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ABSTRACT

On Crthogonal Matrices
Majid Behbahani
Department of Mathematics and Computer Science
University of Lethbridge
M. Sc. Thesis, 2004

QOur main aim in this thesis is to study and search for orthogonal matrices which have
a certain kind of block structure. The most desirable class of matrices for our purpose
are orthogonal designs constructible from 16 circulant matrices. In studying these ma-
trices, we show that the OD(12;1,1,1,9) is the only orthogonal design constructible
from 16 circulant matrices of type OD{4n;1,1,1,4n — 3), whenever n > 1 is an odd
mteger. We then use an exhaustive search to show that the only orthogonal design con-
structible from 16 circulant matrices of order 12 on 4 variables is the OD(12;1,1,1,9).
It is known that by using of T—matrices and orthogonal designs constructible from 16
circulant matrices one can produce an infinite family of orthogonal designs. To com-
plement our studies we reproduce an important recent construction of T-matrices by
Xia and Xia.

We then turn our attention to the applications of orthogonal matrices. In some
recent works productive regular Hadamard matrices are used to construct many new
infinite families of symmetric designs. We show that for each integer n for which 4n is
the order of a Hadamard matrix and 8n® ~ 1 is a prime, there is a productive regular
Hadamard matrix of order 16n%(8n% — 1)2. As a corollary, we get many new infinite
classes of symmetric designs whenever either of 4n{(8n2 — 1) =1, 4n(8n* - 1)+ 1is a
prime power. We also review some other constructions of productive regular Hadamard
matrices which are related to our work.
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Chapter 1

Introduction and statements of
results

Definition 1.1 A Hadamard matriz H of order n is an n x n malriz with £1 entries
such that: HH' = nl,, where I, is the identity matriz of order n.

The order of a Hadamard matrix must be 1, 2 or a multiple of 4. The conjeczure that
all Hadamard matrices of order 4n exist for every positive integer n is still an important
open problem. One way to generalise Hadamard matrices is by means of orthogonal
designs.

Definition 1.2 An orthogonal design A of order n and type ui, ..., uy, where each u;
is a positive integer, denoted OD(n;uy, ..., u:), 15 an 1 X 1 matriz with entries from
{0, £z, ... x2¢} (the x; commuting indeterminates) satisfying

4
AA = (Z ugmf) L.
i=1

Despite extensive work on the existence and properties of orthogonal designs, not
many significant results are known about these matrices. One verv useful constructive
method for orthogonal designs is by means of T—matrices.

Definition 1.3 Four type-! {0, £1} matrices T\, Ty, T3, end Ty of order n are T'-
matrices if they satisfy the following conditions:



1L TLGNT; =0 where i # §;
2 YTl =
3. L TT: =l

By combining orthogonal designs constructible from 16 circulant matrices with 7T-
matrices one can construct a large family of very useful orthogonal designs. Although
there is an orthogonal design of order 20 constructible from 16 circulant matrices,
nothing is known about the existence of such matrices of order 12. In chapter 2 we
will show that OD(12;1,1,1.9) and OD{4;1,1,1,1) are the only orthogonal designs
of type OD{4n;1,1,1,4n — 3) constructible from 16 circulant matrices when n is odd.
We also use an exhaustive search to show that O(12;1,1,1,9) is the only orthogonal
design of order 12 or 4 variables constructible from 16 circulant matrices.

The existence of amicable set of T-matrices has proven to be instrumental in the
construction of orthogonal designs,

Definition 1.4 The T'-matrices 11, T2, T3, and Ty of erder n are amicable T -matrices

if they satisfy the amicabilily condition:
TlTQL - TQT{ + T3T:1' - T:;T; - O

{Note that there is no specific order for T;s, and we can rename them to satisfy the
amicability condition in this order.)

In part of chapter 2 we show that amicable T-matrices of odd order do not exist. We
then conclude the chapter by a very important recent result concerning finite fields
[17]. Our hope is to develop and use this result in the future to produce some positive
results on the existence of T-matrices.

We devote the remaining chapters to the applications of Hadamard matrices in the
construction of symmetric designs.

Definition 1.5 A symmetric (v, k, A)-design is an incidence system (P, B) in which
P={pi,p2....pu} is a set of v points and B = {by,....b,} is a set of v blocks, each
block being a k—subset of P such that any two points of P are incident with ezactly A
blocks of B.



Symmetric designs can be expressed by their incidence matrices.
Definition 1.6 The incidence matriz of a symmetric (v, k, A} —design is a v X v matriz
A = [ay;] such that

Y 0 otherwise.

A (0, 1)-matrix A is an incidence matrix of a symmetric (v, k, A) design if and only if
AAY = (k= X + M.

In this thesis we only study symmetric designs constructed from productive regular
Hadamard matrices. The class of preductive Hadamard matrices was defined by Yury
Ionin in [4].

A regular Hadamard matrix is 2 Hadamard matrix with constant row sum.

Definition 1.7 A regulor Hadamard matriz H with row sum 2k is productive if there
15 a set H of matrices with row sum 2h and a cyclic group G =< & > whereé ' H - H
15 a bijection, such that

L. HcH;

2. For any Hy,Hy € H, (0H,){dH,)' = Hi HS;
3. |G| = 4lh|;

4 YgegoH =21,

Productive Hadamard matrices are normally used in Balanced Generalised Weighing
matrices over cyclic groups.

Definition 1.8 Let G be a multiplicatively written group. A balanced generalised
weighing matrix BGW (v, k,A) is a matriz W = [wy;. of order v with wy; € G U {0}
such that each row and each column of W contains ezactly k non-zero entries and such
that for any h 1, the mullisel {'whjw,}' 01 < J < v wp; # 0, wy; # 0} contains exactly
MG copies of every element of G.



A large class of balanced generalised weighing matrices of the type
BOW((q™ = 1)/{g = 1),q™ g™ = ¢™7%)

over a cyclic group G, where g is a prime power, /n is a positive integer and the order
of G divides ¢ — 1, is known (o exist.
A classical construction due to Ionin is as follows:

Theorem 1.9 If there is a productive regular Hadamard matriz H with row sum 2h
and if ¢ = (2h — 1)? is a prime power then for any positive inieger m there is a
syrnmetric design with parameters:

4h2 m+1 _ 1
(M on = g, (7 = g™ )
g-—1
Bush-type Hadamard matrices are all known to be productive.

Definition 1.10 A regular Hadamard matrizc H = [Hy;] of order 4n? where Hy; are
blocks of order 2n is Bush-type if Hy = Jon and Hydon = JonHyy = 0, for ¢ # J,
1<4,5<2n.

The class of Bush-type Hadamard matrices is the largest class of productive regular
Hadamard matrices that is known to exist. Indeed, it is known that there is a Bush-
type Hadamard matrix of order 16n? for all n for which there is a Hadamard matrix
of order 4n.

In chapter 4 we construct a new class of regular Hadamard matrices by combining
the class of Mathon matrices with Bush-type Hadamard matrices and then construct
a new family of productive regular Hadamard matrices.

Our main results in chapter 4 are as follows.

Theorem 1.11 If there is a Hadamard matriz of order 4n and m = 8n% — 1 is prime

then there is a productive regular Hadamard matriz of order 16n2m?.

Corollary 1.12 Ifm = 8n? — 1 45 prime and if ¢ = (dnm —1)? is a prime power then
there is a symmetric design with parameters;

(16n*m* (¢t + ¢ 1 + .- + 1), (8n*m? — 2nm)q¢’, (dn*m* ~ 2nm)q"),

4



for any positive integer t. Likewise if ¢ = (dnm -+ 1)? is a prime power then there is

symmetric design with parameters:
(167°m% (gt + ¢t 1 4 -+ 1), (8n*m? + 2nm)d', (dnm® + 2nm)qt),

for any positive integer t.



Chapter 2

Orthogonal matrices

2.1 Orthogonal designs

This chapter will be devated to orthogonal matrices and more specifically to orthogonal
designs. We begin with the definition of two important classes of matrices. We will
follow Geramita and Seberry (3] for the following definition and lemma:

Definition 2.1 Let GG be an additive abelian group of order t, order the elements of G
as zy,...,2z and let ¥ and @ be two functions from G into o commutative ring. We
define two matrices M = [my) and N = [n;! of order t as follows:

my; = Uz — ) and ny = Pz + ).
M and N are called type-I ond type—2 matrices respectively on the group G.

Lemma 2.2 If X and Y are type-! matrices and Z is o fype-2 matric on an abelian

group G of order n with elements ordered 21, ..., z,, and R = [r;] is defined as:
1 If 5+ = 0,
Ty = ,
0 otherwise
then:
o XY =YX,
e 7' =17;



« X7'=ZX";
o X! is o type—1 matriz;
o X +VY and X — Y are type-1 matrices;

e X R is o type-2 maotriz and ZR is a type—1 matriz.

Definition 2.3 Matrices A ond C of order n are circulant and back-circulant matrices
if they are type—1 and type-2 matrices, respectively, on the cyclic group Z,.

Example 1. A is a circulant matrix of order 5 and ' is a back circulant matrix of
order 5, where

n b ¢c d e a b o d e
e o b ¢ d b ¢ d e a
A=|d e a b ¢ C=|c¢cdecakbd
c de a b d e a b ¢
| b cde a| e a b ¢ d]

O

Definition 2.4 Four type-1 {0, %1} matrices T\, Ty, T3, and T; of order n are T-

matrices if they satisfy the following conditions:
() LT, =0;
(i) 1T = J;

(i) >, LT =nl.

Example 2. Matrices Ty, T,, T3, and Ty are circulant T—matrices of order 3.

100 010 001 000
T,=1010)|, To=|001|, Tz=|1004{, Ty=|000
001 10 ¢ 010 000

O



Definition 2.5 An orthogonal design of order n and type 51, ..., 8, where s, are positive
integers denoted OD{(n; sy, ..., 81), is annxn matriz A with entries from {0, £z, ..., £z}

{the x; commuting indeterminates) satisfying

!
A& = (O s,
i=1

There are several ways to construct orthogonal designs; one way is to use four circulant

or type—1 matrices in the Goethals—Seidel array as follows.

Theorem 2.6 Suppose there exist four circulant (type-1) matrices A, B, C, and D of
order n with entries from the set {0, £xy, ..., £} and suppose further that

) t
AA*—BB'+ CC'+ DD' =) sizll,
i=1

Let R be the back-diagonal {equivalent type-2) matriz of order n. Then

A BR CR DR
—-BR A D'R  —C'R
-CR -D'R A B'R
-DR C'R -B*R A
is an OD(4n; sy, ..., 8:).
A method to produce the proper matrices A, B, C. and I} to be plugged into a
Goethals—Seidel array is to use T-matrices and orthogonal designs constructible from

16 circulant matrices. Turyn [15,, was the first to use Tmatrices and orthogonal
designs constructible from 16 circulant blocks to construct new orthogonal designs.

