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ABSTRACT

Wearable sensors have been popularly used in many applications with the
development of computer science and engineering. However, wearables for
biomechanical feedback in motor learning and training are still rare. Therefore, this thesis
focuses on developing an efficient and cost-effective wireless sensor system through a
case study on the hammer throw. The results have shown that the proposed reconfigurable
and wearable system can implement real-time biomechanical feedback in the hammer-
throw training. Furthermore, the experimental results suggest that various throw-control
patterns could be identified by using one tension-sensor and two inertial measurement
units (i.e., more superior practicality than 3D motion capture), indicating that the low-cost
wearable system has potential to substitute the expensive 3D motion capture technology.
The proposed system can be easily modified and applied to many other applications,

including but not limited to healthcare, rehabilitation, and smart homes, etc.
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CHAPTER 1: INTRODUCTION

In the era of information technology, Computer Science applications have been
increasingly spread and extended in various fields thanks to the explosive advances of
computer technologies since last century. As a consequence, wireless sensor applications
can be found in every corner of the world now, such as in sport activities, art performances,
healthcare practices, occupational training, and many other human physical behaviours [1]
— [7]. The variety of wearable sensors allows people to collect different kinds of data
related to various human physical behaviours. However, among so many choices, how
would people be able to make full use of these scientific tools? Research in theoretical
and computational science will help to find the answer. This research works towards this
goal. It requires computer-related skills, knowledge of motion analysis and knowledge of
applying the interdisciplinary understanding to human motor learning practice. By
designing and developing a reconfigurable and wearable wireless sensor system for the
training of the hammer throwers, this thesis has demonstrated a case study of the
combination of theory and practice. Along with the artificial intelligence (Al) technology
applied, it has been confirmed that various throw-control patterns could be identified by
using a wearable system with one load cell and two inertial measurement units (IMUs). In
terms of the practicality, the features of the wearables (e.g., portable, easy-to-use, etc.)
make this system more superior than the 3D motion capture system which currently is still
the most reliable and widely used method in biomechanical study. However, wearable
applications would not just be limited to the hammer throw. People with imagination and

creativity can be inspired by this thesis to adapt this idea to other areas, such as healthcare,



rehabilitation, etc. In other words, the wearables’ application prospects are wider and

brighter.

In summary, this thesis will concentrate on elaborating on a wearable system that
can provide real-time biomechanical feedback in the training of the hammer throw. In the
first chapter, this thesis will be presented by starting from introducing the research
motivation. Then, there will be an outline of introducing all the methods used in this thesis
for realizing the research goal. Next, a summary of the main contributions of this thesis

will be presented. Finally, an overview of this thesis will be provided.

1.1 MOTIVATION

Optimization of any sport skill requires re-organization of the limb coordination
responsible for governing the movement performance [8]. This type of motor learning can
be enhanced through a number of methods that are utilized in research and application
settings alike. In general, verbal feedback of coaches in real-time is commonly used as a
preliminary means of instilling motor learning, such as in [8] and [9]. Due to the rapidity
and complexity of some sports skills as well as invisibility of some parameters (e.g.,
force), the real-time feedback from coaches is often a subjective guess based on
experience. For increasing the reliability of feedback in training, biomechanical means
can be used to supplement the verbal instructions [10] — [13]. The hammer throw is such
a sport that needs a combination of a coach’s experience and biomechanical feedback in

elite sports training to facilitate motor learning and optimize outcomes.

Men’s hammer throw has been part of Olympics track-and-field competitions

since 1900, but unlike other events, it has not seen a new world record since 1986 [14].



This standstill may be caused by the lack of scientifically based training. While extensive
three-dimensional (3D) motion analysis technologies do supply highly trustworthy
information for human motor skill quantification [15] — [18], due to their drawbacks, the
analysis and feedback has traditionally occurred offline after completion of a given testing
session (i.e., it is post-measurement feedback, rather than real-time feedback) [18] — [21].

The drawbacks of a 3D motion capture system include [22]:

(1) Lab-based,

(2) Complicated operation,

(3) High cost (over 300,000 US dollars),

(4) Long calibration and setup procedures,

(5) Time-consuming course on data collection, processing and analysis,

(6) Movement constraints induced by dozens of motion capture markers attached on

a subject’s body.

These drawbacks have hindered the use of 3D motion capture systems in sports training

and practice.

Motivated by developing a practical method, I have participated in a research
project that initiated a development of a real-time biomechanical feedback device for the
hammer-throw training. In this project, I have begun the development of the wire-tension
measurement in the hammer throw [19]. As one of principal investigators in the cross-
disciplinary team, I was heavily involved in a pilot study for a development of wearable-
sensor device in the hammer throw [23]. The investigation using 3D motion capture

technology, as shown in Figure 1, found that the timely displacements of the hip and wrist



may be used to reveal the upper and lower limbs’ coordination when analyzing the
hammer throw. Figure 1 shows (a) the set-up of the data collection and (b) one sample of
the 3D data. The pilot study has indicated that the timely change of the vertical
displacements of the hip and wrist are closely related to the turning speed, the ratio of one-
leg/two-leg support (power generation), and the hammer’s velocity change during the skill
performance. Therefore, obtaining the dynamic distance data of these two anatomical
landmarks would be vital for real-time biomechanical feedback training. In addition, it is
also critical to use a machine learning algorithm, such as regression, to verify the feature

that the pilot study has found.

]
(@) (b)

Figure 1: The 3D motion capture system’s setup and a sample of the 3D data [24]

Further, integrating the results [23] with my previous wire-tension study in the
hammer throw [19], one would logically find that a combination of the wire-tension
measurement and the dynamic vertical displacements of the hip and wrist could have great
potential to be used instead of the 3D motion capture technology in the skill analysis of
the hammer throw. Therefore, developing such a wearable system for tracking hip and

wrist movements and gathering the wire-tension measurements along with the help of



machine learning could realize the real-time biomechanical feedback system in the

hammer-throw training.

1.2 OUTLINE
This research is a cross-disciplinary work which requires various methods in
different areas to realize the goal — establishing a real-time biomechanical feedback
system. In general, a wearable/wireless sensor system is required to be developed, that can
be separated into two basic elements: (1) the sensor node that is used for data collection
and (2) the receiver node that is used for data processing. Therefore, the thesis will be

introduced mainly from the following two aspects: the sensor node and the receiver node.

Before introducing the details about the sensor node and the receiver node, as it is
a wireless sensor system, a specific protocol in telecommunications has to be followed to
make the two nodes communicate remotely with each other. Four types of the sensor nodes
were proposed for different applications where users can configure the system architecture
by their own requirements, as shown in Figure 2. The first type was selected in this case
study, i.e., the XBee modules which are more convenient and user-friendly in the initial
research stage were used. XCTU [25] is used to configure the XBee modules. A section

about configuring the XBee modules will be presented initially.
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The XBee module [26] is a kind of ZigBee, based on IEEE 802.15.4 standard [27]
which was designed for low-data-rate, low-power, and low-complexity short-range radio
frequency (RF) transmissions. In an ideal condition, its maximum range can reach 90
meters. XBee modules support mesh network that every node in the network can have
capability of routing. Even if one node is down, the other nodes can still work. So, XBee
modules can be used to construct a very strong and flexible wireless sensor network. In

addition, it has high-level security. As a result of these features, XBee modules have been
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Figure 2: Four types of the sensor nodes

widely used in many research studies [28] —[30].




Bluetooth has been developed and updated for many different versions since 1998.
After the 4.0 version, the traditional Bluetooth was treated differently from Bluetooth Low
Energy (BLE). In recent years, BLE are more popular and commonly used in wireless
sensor applications, such as [31] — [34]. So, the Bluetooth in the proposed wireless
communication method refers to BLE. The power and cost consumption of BLE are
reduced compared to the classic Bluetooth, and the range of BLE is usually within 100
meters. It uses 2.4 GHz radio frequencies and adopts the protocol of the classic Bluetooth
that is IEEE 802.15.1 standard [35] which was designed for wireless personal area
network (WPAN). It also has high-level security. However, the size of a data packet is
limited by using BLE. In addition, the maximum number of devices in a network is limited
as well. The third node type is proposed to combine the XBee and Bluetooth to try to
provide both of their advantages so that the users can select one wireless communication

method depending on their own requirements.

Wi-Fi is a group of wireless network protocols that are based on IEEE 802.11
standards [36] which were designed for wireless local area networks (WLANSs). Wi-Fi has
also become very popular in recent years. This wireless communication method has the
advantages of the convenience of deployment and the fast data transmission speed.

However, its energy cost and security are potential issues.

Next, the sensor node will be introduced beginning with its hardware. In terms of
the hardware, a wearable prototype for collecting vital data has been developed. The size
of the wearable device is miniatured by designing a printed circuit board (PCB). In
addition, Autodesk Inventor 2014 [37] is used to design a customized 3D printed box

along with its lid to protect and hold the board and the sensors. There are three sensors



used in the wearable device: two inertial measurement units (IMUs) [38] and one load cell
[39]. These sensors need to be calibrated and tested before assembly. So, there will be a
section to describe how to calibrate and test the sensors and the problems that occurred
during the calibration work in detail. Last but not least, as an Arduino board [40] is used
as the microcontroller, the program implemented in the Arduino IDE (Integrated

Development Environment) [41] will also be introduced.

For the receiver node, the graphical user interface (GUI) implemented in
MATLAB will be presented first. It is the key to make the system display real-time
feedback intuitively. Next, an applied algorithm — Madgwick’s implementation of
MahonyAHRS algorithm [42] will be introduced. It is also implemented in MATLAB for

calculating reliable vertical displacements obtained by the IMUs.

In addition, two existing deep learning models based on Keras API (application
programming interface) [43] have been built in Python to verify the feature that the timely
change of vertical hip and wrist displacements could reveal the upper and lower limbs’
coordination in the hammer throw. It is also a goal to find out whether a complicated
model or a simple model should be used in a biomechanical study by comparing the two

models’ predicting results.

1.3 CONTRIBUTIONS
By designing and developing a reconfigurable and wearable wireless sensor
system, this research work mainly contributes to the initiation and realization of real-time

biomechanical feedback training in the hammer-throw practice as the following points:



(1) Establishing a general modus operandi (i.e. a general framework) for developing
wearables of real-time biomechanical feedback applied in human motor skills’
learning and training;

(2) Improving the effectiveness of the wearable device designed for the training of the
hammer throw by adding two IMUs and miniaturizing the device with the help of
PCB design;

(3) Demonstrating that the wearable device that uses a load cell and two IMUs has
potential to substitute the 3D motion capture cameras (such as the VICON high-
speed multi-camera system [44]);

(4) Providing a method of transferring the biomechanical feedback training from a
post-measurement one to a real-time one;

(5) Providing a method of simplifying the scientific quantification from operating a
complicated 3D motion capture system to an easy-to-use wearable device;

(6) Inspiring people in the wearable application field to not only monitor key

parameters but also diagnose any issue that occurs from the monitoring.

1.4 THESIS OVERVIEW
A general idea of the cross-disciplinary research has been provided in this chapter.

The remainder of the thesis will be organized as follows.

In Chapter 2, a brief summary of my years’ experience in studying, developing
and prototyping biomechanical wearables will be provided. The most relevant
contribution of my Ph.D. study is an establishment of the general modus
operandi/framework for developing wearable devices to realize real-time biomechanical

feedback training in human motor learning. The elaboration of the framework would help



future researchers and developers with better understanding the more detailed contents of
the thesis, because this cross-disciplinary research area is relatively rare. Hopefully, the
established framework would promote more future studies and developments in this

relatively underdeveloped application area of computer science and wearable technology.

In Chapter 3, the research background will be elaborated through a literature
review on the wearables and biofeedback training. The description will focus on the
current successes of the development in this area as well as the existing limitations faced
by the wearable technology in human motor learning. The chapter shows that the
development of a real-time biomechanical feedback training tool is challenging, but it is
a growing trend of applying the scientific means in learning of various human motor skills.
The chapter also presents differences between the biomechanical feedback training and
the other biofeedback trainings to explain why it is more difficult to develop a real-time
biomechanical feedback training tool than the other types of tools. Although there are
many challenges, the advantages of wearables combined with artificial intelligence (AI)
technology will provide an excellent platform with great potential and make a huge and

positive impact in this field.

In Chapter 4, the research methodologies used in developing the real-time
biomechanical feedback system for training of the hammer throw will be elaborated. The
system consists of two basic elements: the sensor node and the receiver node. XBee is
used as the wireless communication method between the sensor node and the receiver
node. So, it is significant to introduce the XBee configuration at the beginning. Then for
the sensor node, the wearable device will be introduced from its hardware development to

its software development including the calibration procedures. On the receiver node side,
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the GUI and the applied algorithm will be discussed in detail. The last part of this chapter

will be a discussion of the deep learning models.

In Chapter 5, detailed discussions on the experiments and their results will be
presented. The discussions will cover contents from a hardware perspective to a software
perspective (i.e., the experiments and the results of an IMU testing device, the wearable

prototype, and the deep learning models).

In the last chapter (Chapter 6), conclusions of the thesis will be made and the

research potential in the future work will be discussed.
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CHAPTER 2: FRAMEWORK OF PROTOTYPING
Since this interdisciplinary research work belongs to an underdeveloped field that
only few people work in the same or similar direction, an elaboration of idea-development
will be provided in this chapter as an overview or summary of my years’ research
experiences so that readers could follow the detailed contents of the thesis easily and might

be clearer for thorough understanding.

Nowadays, wearable devices that supply real-time biofeedback related to our body
during physical activities are common. They have changed the ways of our exercise and
improved our physical health. However, the real-time biomechanical wearables for human
motor learning is rare [45]. There is even no general modus operandi for its development.
The most important contribution of my years’ Ph.D. study is to establish a general modus

operandi for developing biomechanical wearables (Figure 3).

Figure 3 shows that, in essence, the development of biomechanical wearables is to
apply the knowledge of computer science and sensing technology (black font in Figure 3)
into human motor learning & training (green font in Figure 3). Obviously, there is a gap
between the two sides, i.e. a connecting piece is missing (red font in Figure 3). For well-
developed areas, researchers have already established modus operandi to find the missing
piece for practitioners/users. Unfortunately, such a modus operandi did not exist for the
development of biomechanical wearables. My years’ study has created the modus
operandi to find the missing piece for researchers and practitioners. The method begins
with 3D motion capture/biomechanical quantification (green), followed by how to
simplify the 3D motion capture to wearables (red), design of wearable systems (black),

programming (black), quantification of dominant variables (green), and ends up with
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transitions from the wearables’ data to biomechanical variables (black). If the transition is
successful, the prototyping is finished (red); otherwise, one should go back for a revision
(e.g. adding more sensors) until reaching the accuracy required. Although the framework
is developed for the training of hammer throw, the methodology/the modus operandi could
be extended into various human motor skills. The following sections are description of

steps involved.

1) Computer
science

2) Sensing

3) Human motor skills’
technology

learning & training

Finding the missing piece

!

Reliable method in motor skill learning: biomechanics & 3D MoCap technology

!

Translation 1: simplifying 3D MoCap to a practical wearable system

|

Design of wearable systems: hardware development

!

Programming of data collection: software development

!

System calibration: quantification of dominant/critical variables

!

Translation 2: return to biomechanical/motor learning variables via Al

!

Prototyping finished

Figure 3: A general modus operandi/framework for developing wearable devices to
realize real-time biomechanical feedback training in human motor learning (Note:

MoCap — motion capture)
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2.1 THE CURRENT RELIABLE METHOD OF BIOMECHANICAL FEEDBACK
TRAINING

In order to apply the knowledge of computer science and sensing technology into

human motor skills’ learning & training, it is important to know the current reliable

methods as well as their mechanisms; and then, one could consider various novel means

for improving human motor learning.

In human motor learning, one of the scientific training methods is through
biomechanical feedback training. The common factor used in biomechanical feedback
training is the limb coordination, which can be revealed by the changes of joints’ angles
overtime. Therefore, obtaining this vital information would be an irrevocable goal of the

biomechanical feedback training no matter what kind of feedback tools are used.

