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Our main aim in this thesis is to study and search for orthogonal matrices which have 
a certain kind of block structure. The most desirable class of matrices for our purpose 
are orthogonal designs constructible from 16 circulant matrices. In studying these ma­
trices, we show that the OD(l2; 1,1,1, 9) is the only orthogonal design constructible 
from 16 circulant matrices of type OD(4n; 1,1, l , 4n — 3), whenever n > 1 is an odd 
integer. We then use an exhaustive search to show that the only orthogonal design con­
structible from 16 circulant matrices of order 12 on 4 variables is the OD(12; 1 ,1,1, 9). 
It is known that by using of T-matrices and orthogonal designs constructible from 16 
circulant matrices one can produce an infinite family of orthogonal designs. To com­
plement our studies we reproduce an important recent construction of T-matrices by 
Xia and Xia. 

We then turn our attention to the applications of orthogonal matrices. In some 
recent works productive regular Hadamard matrices are used to construct many new 
infinite families of symmetric designs. We show that for each integer n for which 4n is 
the order of a Hadamard matrix and 8n 2 — 1 is a prime, there is a productive regular 
Hadamard matrix of order 16n 2 (8n 2 — l ) 2 . As a corollary, we get many new infinite 
classes of symmetric designs whenever either of 4n(8n 2 — 1) — 1, 4n(8n 2 — 1) + 1 is a 
prime power. We also review some other constructions of productive regular Hadamard 
matrices which are related to our work. 
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Chapter 1 

Introduction and statements of 
results 

Definit ion 1.1 A Hadamard matrix H of order n is an n x n matrix with ± 1 entries 

such that: HHl = nln, where I n is the identity matrix of order n. 

The order of a Hadamard matrix must be 1, 2 or a multiple of 4. The conjecture that 
all Hadamard matrices of order 4n exist for every positive integer n is still an important 
open problem. One way to generalise Hadamard matrices is by means of orthogonal 
designs. 

Definition 1.2 An orthogonal design A of order n and type u\, ...,ut, where each Ui 

is a positive integer, denoted OD(n; u \ , u t ) , is an n x n matrix with entries from 

{0, ± X i , ± x t } (the Xi commuting indeterminates) satisfying 

Despite extensive work on the existence and properties of orthogonal designs, not 
many significant results are known about these matrices. One very useful constructive 
method for orthogonal designs is by means of T-matrices. 

Definition 1.3 Four type-1 {0, ± 1 } matrices T\, T 2 ) T 3 ; and T 4 of order n are T-

matrices if they satisfy the following conditions: 
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1. Ti DTj — 0 where i ̂  j ; 

2- Eli \n = J; 

By combining orthogonal designs constructible from 16 circulant matrices with T -
matrices one can construct a large family of very useful orthogonal designs. Although 
there is an orthogonal design of order 20 constructible from 16 circulant matrices, 
nothing is known about the existence of such matrices of order 12. In chapter 2 we 
will show that OD(12; 1,1,1, 9) and OD(A; 1,1,1,1) are the only orthogonal designs 
of type OD(An; 1,1,1, An — 3) constructible from 16 circulant matrices when n is odd. 
We also use an exhaustive search to show that OD(12; 1,1,1, 9) is the only orthogonal 
design of order 12 on 4 variables constructible from 16 circulant matrices. 

The existence of amicable set of T-matrices has proven to be instrumental in the 
construction of orthogonal designs. 

Definition 1.4 The T-matrices Ti, T2, T3, andT^ of order n are amicable T-matrices 
if they satisfy the amicability condition: 

T{T\ - T2T{ + T{T\ - T{P% = 0. 

(Note that there is no specific order for TjS, and we can rename them to satisfy the 
amicability condition in this order.) 

In part of chapter 2 we show that amicable T-matrices of odd order do not exist. We 
then conclude the chapter by a very important recent result concerning finite fields 
[17]. Our hope is to develop and use this result in the future to produce some positive 
results on the existence of T-matrices. 

We devote the remaining chapters to the applications of Hadamard matrices in the 
construction of symmetric designs. 

Definition 1.5 A symmetric (v,k, A)-design is an incidence system (P, B) in which 
P = {pi,P2, • • • ,Pv} is a set of v points and B = {bi,... ,bv} is a set of v blocks, each 
block being a k-subset of P such that any two points of P are incident with exactly A 
blocks of B. 
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Symmetric designs can be expressed by their incidence matrices. 

Definit ion 1.6 The incidence matrix of a symmetric (v, k, \)-design is avxv matrix 

A — [dij] such that 

J 1 if Pi E bj 

I 0 otherwise. 

A (0, l ) -mat r ix A is an incidence matrix of a symmetric (v, k, A) design if and only if 

AA* = (jfc - A)/ + A J. 

In this thesis we only study symmetric designs constructed from productive regular 
Hadamard matrices. The class of productive Hadamard matrices was denned by Yury 
Ionin in [4]. 

A regular Hadamard matrix is a Hadamard matrix with constant row sum. 

Definit ion 1.7 A regular Hadamard matrix H with row sum 2h is productive if there 

is a set H of matrices with row sum 2h and a cyclic group G =< 5 > where 5 : H —> Ti 

is a bijection, such that 

1. HeH; 

2. For any H l : H 2 € H, (SHl)(SH2)t = HXH\; 

3. \G\ = 4 | / i | ; 

4- T,aeGaH = 2W\J-

Productive Hadamard matrices are normally used in Balanced Generalised Weighing 
matrices over cyclic groups. 

Definition 1.8 Let G be a multiplicatively written group. A balanced generalised 
weighing matrix BGW(v,k,X) is a matrix W — [wij] of order v with Wij € G U {0} 
such that each row and each column ofW contains exactly k non-zero entries and such 

that for any h i, the multiset {w^jW^1 : 1 < j < v, whj ^ 0, Wij ^ 0} contains exactly 

X/\G\ copies of every element ofG. 
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A large class of balanced generalised weighing matrices of the type 

BGW((qm-l)/(q-l),q> ,m—l 

over a cyclic group G, where q is a prime power, m is a positive integer and the order 
of G divides 5 — 1, is known to exist. 
A classical construction due to Ionin is as follows: 

T h e o r e m 1.9 / / there is a productive regular Hadamard matrix H with row sum 2h 

and if q = (2h — l ) 2 is a prime power then for any positive integer m there is a 

symmetric design with parameters: 

Bush-type Hadamard matrices are all known to be productive. 

Definit ion 1.10 A regular Hadamard matrix H = [Htj\ of order An2 where are 

blocks of order 2n is Bush-type if Ha = J2n a-nd HijJ2n — J2nHij — 0, for i ^ j , 

1 < i,j < 2n. 

The class of Bush-type Hadamard matrices is the largest class of productive regular 
Hadamard matrices that is known to exist. Indeed, it is known that there is a Bush-
type Hadamard matrix of order 16n2 for all n for which there is a Hadamard matrix 
of order An. 

In chapter 4 we construct a new class of regular Hadamard matrices by combining 
the class of Mathon matrices with Bush-type Hadamard matrices and then construct 
a new family of productive regular Hadamard matrices. 

Our main results in chapter 4 are as follows. 

Theorem 1.11 / / there is a Hadamard matrix of order An and m = 8n 2 — 1 is prime 

then there is a productive regular Hadamard matrix of order lQn2m2. 

Corollary 1.12 If m — 8n 2 — 1 is prime and if q — (Anm — l ) 2 is a prime power then 

there is a symmetric design with parameters: 

(16n 2 m 2 (y + + ••• + ! ) , (8n 2 m 2 - 2nm)qt, (An2m2 - 2nm)qt) 

A 



for any positive integer t. Likewise if q — (Anm + l ) 2 is a prime power then there is a 

symmetric design with parameters: 

(lQn2m2(qt + q^1 + • • • + 1), ( 8 n 2 m 2 + 2nm)qt, ( 4 n 2 m 2 + 2nm)qt), 

for any positive integer t. 
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Chapter 2 

Orthogonal matrices 

2 . 1 Orthogonal designs 
This chapter will be devoted to orthogonal matrices and more specifically to orthogonal 
designs. We begin with the definition of two important classes of matrices. We will 
follow Geramita and Seberry [3] for the following definition and lemma: 

Definit ion 2.1 Let G be an additive abelian group of order t, order the elements of G 

as z\,... ,zt and let $ and $ be two functions from G into a commutative ring. We 

define two matrices M — [my] and N = [n^] of order t as follows: 

M and N are called type-1 and type-2 matrices respectively on the group G. 

L e m m a 2.2 If X and Y are type-1 matrices and Z is a type-2 matrix on an abelian 

group G of order n with elements ordered z\,..., zn, and R = [ r y ] is defined as: 

niij — $ ( Z J — Zi) and n y = $ ( Z J + Zi). 

1 if Zi + Zj = 0. 
0 otherwise 

then: 

• XY = YX; 

• Zl = Z; 
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• XZ* = ZX*; 

• X1 is a type-1 matrix; 

• X + Y and X — Y are type-1 matrices; 

• XR is a type-2 matrix and ZR is a type-1 matrix. 

Definit ion 2.3 Matrices A andC of order n are circulant and back-circulant matrices 

if they are type-1 and type-2 matrices, respectively, on the cyclic group Zn. 

Example 1. A is a circulant matrix of order 5 and C is a back circulant matrix of 
order 5, where 

A = 

a b c d e 

e a b c d 

d e a b c 

c d e a b 

b c d e a 

C 

a b c d e 

b c d e a 

c d e a b 

d e a b c 

e a b c d 

• 

Definition 2.4 Four type-1 {0, ±1} matrices Tx, T 2 , T$, and T 4 of order n are T-

matrices if they satisfy the following conditions: 

(i) Ti n Tj = 0; 

(ii) Zi\Ti\ = J; 

(iii) EiTiV = nI. 

Example 2. Matrices T\, T 2 , T 3 , and T 4 are circulant T-matrices of order 3. 

" 1 0 0 " " 0 1 0 " " 0 0 1 " " 0 0 0 " 
Tt = 0 1 0 , T 2 = 0 0 1 , T 3 = 1 0 0 , T 4 = 0 0 0 

0 0 1 1 0 0 0 1 0 0 0 0 

• 
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Definition 2.5 An orthogonal design of order n and type s i , s i , where Si are positive 

integers denoted OD(n; S i , s j ) , is annxn matrix A with entries from {0, ± £ i , . . . . ± x ; } 

fi/ie Xj commuting indeterminates) satisfying 

i 

AAf = {Y^siX

2)In. 
i=i 

There are several ways to construct orthogonal designs; one way is to use four circulant 
or type-1 matrices in the Goethals-Seidel array as follows. 

Theorem 2.6 Suppose there exist four circulant (type-1) matrices A, B, C, and D of 

order n with entries from the set {0, ± x i , . . . , ± x t } and suppose further that 

t 

AA* + BBl + CCl + DD1 = Y^ ^ \ l n 

i=i 

Let R be the back-diagonal (equivalent type-2) matrix of order n. Then 

( A BR CR DR \ 

-BR A D*R -ClR 

-CR —DlR A BfR 

\ -DR ClR -BfR A ) 

is an OD(An; s i , s t ) . 

A method to produce the proper matrices A , B, C, and D to be plugged into a 
Goethals-Seidel array is to use T-matrices and orthogonal designs constructible from 
16 circulant matrices. Turyn [15], was the first to use T-matrices and orthogonal 
designs constructible from 16 circulant blocks to construct new orthogonal designs. 

Theorem 2.7 If there is an OD(As\ui,un) constructible from 16 circulant s x s 

blocks in variables X\,...,xn and there are T-matrices of order t, then there is an 

OD(4st; tu\, ...,tun). 