Theorem 2.7 If there is an OD{4s;wu, ..., uy) constructible from 16 circulant s X s
blocks in variables x1,...,2, and there are T-matrices of order f, then there is an
OD(4st;tuy, ..., tun,).

Proof Let



be an OD{4n; w4, ..., #n) constructible from 16 circelant matrices Fy;, 1 < 4,7 < 4. We
have

Zzﬂ Uth,%, =7

0, i 7

Suppose that T, 75, Ty, and Ty are T-matrices of order ¢. Let

‘PilP;l + P%zP;z + Pispfg + E4P;4 = {

A=T12Pu+T1 2P +132 P +1T4® Py,

B=T8Pp+1@FPp+T&Pp+T,& P,
C:Tl®P13%T2®P23+T3®P33+T4®P43,
D=ToPs+Th@Pu+T38 Py +Ty1& Py

It is easy to see that
n
AA'4+ BB' + CC'+ DD' = > tuezily,
k=1

and A, B, C, and D are type-1 matrices. Thus they can be plugged into a Goethals-
Seidel array to give an OD(dst; tus, ..., tuy). 0

Degpite the fact that there is a Welch array of order 20 constructible from 16 circulant
matrices and an Ono-Sawade—Yumamoto array of order 36 constructible from 16 block
circulant matrices [14], nothing similar is known for order 12. We will first study and
settle the case for order 12.



The following orthogonal design is an OD(12;1, 1, 1,9) constructible from 16 circu-
lant matrices.

-

nonon e 77 b 7o non
non o noa 7 bW 1T
oy B ona Hnmb [
a N7 nnn cn oy bn7y
ne® HHH mewn [ by
mTnma [ [ TY[ U N 7 b
bow 27y nno oaun 7w
nmbn mnich nno T oen
n Wb THonct nnn  nia
cin bW w an® [TAY
noc 7 n b7 noa 7onon
7o oc 7onb nna [T

We will first show that OD{12;1,1,1,9) and the trivial 0D(4; 1, 1,1, 1) are the only or-
thogonal designs of type O (4n; 1,1,1,4n—3) constructible from 16 circulant matrices
whenever n is an odd number. We will then show, by an exhaustive computer search,
that this OD(12;1,1,1,9) is the only orthogonal design in four variables constructible
from 16 circulant matrices.

Theorem 2.8 If n is an odd number then OD(12;1,1,1,9) and OD(4;1,1,1,1) are
the only orthogonal designs of the form OD(4n;1,1,1,4n — 3) constructible from 16
circulant matrices.

Proof Let
Py P Pz Py

P P Py Py
Py Py P Py
Py Py Py Py
be an OD{4n;1,1,1,4n — 3) constructible from 16 circulant matrices Py, 1 <4, 5 < 4.
Let a, b, ¢ be the variables that appear once in each row {and column) of P and let %

(2.2)

10



Ire the variable that appears dn — 3 times in each row. We have

S PPl =(a"+ P+ P+ {dn -3, 1<i<4 (2.3)
154
and
S PsPL =0, 15i k<4, i#k (2.4)
15j<4

Since F; is a circulant matrix satisfying (2.3), each of a, b, or ¢ can appear only in
one block F;;. For convenience we will denote the block containing x by X, and call
it z—type, for z € {a,b,¢}. The block whose entries are only 7 will be called n-type.
So the matrix £ in the new notation is of the form:

M, A B C
Ay =My, —Cy B,

—B; —C3y M; A
Cy —-By Ay —-M,y

P= {2.5)

where each A;, By, C;, M, is an a, &, ¢, n-type matrix respectively. Since A;, B;, and C;
are circulant matrices, by shifting the rows or columns we can always put the variables
a, b, and ¢ on the diagonal of the corresponding matrix and then the matrix will be
called a diagonal matrix. By column permutations on block columns 2, 3, and 4 of the
matrix P we can make A;, By, and C) diagonal matrices. By row permutations on
block rows 2, 3, and 4 of P we can make Bz, Az, and Ay diagonal matrices and then
by column shifts on block row 1 make A, a diagonal matrix. It is easy to see that the
fact that By, Cy, and B; being diagonal matrices together with condition (2.4) implies
that (4 is a diagonal matrix. By the same reasoning, (3, By, By, and Cy are diagonal
matrices. Because 4,, B, and C] are diagonal matrices we have:

My=MA =A=al+ A B=B=bl+B, andC, =C =cl + ("
where A', B', and C" are {0}, £n} matrices. Then by (2.3) we have:

MM + (al + AMal + A") + (] + BY(bI + B") = (c] + C'){cI + C")
=MM + AA"+ BB+ C'C" + (a® + 0* + )]
+a(A' = A") + b{B' + B") + (C' + C"*)
= (a% + b + & + (4n — 3)n¥),

11



sowe get A" = —A' B = —B' and C" = —C’ and also
MM — A% — B? - C" = (4n — 3)5°I. (2.6)

As A,, B,, and C, are diagonal matrices we can write Ay = al + A}, By = b + Bi,
and Cy = ¢l + C} where A}, B, and C}, are {0, £7} matrices. Considering block rows
1 and 2, by (2.4} we can write

MAL — AMY — BC, + OBy = M{al + AS) — (al + AYM
— (b + B') (el + CF) + (eI + CY(I -+ By)
= a[M — M)+ MA} — A'M]
+b(C = CHY + o B — BYY = B'Cl ~ OB
= 0. (2.7)

Thus My = M*, B} = B", and C} = C". As By = (b + BS) and Cy = (eI = C) we
have By = B* and C; = C*. By checking the orthogonality of block rows 1 and 3 we get
M3 = M* and by checking block rows 2 and 3 we get M* = My = M} = (M) = M,
so it follows that

M= M

By checking the orthogonality of the other block rows and columns we achieve a similar

result for the other blocks so the matrix P can be converted to the form

M A B C
, A -M -Ct B
P=1_5 _ct m 28)

¢ -—-B" A -M

By (2.7) we have M AY — A'M} = MA" — AM' = MA" — A'M =0, but we also know
that A" = - A", so M(A" — A') = —2M A" = ( and thus

MA =0. (2.9}

Now we want to find all the solutions of (2.9). As nis odd and A’ is a circulant matrix
and A" = —A’, the row sum and column sum of each row and column of the matrix

12



A’ is 0 and thus it is clear that £7./ is a solution of equation {2.9).
We will now show that £nJ is the only solution of (2.9). We know M is a £n-matrix
and A’ is a {0, £n}-matrix. Let 4’ = nd and M = nM. So M isa +1 and Aisa
{0,£1} matrix. By (2.9) we have MA = 0. nJ is a solution of (2.9) so JA =10. By
adding these two equations we have (M + J)A=0. Let N = (M + J)/2. Then NV is
a {0,1} matrix and

NA=QO. (2.10)

If A is a solution of (2.10) in Z it should be a solution of (2.10) in Z,. In Zs, A =
eire(0,1,...,1) = J - I. In Z, by (2.10) we have

NA=N(J-1)=0,

S0

N =N

As A is a circulant matrix it has constant row sum and column sum. It is clear
that A"J is either 0 or J. So, AV is either 0 or J.

Thus xJ is the only solution for M and +nJ is the only solution for M. As
M = nJ by (2.6) we have

N J?— A% — B? - C% = (4n - 3T (2.11)

Let e, be an nx1 vector of all cnes. Since the row sums and column sums of the
matrices A, B’, and C' are zero we have e, A’ = ¢, B’ = ¢,C’ = 0. By multiplying the
two sides of equation (2.11) by e, we have

n*nle, = 7*(4n — 3)ey,.

Thus {n —3)(n—1) =0 and n = 1 or 3, and this completes the proof. O

2.2 An exhaustive search

We were able to prove using an exhaustive search that the only orthogonal design of
order 12 constructible from 16 circulant blocks on 4 variables is 0D(12;1,1,1,9). The
main technigue in this exhaustive search is the reversing process which was introduced

13



for the first time in [11]. In order to find the desired orthogonal designs, first we
characterise all Hadamard matrices of order 12 constructible from 16 circulant blocks.
We start by finding all 3 x 12, {=1} matrices

H" = [ Hy Hp His Hy j
constructible from four circulant blocks Hi1, Hys, His, and Hyy such that:
H'H"™ = 121,.

Let H"” be the set of matrices H” that we have found. Now by checking all the pairs
H{, HY € H" such that
Hanrt =0
1y =

we are able to find all 6 x 12, {£1} matrices

_ Hll Hl? HIB H14

H =
Hyy Hp Hyy Hou

constructible from 8 circulant blocks Hyy, ¢ = 1,2 and j = 1,2,3,4 such that
.H-Iit..?'ht — 1216

Continuing the same method by checking all the pairs of above matrices that satisfy
the orthogonality condition we can find all Hadamard matrices H = [H;;,, 1 <4,7 < 4
constructible from 16 circulant blocks. Now we implement the reversing process.
Consider that H; = [hy| and H; = [k are two Hadamard matrices of order 12
constructible from 16 circulant blocks. Let D = [d;;] such that:

d . 44 if h’U = 41 and kU =+l
v +5 if hz'j = =1 and k@j = Fl1.

Then D is a candidate for an orthogonal design of order 12 constructible from 16
circulant blocks on 2 variables @ and b. If D is orthogonal we are dene. Comparing
all possible pairs of matrices f; and I; we classify all desired orthogonal designs
on 2 variables. All we found were one of each of OD(12;9,3), OD(12;10,2), and
OD(12;11,1). From this fact it is clear that OD(12;1,1,1,9) is the only orthogonal

14



design of order 12 constructible from 16 circulant blocks. We tried to use the same
method to classify orthogonal designs of order 20 constructible from 16 circulant locks.
Because in the first stage the number of 5 x 20 matrices H” constructible from 4
circulant blocks such that H"H" = 2013 is huge, we were not able to run the second
stage. However we did a random search instead of an exhaustive search and found
an OD(20;a,b) constructible from 16 circulant blocks for each pair (a, ), such that
1<a,b<19and a+ b= 20

2.3 A non—existence theorem

In this section we show that there do not exist amicable T-matrices of odd order.