Currently, the most reliable biomechanical feedback training is 3D motion
analysis. In this case study, the VICON system, which is one of the most reliable 3D
motion capture and analysis systems, was used for 3D motion analysis in order to quantify
joints’ coordination during hammer throw. The VICON multi-camera system can provide
the trajectories of ~40 markers (almost weightless) attached to joints and segments of a
subject for quantifying the limb coordination during any complex human movements. The
principle of 3D motion analysis will be introduced in Chapter 3. So, for more details,

please see Section 3.2.4 and Section 3.3.1 in Chapter 3.

2.2 PRACTICALITY OF THE WEARABLE SYSTEM
In contrast to 3D motion capture systems, wearable systems use sensors to collect

vital information instead of cameras and markers. For example, the IMUs are a kind of
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sensors for getting an object’s orientation. By applying some data fusion algorithm of
motion tracking, the trajectories can be gained by using IMUs. If using the same number
of IMUs as the number of markers applied in 3D motion capture system and putting the
IMUs on the same positions where the markers are located, then the wearable system
would be able to fully replace the 3D motion capture technology. However, it is
impossible to attach too many IMU sensors on a human body because of the size and
weight of the current IMU technology. The weight will cause skin vibration during
movements (i.e. inaccurate measurement) and many weights on skins also add movement
constraints, resulting changes in human motor control. Therefore, in terms of practicality,
the most important and challenging issue is how to minimize the number of the sensors

applied in a wearable system.

The basic principle is to capture the main characteristics of a motor skill by
applying as less sensors as possible (i.e. simplification). Ideally, single wearable device
would be the best solution if it could provide the main biomechanical information needed
for skill learning. This is why the iWatch is so popular for physiological feedback. In this
study, the characteristics of the hammer-throw movement were extracted through a pilot
study [23]. The number of sensors identified for developing the wearable system has been
determined to be three. For more details of quantification and identification of the sensor

number, please see Section 3.3.4 in Chapter 3.

2.3 DESIGN OF THE WEARABLE SYSTEM
After the determination of sensors required, one can start to design a wearable

system based on the determined main characteristics of the movement. For a wearable
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system, there are mainly two factors to be considered that are the selection of the sensors

and the selection of the wireless communication method.

2.3.1 SELECTION OF THE SENSORS

Depending on the dominant parameters extracted from the characteristics of the
movement, appropriate sensors should be selected for building the wearable system. In
this hammer-throw case study, tension and two distance data are the dominant parameters.
For obtaining the tension data, the only option is to use a tension sensor also called load
cell. For obtaining distance data, there are several options, such as optical distance sensor,
ultrasonic distance sensor, and IMUs. The first two types of sensors are more direct and
easier to be used for data collection. However, they have limitations due to their one-
dimensional feature. Therefore, IMUs were finally selected and used in the wearable
system in the case study. For more details, please see Section 3.1.1 and Section 3.1.3 in

Chapter 3.

2.3.3 SELECTION OF THE WIRELESS COMMUNICATION METHOD

A wearable system usually uses a wireless communication method. Some different
types of wireless communication methods have been introduced in Section 1.2 in Chapter
1. XBee was selected in the case study because of its advantages in the prototyping stage.
One reason why the proposed wearable system uses only two XBee modules for point to
point wireless communication is that one sensor device attached to an athlete’s waist
would not cause too much influence on his/her movement by reducing the number of
Arduino microcontrollers. Therefore, the tension sensor and an external IMU have to be
connected to the device by cables. It is possible to change the wireless communication

method in the future. For more discussion on this, please see Section 6.2 in Chapter 6.

16



2.4 PROGRAMMING OF DATA COLLECTION
Once the sensors and the wireless communication method are selected, one can
start the software development for data collection. In this case study, Arduino IDE and
MATLAB are used in developing the software part of the wearable system. For more

details, please see Section 4.2.3 and Section 4.3 in Chapter 4.

2.5 SYSTEM CALIBRATION
The next step is to do the system calibration after the hardware and software
development of the wearable system. The calibration procedure is very important because
accurate and meaningful data are required instead of a whole bunch of raw data. For more

details, please see Section 4.2.2 in Chapter 4.

2.6 RETURN TO BIOMECHANICAL PARAMETERS

After calibration, the last but not least procedure is to return the collected data to
the biomechanical parameters. As mentioned in Section 2.1, a new approach should not
change the original structure of human motor skill learning. One should note that, due to
reduction of sensors applied, the wearable system can only provide data revealing the main
movement characteristics. Coaches and practitioners could not link the feedback data to
joints’ coordination. A “translator” is needed to interpret the data back to the
biomechanical parameters (i.e., limb coordination). The “translator” is Al technology. It
is the key to re-establishing the joint angles (i.e., revealing limb coordination) by using

the sensor-collected data.

In the hammer-throw case study, I have proved the potential of deep learning

models as a good “translator”. Due to the limited data volume, the deep learning models
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are still in an initial stage for a validation purpose. For more details, please see Section

4.4 in Chapter 4 and Section 6.1 in Chapter 6.

In summary, prototyping biomechanical wearable system is essentially to apply
the knowledge of computer science and sensing technology into human motor learning
and training. The key point is to find the missing piece to bridge the gap between the two
sides. For finding the missing piece, two “translations” are vital. One is to identify the
minimal sensors required (simplification) and the other one is to transfer the wearables’

data back to biomechanical data.
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CHAPTER 3: BACKGROUND

This research study belongs to the area of applied sciences. For the specific study
case in the hammer throw, it involves the application of wireless sensor networks (WSN),
the hardware and software development of a wearable prototype, the application of Al
technology, and the 3D motion capture and analysis in biomechanical study. Many
researchers have contributed to WSN related applications in different fields [46], [47],
such as health monitoring [48], [49], human activity monitoring, sport, and so on.
Wearable prototype elements such as inertial measurement units (IMUs) are commonly
used in human movement analysis and its applications [50], [51]. Deep learning models
of Al technology have also become a popular tool in various applications [52]. 3D motion
capture technology is currently the most reliable way of obtaining biomechanical feedback

[11] and [53] - [55].

Among all these technologies used in this thesis, wearables and biomechanical
feedback training are the two key methods. Therefore, in this chapter, an overview of
wearables will be presented firstly by introducing some basic knowledge of wireless
sensor networks (WSN) and the Internet of things (IoT) that are playing significant roles
in this era of information, the classification of wearables, and the development of
wearables in biomechanical feedback training. Next, an overview of biofeedback will be
presented by introducing biofeedback and its types, showing its milestones in human
motor-skill learning and training. Lastly, developing wearables for biomechanical

feedback will be discussed.

19



3.1 OVERVIEW OF WEARABLES

Wearable sensors have gained great interest in biofeedback training, owing to their
tremendous promise for a plethora of applications. They supply real-time non-invasive
monitoring of physical-activity parameters as indicators of a trainee’s physical progress.
Yet, the absence of a reliable method of applying wearables in biomechanical feedback
training has greatly hindered wearable applications in the area of human motor skill
learning, training, and optimization. In this section, WSN and IoT will be introduced first
because the rapid growth of wearables is based on these two concepts. Next, the
classification of wearables and the current status of wearables’ development in

biomechanical feedback training will be discussed.

3.1.1 WIRELESS SENSOR NETWORKS AND INTERNET OF THINGS
WSNs can be described as the networks consisting of two or more nodes that can
transmit information collected by various sensors remotely by following some specific
wireless communication protocol. For example, Figure 4 illustrates the system
architecture in my previous research [19], which consists of two nodes where one node
can collect data for transmission which can be called the sensor node, and the other node
receives this data which can be called the receiver node. The XBee modules were used as

the wireless communication method.
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The athlete wears
our system device
(sensor node)

Sensor node has:

XBee
Arduino Send data

Sensors
(Tension,
Distance)

Collect data

Figure 4: Previous system architecture [19]

Wireless sensors are typically more convenient than wired sensors. As discussed
in [56], compared to wired networks, low-power and low-cost wireless sensors are used
to reduce the capital expenditure and operational expenditure without losing any quality
of service from an industrial perspective. The previous wireless sensor device [19], also
called the sensor node in Figure 4, used a tension sensor and an infrared distance sensor
because these sensors are the most straightforward way of collecting the required data that
can reveal the critical parameters. These two sensors are both one-dimensional. The
tension sensor was proved to collect the wire-tension measurements successfully.

However, the distance sensor was proved to be ineffective after performing some field
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tests. Because the distance sensor uses infrared to measure distance, it is required to keep
vertically towards the ground for collecting reliable data. However, during the hammer-
throw movement, the device will swing as the athlete rotates his/her body. Therefore, it is
hardly to use a one-dimensional sensor (i.e., optical distance sensor, ultrasonic distance,
etc.) to collect accurate distance data in this specific situation. IMUs are commonly used
in human motion tracking. They can provide not only the one-dimensional distance data
but also the 3D location of an object. So, IMUs are quite popular in many different areas
[57] — [59]. However, every coin has two sides. IMUs are more difficult to be applied.

More details about IMUs will be introduced in Section 3.1.3 and in Chapter 4.

IoT is a relatively newer and wider concept compared with WSN. WSN can be
treated as a subset of IoT because only the wireless sensor applications belong to WSN
while IoT can have both wireless and wired sensors as long as they can transmit data to
the Internet [60]. Also, WSN applications may not transmit data to the Internet directly,
like the wearable device illustrated in Figure 3. For example, if the wearable device was
able to send the collected data to a server through a Wi-Fi module within a Wi-Fi
environment or a GSM (Global System for Mobile) module within any mobile coverage
area, then it would become an IoT application. No matter if it is a WSN application or an

IoT application, wearable devices can be very useful in many different fields.

3.1.2 CLASSIFICATION OF WEARABLES
Wearables or wearable devices simply refer to those wireless devices that can be
worn by people or attached to human bodies. A wearable device usually contains a
microcontroller and different types of sensors to collect data remotely from the wearer or

the environment for monitoring or data processing purposes. As mentioned in [61], the
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authors classified existing commercial wearables into three categories: (1) Accessories,
(2) E-Textiles, and (3) E-Patches by surveying over 100 products. The most popular
category are accessories, including wrist-worns, head-mounted devices, and other
accessories like smart jewellery, straps, etc. The wearable device in this research can be
classified into the smart straps as it is supposed to be tied on an athlete’s waist with a belt.
They also stated that smart straps usually are used to monitor human physiological signals

and biomechanics.

In another review [62], wearable sensors can be classified into two categories that
are flexible and non-flexible by the materials of the sensors. The wearable device in this
research belongs to the latter one which is rigid and made of brittle materials. The flexible
wearable sensors are made of malleable materials that can be reshaped to some extent
without changing the sensors’ properties. As mentioned in [62], wearable sensors have
been applied in many different areas, such as, medical, security, communication, etc.
Although wearables have already been developed so broadly, there is still a great potential

need for wearables used in sports.

3.1.3 INERTIAL MEASUREMENT UNIT
Usually, an inertial measurement unit (IMU) consists of an accelerometer, a
gyroscope and a magnetometer. The accelerometer can collect acceleration data in three
directions (X, Y and Z axes) in a 3D coordinate system. The gyroscope can collect rotation
speed in three directions and the magnetometer can collect magnetic field intensity in three
directions as well. Therefore, this type of IMU is a 9 degrees of freedom (DoF) IMU.

Some IMUs are 6DoF that only have an accelerometer and a gyroscope.
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Suppose an object is in an absolutely still condition on Earth, then there will only
be the Gravity on it. When the object is tilted, the acceleration that the accelerometer
detects will be the projection of the Gravity on the object’s own coordinate system. So, by
using some mathematical formulas, the roll (around X axis) and pitch (around Y axis)
angles can be calculated out. However, the yaw (around Z axis) angle cannot be obtained
with the acceleration data because the Gravity is orthogonal to the horizontal plane. One
way to get calculate the yaw angle is to use the magnetometer. There are also some

mathematical formulas for calculating out the yaw angle with the magnetic field intensity.

In reality, nothing can stay in an absolutely still condition. There are always some
noisy signals leading to the errors that occur in the calculations from using the
accelerometer’s and the magnetometer’s data. These two sensors are inaccurate due to the
hardware limitation. That is why the gyroscope plays a very important role for an IMU.
The gyroscope can collect the instant rotation speed that can be integrated with time to
calculate out the angles directly. However, the fact that the time period cannot be sliced
infinitely can lead to a drifting error when integrating the rotation speed with time.
Therefore, an IMU data fusion algorithm or filter is required, which will be introduced in

Chapter 4.

3.1.4 STATUS OF WEARABLES’ DEVELOPMENT IN BIOMECHANICAL
FEEDBACK TRAINING
Wearables in sports are only few years old; however, they have expanded
radically, from the real-time monitoring of players’ signs of exhaustion or injury while on
the field to including perceptual and psychological aspects of professional team sports to

enhance performance [63] — [65]. Wearable technology is leading a revolution in sport
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[63], [65], [66]. Various sensors are now fitted into sports equipment, wristbands, and/or
clothing to determine athletic performance, like speed, acceleration, power, distance,
heart, and metabolic conditions during training. All the crucial data is sent to the coach
and training team instantly, allowing for them to perform an individualized training for

increasing athletic competence.

Nevertheless, real-time biomechanical feedback training currently does not look
so optimistic. A search using keywords in the authority database — Web of Science —
revealed the following scenario: when the keyword “biofeedback training” was applied,
5588 articles were found. However, when the keyword was changed to “biomechanical
feedback training”, the article numbers dramatically dropped to 569. Even more
theatrically, when two additional keywords “real-time” and “sport” were added for a
search, the number decreased to 23. A scarcity of articles occurred when the keyword
“sport” was substituted by “dancing” (i.e., only one article was found in Table 1). These
results would suggest that, when comparing to other biofeedback applications, the real-

time biomechanical feedback applications lag far behind.

Table 1

The Results of Literature Search in All Databases of Web of Science on 11 October

2018 [45]
Biomechanical Biomechanical
Biofeedback Biomechanical
Feedback Training &  Feedback Training &
Training Feedback Training
Real-time & Sport Real-time & Dancing
5588 569 23 1
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A close look at the published papers revealed that real-time biomechanical
feedback training in motor learning is still an infant science. For example, only two
applied studies attempt to reveal its potentials in human motor learning/training in Table
2. When considering the booming popularity of wearables in sports as well as in health-
related applications, the number of biomechanical inquiries appears to be
disproportionately low. The rarity of this occurrence could be a product of both the fact
that there is a lack of a general biomechanical model for feedback motor learning and that
researchers are still searching for methodological breakthroughs to link biomechanical

quantification and human motor learning in real-time.

Table 2
The Article Types of Real-time Biomechanical Feedback Training Found in Web of

Science [45]

Motor Leaming/Training ~ Method/Development ~ Injury Prevention/Rehabilitation ~ ReviewAticks ~ Patents  Total

Sport 2 10 7 2 2 23

Dancing 0 1 0 0 0 1

3.2 OVERVIEW OF BIOFEEDBACK
Effective human motor-skill learning/training benefits nearly every one of us, as
it can help develop interests in more physical activities and lead to more active lifestyles
[67]. The main aims of research related to human motor-skill learning are to improve
learning techniques (education), to accelerate skill acquisition (learning), and to maintain
motor function (training). All the three aspects rely on feedback mechanisms for their

efficiency and effectiveness [9]. Given the complexity of human sensory-motor
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behaviours, informed learning and training hold a great potential to improve efficiency,
particularly in the acquisition of cognitive and psychomotor skills for highly complicated
performance activities [ 18] and [68] — [71]. The two key components in human motor skill
learning and training are practice and biofeedback [72]. Previous studies have shown that,
when properly understood and applied, biofeedback training is an excellent tool for
enhancing practice and performance of human motor skills [73] — [79]. In this section,
biofeedback and its types will be introduced first. Then the milestones of biofeedback
training in human motor-skill learning and training will be presented. Next, the unique

aspects of biomechanical feedback will be discussed.

3.2.1 BIOFEEDBACK AND ITS TYPES

Biofeedback is usually gained by connecting the human body to electrical sensors
that receive information (feedback) about the human body (bio). It is a technique that one
can use to learn to control one’s body functions or physical performance [80]. Generally,
there are four types of biofeedback: physiological (e.g., heart rate and blood pressure),
neurological (e.g., electroencephalogram (EEG)/brainwave), biochemical (e.g.,
electrolytes and metabolites in sweat or saliva), and biomechanical (e.g., joint angles and
applied force) [81], [82]. In human motor learning, biofeedback training familiarizes us
with the activity in our various body systems, so it is a useful educational and/or training

tool for mastering and/or maintaining human motor skills [83].

