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ABSTRACT 

Wearable sensors have been popularly used in many applications with the 

development of computer science and engineering. However, wearables for 

biomechanical feedback in motor learning and training are still rare. Therefore, this thesis 

focuses on developing an efficient and cost-effective wireless sensor system through a 

case study on the hammer throw. The results have shown that the proposed reconfigurable 

and wearable system can implement real-time biomechanical feedback in the hammer-

throw training. Furthermore, the experimental results suggest that various throw-control 

patterns could be identified by using one tension-sensor and two inertial measurement 

units (i.e., more superior practicality than 3D motion capture), indicating that the low-cost 

wearable system has potential to substitute the expensive 3D motion capture technology. 

The proposed system can be easily modified and applied to many other applications, 

including but not limited to healthcare, rehabilitation, and smart homes, etc.  
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CHAPTER 1: INTRODUCTION 

In the era of information technology, Computer Science applications have been 

increasingly spread and extended in various fields thanks to the explosive advances of 

computer technologies since last century. As a consequence, wireless sensor applications 

can be found in every corner of the world now, such as in sport activities, art performances, 

healthcare practices, occupational training, and many other human physical behaviours [1] 

– [7]. The variety of wearable sensors allows people to collect different kinds of data 

related to various human physical behaviours. However, among so many choices, how 

would people be able to make full use of these scientific tools? Research in theoretical 

and computational science will help to find the answer. This research works towards this 

goal. It requires computer-related skills, knowledge of motion analysis and knowledge of 

applying the interdisciplinary understanding to human motor learning practice. By 

designing and developing a reconfigurable and wearable wireless sensor system for the 

training of the hammer throwers, this thesis has demonstrated a case study of the 

combination of theory and practice. Along with the artificial intelligence (AI) technology 

applied, it has been confirmed that various throw-control patterns could be identified by 

using a wearable system with one load cell and two inertial measurement units (IMUs). In 

terms of the practicality, the features of the wearables (e.g., portable, easy-to-use, etc.) 

make this system more superior than the 3D motion capture system which currently is still 

the most reliable and widely used method in biomechanical study. However, wearable 

applications would not just be limited to the hammer throw. People with imagination and 

creativity can be inspired by this thesis to adapt this idea to other areas, such as healthcare, 
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rehabilitation, etc. In other words, the wearables’ application prospects are wider and 

brighter. 

In summary, this thesis will concentrate on elaborating on a wearable system that 

can provide real-time biomechanical feedback in the training of the hammer throw. In the 

first chapter, this thesis will be presented by starting from introducing the research 

motivation. Then, there will be an outline of introducing all the methods used in this thesis 

for realizing the research goal. Next, a summary of the main contributions of this thesis 

will be presented. Finally, an overview of this thesis will be provided. 

1.1 MOTIVATION 

Optimization of any sport skill requires re-organization of the limb coordination 

responsible for governing the movement performance [8]. This type of motor learning can 

be enhanced through a number of methods that are utilized in research and application 

settings alike. In general, verbal feedback of coaches in real-time is commonly used as a 

preliminary means of instilling motor learning, such as in [8] and [9]. Due to the rapidity 

and complexity of some sports skills as well as invisibility of some parameters (e.g., 

force), the real-time feedback from coaches is often a subjective guess based on 

experience. For increasing the reliability of feedback in training, biomechanical means 

can be used to supplement the verbal instructions [10] – [13]. The hammer throw is such 

a sport that needs a combination of a coach’s experience and biomechanical feedback in 

elite sports training to facilitate motor learning and optimize outcomes. 

Men’s hammer throw has been part of Olympics track-and-field competitions 

since 1900, but unlike other events, it has not seen a new world record since 1986 [14]. 
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This standstill may be caused by the lack of scientifically based training. While extensive 

three-dimensional (3D) motion analysis technologies do supply highly trustworthy 

information for human motor skill quantification [15] – [18], due to their drawbacks, the 

analysis and feedback has traditionally occurred offline after completion of a given testing 

session (i.e., it is post-measurement feedback, rather than real-time feedback) [18] – [21]. 

The drawbacks of a 3D motion capture system include [22]: 

(1) Lab-based, 

(2) Complicated operation, 

(3) High cost (over 300,000 US dollars), 

(4) Long calibration and setup procedures, 

(5) Time-consuming course on data collection, processing and analysis, 

(6) Movement constraints induced by dozens of motion capture markers attached on 

a subject’s body. 

These drawbacks have hindered the use of 3D motion capture systems in sports training 

and practice. 

Motivated by developing a practical method, I have participated in a research 

project that initiated a development of a real-time biomechanical feedback device for the 

hammer-throw training. In this project, I have begun the development of the wire-tension 

measurement in the hammer throw [19]. As one of principal investigators in the cross-

disciplinary team, I was heavily involved in a pilot study for a development of wearable-

sensor device in the hammer throw [23]. The investigation using 3D motion capture 

technology, as shown in Figure 1, found that the timely displacements of the hip and wrist 
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may be used to reveal the upper and lower limbs’ coordination when analyzing the 

hammer throw. Figure 1 shows (a) the set-up of the data collection and (b) one sample of 

the 3D data. The pilot study has indicated that the timely change of the vertical 

displacements of the hip and wrist are closely related to the turning speed, the ratio of one-

leg/two-leg support (power generation), and the hammer’s velocity change during the skill 

performance. Therefore, obtaining the dynamic distance data of these two anatomical 

landmarks would be vital for real-time biomechanical feedback training. In addition, it is 

also critical to use a machine learning algorithm, such as regression, to verify the feature 

that the pilot study has found. 

 

Figure 1: The 3D motion capture system’s setup and a sample of the 3D data [24] 

 Further, integrating the results [23] with my previous wire-tension study in the 

hammer throw [19], one would logically find that a combination of the wire-tension 

measurement and the dynamic vertical displacements of the hip and wrist could have great 

potential to be used instead of the 3D motion capture technology in the skill analysis of 

the hammer throw. Therefore, developing such a wearable system for tracking hip and 

wrist movements and gathering the wire-tension measurements along with the help of 
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machine learning could realize the real-time biomechanical feedback system in the 

hammer-throw training. 

1.2 OUTLINE 

 This research is a cross-disciplinary work which requires various methods in 

different areas to realize the goal – establishing a real-time biomechanical feedback 

system. In general, a wearable/wireless sensor system is required to be developed, that can 

be separated into two basic elements: (1) the sensor node that is used for data collection 

and (2) the receiver node that is used for data processing. Therefore, the thesis will be 

introduced mainly from the following two aspects: the sensor node and the receiver node. 

Before introducing the details about the sensor node and the receiver node, as it is 

a wireless sensor system, a specific protocol in telecommunications has to be followed to 

make the two nodes communicate remotely with each other. Four types of the sensor nodes 

were proposed for different applications where users can configure the system architecture 

by their own requirements, as shown in Figure 2. The first type was selected in this case 

study, i.e., the XBee modules which are more convenient and user-friendly in the initial 

research stage were used. XCTU [25] is used to configure the XBee modules. A section 

about configuring the XBee modules will be presented initially. 



