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Abstract 

 Information on soil properties is limited in the West Castle watershed. Therefore, 

this research aimed to aid environmental research in the watershed. Data on soil restrictive depth, 

soil texture, soil organic matter (SOM), and solum depth were acquired from 131 sites in the 

watershed. Stepwise linear regression modelling was used to find relationships between soil and 

environmental variables. The results were used to create maps predicting spatial distribution of 

the soil properties in the study area. Modelling results indicated soils were highly sandy and 

contain more organic matter than previously thought. Vegetation type, height and density, and 

land cover type, were found to be important variables in predicting soil properties, and as 

such could be beneficial for mapping soils in the future. Additionally, the research showed deeper 

soil restrictive depth than previously thought in the watershed and solum depth met expectations.  
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Chapter 1 Introduction 

1.1 Research Statement 

 Without soils, plant growth in nature is rarely possible. Soils provide ecosystem services, 

the regulation of infiltration rates, the potential attenuation of floods, and influence groundwater 

recharge (Shukla, 2014). Miller and White (1998) explain that understanding relationships 

between vegetation, soil, and the atmosphere for climate and hydrology modelling requires the 

input of soil property data. Especially crucial are physical soil properties (e.g. solum depth and 

soil texture) that help to explain the hydrological processes within the soil such as water holding 

capacity, infiltration rates, and hydraulic conductivity (Miller & White, 1998).  

Measuring the magnitude of soil properties is important for understanding hydrological 

and ecological behavior of watersheds (Oltean, 2016; Wösten, Pachepsky, & Rawls, 2001). One 

of the difficulties is that little to no soil property data has been gathered in mountainous 

watersheds (Hitziger & Lieb, 2014). This poses issues for accurate hydrological modelling or 

other modelling which rely on such data for accurate predictions. These headwaters provide large 

amounts of fresh water for human use and ecological health, especially from snowmelt. For 

example, 60% of streamflow in the Cline River watershed in Alberta is attributed to snow melt 

(Kienzle, Nemeth, Byrne, & MacDonald, 2012). The prairie provinces of Southern Alberta highly 

rely upon the headwater stream flow from the Rocky Mountains for agricultural, industrial, and 

residential use (Schindler & Donahue, 2006).  

In the mountainous West Castle watershed study area, little soils information is available. 

While general soil classes have been mapped, more detailed information of soil properties in the 

watershed, such as soil horizons and their depth and texture, have not been mapped. This lack of 

soil information for the West Castle watershed creates gaps in our understanding of the 

environmental processes and functioning of the watershed. Detailed soil sampling, lab analysis, 

and spatial modelling of soil properties creates new soil information, increasing our understanding 

of the soils and improving future research in need of soil information.  
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1.2 Research Objectives 

 The first objective was to collect data on the position and magnitude of soil restrictive 

depth, soil texture, soil organic matter, and solum depth properties present in the West Castle 

watershed. These properties are important to measure because they are viewed as fundamental 

soil properties that help to inform the functioning of the soils such as water holding and transport 

in the soils. To accomplish this objective, soil sampling and extensive lab analysis procedures 

were carried out. The objective answered questions such as: What are the minimum, mean, and 

maximum restrictive depths of soils at the sample sites? Are the soil textures predominantly sandy 

or silty? Is there any variation in the soil organic matter content in the soil, and if yes, how is it 

related with land cover, elevation, slope, or other terrain variables?  The second objective was to 

model the spatial distribution of soil properties over the West Castle watershed and to construct 

the maps based on the sampled data. Modelling soil properties is important to understanding 

relationships that exist with soil properties data and the environmental variables at each sample 

site. Mapping the soil properties for the entire watershed is important for investigating and 

understanding large scale patterns between soil and environmental properties that could not be 

seen with point soil data. Stepwise linear regression was used to model the relationship of soil 

with many environmental variables. Slope, elevation, aspect, vegetation, geology and a range of 

other terrain variables were tested for their influence on the range of soil properties gathered 

through objective 1. The third and final objective was to compare the resulting soil property maps 

with the two best existing soils maps, SOILGRID’s and the detailed soil survey available for the 

study area. This final objective allows for the investigation into the extent to which the maps 

produced through this study improve the existing knowledge of soil properties in the West Castle 

watershed. This research is also crucial for increasing awareness on how soil sampling and 

mapping techniques can affect the modelling of our environment.  
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1.3 Thesis Organization 

 The thesis is organized into six chapters. Chapter 1 describes the motivations for this 

research and the objectives addressing needs in the study area. Chapter 2 is the literature review, 

which provides context in current research to understand soil information gaps, soil modeling 

methods and climate change concerns. Chapter 3, research methods, describes in detail field and 

laboratory methods undertaken to collect/measure and analyze soil data, as well as the statistical 

analyses and spatial modelling procedures. Chapter 4 presents the results for field, laboratory, and 

modelling. The discussion of the results, important conclusions, and recommendations for future 

research of the pedosphere in the study area are presented in Chapter 5.  
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Chapter 2: Literature Review 

2.1 Soil as a Natural Body 

2.1.1 A Definition of Soil 

 An agreed upon, direct, and encompassing definition of soil seemed elusive from the time 

Vasilij Dokuchaev fathered pedology and gave rise to the acknowledgement of soil as a natural 

body (Certini & Ugolini, 2013; Huang, Li, & Sumner, 2012). Dokuchaev, and Hans Jenny 

following in his footsteps, described soil as a natural three-dimensional entity that is weathered 

from rock by chemical, biological, and physical forces in turn creating unique chemical, 

biological, and physical properties in the soil. The formation of these properties are affected by 

the combination of climate, organisms, relief, parent material, and time which result in 

horizonation and distribution of soils (Certini & Ugolini, 2013; Jenny, 1980). The ability of soil to 

maintain plant growth seems not to have been important in early descriptions of soil; however, 

this has changed. Presently, soil is most commonly explained in the context of its function or 

influence. Whether soil characteristics are described for growing crops, building upon, or as a 

layer of the lithosphere, the context shapes the definition. For example, soil may be defined 

through the lens of plant growth as “(1) A dynamic natural body composed of mineral and 

organic solids, gases, liquids, and living organisms which can serve as a medium for plant 

growth. (2) The collection of natural bodies occupying parts of the Earth’s surface that is capable 

of supporting plant growth and that has properties resulting from the integrated effects of climate 

and living organisms acting upon parent material, as conditioned by topography, over periods of 

time”(Brady & Weil, 2008, p. 947). Tan (2005, p. 2) define soil as “an independent body in 

nature with a unique morphology from the surface down to the parent material as expressed by 

the soil profile. Soil is the product of biochemical weathering of parent material, and its 

formation is influenced by the soil forming factors: climate, organisms, parent material, relief, 

and time”. The level of consolidation, depth, and level of reconfiguration through chemical 

weathering from the parent material are all of high importance for a concise definition of soil.  
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In mountainous ecosystems, it can be hard to delineate the boundary between soils and 

rock. Upon closer inspection of a seemingly lifeless mountain slope, it can be observed that soil is 

present in a small amount, of approximately a centimeter or thicker. Life may or may not be 

sustained by a soil, however, elements accumulate and erode due to physical, chemical, and 

biological processes. Humans are reaching into the heavens, exploring far flung planets, asking 

the question are there other “Earths” out there and are there soils present on celestial bodies. By 

fitting the definition of soil, possibly contained on celestial bodies, we can encompass soils in 

seemingly soilless landscapes such as mountainous ecosystems. Certini and Ugolini (2013, p. 

379) propose that “soil is a centimetric or thicker unconsolidated layer of fine-grained mineral 

and/or organic material, with or without coarse elements and cemented portions, lying at or near 

the surface of planets, moons, and asteroids, which shows clear evidence of chemical 

weathering”. This definition encompasses all the important characteristics that make up soil, 

therefore, this definition has been adopted as the suppositional foundation of this research in 

mountainous ecosystems.  Soil is defined in this manner in order to understand the interaction of 

soils with environmental forces. 

2.1.2 Soil Formation and Classification 

 In order to arrive at the definition of soil, a fundamental understanding of soil was and is 

required. Physical, chemical, and biological forces (soil forming processes) act on geological 

material over time, creating a multitude of soil properties. Soil properties such as sand, silt, and 

clay proportions (soil texture), colour, depth, cation exchange capacity, structure, pore space, and 

pH. The combination and intensity of environmental factors of climate, topography, organisms, 

and parent material act on the soil through time to influence the formation of the soil properties 

(Steila & Pond, 1989). Pedology is the study of the processes of soil genesis due to the individual 

and combined influence of these forces (Duchaufour, 1998). Soil genesis leads to the formation of 

layers in the soil termed soil horizons, that are differentiated based on color, texture, consistence, 
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structure, and physical, biological, and chemical composition (Soil Classification Working Group, 

1998).  

 Soil taxonomy is the practice of classifying soils, based on individual soils (soil pedons), 

that are differentiated on the basis of their horizonation (Brady & Weil, 2008). A pedon is 1 m by 

1 m hole that extends down to the control section (25 cm into the C or IIC, to permafrost, or 2 m 

whichever is smallest) (Soil Classification Working Group, 1998). Soil taxonomy follows a 

hierarchical structure that identifies broad characteristics to more specific characteristics of a soil 

properties over space (Brady & Weil, 2008). Canada has established a soil classification system 

consisting of 10 soil orders which can be broken down into great group and subgroup levels of 

more detailed characteristics (University of Saskatchewan, n.d.). Soil orders are named in regards 

to soil genesis factors such as the climate degree of weathering. The Regosolic soil order lacks a 

developed B horizon (< 5 cm) and is referred to as weakly developed due to alluviation, 

colluviation, climate and other conditions that hinder soil formation (Soil Classification Working 

Group, 1998). Dissecting the Regosolic soil order name Rego refers to regolith and solic to solum 

which conveys the “young” development of the order. Common soils found in forested regions of 

Canada are Organic, Luvisolic, Brunisolic and Podzolic soil orders. In foothills near mountainous 

regions and in mountainous regions Regosolic and Chernozemic soil orders can also be found 

(University of Saskatchewan, n.d.).  For more explanation of soil genesis and taxonomy refer to 

Brady and Weil (2008); Duchaufour (1998); Soil Classification Working Group (1998); and/or 

Steila and Pond (1989).  

To identify connections between environmental characteristics, much investigation has 

been conducted through soil surveying efforts. This is observed in the soil survey methods, where 

environmental relationships are recognized to map same and similar soil types across a landscape 

with similar geology, slope position, and vegetation patterns (Nikiforuk, 1998; Soil Classification 

Working Group, 1998). Broad environmental relationships of the Chernozemic order are the 

accumulation of organic matter in the A horizon due to grass, forb, and shrub plant communities 
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that are capable of growing in well to imperfectly drained soils. They occur in cool, subarid to 

subhumid environments that include prairie and mountain valley regions. More specific properties 

of the soil determine the great group and subgroup classifications, such as eluviation of the A 

horizon in Eluviated Brown Chernozem due to wetter climates moving soil constituents down the 

profile, leading to an illuviated B horizon (Soil Classification Working Group, 1998). Therefore, 

classifying soils into soil orders and more detailed groups help soil scientists and all others 

interested in soil (e.g. farmers and environmental managers) understand how soil types may 

function in broad terms. For example, Chernozemic soil orders are commonly used for crop 

production, as they have well developed soil profiles, contain much organic matter, and have 

good soil structure along with other desirable properties that often allow for favorable crop 

growth conditions. Deeper understanding of soil property quantification and distribution would 

need to be undertaken for more specific uses. For example, in precision agriculture initial 

agriculture activity was established in regards to soil classification followed by more intensive 

soil sampling for more in depth understanding and management of soil (Flores, Butaslac, 

Gonzales, Dumlao, & Reyes, 2016). Concepts of soil classification have implications in this 

research that are discussed throughout.  

2.2 Soil Surveying 

2.2.1 Conventional Soil Surveying  

 Taking stock of important soil resources, knowingly or unknowingly, has been an 

important activity for humans, especially for agricultural practices. The earliest known record of 

soil management through tillage comes from Iraq, approximately 11,000 years BP (Brevik & 

Hartemink, 2010). A deeper understanding of soil through scientific methods has only recently 

grown in the early 19th century (Churchman, 2010). Soil surveying can be described as “the 

systematic examination, description, classification, and mapping of soils in an area”  (Brady & 

Weil, 2008, p. 948). Soil surveying evolved into a deeper understanding of the formation of soils 

due to environmental forcing, which is used to classify soils such as the Canadian soil surveying 



8 
   

projects (Dent & Young, 1981). Soil surveying started in Ontario, Canada, in 1914, which led to 

increased soil survey work in the 1920s and beyond. The formation of national committees and 

working groups, soil classification systems, and extensive soil information gathering resulted 

from the foundational work done in the 1920s (McKeague & Stobbe, 1978).  

 The early focus of this foundational work was on assessing the soil resources of Canada 

for agricultural and environmental management (Anderson & Smith, 2011). Canada has been 

focused on generalized mapping projects, such as the soil landscapes of Alberta (1:1 million 

scale) and the detailed soil survey map (1:50,000 scale), due to the cost and effort needed to 

produce maps of greater detail (Anderson & Smith, 2011). There has been a noticeable decline of 

government supported conventional soil surveying projects in Canada and around the world since 

the early 1980’s (Anderson & Smith, 2011; Brevik et al., 2016; Geng et al., 2010). Description of 

the soil survey as “conventional” refers to the use of hard copy maps and information to hand 

draw soil type boundaries in relation to landscape associations observed in the field, 

supplemented with aerial photograph interpretation (Geng et al., 2010; Roecker, Howell, Haydu-

Houdeshell, & Blinn, 2010). Canada has undergone a dismantling of multiple working groups, 

committees, and research stations, leading to a shortage of resources such as labour, equipment, 

knowledge, and money available for conventional surveying efforts (Anderson & Smith, 2011).  

 Conventional soil surveying has laid the foundation for understanding the spatial 

distribution of soils, which has allowed for effective management and utilization of soil functions. 

There has been an increased interest in soil understanding to meet the need for clear 

communication of soil information for effective soil and environmental management due to 

dynamic soil conditions under a changing climate and anthropogenic pressure (Hartemink, 2008; 

Hartemink & McBratney, 2008). Colleges and universities are experiencing an upsurge of 

enrolment and interest in soil courses, especially in the departments of geography and 

environmental sciences (Diochon et al., 2016). This seems to be a shift from emphasis placed on 

soil science for agronomic importance (Diochon et al., 2016). Digital soil mapping (DMS) has 
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emerged as the new paradigm for soil mapping practices utilizing computer power and other 

technologies (satellite data, radiometrics etc.) (Boettinger, Howell, Moore, Hartemink, & Kienast-

Brown, 2010; Brevik et al., 2016).  

In the following sections, Alberta’s soil surveying efforts are described, and new 

opportunities in soil science will be described, enabled by state of the art technology and 

statistical practices.  

2.2.2 Alberta Soil Survey  

 Two crucial soil survey projects have been conducted in Alberta, Canada: the detailed soil 

survey (DSS) and the soil landscapes of Canada (SLC). One other survey, less crucial to this 

research, is the Land Suitability Rating survey (LSRS), updating and improving the Canadian 

Land Inventory (CLI), which are available for the study area for forestry, agriculture, and other 

(Agriculture and Agri-Food Canada, 1998). Version 3 of the DSS and version 3.2 of the SLC (and 

earlier versions) have been created by Agriculture and Agri-Food Canada and compiled into 

CanSIS (Canadian Soil Information Service). The DSS covers most of the agricultural land of 

significance in Canada and some non-agricultural lands (Government of Canada, 2016). Alberta 

agricultural activities have benefited enormously from the DSS by allowing farmers to prioritize 

land-use according to soils of high potential crop production, which has been one of the major 

goals of soil survey from the beginning (McKeague & Stobbe, 1978). Chernozemic soils, for 

example, are greatly utilized in Alberta due to their high organic matter content in the deep Ah 

horizon, overall deep profile development with one or more B horizons, fine texture development 

for high moisture and nutrient holding capacity, strong aggregate stability, and usually high-

quality tilth (Brady & Weil, 2008; Soil Classification Working Group, 1998). A large amount of 

land is unsurveyed because the land is not significant for agriculture. This presents a gap in the 

soil knowledge of Alberta. The detailed soil survey, which encompasses the Agricultural Region 

of Alberta Soil Inventory database (AGRASID) and soil information viewer data sets, covers 

approximately 40% of Alberta (Canada - Alberta Environmentally  Sustainable Agriculture 
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Agreement (CAESA), 2018). The SLC soil delineations were first published in 1977 to provide 

the major soil attributes of importance for growing plants, managing land, and evaluating soil 

degradation on a large scale (1:5 million) (Clayton, Ehrlich, Cann, Day, & Marshall, 1977). The 

SLC covers the entire Canadian landscape. Version 3.2 of the SLC provides information at 1:1 

million scale (Government of Canada, 2013). Individual soil components of the SLC are included 

in each polygon, however, the location of the soil samples taken to define the components is not 

always near the soil component or defined explicitly. This can lead to generalization of 

component information and leaving detail unknown to the user of the information. Currently, in 

the Southern Rocky Mountains of Alberta, soil survey data consists mainly of the SLC, which 

creates much uncertainty for those interested in the location of the individual soil components and 

soil sample locations. Soil property information is missing over vast stretches of mountainous 

land, with soil group and great group, and other generalized soil information for soil depth, water 

holding capacity and other broad soil properties (Government of Canada, 2013).  

Upon downloading both the DSS and the SLC data, I found a wealth of information 

supplied by both of the data sets. For example, querying any polygon in the DSS information 

(with ArcMap 10.5), it provides detailed information for Component 1 (Dystric Brunisol soil 

group) only, whereas a similar query for the same polygon using the online Alberta Soil 

Information Viewer, resulted in less information for component 1 and 2 (Dystric Brunisol soil 

group and Orthic Dark Brown Chernozems). The DSS provides greater delineation of soil 

components than the SLC, however, they both encounter similar limitations of providing limited 

and generalized soil property information for mountainous regions of Alberta. For research and 

other activities that require detailed soil data in the West Castle watershed the detailed soil 

surveys cover only 13% of the area, they are generalized polygons containing limited information 

on soil depth, soil texture, organic matter, bulk density, and other properties that may be of 

interest to researchers. The points described here become an issue when users require high-

resolution soil data, for example, for hydrological modelling research.  
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I believe that studying the soils is incomplete without the application of the data. 

Therefore, finding that there is a gap in soil knowledge in the West Castle watershed, for 

hydrological research specifically, establishes a practical need for soil research in that location. 

