horton S. Argamon, J. Goulain and M. Olsen. Vive la difference! text mining
gender dfference in french literature. @ONLINE. Digital Humanities Quarterly, 3(2),
2009.

[50] N. Schmit. An Introduction to Applied Linguistics. Hodder Education, London, Eng-
land, 2010.

[51] Aayushi A. Shah and Keyur Rana. A review on supervised machine learning text cat-
egorization approaches. International Conference on Circuits and Systems in Digital
Enterprise Technology (ICCSDET), 2018.

[52] Eugene H. Spaffordl and Stephen A. Weeber. Software forensics: Can we track code
to its authors? Computers and Security, 12(6):585–595, 1993.

[53] Richard S. Sutton. Reinforcement Learning. Kluwer Academic Publishers, 1 edition,
1992.

[54] Zengwei Tang, Hong Wang, Xiaobing Li, Xiaohui Li, Wenjie Cai, and Chongyuan
Han. An object-based approach for mapping crop coverage using multiscale weighted
and machine learning methods. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 13:1700–1713, 2020.

[55] Ronald Wardhaugh. An Introduction to Sociolinguistics. BLACKWELL, 2 edition,
1995.

[56] Ian Witten, Eibe Frank, and Mark Hall. Data Mining Practical Machine Learning
Tools and Techniques. Elsevier and Morgan Kaufmann Publishers, 3 edition, 2011.

111

Appendix A

Python Library

A.1 Reading Text Data
There are several libraries of Python to read text data. These text data used as input data

for various experiments. Some of these libraries are given below:

• “BeautifulSoup” can be used to read data from XML files.

• Data can be imported from a Comma Separated Value (CSV) files using “pandas”.

• Text data can also be stored in json format. Data can be accessed by a Python program
using the package “json”.

• Input data can also be stored in Microsoft Excel Worksheet. “xlrd” can import data
from Excel files.

A.2 Natural Language Toolkit
NLTK is the primary toolkit to process natural language [46]. There are various library

functions in NLTK.

• Tokenization can be used to tokenize the text data. For instance, It isn’t raining will
be tokenized to It, isn’t and raining.

• Stemming converts any word to its basic format. For example, isn’t will be converted
to is not.

• There is a list of stopwords in NLTK. Words which do not have much impact in
decision making such as am, is, are, a are listed as stop words.

• NLTK also defines several classifiers such as:

– Decision Tree Classifier

– Naive Bayes Classifier

– Conditional Exponential Classifier

112

A.6. MERITS

A.3 Scikit-learn
Scikit-learn contains several functions defining the modern supervised and unsupervised

machine learning algorithms [41]. This package contains functions defining:

• Supervised machine learning algorithms such as naive Bayes, Support Vector Ma-
chine, Ensemble Methods.

• Unsupervised machine learning algorithms like Gaussian Mixture Models, Cluster-
ing.

• Model selection and evaluation, such as cross-validation, model evaluation.

• Dataset transformations like feature extraction, pre-processing data.

A.4 math
“math” module provides access to basic mathematical operations such as absolute value,

floor value, factorial, modulus, sum.

A.5 NumPy
NumPy is a package in Python [46]. It contains an N-dimensional array object, and it is

a table of values of the same type. This package also includes useful linear algebra, Fourier
transforms, and random number capabilities [46].

A.6 Merits
The benefits of using Python are listed as follows [8]:

1. Python is an open-source programming language. That means we can download
Python free. Also, the updates are always available online, and we can use them
without paying anything. Moreover, anyone can modify the source code of Python.

2. Python has a vast built-in library. This feature is the most important advantage of
using Python.

3. Python supports both procedural and object-oriented paradigm. To implement a real-
world scenario, the object-oriented paradigm is required. A real-world situation can-
not be described using one variable. For example, if we need to write a program
about students, we need to have several variables such as name, id, GPA and some
functions to calculate attendance, GPA. This scenario can be represented by creating
a student class. Using Python, we can create a class and its objects.

4. Python is easy to learn in comparison to other programming languages. Computer
programs written in Python are easily readable.

5. Python can be integrated with other programming languages such as C, C++, Java.

113

A.7. DEMERITS

6. It is efficient to create prototypes using Python as it requires less coding compared to
other programming languages. Prototypes may be built to test ideas on specific data.

7. Computer programs written in Python are portable. Python programs written in one
machine can be executed in another machine. Other programming languages such as
C, C++ do not allow portability.

A.7 Demerits
Apart from the facilities, there are also some demerits of using Python [8].

1. Python takes more time to execute a program in comparison to other programming
languages such as C, C++. Python programs are interpreted. Also, it runs a program
line by line. Programs written in Python take more time to execute than programs
written in compiled programming languages. Hence Python is not a good choice for
a project, where execution time is the primary concern.

2. Implementation of parallel programming is difficult in Python as Python does not
support multi-threaded programming. It supports single-threaded programs.

3. C, Java, Perl has more collections in their library in comparison to Python.

4. Python does not check the variable type during compilation. In Python, a variable
can store any value such as integer or string or float. Some developers do not like
this feature. Because it adds an additional check whether the variable is containing
the desired type of value or not. For example, a variable “count” may be declared to
store the number of iterations of for loop. It may start as count = 0. However, in the
middle, if it has been assigned a value such as count = “Hello”, Python will allow
it. If this is the case, before incriminating the value, the programmer has to check
whether count stores integer or not.

114