3.2.2 MILESTONES OF BIOFEEDBACK TRAINING IN HUMAN MOTOR-
SKILL LEARNING AND TRAINING
Learning and training of human motor skills has a history of over thousands of

years [18], [72], experiencing some key periods, such as apprenticeship, class education,
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individualized instruction, and integrated performance support. However, the appearance
of (bio)feedback in systematic motor skill training did not occur until the early 1950s [84],
[85]. After World War II, individualized instruction was first developed in industry for
training human physical skills (i.e., human motor skills) efficiently and reducing expense
while still obtaining high instructional value for various professionals. The training
method broke the learning into small steps with an activity afterward to check
comprehension. This reinforcement learning behaviour opened the door for biofeedback

intervention in motor learning and practicing new motor skills.

This early form of feedback learning in essence requires immediate feedback (i.e.,
real-time feedback) given after each skill practice. The training can be knowledge-based
(trainer), or more objectively, technology-based. The advantages of feedback learning are:
(1) it allows for a learner to practice at his or her own pace and to find mistakes and correct
them and (2) it reduces learning time, produces a low error rate, and improves learning
efficiency through immediate feedback [18], [72]. A successful example of feedback
learning is a computer-based training developed and used primarily in the military [85].
The benefits of such training are more opportunities for realistic training and feedback;

and, increased availability and accessibility of training in operational units.

From a scientific point of view, human motor-skill development is a biological
process. Therefore, the influential feedback should be those related to the changes to the
biological parameters of the human motor system. In essence, feedback in human motor-
skill training is primarily biofeedback. Biofeedback as a research major was first reported
in the 1960s, supplying single-parameter feedback in real-time training [81]. Until the end

of the last century, biofeedback had been able to supply multiple parameters, such as body
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temperature, heart rate, respiratory rate, muscle activity, impact, joint angle, and others
during training [86] — [88]. Due to the limitation of sensing technology at that time, the
application was commonly lab-based, and participants were equipped with wires. As such,
the applications were mainly in areas of less human mobility or less human movement
complexity, such as in senior health care, physiotherapy, and rehabilitation [81] and [89]

—[93].

Over the past decade, wearables are becoming the trend in sports training.
Technological developments have led to the production of inexpensive, non-invasive,
miniature sensors, which are ideal for obtaining sports performance measures during
training or competition. The miniature sensing devices are worn on the wrist, clothes,
and/or shoes. They supply real-time biofeedback for sports analyses. The sensing
technology has turned towards creating devices with new form factors that augment sports

activities.

The overwhelming impression of wearables’ success in sport is mainly in
monitoring physical condition and preventing injuries. For sport-related injuries, soft-
tissue injury remains the most common type among athletes. The injury is often caused
by fatigue, overtraining, or dehydration [94] — [96]. Wearable sensors are now able to
collect data related to these risk physical conditions from athletes’ physical conditions,
muscle activities, and sweat [82] and [63] — [65]. The real-time biofeedback helps coaches
to alternate their training or competition strategies for decreasing this injury in trainings

and competitions [63], [65], [94].
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Existing evidence demonstrates that wearables have successfully supplied real-
time information related to athletes’ speed, acceleration, power, distance (i.e.,
locomotion/physical characteristics), heart rate, muscle activities (i.e., physiological
feedback), and electrolytes and metabolites (i.e., biochemical feedback). Although, these
parameters are useful in analyzing the general physical condition of an athlete, they do
not provide information that is related to the limbs’ control of human motor skills. The
biomechanical feedback is still missing. Without this vital information, the motor learning
of complicated skills (e.g., artistic performance, gymnastics/acrobatics skills, and many
others) is largely formed of art based on the trainers’ subjective experiences of “what
works” [68], [69], [97]. While this can be effective for some learners, large and
widespread biological diversity unfortunately limits the generalizability of a single
individual’s experiences [68], [69], [98], [99]. Even small variations in bone length,
muscle, and tendon attachments, for example, can disrupt this traditional form of
knowledge transfer. Therefore, scientifically described training targets and routes need to
be established to improve motor-skill learning. In other words, biomechanical feedback
tools are required for measuring and quantifying characteristics of effective limb

coordination (i.e., motor control).

3.2.3 UNIQUE ASPECTS OF BIOMECHANICAL FEEDBACK
Physiological, neurological, and biochemical feedback present information related
to one’s physiological variation, muscle tension, physical condition, and thought
processes. Such information is conserved across human motor skills, i.e., across different
movement forms. Therefore, feedback devices monitoring these parameters can be

universally applied to all activities [100], [101].
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In contrast to physiological, neurological, and biochemical feedback,
biomechanical feedback mainly provides information that is related to the limbs’ control
of human motor skills, which directly accelerates motor skill learning and optimization,
but must be tailored to the activity being examined [16] and [102] —[104]. In other words,

biomechanical feedback is a more useful tool but complicated for its development.

Several studies in the past decades confirmed the importance of real-time
biomechanical feedback, showing up to 100% improvement with its applications [105] —
[108]. However, the development of biomechanical feedback is still in its infancy. While
the real-time biofeedback of the first three types (i.e., physiological, neurological, and
biochemical feedback) has been well developed for the past decades and is now a routine
application (successfully transferred from lab-based to training and/or competition
environments), the studies and applications of the biomechanical one are still rare. After
reviewing 666 publications between 1960’s and 2010’s, Tate and his colleagues found
that there were only seven studies using real-time biomechanical feedback for physical
training in a laboratory environment [81]. Additionally, the current state has not shown a
considerable change, especially in sports performances (Table 1 and Table 2). The rarity
could be caused by the numerous obstacles that must be overcome during the development
of the real-time biomechanical feedback tools. The primary one is that biomechanical
feedback must always be tailored to an activity (i.e., non-generalizable), requiring
different design parameters for different motor skills. Thus, to develop a biomechanical
feedback device, one must first obtain a thorough understanding of the selected motor skill
in order to select the useful parameters for monitoring. Furthermore, the devices must not

interfere with the motor skill being executed. This technical limitation alone has proved
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to be a major hindrance to the development of biomechanical feedback devices in motor

learning and training.

3.2.4 PRINCIPLE OF 3D MOTION ANALYSIS
In a 3D motion analysis, a 3D motion capture system needs to be used to measure
a full-body movement by using ~40 reflective markers. VICON is a commonly used 3D
motion capture system. With respect to a full-body modeling in the VICON system, the
collected kinematic data can supply primary information, such as each marker’s position,

the positional changes, the velocities, and the accelerations.

In this case study, each subject needs to wear a black garment made of stretchable
material, which can cover the upper and lower body of each subject. Affixed to the
garment were 39 reflective markers, each with a diameter of 9 mm. Markers on the upper
body were placed on the acromion process, lateral epicondyle of the humerus, styloid
process of the ulna and radius, third metacarpophalangeal joint, as well as on the upper
and lower arm (the four markers on the upper and lower leg were only used to determine
segmental rotations. As they were not involved in segmental translations, no specific
anatomical position is needed for these four markers), sternal notch, xiphoid process, C7,
T10, and left back. Four markers were also placed on the head—one on the left and right
temples each and two on the posterior portion of the parietal bone. Markers on the lower
body were placed on the anterior superior iliac crest, posterior superior iliac crest, lateral
condyle of the tibia, lateral malleolus of the fibula, calcaneal tuberosity, and the head of
hallucis, as well as on the upper and lower leg (again, no specific anatomical position is
needed for these four markers). Raw kinematic data was processed using a five-point (1-

3-5-3-1 function) smoothing filter. From these 39 markers, a full-body biomechanical
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model with 15 segments can be built to reveal undisclosed aspects of the motor control

[101, [13], [15], [109] - [111].

The model worked as follows: from motion capture, anatomical positions could be
established, which then allowed the construction of a 15-segment full-body model. Using
the fundamental precepts of physics, simple positional data were translated into the
movement of the multi-segment model. In such individualized biomechanical modeling,
the anthropometric characteristics of the body were established using anthropometric
regression equations found in statistical studies [98], [112]. The 15 segments were the
head and neck, upper trunk, lower trunk, two upper arms, two lower arms, two hands, two
thighs, two shanks, and each foot. In addition, three markers were attached on the handle.

Furthermore, reflective tape was glued to the shot to determine hammer release speed.

3.3 DISCUSSION ON DEVELOPING WEARABLES FOR BIOMECHANICAL
FEEDBACK

For human motor-skill learning, people are always looking for ways to speed up
training, ways to make it more economical, efficient, and effective, and ways to minimize
injuries. Real-time biomechanical feedback training could be the best solution that people
are looking for, because the technology would have the potential for: (1) moving scientific
monitoring from a lab-based environment to the field, (2) simplifying a scientific
quantification from using a complicated motion capture system to easily-applied
wearables, and (3) transferring the vital biomechanical feedback quickly to prevent the
movement errors from happening, while still finding individual compensation and
optimization. However, biomechanical wearables still require much more research before

they can become impactful tools in the real world. Developing real-time biomechanical
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feedback training tools needs to search ways (e.g. individualization) to supply information,
which should consider the motor-control diversity, the anthropometric variation, and the
physical compensation/optimization. In this section, the biomechanical steps required in
developing wearables for biomechanical feedback will be presented first. Then, the
challenges and obstacles in its development will be discussed. Finally, how to use Al

technology to make a breakthrough in the research will be explained.

3.3.1 BIOMECHANICAL STEPS
A successful motor learning outcome can be supported by useful and timely
biomechanical feedback to the athlete targeting performance defects. Systematic,
objective, and reliable performance monitoring and evaluation, performed by means of
quantitative analyses of biomechanical variables, can reinforce biomechanical feedback
training in sports practice [69], [97], [102]. Therefore, the approaches of quantifying a
motor skill with high spatial and temporal accuracy (i.e., the limb coordination) would be

the key to developing wearables for biomechanical feedback training.

Currently, the most reliable biomechanical feedback method is 3D motion capture,
which identifies and tracks markers that are attached to a human subject’s joints and body
parts to obtain 3D skeleton information [11], [53], [54]. The spatiotemporal human
representation based on 3D motion capture data is currently the most trustworthy approach
in motor skill quantification [10], [12], [13], [23], [109], [110]. This method, however,
mainly supplies post-measurement feedback (i.e., not real-time) due to its drawbacks:
multiple cameras placed in a room, long calibration and setup procedures, a time
consuming course on data collection, processing, analysis, and interpretation, and the high

cost of the equipment [20], [21], [113].
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For practitioners, real-time feedback is more useful. Yet, due to the drawbacks of
3D motion analysis technology and the diversity of human motor skills in sport, research

on biomechanical feedback training has to undergo:

(1) selection of a specific motor skill,

(2) 3D motion analysis of the skill,

(3) verification of post-measurement feedback in practice, and

(4) development of a feedback device for monitoring the critical/vital parameter(s)

(e.g., coordination among certain segments or joints) for the given motor skill.

These steps are, at present, required for developing a reliable wearable device that is

capable of supplying real-time biomechanical feedback [87].

3.3.2 CHALLENGES AND OBSTACLES
Current sensing development has shown its potential to mitigate problematic
constraints of biofeedback devices on human movement and has demonstrated its great
promise to expand the capabilities of biofeedback to motor-skill learning [63]. The
successes in health and physiotherapy [19] [86], [89], [114] suggest that biomechanical
wearables will become a reality in human motor learning and training in sport. However,
the transition from the simple motor-skill trainings to the complicated ones would face

several challenges.

It is no doubt that the greatest challenge for developing biomechanical wearables
is the practicality. Any device attached to a human body will supply certain constraints
for his/her movement and alternate the movement control in a way that may not reach the

goal of training. Currently, the reliable 3D motion capture technology requires around 40
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markers for motor skills’ quantification and characterization [11], [13], [15]. Even the
non-ideal test condition cannot be substituted by simply replacing the ~40 markers (sphere
shape of 9 mm in diameter and almost weightless) with wearables, because the weight and
volume of current wearables (e.g., IMUs) can cause unknown experimental artifacts (i.e.
the experiment itself that biases the measurements). Therefore, how to apply as few
wearables as possible for accurately rebuilding sports motor skills would be the primary

focus for the development of wearables in human motor-skill learning.

The second challenge is the identification of motor control patterns. Motor control
patterns exhibit the characteristic wherein either gross or fine motor control appears to be
dominant. In most sports, it is reasonable to conceive that the majority of activities (e.g.,
running, jumping and throwing) mainly rely upon large muscles (i.e., gross motor control),
where smaller muscles function in significant stabilizing roles. Fewer activities, like
shooting, rely mainly on smaller muscle group coordination (i.e., fine motor control)

where gross motor control supplies foundational support or is nearly rested [16], [53].

The third challenge is the expert-knowledge needed (i.e., compensatory strategies
depending on an individual anthropometry and physical condition) for complicated motor-
skill learning. Motor control in sport is acknowledged to be an activity requiring complex
behaviour and long-time motor control development [13], [71], [102]. Athletes take
significant amounts of training and practice for individualized development, i.e., motor-
skill optimization based on their body structures and physical uniqueness. During their
years of training, the desirability of acquiring skills efficiently and effectively while
simultaneously avoiding injury would seem self-evident. Therefore, athletes at various

levels are continually searching for opportunities to improve their motor skills and gain
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advantages or perfection in their competitions. Study on developing individualized

compensatory joint coordination is still feeble.

3.3.3 Al FOR MOTOR CONTROL QUANTIFICATION
Al systems are performance driven — one focus is on the predictive accuracy, based
on known characteristics learned from the previous data/training samples [115], [116]. In
the past decades, Al techniques have experienced a resurgence following concurrent
advances in computing power, large amount of data (big data), and theoretical
understanding. Al techniques have become a powerful tool for helping to solve many

challenging problems in human motor-skill evaluations and analyses [117] — [121].

The idea of Al prediction is to find a way to learn general features in order to make
sense of new data [115], [116]. This description highlights the central role of data for
establishing implicit knowledge. The amount of data must be sufficiently large to provide

many training examples from which a large set of parameters can be extracted.

In summary, machine leaning is one of the methods of realizing Al while deep
learning is a subfield of machine learning [122]. The conventional machine learning
methods can be classified as supervised learning and unsupervised learning. Most
recently, semi-supervised learning, reinforcement learning and deep learning, etc. were
proposed. Although there are so many different machine learning methods, they still use
those classic statistical methods, such as Support Vector Machine, Naive Bayes, Neural

Networks, Decision Trees, K-means Clustering, etc.

Among Al technologies, deep learning is considered a powerful tool that

percolates through to all application areas of machine learning, such as image
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identification, speech recognition, natural language processing, and, indeed, biofeedback
support [123] — [125]. Usually, deep learning requires large amounts of data to train a
network. Convolutional neural network (CNN) and Recurrent Neural Network (RNN) are
most commonly used deep networks [122]. In the proposed wearable system, two
Sequential models were built based on Keras API. The Sequential models use an RNN to
process the inputs. RNNs consisting of input layers, hidden layers and output layers are
rather powerful and dynamic systems. In general, if a model has at least two hidden layers,
then it can be treated as a deep learning model. A hidden layer in a neural network is
located between the inputs and the outputs [126]. In each layer, the inputs or the outputs
from the previous layer will be calculated through an activation function, and the
outcomes from the calculation will be the next layer’s inputs or the final outputs. The
activation function can determine the outputs of a deep learning model, its accuracy and

the computational efficiency [127].