This research sets out to create a digital soil database of soil properties, for use in hydrological 

research being conducted in the Westcastle watershed. A deeper understanding of soil will 

increase certainty of hydraulic soil properties used in modeling hydrologic cycling, and thus, 

potentially decrease the uncertainty of hydrological models. Kienzle et al. (2012) use the ACRU 

(Agricultural Catchments Research Unit) model in the Cline River Basin of Alberta and suggested 

that detailed soil information in their study could possibly lead to greater accuracy of the ACRU 

model predictions. Cornelissen, Diekkruger, and Bogena (2016) found that lower resolution soil 

data of a mesoscale catchment tended to increase overestimation of discharge rates compared to 

the higher resolution soil data of the sub-catchment. These studies (Cornelissen et al., 2016; 

Kienzle et al., 2012) support the need for more detailed soil data for physically-based 

hydrological models. Increasing the resolution of soils data in the West Castle watershed and 

distributing the data to hydrologists can lead to higher confidence in the hydrological or 

ecological modelling.  

2.3 Changing State of Soil Mapping 

2.3.1 Soil Mapping for Data Acquisition  

 Soil mapping is moving from conventional surveying techniques to that of digital soil 

mapping (DSM) techniques. DSM is the input of soil data into a computer model for conducting 

spatial and non-spatial mathematical and statistical computations with regard to soil variables and 

their connections to environmental variables (Grunwald, 2010; Minasny & McBratney, 2016). 

The computations result in predictions of soil property information that can be easily distributed 

in map and database formats, and can then be recalculated and updated when new information is 

available (Minasny and McBratney, 2016). Accessible environmental data that can be measured 

with minimal effort are rapidly growing in their application. Large remote sensing databases have 
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been and are being created by government, researchers, and private organizations (e.g. AltaLIS, 

GeoDiscover, ABMI, Farmers Edge, and AGRI-Trend). Remote sensing data can be used to 

create digital elevation models (DEM), which can be used to calculate slope, aspect, wetness 

index, solar radiation, and other environmental properties that can be used to predict soil property 

occurrence without having to measure those properties individually. Using accessible 

environmental data from a DEM has been implemented by many soil studies (Chai, Shen, Yuan, 

& Huang, 2008; Gessler, Moore, McKenzie, & Ryan, 1995; Hitziger & Lieb, 2014; McKenzie & 

Ryan, 1999). Much research into the nature of soils and how they form has been conducted by 

many DSM researchers, utilizing Jenny’s soil forming function, adapted from Dokuchaev’s 

research (Florinsky & Florinsky, 2012; McBratney, Mendonça Santos, & Minasny, 2003; 

Wiesmeier, Barthold, Blank, & Kögel-Knabner, 2011). Jenny’s function, recognized by many as 

the CLORPT model after the elements in his equation, focuses heavily on quantitative reasoning 

(McBratney et al., 2003).  

S = f (cl, o, r, p, t …)                                                Equation 1. 

where cl is for climate, o is for biotic factor, r is for relief or topography, p is for parent material, 

and t is for time or age of the soil (Jenny, 1980). It can be observed that DSM is built heavily 

upon the theory of Jenny’s model, because the discipline uses variables such as terrain, climate, 

vegetation, land use, geomorphology, and solar radiation, termed environmental variables, to 

describe soil properties of interest (Afzali, Varvani, & Jafarinia, 2015; Debella-Gilo & 

Etzelmüller, 2009; Moore, Gessler, Nielsen, & Peterson, 1993; Zhang, Huang, Shen, Ye, & Du, 

2012) . Variables influencing soil formation contribute to specific soil property formation such as 

soil depth, soil water holding capacity, soil temperature, soil organic carbon, soil texture, and soil 

organic matter content (Jin et al., 2015; Kuriakose, Devkota, Rossiter, & Jetten, 2009; Piedallu, 

Gégout, Bruand, & Seynave, 2011; Seibert, Stendahl, & Sørensen, 2007). 

The fast-paced improvement and integration of technology, such as increasing computer 

power, into the field of soil mapping is greatly increasing our ability to understand and map soil 
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properties. There appears to be a common objective inherent in mapping soils through both 

conventional and cutting-edge soil mapping techniques (e.g. random forest modelling, Latin 

Hypercube sampling). Soils are mapped based on the most important need. The most important 

need has risen from the agricultural industry, where it is crucial to know and understand the soil to 

be able to produce sustainable, healthy, and productive crops (Grunwald, 2010). Land has been 

investigated intensively on the basis of its agricultural suitability and has been utilized 

accordingly (Hartemink & McBratney, 2008). Land is also investigated for building 

infrastructure, taxation, and environmental management, but from a soil perspective these 

purposes have only become more popular than agriculture in approximately the last 30 years 

(Brevik & Hartemink, 2010; McKeague & Stobbe, 1978). Land that is important for agriculture 

and infrastructure use has been mapped extensively by conventional surveys and digital 

techniques (Government of Canada, 2016; Hartemink, 2008). There is a clear demand for soil 

mapping in complex terrain regions for environmental management, especially in the face of 

climate change (Hartemink, 2008; Wang et al., 2018; Were, Bui, Dick, & Singh, 2015). Soil is a 

dynamic geosphere that interacts with the lithosphere and atmosphere. It is inextricably linked to 

the hydrosphere and biosphere creating a complex life supporting web (Grunwald, 2005). 

Understanding changes that occur due to anthropogenic and environmental activities and their 

influence on soil is important for future soil and environmental management. Soil scientists, 

hydrologist, mathematicians, and professionals from many other disciplines have and must 

continue to work together to manage the important soil resource (Shukla, 2014).   

2.4 Soil Modelling 

Relating the soil variability to the environmental aspects was greatly implemented in the 

conventional soil surveying efforts, as explained above. Also, DSM research has focused on 

refining modelling methods that are capable of predicting soil properties that explain high levels 

of soil variability. Many statistical modelling techniques have been researched by the DSM 

community in order to effectively achieve this goal. Based on the literature, multiple linear 
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regression (MLR), generalized linear models (GLM), many forms of kriging, neural networks 

(NN), decision trees, and fuzzy logic techniques are most commonly implemented to study soil 

variability (Brevik et al., 2016; Heung, Bulmer, & Schmidt, 2014; Menezes, Silva, Mello, Owens, 

& Curi, 2014; Mosleh, Salehi, Jafari, Borujeni, & Mehnatkesh, 2016; Were et al., 2015; Zhu & 

Lin, 2010).  Grunwald (2009) reviewed 90 journal articles and found that the majority of studies 

used forms of regression statistics (41.1%), followed by classification and discrimination methods 

(32.2%), univariate kriging (18.9%), and lastly tree-based models (13.3%). Also, many of the 

articles compare two or more methods (60%) as opposed to just one (40%) as reported by 

Grunwald (2009). While reviewing the literature it became indeed evident that many of the 

studies compared two or more statistical methods (Forkuor, Hounkpatin, Welp, & Thiel, 2017; 

Hitziger & Lieb, 2014; Ryan et al., 2000; Were et al., 2015). Machine learning techniques, such 

as tree-based models and NN, are receiving much attention for their ability to model non-linear 

and complex relationships of soil properties in relation to environmental variables, as well as find 

hierarchical importance of environmental variables (Wang et al., 2018). Decision tree models are 

able to “handle” categorical variables and continuous variables in the same data set, which is 

useful when considering vegetation type and/or geological features that may influence soil 

property formation (De'ath & Fabricius, 2000). One-hot encoding is the creation of binary 

variables (zeros and ones) to create numerical representations of categorical variables (Chang & 

Lipson, 2018). For example, gender as an independent variable has two categories, male and 

female, two separate categories would be created. A male category where every sample that was 

male would be given a one and every sample that was female would receive 0, same for the 

female category. These types of variables are also called dummy variables (Suits, 1957). There 

are those who argue that categorical variables should be one-hot coded (Breiman, 2001), and there 

are others who argue that one-hot coding is not necessary and is actually detrimental to tree 

modelling (e.g. Random Forest Model) (Dingwall & Potts, 2016; Estrada, Ahneman, Sheridan, 

Dreher, & Doyle, 2018). 
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Stepwise linear regression (SLR) was chosen as it has been tried and tested many times to 

model soil property spatial distribution (Grunwald, 2009). It was also observed that SLR 

performed similarly to RF (Random Forest) and other methods (Forkuor et al., 2017; Hitziger & 

Lieb, 2014; Zhang et al., 2012). SLR was viewed as highly interpretable as to the equations, 

outputs, and connection to relationships between the dependent and independent variables. 

Forkuor et al. (2017) explain that linear regression model performance can suffer greatly from 

multicollinearity of independent variables. Therefore, testing for multicollinearity was regarded 

important. Geostatistical methods were considered through spatial autocorrelation analysis with 

Moran’s I and semi-variograms. It was assumed that the chosen sampling strategy would not be 

sufficient for geostatistical modelling across the entire watershed, however, spatial autocorrelation 

could be useful in considering spatial dependence of dependent variables to independent 

variables. 

Sampling techniques have also been researched and applied to the modelling methods to 

best sample for the modelling method being used. For example, in geostatistical modelling, 

sampling strategies that follow standard statistical rules that require uniform and independent 

samples over a study area are implemented (Chiles & Delfiner, 2012). A sample strategy can be 

planned on the basis of covering the geographic space, the covariate range, or both (Kidd, 

Malone, McBratney, Minasny, & Webb, 2015). Random sampling, stratified sampling and 

variations of such (Tan, 2005), Conditioned Latin Hyper Cube sampling (stratified random 

sampling from multivariate distributions of covariates, to produce a Latin Square of probabilities)  

(Minasny & McBratney, 2006; Roudier, Beaudette, & Hewitt, 2012), fuzzy k-Means clustering of 

covariates (clustering of multivariate centroids based on minimizing the mean squared distance 

between centroid values, where observations are given a degree of belonging to a cluster) (Kidd et 

al., 2015), and other variations of sampling (e.g. Integrative Hierarchical Stepwise sampling as 

suggested by (Yang et al., 2013) have been tested and used to map soils properties. When 

choosing a sampling method to characterize the study area, existing soil data or exploratory 
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sample data, and modelling type are important to take into consideration to plan for time, effort, 

expense, and suitability of the sample regime. Backcountry areas in mountainous regions may be 

too hard to access, like in the Rocky Mountains. Choosing a method that takes this into 

consideration is important for conducting the sampling of soils. Rationale for selection of a 

sampling method is provided in the methods section.  

2.5 Soil Mapping in a Changing Climate 

2.5.1 Soil Properties and Change Dynamics 

  Foundational knowledge of soil properties that tend not to change over short periods of 

time is critical for studying a changing climate. Soil texture is one property that does not change 

rapidly over time because it takes thousands of years of physical and chemical weathering of rock 

to break down rock particles into smaller soil particles (Brady & Weil, 2008). Changing the 

texture of a soil to be less sandy for agricultural production, for example, would take a prohibitive 

amount of clay material and effort to increase the clay content in the soil to induce better texture 

and thereby structural change in the soil. Another example, is that of soil depth, which also forms 

over many years, sometimes in short periods if the soil is being rapidly eroded, but for the 

majority of soils the depth does not change substantially over hundreds of years (Shukla, 2014). 

Changing the depth of a soil takes massive effort, due to the amount of soil or sediment required. 

One acre of medium textured soil with a 15 cm cultivated zone and a bulk density of 1.3 g/cm3 

would weigh approximately 870 tons (Brady & Weil, 2008). This example illustrates that 

changing the depth over a field (>= 1 acre) would be an unattainable feat. Soil organic matter 

content can change drastically over short periods of time where anthropogenic drivers are present, 

however, it tends to be stable or increasing in forest ecosystems depending on the age of the forest 

and many other drivers (Brady & Weil, 2008; Fisher, Binkley, & Pritchett, 2000; Smith, Janzen, 

Scherloski, Larney, & Ellert, 2016). Gathering soil property information for basic and stable soil 

properties such as these can help researchers investigating environmental change.      
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2.5.2 Climate Change Induced Issues 

Climate change is said to be the most important concern of the 21st century (Tanzeeba & 

Gan, 2012). It has the potential to disrupt the operations of agricultural production, industrial 

manufacturing, functioning of ecological systems, and combined possibly leading to degraded 

human health. Many studies have reported that the climate of the prairies is changing to one with 

less snowfall in the winter, earlier occurrence of the spring freshet, and lengthening growing 

degree days (Bonifacio, 2016; Cutforth et al., 1999; Kienzle et al., 2012; Lemmen, Warren, & 

Lacroix, 2007; Schindler & Donahue, 2006). Hydrological and environmental research 

concerning climate change is important to understand which changes will occur and the 

magnitude of the changes. Integral to many of these studies is knowledge of the soil. 

 Rood et al. (2008), for example, studied the changing flow regimes of Rocky Mountain 

Rivers of Alberta and the possible challenges facing forests in the flood plain ecosystem. They 

found increased winter flow, early onset of spring freshet, and decreased late summer flows 

resulting from the changing climate. Of great concern is the decreased late summer flow which 

could highly stress cottonwoods species because they require water during the hottest period of 

the year, potentially leading to increased mortality of forests in the flood plain environment (Rood 

et al., 2008). If the health of our riparian zones decline this could lead to declined water quality 

for downstream users due to vegetation change (Lemmen et al., 2007) and the possibility of weed 

invasion (Rood et al., 2008). Die off of vegetation like this in the riparian zone could lead to a 

great amount of soil erosion, thus decreasing water quality, due to decreased root systems 

available to hold the soil in place (Naiman & Décamps, 1997). Mapping soil and/or sediment 

types in the riparian zones could help understand how distribution of tree species such as the 

cottonwoods will change and the magnitude of erosion that could occur due to water scarcity 

events (Botero-Acosta, Chu, Guzman, Starks, & Moriasi, 2017; Naiman & Décamps, 1997). This 

is especially important when considering the possibility of increasing water scarcity due to 

climate changes.  
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Another example of land cover change is the potential for tree species to move into new 

habitat, where once the temperature and moisture regime was not suitable. Of concern is the loss 

of habitat, for cold tolerant species in particular, that will lose habitat to warmer temperatures 

(Zolkos et al., 2015). Agricultural expansion may occur in Northern areas of Alberta due to 

increasing growing season length and increasing CO2, whereas southern parts of Canada and the 

US may see decreased agriculture production due to increasing drought occurrence and water 

shortages (Motha & Baier, 2005). The soil is one variable that has a large impact on suitable 

habitat for plant growth and is used to investigate where plants may be redistributed (Zolkos et al., 

2015). 

Another concern is that of water availability and management for dryland and irrigated 

crop production, animal production, and food processing (Fischer, Tubiello, van Velthuizen, & 

Wiberg, 2007; Hanjra & Qureshi, 2010). Hanjra and Qureshi (2010) explain that approximately 

450 million people in 29 countries are facing water shortage problems and that two-thirds of the 

world population could face water stress by 2025, straining agricultural production. Starvation 

and many other issues arise from water shortages (Hanjra & Qureshi, 2010). If the wasting away 

of glaciers continues, snowpack decreases, earlier freshet occurs, and temperatures increase many 

issues can arise. One such issue is the decline of soil water recharge. Cutforth et al. (1999) found 

decreasing snowfall patterns during their research in Saskatchewan that will lead to decreased soil 

water recharge. This could increase crop stress, especially for dryland crops in the semi-arid 

prairie region where it is expected that the prairies face greater aridity in the future (Jiang, Gan, 

Xie, Wang, & Kuo, 2017; Sauchyn, Barrow, Hopkinson, & Leavitt, 2002). Also, the availability 

of water for irrigation and residential use could decline when it is needed most in the mid-

summer, which may lead to a water crisis in Alberta and elsewhere (Schindler & Donahue, 2006). 

Droughts are not a new phenomenon in the Canadian prairies, however, if trends continue the 

severity and length of droughts could increase leading to water scarcity and degradation of water 

quality (Sauchyn et al., 2002).  
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To adapt to the drought threats facing southern Alberta, and to protect head water sources, 

the hydrological regimes must be better understood to map groundwater recharge regions and 

watersheds with high water yields. As soils play an essential part in the hydrological cycle, a 

better understanding of the soils in the head water regions will certainly improve the 

understanding of the respective hydrological regimes. 

2.6 Research Considerations: Field and Laboratory  

 Review of the topics up to this point all lead to the selection of soil properties of 

importance to sample and analyze. Soil nutrients, mainly nitrogen, phosphorus, and potassium, 

are sampled at multiple depth increments are analyzed for improving agriculture and forest 

production (Brady & Weil, 2008; Fisher et al., 2000).  

This research is aimed at informing all hydrological and other environmental research that 

may benefit from soil information in the West Castle watershed. Also, there is little to no soil 

property information for the study area. Therefore, base soil properties are seen as important 

properties to gather. Base properties are those that are used to understand the fundamental nature 

of a soil, and they inform higher level soil properties, such as water holding capacity and 

hydraulic conductivity. Soil color, texture, depth, OM content, soil depth, bulk density, structure, 

strength, and consistency can all be considered base soil properties. For example, soil water 

holding capacity is affected by the texture of the soil, where it can be expected that sandier soils 

will hold less water at saturation and when nearly dry (Shukla, 2014). The soil texture is a base 

soil property that helps understand soil porosity which in turn helps understand soil water holding 

capacity better. Organic matter content is similarly important as soil texture for understanding soil 

water holding capacity and for assessing crop and other vegetation productivity potential because 

OM releases nutrients and adds to other soil properties (e.g. aggregate stability) (Brady & Weil, 

2008; Hudson, 1994). Solum depth, which refers to the depth of the A and B horizons to the top 

of the C horizon, is regularly required for physically based hydrological modeling and must be 

assessed where data is not available (Herbst, Diekkrüger, & Vereecken, 2006). Sampling and 
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measuring soil horizons is required to gather data for solum depth analysis. A restrictive layer in a 

soil profile can impede percolation of water to lower soil depth thereby increasing horizontal 

water movement and decreasing water holding capacity of the soil. Measurement of restrictive 

depth can be important for understanding water movement and plant interactions in soil (Ezeaku 

& Anikwe, 2006; Laboski, Dowdy, Allmaras, & Lamb, 1998). Soil depth can be assessed for 

agriculture to understand rooting depth potential, water holding capability or other criteria (Brady 

& Weil, 2008). Electrical conductivity has been used extensively in agriculture to assess salinity 

and properties relating to crop growth (Corwin & Lesch, 2003). Soil hydraulic conductivity is also 

important for hydrological research because it can give insight into the rate of infiltration and 

subsequent water movement through a watershed (Davie, 2008).  

 Next, sampling methods must be considered to best sample for the purpose and the soil 

property. A soil probe, shovel, and/or an auger are commonly used soil sampling tools (Brady & 

Weil, 2008; Tan, 2005). For agriculture purposes, it is common to use long metal probes to 

sample at multiple depth increments. In shallow soils a hand held probe can be sufficient. In rocky 

and or dense rooted soils a shovel and/or pick axe may be the only tools that work. Another 

consideration is that of horizon sampling for soil classification and solum depth analysis. To 

analyze the horizons, a pedon or small hole can be used to closely inspect the horizons, or if a soil 

probe is able to easily penetrate the soil and hold the soil in the tube with little disturbance to the 

core in the tube, then a probe can be used. In mountainous regions with many rocky and sandy 

soils a tube may get damaged, may not penetrate into the soil well, and may not hold the core 

therefore a shovel may be the best soil sampling tool for digging holes and gathering samples. 