Theorem 2.9 There are no four full circulant T-matrices T1, To, Ty, and Ty of order

n if n 45 odd satisfying:
NI - LI+ BT - T =0 (2.12)

Proof Assume otherwise for a contradiction. Reduce the matrices mod 2, {(notice
that A = —A for every matrix A.} Let U =1, + 15 and V = T3 + T, Then using the
complementary and amicability conditions we obtain:

UUt+ vV = O T + TTh + TTE + 13T + TaTy = 1.
We have U +V = J, s0 V = U + J. Using that T;J* = JT for circulant matrices T;
we have

I = yut+vvt
= UM+ U+ UJ 4+ JU + T
= JJ
= J

This is a contradiction. 0

15



2.4 A family of T—matrices

In this section we introduce an infinite family of T-matrices., These matrices were
introduced by Xia and Xia in {17]. The method is to divide GF(g?) where ¢ = 8m + 3
is a prime power into so called C—partitions. Note that we are reproducing the work of

Xta and Xia in [17] and [16] here in this thesis with some minor modifications.

In order to construct such matrices we show that a special class of supplementary
difference sets exists. Supplementary difference set (SDS) is a generalisation of differ-
ence set. Let G be an abelian group with addition 4, subtraction &, and zero element
8. Consider the group ring Z|G] of the group G over the ring of integers; the elements
of Z|G] can be expressed as polynomials

Z a:g;
i

where a;, € Z and ¢; € G. In Z{G] addition is defined by:

(Z ﬂ-iﬂi) + (Z ba‘fh‘) =Y (o, + b)g.

4

If G is a fintte field multiplication is defined hy:

(Zi:aiga) (;bim) =S50S aty | e

k 9i95=gk

Let
T=> gendT*=T-6.
geG
For non—empty subsets A and B of G we define:

AoB= > (acb),

acA, bel
AA=As A,
A(A,B) = (AsB)+(B& A),
AD = A®@, 4) = 0.

16



It is easy to see that A(A, A} = 2A(A).
The following trivial identitics are useful:
If BN C =0 then
A(A,BUC) = A(A,B)+ A(A,C), (2.13)

A(BJUC)=A(B)+ A{B,C)+ AC). (2.14)
Definition 2.10 A k-subset D of an abelian group G af order v is called a (v, k, A)—

difference set if
AD=(k—=X0+ AT

for some non-negative integer A.

Definition 2.11 A collection of subsets {Dy, Dy, ..., D.} of an abelian group G of
order v such that |D;| = k; is called a (v, k1, ka, . .., ke, A)—supplementary difference set

if
AD = (Zki_,\)eﬂcr

i=1

for some non-negative integer A

Clearly if r = 1 the supplementary difference set is equivalent to a difference set.

If r =4 and A = 3%, k; — v the collection {D), Dz, D, D:} is called an SDS of
type H. Now we show that an SDS of type H exists where G = GF(q?), ¢ = 3(mod 8)
is a prime power, and every element of G appears an even number of times in the
system of {Dy, Dy, Dy, D4}, Later we prove that one can construct 7-matrices using
this particular type of SDS.

Consider that v = g%, ¢ = 4m + 3 is a prime power, and g is a generator of the
multiplicative group of G = GF£(v). Define

Eio= {80t ati i — o am)}, i =0,1,...,8m 7,
S; = E{UE¢+4m_;.4, T, = Zh, ’i:O,l,...,‘l‘m-fS.

hes;

17



We have:

4m+3

L

=0

Define

drn+3

> 2k

i=0 hES;

4m—+3 2m

Z 2(94(m+1)(2j)+z +g4{mf1)(2j+1)+i)
i=0 j=0

16m?424m~8

2

k=0

E, = E; as 1 = j(mod 8m + 8),

It is easy to see that gF; = Fip1, 95; = Siyy, and ¢T; = T;1,. Define

®y = ALy,

@@:A(EU,E{}, '2;: 1,2,...,8’,"?’1—;—7,

We have

AE;

;= ; as it = j(mod 8m + 8).

2m  2m

— Z ng(m+1)j+t’ ®98(m+1)j’+i

J=0 3/=0

2m IZm

- E Zgi(ga(m+l)j o 98(m+1)j’)

=0 j1=0

2m  2Zm

— gi Z ng(m+l)j S 98(m+1)j’

=0 7'=0

= Qi‘l’o

18



for i =0,1,...,8m + 8 Similarly we can show that
A(E, E;) = §"®;-
for i # 7, and also
Dy =g'®; = g'Pamis—
fori=1,2,...,8m+ 7.
Lemma 2.12 Let G = GF{g*) be an extension of GF(q)} then
Eg U E4m+4 = GF(Q)*

Proof It is sufficient to show that ¢%™*Y ¢ GF{g). Consider the polynomial 277! &
1 = 0 in GF(¢*). Clearly this polynomial has ¢ — 1 roots, since the order of the
multiplicative group of GF(q) is ¢ — 1 we have 97! = 1 for all z € GF(g). Thus all
the roots of the polynomial 22 © 1 =0 are in GF(g}. On the other hand we have

(gl ol =¢Tlgl=101=0.

Since ¢*™*1) is one of the roots of the polynomial 297> &1 =0, it is in GF(q). By a
simple counting we have:
EyU Eyra = GF(q)"

Here we need to show that:

Lemma 2.13 /1] The set of all non-zero squares in GF(q) forma (g, (g - 1), 3(¢ - 3)) -

difference sel.

Proof Let o be a primitive element of GF{g) and let D be the set of all non-zero
squares in GF(g). We have D = {a® a? ...,0%}. Since ¢ = 3(mod 4) we have
~1¢ Dand —D = {a,0%...,a" 1} Let q; and b, i = 1,...7n be the set of all
integers such that

1= o™ e

Then for any o € D we have

ot = gRleatt) g 2t

19



So every representation of 1 as the difference of the elements of D gives us a represen-
tation of o* as the difference of the elements of D and vice versa. For any element

a®=1 ¢ D we have o®T! € —D so o®*! = —o®' for some integer #, we have

€ ’ B T
azm—l — D/_{2(1;,+t) o a2(2,+t I3

Thus every representation of 1 as the difference of the elements of D gives us a rep-

resentation of a®t! as the difference of the elements of D and vice versa. So D is a

difference set in GF(gq). Clearly k = |D| = ;(q — 1). Since we have k(k — 1) differ-
ences in D and each of the ¢ — 1 non—=zero elements of GF{g) appears A times we have
k(k—1) = Mg — 1) so we have A = (g — 3). ]

Lemma 2.14 The polynomials ®; satisfy the following properties:
(i) o= (2m + 1)8 + mTy;
(ii) Pames = (2m + 17T,
(i) @ + Brames =T —TLp~Th, i=1,2,...,4m + 3.
Proof To prove (i) using Lemma 2.12 and 2.13 we get
Dy = AEy = |Ep|0 +mTy = (2m + 1} + mTy.
To prove (ii) we have:

Dimia = A(Ey, Egmsa)
= A(E0,GF(@)\ (£ U8))
= A(Ey, GF(q)) — A(Ey, Eo) — ALy, 0)
= 2E|(Ty ~ 6) — 2A(Fg) — Ty
= 202m+ )75 +2(2m ~ 1}8 — 2(2m + 1)8 — 2mTy — T
= (2m+1)7T,.

Since ¢ = 3(mod 4) the polynomial 22 & 1 is irreducible in GF(q) and the elements of
GF(q¢*) can be represented by polynomials ai © b, a.b € GF{qg) where i* = —1. Let

20



h = g*™=1 we know that h is a primitive element of GF(g). We have (g¥m1? =
Rl = —h% = 2% for some integer t, so

242 hti

g

Thus we have:
Ey = {h2j|j =0,...,2m},

ng+2 S {hjﬁij = 0, Ve ,4m - 1}.

Now we have:

Domiz + Pomse = A(Eo, Eamso) + A{Eo, Eamas)
= A(EU: 52m+2)
= > ((B*c ki)t (Wiokr®))

0gj<am-1
b<k<2m

= Z ((n*F & K1) + (Wi @ h2FHTY)

0<j<dm~1
0<k<am

= > (Wioh
0<g k<am-+1

= T - To — Topman.

For 1 <{ < 4m+ 3 and [ # 2m + 2 we have ¢' = h% & AP for some integers o and
3. We have:

Sy = E\UE ames = {R*Yi@ P =0, 4m — 1}

21



Thus

q)i' + ®I+4mr4 = A(Eo, Sr)
= z ((h% o (ho‘+ji & hﬁ-ﬁ-j)) + ((h‘“‘ji o) hﬁfj) o h‘z,k:))

0<j<am+1
Oxk<2m

= Y (kiR + (i e b g pP))

0<j<4m1
D<k<2m

= Y (Vie (W arh)

0 k<dm~1

= E (R*Higa) — E (heii @ hFHT)
05 <am1 << dm+l
e GF(q;

- T -Ty-T.

O

Lemma 2.15 If D = U2 E, U(UZH 8, ), 0 < t < 2m+1, where o, # az(mod 4m+
4) for i # j{mod dm +4), end a; £ b;, 1=0,...,2t, j=1,...,2m + 1 —t, then

AD = 2@2m+1)2m+1~1)8 + (4m? +4dm + 1 — )T
2t
_L(t —2m - 1) ZTm + A(UELOECH)

=0

Proof We have:

A(Ea,; So) = AlEays Bry) = AlEay; Byjrama)
= g"®p o, + 9" Pp,—a;+amta
= g"(®b,—a, + Pb;—a;tam+a)
= ¢g"(T" =Ty —Ty,—a)
= T" =T, - T,
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Thus

AU Ea

13 )=

We have:

U2m+l tS ) — Z

2t 2m4-1-t

.
[

i=0 j=1
2m+1—t
= Q+102m+1-0T" —(2t+1) Z T,
2t
—@m+1-1)> Ta.
=0

A(Sbj) - A(Eb;,) + A(Ebj +4m+4) + A(Ebj: Ebj+4'm+4)
= "0y + g" DG - g1 Dy g
= g%(9m + 1)8 4+ mT] = ¢ ¢ +{(2m + 1)0 + mTp) + g% {(2m + 1)T,

If i £ j we have

A(Sh;, Sb,) =

(2m+2)0 + (4m + 1)T5,.