Proof Let 

p = 

Pu P12 Pl3 Pu 

P21 P22 P23 P24 

P31 P32 P33 P34 

Pa P42 P43 P44 
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be an OP(47i;ui , ...,un) constructible from 16 circulant matrices P,j, 1 < i, j < 4. We 
have 

PilPjl + Pi2^j2 + PtiPjS + PiiPj4 = 

Suppose that Ti, T 2 , T 3 , and T 4 are T-matrices of order t. Let 

A = Ti ® P n + T 2 ® P 2 1 + T 3 ® P 3 i + T 4 ® P 4 i , 

P = Tj ® P 1 2 + T 2 ® P 2 2 + T 3 <g> P 3 2 + T 4 ® P 4 2 , 

C = Ti ® P 1 3 + T 2 ® P 2 3 + T 3 ® P 3 3 + T 4 ® P 4 3 , 

D = T 1 ® P U + T2® P 2 4 + T 3 ® P 3 4 + T 4 ® P 4 4 . 

It is easy to see that 

n 

AAl + P P ' + CC* + P P 1 = t u k 4 h t , 

fc=i 

and A, P , C, and P are type-1 matrices. Thus they can be plugged into a Goethals-
Seidel array to give an OD(Ast; tu\, ...,tun). • 

Despite the fact that there is a Welch array of order 20 constructible from 16 circulant 
matrices and an Ono-Sawade-Yumamoto array of order 36 constructible from 16 block 
circulant matrices [14], nothing similar is known for order 12. We will first study and 
settle the case for order 12. 

E n 2 • 

fc=l uk%ki 1 — J'} 
0, i + j . 
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The following orthogonal design is an Q.D(12; 1,1,1, 9) constructible from 16 circu­
lant matrices. 

V V V a V V b V V c V V 

V V V V a V V b V Tj c V 
f] V V V V a V V b V V c 

a V V V V V c V V b V V 

V a V V V V V c V V b V 

V V a V V V V V c V V b 

b V V c V V V V V a V V 

V b V V c V V V V V a V 

V b V V c V V V V V a 

c 

V 

V 

b 

V 

a 

V 

V 

V V 

rj Tj 

V 

V 

rj rj 

We will first show that OD(12; 1,1,1,9) and the trivial 0 P ( 4 ; 1,1,1,1) are the only or­
thogonal designs of type 0 P ( 4 n ; 1,1,1, An — 3) constructible from 16 circulant matrices 
whenever n is an odd number. We will then show, by an exhaustive computer search, 
that this OD(12; 1,1,1,9) is the only orthogonal design in four variables constructible 
from 16 circulant matrices. 

Theorem 2.8 / / n is an odd number then 0D(12; 1,1,1, 9) and OD(A; 1,1,1,1) are 

the only orthogonal designs of the form OD(An; 1,1, l , 4n — 3) constructible from 16 

circulant matrices. 

Proof Let 

P 

( Pu 

P21 

Pn 

\ P 4 i 

P12 

P22 

P32 

P42 

Pn 

P23 

P33 

P43 

Pu \ 

P24 

P34 

PAA J 

(2.2) 

be an OD(An; 1,1,1, 4n — 3) constructible from 16 circulant matrices Py, 1 < i,j < 4. 
Let a, b, c be the variables that appear once in each row (and column) of P and let rj 
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be the variable that appears 4n — 3 times in each row. We have 

2 PijPti = (a2 + b2 + c2 + (An - 3)r? 2)/, 1 < i < A (2.3) 
1<7<4 

and 
(2.4) 

l<j<4 

Since P y is a circulant matrix satisfying (2.3), each of a, b, or c can appear only in 
one block P^ . For convenience we will denote the block containing x by Xi, and call 
it rc-type, for x € {a, b, c}. The block whose entries are only ±77 will be called 77-type. 
So the matrix P in the new notation is of the form: 

where each A i y E>i, d, Mi is an a, b, c, 77-type matrix respectively. Since A { , B i ; and d 
are circulant matrices, by shifting the rows or columns we can always put the variables 
a, b, and c on the diagonal of the corresponding matrix and then the matrix will be 
called a diagonal matrix. By column permutations on block columns 2, 3, and 4 of the 
matrix P we can make A x , P i , and Cx diagonal matrices. By row permutations on 
block rows 2, 3, and 4 of P we can make B 2 , A 3 , and A 4 diagonal matrices and then 
by column shifts on block row 1 make A 2 a diagonal matrix. It is easy to see that the 
fact that B i , C\, and B 2 being diagonal matrices together with condition (2.4) implies 
that C2 is a diagonal matrix. By the same reasoning, C 3 , P3, P4, and C 4 are diagonal 
matrices. Because A \ , P i , and C\ are diagonal matrices we have: 

Ml = M , A l = A = aI + A',Bx = B = bI + B', and d = C = cl + C 

where A ' , B', and C are {0,±T?} matrices. Then by (2.3) we have: 

MM' + (al + A')(al + A'') + (bi + B')(bl + Bn) + (cl + C')(cl + C*) 

= MM' + A'An + P ' P " + C'C1 + (a2 + b2 + c2)I 

+a(A' + A'1) + b(B' + P'*) + c(C + Cn) 

= ( a 2 + b2 + c2 + (An - 3)772)/, 

P = 

/ Mi Ax P i d \ 

A2 -M2 - d B2 

- B 3 - d M3 A3 

\ d - B 4 A4 -Mi J 
(2.5) 

11 



so we get A ! T = -A', BN = —B', and C* =-C and also 

MM* - A ' 2 - B'2 - C'2 = (4n - 3)r? 2/. (2.6) 

As A 2 , B2, and C2 are diagonal matrices we can write A 2 = AL + A ' 2 , B2 = BL + B'2, 
and C2 = CL + C'2 where A ' 2 , B'2, and C2 are { 0 , ± 7 7 } matrices. Considering block rows 
1 and 2, by (2.4) we can write 

MA\-AML

2-BCL + CBL = M(AL + A2) - (AL + A')M2 

-{BI + B')(CL + C'I) + (CL + C')(BL + B%) 

= a (M - M 2 ) + MA2 - A 'M 2 

+6(C" - C'I) + C(B'L - B') - B'C'I + C'B'L 

= 0 . (2.7) 

Thus M 2 = M\ B'2 = BN, and C2 = CN. As B 2 = (BI + B'2) and C 2 = (c/ + C^) we 
have B2 = B* and C 2 = C*. By checking the orthogonality of block rows 1 and 3 we get 
M 3 = M* and by checking block rows 2 and 3 we get ML = M3 = M\ = (M*)* = M, 
so it follows that 

M = M*. 

By checking the orthogonality of the other block rows and columns we achieve a similar 
result for the other blocks so the matrix P can be converted to the form 

M A B C 

A -M -CL BL 

—B - C M A1 

C —BL A1 -M 

(2.8) 

By (2.7) we have MA2 - A'ML

2 = MA* - AM1 = MAN - A'M = 0 , but we also know 
that A N - -A', so M(AN - A1) = -2MA' = 0 and thus 

MA' = 0 . (2.9) 

Now we want to find all the solutions of (2.9). As N is odd and A ' is a circulant matrix 
and A 1 1 = —A', the row sum and column sum of each row and column of the matrix 
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A ' is 0 and thus it is clear that ±NJ is a solution of equation (2.9). 
We will now show that ±NJ is the only solution of (2.9). We know M is a ±ry-matrix 
and A ' is a {0, ± 7 7 } - m a t r i x . Let A ' = TJA and M = NM. So M is a ± 1 and A is a 
{0 ,±1} matrix. By (2.9) we have MA = 0. RJJ is a solution of (2.9) so JA = 0. By 
adding these two equations we have (M + J)A = 0. Let M — (M + J)/2. Then M is 
a {0,1} matrix and 

MA = 0. (2.10) 

If M is a solution of (2.10) in Z it should be a solution of (2.10) in Z 2 . In Z 2 , A = 
CIRC(0,1,..., 1) = J - / . In Z 2 by (2.10) we have 

MA = M{J - I) = 0, 

so 
A/" — A/7. 

As A/- is a circulant matrix it has constant row sum and column sum. It is clear 
that MJ is either 0 or J . So, M is either 0 or J . 

Thus ±J is the only solution for M and ± 7 7 J is the only solution for M. As 
M = ±R)J by (2.6) we have 

V2J2 _ A n _ £ / 2 _ c a = ( 4 n _ 3 ) t ? 2 / ( 2 i U ) 

Let EN be an nxl vector of all ones. Since the row sums and column sums of the 
matrices A', B', and C are zero we have ENA' = ENB' — ENC = 0. By multiplying the 
two sides of equation (2.11) by e„ we have 

T]2N2EN = ?72(4n - 3)e n . 

Thus (n — 3)(n — 1) = 0 and N = 1 or 3, and this completes the proof. • 

2.2 An exhaustive search 
We were able to prove using an exhaustive search that the only orthogonal design of 
order 12 constructible from 16 circulant blocks on 4 variables is OD(12; 1,1,1,9). The 
main technique in this exhaustive search is the REVERSING PROCESS which was introduced 
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for the first time in [11]. In order to find the desired orthogonal designs, first we 
characterise all Hadamard matrices of order 12 constructible from 16 circulant blocks. 
We start by finding all 3 x 12, {±1} matrices 

H" — HU H12 H13 HU 

constructible from four circulant blocks HU, HX2, HU, and HU such that: 

H"H"T = 12 / 3 . 

Let H" be the set of matrices H" that we have found. Now by checking all the pairs 
H'{,H'2' € H" such that 

constructible from 8 circulant blocks H^, I — 1,2 and J = 1, 2, 3, 4 such that 

Continuing the same method by checking all the pairs of above matrices that satisfy 
the orthogonality condition we can find all Hadamard matrices H — [HIJ], 1 < I, J < 4 
constructible from 16 circulant blocks. Now we implement the reversing process. 
Consider that H\ = [HIJ] and H2 = [fcy] are two Hadamard matrices of order 12 
constructible from 16 circulant blocks. Let D = [DIJ] such that: 

Then D is a candidate for an orthogonal design of order 12 constructible from 16 
circulant blocks on 2 variables A and B. If D is orthogonal we are done. Comparing 
all possible pairs of matrices HI and H2 we classify all desired orthogonal designs 
on 2 variables. All we found were one of each of OD(12; 9,3), OD(12; 10, 2), and 
OD(12; 11,1). From this fact it is clear that OD(12; 1,1,1, 9) is the only orthogonal 

H'{H'2* = 0 

we are able to find all 6 x 12, {±1} matrices 

HU H12 HI3 HU 

H2\ H22 H23 H24 

H'HN = 12/ 6 . 

± a if = ± 1 and fcy = ± 1 
±B if = ± 1 and fcy = ^ 1 . 

14 



design of order 12 constructible from 16 circulant blocks. We tried to use the same 
method to classify orthogonal designs of order 20 constructible from 16 circulant blocks. 
Because in the first stage the number of 5 x 20 matrices H" constructible from 4 
circulant blocks such that JEfH"1 = 20/s is huge, we were not able to run the second 
stage. However we did a random search instead of an exhaustive search and found 
an OD(2Q;a,b) constructible from 16 circulant blocks for each pair (a, b), such that 
1 < a, b < 19 and a + b = 20. 

2.3 A non-existence theorem 
In this section we show that there do not exist amicable T-matrices of odd order. 

Theorem 2.9 There are no four full circulant T-matrices T\, T2, T 3 j and T 4 of order 

n if n is odd satisfying: 

T{T\ - T2T{ + T3TI - T4T3* = 0 (2.12) 

Proof Assume otherwise for a contradiction. Reduce the matrices mod 2, (notice 
that A = —A for every matrix A.) Let U = Tx + T2 and V = T 3 + T 4 . Then using the 
complementary and amicability conditions we obtain: 

IjTjt + yyt = TiTj) + T{T\ + T2T{ + T3T4* + T 4 T 3 = / . 
i 

We have U + V = J, so V = U + J. Using that T J1 = JTf for circulant matrices Tj 
we have 

/ = UU' + VV' 

= UW + UU*+ UJt + JUt + JJt 

= JJl 

This is a contradiction. • 
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2 .4 A family of T-matrices 
In this section we introduce an infinite family of T-matrices. These matrices were 
introduced by Xia and Xia in [17]. The method is to divide GF(q2) where q — 8m + 3 
is a prime power into so called C'-partitions. Note that we are reproducing the work of 

Xia and Xia in [17] and [16] here in this thesis with some minor modifications. 