 In general, data collection is followed by laboratory analysis of samples. Selection of the 

lab methods depends on cost, time, equipment availability, and knowledge of the method. Some 

methods can be highly technical and others more easy. For example, soil texture can be analyzed 

using sieves or by using laser diffraction. The laser diffraction equipment and understanding can 

be more sophisticated and require training and/or education of the concepts to use, whereas 
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sieving methods use sieves, a shaker, and commonly water to separate the soil particles thereby 

being easier to conduct. Another method of consideration, for the determination of soil organic 

carbon, is that of the Walkley-Black wet combustion method (Tan, 2005). This method requires 

the use of sulfuric acid, which is highly volatile, and other elements that may be difficult to 

obtain. This method is accurate and precise, but is not used mostly due to the dangers of using 

sulfuric acid (Stuart, personal communication, October 2018). Assessing equipment and multiple 

methods were integral to conducting lab methods effectively.   

2.7 Summary 

Knowledge of soils is important to the functioning of many human activities. Taking stock of the 

distribution of soils through soil surveys and advanced soil mapping techniques is important for 

managing soil, food, and water resources, now more than ever in the middle of large climactic 

changes. Soils of the Rocky Mountains have not been mapped sufficiently for the needs of 

environmental research. Therefore, mapping soils in the Rockies by implementing statistical 

methods that have been used by other soil mapping studies will help to fill the soils knowledge 

gap. In the next chapter, methods are chosen based on my ability to implement the methods, 

equipment availability, time, and comparative studies of statistical methods found through the 

literature review process.  
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Chapter 3: Research Methods 

3.1 Study Area 

The research was conducted in the West Castle watershed of the Southern Rocky 

Mountains of Alberta, Canada, centered at 114.37 o W, 49.37 o N (Figure 3.1). The study area 

covers approximately 825 km2, with a minimum elevation of 1,109 m and a maximum elevation 

of 2,811 m above sea level (asl). Mean annual temperature reaches approximately 4.9oC and 

annual precipitation (snow and rain) accumulates to approximately 679.8 mm (Government of 

Canada, 2017). These climatic conditions support a wide variety of vegetation, including, White 

pine (Pinus strobus), Lodgepole pine (Pinus contorta), Bearberry (Arctostaphylos uva-ursi), 

Poplar (Populus), Common Juniper (Juniperus communis), Solomon’s Seal (Maianthemum 

racemosum), Bear Grass (Xerophyllum tenax), Oregon Grape (Mahonia aquifolium), and many 

other shrubs, flowers, trees, and grasses (Alberta Biodiversity Monitoring Institute, 2010). 
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Figure 3.1: Map showing the extent of the West Castle watershed study area with smaller inset 

maps showing the location of the study area in relation to North America and Canada. (Sources: 

Base map from Esri (2018), Alberta watersheds from Government of Alberta (2014), DEM from 

Natural Resources Canada (2016), and Canada boundaries from Statistics Canada (2016)). 
 

The study area is dominated by Regosolic, Brunisolic, Luvisolic, and Chernozemic soil 

orders (Government of Canada, 2013). The Regosolic, Brunisolic, and Luvisolic orders are young 

soils, which are weakly developed with either no B horizon, or the early formation of a B horizon, 

or slight illuviation of clays in the B horizon from the A horizon. These are typical soils of 

mountainous areas that are young, eroded, and under forest vegetation.  
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The Luvisolic order is characterized by high base saturation (leading to dominantly 

neutral to alkaline conditions) occurring under forest vegetation. Luvisols can be moderately to 

strongly acidic and, based on visual inspection of vegetation, e.g. pine species, in the Castle 

region, this is likely to be the case in the study area. Furthermore, presence of Dystric Brunisol 

great group suggests that the soil is acidic with a pH < 5.5 in the B horizon, which is at least 5 cm 

thick.  

The black Chernozemic soils in the area are more developed, with a dark A horizon 

having a chroma of at least 3.5 moist, at least 10 cm thick A horizon, 5 to 8.5 % organic matter 

content, and less acidity than the Regosolic, Brunisolic and Luvisolic orders (Soil Classification 

Working Group, 1998).  

The parent material of the area is dominated by colluvial and alluvial material transported 

and deposited by gravitational forces and water movement. The lithology of the bedrock consists 

of sandstone, shale, mudstone, limestone, dolomite, argillite, dolostone, and basalt (Government 

of Alberta, 2013). The depth to bedrock ranges from ~1.5 m, in the low lying grassland areas, to 0 

m, nearest the mountain outcrops (Alberta Agriculture and Forestry, 2018).   

Conducting soil mapping in the complex terrain of this watershed will help in filling gaps 

in soil property knowledge through DSM. The knowledge will be useful to the larger soil 

mapping research community due to the lack of research on complex terrain soils (Hitziger & 

Lieb, 2014).  

3.2 Field Data, Experimental Design, and Sampling Methods 

3.2.1 Selection of Sampling Sites 

  Soil genesis depends on the complex interaction of soil forming factors such as climate, 

vegetation, topography, time, and anthropogenic influence (Jenny, 1980). It was recognized that 

vegetative growth, aspect and slope are all variables that influence climate, biological functioning, 
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and topography and thereby influence the formation of soil properties. With this supposition, 

three environmental characteristics were used to delineate the study area into stratifying units 

termed soil mapping units (SMU’s), which guided the selection of soil sites in representative and 

unique SMU locations. The SMU’s serve as a starting point for site selection and provide an 

understanding of the connection of soil property formation to environmental characteristics. 

ArcMap (v.10.5.1) was used to overlay three layers consisting of: 

a. land cover, which relates to vegetative growth (Alberta Biodiversity Monitoring Institute, 

2010) 

b. annual solar radiation, which relates to elevation, slope, and aspect and represents the 

energy available for plant growth, and 

c. topographic wetness index (TWI) data that relates to the steepness of slope and the uphill 

area, representing relative soil moisture conditions.  

  Both, solar radiation and wetness index were created in ArcMap, using a ten meter spatial 

resolution digital elevation model (DEM) (Natural Resources Canada, 2016). These layers were 

combined with the land cover through spatial overlay of the raster datasets using the raster 

calculator tool. The resulting raster dataset constitutes the mapping units used to delineate 

important soil forming environments to be sampled. Table 1 illustrates the classification of raster 

attributes used to create the SMU’s.  The vegetation dataset contained 10 classes which were 

given single digit values ranging between 0 and 9. The wetness index contained a range of values 

from 0 to 26.97. The range of values were divided into three classes (High, Medium and Low), 

where: 

i. High, represents known rivers, streams and wetlands  

ii. Medium, represents slopes, valleys and meadows and  

iii. Low, represents ridges and steep uphill terrain.  

  The annual solar radiation raster analysis resulted in a range of values from 1.4 W/m2 in 

deep valleys which never receive direct sunshine, to over 180 W/m2 at south-facing slopes at high 
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elevations. The range was classified into three equal quantiles to divide the study area into regions 

of high, medium and low solar radiation.  

Table 3.1: Summary of data type, class, break values, and the reclassified value assigned to each 

class for SMU Creation. 

Data Type Class Break Values Reclassified Value 

Land Cover Water N/A 0 

Land Cover Rock/Rubble N/A 1 

Land Cover Exposed Land N/A 2 

Land Use Developed Land N/A 3 

Vegetation Shrubland N/A 4 

Vegetation Grassland N/A 5 

Land Use Agriculture N/A 6 

Vegetation Coniferous Forest N/A 7 

Vegetation Broadleaf Forest N/A 8 

Vegetation Mixed Forest N/A 9 

Wetness Index Low 0 - 0.01 10 

Wetness Index Medium 0.01 – 5.5 20 

Wetness Index High 5.5 – 26.9 30 

Solar Radiation Low 1.4 to 126.9 W/m2 100 

Solar Radiation Medium 126.9 – 140.5 W/m2 200 

Solar Radiation High 140.5 – 183.2 W/m2 300 

    

  Upon completion of cell classification and raster overlay addition, 90 SMU’s were 

delineated. A resulting SMU classified as 311 means that the unit is characterized by high solar 

radiation (300), with a low wetness (10), and rock and rubble (1), which is most likely on a rocky 

ridge facing south. The area of the units was calculated and the top thirteen units, covering 73 % 

of the study area, were selected as the priority SMU’s to be sampled. Priority was especially set 

on the thirteen SMU’s to gain understanding of soil formation in relation to environmental 

variables in SMU’s across many locations, which allowed for the testing of the hypothesis that 

soil properties are linked to SMU’s. As planning progressed, other SMU’s, encountered between 

top priority SMU’s, were sampled to gain understanding of those units with our preferential 

sampling scheme.  

  Preferential stratified random sampling was implemented in these units to choose 

individual soil sampling sites. Preferential sampling has the benefit of reducing time, cost and 
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effort applied to obtaining soil samples in a large and complex study area, however, preferential 

sampling is known to add bias and skew inferences if the sampling strategy is not taken into 

consideration in the modelling stage (Clifford et al., 2012; Diggle, Menezes, & Su, 2010; 

Shaddick & Zidek, 2014). Stratified random sampling was implemented to sample locations 

without bias within preferred SMU’s. Each sample site (~0.25 m2) was chosen randomly inside an 

SMU within reachable distances (~<= 1000 m) from roads, trails and cut lines.  

  Although there is a tool in ArcMap called Create Random Points, which creates a 

selected number of random point locations within a SMU, this tool was not used, as the tool 

creates random points for an individual SMU anywhere in the watershed. To get around this 

problem the SMU polygons would have to be broken apart and each SMU would have to be 

exported as its shapefile, then random points would have to be created. Instead of conducting this 

laborious procedure for every SMU and sample site, random points were chosen within a 

preferred SMU, sometimes in a transect orientation. Figure 3.2 illustrates the soil sample location 

procedure, where multiple soil sample locations were chosen across multiple SMU’s to sample as 

many unique sites as possible in a transect. Notice that the sites are located off of a cut line and 

off a road to maximize ease of access and to hike as far as possible in the time available.  
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Figure 3.2: Soil sample locations in a transect across multiple SMU’s. The inset map shows the 

location of the transect in the watershed. 

 

  An initial goal of the research was to collect 200 samples as proposed, based on the 

literature review of similar study area size (Afzali et al., 2015; Chai et al., 2008; Stoorvogel, 

Kempen, Heuvelink, & de Bruin, 2009; Zhang et al., 2012). However during field exploration and 

data collection it was realized that reaching the goal of 200 samples was not feasible within the 

research timeframe. Thus, much effort was put into strategic sampling by constructing transects 

and clusters of locations to gather as many samples as possible up to 200 samples.   

3.2.2 Site Description 

  Post creation of sampling sites allowed for soil sampling site coordinates to be added to a 

GPS so that sites could be found when hiking to them. During site hikes, general site 
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characteristics were observed and noted if they were markedly important/different than the rest of 

the area (examples: drainage depressions/streams, bogs, evidence of fire). Upon arriving at the 

designated sites, specific site observations such as wind conditions, estimated cloud cover, 

evidence of rain, air and soil temperature (with thermometer), estimated slope steepness (degree), 

aspect (N/NE/SE/S/SW/NW), shape of slope (convex or concave), condition of the site floor 

(presence or absence of deadfall, plowed, grassland), and the dominant vegetation species at the 

site location were noted. These observations helped in inferring the soil formation characteristics 

by connecting the soil properties to environmental characteristics. For example, I would infer that 

a grassed meadow would have a well-developed A horizon due to the dry and sunny conditions 

preferred by grasses. Once the site was described (see example in Table 3.2), sample collection 

was conducted.  

Table 3.2: Example of field note organization and targeted variables. 

Soil ID/Personal 23718, TD, KB, MG 

Date/Time July 14, 2017 / 11:46 am 

Weather Conditions Warm, 0% cloud; Soil Temp: 11 oC; Air Temp: 18 oC 

 

Vegetation Thimble Berry, Western Meadow Rue, Engelmann and 

White Spruce; Shady location; ~30-40% canopy cover 

Slope Concave, flat (no aspect tilt) 

Depth to Restrictive layer and 

Hits (H) 

>=152.5cm & 55H; >=152.5cm & 50H 

Litter Depths Not gathered (needle residue and moss layer only) 

BD Hits/Depths 8H; 12, 11.7,12.2, and 12.4cm 

Horizonation A – 6.4, 6.8, and 6.5 cm; B1 – 19, 21.7, and 24 cm; B2 

– 21.2, 22.1, 16.3 cm; CB – 11.4, 9.5, 9.7; C – Rest to 

restrictive depth; Total depth of hole = 76.8 cm 

Other Discontinuity; Charcoal layer present  

between B1 and B2 6, 3, 2, and 3.4 cm width.  

 

3.2.3 Soil Restrictive Depth Measurements 

  Soil restrictive depth was chosen because of it may be helpful in understanding water 

movement in the watershed and assessing potential vegetation change in future research. The 

restrictive depth was found by driving a 150 cm smooth, pointed steal rod into the ground. 
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Consistent drops of a 3 pound hammer were made to the top of the rod until the rod would stop 

penetrating the soil (Figure 3.3), similar to methods described by Shanley, Hjerdt, McDonnell, 

and Kendall (2003). The rod was driven into the ground three times in a triangular pattern around 

the sample site to gain an average depth to restrictive layer. The strokes taken to hammer the rod 

were recorded for quality control reference, wherein a substantially large or small amount of hits 

observed in one location compared to another location would signify a discrepancy in striking 

methodology and/or unrepresentative changes in the soil profile (due to large boulders or weak 

points in the restrictive layer).   

 
Figure 3.3: Photograph showing the knocking pole and hammer in use [summer 2018]. 
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3.2.4 Soil Horizonation 

  In order to identify and analyze soil horizons a hole was dug approximately 20 cm wide 

and down to the top of the C horizon. Changes in colour, texture, and structure were examined to 

delineate soil horizons by placing a trowel and/or knife into the side of the hole, (Figure 3.4). 

 
Figure 3.4. Soil holes with trowel and knife delineating the soil horizons (Left Site ID: 224; Right 

Site ID: WCS2). 

 

   Notes were taken on the relative changes of the aforementioned properties. Depths of the 

horizons were measured from the top of the mineral horizon to the bottom and top of each horizon 

and to the bottom of the hole, allowing for solum depth to be measured. Solum depth was deemed 

to be important for hydrological modelling. Conducting measurements in this manner allowed for 

a continuous depth profile to be gathered. The width of each horizon was determined back in the 

lab. With the horizons delineated and measured, samples of approximately 500 g were taken from 

each of the A and B horizons for OM and texture analysis in the lab. The holes were filled in 

according to the horizonation of the profile as precisely and carefully as possible to minimize 

disturbance and potential hazard to humans and/or animals that may come across the sample site.  
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3.3 Laboratory Analysis: Methods 

3.3.1 Organic Matter by Ignition 

  Organic matter was chosen because of its connection to water holding capacity and 

support of vegetation health, important for hydrological and vegetation change research. Organic 

matter (OM) analysis of the A and B horizons was completed through the adaptation of loss on 

ignition (LOI) methods outlined by Karam (2008). Soils were oven dried at 105 OC until the 

weight of the samples remained constant, signifying that all moisture was removed. Then, 2 g of 

soil were measured into a 30 milliliters (ml) crucible and placed into a muffle furnace. The 

furnace was programed to ramp to 370 OC at 10 OC per minute, then soaked for one hour to 

prevent the extreme temperature change that could create excessive volatilization of carbonates. 

Then the temperature was ramped to 600 OC and soaked for 6 hours to burn the OM off. The 

furnace would shut off and allowed to cool for approximately one hour. Once samples were safe 

to handle, they were removed from the oven and placed into a desiccator to continue to cool for 

safe weighing.  

  Upon preliminary data collection and visualization, it was realized that the samples 

contain more than 2 % OM. Since, hydrometer method for textural analysis would require the 

removal of OM, therefore 45 grams (g) of soil was used instead of 2 g in the muffle furnace at the 

temperature and time intervals as explained above. Upon completion of the first 23 samples for 

textural analysis, it was found that the OM was successfully ignited out of the samples, despite the 

large amount of soil used. This was evident upon comparison to the 2 g samples (Table 3.3). The 

hydrometer readings dropped dramatically to the density of the control solution after 24 hours of 

settling, which confirmed that all the OM was removed from the samples. Therefore, it was 

decided to adapt the LOI method to ignite 45 g of soil, to remove the organic matter in the soils 

and to use them in the hydrometer method, thereby increasing efficiency across the LOI and 

hydrometer methods. The deviation of less than 3 % from the original 2 g method is seen as 

acceptable in order to gain efficiency of procedures.  
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Table 3.3: LOI data to analyze how the effectiveness of ignition with 45 g samples. 

Sample ID 
% OM in 2 g of soil 

(1) 

% OM in 2 g of soil 

(2) 

%OM in 45 g of 

soil 

 

Sidewinder 1-A A 

 

 

5.97 

 

 

5.00 

 

 

7.87 

 

T&O #11 Bt1 

 

7.00 

 

5.50 

 

6.09 

 

Haig Lake B 14.43 

 

15.00 

 

14.30 

 

(1) and (2) represent two separate ignition tests using subsamples of 2 g from the same site. 

 

3.3.2 Soil Texture 

  Textural Analysis of A and B horizons was completed through adaptation of hydrometer 

methods discussed by Kroetch and Wang (2008), and Day (1965). This method was chosen 

because it is important for hydrological modeling and it can be used for vegetation and other 

environmental research. The first experiment conducted was without removal of OM. Six samples 

were oven dried, then 40 g of soil from each sample was measured into six 600 ml beakers. The 

samples were soaked overnight with 100 ml of sodium hexametaphosphate (SHMP) solution, 

where 100 ml was measured out of a full prepared solution of 1000 ml distilled water and 50 g of 

sodium hexametaphosphate ((NaPO3)6).  Initial results suggest that OM did significantly affect the 

soil texture measurements (Day, 1965; Kroetch & Wang, 2008). For example, when the OM was 

left intact within the samples, the clay content were always overestimated, the sand content were 

mostly underestimated and silt content were mostly overestimated with some exceptions (Figure 

3.5). The data also support these conclusions. For example, the % sand, silt, and clay were 20.87, 

42.21, and 36.93, respectively with OM in the BZ08 A sample, and 80.22, 19.78, and 0 without 

the OM. Also, the % sand, silt, and clay were 57.23, 37.74, and 5.03 with OM and 57.23, 41.51, 

and 1.26 without OM in Start Point Pit A sample. As well, the percent sand, silt, and clay were 

22.52, 62.48 and 15, respectively with OM in the AUG33 Ah sample, and 63.67, 30.69 and 5.63 

without the OM. 



34 
   

 
Figure 3.5: Samples of sediment after 7 hours of settling. Left photo of BZ08 A horizon without 

organic matter, and the right photo is of BZ08 A horizon with organic matter. 