A(Ey,, Ey,) + A(Ey, Eyypamss) + BB ramea. E,)
+A(Eb1 ram+as Eoyrama)

9" (Db, + Poy—psamea) + ¢TI By, + Py byt
9”’ (T* = To — Th,—p,) + ¢ g™ 4T = To = Tiy v,
2961‘(1“* — Ty =Ty, -n,)

201" =Ty, - Ty, ).
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Thus

Zmrl-t 2m—t 2m—+1—t
ALRTIS ) = Y AS, Y > A(S,, Sy)
§=1 i=1  j=i+l
2m+1—t
= m+1-tm+260+dm+1) > Ty
i=1
2m—tIm+1-t
+> 3 AT -T, - T,
i=1  j=i+4l
2m+1-¢
= 2m+1-t)dm+2)0+2+1) > T,
i=1

+(2m - t)(2m + 1 - )T,

Now we have:

AD = A(UELDEM) + &(Uu%:;l—tsbj) + A(Ufi Eﬂ-i%U?ztl"'l—tSbj)
= 22m+ 1)(2m+1— )8 + (4m® ~dm + 1 — t))7T"
2t
+H{t—2m 1) T, -+ A(ULE,).
=0

Let m = 2r. We have ¢ = 8 — 3 is a prime power. Define;
Fi= u?;oEé‘Sj—ri: 1=0,1,...,7

Gii= Y ai=0,1,23

eEFUFiy

Lemma 2.16 The subsets I, 1 = 0,...,7, have the following properties:
(i) A(Fy, F5) = A(R, Fa);
(i) 2030 o g)AFy = 8(2r + 1)(Ar + 1) + ((2r + 1)(dr + 1) = )T,
(i) (0, g)A(Fy, F3) = (2r + L){4r + 1)T*;
(iv) A(Fo, Fo U Fg) = (2r + 1)2T* — (2r + 1}{Go + Ga).
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Proof To prove (i) first we have to show that

where h = g*"4. We have:

hd; = RA(Ey, E;) = A(hEy, hE;}
= A(OE, OF) = A(E, E3)
= &,.

Now we have:

v 2r
A(F\, Fy) = ZZA(ESHI:ESJ+4)

=0 j=0
2r v

= Z Z A(EB(i—r)-'—la Es(j+r)+4)
i=0 =0
2r  2r

= ZZQSJ+8T+4®8(]‘—¢+2P)+3
i=0 j=0
2r  2r

= Z Z 983+4m+4(1)8m+8m3{j—i+m)—3
i=0 j=0
r 2r

= ZZQSJQ4m+4®8(i—j)+é
i=0 j=0
2r  2r

- 22983@3(7;_3-)+5
i=0 j=0
2r  2r

= ZZA(ESJ?EST'-H‘S)
i=0 j=0

= AR, F).

To prove {ii) we follow the proof of Lemma 2.13. Let o; and b;, i = 1,...n be the
set of all integers such that

G = Fm o™ 1=0123
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Bi4]

Then for any ¢ we have

gt = ghlaitt) o Bl

So every representation of ¢’ as the difference of the elements of F, gives us a represen-

8¢+l

tation of g™ as the difference of the elements of Fy and vice versa. For any element

, . P .
g*H1 74 we have ¢®+1+ = 9¢™ ! for some integer ¢, thus

gat+r+4 — gs(b1+t’) P g8(ul+t’).

So every representation of ¢' as the difference of the elements of Fy gives us a rep-

Bt-+l+4

resentation of g as the difference of the elements of Fy and vice versa. So we

have:

3
AFy = (2r + 1)(4r+ 1)0 4+ Y oG
i=0
Now by counting the number of terms of the two sides of the above equation we have:

3
(2r+ 1) dr+ 12 = 2r + D{dr + 1)+ 2(2r + 1)(4r + 1) Za

80 )
Zai = %[(2? +1)(ar+1)—-1].

Thus we have:
3
203 D gVAF = 8(2r 4 1){4r + 1)0 + ((2r + 1){4r + 1) = 1)T™,
i=0

To prove (iii), using the same argument one can say that:
3
A(Fo, Fs) =) oG,
=0

Counting the number of terms of the two sides of the above equation we have:

3
2(2r + 1) (dr + 1) = 2(2r + 1)(4r + 1) Z Q.

i=0
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Thus .
Eai = {(2r+1)(4r + 1).

=0
Now we have:

3
(3" ¢YA(Fy, Fs) = (2r + 1){dr + )T

=0
To prove (iv) we have:
2r  2r
AF,FRUF) = )3 AlBs By U Byginse)
i=0 j=0
2r  2r
= Z ZQSL(‘I’SU—?}% + Pygjmiyrors6)
i=0 §=0
2r . 2r
= ZQ& Z(T* — To = Ty(j—iy42)
i=0 Jj=0
2r
= (21" + 1)2T' — (27" + 1) Z(T& “+ T8i+2)
=0

= (2r+ 1)*T" — (2r + 1)(Gy + G).
a
Theorem 2.17 There is an SDS {Dy, Dy, D3, Dy} of type H in GF{q) such that every

element of GF{q) appears an even number of times in the system of { D1, Dz, Dy, Da},
where g = 8 + 3 15 a prime power.

Proof Let
Dy = (UZg Ssis1) U FH U F3 U F,
Dy = (U123 S U (U Siava) U (UL Ssies) U F1,
Dy = (UiZg Sais) U Fo U Fa U F;,

Dy = Uiy Ssi) U (U2 Sgien ) U (U2 Ssygn) U F.



It is easy to see that each of the subsets Dy, Dy, D3, and D, satisfies the conditions of
Lemma 2.13, so we have:

ADy = 2r(dr +
ADy = 2(d4r+1
AD; = 2r{dr +
AD, = 2{dr—1

)9 (T 12T — 7{Gy + Go + G3) + A(Fy U F3 U F).
(3r+ 10+ [(4r + 1) =777 = 3r + 1)G1 + AF,
0+ (T + 20T — 7(Go + Gy + Go) + A(Fy U Fy U Fy).
(3r + )6 + [(dr +1)? = 7T — (3r + 1)Gs + AF;.

— e

Following the proof of Lemma 2.16 part (iii) one can easily show that AF) = AFy and
AFy = AFg. Now we have

4
SCAD; = 4(4r = 1)+ 2(22r% = 107 + 1)T" — 2r(Go + G1 + Ga + Gs)

—(2r + 1)(G1 + G3) + 2AF, + 20F; + AF + AF + AFs + AFg
"i‘A(Fo,Fg) - ri\(Fo,.Fb) -+ A(FQ, F5) -+ A(Fg! Fﬁ) + A(FQ,FQ) - A(Fo, Ff,)

= 4(4r + 120+ 2(2207 L 9r + 1)T" — (2r + 1}(G + G3)
+2(AFy + AFL + AF + AF) + A(Fo. F3) + A(Fy, Fy) ~ A(Fy Fs)
+A(F3, Fg) + A(Fo, F, U F)

= (4r+ )26+2(22r +9r + )T — (2r + 1}{Gy + G3)
Tz(zg JAFy + Zg (Fo, F3) + A(Fy, )

i=0

= 4(8r+3)(dr + 1)8 ~ (64r2 +32r + 3T
= ¢*0+q(qg—2)T.

It is easy to check that every element of ¢ appears an even number of times in the
system of {Dy, D,. D3, Dy} and the proof is complete. m

Next we want to show the relationship between SDSs and T—matrices. In order to
make the connection we should introduce the concept of a C-partition of an abelian
group. We construct T-matrices from C'-partitions and C'-partitions from supplemen-
tary difference sets of type H such that every clement of the abelian group appears an

even number of times in the system of our SDS.
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Definition 2.18 The family of subsets {Ay, Aa,. .., As) of an wbelian group G of order
v 1§ called a C—partition if it satisfies the following conditions:

i) A,nA;=0;
{#) U A=Gy
(i) S50, AA =08+ YL A4, Aied).
Theorem 2.19 There is a C—-partition (A1, Az, ..., Ag) of an abelion group G of order

v if and only if there is an SDS {D;, Dy, Dy, D4} of type H in G such that every element
of G appears an even number of times in the system of { Dy, Dy, D3, Dy}

Proof Let

D, = AjUAyUA;UA,
Dy = AUA UArU Ag,
Dy = A} UAgU Az U Ag,
Dy = AjUA;UAUA,L

During this construction using 2.13, 2.14, and the fact that G = U?_, A;, it is not hard
to show that:

4

8 4
DSTAD, = AALG) - A, G)+ D> Ai— Y AlAy Aia) + AG
=1 i=1
= vl (2(|4] - {4s]) +0)T

= w0 (> iD= )T (2.15)

=1

Thus { D4, Dy, D3, Dy} is an SDS of type H; it is clear that every element of G appears

an even number of times in the system of {Dy, Da, D3, Dy}

Conversely, let {D1, Dq, D3, Ds} be an SDS of type H in G such that every element
of G appears an even number of times in the system of {Dq, Dy, D3, Dy} Let

A1=D10D20D3HD4, A5=D_1ﬂﬁgﬂ§3r‘|D4,
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Ay = (DiN Do)\ A1, As = (DanNDy)\ Ay,
Az = (D1 N D3)\ Ay, Ar = (D2aNDy) \ Ay,
Ay = (DN DO\ AL Ag = (DN D)\ Ax
Let Az be the number of times that the element z € (7 appears in the system of
{Dy, Dy. Dy, Dy} We know that A, is either 0, 2 or 4; we have the following cases:
o If A, =0thenz e Asandz ¢ A; forall 1 <i<8§,i#5.

e fM, =4thenzeAjandzr ¢ A forall 1 <i <8, i#1.

o If A, = 2 without loss of generality consider that z € D; and z € D,. Since
Ar = 2 we know that # € Dy and © ¢ D, thus x € Ay and z ¢ A; for all
1<i<8,i42

So for any element r of G we can say that r is exactlv in one of the subsets A,
i=1,....8. So we have

AiDAJ:GJ, fOI"l:?éj, 15l_}£8

U?=1Ai = G

Thus the subsets (A, ... Ag) satisfy the first two conditions of Definition 2.18. Now we
show that they satisfy the last condition too. It is clear that:

Dy = AjUA;U AU Ay,
Dy, = A /UAUA7U A4;,
Dy = AjUAgU A3z U As,
Dy = AUAsU AU A,
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From 2.15 we have

4 4
o+ (D _ID|~v)T = > AD;
=1 i=1
8 4
= A(ALG) — A5G+ A =D AlA, Ava) ~ AG
i=1 =1
8 4
= (201A1] = |As]) + )T + zAz' - Z A{A; Aits)
=1 i=1
4 8 4
= (Z |Ds| —v)T + ZAZ' - ZA(AT':AH!I)
i=1 i=1 i=1

So we have: ] ;
SN =0+ AA, Aia).
i=1 i=1

Thus (A, ..., As) satisfies the condition (iii) of 2.18 and the proof is complete. O

Theorem 2.20 If there is o C—partition (A1,...,Ag) of an abelian group G of order
v then there are T-matrices of order v.