 6 

 

Figure 2: Four types of the sensor nodes 

The XBee module [26] is a kind of ZigBee, based on IEEE 802.15.4 standard [27] 

which was designed for low-data-rate, low-power, and low-complexity short-range radio 

frequency (RF) transmissions. In an ideal condition, its maximum range can reach 90 

meters. XBee modules support mesh network that every node in the network can have 

capability of routing. Even if one node is down, the other nodes can still work. So, XBee 

modules can be used to construct a very strong and flexible wireless sensor network. In 

addition, it has high-level security. As a result of these features, XBee modules have been 

widely used in many research studies [28] – [30]. 
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Bluetooth has been developed and updated for many different versions since 1998. 

After the 4.0 version, the traditional Bluetooth was treated differently from Bluetooth Low 

Energy (BLE). In recent years, BLE are more popular and commonly used in wireless 

sensor applications, such as [31] – [34]. So, the Bluetooth in the proposed wireless 

communication method refers to BLE. The power and cost consumption of BLE are 

reduced compared to the classic Bluetooth, and the range of BLE is usually within 100 

meters. It uses 2.4 GHz radio frequencies and adopts the protocol of the classic Bluetooth 

that is IEEE 802.15.1 standard [35] which was designed for wireless personal area 

network (WPAN). It also has high-level security. However, the size of a data packet is 

limited by using BLE. In addition, the maximum number of devices in a network is limited 

as well. The third node type is proposed to combine the XBee and Bluetooth to try to 

provide both of their advantages so that the users can select one wireless communication 

method depending on their own requirements. 

Wi-Fi is a group of wireless network protocols that are based on IEEE 802.11 

standards [36] which were designed for wireless local area networks (WLANs). Wi-Fi has 

also become very popular in recent years. This wireless communication method has the 

advantages of the convenience of deployment and the fast data transmission speed. 

However, its energy cost and security are potential issues. 

Next, the sensor node will be introduced beginning with its hardware. In terms of 

the hardware, a wearable prototype for collecting vital data has been developed. The size 

of the wearable device is miniatured by designing a printed circuit board (PCB). In 

addition, Autodesk Inventor 2014 [37] is used to design a customized 3D printed box 

along with its lid to protect and hold the board and the sensors. There are three sensors 



 8 

used in the wearable device: two inertial measurement units (IMUs) [38] and one load cell 

[39]. These sensors need to be calibrated and tested before assembly. So, there will be a 

section to describe how to calibrate and test the sensors and the problems that occurred 

during the calibration work in detail. Last but not least, as an Arduino board [40] is used 

as the microcontroller, the program implemented in the Arduino IDE (Integrated 

Development Environment) [41] will also be introduced. 

For the receiver node, the graphical user interface (GUI) implemented in 

MATLAB will be presented first. It is the key to make the system display real-time 

feedback intuitively. Next, an applied algorithm – Madgwick’s implementation of 

MahonyAHRS algorithm [42] will be introduced. It is also implemented in MATLAB for 

calculating reliable vertical displacements obtained by the IMUs. 

In addition, two existing deep learning models based on Keras API (application 

programming interface) [43] have been built in Python to verify the feature that the timely 

change of vertical hip and wrist displacements could reveal the upper and lower limbs’ 

coordination in the hammer throw. It is also a goal to find out whether a complicated 

model or a simple model should be used in a biomechanical study by comparing the two 

models’ predicting results. 

1.3 CONTRIBUTIONS 

 By designing and developing a reconfigurable and wearable wireless sensor 

system, this research work mainly contributes to the initiation and realization of real-time 

biomechanical feedback training in the hammer-throw practice as the following points: 
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(1) Establishing a general modus operandi (i.e. a general framework) for developing 

wearables of real-time biomechanical feedback applied in human motor skills’ 

learning and training; 

(2) Improving the effectiveness of the wearable device designed for the training of the 

hammer throw by adding two IMUs and miniaturizing the device with the help of 

PCB design; 

(3) Demonstrating that the wearable device that uses a load cell and two IMUs has 

potential to substitute the 3D motion capture cameras (such as the VICON high-

speed multi-camera system [44]); 

(4) Providing a method of transferring the biomechanical feedback training from a 

post-measurement one to a real-time one; 

(5) Providing a method of simplifying the scientific quantification from operating a 

complicated 3D motion capture system to an easy-to-use wearable device; 

(6) Inspiring people in the wearable application field to not only monitor key 

parameters but also diagnose any issue that occurs from the monitoring. 

1.4 THESIS OVERVIEW 

 A general idea of the cross-disciplinary research has been provided in this chapter. 

The remainder of the thesis will be organized as follows. 

 In Chapter 2, a brief summary of my years’ experience in studying, developing 

and prototyping biomechanical wearables will be provided. The most relevant 

contribution of my Ph.D. study is an establishment of the general modus 

operandi/framework for developing wearable devices to realize real-time biomechanical 

feedback training in human motor learning. The elaboration of the framework would help 
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future researchers and developers with better understanding the more detailed contents of 

the thesis, because this cross-disciplinary research area is relatively rare. Hopefully, the 

established framework would promote more future studies and developments in this 

relatively underdeveloped application area of computer science and wearable technology. 

 In Chapter 3, the research background will be elaborated through a literature 

review on the wearables and biofeedback training. The description will focus on the 

current successes of the development in this area as well as the existing limitations faced 

by the wearable technology in human motor learning. The chapter shows that the 

development of a real-time biomechanical feedback training tool is challenging, but it is 

a growing trend of applying the scientific means in learning of various human motor skills. 

The chapter also presents differences between the biomechanical feedback training and 

the other biofeedback trainings to explain why it is more difficult to develop a real-time 

biomechanical feedback training tool than the other types of tools. Although there are 

many challenges, the advantages of wearables combined with artificial intelligence (AI) 

technology will provide an excellent platform with great potential and make a huge and 

positive impact in this field. 

 In Chapter 4, the research methodologies used in developing the real-time 

biomechanical feedback system for training of the hammer throw will be elaborated. The 

system consists of two basic elements: the sensor node and the receiver node. XBee is 

used as the wireless communication method between the sensor node and the receiver 

node. So, it is significant to introduce the XBee configuration at the beginning. Then for 

the sensor node, the wearable device will be introduced from its hardware development to 

its software development including the calibration procedures. On the receiver node side, 
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the GUI and the applied algorithm will be discussed in detail. The last part of this chapter 

will be a discussion of the deep learning models. 

 In Chapter 5, detailed discussions on the experiments and their results will be 

presented. The discussions will cover contents from a hardware perspective to a software 

perspective (i.e., the experiments and the results of an IMU testing device, the wearable 

prototype, and the deep learning models). 