 

  Based on these findings, it was decided to burn the OM out of the samples before 

conducting the hydrometer analysis. To burn off the OM, 45 g of soil was oven dried at 105oC for 

~10 hours, then the samples were weighed and placed into a muffle furnace at 370oC for 1 hour, 

then at 600oC for 6 hours. With the OM burned off, the remaining mineral portion of the soil were 

transferred into 600 ml beakers and soaked with 100 ml of SHMP solution overnight. Twelve 

samples, with OM removed, were prepared this way and used in the hydrometer method with 

1000 ml of distilled water. Using an ASTM 152H hydrometer, three 40 second readings were 

taken along with one reading taken at 3, 10, 30, 90, 420, and 1440 minute interval. These readings 

were plotted in Excel on a logarithmic graph with a logarithmic trend line and its equation to 

visualize the results. The sand silt and clay were calculated following the methods of Kroetch and 

Wang (2008). Sand was calculated using Equation 2, clay using Equation 3, and silt using 

Equation 4.  

100 – (100/ ignited soil dry weight) x corrected reading at 40 seconds           Equation 2 

(100/ignited soil dry weight) x corrected reading at 7 hours                  Equation 3                                 

100 – (Silt summation + Clay summation)                            Equation 4                                  
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  Near complete clay settling is seen in the small difference of settling between the 7 hour 

and 24 hour readings.  Kroetch and Wang (2008), and Day (1965) describe that the 40 second and 

7 hour readings can be used without the readings in between or beyond to obtain accurate particle 

size calculations. It was decided that taking readings at 40 seconds and 7 hours would be the most 

efficient times to take readings (Table 3.4).  

Table 3.4: Hydrometer test without organic matter using 40-second and 7-hour readings.   
Elapsed 

Time 

(minutes) 

Corrected 

Reading 

(g/mL) 

Percent 

Summation 

Diameter 

(mm) 

Sample ID Sidewinder   

1-A  A HRZ 

0.667 8 21.89 0.0593 

Date Dec. 11, 2017 0.667 10 27.36 0.0586 

Tested By Trevor 

Deering 

0.667 11 30.10 0.0583 

Hydrometer # (if 

applicable) 

1 Avg. 40 

sec. 

9.7 26.54 0.0588 

Specific Gravity of 

Solids 

2.65 3 9 24.62 0.0278 

Dispersing Agent 100 ml HMP 10 6.5 17.78 0.0154 

Weight of Soil 

Sample 

41.55 g 30 4 10.94 0.0090 

Classification Loamy Sand 90 3 8.21 0.0053 
  

420 2.5 6.84 0.0025 
  

1440 0 0 0.0013 

 

3.4 Lab Methodological Validation 

  One of my moral standings is that the applied scientific methods must be conducted in a 

precise and transparent manner. Holding true to this value and recognizing that the LOI and 

Hydrometer lab methods were extremely important analysis for this research, it was decided that 

these methods needed to be conducted as precisely as possible. Therefore, the LOI and 

hydrometer lab methods were investigated as to their precision through testing six samples by 

Down to Earth Labs (Lethbridge AB), Exova Labs (Edmonton AB), and by me (Soil lab, 

University of Lethbridge). The hydrometer method of leaving the OM in the soil was used by all 

three labs. The LOI method was used by all three labs to determine percent organic matter in the 
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samples, with slightly different adaptations of temperature and weight. Down to Earth Labs 

ignited their 2 gram soil samples at 370oC for 16 hours, Exova also ignited 2 g at 500oC for 2.5 

hours, and I ignited ~45 g at 370oC for 1 hour followed by 600oC for 6 hours. The sand, silt, clay, 

and percent organic matter results were investigated through analysis of variance (ANOVA) 

statistical testing using CoStat (CoHort Software, 2018). First, the data were investigated for 

normality to ensure that the data were normally distributed for ANOVA analysis. The data were 

found to be close to normal (Table 3.5). Data is normally distributed when (1) the mean and 

median are similar, (2) the skewness is near zero, and (3) the kurtosis is near zero (Ghasemi & 

Zahediasl, 2012). 

Table 3.5: Normality measures of data for 6 samples tested by three laboratories. 

Variable Skewness Skew 

Significance 

Kurtosis Mean  Median 

Sand (S) 0.44 1.15 -1.39 43.80 41.80 

Silt (Si) -0.27 1.15 -1.38 36.05 36.42 

Clay (cl) 0.90 1.15 -0.77 20.06 12.73 

Organic 

Matter 
0.44 1.15 -0.92 7.8 7.36 

Skew significance: If skewness is >2*SQRT (6/count) = significantly skewed (Verschuuren, 2013, 

November 26).  

 

  The skew and kurtosis values for all the variables (S, Si, Cl, and OM) are all within the -2 

to 2 range using a significance of 0.05 (Ghasemi & Zahediasl, 2012). The ANOVA results, show 

no significant difference across all variables (See Appendix A, tables A.1-A.4).  A larger set of 

observations would result in a stronger confidence of the distribution, however, testing similar 

methods across the same samples does result in a valid comparison. These results show that the 

significance values are all greater than 0.05 and thus are deemed not significant. Finding that my 

results are close to the other labs gives me confidence that I have conducted laboratory methods 

properly and that my analytical results are accurate and precise. Moving on from here, removal of 

the organic matter through LOI can also be confidently relied upon, to use the mineral portion 

only in the hydrometer method. 
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3.5 Data Analysis and Methods 

3.5.1 Stepwise Linear Regression 

  Stepwise linear regression (SLR) was the statistical method chosen to analyze 

relationships between soil properties (dependent variables) and environmental characteristics 

(independent variables) using IBM SPSS 24.0 (Statistical Package for the Social Sciences, 2017).  

  Independent variables were chosen based on literature and possible influential 

contributions to soil property formation (Table 3.6). For example, based on a literature review it 

was recognized that geology and vegetation type have been rarely included in regression analysis, 

but because of their potential influence in soil depth and soil texture, these independent variables 

were added to the regression.  

Table 3.6: Dependent and independent variable list with accompanying data type. 

Dependent 

Variables 

Data type Independent variables Data Type 

Restrictive Depth Continuous 
Topographic Wetness 

Index 
Continuous 

Mineral BD Continuous Slope (%) Continuous 

Litter BD Continuous Elevation (m) Continuous 

%S, %Si, %Cl Continuous Solar Radiation (W/m2) Continuous 

A and B horizon 

depths 
Continuous Aspect (degrees) Continuous 

  Profile Curvature Continuous 

  Plan Curvature Continuous 

  Curvature Continuous 

  Specific Catchment Area Continuous 

  Contributing Area Continuous 

  Landform Position Categorical 

  Slope Position Categorical 

  Surficial Geology Categorical 

  Bedrock Geology Categorical 

  Land Cover Type Categorical 

  Vegetation Density Categorical 

  Vegetation Type Categorical 

  Vegetation Height Categorical 
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  Before conducting SLR, the data were split into training (75%) and validation (25%) sets. 

The SLR models were created with the training datasets and tested with the validation datasets. 

Upon conducting SLR, the most influential independent variables were chosen to create the final 

regression equations for each dependent variable. The variables used in or taken out of the 

regression equations were controlled by manipulating the significance thresholds in the SPSS 

dialog.1 At each step a variable with the smallest p-value less than the specified threshold of Entry 

is entered into the model (Significance IN). Also, at each step a variable may be removed if the p-

value of the variable becomes greater than the specified threshold of Removal (Significance 

OUT), according to it level of affect as each step progresses. Nine steps were applied through the 

implementation of SLR to ensure that data structure and assumptions were proper for SLR 

analysis (Lund Research, 2018). 

1.  A database was established in individual Excel sheets to associate each dependent 

variable with each independent variable. This ensured ease of use in R programing and SPSS 

statistics, along with matching of environmental variables to each site where they were measured. 

2.  Dependent variables were expressed as continuous numeric units. For example, organic 

matter content was expressed in percent (between 0 and 100 percent). 

3.  Independent variables were expressed as either continuous (e.g. slope, elevation, wetness 

index) or categorical data (e.g. geological unit, land cover class, slope position). Dummy variables 

were created for each categorical variable, which resulted in as many Dummy variables as there 

were categories. For example, as there were 10 land cover classes, 10 Dummy variables were 

created representing either the presence or absence of that particular land cover class (e.g. 

coniferous forest) (Suits, 1957). 

                                                           
1 Multiple significance thresholds were ran for all soil property variables, using all independent variables, 
to find the optimal regression models while implementing all nine steps. 
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4.  Independence of both response and explanatory variables was assumed to be met because 

the samples were taken only once, many observations were not taken over time.  

5.  Linearity was assumed for the dependent variable with each independent variable, even 

where small coefficient of determination (R2) values existed, after testing multiple other trends 

and finding there to be little difference in R2. Also, linearity was tested by analyzing the pattern of 

scatter plots of the dependent variable after computing regressions (the standardized residual 

value on the y axis and standardized predicted value on the x axis). Inspection for non-curving 

data to meet the linearity assumption of residual plots. 

6.  Homoscedasticity was sought and investigated through visual inspection of scatter plots 

by adding a best fit line to the residual scatter plot (standardized predicted value – x-axis; 

standardized residual – y-axis), seeking a flat line, with a low R2, and no errors that get larger in 

one direction.  If residuals showed heteroscedasticity it was recognized that the model may 

introduce uncertainties when predicting soil properties using validation data.  

7.  Multicollinearity of data was avoided by using the Variance Inflation Factor (VIF) 

collinearity diagnostics where the VIF should be between 1 and 10. Also, the Pearson correlation 

matrix was investigated to ensure variables had correlations less than 0.80. If these values are not 

met the variables do present collinearity and correlation and were removed.  

8.  Normality of the residuals between the dependent variables and the independent variables 

were investigated through interpretation of histograms and Probability-Probability plots (PP-

plots) of model residuals. 

9.  SLR was conducted using SPSS and the major contributing environmental variables were 

identified to build final regression models that were used to model dependent variables of the 

watershed.  
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3.5.2 Spatial Modelling of Soil Properties 

  Once regression modelling, with training datasets, was completed, performances were 

compared between two of the best models and a final regression model was chosen. The equations 

were then used in ArcMap to predict soil properties across the entire Westcastle watershed 

because the independent variables were available for the whole watershed. The equation to predict 

each soil property was written into the Raster Calculator tool using the con (condition) command 

and the independent variable rasters. Once the soil properties were predicted, validation analysis 

was conducted, visually and statistically. The performance of two of the best regression models 

was compared, both visually and statistically. RMSE (root mean squared error), MAE (mean 

absolute error), r-square (R2), and average standard error are used to examine the performance of 

regression models (Equations 5, 6, 7 and 8) (Patil & Singh, 2016).  

RMSE = √
∑ (𝐸𝑖−𝑀𝑖)2𝑛

𝑖=1

𝑛
                                        Equation 5 

MAE = ∑
|𝐸𝑖− 𝑀𝑖|

𝑛
𝑛
𝑖=1                                       Equation 6 

R2 = (
1

𝑛−1
∑

(𝑀𝑖−𝑀̅)(𝐸𝑖−𝐸̅)

𝑆𝑀𝑆𝐸

𝑛
𝑖=1 )

2

                               Equation 7 

 Avg. Std. Error = 
∑ 𝑆𝐸

𝑛
                                  Equation 8 

where Ei represents the computed values, Mi the measured values and n the number of data used 

in the model (Equation 5). Also, where 𝑀̅ represents the mean of the measured values, and 𝐸̅ 

represents the mean of the computed values. And SM represents the sum of the measured values 

and SE represents the sum of the computed values.  
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Chapter 4: Results 

4.1 Introduction 

 The presentation of lab results, stepwise regression, and mapping analysis of the 

distribution of restrictive soil depth, soil texture, and percent organic matter are provided in this 

chapter.  Lab analysis results include all measurements taken to compile the soil depth and soil 

texture data. Stepwise linear regression using a wide range of independent variables was 

implemented to arrive at optimal regression equations for computing each dependent variable. 

This formed the basis to map the distribution of the dependent soil variables at the watershed 

scale. Lastly, modelled soil properties are compared to SOILGRIDS and detailed soil survey data. 

4.2 Sampling and Lab results 

 Overall, 131 soil sample sites were visited throughout the watershed (Figure 4.1). Results 

reveal that measurements of restrictive soil depth were taken at 91 % of sites and that A horizon 

texture samples were taken at 83 % of sites. Texture samples of the B horizons were taken at 53 

% of sampling sites. The restrictive soil depth measurements were missed at some sites, due to 

oversight of field procedures or it was not used at C horizon or road cut sites, whereas horizon 

textures were dependent on the presence of the horizon. Descriptive statistics of field and 

laboratory results (Table 4.1) are important for addressing objective 1 and working through 

objective 2. Mean restrictive soil depth of 74 cm was measured, which is slightly deeper than pre-

field work expectations. Soil texture analyses revealed a high sand content in both the A and B 

horizons, as is clearly evident in the soil textural triangle (Figure 4.2), where the samples are 

greatly clustered in the sand, loamy sand, and sandy loam textural classes.  Organic matter content 

was measured in each of the texture samples and, as expected, with ~3 % higher organic matter in 

the A horizon versus the B horizon was observed (Table 4.1). The depth of soil horizons and the 

solum depth (A plus B horizon) were measured at each of the 131 sites. Descriptive statistics 

(Table 4.1) show that 118 depth measurements were gathered, with a mean soil restrictive depth 
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of 74 cm, a maximum soil restrictive depth of 182 cm, and a minimum depth of 3 cm. In order to 

analyze the relationships between the dependent variables (soil properties) and the independent 

variables (environmental properties), frequency histograms of the dependent variables, scatter 

plots with linear trend lines and their coefficients of determination, and boxplots were made. Plots 

of restrictive soil depth and a histogram of solum depth (Fig. 4.3 - 4.5) are shown as examples 

(see Fig. B.1 - B.21 in Appendix B for other soil property plots).  

 
Figure 4.1: Soil sample site locations. 
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Table 4.1: Descriptive statistics of field and laboratory property measurements.  

Variable N Mean SD Min Max 
25th 

Percentile 

50th 

Percentile 

75th 

percentile 

Soil 

restrictive 

depth (m) 

118 74.00 41.25 3.0 182 41.9 63.4 104.4 

A HRZ 

%Sand  
104 67.3 14.8 31.5 97.6 56.0 67.6 77.4 

B HRZ 

%Sand 69 68.6 16.0 28.9 97.1 58.8 68.1 81.2 

A HRZ 

%Silt 
104 28.2 13.4 0.0 62.3 20.1 26.6 38.2 

B HRZ 

%Silt 
69 26.5 14.5 0.0 66.2 16.2 26.3 37.1 

A HRZ 

%Clay 
104 4.4 3.2 0.0 17.8 2.3 3.7 6.0 

B HRZ 

%Clay 
69 4.8 3.7 0.0 22.8 2.3 4.7 5.9 

A HRZ 

%OM 
104 9.3 5.5 2.4 47.0 5.9 8.2 11.3 

B HRZ 

%OM 
69 6.1 3.6 2.1 23.3 3.7 5.9 6.8 

Solum Depth 

(cm) 
131 36.1 29.9 0.0 115.6 10.5 30.0 54.9 

 

 
Figure 4.2: Soil textural triangle of A and B horizon texture classes (Natural Resources 

Conservation Service, 2018). 
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Figure 4.3: Histogram distribution of soil restrictive depth and solum depth (A+B horizon width). 

 

 
Figure 4.4: Scatter plots of soil restrictive depth (on the y-axis) and all the continuous 

environmental variables on (the x-axis). TWI (R2 =0.0277), Elevation (R2 =0.0190), Slope (R2 

=0.00077), Aspect (R2 =0.0017), Solar Radiation (R2 =0.0288), Curvature (R2 =0.00052), Profile 

Curvature (R2 =0.00427), Planform Curvature (R2 =9.96e-5), Specific Catchment Area (R2 

=0.0236), and Contributing Area (R2 =0.0198) m2. 
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Figure 4.5. Boxplots of soil restrictive depth (cm) on the y-axis and the other variables on the x-

axis.  

4.3 Spatial Distribution of the Soil Properties  

4.3.1 Soil Restrictive Depth Relationships with Independent Variables 

 Soil depth was measured in centimeters from the top of the soil to the maximum 

penetrated depth using the knocking pole method. For the stepwise regression analysis, the 

restrictive soil depth was the dependent variable, and multiple environmental variables were the 

independent variables (Table B.1, Appendix B). All linear relationships between the soil depths 

and independent variables were very weak. Figure 4.4 shows the two strongest linear relationships 

of soil restrictive depth being solar radiation (R2 = 0.029) and TWI (R2 = 0.028). The third most 

influential linear relationship is specific catchment area (R2 = 0.024), followed by contributing 

area (R2 = 0.020) and elevation (R2 = 0.019). The other continuous variables show even lower R2 

values. By implementing one-hot coding of categorical variables to “dummy variables”, larger R2 

relationships were found. For example, the independent variables “Surface Geology type 3” (R2 = 

0.051), “Vegetation type 12” (R2 = 0.046), “Vegetation Height 21 m” (R2 = 0.038), and 
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“Vegetation type 10” (R2 = 0.037) had higher R2 values than the highest R2 relationship of all 

other terrain variables. These relationships are considered when analyzing regression models and 

for logical relationships. 

4.3.2 Spatial Autocorrelation Analysis of Soil Properties 

4.3.2.1 Restrictive Soil Depth 

 Spatial autocorrelation was investigated to assess its helpfulness in understanding soil 

property spatial variation and for its potential for use in future research considerations. Spatial 

autocorrelation of soil restrictive depth samples was analyzed by using the Spatial Autocorrelation 

(Moran’s I) tool in ArcMap and the GS+ program to analyze semi-variance of soil properties. The 

Moran’s I report indicates the soil restrictive depth measurements are spatially random (Table 

4.2), based on a z-score of 0.275, therefore measurements differ from each other with no 

clustering due to intrinsic environmental aspects.  

Table 4.2. Moran’s I summary report of the restrictive soil depth. 

Moran's Index: 0.092 

Expected Index: -0.007 

Variance: 0.130 

z-score: 0.275 

p-value: 0.783 

Distance Threshold 1989.512 meters 

 

A variogram was constructed with GS+ with non-transformed data (Figure 4.6), resulting 

in a spherical model, the optimized model. A nugget of 75.0 and a sill of 1656 m were auto-

calculated and the resulting spherical model was fitted with an R2 of 0.080. The large nugget 

value indicates that measurements taken close together exhibit large variation from each other. So 

the measurements were not affected by sampling sites that were close together. Also, the small R2 

value means the variation in the data is large. Therefore, independence of samples is achieved for 

regression analysis. Patterns that we find in conducting step-wise regression can be attributed to 

the interaction of environmental variables and results will not be biased by counting correlated 

sites more than once. 
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Figure 4.6: Spherical variogram model of soil restrictive depth. 

 

4.3.2.2 Soil Textures, OM, and Solum Depth 

 The Moran’s I spatial autocorrelation statistic was calculated for the A and B horizon 

textures (Table 4.3) and assessed for spatial clustering of the samples that would imply 

significance of spatial patterning of the soil properties.  

Table 4.3: Moran’s I spatial autocorrelation report summaries for soil pit A and B horizon 

samples.  