Proof Let
T=[tf)], i=1,2.34 1< k<,
where
L, H gog€4i,
tgl): -1, if gkengAz‘+4a
0, otherwise.

It is not hard to see that:

e The matrices T; are type one matrices;
e ,NT; =10

o > IT = J.
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To complete the proof we have to show that Z;.Ll TTF = vl It is sufficient to show
that [Y0_ TiTF); = 0 for 1 < j,j' < v, j # §'. We count the number of times that
z‘fftﬁf}c =1 and tg?tg?l = -1 for fixed j and j° such that j # 5, i = 1,2,3,4, and
k=1,...,u. If 1‘533 =1 and tgﬁl =1 we have gz © ¢g; € A; and gx © g;» € A;. Since
(9+99:)S (gx D gy) = gy ©g; we see that the number of times that tgzk) =1 and tgti =1
is equal to the coefficient of g @ g; in AA,; for a fixed i. Similarly we can show that
the number of times that tg:} = —1 and tﬂ = —1 is equal to the coefficient of g; © gy;
in AA;4 for a fixed 4. Thus the number of times that t;ftﬁlk =1fori=12,341is
equal to the coefficient of g © g; in Zf;l AA;. By the same argument one can say
that the number of times that t;tk)t;fl = —1fori=1223.4is equal to the coefficient

of g5 e 3y in Z;]:l A(Av Ai+4)- So U'Sing

g 4

STAA Y A(AL Aig) =08
i=1 i=1

we have

4
STTT =vl
i=1

O

Theorem 2.21 [f g = 8m + 3 is a prime power then there are T—matrices of order
2
v =g

Proof By Theorems 2.17, 2.19, and 2.20 we can produce T-matrices of order ¢°
where ¢ = 8m + 3 is a prime power. C
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Chapter 3

Productive Regular Hadamard
Matrices and Symmetric Designs

3.1 Introduction

One of the most outstanding results in the production of many new symmetric designs
belongs to Yury lonin.

The use of a special regular Hadamard matrix of order 36 in a class of balanced
gencralised weighing matrices was initiated by lonin in [5] and this was the beginning
of a number of very successful papers like (5], [4], [7], and [6] in which many new classes
of symmetric designs were introduced. The hardest part of Tonin’s construction was the
introduction of a group of symmetry related to each single design. Hadi Kharaghani
in [10] reintroduced the class of Bush-type Hadamard matrices and demonstrated that
the group of symmetry for these matrices was trivial. Furthermore, it was through
these works that he was led to twin designs (10| and Siamese twin designs [9]. In a
recent work Yury lonin introduced the class of productive regular Hadamard matrices,
His method is now applied straight to Hadamard matrices. In this chapter we will
introduce Bush—type Hadamard matrices and productive regular Hadamard matrices
and show that Bush—type Hadamard matrices are productive. The methods used here
borrow from both Ionin and Kharaghani.

We first need to introduce balanced generalised weighing matrices. We begin with
a definition.
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Definition 3.1 Let & be o multiplicatively written group. A balanced generalised
weighing matric BGW (v, k. X) is a matriz W = [wy;] of order v with wy; € G U {0}
such that each row and each column of W contains exactly k non—zero entries and for
any h # 1, the multiset {whjwal 11 <j < v,wny # 0.wyy # 0} contains exactly A/|Gj
copies of every element of G.

Here we cxplain Gerald Berman’s method {2] to show that a specific class of balanced
generalised weighing matrices exists.

Definition 3.2 Let m be a positive infeger and g be a prime power. The affine ge-
ometry of dimension m over the field F, = GF(q), denoted AG(m,q)} is the vector
space (F;)™. The points of AG(m,q) are m-tuples x = (z1,...,4m), &; € F, and
hyper—planes of AG(m,q) are the set of pownts that satisfy

ULy + o Uy = U, u, u; € Fy.

Theorem 3.3 (Berman 1978) If g is a prime power and G is a cyclic group such
that the order of G divides g — 1 then there is a

BGI’V((qm _ 1)/('1} _ 1)=qm~1}qm—1 _ qm—2)
over G, for every positive integer m.

Proof Let £ = AG(m,q) and let P be the set of points of £ on removing a point
p. We have |P| = ¢™ — | and let H be the set of those hyper-planes of £ that do
not include the point p. Without loss of generality let p = (0,0,...,0), then every
hyper-plane of v € H can be expressed by the linear equation u;z; + ++ + U ZTe, = 1
where the coefficients u;, 1 = 1,...,m are not all zero. Thus every hyper-plane v € H
can be expressed by an m—tuple u = (uy,...,un), 4y € GF(g), i = 1,...,m. Using
this notation it is clear that |H| =¢™ — 1. A point z € P is on a hyper-plane u € H
if and only if z-u = 1. In order to count the number of points on a hyper—plane
1 = (U1, .-, Uy); if one fixes the first m — 1 coordinates of x = (x1,...,Zm} then one
can find z,, such that = -4 = 1 and it follows that every hyper—plane has ¢™~! points
and every point is on ¢™~! hyper-planes. Let A be an element of GF(g) of order ¢ — 1,

define the map ¢, : P — P such that
T = AT = (AT, ... AZm).
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Let = be a point on a hyper-plane u. Since (Az)- (A7 u) = 1, ¢, maps the hyper--plane
v onto A u and we have dyu = A~ 1u. It is clear that the order of ¢, is g — 1. As every
point x € P or every hyper-plane u € H has at least one non—zero coordinate the map
@ has no fixed point or fixed hyper—plane. Let

[x] ={fzx:k=0,...,q—1}, z¢ P,

[w] = {#u:k=0,...,¢—1}, uweH.

It is clear that y € [#] if and only if z € [y} so one can choose the points zF, 2%, ... 2" €
P, n= (g™ —1)/(g—1) such that [z') U [z*]U... U [z"] is a partition of P and hyper—
planes u!,u? ..., u" € H such that [&'1 U{u*}U... U [u"] is a partition of H. Since the
hyper—planes ¢fu’ are parallel, the point z7 lies on at most one of them. If 27 is a point
of ¢ u’ then ¢%z7 is a point of ¢5 ™ u’ so we can write [z7] € u*| if the points of [27] lie
on the hyper-planes of [u*]. If [7] € [u!] then there is a unique integer i = v(u*, z7)
such that ¢fx7 € v*. Let G be a multiplicatively written cyclic group of order d such
that djg — 1 and let w be a generator of G. Let A = A(gy, b, ...z, .. vt W)

denote the n x n matrix o,; defined by

SO e (3.1)
a.. = |
ij 0 otherwise.

fori=1,...,n.

To complete the proof we show that A isa BGW ({¢™-1)/(g—1),¢" L, ¢" 1 —¢™ %)

over (. Since every hyper—plane has ¢™~! points every row of A has exactly ¢! non-

1

zero entries. Since (¢ — 1)/{g — 1) — ¢ < ¢! any two different rows of A have

at least one point in common and for i # k, u* and u® are not parallel. Consider two

hyper—planes v* = (uf,. .., u) and v = (u¥,...,uf) that are not parallel. There are
integers 1 < ¢ < f < m such that ul/uf # u}/uf. 1f the point 2 = (2),...,2) is on

both hyper—planes ' and u* then by fixing the coordinates z;, t # e, f one can find
the proper z, and x; that satisly the equations z - «* = 1 and z - «* = 1. So if «' and
u® are not parallel they have ¢™ 2 points in common. Thus u* intersects each of the
hyper—planes ¢4u*, h =0,...,g— 1 in ¢™ 2 points and the multiset {at-ja;jl 1< <

n,a;; # 0,ax; # 0} contains exactly (g — 1)¢™ 2 = ¢! — ¢™ 2 non—zero elements.
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For any point ¢42¢ on u! and ¢fu* we have
u'(eha?) =1, (huf) (i) = v* (¢} a?) = 1

so v(ut, 2?) =, v(u*. 29) =1 - h and aija;jl =uwhfor h=0,....¢ — 1 so the multiset
{05 11 <5 < nyay; # 0,05 # 0} contains exactly ¢™ 2 times of cach element
and this completes the proof. m|

Definition 3.4 A regular Hedemard matriz H with row sum 2h is productive if there
is a set H of matrices with row swm 2h and a cyclic group G =< § > whered . H - 'H

is a bifection, such that
(i) He H;
(i) For eny Hi,H, € H, (§H,)(6H,)' = H HY;
(iil) |G| = 4A,
(iv) Y eqoH = 27%1"]'
Lemma 3.5 If H is productive then —H s also productive.
Proof The proof is straightforward. O

Theorem 3.6 (Ionin) If there is ¢ productive reqular Hadamard matriz H with row
sum 2h and g = (2h — 1)? is a prime power then for any positive integer m there is a

symmetric design with parameters:

(4h2(qm“ ~-1)

=0 n - g, - ™).

Proof Let W = [wy;] be a BGW({(¢™" — 1)/(g— 1),¢™,¢™ — ¢ ') over G and let
1
M = 5(J - H).

We know that M is the incidence matrix of a symmetric (4h2, 2h% — b, h% — h)—design.
If I € H, My = 3(J — H;), and d € G we define:

1
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If Hy, Hy € H, My = 1(J — Hy), and My = 1(J — H;) we have:

1
2

il

[T = SR,

(SM)(5My) (J — 6H)(J — 6Hy)!

(J? = (8Hy)J — J(6Hy)' + (6H ) Ha)")

E(JQ — H\J — JH; ~ H H})
= MM

It can also easily be seen that 3 ;. dM = (2{h] — 45)J. We prove that W @ M is
the incidence matrix of a symmetric (4h%(g™ ! — 1)/{g ~ 1}, (2h* ~ h)g™, (R* — h)g"™ )~
design. [t suffices to show that fori,7 =1,2....,(¢g" ™ = 1)/{g — 1),

(g™ =1)/la~1) Rg™l + (h* — h)g™J ifi=],

%, ﬂ/f ; AM ¢ =
; ) g { (h* — R)g™J otherwise.

If 1 = j then for some §; € G we have:

(gmt1-1}/(g-1) q

ST (wad)(wiM) = > (GM)(5M)

k=1 k=1

m

q

- Z MM

k=1
= MM

= R*q™I + (h* — h)g™J.
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If £ 5 § then for some ., 7p € G,

(g™ 1 -1)/{g—1) gM—gm 1
Z (wiu M) (ws M)t = (6 M) (e M)
k=1 k=1
q1n_q1t—1
= Z (r 10 M) M?
k=1
m m—1
¢ —dq ¢
= L L (N oMmM
T2
m m—1
g —q h ¢
= L L (k- )M
qm_qm—l h o
= = (2|h] — —){(2h° —
T bl = ek —p)
1 = Yrrs
= Z(q”‘—q NgJ = ¢™(h? — k) J.