In the last chapter (Chapter 6), conclusions of the thesis will be made and the 

research potential in the future work will be discussed. 
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CHAPTER 2: FRAMEWORK OF PROTOTYPING 

Since this interdisciplinary research work belongs to an underdeveloped field that 

only few people work in the same or similar direction, an elaboration of idea-development 

will be provided in this chapter as an overview or summary of my years’ research 

experiences so that readers could follow the detailed contents of the thesis easily and might 

be clearer for thorough understanding. 

Nowadays, wearable devices that supply real-time biofeedback related to our body 

during physical activities are common. They have changed the ways of our exercise and 

improved our physical health. However, the real-time biomechanical wearables for human 

motor learning is rare [45]. There is even no general modus operandi for its development. 

The most important contribution of my years’ Ph.D. study is to establish a general modus 

operandi for developing biomechanical wearables (Figure 3). 

Figure 3 shows that, in essence, the development of biomechanical wearables is to 

apply the knowledge of computer science and sensing technology (black font in Figure 3) 

into human motor learning & training (green font in Figure 3). Obviously, there is a gap 

between the two sides, i.e. a connecting piece is missing (red font in Figure 3). For well-

developed areas, researchers have already established modus operandi to find the missing 

piece for practitioners/users. Unfortunately, such a modus operandi did not exist for the 

development of biomechanical wearables. My years’ study has created the modus 

operandi to find the missing piece for researchers and practitioners. The method begins 

with 3D motion capture/biomechanical quantification (green), followed by how to 

simplify the 3D motion capture to wearables (red), design of wearable systems (black), 

programming (black), quantification of dominant variables (green), and ends up with 
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transitions from the wearables’ data to biomechanical variables (black). If the transition is 

successful, the prototyping is finished (red); otherwise, one should go back for a revision 

(e.g. adding more sensors) until reaching the accuracy required. Although the framework 

is developed for the training of hammer throw, the methodology/the modus operandi could 

be extended into various human motor skills. The following sections are description of 

steps involved. 

 

Figure 3: A general modus operandi/framework for developing wearable devices to 

realize real-time biomechanical feedback training in human motor learning (Note: 

MoCap – motion capture) 
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2.1 THE CURRENT RELIABLE METHOD OF BIOMECHANICAL FEEDBACK 

TRAINING 

 In order to apply the knowledge of computer science and sensing technology into 

human motor skills’ learning & training, it is important to know the current reliable 

methods as well as their mechanisms; and then, one could consider various novel means 

for improving human motor learning.   

In human motor learning, one of the scientific training methods is through 

biomechanical feedback training. The common factor used in biomechanical feedback 

training is the limb coordination, which can be revealed by the changes of joints’ angles 

overtime. Therefore, obtaining this vital information would be an irrevocable goal of the 

biomechanical feedback training no matter what kind of feedback tools are used.  

Currently, the most reliable biomechanical feedback training is 3D motion 

analysis. In this case study, the VICON system, which is one of the most reliable 3D 

motion capture and analysis systems, was used for 3D motion analysis in order to quantify 

joints’ coordination during hammer throw. The VICON multi-camera system can provide 

the trajectories of ~40 markers (almost weightless) attached to joints and segments of a 

subject for quantifying the limb coordination during any complex human movements. The 

principle of 3D motion analysis will be introduced in Chapter 3. So, for more details, 

please see Section 3.2.4 and Section 3.3.1 in Chapter 3. 

2.2 PRACTICALITY OF THE WEARABLE SYSTEM 

 In contrast to 3D motion capture systems, wearable systems use sensors to collect 

vital information instead of cameras and markers. For example, the IMUs are a kind of 
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sensors for getting an object’s orientation. By applying some data fusion algorithm of 

motion tracking, the trajectories can be gained by using IMUs. If using the same number 

of IMUs as the number of markers applied in 3D motion capture system and putting the 

IMUs on the same positions where the markers are located, then the wearable system 

would be able to fully replace the 3D motion capture technology. However, it is 

impossible to attach too many IMU sensors on a human body because of the size and 

weight of the current IMU technology. The weight will cause skin vibration during 

movements (i.e. inaccurate measurement) and many weights on skins also add movement 

constraints, resulting changes in human motor control. Therefore, in terms of practicality, 

the most important and challenging issue is how to minimize the number of the sensors 

applied in a wearable system. 

The basic principle is to capture the main characteristics of a motor skill by 

applying as less sensors as possible (i.e. simplification). Ideally, single wearable device 

would be the best solution if it could provide the main biomechanical information needed 

for skill learning. This is why the iWatch is so popular for physiological feedback. In this 

study, the characteristics of the hammer-throw movement were extracted through a pilot 

study [23]. The number of sensors identified for developing the wearable system has been 

determined to be three. For more details of quantification and identification of the sensor 

number, please see Section 3.3.4 in Chapter 3. 

2.3 DESIGN OF THE WEARABLE SYSTEM 

 After the determination of sensors required, one can start to design a wearable 

system based on the determined main characteristics of the movement. For a wearable 
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system, there are mainly two factors to be considered that are the selection of the sensors 

and the selection of the wireless communication method. 

2.3.1 SELECTION OF THE SENSORS 

 Depending on the dominant parameters extracted from the characteristics of the 

movement, appropriate sensors should be selected for building the wearable system. In 

this hammer-throw case study, tension and two distance data are the dominant parameters. 

For obtaining the tension data, the only option is to use a tension sensor also called load 

cell. For obtaining distance data, there are several options, such as optical distance sensor, 

ultrasonic distance sensor, and IMUs. The first two types of sensors are more direct and 

easier to be used for data collection. However, they have limitations due to their one-

dimensional feature. Therefore, IMUs were finally selected and used in the wearable 

system in the case study. For more details, please see Section 3.1.1 and Section 3.1.3 in 

Chapter 3. 

2.3.3 SELECTION OF THE WIRELESS COMMUNICATION METHOD 

 A wearable system usually uses a wireless communication method. Some different 

types of wireless communication methods have been introduced in Section 1.2 in Chapter 

1. XBee was selected in the case study because of its advantages in the prototyping stage. 

One reason why the proposed wearable system uses only two XBee modules for point to 

point wireless communication is that one sensor device attached to an athlete’s waist 

would not cause too much influence on his/her movement by reducing the number of 

Arduino microcontrollers. Therefore, the tension sensor and an external IMU have to be 

connected to the device by cables. It is possible to change the wireless communication 

method in the future. For more discussion on this, please see Section 6.2 in Chapter 6. 
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2.4 PROGRAMMING OF DATA COLLECTION 

 Once the sensors and the wireless communication method are selected, one can 

start the software development for data collection. In this case study, Arduino IDE and 

MATLAB are used in developing the software part of the wearable system. For more 

details, please see Section 4.2.3 and Section 4.3 in Chapter 4. 

2.5 SYSTEM CALIBRATION 

 The next step is to do the system calibration after the hardware and software 

development of the wearable system. The calibration procedure is very important because 

accurate and meaningful data are required instead of a whole bunch of raw data. For more 

details, please see Section 4.2.2 in Chapter 4. 