Property 

Type 

Moran’s 

I Index 
Variance z-score p-value 

Dispersed/Rando

m/Clustered 

A HRZ  

% Sand 
0.217 0.006 2.876 0.004* Clustered 

A HRZ  

% Silt 
0.162 0.006 2.181 0.029^ Clustered 

A HRZ  

% Clay 
0.175 0.006 2.376 0.018^ Clustered 

A HRZ  

% OM 
0.005 0.005 0.206 0.837^ Random 

B HRZ  

% Sand 
0.267 0.009 2.906 0.004* Clustered 

B HRZ  

% Silt 
0.236 0.009 2.592 0.010* Clustered 

B HRZ  

% Clay 
0.100 0.008 1.237 0.212^ Random 

B HRZ  

% OM 

Solum 

Depth (cm) 

0.165 

 

1.288 

0.008 

 

0.142 

1.976 

 

3.435 

0.048^ 

 

0.00059* 

Clustered 

 

Clustered 

Note: A horizon sand and B horizon sand and silt are clustered with less than a 1% likelihood* of 

being caused by random chance, whereas A horizon silt and clay and B horizon organic matter are 

clustered with less than a 5% likelihood^ of being caused by random chance.  



48 
   

All the A horizon percent texture measurements are patterned in a spatially clustered 

manner, whereas A horizon organic matter is spatially random (Table 4.3). On the other hand, B 

horizon percent sand, silt and organic matter are patterned in a spatially clustered manner with 

percent clay being spatially random (Table 4.3). With these results the decision was made to 

assess spatial autocorrelation with variogram analysis, done in the same manner as soil restrictive 

depth, because the positive values and clustering suggest that samples are similar in distinct areas 

of the study area. Table 4.4 and Figures 4.7 – 4.11 show results of the variogram calculations and 

plotting using the GS+ program. Each variable was determined to have low to moderate spatial 

dependency. The moderate spatial dependency variables area promising for use in geostatistical 

methods. Geostatistical methods are not suitable for the low spatially dependent properties. 

Therefore, it was decided to use only stepwise linear regression for all the variables to simplify 

statistical analysis and to meet time constraints of this research project. 

Table 4.4: Results of variogram calculations to assess spatial dependence of texture and organic 

matter data. 

Property 

Type 
Model Type R2 

Nugget 

Value 

(Co) 

Sill 

(Co+C) 

Range 

(m) 

Proportion 

C/(Co+C) 

(%) 

Spatial 

Dependency 

Level 

A HRZ 

% Sand 
Spherical 0.14 6.7 212.0 890 96.84 

 

Low 

A HRZ 

% Silt 
Spherical 0.13 8.5 179.2 830 95.26 

 

Low 

A HRZ 

% Clay 
Exponential 0.09 1.8 11.2 510 83.87 

 

Low 

A HRZ 

% OM 
Gaussian 0.55 19.9 53.1 11,080 62.54 

 

Moderate 

B HRZ 

% Sand 
Gaussian 0.14 141.3 282.7 3,100 50.02 

 

Moderate 

B HRZ 

% Silt 
Gaussian 0.12 114.8 229.7 3,020 50.02 

 

Moderate 

B HRZ 

% Clay 
Exponential 0.02 2.0 14.0 370 85.46 

 

Low 

B HRZ 

% OM 
Spherical 0.17 1.4 14.8 2,670 90.52 Low 

Solum 

Depth (cm) 
Exponential 0.68 503 1261 17,710 60.11 Moderate 
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Figure 4.7: Spherical variograms of A horizon percent sand (left) and percent silt (right). 

 
Figure 4.8: Exponential variogram of A horizon percent clay. 

 
Figure 4.9: Gaussian variograms of B horizon percent sand (left) and percent silt (right). 
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Figure 4.10: Exponential variogram of B horizon percent clay. 

 

 
Figure 4.11: Exponential variogram of solum depth (cm). 

 

4.4 Model Analysis  

4.4.1 Soil Restrictive Depth Stepwise Regression 

 With relationships explored through descriptive statistics, stepwise linear regression was 

employed. After it was determined that there are some variables that had skewed distributions, it 

was decided that the box cox transformation function in R would be performed on the data 

(Equation 5) and used in stepwise regression, with the SPSS program, to explore model 

performance with transformed data.  

t(x) = 
(𝑥𝛌−1)

𝛌
                                                       (Equation 5) 
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where t(x) represents the transformed  variable value, x represents the original  variable 

value, and 𝛌 represents the transformation parameter (Tesfa, Tarboton, Chandler, & McNamara, 

2009). Regressions with non-transformed data and variations of non-transformed and transformed 

data were compared based on their R2 performance. Using the Shapiro Wilk Normality Test, 

variables were transformed and tested for normality. It was found that only soil restrictive depth, 

slope, and specific catchment area variables became normal upon transformation. Due to these 

results many regression models were performed whereby both transformed and non-transformed 

data variations were used. It was found that not transforming the data resulted in the highest R2 

value of 0.856 (Table 4.5). A PP-plot of the modelled residuals revealed that the estimated soil 

depth values were normally distributed. Therefore, data input into the stepwise regression model 

were not transformed for the soil restrictive depth variable modelling, neither for modelling the 

remaining soil properties.  

Categorical variables were tested against continuous terrain variables to assess their 

influence in predicting soil restrictive depth through inspection of R2 values (Table 4.6). 

Continuous terrain variables consisted of elevation, slope, aspect, TWI, plan curvature, profile 

curvature, curvature, solar radiation, specific catchment area, and contributing area. It was found 

that vegetation height, vegetation density, and vegetation type had the largest R2 value (0.601) 

when used with terrain variables. Of the other variables used by their own, slope and landform 

position, and then land cover offered the next higher R2 values (0.267 and 0.223). Slope and 

landform position and land cover type were used separately with terrain variables and vegetation 

variables. Slope and landform position improved the R2 value (0.267) by 0.061 over land cover 

(0.223). Slope and land cover position improved the R2 value of terrain variables and vegetation 

variable combination by 0.610. Therefore, it was recognized that some variables are more 

influential than others, namely that terrain variables have a very small influence when compared 

to vegetation variables.    
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Table 4.5: R squared training results for non-transformed and transformed data. Significance 

level in = 0.5 and significance level out = 0.99. 

Variables Used R Squared Values Adj. R2 

All Variables Non-Transformed 0.856 0.664 

All Continuous Variables Transformed 0.846 0.657 

Max Depth Non-Transformed / All Continuous 

Independent Variables Transformed 
0.849 0.657 

Max Depth Non-Transformed / Slope and 

Specific Catchment Area Transformed Only 
0.835 0.690 

Max Depth Transformed / Slope and Specific 

Catchment Area Transformed Only 
0.843 0.657 

 

Table 4.6: Comparison of training regression equations comparing terrain variables (TWI, 

elevation, % slope, solar radiation, aspect) with other categorical variables individually and 

combined. Significance level in = 0.5 and significance level out = 0.99. 

Variables in Regression R Squared Values Adj. R2 

Terrain Variables Alone 0.118 0.05 

Vegetation Variables Alone 0.568 0.358 

Terrain Variables + Surface and Bedrock 

Geology 

 

0.194 

 

0.092 

Terrain Variables + Landcover Type 

 
0.223 0.125 

Terrain Variables + Landform and Slope 

Positions 

 

0.267 0.145 

Terrain Variables + Vegetation Density, 

Height, & Type 

 

0.601 0.449 

Terrain Variables + Landcover Type and 

Vegetation Density, Height, & Type 
0.710 0.549 

Terrain Variables + Landform & Slope 

positions 

 

Landform & Slope positions and Vegetation 

Density, Height, & Type 

 

 

0.740 

 

 

0.554 

  

A final regression equation was chosen for mapping the entire watershed on the basis of 

maximizing the R2 performance, minimizing the adjusted R2, and maintaining normal distribution 

of the predicted values (visual P-P plot analysis of Figure 4.12 and 4.13). Also, steps 5, 6, 7, 8 and 

9 from the methods were also followed. Two regression models were chosen that met the steps, 

one with 17 variables (0.10 Sig. IN and 0.99 Sig. OUT) and one with 40 variables (0.50 Sig. IN 

and 0.51 Sig. OUT) (Table 4.7). Reviewing the two regression models to meet step 7, a weak 

correlation (0.930) was found between vegetation height 1 (VIF = 10.095) and vegetation type 14 
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(VIF = 8.806) for the 40 variable regression model, but this was deemed acceptable. Tables 4.8 

and 4.9 show the model summaries produced with SPSS as illustrations of the statistics performed 

and analyzed for soil restrictive depth and all other soil properties. Predictions based on validation 

data were made using both regression models, and the validation statistics were used with training 

data statistics to select the final regression model (Table 4.10).  

Table 4.7: Systematic increase of significance inclusion of stepwise regression to investigate 

model performance with increasing training variables. All variables were not transformed. 

Sig. IN Sig. OUT R2 Adj. R2 

0.05 0.1 0.506 0.450 

0.05 0.2 0.506 0.450 

0.05 0.5 0.506 0.450 

0.05 0.99 0.508 0.446 

0.1 0.2 0.544 0.480 

0.1 0.5 0.544 0.480 

0.1 0.99 0.621 0.542 

0.2 0.99 0.729 0.626 

0.3 0.99 0.788 0.665 

0.4 0.99 0.830 0.676 

0.5 0.99 0.856 0.664 

0.5 0.51 0.825 0.704 

0.6 0.99 0.862 0.645 

0.7 0.99 0.864 0.629 

0.8 0.99 0.865 0.598 

0.9 0.99 0.865 0.544 

No Restriction 0.865 0.511 

Note: Bold values represent the chosen regression models. Also, Sig. IN = the p value cut off 

threshold for the input of independent values into the regression model and Sig. OUT = the p-

value cut off threshold for the independent values to be taken out of the model. 
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Table 4.8: Model summary of 17 variable soil restrictive depth regression model. 

Model R 

R 

Square 

Adjusted R 

Square 

Std. Error 

of the 

Estimate 

Change Statistics 

Durbin-

Watson 

R Square 

Change 

F 

Change df1 df2 

Sig. F  

Change 

1 .231a .053 .044 40.769 .053 5.478 1 97 .021  

2 .329b .108 .090 39.773 .055 5.921 1 96 .017  

3 .409c .167 .141 38.644 .059 6.689 1 95 .011  

4 .459d .211 .177 37.822 .043 5.174 1 94 .025  

5 .508 .258 .218 36.859 .048 5.977 1 93 .016  

6 .540 .292 .246 36.202 .034 4.407 1 92 .039  

7 .590 .348 .298 34.941 .056 7.760 1 91 .007  

8 .630 .397 .343 33.789 .049 7.309 1 90 .008  

9 .663 .440 .384 32.731 .043 6.914 1 89 .010  

10 .693 .480 .421 31.714 .040 6.799 1 88 .011  

11 .713 .508 .446 31.024 .028 4.956 1 87 .029  

12 .727 .528 .462 30.581 .019 3.544 1 86 .063  

13 .739 .546 .476 30.174 .018 3.332 1 85 .071  

14 .760 .577 .507 29.280 .032 6.272 1 84 .014  

15 .771 .594 .521 28.867 .017 3.418 1 83 .068  

16 .780 .608 .532 28.531 .014 2.966 1 82 .089  

17 .788q .621 .542 28.220 .013 2.817 1 81 .097 2.016 

a. Predictors: (Constant), VegetationTypeNumber=12.0 

b. Predictors: (Constant), VegetationTypeNumber=12.0, Landform position=8.0 

c. Predictors: (Constant), VegetationTypeNumber=12.0, Landform position=8.0, 

VegetationTypeNumber=10.0 

d. Predictors: (Constant), VegetationTypeNumber=12.0, Landform position=8.0, 

VegetationTypeNumber=10.0, VegetationTypeNumber=16.0 

q. Predictors: (Constant), VegetationTypeNumber=12.0, Landform position =8.0, 

VegetationTypeNumber=10.0, VegetationTypeNumber=16.0, height_allign=15.0, cadem_50mb, 

height_allign=3.0, Solar.Rad..w.m2.,  Landform position=1.0, height_allign=16.0, 

VegetationTypeNumber=14.0, densit_allign=1.0, LandcoverNumber=6.0, VegetationTypeNumber=5.0, 

LandcoverNumber=9.0, height_allign=13.0, VegetationTypeNumber=2.0 
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Figure 4.12: P-P plot of regression analysis based on sig. level in of 0.10 and Sig. level out of 

0.99 (17 variables). Observed Cumulative Probability on the x-axis are the cumulative probability 

 

Table 4.9: Model summary of 40 variable soil restrictive depth regression model. 

Model R 

R 

Square 

Adjusted R 

Square 

Std. Error 

of the 

Estimate 

Change Statistics 

Durbin-

Watson 

R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

1 .231a .053 .044 40.769 .053 5.478 1 97 .021  

2 .329b .108 .090 39.773 .055 5.921 1 96 .017  

3 .409c .167 .141 38.644 .059 6.689 1 95 .011  

4 .459 .211 .177 37.822 .043 5.174 1 94 .025  

56 .903 .816 .700 22.836 .005 1.668 1 60 .201  

57 .903 .815 .703 22.730 -.001 .435 1 60 .512  

58 .905 .819 .704 22.693 .004 1.200 1 60 .278  

59 .906 .821 .703 22.723 .003 .845 1 59 .362  

60 .906 .821 .707 22.564 -.001 .165 1 59 .686  

61 .907 .823 .706 22.612 .002 .745 1 59 .392  

62 .908bj .825 .704 22.693 .002 .578 1 58 .450 2.191 

Note: Not all of the models are given because that would take up a lot of space and the ones in between are 

not necessary to show the optimal model performance outcomes. 

a. Predictors: (Constant), VegetationTypeNumber=12.0 

b. Predictors: (Constant), VegetationTypeNumber=12.0, Landform position=8.0 

c. Predictors: (Constant), VegetationTypeNumber=12.0, Landform position=8.0, 

VegetationTypeNumber=10.0 

d. Predictors: (Constant), VegetationTypeNumber=12.0, Landform position=8.0, 

VegetationTypeNumber=10.0, VegetationTypeNumber=16.0 

bj. Predictors: (Constant), VegetationTypeNumber=12.0, VegetationTypeNumber=16.0, 

height_allign=15.0, cadem_50mb, height_allign=3.0, Solar.Rad..w.m2., Landform position=1.0, 

VegetationTypeNumber=14.0, height_allign=13.0, height_allign=21.0, LandcoverNumber=6.0, 

VegetationTypeNumber=5.0, height_allign=4.0, LandcoverNumber=8.0, LandcoverNumber=4.0, Slope 

position=6.0, Bedrock Geology=7.0, Bedrock Geology=8.0, height_allign=1.0, height_allign=17.0, 

height_allign=5.0, Landform position=2.0, Bedrock Geology=9.0, Surface Geology=3.0, densit_allign=2.0, 

LandcoverNumber=5.0, Surface Geology=5.0, Landform position=9.0, Landform position=3.0, 

densit_allign=4.0, twi4_0f, Landform position=7.0, VegetationTypeNumber=2.0, height_allign=23.0, 

Bedrock Geology=3.0, Slope.Percent, Landform position=10.0, Landform position=5.0, height_allign=19.0, 

height_allign=18.0 
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of the Studentized residuals and the Expected Cumulative Probability is the normalized 

probability of the studentized residuals.  

 
Figure 4.13: P-P plot of regression analysis based on sig. level in of 0.50 and Sig. level out of 

0.51 (40 variables). Observed Cumulative Probability on the x-axis are the cumulative probability 

of the Studentized residuals and the Expected Cumulative Probability on the y-axis are the 

normalized probability of the Studentized residuals. 

Table 4.10: Model performance statistics of the validation datasets to assess prediction maps. 

 Training Model   

17 Variables 

Validation 

Model 17 

Variables 

Training Model   

40 Variables 

Validation 

Model 40 

Variables 

R2 0.621 0.006 0.825 0.012 

RMSE 25.53 54.44 17.37 66.18 

MAE 20.12 42.63 13.37 52.10 

Average 

Standard 

Error 

11.17 11.73 14.10 24.21 

 

 The top 10 variables of the 17 variable model are: Vegetation Type 12 (Alpine larch), 

Landform Position 8 (local ridges, hills in valleys), Vegetation Type 10 (Engelmann spruce), 

Vegetation Type 16 (Herbaceous Grassland), Height 15 m, Elevation, Height 3 m, Solar 

Radiation, Landform Position 1 (canyons, deeply incised streams), and Height 16 m. Half of the 

variables in the model are categorical vegetation variables and half are continuous and categorical 

terrain variables. 
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4.4.2 Soil Texture Stepwise Regression Modelling 

 Samples were collected from both the A and the B horizons of sample sites. Percent sand, 

silt, and clay were measured in the lab for each horizon, and they were individually modelled with 

stepwise regression methods. The selection of the regression equations was based on model 

performance statistics in the same fashion as for soil restrictive depth.  

The residual scatter plots for the percent sand models show that when the significance 

level for variables to enter the model is set to 0.45 the normality of the residuals is significantly 

degraded. Despite the fact that the R2 increases and the RMSE and MAE decrease with increased 

significance settings using the percent sand training data (Table 4.11), when the percent sand 

validation data (Table 4.12) is used to predict soil texture the performance statistics support lower 

significance settings for variables to be entered and/or removed from a the modelling process. 

Therefore, Sand 1 model was chosen for mapping. Percent silt and clay training and validation 

model analysis (Table 4.12) follow the same logic as percent sand, therefore Silt 1 and Clay 1 

regression models were used for mapping. Table 4.13 presents the top 10 variables of each model, 

used to assess the logic of the models in predicting soil properties because the top ten variables 

have a strong influence on prediction power of the models. 

Table 4.11: A horizon percent sand, silt, and clay content training models (N = 75). 

Model 

Name 
Sig. IN 

Sig. 

OUT 
R2 Adj. R2 RMSE MAE 

Average 

Standard 

Error 

Sand 1 0.35 0.5 0.758 0.594 7.23 5.72 5.79 

Sand 2 0.45 0.5 0.879 0.721 4.62 3.32 5.78 

Silt 1 0.35 0.5 0.759 0.612 6.55 5.10 4.97 

Silt 2 0.35 0.36 0.845 0.713 5.25 3.93 4.77 

Clay 1 0.15 0.2 0.845 0.779 1.34 0.96 0.82 

Clay 2 0.25 0.3 0.886 0.812 1.15 0.74 0.88 
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Table 4.12: Model performance statistics, for the A horizon validation data (N = 29). 

Variable R2 RMSE MAE 

Average 

Standard 

Error 

Sand 1 0.078 23.95 18.99 8.09 

Sand 2 0.035 59.84 40.37 11.37 

Silt 1 0.006 22.33 18.33 6.26 

Silt 2 0.015 49.89 34.70 8.92 

Clay 1 0.020 4.34 3.51 0.86 

Clay 2 0.002 5.04 3.93 0.96 

 

Table 4.13: Top 10 variables in the A horizon stepwise linear regression models. 