3.2 Bush—type Hadamard matrices

Definition 3.7 A regular Hadamard matrizc H = [Hy;) of order 4n* where Hy; are
blocks of order 2n is Bush—type if Hy = Jy, and HijJoy = JonHy; = 0, for 1 # 73,
1<i,j<2n

We will now show that there are many Bush-type Hadamard matrices and each Bush—

type Hadamard matrix is a productive regular Hadamard matrix.

Theorem 3.8 (Kharaghani 1985 [8]) If there is o Hadamard matriz of order 4n
then there is a Bush—type Hadamard matriz of order 16n2.

Proof Let K be a normalised Hadamard matrix of order 4n and let vy, 7o, ..., Tan
be the rows of K. Let C; = riry, i = 1,...,4n. It is easy to see that:

i) Co=Clfori=1,2,...,4n;
1 H

(i) C1 = Jin, Cidign = JinCy =0, for i =1,.. . dn;
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(iii) CiCt =0l # J;
(iv) S, CCf = 1607 Inn.

Following Seberry, Yamada [14}, we call the matrices C; above as Kharaghani matrices.
Let H = circ(Cy, Cy, ..., Cin) then H is a Bush-type Hadamard matrix of order 16n°.
0

Example 3. Let

1 1 1 1
Kzli——
1 -1 -
1 = - 1
Then,
rmo= 111 1]
T‘gz[ll——]
3 = [ 1 - 1 —]
4 [1 - — 1 !
1 111
11 11
C = ==
I R I
1 1 11
11 - =]
11 - =
C.=rt'r:
2 202 o 1
|- - 1 1|
1 — 1 =]
-1 -1
Cy =rhry = L1
- 1 - 1]
(1 - — 1]
-1 1 -
Cy = riry =
SRR S T R
1 - - 1]
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1 1 11 1 1 - - i -1 - 1 - -1
1 1 11 11 - - -~ 1 =1 -1 1 -
1 1 1 1 - - 1 1 1 - 1 - -1 1 -
1 1 1 1 - - 1 1 - 1 -1 1 - -1
1 - -1 1 1 1 1 11 - - 1 -1 -
- 1 1 - 1 1 1 1 1 1 - - -1 -1
-1 1 - 1 1 1 1 - - 1 1 - 1 -
1 - -1 1 1 11 - - 1 - 1 =1
B =

i -1 - 1 - -1 1 1 1 1 11 - —
-1 =1 -1 1 - 11 1 1 11 - -~
1 - 1 - - 1 1 - 1 1 1 1 - - 1 1
-1 - 1 1 - -1 I 1 1 1 - - 1

1 - - 1 -1 - 1 — - 1 1 1 1 1
11 - - -1 -1 - 1 1 - 1 1 1 1
- - 1 - 1 = - 1 1 - 1 1 1 1

| - = 1 -1 -1 1 - =1 11 1 1]

Theorem 3.9 Bush-type Hadamard matrices are productive.

Proof Let H = [H;], 1 <1i,5 < 2n be a Bush-type Hadamard matrix of order 4n*
with block size 2n, and let H be a family of block matrices X = [X;;], 1 <4,j < 2n of
order 4n?, satisfying the following conditions:

(i) for each ¢ there is exactly one block X;;, such that X;;, = Ja:
(i) if j # jo then X J = JX;; = 0.
It is clear that H € ‘H. We define a bijection ¢ : H — H by ¢X = X’ such that:
(i) for 1 <i<2nand2 <5< 2n, Xj;= X5 15
(i) for 1 <¢ < 2nif X0, = J, then X} =
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(lﬁ} for 1 <4< 2nif Xi,2nj = Jng!gn = 0, then X;l = —X; .

Let G =< o > then it is clear that |G| = 4n.
Let P,(Q ¢ H and let P’ = ¢P and @' = ¢, to show that (¢ P)(cQ) = PQ" it is
enough to show that

'P%',ZHQ_?.%L = Pﬁ@:fzm-

There are four cases:
1. If H,Zn = Jand Qj,ZTL = J then R.:{l = Jand Q;l = Jso R,271Q§i,2n = -P?',rlQ;-tl = Jz.

2. 1 Pz"gnj = JP,‘,,QH = 0 and Qj,Zn. = J then 1!1 = —Pf@,gn and Q;l = J so
P2n@' 9, = PiznJ = 0 and PLQ4 = —Pig.J = 0.

3. If Pion = J and Qjand = JQi2, = 0 then P}y = Fipn = J and @ = —Qj2q 50
Pion@ s, = JQ,, = Dand PAQY = —JQf 5, = 0.

4, If P@igntj = J.P.,;’gn = (0 and Qj,gnj = JQj‘gn = () then ,ifl = = on and le =
“‘Qj,?n 50 Pz-le;-tl = (”‘Pi,Zn)(—Qj,Zn)t = }Di,?anf.zn'

Since also ) ;. 0H = 2J, the proof is complete.
a

Corollary 3.10 If there is a Bush—type Hadamard matviz of order 4n® and q = (2n —
1)? is a prime power then for every positive integer m there is a symmetric design wilh
parameters

(g™t — 1 ,
((qfl)aqm(?nz —n),¢"{(n® ~ n)) (3.2)
ond if g = (2n 4+ 1)? is a prime power then for every positive integer m there is @

symmetric design with parameters

(4n2(q’““ —1

1 L™ {20 +n), g™ (0" + n)) (3.3)

Proof Suppose that H is a Bush-type Hadamard matrix of order 4n%. For the case
where ¢ = (2n — 1)2, since the matrix H has row sum 2n, the proof follows from
Theorems 3.6 and 3.9. For the case where ¢ = (2n — 1)%, since the matrix —H has row
sum —2n, the proof follows from Lemma 3.5, Theorem 3.6, and Theorem 3.9. i
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Theorem 3.8 shows that the existence of a Hadamard matrix of order 4n implies the
existence of a Bush-type Hadamard matrix of order 16n2. It has been conjectured that
Bush-type Hadamard matrices of order dn? exist for all integers n. For odd values of
n this conjecture seems to be difficult and only known for n = 3,5, and 9.

3.3 The Kronecker product of Bush-type Hadamard
matrices and productive regular Hadamard ma-

trices

Ionin in a recent paper [4] showed that the Kronecker product of a Bush-type Hadamard
matrix B and a productive regular Hadamard matrix H namely M = B@ H is also a
productive regular Hadamard matrix. In this section we introduce his method.

Let B be a Bush-type Hadamard matrix of order 4n® and let H be a productive
regular Hadamard matrix with row sum 2 and cyclic group G =< § >. Let

H={FHi=01,...,4/h| - 1}.
By the definition we have:
s For any H; and Hy in K, (§H,)(6H,)* = H HS;
¢ xenX = 2%1

Let Z2={Z|ZJ=JZ =0}, R={JQ®K|K € H},and § = {Z® H|Z € Z}, where
J and Z are of order 2n. We define the map p: RUS — RUS by

pZ®H) = —Z®H foreach Zg2Z
pPJOK) = J@(OK) forcach KeH.

It is easy to see that the cyclic group generated by p has order 4{h{. For R € R we
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have:

A H| 4ih|

Z FR = Z o'J @& H
=0 i=0
4|

= Y J®(FH)
=0
4ih|

= Y J®(8'H)
- 41A]
= Je (> &H)
i=0
_ J®(2|--:—|J)
h

= 2—J&J
|}

For 5§ € § it is easy to see that
4|k

ZpiS = 0.
i=0

Let M = B® H. It is clear that the matrix M is a regular Hadamard matrix with row
sum 4hn, Let M be the set of block matrices D = [Dy], i,7 = 1,...,2n, such that:

1. for each i = 1,...,2n, there is a unique h; = k(D) € {1, ...,2n}, such that for
j = h,i, Dg'j = R,

2 fori=1,...,2n,and for j #h, , D;; € S.

Clearly M is an element of M. Define a bijection ¢ : M — M by ¢D = D' = [D;]]
such that:

Lfori=1,....2n,andj=2,...,2n, D}, = D _1;

It follows from the fact that p%* = 1 and from the number of blocks of D that the
order of the cyclic group G generated by o is 8n|h|.
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Lemma 3.11 For X,Y € M, (o6X)(¢¥) = XY

Proof Let X, ¥ ¢ Mandlet X' = ¢X and Y’ = ¢Y. It is sufficient to show that,
for i,7 =1,...,2n,
X;l i:tl = Xi,ﬁny?,zn-

It is obvious that X, and ¥ o, are either in R or in . We have to check the following

cases:
o If X;0, € S and Yoz, € S then X[,V = (~Xiz0)(=Yion)' = XeznYilon.
o If X2, ¢ R and Yy s, € S then for some K € H and 7 € Z we have:

X’i,?ny-'ﬁgn = (J ® K)(Zt ® Ht)
= (JZY® (KHY)
e 07

and

XaYe = (JeK)(-Z'® )
= (-JZ') @ ((§K)H")
= 0.

¢ The proof for the case X;on € § and Yy, € R is similar and we omit it.

e If X;0n, € R and Yz, € R then for some K, and K5 in R we have:

XoYe = (J@ (@K ))(J 9 (0K,)")
= (JJ) @ ((6K1)(0K)")
= (JJ) ® (K1KS)
== Xi,Zn}/iE,gn-

Lemma 3.12 Zg’;_”lg‘_l giH =2J.
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Proof Forsome Re R and Sx € 8,1 <k < 2n— 1, we see that the (i, j)-block of
the matrix E;Z‘g =% oM s

&nlhi—1 4ih|—1 2n—14|h|-1
[ D oMy = D" p"R+D D %S
i=0 =0 k=1 a=0
h 2n-1
= 200+ >0
L v
h
= 2—J.
Ig

=

Theorem 3.13 Let B be a Bush—type Hadamard matriz and H be o productive regular
Haodamard matriz then the matric M = B @ H s productive.

Proof Using Lemmas 3.11 and 3.12 we see that the matrix A, the set M and the
bijection o satisfy all of the conditions of definition 3.4. =



Chapter 4

A New Class of Productive Regular

Hadamard Matrices

In this chapter we introduce a new class of productive regular Hadamard matrices. We
show that for each integer n for which 4n is the order of a Hadamard matrix and 8n°—1
is a prime, there is a productive regular Hadamard matrix of order 16n*(8n® — 1) As
a corollary, by applying a recent result of Tonin, we get many new infinite classes of
symmetric designs provided that either 4n(8n? — 1) ~ 1, or 4n(8n — 1} ~ 1 {or both)

are prime powers.