In order to construct such matrices we show that a special class of supplementary 
difference sets exists. Supplementary difference set (SDS) is a generalisation of differ­
ence set. Let G be an abelian group with addition ©, subtraction G, and zero element 
6. Consider the group ring Z[G] of the group G over the ring of integers; the elements 
of Z[G] can be expressed as polynomials 

where a» G Z and g{ € G. In Z[G] addition is defined by: 

If G is a finite field multiplication is defined by: 

For non-empty subsets A and B of G we define: 

A e B = (a©6)> 
aeA, beB 

AA = A 6 A 

A{A,B) = (AQ B) + (B Q A), 

A0 = A(0 ,A) = 0 . 
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It is easy to see that A(A,A) = 2A(A). 
The following trivial identities are useful: 
If B n C = 0 then 

A(A, B u C ) = A{A, B) + A(A, C), 

A(B U C) = A(B) + A(B , C) + A(C). 

(2.13) 

(2.14) 

Definition 2.10 A K-SUBSET D OF AN ABELIAN GROUP G OF ORDER V IS CALLED A (V, K, X)-

DIFFERENCE SET IF 

FOR SOME NON-NEGATIVE INTEGER A. 

Definition 2.11 A COLLECTION OF SUBSETS {DX, D2) • • •, DR} OF AN ABELIAN GROUP G OF 

ORDER V SUCH THAT \DI\ = KI IS CALLED A (V, KX,K2, • • •, KR, X)-SUPPLEMENTARY DIFFERENCE SET 

FOR SOME NON-NEGATIVE INTEGER A. 

Clearly if r = 1 the supplementary difference set is equivalent to a difference set. 

If R = 4 and A = ]Ci=i H — V the collection {DI, D2, D3, D4} is called an SDS of 
type H. Now we show that an SDS of type H exists where G — GF(Q2), Q = 3(mod 8) 
is a prime power, and every element of G appears an even number of times in the 
system of {Z?i, D2, D3, D4}. Later we prove that one can construct T-matrices using 
this particular type of SDS. 

Consider that V — Q2, Q = 4m + 3 is a prime power, and G is a generator of the 
multiplicative group of G = GF(V). Define 

EI := {GS{M+1)>+I\J = 0 , . . . , 2m}, I = 0 , 1 , . . . , 8m + 7, 

SI := EI U E I + I M + 4 , TI-.= J2h, i = 0 , 1 , . . . , 4m + 3. 

AD = (Jfe - \)6 + AT 

17 



We have: 

4m+3 4m+3 

Er. = E L " 
i=0 i=0 HESI 

4m+3 2m 

= ^ Y ^ ( G 4 { M + L ) { 2 J ) + I + G 4 { M + 1 ) ( 2 J + L ) + I ) 

i=0 j=0 
16m2+24m+8 

= E 
K=0 

9 2 - l 
= 5> 

fe=0 

Define 

EI — EJ AS I = j (mod 8m + 8), 

SI = SJ, TI = TJ as i = j (mod 4m + 4). 

It is easy to see that GEI = EI+I, GSI = SI+I, and G% — T I + I . Define 

$o = AE0, 

$I = A{E0,EI), I = 1 ,2, . . . ,8m + 7, 

$i = as i = j (mod 8m + 8). 

We have 

2m 2m 

AEI = J 2 / Z 9 8 ( M + 1 ) J + I E 9 8 I M + 1 ) J ' + I 

J=0 J'=0 
2m 2m 

J=0 J'=0 
2m 2m 

J=0 /=0 

= 3**o 
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for i — 0 , 1 , . . . , 8m + 8. Similarly we can show that 

A(Ei, Ej) — gi^j-i 

for i ^ j, and also 

$i = g^-i = g^sm+s-i 
for i — 1, 2 , . . . , 8m + 7. 

L e m m a 2.12 Let G = GF(q2) be an extension of GF(q) then 
E0\JE4m+4 = GF(qy. 

Proof It is sufficient to show that g 4 ( m + 1 ) £ GF(q). Consider the polynomial xq~l Q 
1 — 0 in GF(q2). Clearly this polynomial has q — 1 roots, since the order of the 
multiplicative group of GF(q) is q — 1 we have xq~l = 1 for all x £ GF(q). Thus all 
the roots of the polynomial xq~l 0 1 = 0 are in GF(q). On the other hand we have 

( 5 4 (m+i ) ) , - i e : = gq*-i e 1 = 1 e 1 - 0. 

Since g 4 ( m + 1 ) is one of the roots of the polynomial xq~l
 © 1 = 0, it is in GF(q). By a 

simple counting we have: 
E0UE4m+4 = GF(qy. 

• 

Here we need to show that: 

L e m m a 2.13 [1] The set of all non-zero squares in GF(q) form a (q, \(q — 1), \(q — 3 ) ) -
difference set. 

Proof Let a be a primitive element of GF(q) and let D be the set of all non-zero 
squares in GF(q). We have D = {a0, a2,..., a 4 m } . Since q = 3(mod 4) we have 
—1 ^ D and — D = {a, a 3 , . . . , a 4 m + 1 } . Let a* and i — 1 , . . . n be the set of all 
integers such that 

1 = o > ' Ga2bi. 
Then for any a2t £ D we have 

a2t = a2^+t) 0 a 2 ( i ' + t ) . 
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So every representation of 1 as the difference of the elements of D gives us a represen­
tation of a2t as the difference of the elements of D and vice versa. For any element 
a2t+1 £ D we have a2t+1

 € — D so a2t+1 = —a2t
 for some integer we have 

a2t+l = a2(bi+t') Q A 2 ( 2 I + T ' ) _ 

Thus every representation of 1 as the difference of the elements of D gives us a rep­
resentation of a2t+1

 as the difference of the elements of D and vice versa. So D is a 
difference set in GF(q). Clearly k — \D\ = |(<? — 1). Since we have k(k — 1) differ­
ences in D and each of the q — l non-zero elements of GF(q) appears A times we have 
k(k- 1) = X(q- 1) so we have A = \{q- 3). • 

L e m m a 2.14 The polynomials satisfy the following properties: 

(i) $ 0 = (2m + 1)0 + mT0; 

(ii) $ 4 M + 4 = (2m + 1)T 0 ; 

(iii) $ i + $ I + 4 M + 4 = T* - To - T i ? t = 1 ,2 , . . . , 4m + 3. 

Proof To prove (i) using Lemma 2.12 and 2.13 we get 

$o = AE0 = \E0\e + mT 0 = (2m + 1)6 + mT0. 

To prove (ii) we have: 

3 ) 4 M + 4 = A(E0, E4m+4) 
= A(E0,GF(q)\(E0ue)) 
= A(E0,GF(q)) - A(E0,E0) - A(E0,9) 
= 2\E0\(T0 + 6) -2A(Eo)-T0 

= 2(2m + 1)T 0 + 2(2m + 1)6 - 2(2m + 1)6 - 2mT0 - T 0 

= (2m + l )T 0 . 

Since q = 3(mod 4) the polynomial x2 © 1 is irreducible in GF(q) and the elements of 
GF(q2) can be represented by polynomials ai ffi b, a,b e GF(q) where i2 = —1. Let 
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h = g 4 ( m + 1 \ we know that h is a primitive element of GF(q). We have ( g 2 ( m + 1 ) ) 2 = 
h1 = — h2t = i 2 / i 2 ' for some integer t, so 

<?2m+2 = hH. 

Thus we have: 

£o = {^ ' | j = 0 , . . . , 2 m } , 

5*2m+2 = = 0 , . . . ,4m + 1}. 

Now we have: 

6m+6 A(-E 0, E2m+2) + A(_E0, -Eem+e) 

= A ( £ 0 , 5 2 m+2) 

= 53 9 ^ + (hJi 0 /l2fe)) 
0<3'<4m+l 0<K2m 

= 53 ((/i 2 f e © + (hH © h2k+l)) 
0<j<4m+l 0<k<2m 

51 ® 
0<j,fc<4ro+l 

— J-0 ~ 12m+2 • 

For 1 < I < 4m + 3 and I ^ 2m + 2 we have gl = hai © hP for some integers a and 
/3. We have: 

Si = EiU E l + i m + i = {ha+H © h p + j \ j = 0 , . . . 4m + 1}. 
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Thus 

$i + * i + 4 M + 4 = A(E0,Si) 
= J 3 {(h2k Q {ha+H © h0+j)) + {(ha+ji © h0+i) © h2k)) 

0<j<4m+L 0<fc<2m 

5 3 ((h2k © / i a + ^ © + (ha+n © © h2k+i)) 
0<j<4m+l 0<lc<2m 

5 3 ( h a + ^ ® ® / i f c ) ) 
0 < J , f c < 4 M + l 

= 5 2 ( ^ Q + ^ © a ) - 5 Z {ha+ji®h0+j) 
0<J<4m+L 0 < J < 4 M + l oeCF(g) 

• 

L e m m a 2.15 J / D = U 2 i 0 P a i U ( U J

2 ™ 1

+ 1 _ t 5 6 . ) , 0 < t < 2 m + l , w/iere a; # a^mod 4m+ 
4) /or i ^ j ( m ° d 4m + 4), and a* ^ 6j, i = 0 , . . . , 2t, j = 1 , . . . , 2m + 1 - t, then 

AD = 2(2m + l )(2m + l - £ ) 0 + ( 4 m 2 + 4m + l - £ 2 ) T * 
2t 

+{t - 2m - 1) 5 3 T a , + A(U2L0Eai) 
i=0 

Proof We have: 

A(Eai,Sbi) = A(EaoEb]) + A(Eai,Ebj+4m+4) 

= 5

a i ( $ 6 . _ a i + $ b j _ 0 s + 4 m + 4 ) 

= gai(T*-T0-Tb]-ai) 
= T*-Tai-Tby 
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Thus 

2t 2m+l-t 

i=0 j=l 
2t 2m+\-t 

- E E ( T * - T a i - T b ] ) 
i=0 j=l 

2m+l-t 

= (2i + l)(2m + l - t ) T * - ( 2 i + l ) J3 

2i 

- ( 2 m + l - t ) E T « ' -
i=0 

We have: 

A(Sb]) = A(Ebj)+A(Ebj +4m+4j 

= ^ $ o + 3 6 3 + 4 m + 4 * 0 + 3 b ^ 4 m + 4 

= 3^ [(2m + 1)6 + mT 0] + gb^g4m+4[(2m + 1)0 + mT 0] + gb^(2m + 1)T 0 

= (2m + 2)0 + (4m + l ) T v 

Hi ^ j we have 

A ( 5 6 i , S6,) = A (£ 6 , , Ebj) + A(Ebi, E b j + 4 m + 4 ) + A { E b i + i m + i > Ebj) 

i+4m+4) Eb.+4m+4) 

= 9

b i + $ 6 , - 6 j + 4 m + 4 ) + g b i + i m + 4 ( $ b j - b i + $ 6,-6 i +4m+4) 

= gbi(T* - T 0 - T 6 ._ 6 i ) + gb>g4m+4(T* - T 0 - T ^ * ) 

= 2gbi(T - % - T b . ^ b i ) 

= 2 ( T * - T b i - T b j ) . 