Model Name  Top 10 Explanatory Variables 

Sand 1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

VegetationDensity5 (71-100% crown closure) 

VegetationType5 (Balsam fir) 

Landcover6 (Grassland) 

Landform9 (Local ridges, hills in valleys) 

Landcover7 (Agriculture) 

VegetationHeight21 (21 m) 

Aspect 

Landcover9 (Broadleaf) 

ContributingArea 

SlopePosition5 (Upper slope) 

 

Silt 1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

VegetationDensity5 (71-100% crown closure) 

VegetationHeight0 (0 m) 

Landcover9 (Broadleaf) 

Elevation 

Aspect 

BedrockGeo8 (Argillite, limestone, and dolostone) 

VegetationHeight21 (21 m) 

VegetationHeight9 (9 m) 

SlopePosition5 (Upper slope) 

Landcover7 (Agriculture) 

 

Clay 1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

VegetationType5 (Balsam fir) 

VegetationType10 (Engelmann spruce) 

SlopePosition4 (Middle slope) 

Landcover5 (shrubland) 

VegetationDensity1 (0-5 % Crown closure) 

VegetationType9 (Jack pine, White-bark pine) 

VegetationType15 (Open shrubland) 

SurfaceGeo1 (fluvial deposits) 

VegetationType17 (Perennial forage crops) 

VegetationHeight11 (11 m) 

Note: These variables are the first 10 variables entered into the stepwise regression model, 

thereby making them the 10 most important variables in the model to account for variability. 
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Texture data from the B horizons were modelled and models were chosen based on the 

same criteria as for the A horizon textures. Sand 4 was chosen over Sand 3 (Table 4.14) because 

Sand 4 performs with a higher R2 value and lower RMSE and MAE values with the training data, 

and the average standard error was only slightly larger. With the validation data (Table 4.15), 

Sand 4 performs slightly better with a larger R2 value, but has only slightly larger RMSE, MAE, 

and average standard errors. The residual P-P plot of Sand 4 did show patterns of normality as did 

the Sand 3 model, however, the Sand 5 model P-P plot did not follow a normally distributed 

pattern. Sand 5 was rejected because the residuals were not normally distributed, even though the 

R2 of the training data was high and the performance statistics were acceptable (Table 4.14). Also, 

the performance statistics of the validation set for Sand 5 show poor performance due to high 

RMSE and MAE, significantly worse than the other models (Table 4.15). Silt 3 was chosen over 

Silt 4 because the R2 is higher and the RMSE and MAE perform better with the training data 

(Table 4.14), with only a slightly larger mean standard error. Silt 3 performs closely to Silt 4 with 

validation data (Table 4.15). The P-P plots of Silt 3 and 4 both show normality, so Silt 3 was 

chosen based on its better performance. Clay 3 was chosen over Clay 4 because, even though both 

performed closely with training data (Table 4.14) in all statistical tests, Clay 3 performed 

substantially better with validation data in statistical tests (Table 4.15). Table 4.16 presents the top 

10 variables of the models. 

Table 4.14: B horizon percent sand, silt and clay content regression model performance statistics 

of training data (N = 52). 

Model 

Name 
Sig. IN 

Sig. 

OUT 
R2 Adj. R2 RMSE MAE 

Average 

Standard 

Error 

Sand 3 0.10 0.15 0.788 0.722 7.31 5.77 3.89 

Sand 4 0.15 0.20 0.848 0.778 6.19 4.67 3.94 

Sand 5 0.20 0.30 0.996 0.983 1.04 0.670 1.79 

Silt 3 0.15 0.20 0.848 0.785 5.64 4.53 3.61 

Silt 4 0.10 0.50 0.753 0.700 7.19 5.95 3.28 

Clay 3 0.15 0.20 0.817 0.755 1.64 1.16 3.61 

Clay 4 0.20 0.25 0.827 0.761 1.60 1.11 2.15 
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Table 4.15: Model performance statistics, for the B horizon validation data (N = 17). 

Variable R2 RMSE MAE Average 

Standard 

Error 

Sand 3 0.003 20.03 15.19 3.92 

Sand 4 0.016 21.01 16.58 4.07 

Sand 5 0.017 34.92 26.68 3.34 

Silt 3 0.018 18.25 14.70 4.71 

Silt 4 0.021 17.03 13.66 3.60 

Clay 3 0.151 4.95 3.89 0.15 

Clay 4 0.139 27.63 22.73 3.27 

 

Table 4.16: Top 10 variables in the B horizon texture stepwise linear regression models. 

Sand 4 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

VegetationHeight21 (21 m) 

BedrockGeo3 (Sandstone and mudstone) 

Aspect 

VegetationHeight12 (12 m) 

Landcover10 (Mixed) 

SlopePosition4 (Middle slope) 

TWI 

VegetationDensity3 (31 to 50 %) 

VegetationHeight8 (8 m) 

VegetationType6 

Silt 3 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

 

VegetationHeight21 (21 m) 

BedrockGeo3 (Sandstone and mudstone) 

Aspect 

VegetationType2 (Lodgepole pine) 

BedrockGeo6 (Shale, siltstone, and sandstone) 

VegetationHeight12 (12 m) 

SlopePosition2 (Lower slope) 

VegetationType6 (Trembling aspen) 

Landcover10 (Mixed) 

SlopePosition5 (Upper slope) 

 

Clay 3 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Landcover2 (Rock/Rubble) 

VegetationHeight21 (21 m) 

VegetationType17 (Perennial forage crops) 

Landcover10 (Mixed) 

VegetationType8 (Douglas fir) 

Landcover9 (Broadleaf) 

VegetationHeight11 (11 m) 

VegetationHeight12 (12 m) 

VegetationHeight23 (23 m) 

VegetationType18 (Annual Crops) 
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4.4.3 Organic Matter and Solum Depth Stepwise Regression Modelling 

 One hundred and seventy three soil samples were burned in a muffle furnace and weighed 

to analyze the percent organic matter in the A and B horizons, which prepared the samples for 

hydrometer textural analysis methods. There are 173 organic matter samples due to the 

combination of A and B horizons found at the 131 sample sites. Solum depth, the sum of A and B 

horizons at sample locations, was also calculated for all 131 sample sites. Model selection was 

carried out in the same manner as with the soil restrictive variables through analysis of training 

and validation statistics (Table 4.17 and 4.18). The A horizon organic matter model 1 (AOM 1) 

was chosen as the best model while maintaining normal residuals (Table 4.17). The B horizon 

organic model 2 (BOM 2) was chosen as the best model and Solum model 1 (Solum 1) was 

chosen (Table 4.17). The models for OM prediction performed well with high R2 values, whereas 

solum depth had much lower R2 values for both models in the training data (Table 4.17) and had 

similar R2 values in the validation data (Table 4.18).  

Table 4.17: Training model statistics for A and B horizon percent organic matter and solum 

depth. 

Model 

Name 
Sig. IN 

Sig. 

OUT 
R2 Adj. R2 RMSE MAE 

Average 

Standard 

Error 

AOM 1 0.30 0.50 0.887 0.773 1.35 1.03 1.34 

AOM 2 0.20 0.50 0.764 0.677 1.94 1.48 1.10 

BOM 1 0.05 0.10 0.839 0.809 1.25 0.96 0.50 

BOM 2 0.10 0.20 0.862 0.829 1.15 0.877 0.54 

Solum 1 0.30 0.31 0.528 0.432 20.51 15.49 8.80 

Solum 2 0.50 0.51 0.643 0.460 17.83 12.49 12.41 

Note: AOM is for A horizon Organic Matter, BOM is for B horizon Organic Matter, and Solum is 

for Solum depth. 

 

Table 4.18:  Validation model statistics for A and B horizon percent OM and solum depth. 

Variable R2 RMSE MAE 

Average 

Standard 

Error 

AOM 1 0.022 10.60 7.53 1.94 

AOM 2 0.013 10.02 6.52 1.22 

BOM 1 0.015 5.34 3.43 0.59 

BOM 2 0.016 5.39 3.44 0.60 

Solum 1 0.037 34.18 26.83 8.47 

Solum 2 0.042 39.89 32.24 14.36 
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Table 4.19: Top 10 variables in the organic matter and solum stepwise linear regression models. 

AOM 1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

SurfaceGeology4 (Glaciolacustrine Deposits)  

BedrockGeology7 (Shale, siltstone, sandstone, and limestone) 

VegetationType8 (Douglas fir)  

Landcover9 (Broadleaf)  

VegetationHeight11 (11 m)  

VegetationDensity2 (6 to 30 %)  

LandformPosition3 (upland drainages, headwaters)  

TWI  

BedRockGeology9 (Sandstone and shale) 

 SurfaceGeology3 (Glaciofluvial Deposits) 

 

BOM 2 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

 

ContributingArea 

BedrockGeology7 (Shale, siltstone, sandstone, and limestone) 

VegetationType20 (Infrastructure) 

VegetationHeight14 (14 m) 

LandformPosition6 (Open slopes) 

LandformPosition10 (Mountain tops, high ridges) 

VegetationDensity2 (6 to 30 %) 

LandformPosition7 (Upper slopes, mesas) 

SurfaceGeology2 (Colluvial Deposits) 

SurfaceGeology3 (Glaciofluvial Deposits) 

Solum 1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

SurfaceGeology4 (Glaciolacustrine Deposits) 

Aspect 

VegetationType18 (Annual crops) 

SlopePosition3 (Flat Slopes)  

VegetationHeight23 (23 m)  

BedrockGeology6 (Shale, siltstone, and sandstone)  

VegetationType15 (Open shrubland) 

LandformPosition8 (Local ridges, hills in valleys) 

VegetationHeight16 (16 m) 

VegetationType6 (Trembling aspen) 

 

4.5 Watershed Predictions 

4.5.1 Soil Restrictive Depth 

 Two soil restrictive depth equations (Table 4.7) were input into the Raster Calculator of 

ArcMap and the prediction rasters were calculated and analyzed. Both models over-predict 

restrictive soil depth values in areas of extreme environmental sites, such as very steep slopes at 

very high elevations, which were not sampled during this study (Figure. 4.13). For example, low 

elevation, high TWI, low slope, and high solar radiation areas are generally over-estimated. Also, 

high elevation, south facing, high solar radiation, steep slope, and low vegetation areas are 
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generally under-estimated. The predictions using 40 variables appeared to overestimate in higher 

elevations, but predicted well in the lower elevations, in particular in the far northeast cluster of 

sampling points in agricultural areas. In comparison, the predictions using 17 variables seemed to 

estimate shallower soil depths in the lower elevation sites and they predicted soil depths in the 

upper elevations more closely to the observed soil restrictive depths. These observations occur 

over the watershed with some exceptions, specifically in the red highlighted locations (Figure 

4.14 map B), where the 40 variable model estimates shallower soil restrictive depth in lower 

elevations than the 17 variable model.   

  
Figure 4.14. Restrictive soil depth predictive maps, A) 17 variables; B) 40 variables. Red circle 

signify exceptions to the overall patterns. 

 

Based on model performances (Table 4.7 and 4.10) the model using 17 variables was 

more reliable than the 40 variable model. Even though the model with 17 variables had a smaller 

R2 value in training and validation sets and had larger RMSE and MAE, it had smaller ASE 

(Table 4.7 and 4.10). Also, the 17 variable model predicts restrictive soil depths more closely to 

the knocking pole method depth measurements than the 40 variable model. Deep soil profiles 

exist in the upper North East corner of the study area (Figure 4.14) due to grassland vegetation 

B A 
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cover and flat slopes, however, the knocking pole method results in shallow measured soil 

restrictive depth measurements due to restrictions by clay content, compaction, and stoniness or a 

combination of all three. The 17 variable model predicts closer to measured depths in the upper 

North East corner of the study area (average 75 cm) and in other valley areas. Therefore the 17 

variable model performs more closely to apparent environmental relationships. 

4.5.2 A and B Horizon Texture 

 Similar to soil restrictive depth linear model calculations, texture calculation for A and B 

horizon sand and silt results in over-estimations above 100% and underestimations below 0%. 

This is also due to un-sampled locations that had higher or lower environmental variable 

measurements which lead to over- or under-estimations. Percent clay predictions also under-

predict, but did not predict over 100%. Instead, predictions were calculated to a maximum of 

30%. The maximum percent clay in the A and B horizon, measured in the lab, was 17.9% and 

22.8% respectively, which suggests that the maximum clay predictions are acceptable. Predictions 

over 100% are made to be 100% and predictions under 0% are made to be 0%. The resulting 

maps (Fig. 4.15 - 4.20) were prepared and analyzed for patterns. These patterns are discussed in 

depth in the next chapter, however, some logical large scale patterns are easily recognized. For 

example, percent sand in the A horizon (Fig. 4.15) shows decreasing sand in lower elevations, in 

valleys, and on less steep slopes. These patterns introduce confidence in the regression equations 

due to the recognition of logical patterns.  
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Figure 4.15: Map of percent sand in the A horizon with sample locations. Example 1 is of a low 

elevation and less steep slope area and Example 2 is of a valley area. 

 

A pattern was noticed in the A horizon silt map (Fig. 4.16), slightly similar to the geology of the 

watershed. The geology pattern also shows up in the percent sand and silt in the B horizon clearly. 
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Figure 4.16: Map of percent silt in the A horizon with sample locations. 

 
Figure 4.17: Map of percent clay in the A horizon with sample locations. 



67 
   

 
Figure 4.18: Map of percent sand in the B horizon with sample locations. 

 
Figure 4.19: Map of percent silt in the B horizon with sample locations. 
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Figure 4.20: Map of percent clay in the B horizon with sample locations. 

 

4.5.3 A and B horizon Organic Matter and Solum Depth 

The model Solum 1 is deemed optimal and was used despite of its low R2 value to predict 

soil depth in the watershed, with an understanding that the model is not error free. Spatial patterns 

of the predictions show patterns similar to the texture predictions. Surficial geology is a strong 

variable in the spatial predictions of A horizon OM (Fig. 4.21). B horizon OM (Fig. 4.22) does 

not show any strong spatial patterning upon visual inspection except for the small light blue patch 

in the North of the watershed that can be attributed to surficial geology. South and East facing 

slopes, which receive relatively high solar radiation and have low TWI, appear to have had strong 

relationships with solum depth (Fig. 4.23). These results indicate logical spatial predictions that 

are useful and are discussed in Chapter 5.   
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Figure 4.21: A horizon percent organic matter map with soil sample sites. 

 

 
Figure 4.22: B horizon percent organic matter map with soil sample sites. 
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Figure 4.23: Solum depth prediction map with sample sites. 

4.6 Comparison with Other Data  

 There are two soil datasets that are available at different extents for the West Castle 

watershed. First, the DSS soil information data set, included in the AGRASID database, was 

downloaded and covers a small part of the watershed in the North East. Crop production and 

cattle grazing operations dominate the land use types in the area. Second, data were downloaded 

from SOILGRIDs global soil mapping website. Information available for comparison of both 

datasets includes soil texture (S, SI, and Cl %) and organic carbon (% by weight). Soil textures 

were directly comparable to each dataset, however, both dataset reports organic carbon (SOC) as 

percent, therefore percent organic matter was adjusted by multiplying sampled data of this 

research by a scaling factor. The scaling factor of 0.54 is based on an average of a typical 48-60% 

range of soil organic carbon that is in soil organic matter (Tan, 2005). A and B horizon data from 

this research was averaged and the averaged data was compared with the survey and SOILGRIDS 

data, because soil survey data contains average texture and OM measurements. SOILGRID’s 

data, even though they are available for multiple depths, do not differ more than 0-5% across any 
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of the layers. Therefore, the averaged data were also compared to the SOILGRID’s data. Tables 

4.20 and 4.21 present the differences between sampled data and the survey and SOILGRID’s data 

(Collected data subtracted from the other data). Positive numbers mean that sampled and 

predicted layers were greater than the other data and negative values mean that the sampled and 

predicted data were less than the other data.  It can be observed that the sand sampled SOC data 

are all much larger than the surveyed data (Table 4.20). The percent silt data overall, is close to 

the soil survey data but it is all lower as seen with negative values (Table 4.20). The clay data are 

all much smaller than the survey data as seen with the large negative values (Table 4.20). Texture 

data collected through this research differs significantly from survey data, in the sand and clay 

fractions especially.  

Table 4.20: Comparison of sampled data and soil survey data. 

Site ID 

Av

. S 

(1) 

Av

. Si 

(1) 

Av

. 

Cl 

(1) 

Av. 

SO

C 

(1) 

S 

(2

) 

Si 

(2

) 

Cl 

(2

) 

SO

C 

(2) 

S 

Dif

f 

Si 

Dif

f 

Cl 

Dif

f 

SO

C 

Diff 

Area of 

soil 

polygon

s 

(Ha) 

BZ07 79 18 2 3 37 36 27 4 42 -18 -25 0 1681 

T&O#11 66 26 8 5 51 32 17 3 15 -6 -9 2 1681 

T&O#12 57 35 8 4 51 32 17 3 6 3 -9 1 947 

Rod 61 31 8 5 51 32 17 3 10 -1 -9 2 947 

2361 91 8 1 2 60 25 15 3 31 -17 -14 0 947 

BR1 70 28 3 4 64 21 15 4 6 7 -12 0 291 

BZ03 75 20 5 5 35 30 35 4 40 -10 -30 1 428 

BZ02 76 18 6 5 35 30 35 4 41 -12 -29 1 392 

MDS1 81 12 7 8 35 30 35 4 46 -18 -28 4 392 

WCW_DM

1 

79 17 4 5 35 30 35 4 44 -13 -31 1 392 

BZ01 83 15 2 6 35 30 35 4 48 -15 -33 2 494 

BZ08 74 24 2 5 21 49 30 4 53 -25 -28 1 494 

BZ05 83 16 1 6 40 30 30 1 43 -14 -29 5 494 

BOBG1 A 77 20 3 5 40 30 30 1 37 -10 -27 4 161 

BZ06 A 78 21 1 4 37 36 27 4 41 -15 -26 1 2247 

BZ04 A 77 21 2 4 35 30 35 4 42 -9 -33 0 2247         
Av. 34 -11 -23 2 

 

Note: (1) is for data collected through this research and (2) is for the soil survey data for 

comparison. “Av.” is the average difference in % between the collected data and the survey data. 

“S” is for % sand, “Si” is for % silt, “Cl” is for % clay, and “Ha” is for Hectares.  
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 Mapping and analyzing the differences between sampled data and SOILGRID’s data  

reveals that percent sand is over-predicted relative to amounts of SOILGRID’s, with most values 

between -6 and 46%, which is a large spread between the data (Table 4.21 and Fig. 4.22). Silt 

differences reveal that predicted percent silt is mostly less than SOILGRID’s data, with most 

values between -32 and 0% (Table 4.21 and Fig. 4.23). Also, percent clay is predicted at lower 

values than SOILGRIDs with a majority of values between -14 and -2% (Table 4.21 and Fig. 

4.24), which is a smaller spread than sand and silt. Percent SOC predicted values show a narrow 

range of +/- 5% difference from SOILGRIDs data. SOC, therefore, is similar to SOILGRIDs data. 