4.1 Introduction

We begin this section by intreducing a fascinating class of matrices, originally generated
by Mathon [12] and subsequently generalised by Seberry and Whiteman [13].

Definition 4.1 A regular s—set of matrices of order m? is a set of matrices Ay, A,
oo, Ag such that:

o A A = J, for every i, 5
o AAL=AA =0, i#];

o A;J =mlJ, for everyi;
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o > (AAL+ ATA) = 2smPl.
It is shown in Seberry and Whiteman [13] that:

Theorem 4.2 (Seberry—Whiteman) Ifm = 3(mod 4} is a prime power, then there
is a regular L(m +1)-set of order m?.

See Lemmas 4.5 and 4.6 for a proof of this theorem.

4.2 A regular class of Hadamard matrices

Let K be a normalised Hadamard matrix of order 4n. Let 7y,74,...,74, be the row
vectors of K. Let C; = rir;, i = 1,...,4n, be Kharaghani matrices. These matrices can
be used in a Latin square to generate a Bush-type Hadamard matrix of order 16n2
(see Theorem 3.8 for details). For the matrices C = [¢;;] and D = {dy;]. we denote the
matrix [¢;d;;] by C * D, whenever the product ¢;;d;; is defined.

We are now ready for the main result of this section.

Theorem 4.3 Let n be an integer for which there is a Hadamard matmr of order 4n
and m = 8n® — 1 be a prime power. Then there is o regular Hadamard matriz of order

16n2m?.

Proof Let A4;, i = 1,2, +,4n? be a regular 4n’-set of matrices of order m? from

Theorem 4.2. Let
I = circ{Agi-1m+ts - - Adin) if 1<i<n
i CiTC(Afl(z'ﬁn—l)n—H-‘ . fAi(1~n)n) if n<i<2n,

Let C;s be Kharaghani matrices defined above, Let K; := C;* L; and K 1= Ciqon * Ly
for 1 < ¢ < 2n. Using the properties of the regular s—set of matrices, it is not hard to
see that the matrices K; and K have the following properties for every ¢ and j:

L KK =KIKf=0ifi#j
2. KK!'=KKl=0ifi#]
3. K.K' = KIK!

47



Let M = cire(K:, Ks, ..., Ky,) and M' =

H=

M M

-M M

cire(K{, Kj, ..., Ki). Let

Let e be the column vector of all ones. The fact that Kie = 4nm and K;e = { for all i
2 <1 < 2n, implies that Me = 4nm. On the other hand, Kje = 0 for all ¢, 1 <i < 2n,
so M’e = (. This shows that H is a regular matrix of order 16n*m?. It remains to

show that H is a Hadamard matrix. Using properties 1 and 2 above, it is not hard to

see that M M*® and M'M" are both diagonal matrices. Furthermore, property 3 can be
used to show that MM = M'M*. It is easy now to see that H is a Hadamard matrix.

O

Example 4. For n = 1 we have:

A Ay
Ay A
As Ag
L Az As

Ap A
Ay A
Ay A
L A5 Aj

Cl =

— b e
= e e
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Ay
Az
Ay
Aq

Al
AL
A

—_— =

Ay ]
As
Az

AL
Aj
Ab

1
1

= e e



Ly
1 - 1

s =

; 1 -1 -
- 1 - 1]
L g

O, =

S S R R
_1—_1J

After superimposing the signs of entries of C), Cy. €y and Cy over on the blocks of
the matrices Ly, Ly, Ly and Lo respectively we get the matrix H below:

A Ay Ay Ay
KimCial o | A A A
Ay Ay A Ay
Ay As Ay A
AL AL —AL —AL ]
AL AT AL —A
K s, Lo = 4 1 2 3
e=Coxle=1 4 4 o4 o4
| -4y -4y AL A
[ A —Ay Ay —Ay
Ki = C3 * Ll = _A4 Al MAQ AS
A;; “'A4 A] —.4.2
L — A As —Ay A |
[ AL AL —4L AL
—AL AL AL -4
K! :C "L — 4 1 2 3
PTATEET 4y oAy oAb A
Ay —Ay Ay AL

K, K, K| K}
K. K, K, K!
—KI —-K, K, K,
K, K| K, K
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roAy Ag Ay Ay Al AL —af  -af AL —Az Ay —~dy Ab —al
i Ag Ay Az Ag Y] At —al —at —Ay Al —Ag Az — A At

LA Ay A Ag —AL —Al Af Al Ay Ay Al —Ap —AL AL

[ Ag Az Ag A, ~Al —a} AL At - Az Az —A4 A4 ab - Al
1 3 1 + 2

Al af  —Al -4l A: Az Az A At —aAL Al AL Al —Ag

LAl AL —ab a4y Aq Ay Ag Ag —Af Af af —al - A A

~Af —af Al AL As Ag Ai Ag —A% Al At -al Az —Ay

—Af —Aj Af Al Az Ag Ag A Ay -al —Ab Al —Az Az

~ A Ay —Aj As —~ Al AL 4§ -A% A Az A3 Ay Al Ab

I Ag —Ay Az —dj af At —aj Al Aq Ay Ay Az AL A}

~A3 Ay, —A A Al —AY Al AL Ajg As Aq Az —AL AL

Az —A Ay -4 ~ab Al Ay -al Ay Ag Ay Ay —ab —Af

- At Af AL —al —A) Ay —Ag Ay Al AL —a4y -al Ay An

Al -Al —al AL Ay —A Az ~A Aé At —AY -Af Ay Al

[ Ay —al -—at Al ~Ag Ay -4 Ay -AF  —al Al Af Ag An

—ab Af A -at Az -4 Ay —Ap —AL  —A} Al Al Az Aj

4.3 A productive class of regular Hadamard matri-

ces

In this section we show that most of the regular Hadamard matrices constructed in

section 2 are productive. We also need to mention some of the properties of a class of

regular 2(m + 1)-set of matrices as given in [13], whenever m = 3(mod 4} is a prime.

Let T be the circulant shift matrix of order m defined by

1 ifi—7=1(mod m)

T = [t where t;; =
] T 0 otherwise.
Let R be the back-circulant shift matrix of order m defined by

. 1 ifi+j=1{mod m)
R = iry: where ry; = _
0  otherwise.
Then the following properties are immediate.
T =1 (T =T"* I+T+T+.  + T ' =J R =1,
RT* = R'T* =T™*R, JT* = JRF = J.
Let x be the so—called quadratic character on the field GF{m) defined by

¢ i =0,
x(z):=< 1 if zisa square,

—1 if =z is a non-square.
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Let

W = [w;;] where wy; = x(§ — 1), fori,j=0,...,m—1
By the definition it is clear that the matrix W is a circulant matrix. Since m = 3{mod 4)
we have x{—1) = =1 and y(—z) = ~x(z), thus the macrix W is skew-symmetric
(W* = —W). The following properties are immediate:

WT =TW, WR=R'W'= RW'= -RW

Since the number of squares in GF({m) is the same as the number of non-squares we
have
WwWJ=0.

Also for any 0 # y € GF(m) we have:

o xexiz+y) = Y. x(@x@x(l4ye)

zEGF(m) zeGF(m)\0

= > x4y

z€GF{m)\0
= 0—x(1)
= -1

So it follows that WW?t =mi — J. Let

M=I+W
with top row (b, by, - ,bm_1). Then we have :
MMt =(m+0I-J MJ=J (4.3}
Let e = e, = (1,1,...,1) be a vector of m 1's. Define the matrix

N i=¢€"(bo. b1, ", bm-1)

bU bl e b'm—]
b{] bl e bm—l
by b1 0 b
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Using 4.3 since each of the rows of the matrix V is the same as the first row of M we
have:

NTEN? = md if k=0, (4.4)
I (RS Y 1<k<m-1 '

The following useful properties are also obvious:
NJ=J JN=mN, MN=TN =RN=N.

We now define the matrices B, and C' which play a key role in what follows:

m—1
B;:=S RT'@MTY (j=1,..,n-1) (4.5)
i=0
N N ... N
. s omeie. | NT  NT ... NT
C:=N{,T,T% .. T e = , _ . , (4.6)
NTmL o Ny7meloL N7l

We will show that matrices B; and C are an (m + 1)/2-set of matrices and that they
also satisfy some additional properties that let us show that the matrix f, as defined in
the previous section, is productive as well as regular. In order to show that the matrix
H is productive we should define a map that satisfies the properties of a productive
regular Hadamard matrix. For convenience we define mappings on smaller blocks of
the matrix H step by step and then we introduce the final map using these maps.

Definition 4.4 Let E be a (1,—1) matriz of order m? and I the identity matriz of
order m. Define the map & as follows:

SE =E(I®T)
As a consequence of the properties above, for all non-negative integers o
1. 84B; = 6(6°7'B,) = B,{I @ T*) = 12! RT" @ MTV+e,
2. $°C =C(I®@T%) = NT*(I,T,T?,...T" e

Lemma 4.5 Let F = {C, By, -+ , Bm-1)72}, and G = {C,C", By, B, -+, Bim—1)/2: B p1) 2}
Then F, G and & satisfy the following conditions:
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(i) ¢mX =X forall X in F;

(i) (BXNY)=Jforadl X €F, YEG X #Y anda € {0,1,..,m—1};
(ili) o7 6 X = J for all X € F;
(iv) (5X)(6Y)! = XY for every matrices X, Y of order m?.