23 



Thus 

24 

2m+l-t 2m-t2m+l-t 

A(u'j=i~1~ts^) = E A 5 ^ + E E A( 5>.A) 
j=l i=l j=i+l 

2m+l-t 

= (2m + l - £ ) ( 4 m + 2)(9 + (4m + l) ]T 

2 M - t 2M+l-t 
+ E E 2 ( T * - T f c i - r b j ) 

2M+l-t 
= (2m + 1 - £)(4m + 2)0 + (2r + 1) ^ T % 

+ ( 2 m - i ) ( 2 m + l - t ) T * . 
Now we have: 

AD = A ( U 2 i 0 P a J + A ( U 2 ™ 1

+ 1 - t 5 6 J + A ( U 2 l 0 P a i , U ^ 1

+ 1 - t 5 b 3 ) 

= 2(2m + l ) ( 2 m + 1 - t)6 + (Am2 + 4m + 1 - t2)T* 

2t 

+ ( t - 2 m - l ) J 2 T a i + A(U2t

=0Eat). 

i =0 
• 

Let m = 2r. We have q — 8r + 3 is a prime power. Define: 

Fi := U 2 L 0 P 8 j + i l i = 0 , 1 , . . . , 7 

:= YJ a> * = 0,1,2,3. 

L e m m a 2.16 T/ie subsets Fi, i = 0 , . . . , 7, have the following properties: 

(i) A(F0,F5) = A(FltF4); 

(ii) 2(E-=o9 { )AF 0 = 8(2r + l)(4r + 1)9 + ((2r + l)(4r + 1) - 1)T* ; 

(ii i) (EL^)A( JP 0 , F 3 ) = (2r + l)(4r + 1)T* / 

(iv) A(F„, F 2 U F 6 ) = (2r + 1 ) 2 T* - (2r + 1)(G„ + G 2 ) . 



Proof To prove (i) first we have to show that 

where h = g 4 m + 4 . We have: 

h$i = hA(E0,Ei) = A(hE0,hEi) 

= A ( e £ 0 , e £ t ) = A(E0,Et) 

= <±V 

Now we have: 
2r 2r 

A ( F ! , F 4 ) = ^ ^ A ^ + i , ^ ) 
i=0 j=0 
2r 2r 

= EE A(^8(i-r) + l, E8(j+r)+i) 
i=0 j=0 
2r 2r 

= E E ^ w 
i=0 j=0 
2r 2r 

= EE^j+4m+4$8-+8-8^-^)-3 

j=0 j=0 

i=0 j=0 
2r 2r 

= EE58 j$8(i-i)+5 
i=0 j=0 
2r 2r 

= EEA^'^+ 5) 
i=0 j=0 

= A ^ o . F s ) . 

To prove (ii) we follow the proof of Lemma 2.13. Let a* and bi: 

set of all integers such that 

g

l = g

8a>egsbi,l = 0 ,1 ,2 ,3 . 
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Then for any g + we have 

gSt+l _ 8{AI+t) Q gS(b%+t)^ 

So every representation of gl as the difference of the elements of FQ gives us a represen­
tation of g 8 t + l as the difference of the elements of Fo and vice versa. For any element 
gU+i+i w e n a v e g&t+i+A _ Qg&t'+i £ o r s o m e integer t', thus 

g8t + l+A _ S(bi+t') Q gS(ai+t')_ 

So every representation of gl as the difference of the elements of Fo gives us a rep­
resentation of g s t + l + 4 as the difference of the elements of F 0 and vice versa. So we 
have: 

AFo - (2r + l ) (4r + 1)6 + ^ " A -
I = 0 

Now by counting the number of terms of the two sides of the above equation we have: 

3 

(2r + l ) 2 (4 r + l ) 2 = (2r + l ) (4r + 1) + 2(2r + l)(4r + 1) ^ < 
3 

I = 0 

S O 

^ a i = i [ (2r + l)(4r + l ) - l ] . 

Thus we have: 

3 

2 ( ^ 5 * ) AFo = 8(2r + l)(4r + l)0 + ((2r + l)(4r + l ) - 1)T*. 

To prove (iii), using the same argument one can say that: 
3 

A ( F 0 , F 3 ) = J2AIGI-

Counting the number of terms of the two sides of the above equation we have: 
3 

2(2r + l ) 2 (4 r + l ) 2 = 2(2r + l)(4r + 1) ^ ai-
I = 0 
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Thus 
3 

»=o 
( 5 3 5

i ) A ( F 0 , F 3 ) = (2r + l)(4r + l)T*. 

To prove (iv) we have: 

A ( F 0 ) F 2 U F 6 ) = J2 E A ( ^ - ^ + 2 U P 8 ( j + r ) + 6 ) 
2 R 2 R 

I = 0 J = 0 

2 R 2 R 

E E f f 8 ' ^ 8 H + 2 + * 8 ( j - I ) + 8 R + e ) 
I = 0 J = 0 

2 R 2 R 

^ 5

8 i 5 E ( r - T o - r 8 ( j _ i ) + 2 ) 
I = 0 j=0 

2r 

(2r + 1) 2T* - (2r + 1) ^ ( T 8 i + T 8 i + 2 ) 

(2r + l ) 2 r - ( 2 r + l ) ( G 0 + G 2 ) . 

• 

Theorem 2.17 There is an SDS {D1} D2, D3, D4} of type H in GF(q) such that every 

element ofGF(q) appears an even number of times in the system of {Dx, D2, D3, D4}, 

where q = 8r + 3 is a prime power. 

Proof Let 

Dl = ( U j - o ^ + O U F o U F s U F e , 

D2 = (UZl

0Ssi) U ( U 2 : r 5 8 j + 2 ) U ( l U S a + g ) U FU 

A = ( u ; - 0

1 5 8 i + 3 ) U J F f l U F 2 U F 5 , 

D4 = (UlZl

0SSi) U ( U 2 I r 5 8 i + 1 ) U ( L C o X + 2 ) U F3. 
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J2ai = (2r + l)(4r + l ) . 
i=0 

Now we have: 
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It is easy to see that each of the subsets Dx, D2, D3, and D4 satisfies the conditions of 
Lemma 2.15, so we have: 

A£>i = 2r(<±r + l)6 + (7r2 + 2r)T*-r(G0 + G2 + G3) + A{F0UF3[JF&), 

AD2 = 2(4r + l ) (3r + l)# + [(4r + l ) 2 - r 2 ] T * - ( 3 r + l )Gi + A F 1 , 

AL>3 = 2r(4r + l)£ + (7r 2 + 2 r ) T * - r ( G 0 + G 1 + G 2 ) + A ( F 0 U F 2 U F 5 ) , 

AD4 = 2(4r + l ) (3r + l)0 + [(4r + l ) 2 - r 2 ] T * - ( 3 r + l ) G 3 + A F 3 . 

Following the proof of Lemma 2.16 part (iii) one can easily show that AFi = A F 5 and 
AF2 — AF6. Now we have 

4 

J2ADi = 4(4r + 1) 20 + 2(22r 2 + lOr + 1)T* - 2 r (G 0 + G x + G 2 + G 3 ) 
I = L 

- ( 2 r + l ) ( d + G 3 ) + 2 A F 0 + 2 A F 3 + AFi + A F 2 + A F 5 + A F 6 

+ A ( F 0 , F3) + A(F0, F5) + A ( F 2 , F 5 ) + A ( F 3 , F6) + A(F0, F2) + A(F0, Fe) 

= 4(4r + l)2e + 2(22r 2 + 9r + 1)T - (2r + l ) (Gi + G 3 ) 

+ 2 ( A F 0 + AFi + A F 2 + AF 3 ) + A ( F 0 , F 3 ) + A(FX, F 4 ) + A ( F 2 , F 5 ) 

+ A ( F 3 , F 6 ) + A ( F 0 , F 2 U F 6 ) 

= 4(4r + ife + 2(22r 2 + 9r + - (2r + l ) (Gi + G 3 ) 

+2(^3 ^ ) A F 0 + ( ^ / ) A ( F 0 , F 3 ) + A ( F 2 , F 5 ) 
I = 0 I = 0 

„ 2 = 4(8r + 3)(4r + l)0 + (64r 2 + 32r + 3)T* 

= q20 + q(q-2)T. 

It is easy to check that every element of G appears an even number of times in the 
system of {Dx, D2) D3, D4} and the proof is complete. • 

Next we want to show the relationship between SDSs and T-matrices. In order to 
make the connection we should introduce the concept of a G-partit ion of an abelian 
group. We construct T-matrices from G-partitions and G-partitions from supplemen­
tary difference sets of type H such that every element of the abelian group appears an 
even number of times in the system of our SDS. 
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Definit ion 2.18 The family of subsets (Ax, A2,..., A&) of an abelian group G of order 
v is called a C-partition if it satisfies the following conditions: 

(i) AiDAj == 0; 

(ii) U f = 1 A = G; 

(iii) ELi A A i = v0 + Y.t=i A ( A , Ai+4). 

Theorem 2.19 There is a C-partition (AX,A2,..., A8) of an abelian group G of order 
v if and only if there is an SDS {Dx, D2,D3, D4} of type H inG such that every element 
of G appears an even number of times in the system of {Dx, D2, D3, D4}. 

Proof Let 

Dx = Ax U A2 U A3 U At, 

D2 = Axl) A2U A7U A8, 

D3 = AxUA6UA3UAs, 

D4 = AX\J AQ\J A7\J AA. 

During this construction using 2.13, 2.14, and the fact that G = U 8

= 1 A j , it is not hard 
to show that: 

4 8 4 

£ A A = A ( A 1 , G ) - A ( A 5 , G ' ) + 53A -53a(A,A + 4) + AG 

= v6+ (2(\AX\-\A5\) + v)T 
4 

= v6+(Y,\Di\-v)T. (2.15) 
i=l 

Thus {Di, D2, D3, D4} is an SDS of type H; it is clear that every element of G appears 
an even number of times in the system of {Dx, D2, D3, D4}. 

Conversely, let {DX,D2, D3, D4} be an SDS of type H in G such that every element 
of G appears an even number of times in the system of {Dx, D2, D3, D4}. Let 

Ax = Dx n D2 n D3 n D4, A5 = dx n D2 n D3 n D4, 

29 



A 2 = (A n A) \ Ai, A6 = (A n AO \ Ai, 

A 3 = (A n A) \ AU A7 = (A n A) \ AU 

A 4 = (A n A) \ A, A 6 = (A n A) \ Av 

Let Xx be the number of times that the element x € G appears in the system of 
{A-, A, A, A}- We know that Ax is either 0, 2 or 4; we have the following cases: 

• If \ x = 0 then x 6 A5 and x Aj for all 1 < i < 8, i ^ 5. 

• If Xx = 4 then x 6 Ai and x A,: for all 1 < i < 8, i ^ 1. 

• If Ax = 2 without loss of generality consider that x € A and x e D2. Since 
Ax = 2 we know that x A and x ^ A thus x e A 2 and x ^ Aj for all 
1 < i < 8, i ^ 2. 

So for any element i of G we can say that x is exactly in one of the subsets Aj, 
i = 1 , . . . , 8. So we have 

A; D Aj = 0, for i ± j , 1 < i,j < 8, 

uiLiA = G. 
Thus the subsets ( A i . . . A 8 ) satisfy the first two conditions of Definition 2.18. Now we 
show that they satisfy the last condition too. It is clear that: 

A = Ai U A 2 U A 3 U A 4 , 

A = Ai u A 2 U A 7 u A8, 

A = A i U A 6 U A 3 u A 8 , 

A = A i U A 6 u A 7 U A 4 . 
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From 2.15 we have 

ve+C£\Dt\-v)T = YADI 

i=l i=l 
8 4 

= A ( A , G) - A ( A , G) + A - 23 A(A*> A*+4) + A G 

I = L I = L 
8 4 

= ( 2 ( | A | - | A | ) + u)T + A - 2 3 ^ ( A , A + 4 ) 
I = L I = L 

4 8 4 

= ( J ] I A I - W ) t + 2 3 A - J 3 a ( A , A + 4 ) 
I = L I = L I = L 

So we have: 
8 4 

23 a A = u0+23 A ( A I ' A'+4)-
I = L I = L 

Thus ( A , • • • ; A ) satisfies the condition (iii) of 2.18 and the proof is complete. • 

Theorem 2.20 If there is a C'-partition ( A , • • •, A ) of an abelian group G of order 
v then there are T-matrices of order v. 