2.6 RETURN TO BIOMECHANICAL PARAMETERS 

 After calibration, the last but not least procedure is to return the collected data to 

the biomechanical parameters. As mentioned in Section 2.1, a new approach should not 

change the original structure of human motor skill learning. One should note that, due to 

reduction of sensors applied, the wearable system can only provide data revealing the main 

movement characteristics. Coaches and practitioners could not link the feedback data to 

joints’ coordination. A “translator” is needed to interpret the data back to the 

biomechanical parameters (i.e., limb coordination). The “translator” is AI technology. It 

is the key to re-establishing the joint angles (i.e., revealing limb coordination) by using 

the sensor-collected data. 

In the hammer-throw case study, I have proved the potential of deep learning 

models as a good “translator”. Due to the limited data volume, the deep learning models 
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are still in an initial stage for a validation purpose. For more details, please see Section 

4.4 in Chapter 4 and Section 6.1 in Chapter 6. 

In summary, prototyping biomechanical wearable system is essentially to apply 

the knowledge of computer science and sensing technology into human motor learning 

and training. The key point is to find the missing piece to bridge the gap between the two 

sides. For finding the missing piece, two “translations” are vital. One is to identify the 

minimal sensors required (simplification) and the other one is to transfer the wearables’ 

data back to biomechanical data. 
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CHAPTER 3: BACKGROUND 

 This research study belongs to the area of applied sciences. For the specific study 

case in the hammer throw, it involves the application of wireless sensor networks (WSN), 

the hardware and software development of a wearable prototype, the application of AI 

technology, and the 3D motion capture and analysis in biomechanical study. Many 

researchers have contributed to WSN related applications in different fields [46], [47], 

such as health monitoring [48], [49], human activity monitoring, sport, and so on. 

Wearable prototype elements such as inertial measurement units (IMUs) are commonly 

used in human movement analysis and its applications [50], [51]. Deep learning models 

of AI technology have also become a popular tool in various applications [52]. 3D motion 

capture technology is currently the most reliable way of obtaining biomechanical feedback 

[11] and [53] – [55]. 

Among all these technologies used in this thesis, wearables and biomechanical 

feedback training are the two key methods. Therefore, in this chapter, an overview of 

wearables will be presented firstly by introducing some basic knowledge of wireless 

sensor networks (WSN) and the Internet of things (IoT) that are playing significant roles 

in this era of information, the classification of wearables, and the development of 

wearables in biomechanical feedback training. Next, an overview of biofeedback will be 

presented by introducing biofeedback and its types, showing its milestones in human 

motor-skill learning and training. Lastly, developing wearables for biomechanical 

feedback will be discussed. 
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3.1 OVERVIEW OF WEARABLES 

 Wearable sensors have gained great interest in biofeedback training, owing to their 

tremendous promise for a plethora of applications. They supply real-time non-invasive 

monitoring of physical-activity parameters as indicators of a trainee’s physical progress. 

Yet, the absence of a reliable method of applying wearables in biomechanical feedback 

training has greatly hindered wearable applications in the area of human motor skill 

learning, training, and optimization. In this section, WSN and IoT will be introduced first 

because the rapid growth of wearables is based on these two concepts. Next, the 

classification of wearables and the current status of wearables’ development in 

biomechanical feedback training will be discussed. 

3.1.1 WIRELESS SENSOR NETWORKS AND INTERNET OF THINGS 

WSNs can be described as the networks consisting of two or more nodes that can 

transmit information collected by various sensors remotely by following some specific 

wireless communication protocol. For example, Figure 4 illustrates the system 

architecture in my previous research [19], which consists of two nodes where one node 

can collect data for transmission which can be called the sensor node, and the other node 

receives this data which can be called the receiver node. The XBee modules were used as 

the wireless communication method. 
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Figure 4: Previous system architecture [19] 

Wireless sensors are typically more convenient than wired sensors.  As discussed 

in [56], compared to wired networks, low-power and low-cost wireless sensors are used 

to reduce the capital expenditure and operational expenditure without losing any quality 

of service from an industrial perspective. The previous wireless sensor device [19], also 

called the sensor node in Figure 4, used a tension sensor and an infrared distance sensor 

because these sensors are the most straightforward way of collecting the required data that 

can reveal the critical parameters. These two sensors are both one-dimensional. The 

tension sensor was proved to collect the wire-tension measurements successfully. 

However, the distance sensor was proved to be ineffective after performing some field 
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tests. Because the distance sensor uses infrared to measure distance, it is required to keep 

vertically towards the ground for collecting reliable data. However, during the hammer-

throw movement, the device will swing as the athlete rotates his/her body. Therefore, it is 

hardly to use a one-dimensional sensor (i.e., optical distance sensor, ultrasonic distance, 

etc.) to collect accurate distance data in this specific situation. IMUs are commonly used 

in human motion tracking. They can provide not only the one-dimensional distance data 

but also the 3D location of an object. So, IMUs are quite popular in many different areas 

[57] – [59]. However, every coin has two sides. IMUs are more difficult to be applied. 

More details about IMUs will be introduced in Section 3.1.3 and in Chapter 4. 

IoT is a relatively newer and wider concept compared with WSN. WSN can be 

treated as a subset of IoT because only the wireless sensor applications belong to WSN 

while IoT can have both wireless and wired sensors as long as they can transmit data to 

the Internet [60]. Also, WSN applications may not transmit data to the Internet directly, 

like the wearable device illustrated in Figure 3. For example, if the wearable device was 

able to send the collected data to a server through a Wi-Fi module within a Wi-Fi 

environment or a GSM (Global System for Mobile) module within any mobile coverage 

area, then it would become an IoT application. No matter if it is a WSN application or an 

IoT application, wearable devices can be very useful in many different fields. 

3.1.2 CLASSIFICATION OF WEARABLES 

Wearables or wearable devices simply refer to those wireless devices that can be 

worn by people or attached to human bodies. A wearable device usually contains a 

microcontroller and different types of sensors to collect data remotely from the wearer or 

the environment for monitoring or data processing purposes. As mentioned in [61], the 
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authors classified existing commercial wearables into three categories: (1) Accessories, 

(2) E-Textiles, and (3) E-Patches by surveying over 100 products. The most popular 

category are accessories, including wrist-worns, head-mounted devices, and other 

accessories like smart jewellery, straps, etc. The wearable device in this research can be 

classified into the smart straps as it is supposed to be tied on an athlete’s waist with a belt. 

They also stated that smart straps usually are used to monitor human physiological signals 

and biomechanics. 

In another review [62], wearable sensors can be classified into two categories that 

are flexible and non-flexible by the materials of the sensors. The wearable device in this 

research belongs to the latter one which is rigid and made of brittle materials. The flexible 

wearable sensors are made of malleable materials that can be reshaped to some extent 

without changing the sensors’ properties. As mentioned in [62], wearable sensors have 

been applied in many different areas, such as, medical, security, communication, etc. 