When training a neural network, optimization algorithms, also called optimizers,
are used to reduce the losses which indicate the error. Because the goal of training a neural
network model is to minimize the error, the loss functions can tell people “how good” the
model is at making predictions for a given set of parameters. One can set and adjust the
learning rate which is a tuning parameter in an optimizer to determine the step size at each
iteration (i.e., epoch) for minimizing the losses. Bigger learning rates will never reach the
global minima and will wander around it. In contrast, smaller learning rates can be easily
trapped in a local minima, and its training time will be longer [128]. Metrics are used for

evaluating learning models.
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The success of deep learning networks encourages their implementation in further
applications for the enhancement of human physical activities [129], [130]. Most recently
(September 2018), Nature Neuroscience published the latest developments in the area of
markerless and video-based motion tracking, indicating that the power of deep learning
will enable motion tracking to human-like accuracy [131]. This study confirms that
motion capture or quantification of limb coordination will move from an expensive and
difficult task restricted to the laboratory to an effortless daily routine for researchers and

practitioners.

From a motor learning point of view, wearables would have much higher potential
than video shooting in future practice. This is not only because of the fast advance in
miniaturizing wearables, but also due to two inherited drawbacks of the video-shooting
approach. Reliable biomechanical feedback should be obtained from accurate
quantification of human movement in the field, with some sports requiring large space.
Even with a multiple-camera setting, unexpected environmental factors (e.g., interactions
among athletes) will create data-gaps. Further, it is true that massive movement data (e.g.,
from YouTube, Flickr) already exists for training of deep learning models. However, those
video datasets are uncalibrated and have very little information on the hardware and
conditions used to capture particular videos, which can bias the deep learning recognition
algorithms [132]. Currently, the availability of reliable motion capture data for developing

deep learning models is significantly limited.
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3.3.4 REAL-TIME BIOMECHANICAL FEEDBACK TRAINING IN THE
HAMMER THROW

The hammer throw has a long-standing history in track and field, but unlike some
other sports events, men’s hammer throw has not seen a new world record since 1986
[14]. This sport involves complex human motor skills, such as quick body spins, dynamic
balancing, explosive power generation, and so on [23]. One of the possible reasons for
this stagnation could be the lack of real-time biomechanical feedback training. Due to the
fast speed of the body movement and the invisibility of all the forces generated during the
movement, it is very difficult for the coaches to give reliable feedback; and therefore, they
have to mainly guess what works best for the athletes based on their experience in the

hammer-throw training sessions [23].

Developing a wearable device that can be used in the hammer-throw training will
be able to provide coaches with scientifically based feedback. Wearable wire-tension
measurement has garnered great interest in biofeedback training of the hammer throw [19]
and [133]. They supply real-time, in-field/non-lab-based monitoring of tension/force
generation as indicators of a trainee’s performance progress. It seems that the hammer
throw could be numerically analyzed in practice and the details of the motor control could
be immediately available for coaches. However, the absence of a reliable method of
linking the wire-tension data to the motor control of the throw has greatly hindered its
application in practice. In order to bridge the gap, a synchronized measurement of 3D
motion capture (kinematics of the throw/motor control) and wire-tension (kinetics of the

throw) was applied to find the missing piece that could link the two types of data.
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In the pilot study [23], one national-level athlete (body weight: 115 kg, body
height: 178 cm, personal performance: 66.7 m) and one college-level athlete (body weight:
111 kg, body height: 176 cm, personal performance: 49.5 m) was tested, analyzed, and
compared in order to find the link. No restrictions were placed on the subjects before and
during the trials in an effort to preserve their normal motor control style. The university
human-subject committee scrutinized and approved the test as to meet the criteria of
ethical conduct for research involving human subjects. The subjects were informed on the
testing procedures and voluntarily participated in the data collection. A twelve-camera
VICON motion capture system (Oxford Metrics Ltd., Oxford, England) was set up on
fully extended tripods around an indoor hammer pit with a safety set in front of the
cameras. Six cameras were placed in a row parallel with the safety net on each side of the
hammer throw pit. Capture occurred at a rate of 200 frames/second. Calibration residuals
were determined in accordance with VICON’s guidelines and yielded an accuracy within
1 mm. After warm-up, the national-level athlete performed five trials and the college-level
athlete performed six trials. The trial (judged by the fastest release speed) of each subject
was selected, analyzed, and compared. The experimental results have found the two key
parameters — vertical wrist and hip displacements that need to be collected by a wearable

device.

Meanwhile, deep learning predictions based on the IMUs’ data have shown great
potential in developing real-time biomechanical feedback training for an efficient human
motor-skill learning and optimization. Deep learning models can help to validate that the

data of displacements of the hip and wrist, which can be collected by a wearable device,
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could reveal the upper and lower limbs’ coordination so that the proposed system can

provide real-time biomechanical feedback along with the tension data.

3.4 SUMMARY
In this chapter, the background of wearables and biofeedback have been reviewed.
Also, a discussion on developing wearables for biomechanical feedback has been
provided. The key skills of developing a wearable system that can provide real-time
biomechanical feedback are 3D motion analysis, and computer science related skills, such

as hardware and software development of a wearable device, Al modeling, etc.

Therefore, the next chapter will focus on the system following with the
background in this chapter. Although this research aims to develop a real-time
biomechanical feedback training just in hammer throw, it could be a practitioner’s desire
that, like physiological, neurological and biochemical wearables, a biomechanical
wearable device could also be universally applied to all motor skills for their learning and

training in any sport (i.e., not only limited to the hammer throw).
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CHAPTER 4: THE PROPOSED REAL-TIME BIOMECHANICAL FEEDBACK
SYSTEM

In a traditional hammer-throw training session, a coach helps athletes to improve
their performance just by watching their throwing movements. However, the men’s
hammer-throw world record has not been broken for over three decades. The lack of
scientifically based training may be one of the reasons for this stagnation. A scientific
training method requires quantification of some fundamental features that can reveal key
factors influencing athletes’ scores after a throwing movement. Although 3D motion
capture systems can provide highly trustworthy biomechanical feedback, it is not in real-
time. In addition, a wearable device can help to reduce the negative effects (such as
movement constraints, complicated operation, long procedure, etc.) of the motion capture
markers attached to the athletes. It also helps to avoid carrying the whole camera system
which usually consists of multiple high-speed cameras along with their corresponding
heavy camera stands and the system machine to the training field. Thus, developing a
wearable system for the elite training of the hammer throw is necessary. The proposed
real-time biomechanical feedback system can be used to facilitate motor learning and
optimize motor skills for the hammer-throw athletes. However, the quantification of one
vital feature found by the pilot study [23], that the timely change of the vertical wrist and
hip displacements can reveal the upper and lower limbs’ coordination, requires Al

technology for validation.

Figure 5 illustrates the flowchart of the proposed wearable system consisting of
three basic elements: sensor node, receiver node and deep learning models. The sensor

node, which is the wearable device, is used to collect data for transmission. A customized
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PCB (printed circuit board) has been designed to miniaturize the wearable device, and a
3D printed box along with its lid has been designed for housing the PCB and other related
components. The receiver node has an XBee module connected to a laptop through USB
for data transmission. A MATLAB program has been implemented to receive, process
and display the collected data in real-time. The two nodes can communicate with each
other remotely through XBee modules. Two deep learning models have been built to
validate the predictions for the change of the following key joints’ angles: the left and
right hip angles, the left and right knee angles, the left and right ankle angles, the left and
right shoulder angles, the left and right elbow angles, the left and right wrist angles, and
the thorax angle. Developing such a wearable system could replace the VICON motion
capture system which can only provide post-processed biomechanical feedback. However,
the motion capture technology is still the most reliable for obtaining 3D data. Therefore,
the VICON system helps with the calibration of IMUs (inertial measurement units) and

provides the training and testing datasets for the deep learning models.
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As discussed in 3.1.1 in Chapter 3, two issues were found from the previous design
[19]. One is that the distance sensor could not work as expected. The other one is that the
size of the device was still a little bit large due to the big size of the Arduino Mega board
which was used as the microcontroller. Therefore, the new system was proposed to
improve its efficiency by replacing the distance sensor and the microcontroller with the
help of PCB design. Figure 6 illustrates the updated system architecture. The previous
distance sensor and microcontroller have all been replaced with new components. So, the
new sensor node consists of an XBee module [26], an Arduino Pro Mini board [40], and
the sensors including two IMUs [38] and a load cell [39]. One IMU is on board and the
other one is attached to the wrist of an athlete by an Ethernet cable (approximately 170
cm in length). The load cell is embedded in the narrow end of a hammer-throw handle
which is also attached by an Ethernet cable (approximately 325 cm in length). One reason
of using Ethernet cables here is that there are various coloured wires inside the Ethernet
cable which makes it convenient to connect the sensors to the PCB. The Arduino board is
responsible for controlling all the sensors to collect the required data from a field test and
sending the data through the XBee module to the receiver node. The receiver node has
another XBee module connected to a laptop to receive and process the data. A GUI on the
receiver node side, designed in MATLAB, is used to display real-time feedback. There is

also a MATLAB program for saving and processing the raw data.
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The wearable device (sensor
node) is attached on the belt
of the athlete.

Sensor node
sends data ‘
XBee

Arduino Pro Mini |

Sensors: |
| IMU1 (on board) |

IMU2

attached Receiver node
Load cell

Figure 6: Updated system architecture

In this chapter, the configuration of the XBee [26] modules which is the wireless
communication channel in the system will be described in detail with the XCTU [25]
software. Then, the sensor node and the receiver node will be introduced respectively.

Lastly, the deep learning models will be discussed.

4.1 XBEE CONFIGURATION
The two XBee [26] modules are the key to wireless communication in the system.
I configured the two XBee modules with XCTU [25], which is a free software application
to configure and test the XBee RF (Radio Frequency) modules through a graphical

interface, to pair them with each other, which allows the sensor node to send data to the
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receiver node. One example of the XCTU configuration interface is shown in the Figure

7.

o NN o | = ER

Q Radio Modules ¢ Radio Configuration [Receiver - 0013A200404904C6)
Name: Receiver N 1
Function: XBEE 802.15.4 g :b (I/ i éﬂ ‘?. . Q aa
Port: usbserial-DAO.../8/N/1/N - AT Read Write Default Update Profile
MAC: 0013A200404904C6 °
Product family: XB24 Function set: XBEE 802.15.4 Firmware version: 10ef
¥ Networking & Security
Modify networking settings
i CH Channel 12 A (S X
i ID PANID 123 A (Y]
i DH Destination Address High 0 G O
i DL Destination Address Low 2 ‘ s O
i MY 16-bit Source Address 1 ‘ s O
i SH Serial Number High 13A200 (&)
i SL Serial Number Low 404904C6 ($)
i MM MAC Mode 802.15.4 + MaxStream header w/£ [ 00
i RR XBee Retries 0 s O
i RN Random Delay Slots 0 s O
i NT Node Discover Time 19 x 100 ms s O
i NO Node Discover Options 0 s O
i CE Coordinator Enable Coordinator [1] A (X 2]
i SC Scan Channels 1FFE Bitfield 006
i SD Scan Duration 4 exponent s O
A4 End Novira Acennistinn NNNNK N1

Figure 7: An example of the XCTU configuration interface

For most of the parameters, the default values could be used. Some parameters
could be set to the same value for both XBee modules in the sensor node and the receiver
node. These parameters are: Channel, PAN (Personal Area Network) ID, Interface Data
Rate, and Packetization Timeout. They can be set to any number within its range
respectively depending on personal needs. The only requirement for these parameters is
to set them to the same for both XBee modules. Some parameters need to be set to different

values depending on personal requirements. Every parameter’s detailed description can
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be found in the XCTU manual [25]. Some key parameters that were modified for this case

study will be introduced.

The interface data rate, which is also referred to the baud rate, was set to “57600.
The higher the baud rate is, the faster the transmission speed will be. However, a higher
baud rate requires a greater bandwidth for the signal channel. In other words, its tolerance
of noisy signals will be reduced as the baud rate is set to higher values. There are eight
options to set the baud rate to, which are “1200”, “2400”, “4800”, “9600”, “19200”,
“384007, “57600”, and “115200”. A faster speed of data transmission was preferable.
However, the data was influenced too much by some noisy signals with “115200” baud

rate during the tests. So, it was set to “57600” for reliability and stability.

The packetization timeout was set to “0”, whose default value is “3” and its range
is from “0x0” to “OxFF”. This parameter was set to “0” to allow the XBee module to
transmit characters as they arrive instead of buffering them into one RF packet. By
performing some experiments with different settings, it was found that the receiver node

can receive and process the data in MATLAB better with this specific setting.

The destination address low was set to “2” for the XBee module in the receiver
node, while the destination address low for the XBee module in the sensor node was set
to “1”. Its default value is “0” and its range is from “0x0” to “OxFFFFFFFF”. The 16-bit
source address was set to “1” for the XBee module in the receiver node, while it was set
to “2” for the XBee module in the sensor node. The default value of this parameter is “0”
and its range is from “0x0” to “OxFFFF”. These two parameters were configured

specifically for point to point wireless communication.
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The XBee module in the receiver node is treated as a “coordinator” by setting the
parameter of coordinator enable. This parameter for the XBee module in the sensor node
was set to its default value — “end device”. The reason why I chose the XBee module in
the receiver node as a “coordinator” is that the “coordinator” needs to start up before the
“end device”. In this way, it can make sure the receiver node is always waiting for

receiving data to avoid missing any data sent from the sensor node.

4.2 SENSOR NODE
A low-power and low-cost wearable prototype has been developed as the sensor
node in the real-time biomechanical feedback system. By designing a customized PCB,
its total expenditure (including the sensors, the XBee modules and the batteries) is roughly
no more than CAD$1200 due to the high cost of the load cell (CAD$950). Without
considering the sensors, the XBee modules and the batteries, the total expenditure of the
board itself is less than CAD$100. Comparing to the VICON system (over US$300,000),

the expenditure is dramatically reduced.

In this section, the sensor node will be elaborated in detail. First, how to design
and develop the hardware will be introduced. Second, the calibration procedures for
ensuring that the sensors work properly before installing them on the PCB will be
discussed. Finally, the Arduino program for controlling all the sensors will be discussed

as well.

4.2.1 HARDWARE
The proposed device is sealed in a customized box as illustrated in Figure 8 and

Figure 9. The customized box and its lid were both designed with Autodesk Inventor 2014
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[37]. A virtual model was drawn in Autodesk Inventor 2014 with its provided designing
tools. I measured the actual size of every single element and considered every detail very
carefully, such as the distance between the board and the slots, the height and the radius
of'a screw slot, and so on. Every parameter needed to be as small as possible to miniaturize
the device. The virtual box and its lid were drawn separately. Then an “assembly” function
in the software ensured that the two virtual parts can match well with each other before

printing them out in reality.

Once the virtual model was created in the software, the model’s two parts — the
box and the lid were printed out respectively by using a 3D printer. The dimensions of the
box are 8.6 centimeters (cm) in length * 7.8 cm in width * 5.3 cm in height. It is used to
hold the board and the sensors for stability and reliability during field tests. The power
switch can be installed on the top of the lid, as shown in Figure 8. The batteries’ charge
can be saved by turning off the switch when the device is on standby. There is a space
(Figure 9) under the board at the bottom area of the box so that a belt can be put through

the box and tied on the waist of an athlete.
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Figure 8: One view of the customized box and its lid
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Figure 9: Another view of the customized box and its lid
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Figure 10 shows the customized PCB inside the 3D printed box. An Arduino Pro
Mini 328 — 5V board [40] was used as the microcontroller. This Arduino board is tiny and
inexpensive. It uses the ATmega328P [134] chip which is an 8-bit AVR microcontroller
with high performance but low power consumption. It is the key to make the wearable
device low-cost and low-power. This feature is also the heart of many devices that make
up the Internet of Things (IoT) according to [135] posted on the official website of Avnet,
one of the biggest distributors of electronic components and embedded solutions in the

world.
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Figure 10: The board inside the 3D printed box
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As shown in Figure 10, in the box, the Arduino Pro Mini board and an XBee
module were all inserted into the PCB. The six pins of the right-angle male headers were
soldered on the Arduino board for uploading programs. These pins can reach to the outside
through a hole in one side of the box so that it would be easy and convenient to upload
programs. Because more field tests need to be performed in the future, the only reason for
opening the lid is to fix any circuit issue. For example, if there is any further improvement
from the software perspective, it will not have to be opened for uploading a revised
program. An FTDI basic breakout module [136] is used to upload programs to the Arduino
Pro Mini board through a USB connection. It has 6-pin female header on the bottom that
can match the soldered 6-pin right-angle male headers on the Arduino board. On the other

side, a USB Mini-B cable can be used to connect it with a laptop.