Proof Let 
Ti = [t$], 1 = 1,2,3,4, l<j,k<v, 

where 
1, if 9k Q 9j € A , 

- 1 , if gk Qgj € A + 4 , 

0, otherwise. 

It is not hard to see that: 

• The matrices Tj are type one matrices; 

. ^ N Tj = 0; 

• E , \ T > 1 = J -
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To complete the proof we have to show that Et=i TiTl = vl. It is sufficient to show 
that E i = i = 0 for 1 < j,f < v, j ^ j ' . We count the number of times that 
tfkkfk = 1 and tfk

]tfk = - 1 for fixed j and f such that j ^ f, i = 1,2,3,4, and 
k — 1 , . . . , v. If tj£ — 1 and t^)k — 1 we have gk 0 gj 6 Ai and gk © gy e A . Since 
(<?fc ©3j) 6 {9kQ9j') = 9fQ9j we see that the number of times that i-̂ J = 1 and i^j. = 1 
is equal to the coefficient of gy © gj in A Ai for a fixed i. Similarly we can show that 
the number of times that t^k = — 1 and t^)k = — 1 is equal to the coefficient of <jj< 9 gj 
in AAi+4 for a fixed i. Thus the number of times that t^kt^)k = 1 for i = 1,2,3,4 is 
equal to the coefficient of © Qj in Y^i=x AA4. By the same argument one can say 
that the number of times that t^lt^)k — — 1 f ° r i = 1,2,3,4 is equal to the coefficient 
of gj! © gj in ]T 4=i A ( A ; , A - M ) - So using 

8 4 

AAi - J2 A ( A , A + 4 ) = v6 
i=l i=l 

we have 
4 

i=l 
• 

Theorem 2.21 If q — 8m + 3 is a prime power then there are T-matrices of order 
v = q2. 

Proof By Theorems 2.17, 2.19, and 2.20 we can produce T-matrices of order q2 

where q — 8m + 3 is a prime power. • 
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Chapter 3 

Productive Regular Hadamard 
Matrices and Symmetric Designs 

3.1 Introduction 
One of the most outstanding results in the production of many new symmetric designs 
belongs to Yury Ionin. 

The use of a special regular Hadamard matrix of order 36 in a class of balanced 
generalised weighing matrices was initiated by Ionin in [5] and this was the beginning 
of a number of very successful papers like [5], [4], [7], and [6] in which many new classes 
of symmetric designs were introduced. The hardest part of Ionin's construction was the 
introduction of a group of symmetry related to each single design. Hadi Kharaghani 
in [10] reintroduced the class of Bush-type Hadamard matrices and demonstrated that 
the group of symmetry for these matrices was trivial. Furthermore, it was through 
these works that he was led to twin designs [10] and Siamese twin designs [9]. In a 
recent work Yury Ionin introduced the class of productive regular Hadamard matrices. 
His method is now applied straight to Hadamard matrices. In this chapter we will 
introduce Bush-type Hadamard matrices and productive regular Hadamard matrices 
and show that Bush-type Hadamard matrices are productive. The methods used here 
borrow from both Ionin and Kharaghani. 

We first need to introduce balanced generalised weighing matrices. We begin with 
a definition. 
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Definition 3.1 Let G be a multiplicatively written group. A balanced generalised 
weighing matrix BGW(v,k, X) is a matrix W = [wij] of order v with € G U {0} 
such that each row and each column of W contains exactly k non-zero entries and for 
any h ^ i, the multiset {uihjW^1 : 1 < j < v,Whj ^ 0,iOjj ^ 0} contains exactly X/\G\ 
copies of every element ofG. 

Here we explain Gerald Berman's method [2] to show that a specific class of balanced 
generalised weighing matrices exists. 

Definit ion 3.2 Let m be a positive integer and q be a prime power. The affine ge­
ometry of dimension m over the field Fq = GF(q), denoted AG(m,q) is the vector 
space (Fq)m. The points of AG(m,q) are m-tuples x = (x\,...,xm), Xi € Fq and 
hyper-planes of AG(m,q) are the set of points that satisfy 

UiXi H hUmXm = U, U,Ui€Fq. 

Theorem 3.3 (Berman 1978) If q is a prime power and G is a cyclic group such 
that the order of G divides q — 1 then there is a 

BGW{{qm - l)/(q - 1), qm-\qm-1 - q™'2) 

over G, for every positive integer m. 

Proof Let E = AG(m, q) and let P be the set of points of E on removing a point 
p. We have \P\ — qm — 1 and let H be the set of those hyper-planes of E that do 
not include the point p. Without loss of generality let p = (0,0, . . . , 0 ) , then every 
hyper-plane of u € H can be expressed by the linear equation u\X\ + • • • + umxm = 1 
where the coefficients u*, i — 1 , . . . ,m are not all zero. Thus every hyper-plane u 6 H 
can be expressed by an m-tuple u = (u\,..., um), Ui £ GF(g), i — 1 , . . . , m. Using 
this notation it is clear that \H\ = qm — 1. A point x 6 P is on a hyper-plane u 6 H 
if and only if x • u• — 1. In order to count the number of points on a hyper-plane 
u — (u\,..., um), if one fixes the first m — 1 coordinates of x = (xi,..., xm) then one 
can find xm such that x • u = 1 and it follows tha t every hyper-plane has qm~l points 
and every point is on qm~l hyper-planes. Let A be an element of GF(q) of order q — l, 
define the map 4>\ : P —> P such that 

4>\x — Xx — ( A x i , . . . , Xxm). 
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Let x be a point on a hyper-plane u. Since (Xx) • (X~lu) = 1, <fix maps the hyper-plane 
u onto X~1u and we have 4>\u = X~1u. It is clear that the order of (fix is q — 1. As every 
point x € P or every hyper-plane u £ H has at least one non-zero coordinate the map 
(fix has no fixed point or fixed hyper-plane. Let 

It is clear that y G [x] if and only if x G [y] so one can choose the points x 1 , x 2 , . . . , x™ G 
P , n = (g/71 — l ) / (g — 1) such that [x1] U [x2] U . . . U [xn] is a partition of P and hyper-
planes u 1 , u2,..., un G # such that [u1] U [u2] U . . . U [un] is a partition of ii/". Since the 
hyper-planes <fik

xul are parallel, the point x J lies on at most one of them. If x J is a point 
of (fil

xul then t^x-7 is a point of 4>l

x

+kul so we can write [xJ] G [u%] if the points of [xJ] lie 
on the hyper-planes of \ul). If [xJ] G [ul] then there is a unique integer /i = v(ul,x^) 
such that 0^x J G ul. Let G be a multiplicatively written cyclic group of order d such 
that d\q — 1 and let w be a generator of G. Let A = A ^ x ^ x 1 , . . . , x n , u l , . . . , U ™ , C J ) 
denote the n x n matrix defined by 

for i = 1 , . . . ,n . 

To complete the proof we show that A is a BGW((qm-l)/(q-l),qm-\qm-1-qm-2) 
over G. Since every hyper-plane has qm~l points every row of A has exactly g m _ 1 non­
zero entries. Since (qm — l)/(q — 1) — qm~l < qm~l any two different rows of A have 
at least one point in common and for i ^ k, ul and uk are not parallel. Consider two 
hyper-planes ul = (u\,..., ul

m) and uk = (u\,..., u m ) that are not parallel. There are 
integers 1 < e < / < m such that u\/uk ^ ulj-/uk. If the point x — (x\,..., X T O ) is on 
both hyper-planes ul and uk then by fixing the coordinates xt, t ^ e, / one can find 
the proper X E and X / that satisfy the equations X • ul = 1 and X • U F C = 1. So if u% and 

are not parallel they have qm~2 points in common. Thus ul intersects each of the 
hyper-planes (j)^uk, h = 0 , . . . . q — 1 in qm~2 points and the multiset {ay-a^ : 1 < j < 
n,aij 7 ^ 0,akj ^ 0} contains exactly (q — l ) g m _ 2 = qm~l — qm~2 non-zero elements. 

[x} = {(fikx : k = 0,...,q-l}, xeP, 

[u] = {4>k

xu : k = 0 , . . . , q - 1}, u G H. 

(3.1) 
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For any point 4>l

xxj on ul and (j)\uk we have 

u\<t>\x*) = 1, (<f>h

xuk)(^) = uk(<pl

x-hxi) = 1 

so i/(u l, xi) = Z, 1 / ( 1 4 * , x J ) = I — h and CHJO^ = uih for Zi = 0 , . . . , <j — 1 so the multiset 
{aijakj '• 1 — i — n> a u 0, afcj ^ 0} contains exactly qm~2 times of each element uih 

and this completes the proof. • 

Definit ion 3.4 A regular Hadamard matrix H with row sum 2h is productive if there 
is a set Ti of matrices with row sum 2h and a cyclic group G =< 5 > where 6 : Tt —» Ti 
is a bijection, such that 

(i) H e Ti; 

(ii) For any HuH2e TC, (SH^SHrf = HXH\; 

(iii) |G| = A\h\; 

H E,eG^ = 2^J. 

L e m m a 3.5 If H is productive then —H is also productive. 

Proof The proof is straightforward. • 

Theorem 3.6 (Ionin) If there is a productive regular Hadamard matrix H with row 
sum 2h and q = (2h — l ) 2 is a prime power then for any positive integer m there is a 
symmetric design with parameters: 

' A h 2 ( n m + 1 — 11 
{

q _ l , (2/i 2 - h)qm, (h2 - h)qn 

Proof Let W = be a BGW((qm+1 - l)/(q - 1), qm, qm - g m _ 1 ) over G and let 

M = \(J-H). 

We know that M is the incidence matrix of a symmetric {Ah2, 2h2 — h,h2 — /i)-design. 
If Hi eH,Mi = \(J - Hi), and 8 € G we define: 

6Mi = l-(J-8Hi). 
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If Hi, H2eH,Mi = ±(J- Hi), and M2 = \(J- H2) we have: 

(5Mi)(5M2y = ^{J - SHi){J - 5H2y 

= \{J2 - (5Hi)J - J(8H2Y + (5Hi)(5H2Y) 

= -^-HiJ-JHl + HiHl) 

= MiM\. 

It can also easily be seen that ^2ieG8M = (2\h\ - We prove that W <g) M is 
the incidence matrix of a symmetric (Ah2(qm+X - l)/(q - 1), (2/i 2 - /i)<?m, ( / i 2 - h)qm)~ 
design. It suffices to show that for i, j = 1, 2 , . . . , ( o / m + 1 — l ) / (g — 1), 

If i = j then for some 5k € G we have: 

(q">+l-l)/(g-l) 
23 (wlkM)(wjkMy = 2 3 ( ^ ^ ) ( 4 M ) ' 
fe=l k=l 

qm 

= qmMMl 

= h2qmI + (h2 - h)qmJ. 
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If i 7 ^ j then for some 5k, Tk € G, 

(gm+l_1- ) /(g_1) qm_qm-l 

Y (wikM)(wjkMY = Y (8kM)(rkMY 
fc=l k=l 

Y (T^S^M* 

(Y <yM)Ml 

k=l 
qm gin—I 

nm _ nm-l u 

-(qm - qm-l)qJ = qm{h2 - h)J. 