The importance of these comparisons are discussed in the next chapter.  

Table 4.21: Comparison of sampled data versus SOILGRIDs data. 

Variable Type Sampled – SOILGRIDs 

Minimum 

Sampled – SOILGRIDs 

Maximum 

Sand -43 67 

Silt -50 51 

Clay -26 11 

SOC -21 39 

 

 
Figure 4.24: Map of the percent sand difference between sampled data and SOILGRIDs data.  
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Figure 4.25: Map of the percent silt difference between sampled data and SOILGRIDs data.  

 

 
Figure 4.26: Map of the percent clay difference between sampled data and SOILGRIDs data. 
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Figure 4.27: Map of the percent SOC difference between sampled data and SOILGRIDs data. 
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Chapter 5: Discussion and Conclusion 

5.1 Objective One: Soil Sampling and Laboratory Analysis  

 Soil information was gathered through random stratified sampling of 131 sites in the 

West Castle watershed. Soil lab results were collected through implementation of accepted lab 

methods, closely following methods in Soil Sampling and Methods of Analysis by Carter and 

Gregorich (2008). Soil texture and SOM were compared to independent commercial soil 

laboratories to ensure organic matter and textural laboratory methods were conducted accurately. 

This information has greatly improved our understanding of soils in the study area. Soil restrictive 

depth sampling resulted in an average of 74 cm with a minimum of 3 cm and a maximum of 182 

cm, and 50 % of the data deeper than 63 cm. This information exceeded pre-field operation 

expectations that the average soil restrictive depth would be approximately 50 cm, whereas solum 

depth met expectations with an average depth of 36 cm were deeper than expected. This is of 

great importance for water storage understanding because, in theory, deeper soils have the 

capacity to hold more water than shallower soils (Shukla, 2014, p. 95). No distinct spatial patterns 

are seen by viewing the data in relation to its spatial location alone. Further investigation of the 

spatial patterns by modelling soil data with linear regression allowed for large scale interpretation 

of spatial patterns.  

 Texture analyses for both A- and B-horizons were carried out for 173 sites, due to the 

combination of A and B horizons that were sampled throughout the 131 sampling sites. 

Descriptive statistics for the A horizon reveal a mean percent sand of 67.3, a minimum of 31.5%, 

a maximum of 97.6% and a 25th percentile of 56.0% (Table 4.1). These results suggest that the 

soils are predominantly sandy soils. The mean percent silt was determined to be 28.3%, with a 

minimum of 0%, a maximum of 62.3%, and a 75th percentile of 38.2%. Further, mean percent 

clay was 4.4 percent, with a minimum of 0%, a maximum of 17.9 percent, and 75th percentile of 

6.1%. These data all lead to the conclusion that the A horizon soils of the watershed are generally 

high in sand content and low in clay content, as is supported by the soil textural triangle (Figure 
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4.2). The question of whether the soil texture was dominantly sandy or silty is answered with this 

data as being dominantly sandy, confirming early preliminary field scouting activities where it 

was thought that the soils of the watershed would be highly sandy. We can conclude that the 

sandy soils would likely be well drained and may have a lower water holding capacity as opposed 

to soil with a larger clay fraction. 

 B horizon sand measurements were processed for 69 sites. Mean percent sand in the B 

horizon is 68.6%, with a minimum 28.9%, a maximum of 97.1%, and a 25th percentile of 58.8%. 

Silt mean percent was 26. 6%, with a minimum of 0 percent, a maximum of 63. 3%, and a 75th 

percentile of 37.1%. Mean clay content was 4.4%, with a minimum of 0%, a maximum of 17.9% 

percent, and a 75th percentile of 6.1%. Based on the data, it can be conclude that the B horizon is 

also highly sandy, with similar overall descriptive statistics results. From the A and B horizon 

data description it appears that the soil profiles are highly sandy in nature.  

 Assessing the descriptive statistics for OM results (Table 4.1), it is clear that there is more 

OM in the A horizon than in the B horizon because all descriptive statistics are greater for the A 

horizon. This suggests that the water holding capacity is increased due to the OM content, thereby 

slightly offsetting the poor capacity of the sandiness of the soils. It was thought that the OM 

content would be low in the mountainous areas, however, it was realized that the mountainous 

soils contain much OM. This could be due to the large areas of forests that accumulate much litter 

from deciduous and coniferous leafy and woody deposits. This material is deposited each fall and 

decomposes into more stable soil organic carbon elements. Arguably a large influence on the OM 

is the highly productive forest vegetation which is supported by a complex root system leading to 

large amounts of root break down into OM additions when roots decompose (Fisher et al., 2000, 

pp. 161-172). 
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5.2 Objective Two: Statistical Modelling and Spatial Patterns 

5.2.1 Spatial Autocorrelation Inferences  

 Investigation of Moran’s I spatial autocorrelation statistic revealed that several soil 

variables were significantly clustered (Table 4.3), therefore, further investigation of 

autocorrelation was considered to understand spatial patterns of the soil properties. Semi-

variogram analysis was conducted and it was found that all variables revealed weak spatial 

autocorrelation. Geostatistical analysis, such as kriging was not carried out due to these results. 

The preferential stratified random sampling method does not strongly support the use of 

geostatistical methods because sites were gathered without consideration of distance between 

sites. Also, the sampling method did not allow for complete study area coverage, thereby 

geostatistical analysis would not allow for complete analysis of the entire watershed. Organic 

matter in the A horizon and solum depth showed medium spatial dependency and should be 

highly considered for used in geostatistical analysis in future research that does consider sampling 

methods for geostatistical analysis from the start.  

5.2.2 Soil Restrictive Depth Regression Modelling: SLR 

 Implementation of SLR allowed for the calculation of largescale soil property predictions 

throughout the entire watershed. These predictions allow for the extrapolation of the measured 

soil properties to the scale of the watershed so that the data can be used on a large scale. Also, of 

great importance, predictions allow for the assessment of soil property spatial distribution and 

recognition of logical spatial relationships that are established and explainable by regression 

models.  

 Soil restrictive depth modelling using 17 environmental variables was chosen as the best 

model for further exploration. Statistical performance of the training and validation data sets 

(Table 4.10) reveals that the R2 value of the validation data, using the training data formula, was 

very low (0.006). Also, the MAE is extremely large (42.63 cm), twice as large as the training data 

(20.12 cm). The average standard error is similar between the data sets. Kuriakose et al. (2009) 
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found that land cover variables were better able to model soil restrictive depth than terrain 

variables, which is corroborated through the findings of this research project (Table 17). 

Kuriakose et al. (2009) were able to explain nearly half (R2 of 0.41) of the validation soil 

restrictive depth measurements with only land cover variables and just slightly more with all 

validation variables (R2 of 0.47). Regression modelling resulted in a lesser ability to explain soil 

restrictive depth using only vegetation variables of the validation set (0.031) and using all 

variables (0.002) compared to Kuriakose et al. (2009) who had high R2 validation values (0.44) 

using reveres stepwise regression. A conclusion drawn from these statistical results is that there is 

large inherent variability in the soil properties which the regression model has difficulty 

explaining. This is likely the result of the limited number of soil samples that could be sampled 

and analyzed during this research project. 

 The top ten variables of the chosen model with 17 variables reveals half of the variables 

important to predicting soil restrictive depth are vegetation variables. Depth of soil is a 

determining factor for the type and health of forest vegetation, especially tree type, that will grow 

in any particular area (Fisher et al., 2000). Soil depth controls moisture storage, rooting depth, 

anchoring of the plants, and supply/storage of nutrients (Fisher et al., 2000). Vegetation roots also 

contribute to soil properties. Tree roots hold soil together with the small roots and infection of 

fugal mycelia, which both release biochemicals into the soil. The roots, fungus, and biochemicals 

all hold together soil particles leading to better soil structure and decrease soil erosion (Fisher et 

al., 2000). Increased stability of soil through vegetation roots does allow soil to build up more 

steadily than soil that has less root mass. In the West Castle watershed, the vegetation variables 

are both a function of the soil depth and they aid in soil depth accumulation over time with 

addition of organic matter and breakdown of the soils. In the case of restrictive depth, the 

vegetation is strongly a result of soil properties. For example, one sample was gathered in Alpine 

larch vegetation growing in the second deepest soil restrictive depth location (169.5 cm). Due to 

the deep soil restrictive depth and only one sample taken within Alpine larch, the Alpine larch 



79 
   

became very important in the training regression, with the largest R2 of 0.054. Engelmann spruce 

and Grassland vegetation were found at many sites, so their appearance in the regression equation 

was expected and confirmed confidence in the equation(s). Vegetation heights of 3, 15, and 16 m 

correspond to shrub and tree species of many of the sites. Variables in the regression are logical 

and explainable in most cases, further investigation and validation would help improve 

understanding of variables and their relationships with soil properties. 

5.2.3 Soil Texture Regression Modelling 

 A horizon texture validation data shows low R2 values for all three sand, silt and clay 

models: Sand 1 (0.078), Silt 1 (0.006), and Clay 1 (0.020). Also, RMSE and MAE statistics are 

high for all three models. Texture validation statistics for the B-horizon texture models result in 

similar low R2 values: Sand 4 (0.016), Silt 3 (0.018), and Clay 3 (0.151). The models Sand 4 and 

Silt 3 RMSE and MAE validation statistics (from validation data predictions) are much larger 

than their training statistics, whereas Clay 3 RMSE and MAE validation statistics are only slightly 

larger than Clay 3 training statistics. B horizon model Clay 4 and 3 result in the highest and best 

R2 values and lowest RMSE and MAE of texture data.  These results lead to the same conclusion 

as for soil restrictive depth, that the models had troubles in predicting soil property variations, 

most attributable to the variation inherent in the watershed. This becomes apparent with the 

validation predictions. Highest confidence is placed on the B horizon Clay 4 regression model due 

to the best validation statistics. 

 Similar to the soil restrictive depth results, the variables entered into the stepwise 

regression models for A and B horizon textures are largely made of vegetation and land cover 

types. 80 to 100 % of the variables being categorical type variables. Therefore, similar to soil 

restrictive depth, vegetation and land cover are seen as indicators of soil texture more so than 

drivers. Between the A horizon models, Sand 1 and Silt 1 had 6 variables in common, whereas 

Clay 1 has only one variable in common with Sand 1 only.   Clay 1 shows middle slopes to be 

more important than upper slopes, which is logical in the sense that clay particles tend to 
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accumulate on lower and less steep slopes where water transports and accumulates clay particles 

(Breemen & Buurman, 1998). Between the B horizon models, Sand 3, Silt 3, and Clay 3 had three 

variables in common. Also, the models Sand 3 and Silt 3 of the B horizon share three variables in 

common. 

 Duchaufour (1998) explain that soil texture is highly influenced by water accumulation 

and movement of soil particles are a results of multiple weathering agents: water, oxygen, mineral 

acids, and organic acids. There are 4 main processes that each of the agents feed into: hydrolysis, 

oxidation, hydration, and dissolution. Texture is highly influenced by these processes, strongly 

dependent on parent material, and also influenced by biochemical reactions (Duchaufour, 1998). 

The movement of water is expected to transport small particles, especially clay particles, 

accumulating small particles in low areas (concave), non-steep areas and leaving behind larger 

particle in convex and steep slope areas (Ließ, Glaser, & Huwe, 2012).  

 Between A horizon models, Sand 1 and Silt 1, six of the top ten variables are similar but 

in a differing order: 71 to 100% crown closure, Balsam fir, agriculture land cover, 21 m 

vegetation height, aspect, Broadleaf land cover, and upper slopes. Vegetation Type 5 (Balsam fir) 

is one variable common between Sand 1 and Clay 1 models. The high crown closure is not 

surprising because the coefficient was negative, meaning higher crown closure would lead to less 

sand. Higher crown closure has a healthy root system, deep litter layer, much woody debris on the 

floor, and large vegetation area that all impede the movement of water down slope, holding finer 

soil particles in place. Also, the vegetation aids biochemical breakdown of soil particles and 

decreases evapotranspiration from the forest floor leading to higher soil moisture, aiding in the 

breakdown of soil particles. Balsam fir type vegetation has a large negative coefficient meaning 

that all other vegetation types will have larger percent sand. There are very few Balsam fir zones 

in the watershed, and only one sample was taken on Balsam fir vegetation type zone. Therefore, 

the importance of the variable was inflated and was included into the Sand 1 and Clay 1 models 

because of the statistical significance, rather than a strong causal relationship. A clear pattern of 
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sandy soils is evident in the agriculture land use zones of the study area, which is used in the sand 

and silt models logically with the large positive coefficient. The vegetation height of 21 m is 

similar to the crown closure logic, whereas broadleaf land cover has a negative coefficient which 

is not expected. It would be expected that broadleaf vegetation, which adds much organic matter 

to the soil, holds finer soil particles in place with its extensive roots, and therefore would be 

expected to hold much moisture, would aid in the breakdown and accumulation of finer soil 

particles resulting in a positive coefficient such as the crown closure and vegetation height 

variables.   

 B horizon models had 3 variables common between Sand 4, Silt 3 and Clay 3, whereas 

Sand 4 and Silt 3 share 6 variables in common (Fig. 4.16). Like the A horizon texture models, 

vegetation variables make up much of the top 10 variables. Vegetation height of 21 m, sandstone 

and mudstone (Bedrock 3), and aspect are all included in Sand 4 and Silt 3 in the same order, with 

opposite coefficient signs. Vegetation height of 21 m has a large negative coefficient in Sand 4, 

whereas Silt 3 has a large positive coefficient, meaning sand decreases whereas silt increases with 

vegetation reaching a height of 21 m. Bedrock 3 (Sandstone and mudstone) is the second variable 

in both Sand 4 and Silt 3. Sand 4 has a large negative coefficient and Silt 3 has a large positive 

coefficient, meaning that Bedrock 3 has less sand and more silt. Bedrock geology appears as a 

very important explanatory variable of Sand 4 and Silt 3 (Fig. 4.16). Sand has a small positive 

aspect coefficient, whereas silt has a small negative coefficient, meaning that both sand and silt 

percentages are somewhat related to aspect. Clay 3 model is comprised of all vegetation and land 

cover properties. Land cover 2 (Rock and Rubble) was added as the most important variable in 

the model with a positive coefficient, meaning clay will increase with rock and rubble land cover. 

This explanatory variable is not logical, as it would be expected that rock and rubble type land 

cover would not contain much clay and therefore not result in a positive relationship. Three of the 

four vegetation heights had negative coefficients and all are not easily interpretable (+21, -11, -12, 

and -23 m). The three negative coefficient heights suggest that large heights correspond to smaller 
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amounts of clay, contradictory to this is the vegetation height of 21 m which suggests that large 

height corresponds to more clay. Large vegetation heights would be logical in that large 

vegetation would have large root systems to hold soil in place and allow clay particles to build up. 

Vegetation type 17 (perennial crops), Landcover 10 (mixed), and Landcover 9 (broadleaf) most 

appropriately are explained by decreased erosion, decreased evaporation, and lower slopes that 

decrease loss of clay particles and aid in particle break down. Those variables have positive 

coefficients, so as those variables are encountered the clay content increases. Vegetation type 18 

(annual crops) had a negative coefficient, meaning as this variable was encountered it can be 

expected that clay content would be less, possibly due to loss by erosion or that chosen sample 

sites happened to have higher sand content. 

 Further research into the relationships of texture with explanatory variables would 

improve knowledge of the spatial distribution of soils in the West Castle watershed. 

5.2.4 Organic Matter and Solum Depth Modelling 

 Validation of the optimized OM and solum regression models results lead to the same 

conclusions as for the previously discussed soil properties. Validation statistics show poor 

performance, being attributed to the variation inherent in the soil properties gathered. Results 

indicate that the BOM 1 model performs better with much lower RMSE and MAE statistics, 

leading to more confidence in the model compared to the other two models.  

 Comparing the top ten variables of AOM 1 and BOM 2 reveals three of the same 

variables, Shale, siltstone, sandstone, and limestone bedrock geology, 6 to 30 % vegetation 

density, and glacio-fluvial surface geology deposits. Interestingly glacio-lacustrine was one 

variable common between the AOM 1 and Solum 1 models. Similar to all soil property models is 

the large number of categorical variables in the models. The models AOM 1 and BOM 1 use 

many geology and slope and landform position variables. Glacio-lacustrine surface geology 

deposits in the AOM 1 model is logical because grass, shrubland, and agricultural land cover 

types occur in the same areas, which lead to large amounts of organic matter accumulation. Also, 
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generally in glacio-lacustrine zones, the overland flow of water is slow due to low slope, which is 

supported by TWI inclusion in the model. TWI is included in the model with a negative 

coefficient which means that increased TWI indicates lower percent organic matter. This is not 

logical because some of the largest OM samples were taken in and near the glacio-lacustrine 

geology, so it would be thought that increased TWI would increase the OM content.  

 Four of the top ten variables in the Solum 1 model are vegetation variables and nine are 

categorical variables. Glacio-lacustrine bedrock geological deposits has a large positive 

coefficient, meaning deep solum depths are strongly related to glacio-lacustrine deposits. Glacio-

lacustrine deposits are formed through large accumulations of sediments that often allow for 

grassland growth. Grassy vegetation can lead to increased soil horizonation due to their high 

rooting density and depth. For example, Chernozemic soils often develop on Glacio-lacustrine 

deposits and can develop deep A and B horizons (Soil Classification Working Group, 1998). This 

bedrock geology type inclusion in the model is very logical and increases confidence for the 

model. Annual crops (Vegetation type 18) had a high positive coefficient and also follow the logic 

of Glacio-lacustrine deposits. Slope Position 3 (flat slopes) has a large negative coefficient in the 

model, meaning flat slopes will decrease the solum depth. This is contradictory, as it would be 

thought that flat slopes would allow for soil particle accumulation and vegetation that would 

produce deeper A and B horizons. The Vegetation Type 6 property (Trembling aspen) has a large 

positive coefficient in the model, which is logical because trembling aspen root systems are very 

extensive and much OM accumulates each year when leaves are dropped, all leading to large A 

and B horizons, especially the A horizon.  

 In conclusion, solum depth and organic matter models contain both logical and illogical 

explanatory variables. The relationships presented through the models can guide further 

investigations of organic matter and solum depth studies to confirm and better understand the 

relationships between these soil properties and environmental properties. 
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5.3 Objective Three: Comparison with Other Data 

5.3.1 Comparison of Sampled Data to Soil Survey and SOILGRIDs Data 

 Soil survey textural data and organic carbon data were compared to sampled data. Soil 

texture were able to be compared straight away with the survey data because they are both in 

percent by weight. Soil organic matter (SOM) collected through this research were scaled down 

by a theoretical amount of 54% to convert SOM to soil organic carbon (SOC). This theoretical 

scale manipulates the data and adds some uncertainty into the data. Yet, this was done so that the 

data could be compared to the survey data that was measured as SOC.  