The six pins of the FTDI basic breakout are: a DTR pin, an RXI pin, a TXO pin, a
POWER pin, a CTS pin, and a GND pin [137]. The DTR pin allows the Arduino board to
reset automatically when a new program is uploaded so that one does not have to hit the
reset button by hand. The RXI and TXO pins are for transferring data. These two pins
have similar functions of RX which is short for receiver or receive and TX which is short
for transmission, but they have explicit directions for input and output. The RXI is the
receiver input while the TXO is the transmitter output [138]. The POWER pin is for power
supply and the default power of the breakout board is 5 volts (V). The CTS pin is an input

pin as a handshaking [139] signal. The GND pin is for ground supply.

On the bottom of the PCB, there are three slots for connecting the sensors. One of
them is for connecting the load cell which is an LCFD-1K [39] made by Omega to collect

the raw tension data. The other two slots are for connecting the IMUs which are MinIMU-
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9 v5 digital combo boards [38] made by Pololu to collect the raw data of the vertical
displacements for the hip and wrist. As the IMUs can only provide the raw data of
acceleration and rotation speed, it is required to apply an IMU data fusion algorithm [42]
for calculating the displacements from the raw data, which will be introduced in the later
sections in Chapter 4 and Chapter 5. A SparkFun 6 Degrees of Freedom (6DoF) IMU
Digital Combo Board - ITG3200/ADXL345 [140] and a Teensy 3.2 USB Microcontroller
Development Board [141] were used in the earlier development to measure distance
(Figure 15). The calibration of IMU in the following sections were based on these
configurations. Recently, another efficient and cost-effective 9DoF IMU — the Pololu
MinIMU-9 v5 Gyro, Accelerometer, and Compass [38] was found. In addition, it is much
easier to install two Pololu IMUs on the PCB because they have a “slave address” feature.
The slave address pin is pulled high by default. So, simply alternating one IMU’s slave
address pin (SAQ) from high to low would realize making two IMUs connected on the
same [2C (inter-integrated circuit) bus without any conflict. In the final proposed
wearable device, the Pololu MinIMU-9 v5, a compact (0.8"x0.5") board that includes a
LSM6DS33 (3-axis gyroscope and 3-axis accelerometer) and a LIS3MDL (3-axis

magnetometer) [38] was used.

Now that all the plug-in components on the surface of the board have been
introduced, it is time to look at the PCB design. Figure 11 displays the PCB designed to
miniaturize the physical size of the wearable device for data collection. The designed PCB
depicts the top copper surface in red, bottom copper in blue, and pads which are visible
on either side of the board in green. A copper ground pour is placed on either side of the

board but is not depicted here.
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Figure 11: PCB design

The electronic components used in addition to the Arduino microcontroller and
the XBee module are various resistors, capacitors, potentiometers, three voltage regulators,

two MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistor), an operational

58



amplifier (OPAMP), and an instrumentation amplifier. Figure 12 shows the logic diagram

of the major electronic components on the PCB.

| IMU1
Power Arduino board
A || IMU2
A “JJ
«| Load
1 cell
Y ;

Voltage | |Operational XBee

regulator amplifier - >
- LM723 UA741

Instrumentation
amplifier - LT1920

Figure 12: Logic diagram of the major electronic components on the PCB

The principle of the circuit design is straightforward. An 18V power supply
(consisting of twelve 1.5V AA batteries) is divided into two, providing a +/-9V dual-rail
supply. The two voltage regulators change it to 5V power for the Arduino and digital
circuitry, and the XBee module receives 3.3V. Both of the IMUs also require 5V. The
additional pin on the second IMU port is required to drive the slave address pin so that the
two IMUs work on the same 12C bus. The voltage regulators are selected so that the

required current for all components could be provided by a single 5V or 3.3V regulator.

The load-cell requires a constant and stable 10V supply because of power

requirements for an excitation of greater than 25 pounds (Ib) according to its datasheet
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[39]. The linear voltage regulator — LM723 [142] is used to generate the required 10V
supply. The voltage signal generated from the load cell is on a scale such that the analog
to digital converter (ADC) on the Arduino is not sensitive enough to detect the signal
during the calibration procedure. Thus, the instrumentation amplifier — LT1920 [143] is
required to amplify the incoming signal. The OPAMP — UA741 [144], along with the
accompanying resistors and potentiometers, can produce an offset voltage, allowing the

signal to fall within the range of the Arduino’s ADC.

JPS, shown in the middle right of Figure 11, allows the load cell of the circuit (pins
1 and 2) to be disconnected from the instrumentation amplifier (pins 3 and 4) and be
connected to a calibration circuit instead (pins 5 and 6), depicted in Figure 13. Two
jumpers, placed vertically, either connect pins 1&3 and 2&4 or pins 3&5 and 4&6. The
calibration circuit, consisting of a voltage divider and a potentiometer, provides a range
of voltages to the instrument amplifier and the Arduino ADC so that the gain and the offset

can be adjusted to provide the best signal from the load cell.

JP5
GRN 1~ (,2 YLW
+IN 30 u4 -IN
GND 50 C/G CAL

cal

Figure 13: Calibration jumper pins

The calibration jumper pins allow for the disconnection of the load cell and the
connection of a controlled voltage source such that the gain and the offset can be adjusted,
which helps to avoid any unpredictable damage to the load cell. GRN (green) and YLW

(yellow) pins relate to the colour of the wires that lead to the load cell. +/- INs refer to the
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pins on the instrumentation amplifier. GND (ground) and CAL (calibration) refer to the

ground level potential and the calibration voltage source.

Due to the small size of these surface-mount electronic components, careful
attention must be taken while assembling the board. There were two issues when
embedding the previous design [19] into the PCB. One issue was an inappropriate
potentiometer used in the circuits for the load cell. It had to be a 500-ohm potentiometer,
but a 5000-ohm one was used instead. The difference between the two potentiometers is
the sensitivity. The proper potentiometer requires it to be turned many times, but for the
5000-ohm one, only a fraction of a turn was required to get the range of the required output
signal. Because the potentiometer was too large, when tuning it, there would be a big
chance of over adjusting that would lead to missing the desired value shown on the
voltmeter. After replacing the potentiometer, it was discovered that two wires were

mistakenly reversed; a correction of that restored the full function of the board.

4.2.2 CALIBRATIONS
There were two calibration procedures in the development of the wearable device.
The calibration procedures are important to make sure each sensor can work properly
before installing them into the device, i.e., the IMU and the load cell must be ensured to
collect data accurately. The load cell had already been tested in the field [19]. As discussed
in Section 3.2.1, after fixing the issues of the new circuit for the PCB, the load cell was
effective in the new device. However, a new calibration procedure was still needed to

make sure the correct tension data can be obtained.
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Figure 14 shows the settings of the calibration for the load cell. The device was
put on the table. The load cell, which is placed into the narrow end of the hammer-throw
handle, was hanging freely in the air until it was still. A cable was tied on the load cell to
hang different weights as a simulation of different wire-tension values. The initial weight
was zero, i.e., no weight is hanging initially. The weights were added by 5 1b every time
until 35 1b. For every 5 Ib, I recorded the raw data displayed on the laptop. I obtained eight
analog-to-digital values matching the real weights: 0 Ib, 5 1b, 10 1b, 15 1b, 20 Ib, 25 1b, 30
Ib, 35 Ib. First, the unit of the weight was converted from Ib to kilogram (kg) as a
convention. So, the array contained 0 kg, 2.27 kg, 4.54 kg, 6.8 kg, 9.07 kg, 11.34 kg, 13.61

kg, 15.88 kg.
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Figure 14: Calibration for the load cell
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Then an online linear regression calculator [145] was used to get the calibration

equation:
W =0.51225 x R — 3.03672, (1)

where R is the raw data and W is the actual weight value whose unit is kg. This online
calculator is quite straightforward. It calculates the slope and intercept of the regression

line in the following steps:

(1) Suppose the analog-to-digital values are a vector named X while the actual weights
are a vector named Y;

(2) Calculate }; X and ). Y;

(3) Calculate X and Y;

(4) Calculate Y*(X; — X)(Y; = Y);

(5) Calculate Y*(X; — X)?;

YRX=X) (YY),

(6) The slope is LTI

(7) The intercept is ¥ — slope X X.

After getting the calibration equation, two tests were performed to examine its
error with 45 1b (20.41 kg) and 55 1b (24.95 kg). The errors were 0.12 kg and -0.07 kg
respectively, which are acceptable in the hammer-throw analysis. Therefore, by
performing the calibration procedure, the meaningful data (weight) could be displayed on
the laptop instead of a whole bunch of raw data (the analog-to-digital values). In other
words, the calibration equation helps to convert to a unit that people can read. To get the

tension value, I simply applied Newton’s second law of motion:
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T =W x9.81, (2)
where W is the weight, T is the tension and 9.81 is the gravity of Earth.

The other calibration procedure was for the IMUs. An IMU testing device was
used as shown in Figure 15 (a), that consists of a 6DoF IMU module [140], a teensy 3.2
board [141] and a breadboard. Because this IMU testing device was built in the early stage
of the research, the new Pololu product [38] was not yet available at the time. The Pololu
IMUs that were used in the final wearable device are 9DoF, but cheaper (about half price
compared to the one in [140] which was used in the IMU testing device), and it could

provide more accurate data.
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(b)
Figure 15: IMU testing device [24]

Returning to the IMU testing device, the 6DoF IMU is designed as a combo board,
which has an accelerometer — ADXL.345 and a gyroscope — ITG3200. 6DoF refers to the
tri-axial accelerometer and the tri-axial gyroscope, which can return the acceleration and
the angular speed, respectively, on the X, Y, and Z axes of a coordinate system. In other

words, 6DoF can be described as the freedom of movement of a rigid body in a 3D space,
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which refers to the following: Forward/back (on X axis), left/right (on Y axis), up/down
(on Z axis), roll (around X axis), pitch (around Y axis), and yaw (around Z axis). A
magnetometer would construct a so-called 9DoF IMU along with the accelerometer and
the gyroscope. However, the 9DoF IMU would actually still describe the same freedom
(i.e., 6DoF) of movement of a rigid body in a 3D space. The magnetometer just helps to
calculate the yaw angle because the accelerometer can only calculate the roll and pitch
angles. Although the accelerometer and the magnetometer can calculate the orientation of
an object to some extent, it requires an ideally stationary condition to provide accurate
results, i.e., only gravity would be applied on the object, which is inexistent in reality [ 146]
— [148]. Furthermore, the accelerometer is quite sensitive to vibration. Especially, when
the object is moving, there will be more force applied on it. This is why the gyroscope
plays an important role in the orientation calculation. In this project, the result was
acceptable with only the 6DoF data from the accelerometer and the gyroscope. Hence, the
magnetometer was not used. Indeed, the drifting error cannot be eliminated thoroughly
without the magnetometer. In other words, the error will grow as time goes on. However,
the hammer-throw movement is an explosive motor skill, i.e., it is usually completed very
quickly (within 20 seconds). The error within a short period would not cause too much
trouble. For example, Barshan and Durrant-Whyte [149] successfully developed an
inertial navigation system. In their application, they set the testing period to 25 seconds.
The error could be reset to zero at the beginning of every short segment. In addition, there
is a benefit without using the magnetometer. The wearable device can be used more easily

and conveniently without the complicated calibration to the magnetometer before using it.
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It effectively avoids any magnetic interference in the testing environment. For every test,

one can just reset the drifting error to zero by initializing the system.

The Teensy 3.2 board is a breadboard-friendly microcontroller, which can be
programmed in the Arduino IDE [41]. Compared to several Arduino boards, it is smaller
than the Arduino UNO and Mega boards, and it has its own USB (Universal Serial Bus)
port while the Arduino Mini board does not have one (i.e., Arduino Mini board needs
soldering an FTDI basic breakout), which makes it more convenient as a testing device
because a revised program can be uploaded anytime in an easier way and it is more
portable. However, the Arduino Mini board was used in the final wearable device because
the redesign of the PCB was based on the original circuits [19] using an Arduino Mega

board.

In addition, as shown in Figure 15 (b), three motion capture markers (two are 9
mm in diameter and one is 5 mm in diameter) were glued on the IMU device for
constructing a capture model for 3D motion capture using a 10-camera VICON MX40
motion capture system (VICON Motion Systems, Oxford Metrics Ltd., Oxford, England)
[44]. The motion capture rate was set at 200 frames/s. Calibration residuals were
determined in accordance with VICON’s guidelines and yielded positional data accurate
to within 1 mm. The VICON data was used to help in developing a motion tracking

algorithm for the IMU in the vertical direction.

First, a configuration program needed to be uploaded to the Teensy 3.2
microcontroller, with the help of the Wire library [150], which allows communication

with 12C (Inter-Integrated circuit) devices. Then, the accelerometer and the gyroscope
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needed to be configured separately. I set the data format register of the accelerometer to
0x09, which can set the acceleration range from -4 g (1 g = 9.8 m/s?) to +4 g. According
to the datasheet of ADXL.345 [151], it sets the device to a full resolution mode, where the
output resolution increases with the g range set by the range bits to maintain a 3.9 mg/LSB
scale factor (1 mg =0.001 g and LSB is the least significant bit). So, the sensitivity of the

output can be calculated as the following:

1
3.9mg/LSB

= 0.256 LSB/mg = 256 LSB/g. 3)

This value is useful for converting the unit of the accelerometer’s raw data to g (the gravity
of Earth). The raw data could be divided by 256 for unit conversion. The power control
register was set to 0x08 to change the accelerometer to a measurement mode. Should one
want to have minimum power consumption, this register could be set to 0x00 to change it

to a standby mode.

Similarly, the ITG3200 gyroscope’s settings needed to be configured as well
following the instructions in its datasheet [152]. The range of rotation speed was set from
-2000 degree/second (dps) to +2000 dps, which is a full-scale range. The sensitivity is
14.375 LSB/dps, which can also be used for converting the unit of the gyroscope’s raw
data to dps. The raw data could be divided by 14.375 for unit conversion. Various cut-off
frequencies were tested and compared to the 3D motion capture data. The validations
proved that the cut-off frequency of 98 hertz (Hz) could generate the highest accuracy.
Therefore, the low pass filter bandwidth that determines the cut-off frequency was set to

98 Hz in the program.
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4.2.3 ARDUINO PROGRAMMING

There are two programs coded in the Arduino IDE [41]. One is for the IMU testing
device, and the other one is for the PCB. The program for the IMU testing device is quite
straightforward. As discussed in Section 3.2.2, the accelerometer and the gyroscope
needed to be configured following their datasheets. The baud rate was set to 115200. A
loop function was used to display the data of acceleration and angular speed with
converted units. One thing to note was displaying the negative values for the
accelerometer and the gyroscope. It was noticed that negative values were not displayed
during the calibration procedure. Without the proper calculation, only positive values
could be printed. Therefore, to display negative values, the number — 65536 needs to be
subtracted with the following two conditions: (1) for the accelerometer, if the analog-to-
digital values are great than 1025; (2) for the gyroscope, if the analog-to-digital values are

greater than 30000.

The program for the PCB is one of the core parts for the wearable device. It is used
to configure and control all the sensors to collect the required data and send the data to the
receiver node through an XBee module. I modified the program [153] provided by Pololu
for their MinIMU-9 v5 product and added codes to control two IMUs and one load cell.
The baud rate was changed to 57600 to match the baud rate of the XBee modules. It was
the fastest transmitting speed that could be reached while still obtaining the stable and
reliable data. If configured to the highest one baud rate — 115200, some unexpected values
were received due to some noisy signals during the calibration. I also found that the load
cell would always generate a very high voltage signal (over 1000 analog-to-digital value)

when disconnecting the load cell (i.e., simulating the hammer would be thrown away by
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an athlete). Therefore, the analog-to-digital value of 1000 was decided to be the ending
threshold for determining when a hammer-throw movement is completed. The wearable
device can automatically stop sending any garbage data as the threshold is detected.
Similarly, when the analog-to-digital value of the load cell is less than 12, the pulling force
is so tiny that it can be ignored (i.e., simulating no hammer is hanging on the load cell).
Therefore, to avoid receiving lots of garbage data before an athlete is ready to start his/her

movement, the starting threshold was set to 12 (analog-to-digital values).