• 

3.2 Bush-type Hadamard matrices 
Definition 3.7 A regular Hadamard matrix H = [Hij] of order An2 where H^ are 
blocks of order 2n is Bush-type if Hu = J 2 n and HijJ2n = JinHij = 0, for i ^ j , 
1 < i,j < 2n. 

We will now show that there are many Bush-type Hadamard matrices and each Bush-
type Hadamard matrix is a productive regular Hadamard matrix. 

Theorem 3.8 (Kharaghani 1985 [8]) / / there is a Hadamard matrix of order 4n 
then there is a Bush-type Hadamard matrix of order 16n 2 . 

Proof Let K be a normalised Hadamard matrix of order An and let rx, r2, • • •, rAn 

be the rows of K. Let Cj = r*r,, i = 1 , . . . , An. It is easy to see that : 

(i) d = C\ for i = 1,2, . . . , 4 n ; 

(ii) Ci = JAn, CiJin = JAnCi = 0, for i = 1 , . . . , An; 
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(iii) QCj = 0 if j ; 

(iv) Ei=i C i C t = 16n2/4n-
Following Seberry, Yamada [14], we call the matrices Q above as Kharaghani matrices. 
Let H = circ(Ci, C2, • • •, C 4 n ) then H is a Bush-type Hadamard matrix of order 16n 2. 
• 

Example 3. Let 

Then, 

K = 

1 1 1 1 
1 1 - -
1 - 1 -
1 - - 1 _ 

1 1 1 1 
1 1 - -
1 - 1 -
1 

C2 = r^r 2 = 

- - i : 
" 1 1 1 1 

1 1 1 1 

1 1 1 1 

_ l l l l 

l l - -
l l - -

- - 1 1 

- - i i 

C3 = r\r2 = 

C 4 = r 4 r 4 

1 - 1 
- 1 
1 - 1 
- 1 -

1 - -
- 1 1 
- 1 1 
1 - -

- 1 

1 

1 
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1 1 1 1 
1 1 1 1 

1 1 
1 1 

1 1 
1 1 

1 1 
1 1 

1 
1 1 1 

1 1 

1 - 1 -
- 1 - 1 
1 - 1 -
- 1 - 1 

1 1 - -
1 1 - -
- - 1 1 
- - 1 1 

1 1 1 1 
1 1 1 1 
1 1 1 1 
1 1 1 1 

Theorem 3.9 Bush-type Hadamard matrices are productive. 

Proof Let H = [Hij], 1 < i,j < 2n be a Bush-type Hadamard matrix of order 4n 2 

with block size 2n, and let Ti be a family of block matrices X = [X^], 1 < i, j < 2n of 
order 4n 2 , satisfying the following conditions: 

(i) for each i there is exactly one block X^0 such that Xi]Q = J2n; 

(ii) if j ^ jo then X^J = JXij = 0. 

It is clear that H e Ti. We define a bijection a : Ti —> H by aX = X' such that: 

(i) for 1 < i < 2n and 2<j< 2n, X'tj = Xij-x] 

(ii) for 1 < i < 2n if Xit2n = J, then X'a = J ; 

B = 

- - 1 
1 1 -
1 1 -
- - 1 

1 1 
1 1 

1 1 
1 1 
1 1 

1 1 1 1 

1 1 
1 1 

1 -

1 1 1 
1 1 

1 - - 1 
- 1 1 -
- 1 1 -
1 - - 1 
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(iii) for 1 < i < 2n if Xit2nJ = JX^2n = 0, then X'iX = -Xi>2n. 

Let G —< a > then it is clear that |G| = An. 

Let P,Q £ H and let P' = aP and Q' = aQ, to show that (uP)(aQY = PQl it is 
enough to show that 

PifinQYjfln = PilQjV 

There are four cases: 

1. If Pi,2n = J and Qji2n = J then J* = J and Q'jX = J so Pit2nQ\2n = PkQ'ji = J2-

2. If Pit2nJ = JPi,2n = 0 and Qjt2n = J then P'a = -Pi>2n and Q'jx = J so 
Pi,2nQ\2n = Pi,2nJ = 0 and P^Q'fr = -Pii2nJ = 0. 

3. If Pi<2n = J and Qjt2nJ = JQi,2n = 0 then P[x = Pi)2n = J and Q'jX = -Qjt2n so 

PiflnQi^ = JQ\2n = 0 and P^Ql = -JQ\2n = 0. 

4. If P i i 2 „ J = JPj,2n = 0 and Qj,2nJ = JQj,2n = 0 then P'iX = -Pii2n and Q'jX = 

~Qj,2n s o PilQjl = ( — Pi,2n){~Qj,2nY = Pi,2nQ\2n-

Since also J2seG ~ ^J, the proof is complete. 
• 

Corollary 3.10 If there is a Bush-type Hadamard matrix of order An2 and q — (2n — 
l ) 2 is a prime power then for every positive integer m there is a symmetric design with 
parameters 

'An2(am+l -1) \ 
[q

q_1 V (2n 2 - n) , qm(n2 - n)J (3.2) 

and if q = (2n + l ) 2 is a prime power then for every positive integer m there is a 
symmetric design with parameters 

'An2(qm+l - 1) 
q-1 tqm(2n2 + n),qm(n2 + n)\ (3.3) 

Proof Suppose that H is a Bush-type Hadamard matrix of order An2. For the case 
where q = (2n — l ) 2 , since the matrix H has row sum 2n, the proof follows from 
Theorems 3.6 and 3.9. For the case where q — (2n + l ) 2 , since the matrix —H has row 
sum —2n, the proof follows from Lemma 3.5, Theorem 3.6, and Theorem 3.9. • 
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Theorem 3.8 shows that the existence of a Hadamard matrix of order 4n implies the 
existence of a Bush-type Hadamard matrix of order 16n 2 . It has been conjectured that 
Bush-type Hadamard matrices of order 4n2 exist for all integers n. For odd values of 
n this conjecture seems to be difficult and only known for n = 3,5, and 9. 

3.3 The Kronecker product of Bush—type Hadamard 
matrices and productive regular Hadamard ma­
trices 

Ionin in a recent paper [4] showed that the Kronecker product of a Bush-type Hadamard 
matrix B and a productive regular Hadamard matrix H namely M — B <g> H is also a 
productive regular Hadamard matrix. In this section we introduce his method. 

Let B be a Bush-type Hadamard matrix of order 4n 2 and let H be a productive 
regular Hadamard matrix with row sum 2h and cyclic group G =< 8 >. Let 

H = {8iH\i = 0,l,...,4\h\-l}. 

By the definition we have: 

• For any Hx and H2 in H, {SH1)(8H2)t = HiB^; 

Let Z = {Z\ZJ = JZ = 0}, n = {J ® K\K G H}, and S = {Z ® H\Z G Z}, where 
J and Z are of order 2n. We define the map p : TZLiS^TZuSby 

p(Z ®H) = -Z®H for each Z G Z 
p{J®K) = J®{8K) for each KeH. 

It is easy to see that the cyclic group generated by p has order 4|/i|. For R G 1Z we 
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have: 

43 

4 | f f | A\h\ 

YP{R = Y p i J ® 5 J H 

i = 0 i = 0 

4\h\ 

1 = 0 

4\h\ 

i = 0 

4 | A | 

i = 0 

= 2-—J®J. 
\h\ 

For 5" € 5 it is easy to see that 
i\h\ 

£ Y S = O . 

i = 0 

Let M = B ® H'. It is clear that the matrix M is a regular Hadamard matrix with row 
sum Ahn. Let M be the set of block matrices D — [ A j ] j *, J = 1 , . . . , 2n, such that: 

1. for each i = l,...,2n, there is a unique hi = hi(D) € { 1 , . . . , 2n}, such that for 
j = hu Dij € 1Z; 

2. for i — 1 , . . . , 2n, and for j fi hi , A j £ 5 . 

Clearly M is an element of M. Define a bijection cr : M —» by o A = D' — [Aj] 
such that: 

1. for i = 1 , . . . , 2ra, and j = 2 , . . . , 2n, A ' j = A j - i ; 

2. for i = 1 , . . . , 2ra, A i = / > A , 2 N -

It follows from the fact that p4^ — 1 and from the number of blocks of D that the 
order of the cyclic group G generated by a is 8n\h\. 



L e m m a 3.11 For X, Y € M, (PX^OY)* = XYl. 

Proof Let X, Y G M and let X' = aX and Y' = aY. It is sufficient to show that, 
for i, i' = 1 , . . . , 2n, 

Y 1 V " V V * 

~~ ^IFIN1^ FIN-

IT is obvious that A^ ) 2 n and V^^n are either in 1Z or in S. We have to check the following 

cases: 

• If XIM G S and ^ , 2 n G <S then = {-Xifin){-YilfinY = XII2NYJI2N. 
• If Xi}2n € 7?. and G <S then for some K £TL and Z £ Z we have: 

= ( JZ ' ) ® 

= o, 

and 

* M = ( J ® ( ^ ) ) ( - ^ ® i ^ ) 

= ( - JZ* ) ® ({SK)^) 

= 0. 

• The proof for the case X i i 2 n € S and Vj/ ) 2 n G 7?. is similar and we omit it. 

• If Xi^N € 1Z and Yj',2„ G 7?. then for some K\ and i^ 2 in 1Z we have: 

= ( J J 4 ) ® ^ ) ^ ) 4 ) 

= ( J J 4 ) ® ( i ^ ) 

• 

Lemma 3.12 M
 < 7 9 # = 2J . 
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Proof For some R G 1Z and Sk G <S, 1 < k < 2n — 1, we see that the (i, j)-block of 

the matrix Y ^ 1 - 1 ° ~ 9 M i s : 

8 N | / I | - L 4 | f c | - L 2 N - L 4 | / I | - L 

I = 0 A = 0 fc=L A = 0 

Theorem 3.13 Lei B be a Bush-type Hadamard matrix and H be a productive regular 
Hadamard matrix then the matrix M — B (g> H is productive. 

Proof Using Lemmas 3.11 and 3.12 we see that the matrix M, the set M and the 
bijection a satisfy all of the conditions of definition 3.4. • 
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Chapter 4 

A New Class of Productive Regular 
Hadamard Matrices 

In this chapter we introduce a new class of productive regular Hadamard matrices. We 
show that for each integer n for which 4n is the order of a Hadamard matrix and 8n 2 — 1 
is a prime, there is a productive regular Hadamard matrix of order 16n 2 (8n 2 — l ) 2 . As 
a corollary, by applying a recent result of Ionin, we get many new infinite classes of 
symmetric designs provided that either 4n(8n 2 — 1) — 1, or 4n(8n 2 — 1) + 1 (or both) 
are prime powers. 

4.1 Introduction 
We begin this section by introducing a fascinating class of matrices, originally generated 
by Mathon [12] and subsequently generalised by Seberry and Whiteman [13]. 

Definit ion 4.1 A regular s-set of matrices of order m 2 is a set of matrices A\, A2, 
..., As such that: 

• AtAj = J, for every i,j; 

• AIAT

J = AT

JAI = J, i^j; 
• AiJ — mJ, for every i; 
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• ZUi(AiA\ + A$Ai) = 2sm2I. 

It is shown in Seberry and Whiteman [13] that: 

Theorem 4.2 (Seberry—Whiteman) If m = 3(mod 4) is a prime power, then there 

See Lemmas 4.5 and 4.6 for a proof of this theorem. 

4.2 A regular class of Hadamard matrices 
Let K be a normalised Hadamard matrix of order An. Let ri} r 2 , r 4 n be the row 
vectors of K. Let Cj = r\ri, i = 1, ...,4n, be Kharaghani matrices. These matrices can 
be used in a Latin square to generate a Bush-type Hadamard matrix of order 16n 2 

(see Theorem 3.8 for details). For the matrices C = [ Q J ] and TJ = [dy], we denote the 
matrix [cydy] by C * D, whenever the product c^dy is defined. 