Proof The proof of condition (i) follows from the fact that 77 = I.
To prove condition {ii) we have to consider the following sub—cases.
For all positive integers j. k not exceeding (m - 1)/2:

(i) (6°B;)(By)" = J;

(iia) (6°By)(Be) = J if (j # k)
(iiz) (8%Bp){CH) =
(iig) (§¢CYBLY = J;
(ils) (8*C)(Bk)t = J;
(ig) (*CHC) = .
The proofs of these properties parallel proofs given in {13].
{iiy)
m—1m—1
(6°B;)(Bx) = »_ Y RT'RT"@ MTI*MT™
i=0 h=0
m-1m-—1

T?n+h—i ® ;MrZTij+hk +o

[
]

il
LS
-
i

0

3
3
L

T* @ MPTH=RF=kte  (where 2 = h ~ i)
=0

(]

3 w
o
—- =

[

= T ® M*J

H
=

J

Il
®

Note that j + & # m since 7,k < {m — 1)/2.
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(ig)

n—1n-1

(6*Bi)(Be) = Y. RIMRI™' @ MT9(MT™)!
=0 h=0
n—1n—-1
— Z Z Th=1 @ M AMITT hhta
=0 h=0
n—1n—I
= Y N TP MMITUR#e (where z = h— 1)
z2=0 h=0
n—1
= > TreJ
=0
= J&J
(ils)
m—~1
[(0°B)(C)y; = TERAMTY)NT"
h=0
m—1
= MN> T
h=0
= MNJ=J
(iia)
n—1
(0°CY By = (NT)IPM D TUHhE
h=0
= NT#oMJ
= NT'tey
= NJ=J
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(iis)

3
L

[(0°CY(By)i; = (6ac)ih{Bk).t‘Lj

3 >
- O

(A{Trx)Ti(T(h+j)k‘M)t

Il
N

1
Ll ==

= 3 NPtk
h=0
n—1
= NM! Z pocti—{htjlk
h=0
= NM'J

NJ=J

(iig)
m—1
(NTYT'N > T
h=0
= NTTeNJ
= NNJ=J

(B2 CNOy5

Il

To prove condition (iii) we have:

3
L
3
L
3
L

*B;, = RT'® MTu+

0 =0
1

m—1
= Y _RT'® (D MT" ™)

i=0 a=0
1

jal
1l
o
Q
11l

= Y RT'®(MJ)
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Also

m~1 m—1

*C = (NTYI, T, T%,..., T™ e
> > { )

o=0 a=0

= (NJ({I,T,T? ..., T™ e
= JI,T,T% ..., 7™ e

= J&J
To prove condition {iv) we have :

(6X)YY = (XUITHWY{IgT))
= X(IeT(IeThHy!
= X(Ig)Y?
= XY

E]

To prove that matrices B, and C defined above form a regular s-set using Lemma 4.5
part (ii) it is sufficient to prove the next lemma

Lemma 4.6

(m—1)/2
> (B.B!+ BIB) + CC' 4+ C*C = n*(n+ 1)]

im=1

Proof
{CCt]lj = mA’rT'iTmuil\rt
= mNTIN?
_ mfJ ifi=j
—-m.J otherwise.
So

CC' =mim+DI@J —mJ 2 J (4.7)
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We know that each row of matrix &V is the vector (b, b1, -+, bm-1), where by = 1 and
b; = x(i) so we have:

m—1 m—1
[Z THN'N)T*y; = m Z bitkbyte-
k=0 k=0
Ifi=7:
m—1 m—1
D THNINT Ry = m OB =mh
k=0 k=0
Ifi # g
-1 m—1
7 THNENIT*y = miboby 1+ bisbo) +m ) X0+ k}x( + k) = —m.
k=0 k=0
S0

mi—1
THNINYTF = m(m + 1) —mJ
k=0
Now we are able to calculate C'C.
m—1
C'C = J® 3 _(NTHHNT*)

k=0

m—1
= J® Z T—k(l\rt[\r)-rk
k=0

m—1
= Je > THNNTF
k=0
= mJ & {((m+ 1) -J). (4.8)



To calculate B; B} and BB, as well we have:

m—1m—1

BBt = 3" RTYRI™"® MTU(MTM)'
=1 h=0
m—1m-—1

— Z Z Th—il ® Mlaw'tT?)j—hj
i=0 h=0
m—1m—1

= Y N T'RMMT™¥  (z=h—i
z=0 i=0

m—1
= mY T"® MM'T™™

=0
Similarly one can show that:

m—1
BiB;=m> T*® MM'T
z=0

Now we have:

(m=1)/2 m—1(m—1}/2 m—1 (m—1}/2
STBB+BB) = mY. Y T@MMTTimd Y TP MMTH
i=1 z=0 =1 =0 =1

m—1m—1
= m Z Z T @ MM
z=0 j=1

m—1
= m (1 ® (m— MM+ > TF @ MM'(J - I})
z=1

= I@mm—-1)MM ~(J-D)@mMM'(J-1)
= I@MMYmMIgl-mleJ-mJeIl+m{JeJ))
= mm+ VI —mm+1J2]
—mim+ 1) +2mIeJ (4.9}

Using 4.7, 4.8, and 4.9 the result follows O

Lemma 4.7 There is a permutation matriz P; such that P, = —Cy, PE = [ for all
2 <1< 4n.
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Proof Noting that C; = rlr;, as defined in section 4.2, where r; is any row of a
normalised Hadamard matrix of order 4n. Since ryr} = 0 there are exactly 2n ones in
r;. Let 7 be any permutation that moves the +1’°s of r; to the left and —1’s to the
right. Thus

Tl'r;u‘,:ll"‘l——“'—
Let 7o = (1 2n+1)(2 2n+2)--- (2n 4n). We have mp7imy = —7ury. So 7y lmemr = —1y
Letr =17 Y771, we have 7r, = —r;. The matrix B of the permutation 7 is the required
permutation matrix, rir; 7 = —rir; and P? = I. O
Lot

V = P2n+]_ ® Imﬂ
then V2 = J and Vt = V.

Definition 4.8 Let E be a (1,—1) matriz of order 4nm? and [ the identity matriz of
order dnm. Define the map p as follows:

pE = E(I®T)V

Lemma 4.9 Let R = {K;, K} and § = {Ky, -+, Kon, K}, -+ , K}, }, where K;'s are
matrices of order 4nm? as defined on page 47. Then S, R, and p satisfy the following
properiies:

1) p*™X =1 for every matriz X of size 2nm?;
(i) (p*X) Y)Y =0forall XeR, Y8 a=0,.2m—1;
(iii) (pX)(pY ) = XY for all matrices X, and Y of size dnm?;
(iv) g pEy =27 and 005 0K = 0.
Proof [t is easy to see the validity of properties (i) and (iii). The proof of (ii) is an

immediate consequence of Lemma 4.5 and properties of K;s and Ks.

To prove (iv), we use Lemma 4.5 part (iii) to get

1

N LIeT)=JoJ

=0

a9



Now we have:

2m-~1 m—1 m—1
S pK = Y LT+ LIeTIV
i=0 i=0 =0
= JeJ+{Je )}V
= 2J®J
2m—1 m—1 m—1
ST = Y Conprx LI RTY + Y Copur * LIS TV
=0 i=0 i=0

= Conp1*x(J@ )+ Copa x (J 8 J)V
= Conr1 ®J+ (Conp @ NV

= Con1 ®J+ (Conp1 @ J)(Pang1 @ I)
= Copnpn @J+{Conp1 Pop) & J

= Copp1 ®J - Cop,®J=0.

O

Following a notation of Ionin [5], we let M be the set of block matrices D = [Dy;],1,j =
1,...,4n, such that:

{i) for each 4 =1,--- ,4n, there is a unique h, = h;(D) € {1,--- ,4n}, such that for

J§ = hi, Dy = p® K, for some integer a;

(ii) for each i, i =1, -+, 4n, thereis a unique h; = hi(D) € {1, - ,4n}, h; # h; such
that for 7 = ki, D;; = £p° K] for some integer o

(iii) fori=1,--- ,4n,and for j # h, and j # hj, Dy; = 2K, or K| for [ =2, ,2n.

Clearly H is an element of M. Define a bijection ¢ : M — M by ¢D = D' = D] ]
where:

(i) fori=1,...4n,and j = 2, ...,4n, Dj; = D;;_1;

i)y fori=1,..,4n, if &;(D) =4n or A{(D) = 4n then D, = pD), 4,;
i il )
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{iil) for ¢ = L.....4dn, if h(D) # 4n and h{(D) # 4n then D;y = —D; 4.

It follows from the fact that p®™ = 1 and from the number of blocks of D that the
order of the cyelic group G generated by ¢ is 8nm.

Lemma 4.10 For X,Y € M, (6X)(oY)! = XY,

Proof Let X, Y ¢ Mandlet X'=0¢X and Y’' = ¢¥. It is sufficient to show that,
for i, = 1,...,4n,

XY = Xian¥y g
Let RN = {p°K, £p°K{la =0,-- ,2m—1}andlet & = {K,£K]|i=2,--- ,2n}. It
is obvious that X4, and Yy 4, are either in R’ or in §&’. We have to check the following
cases:

o If X@An e & and -Y;‘,l’4n c tgiI then X':lﬁft";tl = (_X'i,ﬁln)(_}{i’,éln)t = X’i,‘ln}/},tln'

o If X;4, € R and Yiy, € & then using Lemma 4.9 we can sec that X V5 =
X,:A,-,‘}/;;An - 0

e The proof for the case X4, € &' and Yy 4, € R' is similar and we omit it.

o If X,4, € R and Yirg, € R’ then XV = (0X0a0) (Y0 4n)' = Xian¥7 4

Lemma 4.11 ngg'l g9H =2J.

Proof Using Lemma 4.9, if 1 < i < 2n we see that the (7, j)-block of the matrix
Z;Z’f o9 H is:

8nm—1 2m—1 2m—1
()" dH), = D K- Y 00K
=0 a={ a=0
= 2J4+0=2J

If 2n < i < 4n we have:

gnm—1 2m—1 2m~—1
DR ST S
=0 a=0 a=0
= 2J-0=2J.
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Theorem 4.12 The motriz H 4s productive.

Proof Using lemmas 4.10 and 4.11 we see that the matrix H, the set M and the
bijection o satisfy all of the conditions of definition 3.4. QO

We are now ready to apply a recent result of lonin [4] to construct many new classes
of symmetric designs. We start with a definition.

Let m = 8n? — 1 be a prime number. Then the matrix H above, and consequently
the matrix —H, has a group of symmetry. Let G be the group of symmetry defined
above. Upon Theorem 3.6, we get the following corollary.

Corollary 4.13 Let m = 8n® — 1 be a prime number.

e If ¢ = (4nm — 1)? is o prime power, then there is o symmetric design with
paremeters

(1612m2(g* + ¢ + ... + 1), (8n*m® — 2nm)q, (4n*m® — 2nm)q"),
for every nonnegative integer t.

o Ifqg=(4nm+1)? is a prime power then there s a symmetric design with param-
eters

(16n7m2{g" + ¢t~ + ... + 1), {8n2m? + 2nm)d’, (4n*m® + 2nm)g"),
for every nonnegative integer t.

Remark 4.14 We need to close the thesis with an explanation to link our work in
different chapters of this document. Our original aim was to use the 7—matrices in-
troduced in chapter 2 to generate a productive class of regular Hadamard matrices.
Soon after we were convinced that this was a very tough project requiring longer time.
We then turned our attention to Mathon matrices and Kharaghani matrices and our
search was successful. We end this thesis with high hopes of getting an opportunity
to spend more time on techniques akin to Xia and Xia and developing it into another

productive class of regular Hadamard matrices.
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