Although wearables have already been developed so broadly, there is still a great potential 

need for wearables used in sports. 

3.1.3 INERTIAL MEASUREMENT UNIT 

 Usually, an inertial measurement unit (IMU) consists of an accelerometer, a 

gyroscope and a magnetometer. The accelerometer can collect acceleration data in three 

directions (X, Y and Z axes) in a 3D coordinate system. The gyroscope can collect rotation 

speed in three directions and the magnetometer can collect magnetic field intensity in three 

directions as well. Therefore, this type of IMU is a 9 degrees of freedom (DoF) IMU. 

Some IMUs are 6DoF that only have an accelerometer and a gyroscope. 
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 Suppose an object is in an absolutely still condition on Earth, then there will only 

be the Gravity on it. When the object is tilted, the acceleration that the accelerometer 

detects will be the projection of the Gravity on the object’s own coordinate system. So, by 

using some mathematical formulas, the roll (around X axis) and pitch (around Y axis) 

angles can be calculated out. However, the yaw (around Z axis) angle cannot be obtained 

with the acceleration data because the Gravity is orthogonal to the horizontal plane. One 

way to get calculate the yaw angle is to use the magnetometer. There are also some 

mathematical formulas for calculating out the yaw angle with the magnetic field intensity. 

 In reality, nothing can stay in an absolutely still condition. There are always some 

noisy signals leading to the errors that occur in the calculations from using the 

accelerometer’s and the magnetometer’s data. These two sensors are inaccurate due to the 

hardware limitation. That is why the gyroscope plays a very important role for an IMU. 

The gyroscope can collect the instant rotation speed that can be integrated with time to 

calculate out the angles directly. However, the fact that the time period cannot be sliced 

infinitely can lead to a drifting error when integrating the rotation speed with time. 

Therefore, an IMU data fusion algorithm or filter is required, which will be introduced in 

Chapter 4. 

3.1.4 STATUS OF WEARABLES’ DEVELOPMENT IN BIOMECHANICAL 

FEEDBACK TRAINING 

Wearables in sports are only few years old; however, they have expanded 

radically, from the real-time monitoring of players’ signs of exhaustion or injury while on 

the field to including perceptual and psychological aspects of professional team sports to 

enhance performance [63] – [65]. Wearable technology is leading a revolution in sport 
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[63], [65], [66]. Various sensors are now fitted into sports equipment, wristbands, and/or 

clothing to determine athletic performance, like speed, acceleration, power, distance, 

heart, and metabolic conditions during training. All the crucial data is sent to the coach 

and training team instantly, allowing for them to perform an individualized training for 

increasing athletic competence. 

Nevertheless, real-time biomechanical feedback training currently does not look 

so optimistic. A search using keywords in the authority database – Web of Science – 

revealed the following scenario: when the keyword “biofeedback training” was applied, 

5588 articles were found. However, when the keyword was changed to “biomechanical 

feedback training”, the article numbers dramatically dropped to 569. Even more 

theatrically, when two additional keywords “real-time” and “sport” were added for a 

search, the number decreased to 23. A scarcity of articles occurred when the keyword 

“sport” was substituted by “dancing” (i.e., only one article was found in Table 1). These 

results would suggest that, when comparing to other biofeedback applications, the real-

time biomechanical feedback applications lag far behind. 

Table 1 

The Results of Literature Search in All Databases of Web of Science on 11 October 

2018 [45] 

Biofeedback 

Training 

Biomechanical 

Feedback Training 

Biomechanical 

Feedback Training & 

Real-time & Sport 

Biomechanical 

Feedback Training & 

Real-time & Dancing 

5588 569 23 1 
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 A close look at the published papers revealed that real-time biomechanical 

feedback training in motor learning is still an infant science. For example, only two 

applied studies attempt to reveal its potentials in human motor learning/training in Table 

2. When considering the booming popularity of wearables in sports as well as in health-

related applications, the number of biomechanical inquiries appears to be 

disproportionately low. The rarity of this occurrence could be a product of both the fact 

that there is a lack of a general biomechanical model for feedback motor learning and that 

researchers are still searching for methodological breakthroughs to link biomechanical 

quantification and human motor learning in real-time. 

Table 2 

The Article Types of Real-time Biomechanical Feedback Training Found in Web of 

Science [45] 

 Motor Learning/Training  Method/Development Injury Prevention/Rehabilitation  Review Articles Patents Total 

Sport 2 10 7 2 2 23 

Dancing 0 1 0 0 0 1 

 

3.2 OVERVIEW OF BIOFEEDBACK 

 Effective human motor-skill learning/training benefits nearly every one of us, as 

it can help develop interests in more physical activities and lead to more active lifestyles 

[67]. The main aims of research related to human motor-skill learning are to improve 

learning techniques (education), to accelerate skill acquisition (learning), and to maintain 

motor function (training). All the three aspects rely on feedback mechanisms for their 

efficiency and effectiveness [9]. Given the complexity of human sensory-motor 
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behaviours, informed learning and training hold a great potential to improve efficiency, 

particularly in the acquisition of cognitive and psychomotor skills for highly complicated 

performance activities [18] and [68] – [71]. The two key components in human motor skill 

learning and training are practice and biofeedback [72]. Previous studies have shown that, 

when properly understood and applied, biofeedback training is an excellent tool for 

enhancing practice and performance of human motor skills [73] – [79]. In this section, 

biofeedback and its types will be introduced first. Then the milestones of biofeedback 

training in human motor-skill learning and training will be presented. Next, the unique 

aspects of biomechanical feedback will be discussed. 

3.2.1 BIOFEEDBACK AND ITS TYPES 

 Biofeedback is usually gained by connecting the human body to electrical sensors 

that receive information (feedback) about the human body (bio). It is a technique that one 

can use to learn to control one’s body functions or physical performance [80]. Generally, 

there are four types of biofeedback: physiological (e.g., heart rate and blood pressure), 

neurological (e.g., electroencephalogram (EEG)/brainwave), biochemical (e.g., 

electrolytes and metabolites in sweat or saliva), and biomechanical (e.g., joint angles and 

applied force) [81], [82]. In human motor learning, biofeedback training familiarizes us 

with the activity in our various body systems, so it is a useful educational and/or training 

tool for mastering and/or maintaining human motor skills [83]. 

3.2.2 MILESTONES OF BIOFEEDBACK TRAINING IN HUMAN MOTOR-

SKILL LEARNING AND TRAINING 

 Learning and training of human motor skills has a history of over thousands of 

years [18], [72], experiencing some key periods, such as apprenticeship, class education, 
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individualized instruction, and integrated performance support. However, the appearance 

of (bio)feedback in systematic motor skill training did not occur until the early 1950s [84], 

[85]. After World War II, individualized instruction was first developed in industry for 

training human physical skills (i.e., human motor skills) efficiently and reducing expense 

while still obtaining high instructional value for various professionals. The training 

method broke the learning into small steps with an activity afterward to check 

comprehension. This reinforcement learning behaviour opened the door for biofeedback 

intervention in motor learning and practicing new motor skills. 