We are now ready for the main result of this section. 

Theorem 4.3 Let n be an integer for which there is a Hadamard matrix of order An 
and m = 8n2 — 1 be a prime power. Then there is a regular Hadamard matrix of order 
16n 2 m 2 . 

Proof Let Ai, i = 1,2, • • • , 4n 2 , be a regular 4n 2 -se t of matrices of order m 2 from 
Theorem 4.2. Let 

Let CjS be Kharaghani matrices defined above. Let Ki := Ci * Li and K{ := Ci+2n * Li 
for 1 < i < 2n. Using the properties of the regular s-set of matrices, it is not hard to 
see that the matrices Ki and K[ have the following properties for every i and j : 

is a regular \(m + I)-set of order m2. 

Li = 
c irc (At( j_ i ) n + i , . . . ,Aun) 
circ(A\{i_n_l)n+l, ...,A\{ '4(i—n)n 

if 1 < i < n 
if n < i < 2n. 

1. KiK) = K'K'f = 0 if i + j 

2. KiK'/ = K'-K\ = 

3. KiK'/ = K\K\ 

0 if i ^ j 
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Let M = circ(Ki, K2,..., K2n) and M' = circ(K[, K'2,..., K'2n). Let 

H _ MM' 
—M' M 

Let e be the column vector of all ones. The fact that Kxe = Anm and Kte = 0 for all i, 
2 < i < 2n, implies that Me — 4nm. On the other hand, K[e = 0 for all i, 1 < i < 2n, 
so M'e = 0. This shows that H is a regular matrix of order 16n 2 m 2 . It remains to 
show that H is a Hadamard matrix. Using properties 1 and 2 above, it is not hard to 
see that MM' and M'M" are both diagonal matrices. Furthermore, property 3 can be 
used to show that MM'1 = M'M'. It is easy now to see that if is a Hadamard matrix. 
• 

Example 4. For n = 1 we have: 

Li = 

Ai A2 A3 AA 

AA Ai A 2 A 3 

A 3 A 4 

A 2 A 3 

Ai A 2 

A 4 Ai 

L 2 = 

Ci 

A\ A\ A\ A\ 
A\ A\ A\ A\ 
At At At At J±3 S\A /\x / i 2 

4 * A1 

^ 2 ^ 3 

c2 = 

1 1 
1 1 

L 1 
1 1 

A\ A\ 

1 1 1 1 
1 1 1 1 

1 1 
1 1 

1 1 
1 1 
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1 - 1 -
- 1 - 1 
1 - 1 -
- 1 - 1 

c4 

1 - - 1 
- 1 1 -
- 1 1 -
1 - - 1 

After superimposing the signs of entries of d, C2, C3 and C 4 over on the blocks of 
the matrices L\, L2, Zq and L2 respectively we get the matrix H below: 

Kx = d * Li = 

Ai A 2 

A 4 Ai 
A 3 A 4 

A 2 A 3 

A 3 

A 2 

Ai 

A 4 

A 3 

A 2 

A 4 Ai 

K2 •= C2* L2 

K[ = C3 * L\ = 

K'n = CA * L2 — 

A\ A\ 

-Al 
-A 
Ai 

-A 4 

A 3 

-A 2 

- 4 
Al 

-A\ 
-A\ 

-A2 

Ai 
-A 4 

A 3 

Al -A* 
-A* A\ 

A\ 

H 

-A\ -
-Al 

A\ 
A\ 

A3 

-A2 

Ai 
- A 4 

-Al 
Al 
A\ 

Kx K2 K[ K'2 

K2 Kx K<2 K[ 
-K[ -K'2 Kx K2 

-K'2 -K[ K2 Kx 

A\ 
-Al 
Al 
A\ 

-A' A\ 

-AA 

A3 

- A 2 

Ai 

Ai 
-Al 
—Al 
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A! A2 AS AT A\ AL -A'S - A 1 

AT AJ A2 AS AI A{ -AL -A* A3 

A3 AT AI A2 
-A* A3 -A'T A{ A* A

2 

A2 A3 A4 AI - A 1 

-A'3 AL A\ 

A\ A\ -AL -AI AI A2 A3 AI 
A{ A\ -AL ~A\ AT AI A2 AS 
AS -AI A\ A\ A3 AT AI A2 

-A* -A A1 

AT A\ A2 AS AI AL 

-AX 
A2 -A3 AT ~A\ AI A\ - A 1 AT 

AT -AX A2 - A 3 
AI -A[ -A AL 

-AS AT - A I A2 
A3 -AI -AL AL 

A2 -AS AT -AI A'S -AL 

~A\ A\ A* AS -A* A I -AI A2 -AS AT 
AI ~A\ -AL A' AT -AI A2 -A3 

A -AI ~A{ AL -A3 A4 -AI A2 

- A 2 
A1 AI -A\ A2 -AS AI -AI 

AI - A 2 AS -AT A\ -A'2 
A1 

A3 A'T 
-AT AI - A 2 A3 -< A\ AL -AL 

AS -AT AI - A 2 
- A 1 

A3 AL -A'2 

- A 2 A3 - A 4 AI A' A2 
A3 -A'T A'I 

A\ -AL -AL A* A I AL -AI A3 -AT 

- A \ AL AL -A* A3 -AT AI - A 2 AS 
- A 1 

A3 A'T AL -AL AS -AT AI - A 2 

A2 -AL A' AT A\ - A 2 A3 -AT AI 

AL A2 AS AT AL AI -A'S - A 1 AT 

AT AI A2 AS AI A\ -A'2 -A'S 
AS AI AI A2 

-A' 
A3 -K AL AI 

A2 AS AT AL A' A2 
A1 

-AS A* AT A'I 

AL AL -AL -A* AL A2 A3 AT 
AI A\ -AL -A' A3 AT AI A2 AS 

-AL -A* A I A AI AS AT AI A2 

-AL -A' A3 AI AL A2 A3 AT AI 

• 

4.3 A productive class of regular Hadamard matri­
ces 

In this section we show that most of the regular Hadamard matrices constructed in 
section 2 are productive. We also need to mention some of the properties of a class of 
regular \{m + l ) -set of matrices as given in [13], whenever m = 3(mod 4) is a prime. 
Let T be the circulant shift matrix of order m defined by 

M r, 1 ! , I 1 if i - j = lfmod m) ,A_,. 
T = [Uj] where Uj — < J . K (4.1) 

I 0 otherwise. 

Let R be the back-circulant shift matrix of order m defined by 

R =M where rv - I 1 + ^ o i 
I 0 otherwise. 

Then the following properties are immediate. 

Tm = I, {Tkf = Tm-k, I + T + T2 + • • • + Tm~l = J, R2 = /, 

RTk = R}Tk = Tm-kR, JTk = JRk = J. 

Let x b e the so-called quadratic character on the field GF(m) defined by 

0 if x = 0, 
X(x) := ^ 1 if x is a square, 

- 1 if x is a non-square. 
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Let 

WT = TW, WR = R}Wt = RW -RW 

Since the number of squares in GF(m) is the same as the number of non-squares we 

have 
WJ = 0. 

Also for any 0 ^ y £ GF(m) we have: 

xeGF(m) xeGF{m)\0 

xeGF(m)\0 

= o - x ( i ) 

= - 1 

So it follows that WW* = ml - J. Let 

M :— I + W 

with top row (b0, , 6 m - i ) - Then we have : 

MM* = (m + 1 ) / - J, M J = J. (4.3) 

Let e = em = ( 1 , 1 , . . . , 1) be a vector of m l 's . Define the matrix 

N :=e*(&o, ,fem-i) 

6 0 6i 

b0 h 

bm-l 
bm-1 

bm-l 
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W = [uiij] where = xti - *)> for i , j = 0 , . . . , m - 1. 

By the definition it is clear that the matrix W is a circulant matrix. Since m = 3(mod 4) 
we have x ( - l ) — - 1 and x(~x) — ~ x ( x ) , thus the matrix W is skew-symmetric 
(W* = —W). The following properties are immediate: 



Using 4.3 since each of the rows of the matrix N is the same as the first row of M we 
have: 

mJ if k — 0, 
-J if \<k<m-\ 

NTkN* = (4.4) 

The following useful properties are also obvious: 

NJ — J, JN = mN, MN = TkN = RkN = N. 

We now define the matrices Bj and C which play a key role in what follows: 

M — 1 

Bj := Y XT* ® MTij (j = 1 , n - 1) 
i = 0 

C:= N(I,T,Ti,...,Tm-1)te = 

N 
NT 

N 
NT 

N 
NT 

(4.5) 

(4.6) 

j V T m _ 1 NT171-1 • • • NTm~l 

We will show that matrices Bi and C are an (m + l ) /2 -se t of matrices and that they 
also satisfy some additional properties that let us show that the matrix H, as defined in 
the previous section, is productive as well as regular. In order to show that the matrix 
H is productive we should define a map that satisfies the properties of a productive 
regular Hadamard matrix. For convenience we define mappings on smaller blocks of 
the matrix H step by step and then we introduce the final map using these maps. 

Definition 4.4 Let E be a ( 1 , - 1 ) matrix of order m2 and I the identity matrix of 
order m. Define the map 6 as follows: 

6E := E{I®T) 

As a consequence of the properties above, for all non-negative integers a: 

1. 5aBj = 5{5a-lBj) = Bj(I <g> Ta) = R T i ® MT^+a. 

2. 6aC = C{I ® Ta) = NT01 (I, T, T 2 , . . . ,T m ~ 1 )*e. 

L e m m a 4.5 LetT = {C,BU--- , 5 ( m _ i ) / 2 } , andQ = {C,C\BUB\, 
Then T', G and S satisfy the following conditions: 

( M -
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(i) 5mX = X for all X in T; 

(ii) (SaX)(Y)t = J for all X € T, Y € G, X ±Y and a € { 0 , 1 , m - 1}; 

(iii) J2Zol 5'x = J f ° r aU x 6 ?! 
(iv) (5X)(5YY = XYl for every matrices X, Y of order m2. 

Proof The proof of condition (i) follows from the fact that Tm = I. 
To prove condition (ii) we have to consider the following sub-cases. 
For all positive integers j , k not exceeding (m — l ) / 2 : 

("i) (FBjXBi)* = J; 

(112) (5aBj)(Bk)t = J if (j fi k); 

(113) (5aBk)(Ct)t = J; 

(114) (5aC)(Bt

k)t = J; 

(115) (<y°C)(5fc)* = J; 

(116) ( t f 0 C ) ( C ) ' = J . 

The proofs of these properties parallel proofs given in [13]. 

(iii) 

m—1m—1 
nhk {5aB3){Bk) = J 2 J 2 R T i R T h ® M T i i + a M T k 

m—1m—1 
_ ^ ' ^ ^ rpm+h-i ^ jyj-2jiij+hk+a 

h=0 i = 0 
m—1m—1 

= 23 T * ® M

2 T i { i + k ) + z k + a ( where z = /i - i) 
z = 0 i = 0 
m—1 

= 2 3 T * ® M 2 J 

z = 0 

= J ®J. 