4.3 RECEIVER NODE
As shown in Figure 16, the receiver node consists of an XBee module, an XBee
explorer [154] and a laptop. The XBee module can communicate with the other XBee
module used in the sensor node remotely by following IEEE 802.15.4 protocol [27]. It is

very convenient for a research/lab-based environment.
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Figure 16: Receiver node [19]

During the field tests, I carried the laptop to collect data in real-time as shown in
Figure 17. A graphical user interface (GUI) was implemented in MATLAB R2017a to
display the received data in real-time. Based on the technique data and user instruction
supplied by Madgwick [42], [155], I have designed and developed a data collection
program for obtaining the data of the tension sensor and the two IMUs simultaneously. In
the following sections, the GUI will be introduced first. Then the applied algorithm for

the IMUs will be presented in detail.
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Figure 17: A field test [19]

4.3.1 GRAPHICAL USER INTERFACE

An updated GUI from the previous design [19] has been implemented in
MATLAB (Figure 18). There are three buttons on the top. The left and the right buttons
are used to generate an animation and a figure of the change of vertical hip displacements
and the change of vertical wrist displacements respectively. The middle one is used to run
the main program to collect, save and process all the raw data in real-time. It will keep
drawing the curve of the change of the tension data in the figure below as the program is
running. A filtered (Butterworth filter) curve will be generated immediately in the same
figure once the program stops automatically from detecting that the hammer is released.
As mentioned earlier in the sensor node section, there will be a super high analog-to-
digital value when the easy-release connector for the load cell is interrupted (i.e., the

hammer is thrown away).
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Figure 18: MATLAB GUI receiving, processing and displaying data

The GUI was designed as the following:

(1) Initializing the system environment, variables and hardware setting prepared for
serial data transmission;

(2) Implementing the “Run” button, including receiving the serial input until no signal
is transmitted from the sensor node, plotting the curve of the tension data in real-
time and adding a filtered curve after receiving all the data, and saving all the data
into .csv files;

(3) Implementing the “Vertical displacements on waist” button by calling “IMU1”;

(4) Implementing the “Vertical displacements on wrist” button by calling “IMU2”.
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4.3.2 MADGWICK’S IMPLEMENTATION OF MAHONY’S AHRS
ALGORITHM

Madgwick’s implementation of MahonyAHRS algorithm [42], [155] is also
known as the Madgwick’s MARG (magnetic, angular rate, and gravity) filter or the AHRS
(attitude and heading reference systems) algorithm. In short, it is a gradient-descent
algorithm that uses several analytic formulas based on a quaternion representation to fuse
IMU data. It enables the performance of low-power and low-cost IMUs at a low sampling
rate. The quaternion representation is a four-dimensional complex number which stands
for the orientation of a rigid body or coordinate frame in 3D space. For example, Q = [q:
q2 g3 q4] is a quaternion representation. The unit quaternion is represented as a + bi +
cj + dk, where a, b, ¢, and d are real numbers, and 1, j, and k are the fundamental units
that have the imaginary numbers’ property (i.e., i = j? = k? = —1). It is also noticed

that the unit quaternion has the property: a? + b? + ¢ + d? = 1.

To understand the algorithm better, there are some more preliminary mathematical
equations to be introduced. For two quaternions A and B, their quaternion product (qProd)
can be determined by the Hamilton rule:
a;by — ab, — azbz —a,b,
albz + azbl + a3b4_ - a4_b3

a1b3 - a2b4 + a3b1 + a4_b2
a1b4 + a2b3 - a3b2 + a4b1

AQ B =la, a; a3 a,] ® [by b, b3 by] = 4)

where T refers to the transpose of the matrix. A rotation matrix R representing the

orientation is defined as the following:
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2q7 —14+2q7  2(q293 + 9194)  2(9294 — 4193)
R =12(q295 — 194) 247 —1+2q5 2(q:192 + 9394) (5)
2(q193 + 9294)  2(9394 — q192)  2qf — 1+ 2q;

where qi, q2, q3 and g4 are the basic elements of a quaternion Q. By replacing 1 in the
above equation (5) with the above unit quaternion’s property, the rotation matrix R could
be described as the following:

ai +43 — a3 —4i 20295+ 2014s 20244 — 20143

R=| 2q,q3—2q1qs qf—a5+q5—q; 2919, + 2qsq, (6)
2193 + 2q,4, 2934 — 20192 G5 —q5 —q5 + 45

Suppose that the direction of gravity defines the vertical Z axis, the estimated direction v

could be calculated as the following:

ol = 29192 + 2939, (7)
1l ¢t —4d5—q5+4i

0 24294 — 294193
v=RX ]

For two vectors A = [a1 a2 az] and B = [b1 b2 bs], C = [c1 ¢2 c3] is the cross product of A

and B, which can be calculated as the following:
€1 = Qybs —azb,, ¢; = azby —ayb;, ¢3 =a;b, —azb, 8)

Thus, Madgwick’s implementation of MahonyAHRS algorithm can be described

as the following:

(1) Setting the initial quaternion q to [1 0 0 0];
(2) Normalizing the acceleration data with Euclidean norm, i.e., acc,yrm =

V2 acc? where accy refers to the acceleration data on the X, Y and Z axes, and
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accy

making the data in the range between -1 and +1 as acc, = where acc,orm

acCCnorm

cannot be 0;

(3) Calculating the estimated direction v based on the current quaternion by using the
above equation (7);

(4) Calculating the error e, which is the cross product of the normalized acceleration
data and v, by using the above equation (8);

(5) Calculating the integral error elnt, depending on the integral gain’s value (i.e., if
Ki > 0), as the following: elnt = elnt + e * samplePeriod, where elnt is 0 initially
and samplePeriod is 0.02s, and elnt would remain 0 if Ki = 0;

(6) Optimizing the gyroscope data with a proportional integral (PI) controller, which
is a variation of PID (proportional integral derivative) controller [156], as the
following: gyr = gyr + Kp*e + Ki * elnt, where gyr is the gyroscope data, Kp is
the proportional gain, and Ki is the integral gain;

(7) Calculating the rate of change of the quaternion q as the following: gDot = 0.5 *
qProd (q, [0 gyrx gyry gyr.]) by using the above equation (4);

(8) Updating the quaternion q by integrating qDot as the following: q = q + qDot *
samplePeriod;

(9) Normalizing the quaternion q with Euclidean norm to make it range between -1

and +1.

Finally, based on Madgwick’s implementation, the IMU1 and IMU2 programs

both run mainly as the following steps:
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(1) Importing raw data from the accelerometer and the gyroscope: acc(i) = [accy, accy,
acc], gyr(i) = [gyrx, gyty, gyrz], where i is from 1 to n (i.e., from the first group to
the last group of data);

(2) Calculating the orientation: processing the raw data — acc(i) and gyr(i) through the
MahonyAHRS algorithm as described above to get the quaternion, and using a
quaternion-to-rotation-matrix function to get a 3*3 rotation matrix R(i), which

[P =]

describes the sensor relative to Earth (the unit of acceleration is “g” or “Gravity”);

(3) Calculating the tilt-compensated acceleration data: from i =1 to i = n, tcAcc(i) =

R(i) * acc(i)?, where acc(i)! is the transposed matrix;

(4) Calculating the linear acceleration in Earth frame by subtracting gravity (i.e.,

converting the unit from “g” to “m/s”): linAcc = (tcAcc — [0,0,1]) * 9.81;

(5) Calculating the linear velocity by integrating the acceleration data: from i =2 to i
=n, linVel(i) = linVel(i-1) + linAcc(i) * samplePeriod, where linVel(1) = 0 as the
initial velocity;

(6) Applying a high-pass filter to linear velocity to remove a drifting error: linVelHP

= Butterworth_filter(linVel);

(7) Calculating the linear position by integrating the velocity data: fromi=2toi=n,
linPos(i) = linPos(i-1) + linVelHP(i) * samplePeriod, where linPos(1) = 0 as the

initial position;

(8) Applying a high-pass filter to linear position to remove a drifting error: linPosHP

= Butterworth_filter(linPos);
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(9) Drawing corresponding figures and playing an animation to show the move of the

device.

4.4 DEEP LEARNING MODELS

By following an online tutorial [157] about a regression problem, two deep
learning models have been built in Python with the help of TensorFlow [158] embedded
in Anaconda [159], which is one of the most popular data science platforms in the world.
The Sequential models from Keras API [43] imported from TensorFlow are used. Two
densely connected hidden layers (i.e., dense layers) are set in the models. In each dense
layer, a rectified linear unit (ReLU) [160] activation function is used for both models. The
ReLU function refers to f(x) = max (0,x). For an input x coming from the previous
layer, it will be calculated by the ReL U function in the current layer. Then its output will
be the input of the next layer or the final output. ReLU has the advantage of increasing the
sparsity of the neural network because some neuron’s outputs can be zero. In other words,
it can reduce the dependence of each parameter so that it can help to avoid overfitting. It
is known as an efficient gradient descent algorithm using backpropagation. By simplifying
the calculation, the calculation cost can be reduced. The two models use RMSprop [161]
as the optimizer, which is similar to the gradient descent algorithm with momentum. The
gradient descent algorithm is used to minimize some function by iteratively moving
towards the steepest descent. So, there will be some oscillations during iterations. The
RMSprop optimizer limits the oscillations in vertical direction. Mean squared error (MSE)
was used as the loss function for both models. Mean absolute error (MAE) and MSE were

used as the metrics in both models for measuring accuracy.
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All the datasets were collected by using the VICON camera system [44] from a
college-level hammer-throw athlete. It recorded the subject’s trajectories (in millimeters)
in a 3D coordinate system as a full-body model. All the VICON data are saved in .csv
files and processed with Microsoft Excel. A sample of the raw data from the VICON

system is shown in Figure 19.

A B C D E E G H J K L M N (o] P Q
Trajectories
200
SL:LFHD SL:RFHD SL:LBHD SL:RBHD sL:.C7
Frame Sub Frame X Y z X Y z X Y z X Y z X Y z
mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm

373 0 -102.72 994.049 1614.62 70.3816 980.955 1611.89 -95.089 851.242 1621.43 42.1557 841.125 1623.55 0.3843 756.862 15
374 0 -103.599 994.904 1614.56 69.4316 981.703 1611.86 -96.0978 852.091 1621.11 41.1572 841.861 1623.27  -0.590265 757.89 15(
375 0 -104.64 995.912 1614.48 68.3071 982.584 1611.82 -97.2913 853.091 1620.72 39.9792 842.727 1622.92 -1.74082 759.102 15(
376 0 -105.841 997.071 1614.39 67.0084 983.598 1611.77 -98.6693 854.24 1620.28 38.6226 843.723 1622.53 -3.06661 760.497 15
377 0 -107.198 998.375 1614.29 65.5404 984.741 1611.72 -100.227 855.533 1619.77 37.0939 844.843 1622.08 -4.56192 762.069
378 0 -108.704 999.813 1614.17 63.9127 986.004 1611.66 -101.953 856.96 1619.21 35.4038 846.08 1621.58 -6.21703 763.808 15(
379 0 -110.348 1001.37 1614.05 62.1379 987.377 1611.59 -103.837 858.508 1618.58 33.566 847.422 1621.03 -8.01921 765.699 15
380 0 -112.117 1003.04 1613.91 60.2317 988.847 1611.52 -105.862 860.163 1617.91 31.5971 848.858 1620.44 -9.95357 767.726 15(
381 0 -113.998 1004.8 1613.77 58.2111 990.4 1611.45 -108.011 861.909 1617.18 29.515 850.373 1619.82 -12.004 769.873 15(
382 0 -115.975 1006.64 1613.61 56.0945 992.023 1611.38 -110.266 863.729 1616.41 27.3385 851.954 1619.15 -14.1536 772.12 15
383 0 -118.033 1008.53 1613.46 53.9007 993.702 1611.31 -112.608 865.607 1615.6 25.0864 853.587 1618.46 -16.3859 774.451 15(
384 0 -120.159 1010.47 1613.3 51.648 995.421 1611.24 -115.019 867.526 1614.76 22.777 855.258 1617.75 -18.6845 776.846 15(
385 0 -122.338 1012.43 1613.14 49.3542 997.168 1611.18 -117.481 869.471 1613.89 20.428 856.953 1617.01 -21.0343 779.291 15
386 0 -124.557 1014.4 1612.98 47.0357 998.929 1611.13 -119.977 871.426 1613 18.0555 858.662 1616.26 -23.421 781.768 15(
387 0 -126.802 1016.36 1612.83 44.7076 1000.69 1611.1 -122.49 873.379 1612.1 15.6742 860.371 1615.5 -25.8317 784.264 15(
388 0 -129.063 1018.31 1612.68 42.3831 1002.45 1611.07 -125.006 875.316 1611.17 13.297 862.072 1614.74 -28.2548 786.765 15
389 0 -131.329 1020.22 1612.53 40.074 1004.19 1611.07 -127.511 877.228 1610.25 10.9352 863.755 1613.97 -30.6798 789.259 15(
390 0 -133.589 1022.1 1612.4 37.79 1005.9 1611.08 -129.993 879.103 1609.31 8.59837 865.412 1613.2 -33.0975 791.736 15(
391 0 -135.836 1023.93 1612.28 35.5392 1007.57 1611.11 -132.443 880.933 1608.38 6.2944 867.037 1612.43 -35.4998 794.186 14
392 0 -138.061 1025.71 1612.17 33.3285 1009.21 1611.17 -134.85 882.712 1607.45 4.0297 868.622 1611.67 -37.8792 796.601 14
393 0 -140.256 1027.42 1612.07 31.1629 1010.79 1611.25 -137.207 884.433 1606.52 1.80937 870.163 1610.92 -40.2295 798.972 1
04 0 416 1029 06 1611 99 29 N4A7 101233 161135 129508 RRA NA1 105 A1 N 3R2A21 R71 656 161017 .47 5447 801293 14

Figure 19: A sample of the raw data from the VICON system

The data columns of the left wrist thumb side (LWRA) and the left wrist pinkie
side (LWRB) are selected to calculate the vertical wrist displacements by using their
average values. The data columns of the left anterior superior iliac spin (LASI) and the
right anterior superior iliac spin (RASI) are selected to calculate the vertical hip
displacements by using their average values. A sample of the processed data from the

VICON system is shown in Figure 20.
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A B c D E F G H | J K
Frame Wrist_Pos Wrist_Vel Waist_Pos Waist_Vel LHipAngles  RHipAngles LKneeAngles RKneeAngles LAnkleAngles RAnkleAngles

mm mm/s mm mm/s deg deg deg deg deg deg
| 374| 980.764S.| 91.2 990.9885 -51.6 33.4232 -7.22937 145.5412 174.55895 86.00014 116.5668
375 981.292 105.5 990.6805 -61.6 33.2451 -7.19166 145.7207 174.49319 86.34839 116.7008
376 981.888 119.2  990.3275 -70.6 33.0419 -7.1467 145.928 174.41704 86.74191 116.8539
377 982.5465 131.7 989.931 -79.3 32.8152 -7.09423 146.1619 174.3308 87.17673 117.0249
378 983.259 142.5 989.488 -88.6 32.5675 -7.03419 146.4204 174.23503 87.64771 117.2123
379 984.0155 151.3 989.0015 -97.3 32.3021 -6.96668 146.7006 174.13065 88.14887 117.4137
380 984.805 157.9 988.4795 -104.4 32.0225 -6.89196 146.9991 174.01881 88.67384 117.6266
381 985.6175 162.5 987.9205 -111.8 31.733 -6.8105 147.312 173.90098 89.216084 117.8481
382 986.441 164.7 987.334 -117.3 31.4376 -6.7229 147.6349 173.77873 89.769335 118.0751
383 987.265 164.8 986.7235 -122.1 31.1406 -6.62986 147.9632 173.65382 90.327717 118.3045
384 988.079 162.8 986.088 -127.1 30.8462 -6.53234 148.2927 173.52816 90.885876 118.5331
385 988.875 159.2 985.431 -131.4 30.5582 -6.4313 148.619 173.40367 91.43918 118.7579
386 989.6445 153.9 984.7605 -134.1 30.2799 -6.32782 148.9383 173.2823 91.98366 118.976
387 990.381 147.3  984.0805 -136 30.0145 -6.22309 149.2472 173.166 92.51607 119.1849
388 991.08 139.8 983.388 -138.5 29.7643 -6.11831 149.5427 173.05655 93.03388 119.3825
389 991.738 131.6 982.6885 -139.9 29.5311 -6.01464 149.8227 172.9556 93.53515 119.5673
390 992.3535 123.1 981.9835 -141 29.3164 -5.91331 150.0854 172.8647 94.01853 119.7381
391 992.9245 114.2 981.276 -141.5 29.1206 -5.81544 150.33 172.78504 94.48317 119.8944
392 993.45 105.1 980.5675 -141.7 28.944 -5.72213 150.556 172.71765 94.92873 120.0364
393 993.941 98.2 979.861 -141.3 28.7858 -5.6344 150.7637 172.66332 95.35522 120.1647
394 994.3945 90.7 979.158 -140.6 28.6452 -5.55313 150.9538 172.62255 95.76296 120.2803
395 994.813 83.7 978.463 -139 28.5205 -5.47915 151.1276 172.59561 96.15255 120.3851
396 995.209 79.2 977.777 -137.2 28.4098 -5.41311 151.2865 172.58252 96.52483 120.4809
397 995.5925 76.7 977.1035 -134.7 28.3106 -5.35561 151.4327 172.5831 96.88072 120.5699
398 995.967 749 976.4465 -131.4 28.2204 -5.30702 151.5681 172.59687 97.22132 120.6546
399 996.338 74.2 975.809 -127.5 28.1363 -5.26767 151.6952 172.62333 97.5477 120.7375
400 996.727 77.8 975.1945 -122.9 28.0554 -5.23773 151.8162 172.6617 97.86099 120.8211