This early form of feedback learning in essence requires immediate feedback (i.e., 

real-time feedback) given after each skill practice. The training can be knowledge-based 

(trainer), or more objectively, technology-based. The advantages of feedback learning are: 

(1) it allows for a learner to practice at his or her own pace and to find mistakes and correct 

them and (2) it reduces learning time, produces a low error rate, and improves learning 

efficiency through immediate feedback [18], [72]. A successful example of feedback 

learning is a computer-based training developed and used primarily in the military [85]. 

The benefits of such training are more opportunities for realistic training and feedback; 

and, increased availability and accessibility of training in operational units. 

From a scientific point of view, human motor-skill development is a biological 

process. Therefore, the influential feedback should be those related to the changes to the 

biological parameters of the human motor system. In essence, feedback in human motor-

skill training is primarily biofeedback. Biofeedback as a research major was first reported 

in the 1960s, supplying single-parameter feedback in real-time training [81]. Until the end 

of the last century, biofeedback had been able to supply multiple parameters, such as body 
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temperature, heart rate, respiratory rate, muscle activity, impact, joint angle, and others 

during training [86] – [88].  Due to the limitation of sensing technology at that time, the 

application was commonly lab-based, and participants were equipped with wires. As such, 

the applications were mainly in areas of less human mobility or less human movement 

complexity, such as in senior health care, physiotherapy, and rehabilitation [81] and [89] 

– [93]. 

 Over the past decade, wearables are becoming the trend in sports training.  

Technological developments have led to the production of inexpensive, non-invasive, 

miniature sensors, which are ideal for obtaining sports performance measures during 

training or competition. The miniature sensing devices are worn on the wrist, clothes, 

and/or shoes. They supply real-time biofeedback for sports analyses. The sensing 

technology has turned towards creating devices with new form factors that augment sports 

activities. 

The overwhelming impression of wearables’ success in sport is mainly in 

monitoring physical condition and preventing injuries. For sport-related injuries, soft-

tissue injury remains the most common type among athletes. The injury is often caused 

by fatigue, overtraining, or dehydration [94] – [96]. Wearable sensors are now able to 

collect data related to these risk physical conditions from athletes’ physical conditions, 

muscle activities, and sweat [82] and [63] – [65]. The real-time biofeedback helps coaches 

to alternate their training or competition strategies for decreasing this injury in trainings 

and competitions [63], [65], [94]. 
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 Existing evidence demonstrates that wearables have successfully supplied real-

time information related to athletes’ speed, acceleration, power, distance (i.e., 

locomotion/physical characteristics), heart rate, muscle activities (i.e., physiological 

feedback), and electrolytes and metabolites (i.e., biochemical feedback). Although, these 

parameters are useful in analyzing the general physical condition of an athlete, they do 

not provide information that is related to the limbs’ control of human motor skills. The 

biomechanical feedback is still missing. Without this vital information, the motor learning 

of complicated skills (e.g., artistic performance, gymnastics/acrobatics skills, and many 

others) is largely formed of art based on the trainers’ subjective experiences of “what 

works” [68], [69], [97]. While this can be effective for some learners, large and 

widespread biological diversity unfortunately limits the generalizability of a single 

individual’s experiences [68], [69], [98], [99]. Even small variations in bone length, 

muscle, and tendon attachments, for example, can disrupt this traditional form of 

knowledge transfer. Therefore, scientifically described training targets and routes need to 

be established to improve motor-skill learning. In other words, biomechanical feedback 

tools are required for measuring and quantifying characteristics of effective limb 

coordination (i.e., motor control). 

3.2.3 UNIQUE ASPECTS OF BIOMECHANICAL FEEDBACK 

 Physiological, neurological, and biochemical feedback present information related 

to one’s physiological variation, muscle tension, physical condition, and thought 

processes. Such information is conserved across human motor skills, i.e., across different 

movement forms. Therefore, feedback devices monitoring these parameters can be 

universally applied to all activities [100], [101]. 
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In contrast to physiological, neurological, and biochemical feedback, 

biomechanical feedback mainly provides information that is related to the limbs’ control 

of human motor skills, which directly accelerates motor skill learning and optimization, 

but must be tailored to the activity being examined [16] and [102] – [104]. In other words, 

biomechanical feedback is a more useful tool but complicated for its development. 

Several studies in the past decades confirmed the importance of real-time 

biomechanical feedback, showing up to 100% improvement with its applications [105] – 

[108]. However, the development of biomechanical feedback is still in its infancy. While 

the real-time biofeedback of the first three types (i.e., physiological, neurological, and 

biochemical feedback) has been well developed for the past decades and is now a routine 

application (successfully transferred from lab-based to training and/or competition 

environments), the studies and applications of the biomechanical one are still rare. After 

reviewing 666 publications between 1960’s and 2010’s, Tate and his colleagues found 

that there were only seven studies using real-time biomechanical feedback for physical 

training in a laboratory environment [81]. Additionally, the current state has not shown a 

considerable change, especially in sports performances (Table 1 and Table 2). The rarity 

could be caused by the numerous obstacles that must be overcome during the development 

of the real-time biomechanical feedback tools. The primary one is that biomechanical 

feedback must always be tailored to an activity (i.e., non-generalizable), requiring 

different design parameters for different motor skills. Thus, to develop a biomechanical 

feedback device, one must first obtain a thorough understanding of the selected motor skill 

in order to select the useful parameters for monitoring. Furthermore, the devices must not 

interfere with the motor skill being executed. This technical limitation alone has proved 
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to be a major hindrance to the development of biomechanical feedback devices in motor 

learning and training. 

3.2.4 PRINCIPLE OF 3D MOTION ANALYSIS 

 In a 3D motion analysis, a 3D motion capture system needs to be used to measure 

a full-body movement by using ~40 reflective markers. VICON is a commonly used 3D 

motion capture system. With respect to a full-body modeling in the VICON system, the 

collected kinematic data can supply primary information, such as each marker’s position, 

the positional changes, the velocities, and the accelerations. 

In this case study, each subject needs to wear a black garment made of stretchable 

material, which can cover the upper and lower body of each subject. Affixed to the 

garment were 39 reflective markers, each with a diameter of 9 mm. Markers on the upper 

body were placed on the acromion process, lateral epicondyle of the humerus, styloid 

process of the ulna and radius, third metacarpophalangeal joint, as well as on the upper 

and lower arm (the four markers on the upper and lower leg were only used to determine 

segmental rotations. As they were not involved in segmental translations, no specific 

anatomical position is needed for these four markers), sternal notch, xiphoid process, C7, 

T10, and left back. Four markers were also placed on the head—one on the left and right 

temples each and two on the posterior portion of the parietal bone. Markers on the lower 

body were placed on the anterior superior iliac crest, posterior superior iliac crest, lateral 

condyle of the tibia, lateral malleolus of the fibula, calcaneal tuberosity, and the head of 

hallucis, as well as on the upper and lower leg (again, no specific anatomical position is 

needed for these four markers). Raw kinematic data was processed using a five-point (1-

3-5-3-1 function) smoothing filter. From these 39 markers, a full-body biomechanical 
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model with 15 segments can be built to reveal undisclosed aspects of the motor control 

[10], [13], [15], [109] – [111]. 