Soil texture comparisons reveal that sand was much higher, silt was slightly lower, and 

clay was much lower than the survey data. These differences are most attributable to two reasons: 

1) the surveyed data were likely collected using different pre-treatments to remove OM and other 

substance for textural analysis and 2) the survey data may have used modelled expectations of soil 

texture in the area based on soil profiles similar to few pedons analyzed in the area. Point one was 

difficult to confirm, as the laboratory methodological information is not explicitly given in much 

of the documentation of the soil surveys. It is most likely the case that pre-treatments of the soil 

samples, grinding of soils, and removing OM and other compounds differ from this research. Too 

much grinding can lead to breakdown of rock into sand size particles and pre-treatments to 

remove soil compounds has been found to cause large differences when differing pre-treatments 

are used (Keller & Gee, 2006). Lab analysis of this research project included gridding of soils 

with a non-rubber tipped pestle, which could have inflated sand fractions due to rock breakdown. 

Also, the samples were heated to 600oc to remove OM from the samples, this pre-treatment may 

have not allowed for proper separation of soil particles leading to higher amounts of sand. These 

studies may not be properly comparable without further information of soil survey methods. For 

point 2 it was found that only a limited amount of pedons were investigated in or near the Beaver 

mines area (Agriculture and Agri-Food Canada, 2016), therefore the conclusion is that models 

were used to classify the texture of the soil units. This leads to the acceptance that point number 2 
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is the most likely culprit of the differences between the data sets. The textures in the survey data 

seem to be averages of the soil texture class given to the units, supporting the conclusion that 

model values were used. The conclusion drawn from all these points is that more confidence is 

placed on the texture data collected through the efforts of this thesis, because samples were 

actually analyzed in the lab and taken in many differing environmental and soil type locations. 

The sample locations and lab methods of this thesis work are known and explicitly presented to 

all, giving rise to more certainty, transparency, and understanding by those who are interested in 

this research. 

Comparison with SOILGRIDs data reveals that percent sand is mostly lower from 

SOILGRIDs, whereas silt and clay were mostly higher. One important critique of SOILGRIDs is 

that the percent sand, silt, and clay is concluded to be the same through all depth increments. In 

contrast, the data gathered by this thesis specifically gathered data for A and B horizons and 

found some differences between those horizons. The methods are slightly different between this 

research and SOILGRIDs, but it is concluded that SOILGRIDs data generalizes data to lower soil 

depths, whereas this research project does not. Measuring soil properties in depth increments does 

standardize the data collection and reporting, however, it blurs the understanding of individual 

horizons especially if the horizons are not measured. Similar to comparison with the survey data 

this thesis explicitly provides location and methodology, whereas this information is not readily 

accessible through SOILGRIDs. Therefore, more confidence is placed on the results presented 

through this thesis.  

Soil organic carbon between this research project, the soil survey, and SOILGRIDs data 

all reveal similar SOC measurements of +/-5 %. One interesting pattern recognized in comparison 

with SOILGRIDs was that SOILGRIDs data was much larger than this research data in the North 

East section of the study area, in the area covered by the soil survey data. Therefore, some of the 

SOILGRIDs data overestimates SOC. In light of these results, much confidence is placed in all 

three data sources, concluding that the small difference is not a coincidence and all of these data 



86 
   

sources are accurate. The greatest confidence is placed on the SOC data retrieved by this research 

project due to the small differences between the data sources.   

5.4 Applications 

 Soil properties researched through this research project could aid in modelling 

hydrological responses resulting from climate changes, specifically where physical models use 

soil data. The ACRU agro-hydrological modelling system is one such model that uses soil 

information. Soil information is highly important in the ACRU model due to the multi-layer soil 

water budget module (Aduah, Jewitt, & Toucher, 2017). In reviewing some papers that use the 

ACRU model it was recognized that soil properties are often lacking in study areas, and when soil 

properties were lacking default or inferred values from proxies were used (Aduah et al., 2017; 

Warburton, Schulze, & Jewitt, 2010). Having data that was sampled and measured in the area can 

help to accept or reject the soil data produced through proxy and default data as being near the 

sampled data or not. Soil data derived through this thesis could be used to model hydrological 

responses and the model could be compared to models using soil data derived from proxies. In the 

end, hydrological modelling could be improved either by confirming models that have been made 

already with limited soil data or by making new models with the surveyed soil information. 

Kienzle et al. (2012) and Bonifacio (2016) suggest that improved soil information could increase 

credibility of ACRU model outputs, strengthening confidence that the soil data of this thesis could 

aid in hydrological modelling efforts in the West Castle watershed.  

 Having gathered soil information for the mountainous region, the data could help to 

inform land cover change research. As described in Chapter 2, climate induced land cover change 

research could benefit from soil information because soil is an important factor in determining 

suitable locations for vegetation to grow (Zolkos et al., 2015). Soil moisture, soil temperature, and 

soil nutrients are explained as being important properties that aid tree growth (Butler, Malanson, 

Walsh, & Fagre, 2007). Geomorphic variables (Macias-Fauria & Johnson, 2013), on their own or 

coupled with soil property data, that influence these soil properties are important to understanding 
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forest habitat changes. Soil texture and depth properties could aid in understanding soil moisture 

and temperature potential that influences vegetation movement/position. For research conducted 

in the West Castle watershed, there have not been sufficient soil property data to aid in 

understanding vegetation movement.  McCaffrey (2018) studied the changing of alpine treeline 

ecotone in the West Castle watershed and used CTI (compound topographic index) as a proxy for 

soil accumulation, which has also been used by other studies. Having soil depth information could 

be used in place of or in tandem with CTI, directly providing soil information that was not 

available. All of these points mean that the soil information gathered for the West Castle 

watershed could be very important in the study of forest vegetation changes occurring due to 

climatic changes.  

5.5 Future Research Considerations 

 Future research of soil properties in the West Castle watershed would enhance the 

understanding of the spatial distribution of soil properties. Due to the scope of this research 

project soil pH, hydraulic conductivity, CEC and many other soil properties were not analyzed. 

Also, many environmental variables were not taken into consideration in the modelling processes: 

distance to stream, rainfall, temperature, and NDVI are just a few. Therefore, other soil and 

environmental properties could be analyzed to increase our understanding of the watershed. In 

pointing those properties out, it should also be recognized that including too many properties in a 

study at once increases the complexity of field operational constraints. Focus could be placed on 

the properties analyzed in this study to further improve our understanding of those properties. 

Three main consideration of soil property research in mountainous regions are 

recommended: 1) sampling environmental variables not strongly covered by this study; 2) focus 

on vegetation type, height, and density for sampling and statistical analysis; and 3) a more 

patterned sampling approach could be adopted for the effective implementation of geostatistical 

and other modelling techniques.  
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Some environmental properties were only sampled a couple of times. Larch vegetation 

type, found in high elevations, is one example that would be important to sample in other 

locations (a Larch stand is known to be on the East slope of Syncline Mountain). Sampling in 

another Larch forest would allow for the investigation into whether or not very deep soil profiles 

do indeed form due to Larch vegetation or if it was an anomaly due to other forces. This would 

improve understanding of the relationship of restrictive depth and solum depth to Larch 

vegetation. Balsam fir vegetation types, higher elevations, and steeper slopes could also be 

sampled more to improve understanding of soil properties and their environmental relationships. 

Other areas could be considered for sampling due to the results of this research project. 

Vegetation properties should be highly considered for stratifying a sampling regime due 

to the findings that suggest vegetation properties are highly important proxies for soil property 

occurrence in the watershed. Also, landform position, surface geology, and bedrock geology were 

important in models and should be used for stratifying soil mapping units. Categorical variables in 

general were highly important in all of the models, and, therefore, it is recommended that 

statistical analysis that may be better able to use categorical variables should be considered. 

Classification and regression trees could be one method to be considered. 

Consideration would be placed on the use of geostatistical and other spatial modelling 

methods for extrapolating soil properties in the study area. For geostatistical methods to be 

utilized throughout the watershed, a patterned sampling regime would need to be implemented. A 

Latin hypercube, grid stratified random sampling, or more rigorous stratified random sampling 

should be considered. In this study, a stratified random preferential sampling regime was used and 

this did not allow for total spatial coverage when using geostatistical methods, and may have 

induced much bias into the semivariogram models. Diggle et al. (2010) conclude that preferential 

sampling design added severe bias attributable to reduced range of measurements, and that 

preferential sampling can lead to misleading inferences. These conclusions are relevant for other 

statistical methods too. A lattice type sampling regime with additional samples taken in regions of 
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extreme conditions (very steep slopes for example) is concluded to be effective (Diggle et al., 

2010). This would allow for representative sampling of the full spatial extent of the watershed. 

Issues of accessibility would still be present, which guided this thesis. A more sophisticated 

sampling regime that increases the effectiveness of preferential sampling (Clifford et al., 2012) 

and/or incorporates operational constraints into other sampling strategies (Roudier et al., 2012) 

could help improve efficient and effective sampling strategies in mountainous regions.  
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Appendix A: Results to Support Methodological Decisions. 

Table A.1: ANOVA results for percent Sand. 

 Sum of 

Squares 

Df Mean 

Square 

F P  

Between 

Groups 

14.19 2 7.10  0.65  0.54 

Within 

Groups 

3, 548. 91 5 709.78   

Totala 17, 3671.58 17    
aTotal is the total sum of squares for all 18 samples.  

 

Table A.2: ANOVA results for percent Silt. 

 Sum of 

Squares 

Df Mean 

Square 

F P  

Between 

Groups 

3.42 2 1.71 0.18 0.84 

Within 

Groups 

1, 166.47 5 233.29   

Total 1, 265.61 17    

 

Table A.3: ANOVA results for percent Clay. 

 Sum of 

Squares 

Df Mean 

Square 

F P  

Between 

Groups 

16.19 2 8.09 2.08 0.18 

Within 

Groups 

2, 258.89 5 451.78   

Total 2, 313.97 17    

 

Table A.4: ANOVA results for percent Organic Matter. 

 Sum of 

Squares 

Df Mean 

Square 

F P  

Between 

Groups 

16.66 2 8.33 3.87 0.057 

Within 

Groups 

248.19 5 49.64   

Total 286.38 17    
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Figure A.1: Q-Q plots of texture and organic matter values encompassing data from all three 

labs. 

 

Appendix B: Categorical Variable Description and Descriptive Plots. 

Table B.1: Categorical variable descriptions. 

Independent 

variables 

Class 

Number 

Class Name 

Landform 

Position 

1 Canyons, deeply incised streams 

 2 Midslope drainages, shallow valleys 

 3 Upland drainages, headwaters 

 4 U-shaped valleys 

 5 Plains 

 6 Open slopes 

 7 Upper slopes, mesas 

 8 Local ridges, hills in valleys 

 9 Midslope ridges, small hills in plains 

 10 Mountain tops, high ridges 

 

Slope 

Position 

1 Valley 

 2 Lower slope 

 3 Flat slope 

 4 Middle slope 

 5 Upper slope 

 6 Ridge 

Surficial 

Geology 

1 Fluvial Deposits 

 2 Colluvial Deposits 

 3 Glaciofluvial Deposits 

 4 Glaciolacustrine Deposits 
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Table B.1:  Continued.  

 5 Moraine 

 6 Bedrock 

 

Bedrock 

Geology 

1 Basalt 

 2 Limestone, shale, dolomite, and 

siltstone 

 3 Sandstone and mudstone 

 4 Limestone, dolostone, and shale 

 5 Dolomite and siltstone 

 6 Shale, siltstone, and sandstone 

 7 Shale, siltstone, sandstone, and 

limestone 

 8 Argillite, limestone, and dolostone 

 9 Sandstone and shale 

 10 Argillite, siltstone, sandstone, and 

limestone 

 

Land Cover 

Type 

1 Water 

 2 Rock/Rubble 

 3 Exposed Land 

 4 Developed 

 5 Shrubland 

 6 Grassland 

 7 Agriculture 

 8 Coniferous 

 9 Broadleaf 

 10 Mixed 

 

Vegetation 

Density 

1 0 to 5 % 

 2 6 to 30 % 

 3 31 to 50 % 

 4 51 to 70 % 

 5 71 to 100 % 

 

Vegetation 

Type 

1 Other 

 2 Lodgepole pine 

 3 Alpine fir 

 4 White spruce 

Vegetation 

Type 
5 

Balsam fir 

 5 Balsam fir 

 6 Trembling aspen 

 7 Balsam poplar 

 8 Douglas fir 

 9 Pine 

 10 Engelmann spruce 
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Table B.1: Continued.  

 11 Black spruce 

 12 Alpine larch 

 13 Limber pine 

 14 Closed Shrubland 

 15 Open Shrubland 

 16 Herbaceous Grassland 

 17 Perennial forage crops 

 18 Annual crops 

 19 Industrial 

 20 Infrastructure 

 21 Herbaceous Forbs 

 22 Anthro-SubDiv-Rec 

 23 Surface Mines 

 24 Anthro-Veg+lines 

 25 Anthro-Veg+wells 

 26 Closed Shrubland/Rough Pasture 

 27 Anthro-Gravel Pits 

 28 Bryophytes 

 29 Farmsteads 

 

Vegetation 

Height (m) 

0 to 28 Categorized in 1 m height classes 

 34 Height class on its own 

 
 Figure B.1: A horizon soil variable histograms to view the distribution of samples. 
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Figure B.2: B horizon soil variable histograms to view the distribution of samples. 
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Figure B.3: Scatter plots of A horizon percent sand (on the y-axis) and all the continuous 

environmental variables on (the x-axis). TWI (R2 =0.0159), Elevation (R2 =0.0109), Slope (R2 

=0.0020), Aspect (R2 =0.0088), Solar Radiation (R2 =0.0019), Curvature (R2 =0.0069), Profile 

Curvature (R2 =0.0181), Planform Curvature (R2 =0.0008), Specific Catchment Area (R2 

=0.0024), and Contributing Area (R2 =0.0325). 
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Figure B.4: Scatter plots of A horizon percent silt (on the y-axis) and all the continuous 

environmental variables on (the x-axis). TWI (R2 =0.0307), Elevation (R2 =0.01307), Slope (R2 

=0.01050), Aspect (R2 =0.00633), Solar Radiation (R2 =0.00219), Curvature (R2 =0.00858), 

Profile Curvature (R2 =0.01963), Planform Curvature (R2 =0.00139), Specific Catchment Area 

(R2 =0.00166), and Contributing Area (R2 =0.03194). 
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Figure B.5: Scatter plots of A horizon percent clay (on the y-axis) and all the continuous 

environmental variables on (the x-axis). TWI (R2 =0.0238), Elevation (R2 =2.5604e-08), Slope 

(R2 =0.0488), Aspect (R2 =0.0092), Solar Radiation (R2 =1.9180e-06), Curvature (R2 =3.4066e-

05), Profile Curvature (R2 =0.0008), Planform Curvature (R2 =0.0007), Specific Catchment Area 

(R2 =0.0028), and Contributing Area (R2 =0.0059). 
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Figure B.6: Scatter plots of B horizon percent sand (on the y-axis) and all the continuous 

environmental variables on (the x-axis). TWI (R2 =0.0159), Elevation (R2 =0.0109), Slope (R2 

=0.0020), Aspect (R2 =0.0088), Solar Radiation (R2 =0.0019), Curvature (R2 =0.0069), Profile 

Curvature (R2 =0.0181), Planform Curvature (R2 =0.0008), Specific Catchment Area (R2 

=0.0024), and Contributing Area (R2 =0.0325). 
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Figure B.7: Scatter plots of B horizon percent silt (on the y-axis) and all the continuous 

environmental variables on (the x-axis). TWI (R2 =0.0307), Elevation (R2 =0.0131), Slope (R2 

=0.0105), Aspect (R2 =0.0063), Solar Radiation (R2 =0.0022), Curvature (R2 =0.0086), Profile 

Curvature (R2 =0.0196), Planform Curvature (R2 =0.0014), Specific Catchment Area (R2 

=0.0017), and Contributing Area (R2 =0.0319). 
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Figure B.8: Scatter plots of B horizon percent clay (on the y-axis) and all the continuous 

environmental variables on (the x-axis). TWI (R2 =0.0238), Elevation (R2 =2.5604e-08), Slope 

(R2 =0.0488), Aspect (R2 =0.0092), Solar Radiation (R2 =1.9180e-06), Curvature (R2 =3.4066e-

05), Profile Curvature (R2 =0.0008), Planform Curvature (R2 =0.0007), Specific Catchment Area 

(R2 =0.0028), and Contributing Area (R2 =0.0059). 
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Figure B.9: Scatter plots of A horizon percent organic matter (on the y-axis) and all the 

continuous environmental variables on (the x-axis). TWI (R2 =0.0027), Elevation (R2 =0.0199), 

Slope (R2 =0.0097), Aspect (R2 =0.0065), Solar Radiation (R2 =0.0083), Curvature (R2 

=0.0028), Profile Curvature (R2 =0.0028), Planform Curvature (R2 =0.0016), Specific Catchment 

Area (R2 =0.0257), and Contributing Area (R2 =0.0103). 
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Figure B.10: Scatter plots of B horizon percent organic matter (on the y-axis) and all the 

continuous environmental variables on (the x-axis). TWI (R2 =0.0016), Elevation (R2 =0.0300), 

Slope (R2 =0.0002), Aspect (R2 =0.0805), Solar Radiation (R2 =0.0113), Curvature (R2 

=0.0904), Profile Curvature (R2 =0.0022), Planform Curvature (R2 =0.0021), Specific Catchment 

Area (R2 =0.0916), and Contributing Area (R2 =0.2014). 
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Figure B.11: Scatter plots of solum depth (cm) (on the y-axis) and all the continuous 

environmental variables on (the x-axis). TWI (R2 = 0.0502), Elevation (R2 = 0.0970), Slope (R2 

= 0.1110), Aspect (R2 = 0.0753), Solar Radiation (R2 = 0.0006), Curvature (R2 = 0.0013), Profile 

Curvature (R2 = 0.0021), Planform Curvature (R2 = 0.0004), Specific Catchment Area (R2 = 

0.0005), and Contributing Area (R2 = 0.0035). 
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Figure B.12:  Boxplots of soil restrictive depth (cm) on the y-axis and the other variables on the 

x-axis. 

 
Figure B.13: Boxplots of A horizon percent sand texture on the y-axis and the other variables on 

the x-axis. 

 



115 
   

 
Figure B.14: Boxplots of A horizon percent silt texture on the y-axis and the other variables on 

the x-axis. 

 
Figure B.15: Boxplots of A horizon percent clay texture on the y-axis and the other variables on 

the x-axis. 
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Figure B.16: Boxplots of B horizon percent sand texture on the y-axis and the other variables on 

the x-axis. 

 

Figure B.17: Boxplots of B horizon percent silt on the y-axis and the other variables on the x-

axis. 
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Figure B.18: Boxplots of B horizon percent clay on the y-axis and the other variables on the x-

axis. 

 
Figure B.19: Boxplots of A horizon percent OM on the y-axis and the other variables on the x-

axis. 
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Figure B.20: Boxplots of B horizon percent OM on the y-axis and the other variables on the x-

axis. 

 
Figure B.21: Boxplots of solum depth (cm) on the y-axis and the other variables on the x-axis. 

 