Figure 20: A sample of the processed data from the VICON system

Therefore, the subject’s timely change of the vertical wrist and hip displacements
can be used as two input variables for the deep learning models. In addition to the
displacements, the velocity values can also be calculated out from the trajectories so that
two more input variables can be added to increase the data volume. Because of the known
VICON system’s sampling rate — 200 Hz, i.e., the timestamp between two adjacent

datasets is 0.005 seconds, the velocity values could be calculated as the following:

vel; = (pos;;1 — pos;) = 0.005, 9)

where vel; is the velocity at time 1, pos; is the position at time 1, and pos;, is the position

at the next timestamp. So, four groups of input variables can be used in the two models,
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including Wrist Pos (the wrist displacements), Wrist Vel (the wrist velocities),

Waist Pos (the hip displacements), and Waist_Vel (the hip velocities).

In addition, the VICON system’s data can also be used to generate the timely
change of the subject’s specific joints’ angles by using some fundamental mathematical
and physical formulas. For example, knowing the coordinates of the left hand, the left
elbow and the left shoulder, one can calculate out the elbow’s angle (i.e., calculating a
joint angle from three points’ coordinates). The calculation procedure by using Excel is a
time-consuming course. Therefore, the data volume is quite limited in this research study.
The main purpose of the research is not to obtain large amounts of data from the VICON
system. The aim is to find the way to make use of a wearable system that can provide the
biomechanical feedback, just like any 3D motion capture and analysis system can do. This
is also the current Al modeling’s role that can train the synchronized data from a 3D
motion capture system and the proposed wearable system. So far, the models have not yet
reached the highest reliable stage because the volume of the training datasets is limited.
However, the deep learning models will become powerful and reliable in the future by
using the wearable device developed in this research along with a 3D motion capture
system to test hundreds of athletes to collect and use large amounts data. Once the deep
learning model is quite reliable, then it can be embedded in the wearable system that will

realize the ultimate goal of substituting any 3D motion capture system.

In this case study, the output variables were selected as the following: LHipAngle
(the left hip angle), RHipAngle (the right hip angle), LKneeAngle (the left knee angle),
RKneeAngle (the right knee angle), LAnkleAngle (the left ankle angle), RAnkleAngle

(the right ankle angle), LShoulderAngle (the left shoulder angle), RShoulderAngle (the
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right shoulder angle), LEIbowAngle (the left elbow angle), RElbowAngle (the right elbow
angle), LWristAngle (the left wrist angle), RWristAngle (the right wrist angle), and
ThoraxAngle (the thorax angle). More angles can be calculated out from the VICON’s

data, but they are not used in this case.

The models require a normalized form of datasets. So, all the data was normalized

before using it to train in the models, as the following:

X=X

Xnorm = Fx)’ (10)

where X,,,,-m 15 the normalized data, x is the original data, X is the mean of the original
data, and o(x) is the standard deviation of the original data. All the data for the two
models was randomly separated into two groups with a factor of 0.8. In other words, the
two models randomly selected 80% of the data as their training datasets and selected the
remaining 20% as their testing datasets. A sample of the training datasets for the simple
model is shown in Figure 21, while a sample of the testing datasets for the same model is

shown in Figure 22.

Waist_Pos Waist_Vel LHipAngles RHipAngles LKneeAngles RKneeAngles LAnkleAngles RAnkleAngles

7258  963.4565 391.4 -0.220173 -27.69450 172.86277 147.58120 -26.97600 110.61320
31 972.2055 -79.5  27.472900 -5.25355 152.54160 173.08935 99.51705 121.45390
7023  829.1920 -274.4 3.553450 38.78690 91.82700 122.72390 101.98460 99.66164
7735 1059.3600 -93.0 -7.011430 -17.44690 164.90060 144.34810 97.25510 81.07506
7039 797.5185 -98.4  14.885000 34.80690 87.28550 115.26530 111.80100 110.33480
8850 907.8695 31.3  17.044600 38.57080 129.36980 82.11680 99.39634 92.56149
110 1028.8700 =110 3.330200 -12.28360 166.20640 164.70200 102.61210 110.40700
1257  892.8200 -51.7  24.264300 46.36400 141.23110 80.98990 111.25300 95.23243
5201 1084.4695 -1894.7 -2.892440 34.28710 89.00350 118.03270 102.95590 108.10040
8539  985.8935 -417.1  -19.495300 14.24300 112.33310 149.95320 108.68740 123.05250

Figure 21: A sample of the training dataset for the simple model
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Waist_Pos Waist Vel LHipAngles RHipAngles LKneeAngles RKneeAngles LAnkleAngles RAnkleAngles

0  990.6805 -61.6  33.245100 -7.19166 145.7207 174.49319 86.348390 116.7008

19  979.1580 -140.6  28.645200 -5.565313 150.9538 172.62255 95.762960 120.2803
21 977.7770 -137.2  28.409800 -5.41311 151.2865 172.58252 96.524830 120.4809
25 975.1945 -122.9  28.055400 -5.23773 151.8162 172.66170 97.860990 120.8211
28  973.5295 -104.4  27.801300 -5.20462 152.1669 172.83945 98.732250 121.0984
9266  994.2865 -118.0 -1.240570 -25.18070 162.0255 143.16710 92.501010 108.2436
9267  993.8370 -89.9 -0.959358 -24.76470 162.5846 142.96410 91.914610 108.5626
9269  993.0690 -91.2 -0.309597 -23.80110 163.6495 141.64280 90.830872 109.6913
9279  992.1345 -16.2 1.735520 -22.61760 164.8589 130.05930 87.702840 111.8709
9292  988.0135 -134.1 4.133230 -26.28310 161.5464 133.97730 81.979700 107.4891

Figure 22: A sample of the testing dataset for the simple model

The first model was designed as a simple model in the biomechanical analysis. It
focused on the athlete’s legs’ joints. This model was used to verify that the coordination
of the lower limbs could be revealed by the data of vertical hip displacements. The model
has two inputs that are Waist Pos, and Waist Vel. Because the position of the hip is very
close to the position of the waist, the distance between these two points can be ignored in
this case. It has six outputs: LHipAngle, RHipAngle, LKneeAngle, RKneeAngle,

LAnkleAngle, and RAnkleAngle.

The second model was designed as a complicated model in the biomechanical
analysis. It focused on the athlete’s legs’ joints, arms’ joints and thorax. This model was
used to verify that the coordination of both the upper and the lower limbs could be revealed
by the change of the vertical hip and wrist displacements. The model has four inputs:
Waist Pos, Waist Vel, Wrist Pos, and Wrist Vel. In addition to the above model’s

output variables, each dataset of the complicated model has seven more variables to

83



represent the upper body, including LShoulderAngle, RShoulderAngle, LEIbowAngle,

RElbowAngle, LWristAngle, RWristAngle, and ThoraxAngle.

4.5 SUMMARY

In this chapter, the proposed wearable system that can provide real-time
biomechanical feedback in a hammer-throw case study has been introduced in detail. The
current system has two elements — the sensor node (i.e., the wearable device) and the
receiver node (i.e., software) that have been developed and realized their functions of
providing three key parameters in real-time. However, the deep learning models are still
not reliable enough due to the limited amount of data so that they are not worth being
integrated into the system yet. The idea of making use of the wearable device combined
with the Al modeling is quite clear. A lot of more data will be collected by using the
wearable device, and those data will be trained in the deep learning models to improve
their reliability. Eventually, the deep learning models will be integrated into the system to

make the system smart.

Currently, the system uses XBee modules for wireless data transmission. How to
configure the XBee modules in XCTU has been introduced. The wearable device was
miniaturized with the help of PCB design. It consists of an Arduino Pro Mini board as the
microcontroller, an XBee module for data transmission, a load cell for collecting the wire-
tension measurements, two IMUs for collecting the vertical hip and wrist displacements.
The hardware design and the calibrations for the sensors have been presented in detail.
The programming in Arduino IDE for data collection has been introduced. For the receiver

node, a GUI and an IMU data fusion algorithm have been described as well.
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Last, the details about building two deep learning models in Python by using the
Sequential models from Keras API have been provided. In the next chapter, the
experiments and results of both the hardware and the deep learning models will be

discussed.
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CHAPTER 5: EXPERIMENTS AND RESULTS

The experiments can be described from a hardware perspective and a software
perspective. The VICON motion capture system was used to examine all the experiments
as a supervisor because it can provide quite reliable data. In terms of the hardware, a
motion tracking algorithm was applied to both the IMU testing device and the PCB of the
wearable device. In terms of the software, the deep learning models were used to verify
the feature that the timely change of vertical wrist and hip displacements could reveal the
upper and lower limbs’ coordination by validating their predictions. In this chapter, the
experiments and the results of both the hardware and the deep learning models will be

discussed.

5.1 EXPERIMENTS AND RESULTS OF THE HARDWARE
After calibrating the IMU testing device by configuring its accelerometer and
gyroscope, an algorithm was required for predicting its orientation. Kalman-based filters
have been widely used in orientation estimation [162]. Initially, a complementary
Kalman-based algorithm was tried. However, the result of the orientation estimation was

unacceptable due to a drifting error that kept occurring when calculating the velocity.

Figure 23 displays the acceleration data obtained from the IMU sensor and the
corresponding velocity data, which was calculated by the complementary Kalman-based
filter. Figure 23 (a) shows the acceleration data obtained from the IMU testing device, and
Figure 23 (b) shows the corresponding velocity data. As shown in the figures, the velocity
data does not return to zero at the end of the test. This is known as a data drifting error. It
is a typical issue during the integral calculation from acceleration to velocity. This issue

will cause the error to be higher and higher (i.e., drifting up).
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Figure 23: Drifting error [24]

To avoid the data drifting error, another algorithm was tried. As Hamel and
Mahony claim in their paper [163], it has been proven that traditional linear Kalman based
filters are difficult to be applied robustly to low quality sensor systems. The inherent non-
linearity of a system and non-Gaussian noise that occurs in practice could lead to bad
results from such filters. Hyyti and Visala also discuss that unlike high-quality and high-
precision gyroscopes and accelerometers, low-cost IMUs provide more inaccurate
measurements so that their calibration has become a challenging problem [148]. In
addition, Madgwick mentions in his work [42], Kalman-based filters are difficult to
implement because they may require sampling rates far exceeding the device’s bandwidth.
It is noticed that the sensor device used in the proposed wearable system has a fairly low
sampling rate (only 50 Hz). This could be a major reason for the velocity drifting error
that occurred in this application. As Madgwick claims in his study, his algorithm can be
effective at even lower sampling rates, like 10 Hz. Also, Madgwick compares the
performance of his algorithm with a complementary Kalman-based filter, and the results
indicate his algorithm has a slightly better accuracy. Therefore, Madgwick’s filter was

applied in the final system that has already been introduced in Section 4.3.2.
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During a test, | moved the device up and down three times. As displayed in Figure
24, relatively accurate feedback of the 3D positioning data could be obtained. Indeed, the
Madgwick algorithm eliminated the drifting error from integrating the velocities. The
three different curves stand for the changing distances over time on the X axis, Y axis,
and Z axis in 3D space. The dynamic distance on the Z axis (blue lines) shows exactly
three times up and down of the device. The range of vertical movements is ~0.33 m for
the first vertical movement, ~29 cm for the second one, and ~32 cm for the last one. The

next step was to validate the accuracy of the device.
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Figure 24: Three times of up-and-down movements by using the IMU testing device

with Madgwick’s filter [24]

3D motion capture technology provides an accurate and objective analysis of a
variety of human motor skills [21], [55], [71], [104], [164]. Therefore, the synchronized

data collection of the IMU and 3D motion capture was employed, such as in Figure 1 (b),
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for validating and improving the accuracy of the IMU device. The VICON data was used
to supervise the IMU testing device’s data. In other words, the curves of the IMU testing
device’s vertical displacements generated from the MATLAB program were compared to
the curves of the VICON’s data that was processed in Microsoft Excel (i.e., selecting the
column of the Z axis of the marker glued on the IMU sensor and then inserting a Line

chart by using the Chart tool provided in Excel).

There were eight synchronized tests performed to obtain thousands of data for the
validation. Since the aim was to gain the dynamic vertical distance, the validation of the
Z axis was selected. Figure 25 shows a typical test’s data. The synchronized data
demonstrate a matching vertical excursion over time between the IMU data and the
accurate 3D motion capture data. The results suggest that the testing device works

principally by comparing the two curves in Figure 25. The accuracy needs to be improved.
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Figure 25: A synchronized test’s data obtained from 3D motion capture (VICON data,
top, sampling rate 200 Hz) and the IMU testing device without re-calibration (IMU data,

bottom, sampling rate 50 Hz) [24]

A magnitude comparison shows that the excursion of the VICON data was larger
than that of the IMU data as displayed in Figure 25. A timely comparison between the
synchronized data of all trials revealed that the two excursions ran in a quasi-parallel way,
which suggested that a factor for re-calibrating the IMU device could be applied to
improve the accuracy of the IMU data. After the quantitative comparison between the two
excursions of all trials, a re-calibration factor of 1.31 was determined. After the simple re-
calibration, a renewed synchronized measurement was done, and the result is shown in

Figure 26. This time, the average data error of the IMU data decreases to under 6%, which
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is accurate enough for sport skills analysis using a biomechanical modeling method [69],

[97], [98], [102], [111].
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Figure 26: A renewed synchronized test’s data obtained from 3D motion capture
(VICON data, top, sampling rate 200 Hz) and the IMU testing device after calibration

(IMU data, bottom, sampling rate 50 Hz) [24]

Finally, it should be noted that the device needs an initial value for its application.
As shown in Figure 26, the device will start at zero regardless of its actual vertical position.
Therefore, for its application in the hammer throw, an accurate feedback needs the initial

heights of the hip and wrist (Hhip and Hwrist) as shown in Figure 27.
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Figure 27: The upper and lower limbs’ coordination (i.e., motor control pattern) revealed
by the vertical distances of hip and wrist as well as the wire-tension during a hammer

throw by a college-level athlete [24]

After testing the IMUs and the load cell on the PCB, everything was assembled
together to build the wearable prototype, as shown in Figure 28, for the real-time
biomechanical feedback training of the hammer throw. The new wearable device was
tested in the field. A varsity-level athlete (male, 25 years, 81 kg, 1.75 m with seven years
training experience) tried out the real-time biomechanical feedback device. The wearable
device permitted considerable freedom of movement for the subject with negligible
influence on his performance. Taking advantage of this, no restrictions were placed on the
subject’s movements during the in-field test to preserve his normal “control style”. Four

trials were done.
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Figure 28: The wearable prototype
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The in-field test on the college-level athlete using the wearable prototype confirms
the potential of using wire-tension and IMUs in real-time feedback training, as shown in
Figure 27. In practice, the motor control of the hammer throw can be divided into four
phases: initiation, transition, turns, and throw. The goal of the initiation phase is to launch
the hammer spinning around the body. It commonly consists of a forward and backward
swing of the hammer (i.e., to set the hammer to motion) and two over-head arm rotations
(i.e., to set the hammer into rotation). The transition phase aims to switch the body from
standing posture to the first body rotation, building a rotating system of the body and the
hammer. The phase of turns accelerates the rotating system of the body and the hammer
to their highest circulation. The final phase is the throwing. The data has revealed the
following motor control information: (1) During the transition phase, the upper and lower
limbs’ controls are transferring from an unclear coordination pattern to a quasi-out-of-
phase coordination in the turning phase as displayed in Figure 27. (2) The transition phase
helps the power generation (i.e., wire-tension) become in phase (quasi) with the hips’ up-
and-down movement, indicating the hammer’s acceleration depends on the timely
flexion/extension of lower limbs. (3) The characteristic of quasi-out-of-phase between the

arm control and wire-tension finishes in the transition phase.