The model worked as follows: from motion capture, anatomical positions could be 

established, which then allowed the construction of a 15-segment full-body model. Using 

the fundamental precepts of physics, simple positional data were translated into the 

movement of the multi-segment model. In such individualized biomechanical modeling, 

the anthropometric characteristics of the body were established using anthropometric 

regression equations found in statistical studies [98], [112]. The 15 segments were the 

head and neck, upper trunk, lower trunk, two upper arms, two lower arms, two hands, two 

thighs, two shanks, and each foot. In addition, three markers were attached on the handle. 

Furthermore, reflective tape was glued to the shot to determine hammer release speed. 

3.3 DISCUSSION ON DEVELOPING WEARABLES FOR BIOMECHANICAL 

FEEDBACK 

 For human motor-skill learning, people are always looking for ways to speed up 

training, ways to make it more economical, efficient, and effective, and ways to minimize 

injuries. Real-time biomechanical feedback training could be the best solution that people 

are looking for, because the technology would have the potential for: (1) moving scientific 

monitoring from a lab-based environment to the field, (2) simplifying a scientific 

quantification from using a complicated motion capture system to easily-applied 

wearables, and (3) transferring the vital biomechanical feedback quickly to prevent the 

movement errors from happening, while still finding individual compensation and 

optimization. However, biomechanical wearables still require much more research before 

they can become impactful tools in the real world. Developing real-time biomechanical 
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feedback training tools needs to search ways (e.g. individualization) to supply information, 

which should consider the motor-control diversity, the anthropometric variation, and the 

physical compensation/optimization. In this section, the biomechanical steps required in 

developing wearables for biomechanical feedback will be presented first. Then, the 

challenges and obstacles in its development will be discussed. Finally, how to use AI 

technology to make a breakthrough in the research will be explained. 

3.3.1 BIOMECHANICAL STEPS 

 A successful motor learning outcome can be supported by useful and timely 

biomechanical feedback to the athlete targeting performance defects. Systematic, 

objective, and reliable performance monitoring and evaluation, performed by means of 

quantitative analyses of biomechanical variables, can reinforce biomechanical feedback 

training in sports practice [69], [97], [102]. Therefore, the approaches of quantifying a 

motor skill with high spatial and temporal accuracy (i.e., the limb coordination) would be 

the key to developing wearables for biomechanical feedback training. 

Currently, the most reliable biomechanical feedback method is 3D motion capture, 

which identifies and tracks markers that are attached to a human subject’s joints and body 

parts to obtain 3D skeleton information [11], [53], [54]. The spatiotemporal human 

representation based on 3D motion capture data is currently the most trustworthy approach 

in motor skill quantification [10], [12], [13], [23], [109], [110]. This method, however, 

mainly supplies post-measurement feedback (i.e., not real-time) due to its drawbacks: 

multiple cameras placed in a room, long calibration and setup procedures, a time 

consuming course on data collection, processing, analysis, and interpretation, and the high 

cost of the equipment [20], [21], [113]. 
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For practitioners, real-time feedback is more useful. Yet, due to the drawbacks of 

3D motion analysis technology and the diversity of human motor skills in sport, research 

on biomechanical feedback training has to undergo: 

(1) selection of a specific motor skill, 

(2) 3D motion analysis of the skill, 

(3) verification of post-measurement feedback in practice, and 

(4) development of a feedback device for monitoring the critical/vital parameter(s) 

(e.g., coordination among certain segments or joints) for the given motor skill. 

These steps are, at present, required for developing a reliable wearable device that is 

capable of supplying real-time biomechanical feedback [87]. 

3.3.2 CHALLENGES AND OBSTACLES 

 Current sensing development has shown its potential to mitigate problematic 

constraints of biofeedback devices on human movement and has demonstrated its great 

promise to expand the capabilities of biofeedback to motor-skill learning [63]. The 

successes in health and physiotherapy [19] [86], [89], [114] suggest that biomechanical 

wearables will become a reality in human motor learning and training in sport. However, 

the transition from the simple motor-skill trainings to the complicated ones would face 

several challenges. 

 It is no doubt that the greatest challenge for developing biomechanical wearables 

is the practicality. Any device attached to a human body will supply certain constraints 

for his/her movement and alternate the movement control in a way that may not reach the 

goal of training. Currently, the reliable 3D motion capture technology requires around 40 
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markers for motor skills’ quantification and characterization [11], [13], [15]. Even the 

non-ideal test condition cannot be substituted by simply replacing the ~40 markers (sphere 

shape of 9 mm in diameter and almost weightless) with wearables, because the weight and 

volume of current wearables (e.g., IMUs) can cause unknown experimental artifacts (i.e. 

the experiment itself that biases the measurements). Therefore, how to apply as few 

wearables as possible for accurately rebuilding sports motor skills would be the primary 

focus for the development of wearables in human motor-skill learning. 

 The second challenge is the identification of motor control patterns. Motor control 

patterns exhibit the characteristic wherein either gross or fine motor control appears to be 

dominant. In most sports, it is reasonable to conceive that the majority of activities (e.g., 

running, jumping and throwing) mainly rely upon large muscles (i.e., gross motor control), 

where smaller muscles function in significant stabilizing roles. Fewer activities, like 

shooting, rely mainly on smaller muscle group coordination (i.e., fine motor control) 

where gross motor control supplies foundational support or is nearly rested [16], [53]. 

 The third challenge is the expert-knowledge needed (i.e., compensatory strategies 

depending on an individual anthropometry and physical condition) for complicated motor-

skill learning. Motor control in sport is acknowledged to be an activity requiring complex 

behaviour and long-time motor control development [13], [71], [102]. Athletes take 

significant amounts of training and practice for individualized development, i.e., motor-

skill optimization based on their body structures and physical uniqueness. During their 

years of training, the desirability of acquiring skills efficiently and effectively while 

simultaneously avoiding injury would seem self-evident. Therefore, athletes at various 

levels are continually searching for opportunities to improve their motor skills and gain 
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advantages or perfection in their competitions. Study on developing individualized 

compensatory joint coordination is still feeble. 

3.3.3 AI FOR MOTOR CONTROL QUANTIFICATION  

AI systems are performance driven – one focus is on the predictive accuracy, based 

on known characteristics learned from the previous data/training samples [115], [116]. In 

the past decades, AI techniques have experienced a resurgence following concurrent 

advances in computing power, large amount of data (big data), and theoretical 

understanding. AI techniques have become a powerful tool for helping to solve many 

challenging problems in human motor-skill evaluations and analyses [117] – [121]. 