Note that j + k fi m since j , k < (m— l ) / 2 . 
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(ii a) 

n—1 n—1 

(saBj)(Bky = YJ2RTi(RThy®MTij+a(MThky 
i=0 h=0 
n—1 n—1 

= 23 53 ® MMTTIJ~HK+A 

i=Q h=0 
n—1 n—1 

= J2J2TZ®MMTTIU~K)~ZK+A
 ( where z = / i - i) 

(iia) 

(ii 4) 

2 = 0 / i = 0 
n - 1 

2 3 T 2 ® J 

z = 0 

J ® J. 

m—1 

[(<yQBfc)(C)]« = 2 3 ^ + ^ * ( A f r ° ) / y r A 

m—1 

= MNYTH 

= MNJ = J. 

n-l 

[ ( J Q C ) (B f c ) ] y = (NTA)TIM 23 T ^ + / l ) f c 

h=0 

= NTI+AMJ 
= NTI+AJ 
= NJ = J. 
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(iis) 

To prove condition (iii) we have: 

71-1 

n-1 

23 ( / Y T Q ) r i ( T ( / l + i ) / c M ) t 

n-1 

23 NTa+iTn~(h+^k Ml 

h=0 
n-1 

= NM*J 

= NJ = J. 

m—l 

[(SaC)(C)]ij = {NT^TN 23 r f t 

/ i = 0 
NT+aNJ 

NNJ = J. 

m—L 771—1 m—L 

23<PA 
o = 0 

= 23 ^ 0 MTij+a 

a=0 z = 0 
m—L m—L 

= 23 R T I ® ( 1 3 M T I J + Q ) 
i = 0 a = 0 

m—L 

= 2 3 ^ T ' ® ( M J ) 
i = 0 

= J ® J. 
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Also 

M — L M — L 

23 <PC = 23 ( J V T A ) ( / ' T ' R 2 ' - - - ' R M _ 1 ) T E 

Q = 0 A = 0 

= (NJ)(I,T,T2,...,Tm-iye 

= J ( 7 , T , r 2 , . . . , r m - 1 ) t e 

= J ® J. 

To prove condition (iv) we have : 

(5X)(5YY = ( A ( / ® T ) ) ( y ( / ® R ) ) T 

= X{I ®T){I ®TN~L)YT 

= X{I®I)Y1 

= XY\ 
• 

To prove that matrices Bi and C defined above form a regular s-set using Lemma 4.5 
part (ii) it is sufficient to prove the next lemma 

L e m m a 4.6 

( M - L ) / 2 

23 {BiB\ + B\Bi) + CCl + ClC = n 2 ( n + 1)7 

Proof 

So 

[00*]^ = mNTiTm'iNt 

= mNT^N1 

( m2J iii — j 
—mJ otherwise. 

CC* = m(m + 1)1 ® J - mJ <g> J. (4.7) 
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We know that each row of matrix N is the vector (b0, h, • • • , 6 m - i ) , where b0 = 1 and 

^ — x(i) so we have: 

M - L M - L 

k=0 k=0 

If i = j : 
M - L M - L 

[ J2 T^N'N^-^i = m Y b2

i+k = m 2 . 

If i ^ j : 

M - L M - L 

Tk(NtN)T-k]ij = m(6 0 6 j _ 1 + 6 w 6 o ) + m x(i + fc)x(j + *0 = m. 
k=o fc=o 

So 
M — L 

J 3 Tk(NtN)T~k = m(m + 1)7 - mJ 
fc=0 

Now we are able to calculate ClC. 

m—l 

cic = j ® Y i ^ N T k y ^ N T k ^ 
k=0 

m—l = <S> 2Z T~k(NtN)Tk 

k=0 
m—l 

- r - f c = J ® 23 T ' £ ( I V T I V ) T " 

= m J ® ( ( m + l ) / - J ) . (4.8) 
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To calculate BjBj and B^Bj as well we have: 

m—l m—l 

BjB] = Y/~2RTi(RTh)h®MTii(MTh]y 
i=l ra=0 
m—l m—l 

i = 0 h = 0 

m—l m—l 
= 23 S T * ® M M t T - ' i (z = h-i) 

2 = 0 1=0 

m—l 

2 = 0 

Similarly one can show that: 

m—l 

5 j £ j = m 23 T* ® MMlTzi 

2 = 0 

Now we have: 

(m- l ) /2 m - l ( m - l ) / 2 m-l (m- l ) /2 

23 (BiB\ + B\Bi) = m23 21 ® M M ' T - * ' + m 23 2Z Tz®MMlTz 

4=1 2 = 0 i=l 2 = 0 1 =1 
m—l m—l 

= m 23 2Z T " ® MM'T-Zj 

2 = 0 j = l 
/ m—l \ 

m 7 ® (m - 1)MM* + 23 r " ® MMl{J - I) 
2 = 1 

= 7 <g> m(m - l)MMl + (J - I) ® mMM^J - I) 

= (7 <g> M M * ) ( m 2 / ®I-mI®J-mJ®I + m(J ® J)) 

= m 2 ( m + 1)7 <g> 7 - m(m + 1 ) J ® 7 

—m(m + 1)1 ® J + 2mJ ® J (4.9) 

Using 4.7, 4.8, and 4.9 the result follows • 

Lemma 4.7 There is a permutation matrix Pi such that CiPi = —Ci, Pf = 7 for all 
2<i<4n. 
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Proof Noting that d = r ' r , , as defined in section 4.2, where rj is any row of a 
normalised Hadamard matrix of order 4n. Since T-JT* = 0 there are exactly 2n ones in 
rj. Let Ti be any permutation that moves the + l ' s of rj to the left and —l's to the 
right. Thus 

nn = 1 1 • • • l 

Let r 2 = ( 1 2n + l)(2 2 n + 2 ) • • • (2n An). We have r 2 r 1 r j = —T\Ti. So r1~1T2Tiri — —r^ 
Let r = T1~1T2TI, we have rr j = —rj. The matrix P 4 of the permutation T is the required 
permutation matrix, r*rjPj = —r*r» and P2 = I. • 

Let 
V := P 2 n +i (8) 7m2 

then 7 2 = I and V* = V. 

Definition 4.8 Let E be a ( 1 , — 1 ) matrix of order Anm2 and I the identity matrix of 
order Anm. Define the map p as follows: 

pE := E(I®T)V 

L e m m a 4.9 Let TZ = {Ki,K[} and S = {K2, • • • , K2n, K2, • • • , K'2n}, where Ki's are 
matrices of order Anm2 as defined on page Jfl. Then S, 1Z, and p satisfy the following 
properties: 

(i) p2mX — I for every matrix X of size 2nm2; 

(ii) (paX)(YY = 0 for all X e TI, Y € S, a = 0, • • • , 2m - 1; 

(iii) (pX)(pYy = XYl for all matrices X, and Y of size Anm2; 

(iv) E ^ o " 1 P'K, = 2 J and pfK[ = 0. 

Proof It is easy to see the validity of properties (i) and (iii). The proof of (ii) is an 
immediate consequence of Lemma 4.5 and properties of KiS and K[s. 
To prove (iv), we use Lemma 4.5 part (iii) to get 

m—l 

i=0 
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Now we have: 

M — L M — L 

5 3 ^ ( 7 ® ^ ) + ^ ^ ( / ( g i r ) ^ 
i = 0 i = 0 i = 0 

J ® J + ( J ® J ) V 

2J ®J. 

M — L 

5 3 ^ = 5 3 c 2 „ + 1 * L 1 ( 7 ® r ) + 5 3 c , 2 n + i * A ( 7 ® T i ) y 

- C 2 n + 1 * ( J ® J ) + C 2 n + i * ( J ® J ) V 

= C 2 n + i <g> J + ( C 2 r a + 1 ® J ) V 

= C* 2 n + 1 ® J + ( C 2 n + 1 ® J ) ( P 2 n + i ® 7) 

= C2n+i ® J + ( C 2 n + i P 2 n + i ) <g> J 

= C 2 „ + i ® ^ - C 2 1 1 + 1 ® 7 = 0. 

Following a notation of Ionin [5], we let M be the set of block matrices D = [Dij],i, j — 
1 , A n , such that: 

(i) for each i — I, • • • , An, there is a unique hi — hi(D) G {1, • • • , An], such that for 
j — hi, Dij = paKi for some integer a; 

(ii) for each i, i — I, - • • , An, there is a unique /i£ = K(D) G {1, • • • , An], h\ ^ hi such 
that for j = h'i, A j = ±paK[ for some integer a; 

(iii) for i — 1, • • • , An, and for j ^ hi and j ^ h[, = ±Ki or ±7<*/ for ? = 2, • • • , 2n. 

Clearly 77 is an element of M. Define a bijection a : M —> M by crZ? = D' = [D1^] 
where: 

(i) for i = 1 , 4 n , and j — 2,..., An, D'^ = A j - i ; 

(ii) for i = 1 , A n , if hi(D) — An or /ij(Z3) = An then TJ^ = pDiM; 

i=Q i=0 

• 
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(iii) for i = 1, ...,4n, if hi(D) ^ 4n and h'^D) ± 4n then D'a = - A , 4 N -

If XiM £ S1 and YVM £ S1 then X^Yfr = (-XiAn)(-YilMy = XiMYj in' 

• If XiAn £ TV and Y^An € S' then using Lemma 4.9 we can see that X'^Y-^ — 

• The proof for the case XiAn £ S1 and YVAn £ TV is similar and we omit it. 

• If XiAn £ TV and YVM £ TV then X[xYl\ = {pXiM){pYv MY = XiAnY$An. 

• 

L e m m a 4.11 £ * " m _ 1 ogH = 2J. 

Proof Using Lemma 4.9, if 1 < i < 2n we see that the (i, j)~block of the matrix 

9= Y^C»H is: 
8 N M - L 2 M - 1 2 M - 1 

[ 23 alH\l3 = ^ + 23 P ^ i 
J=0 a = 0 a = 0 

= 2 J + 0 = 2J. 

If 2n < i < An we have: 
8 N M — 1 2 M — 1 2m—I 

[ 23 °lH\a = £ paKi - £ « 
J=0 Q = 0 Q = 0 

= 2 J - 0 = 2J. 

• 

61 

It follows from the fact that p2m = 1 and from the number of blocks of D that the 
order of the cyclic group G generated by a is 8nm. 

L e m m a 4.10 For X. Y £ M, (aX)(aYY = XY*. 

Proof Let X, Y £ M and let X' = aX and Y' = oY. It is sufficient to show that, 
for i, i' — 1 , 4 n , 

~ -A-iAn1 i<,in­

let TV = {paKu ±paK[\a = 0, • • • , 2 m - 1 } and let S' = {±Kh ±K[\l = 2, • • • , 2n}. It 

is obvious that XiAn and Yi>An are either in TV or in S'. We have to check the following 

cases: 



Theorem 4.12 The matrix H is productive. 

Proof Using lemmas 4.10 and 4.11 we see that the matrix H, the set M and the 
bijection a satisfy all of the conditions of definition 3.4. • 

We are now ready to apply a recent result of Ionin [4] to construct many new classes 
of symmetric designs. We start with a definition. 

Let m = 8n 2 — 1 be a prime number. Then the matrix H above, and consequently 
the matrix —H, has a group of symmetry. Let G be the group of symmetry defined 
above. Upon Theorem 3.6, we get the following corollary. 

Corollary 4.13 Let m = 8n 2 — 1 be a prime number. 

• If q — {Anm — l ) 2 is a prime power, then there is a symmetric design with 
parameters 

(I6n2m2(qt + q1"1 + ... + 1), ( 8 n 2 m 2 - 2nm)q\ (An2m2 - 2nm)qt), 

for every nonnegative integer t. 

• If q = (4nm + l ) 2 is a prime power then there is a symmetric design with param­
eters 

(16n 2m 2(g* + g*"1 + ... + 1), ( 8 n 2 m 2 + 2nm)qt, (An2m2 + 2nm)qt), 

for every nonnegative integer t. 

Remark 4.14 We need to close the thesis with an explanation to link our work in 
different chapters of this document. Our original aim was to use the T-matrices in­
troduced in chapter 2 to generate a productive class of regular Hadamard matrices. 
Soon after we were convinced that this was a very tough project requiring longer time. 
We then turned our attention to Mathon matrices and Kharaghani matrices and our 
search was successful. We end this thesis with high hopes of getting an opportunity 
to spend more time on techniques akin to Xia and Xia and developing it into another 
productive class of regular Hadamard matrices. 
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