5.2 EXPERIMENTS AND RESULTS OF THE DEEP LEARNING MODELS
The two deep learning models were trained for different epochs (i.e., iterations),
such as 1000, 10000, etc. The training and validation accuracy were recorded. There was
nearly no difference from the results of training with different epochs over 1000. So,
training the models with 1000 epochs was selected in this case. An example of training

the deep learning models for 1000 epochs is shown in Figure 29. Different learning rates
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were also tried. The learning rate of 0.001 for both models provided the best results. The
losses for both models decreased dramatically after training them. The last five losses for
the simple model were around 10, while the last five losses for the complicated model had

an even better result (down to around 3).

Epoch: 0, loss:89.5481, mae:7.0707, mse:89.5480,

Figure 29: An example of training the deep learning model for 1000 epochs

Finally, the two models were evaluated with the testing datasets. An example of
the plot of the simple model’s predictions for those specific joint angles is shown in Figure
30. Similarly, an example of the plot of the complicated model’s predictions is shown in
Figure 31. The joint angles’ unit is in degree. The MAE for the simple model in a typical
test, which only focuses on the lower limbs’ angles, (i.e., LHipAngle, RHipAngle,
LKneeAngle, RKneeAngle, LAnkleAngle, and RAnkleAngle) was 2.62 calculated out in
Python. The MAE for the complicated model in a typical test was 1.42. However, the
complicated model focuses on both the upper and lower limbs’ angles (i.e., LHipAngle,
RHipAngle, LKneeAngle, RKneeAngle, LAnkleAngle, RAnkleAngle, LShoulderAngle,

RShoulderAngle, LEIbowAngle, REIbowAngle, LWristAngle, and RWristAngle). If
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comparing the two models, only the lower limbs’ angles in the complicated model should
be considered. Therefore, the MAE of the lower limbs’ angles in the complicated model

was calculated out in Python, that was 1.38.
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Figure 30: An example of the plot of the simple model’s predictions
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Figure 31: An example of the plot of the complicated model’s predictions
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In more detail, the results from one typical test were obtained as the following. For
the simple model (i.e., only focusing on lower limbs), the MAE of the LHipAngle was
3.99, the MAE of the RHipAngle was 4.55, the MAE of the LKneeAngle was 0.71, the
MAE of the RKneeAngle was 3.48, the MAE of the LAnkleAngle was 1.67, and the MAE
of the RAnkleAngle was 1.33. So, the MAE of the simple model was calculated out from
the average of the above MAEs, that was 2.62. For the complicated model (i.e., focusing
on both lower and upper limbs), the MAE of the LHipAngle was 1.23, the MAE of the
RHipAngle was 1.42, the MAE of the LKneeAngle was 1.23, the MAE of the
RKneeAngle was 1.79, the MAE of the LAnkleAngle was 1.43, and the MAE of the
RAnkleAngle was 1.19. So, the MAE of the lower limbs’ angles for the complicated

model was 1.38, which was calculated out from the average of its above MAEs as well.

It can be found that the complicated model looks better than the simple model from
Figure 30 and Figure 31, because the points around the linear regression line are closer
and more compact, which means the prediction values will be closer to the true values. As
a result, the prediction errors from both models can be accepted. The complicated model
has a slightly better result than the simple model, i.e., 1.38 degrees versus 2.62 degrees.
However, their difference is only 1.24 degrees which can nearly be ignored in a
biomechanical analysis. By comparing the results of these two models, it is still difficult
to decide whether to use complicated models or simple models in a future biomechanical
study. Although a complicated model may provide a bit more accurate result than a simple
model, it is indeed more difficult to build because a complicated model requires to

consider more details on 3D motion analysis and more IMUs are needed, which also might
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cause movement constraints. Therefore, people may tend to build simple models instead

of complicated models to analyze motor skills more specifically in the future.

5.3 SUMMARY
In this chapter, the experiments and the results of the IMU testing device and the
final wearable device have been provided. The results have indicated that the obstacles of
the hardware and software development of a wearable device have been overcome. The
wearable device is ready to be combined with a 3D motion capture system such as the

VICON system to collect lots of more data from hundreds of hammer-throw athletes.

In addition, the experiments and the results of the deep learning models have also
been discussed. The models need large amounts of synchronized data collected by the
wearable device and the VICON system simultaneously to improve their reliability.
Furthermore, the results from the current stage of the deep learning models indicate that
simple models might be preferred than complicated models in the future. The conclusions
of this thesis will be made in the next chapter and the future work will be discussed as

well.
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK
Dr. Yoshua Bengio, a Canadian computer scientist, who is famous for his work on

artificial neural networks and deep learning, once answered a question on Quora:

Science is NOT a battle; it is a collaboration. We all build on each other's ideas.
Science is an act of love, not war. Love for the beauty in the world that surrounds
us and love to share and build something together. That makes science a highly
satisfying activity, emotionally speaking!

This thesis is based on a cross-disciplinary research study that collaborates with
people from different areas, such as computer science, kinesiology, engineering, etc. It is
a valuable experience of executing the spirit of science that mentioned by Dr. Bengio

above.

6.1 CONCLUSIONS
The study on real-time biomechanical feedback consists of the development of
both hardware and software and the Al modeling. If comparing the proposed wearable
system to a simplified human system, its hardware are like body parts, including the brain
(the Arduino microcontroller board), the skeletal or muscular system (the 3D printed box
and its lid), the circulatory system (the power supply and the circuits), and different
sensory organs (the sensors); while its software is like the neural control system that makes

the whole system come alive.

To establish a user-friendly and practical tool, 3D motion capture technology has
been applied to quantify the throw skill, as such dominant parameters of the skill can be
identified. In other words, the 3D motion analysis helps to minimize wearable sensors
required for hardware development. AI modeling is another technology applied in the

study. It helps to create biomechanical feedback by interpreting data obtained from
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wearable sensors. The training of the deep learning models has been done by both 3D data

and wearable data.

The 3D data has shown that the dynamic data of the hip and wrist could be used
for revealing the coordination between the upper and the lower limbs during a throw. To
verify this, two deep learning models based on the related 3D motion captured data have
been built and trained. It is validated by the results of the models that the timely change
of the wrist and hip displacements could reveal the upper and lower limbs’ coordination
in a hammer-throw movement. It is worth noting that the complicated model has a slightly
better result than the simple model. However, their difference is so tiny that can be ignored
in a biomechanical analysis. A tentative suggestion on a future biomechanical analysis is
to build as many simple models as possible to provide solutions separately rather than to
build a complicated model as an integral solution, considering the movement limitation
caused by too many IMUs, etc. In addition, hundreds of hammer-throw athletes need to
perform lots of tests by using the wearable device along with a 3D motion capture system
so that “big data” will be able to improve the deep learning models’ reliability. Once the
deep learning models can be proved to reach a high reliable stage, then the Al will play
an important role of providing biomechanical feedback in real-time to help coaches in the

hammer-throw training sessions to facilitate the motor skill learning and training.

A customized PCB has been designed based on the previous schematics of the
wireless device [19]. By embedding two IMUs, one load cell (i.e., tension sensor), an
XBee module, and an Arduino microcontroller along with other required electronic
components, a wearable prototype has been developed. Therefore, by combining the

wearable wire-tension measurement with the vertical hip and wrist displacements, various
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motor control patterns employed for the hammer throw could be identified. In short, the
study has justified that three wearable sensors (i.e., one tension sensor and two IMUs)

could be sufficient for creating a real-time biomechanical feedback device.

In any elite sports training, people could use such a methodology developed and
provided by this thesis. The general modus operandi for developing wearables of real-
time biomechanical feedback is summarized as the following: (1) 3D motion analysis at
the beginning; (2) the first translation — simplifying the 3D motion capture to a practical
wearable system (i.e., practicality of the wearable system); (3) hardware design and
development (including selections of wearable sensors and wireless communication
methods); (4) software development (i.e., programming of data collection); (5) system
calibration; and (6) the second translation — returning to biomechanical parameters by Al
modeling. Such an approach has great potential to become a coach-friendly tool for
effective learning and/or training in practice. It would help coaches and athletes to

facilitate their motor learning and optimize their motor skills efficiently.

6.2 FUTURE WORK
In the future, the wearable device can be applied into more field tests to examine
its practicality and stability. After all, this is still a prototype. So, there still exists a
potential to improve its reliability from a prototype to a mature product. For example, the
cables that are used to connect the tension sensor and the external IMU to the
microcontroller might be able to be cut shorter depending on more practical measurements

of more athletes’ physical parameters, such as height, arm lengths, etc.
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In addition, another IMU could be added into the system to be put on the back of
an athlete so that an upper-body model could be analyzed as well. Then, by comparing the
upper-body model, which can also be treated as a simple model, with the complicated
model, a further validation can be made to determine whether a complicated model or a

simple model should be used in future biomechanical study.

The tension sensor can probably be replaced by an IMU as well if the efficiency
of the IMU data fusion algorithm can be improved, or a high quality IMU can be used,
because the wire-tension has a very close correlation with the acceleration or rotation
speed. Furthermore, a high accurate IMU can be used to obtain the trajectories of the
hammer in the air that is another key parameter. The concern is that how to avoid
destroying the IMU sensor attached on the hammer. As the hammer will fly with a very
fast speed in the air, when it drops down to the ground randomly, there will be a high

possibility of destroying the sensor.

The tension sensor and the external IMU can also be separated from the current
wearable device. They can become two independent wearable devices with their own
microcontrollers and wireless communication modules. If so, the wireless sensor network
will be expanded rather than a point-to-point network. However, the concerns are the
following: would the wireless data transmission still have high reliability when receiving
data from several sensor nodes? Would the added weight of the wearable sensor from
joining the microcontroller and the wireless communication module cause any movement

constraint?
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Moreover, a server could be built to make the wearable product as an IoT
application. A mobile GUI platform could be developed based on the proposed four types
of the sensor nodes so that the customers can reconfigure the system’s communication

method by their own requirements easily.

For some other areas that may need privacy, such as healthcare, a security
algorithm can be easily applied into the wearable system. For example, the XBee modules
can be configured with an encryption setting. Also, a security algorithm of AES

(Advanced Encryption Standard) can be implemented with Arduino IDE.

Regarding the motor control information revealed by the data, there are still many
questions. Would such characteristics appear at different levels of athletes? How can the
real-time feedback (i.e., wearable devices) be helpful in the optimization of individual
hammer-throw skills? Are there additional potentials of wearables in the learning and
training of the hammer throw? Following the framework established in this study, future

studies with more athletes at various levels would be able to answer the above questions.
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APPENDIX 1: RESEARCH CONSENT FORM

Development of new biomechanical feedback tools for improving human motor

skill learning and training

Hammer Throw Project

Biomechanics Laboratory

University of Lethbridge

We invite you to participate in a study that aims to develop new tools for
understanding of fundamental processes in humans and modulating various human
movements, ranging from daily activities to specialized sport and music skills. Learning
how to move is a challenging task. Even the most basic skill of walking requires years to
develop and can quickly deteriorate with age and sedentary lifestyles. Age-related falls
are the cause of 70% of accidental deaths in people 75 years and older and is the leading
(74%) cause of hospitalization for seniors. More specialized skills such as violin playing,
and soccer kicking require "talent" and years of extensive practice to fully master. These
practices can easily cause career-ending vocational diseases if conducted improperly. Our
research group uses the science of biomechanics and state-of-the-art motion analysis
technologies to determine which muscle movements are critical for successful skill
development and which expose us to vocational disease development. In this fashion, we

are able to unlock some of the secrets of talented musicians and athletes and scientifically
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inform music pedagogy and sports coaching, while preventing the occupational disease to
occur, i.e. biofeedback learning and training.

Biomechanical feedback can be broadly divided into two categories: real-time and
post-measurement. Real-time feedback is more useful for practitioners and thus our
ultimate goal, but its successful development hinges on robust post-measurement
feedback. Therefore, your participation in the project will be the post-measurement one.

Hammer throw has a long-standing history in track and field, but unlike other
events, hammer throw has not seen a new world record since 1986. One reason for this
stagnation could be the lack of scientific bio-feedback training. This study aims to develop
a biofeedback analyser that can 1) measure real-time wire tension and vertical hip
displacement, 2) establish how to reach desirable tension and displacement, and ultimately
3) provide biomechanical-guided training plans customized to each athlete’s
anthropometric data.

The experiment takes about 60 minutes. The test will be in the hammer training
area located in UofL gym (the training area is protected by a surrounding net). You will
be asked to wear a black garment made of stretchable material, which covers the upper
and lower body. Affixed to the garment will be 42 reflective markers (reusable), each
with a diameter of 9mm. The garment will be washed between each participant use. Before
the test, you will be allowed to perform a sufficient number of warm-up exercises to get
used to the test environment. After warm-up you will be asked to perform 6 throws using
a real hammer (like throws in your training). During each throw, the kinematic (3D
motion) and wire tension data will be captured simultaneously. The kinematic data will

be collected by a twelve-camera Vicon system. Wire tension will be measured by a tension
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sensor system developed at Biomechanics Lab. The tension sensor is installed between
the Hammer grip and wire. There are no anticipated risks from participating in this study.
Nothing is intrusive into the body. The tests are natural and do not use any sort of
medication.

The information gathered from you during this study is considered confidential.
To maximize your anonymity, you will be assigned a code, and this code will be used
instead of your name at all times. Research assistants will also be required to sign a
confidentiality agreement. All personal information (body weight, body height, age, and
training hours per week) will remain locked in a file cabinet that can only be accessed by
researchers involved in this study and will not be disclosed without your permission. We
may, however, wish to use your data measurements for a research presentation or
education purposes in the future. Your identity will be kept confidential. It should be
mentioned that the twelve-camera system will not in any way videotape participants’
faces, so that participants truly do remain anonymous.

Your participation in this study is entirely voluntary and you may withdraw from
participating at any time. Should you decide not to participate in this study, your
relationship with the Biomechanics Lab or any other department of the University of
Lethbridge will not be affected in any way. If you choose to withdraw, any information
collected from you up to the point of withdrawal will be deleted or destroyed. If you wish
to see your performance analysis, we will supply you a CD containing your 3D dynamic
analysis data. If you have any further questions about this research, please feel free to

contact Dr. Gongbing Shan, at (403) 329-2683 or g.shan@uleth.ca. If you have any further
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questions regarding your rights as a participant, please contact the University of
Lethbridge Office of Research Ethics at (403) 329-2747 or research.services@uleth.ca.
Your signature below indicates that you have read and understood the information
provided above, and that any and all questions you might ask to have been answered to
your satisfaction. Your signature also indicates that you willingly agree to participate in

this study, and that you understand you may withdraw from this experiment at any time.

I have read the attached Informed Consent form and I consent to participate in the
“development of new biomechanical feedback tools for improving human motor skill

learning and training” research study.

Printed Name: Date:
Signature:
Witnessed by: Date:
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