 The idea of AI prediction is to find a way to learn general features in order to make 

sense of new data [115], [116]. This description highlights the central role of data for 

establishing implicit knowledge. The amount of data must be sufficiently large to provide 

many training examples from which a large set of parameters can be extracted. 

 In summary, machine leaning is one of the methods of realizing AI while deep 

learning is a subfield of machine learning [122]. The conventional machine learning 

methods can be classified as supervised learning and unsupervised learning. Most 

recently, semi-supervised learning, reinforcement learning and deep learning, etc. were 

proposed. Although there are so many different machine learning methods, they still use 

those classic statistical methods, such as Support Vector Machine, Naive Bayes, Neural 

Networks, Decision Trees, K-means Clustering, etc. 

 Among AI technologies, deep learning is considered a powerful tool that 

percolates through to all application areas of machine learning, such as image 
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identification, speech recognition, natural language processing, and, indeed, biofeedback 

support [123] – [125]. Usually, deep learning requires large amounts of data to train a 

network. Convolutional neural network (CNN) and Recurrent Neural Network (RNN) are 

most commonly used deep networks [122]. In the proposed wearable system, two 

Sequential models were built based on Keras API. The Sequential models use an RNN to 

process the inputs. RNNs consisting of input layers, hidden layers and output layers are 

rather powerful and dynamic systems. In general, if a model has at least two hidden layers, 

then it can be treated as a deep learning model. A hidden layer in a neural network is 

located between the inputs and the outputs [126]. In each layer, the inputs or the outputs 

from the previous layer will be calculated through an activation function, and the 

outcomes from the calculation will be the next layer’s inputs or the final outputs. The 

activation function can determine the outputs of a deep learning model, its accuracy and 

the computational efficiency [127]. 

When training a neural network, optimization algorithms, also called optimizers, 

are used to reduce the losses which indicate the error. Because the goal of training a neural 

network model is to minimize the error, the loss functions can tell people “how good” the 

model is at making predictions for a given set of parameters. One can set and adjust the 

learning rate which is a tuning parameter in an optimizer to determine the step size at each 

iteration (i.e., epoch) for minimizing the losses. Bigger learning rates will never reach the 

global minima and will wander around it. In contrast, smaller learning rates can be easily 

trapped in a local minima, and its training time will be longer [128]. Metrics are used for 

evaluating learning models. 
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The success of deep learning networks encourages their implementation in further 

applications for the enhancement of human physical activities [129], [130]. Most recently 

(September 2018), Nature Neuroscience published the latest developments in the area of 

markerless and video-based motion tracking, indicating that the power of deep learning 

will enable motion tracking to human-like accuracy [131]. This study confirms that 

motion capture or quantification of limb coordination will move from an expensive and 

difficult task restricted to the laboratory to an effortless daily routine for researchers and 

practitioners.  

 From a motor learning point of view, wearables would have much higher potential 

than video shooting in future practice. This is not only because of the fast advance in 

miniaturizing wearables, but also due to two inherited drawbacks of the video-shooting 

approach. Reliable biomechanical feedback should be obtained from accurate 

quantification of human movement in the field, with some sports requiring large space. 

Even with a multiple-camera setting, unexpected environmental factors (e.g., interactions 

among athletes) will create data-gaps. Further, it is true that massive movement data (e.g., 

from YouTube, Flickr) already exists for training of deep learning models. However, those 

video datasets are uncalibrated and have very little information on the hardware and 

conditions used to capture particular videos, which can bias the deep learning recognition 

algorithms [132]. Currently, the availability of reliable motion capture data for developing 

deep learning models is significantly limited. 
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3.3.4 REAL-TIME BIOMECHANICAL FEEDBACK TRAINING IN THE 

HAMMER THROW 

The hammer throw has a long-standing history in track and field, but unlike some 

other sports events, men’s hammer throw has not seen a new world record since 1986 

[14]. This sport involves complex human motor skills, such as quick body spins, dynamic 

balancing, explosive power generation, and so on [23]. One of the possible reasons for 

this stagnation could be the lack of real-time biomechanical feedback training. Due to the 

fast speed of the body movement and the invisibility of all the forces generated during the 

movement, it is very difficult for the coaches to give reliable feedback; and therefore, they 

have to mainly guess what works best for the athletes based on their experience in the 

hammer-throw training sessions [23]. 

Developing a wearable device that can be used in the hammer-throw training will 

be able to provide coaches with scientifically based feedback. Wearable wire-tension 

measurement has garnered great interest in biofeedback training of the hammer throw [19] 

and [133]. They supply real-time, in-field/non-lab-based monitoring of tension/force 

generation as indicators of a trainee’s performance progress. It seems that the hammer 

throw could be numerically analyzed in practice and the details of the motor control could 

be immediately available for coaches. However, the absence of a reliable method of 

linking the wire-tension data to the motor control of the throw has greatly hindered its 

application in practice. In order to bridge the gap, a synchronized measurement of 3D 

motion capture (kinematics of the throw/motor control) and wire-tension (kinetics of the 

throw) was applied to find the missing piece that could link the two types of data. 
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In the pilot study [23], one national-level athlete (body weight: 115 kg, body 

height: 178 cm, personal performance: 66.7 m) and one college-level athlete (body weight: 

111 kg, body height: 176 cm, personal performance: 49.5 m) was tested, analyzed, and 

compared in order to find the link. No restrictions were placed on the subjects before and 

during the trials in an effort to preserve their normal motor control style. The university 

human-subject committee scrutinized and approved the test as to meet the criteria of 

ethical conduct for research involving human subjects. The subjects were informed on the 

testing procedures and voluntarily participated in the data collection. A twelve-camera 

VICON motion capture system (Oxford Metrics Ltd., Oxford, England) was set up on 

fully extended tripods around an indoor hammer pit with a safety set in front of the 

cameras. Six cameras were placed in a row parallel with the safety net on each side of the 

hammer throw pit. Capture occurred at a rate of 200 frames/second. Calibration residuals 

were determined in accordance with VICON’s guidelines and yielded an accuracy within 

1 mm. After warm-up, the national-level athlete performed five trials and the college-level 

athlete performed six trials. The trial (judged by the fastest release speed) of each subject 

was selected, analyzed, and compared. The experimental results have found the two key 

parameters – vertical wrist and hip displacements that need to be collected by a wearable 

device. 

Meanwhile, deep learning predictions based on the IMUs’ data have shown great 

potential in developing real-time biomechanical feedback training for an efficient human 

motor-skill learning and optimization. Deep learning models can help to validate that the 

data of displacements of the hip and wrist, which can be collected by a wearable device, 
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could reveal the upper and lower limbs’ coordination so that the proposed system can 

provide real-time biomechanical feedback along with the tension data. 

3.4 SUMMARY 

In this chapter, the background of wearables and biofeedback have been reviewed. 

Also, a discussion on developing wearables for biomechanical feedback has been 

provided. The key skills of developing a wearable system that can provide real-time 

biomechanical feedback are 3D motion analysis, and computer science related skills, such 

as hardware and software development of a wearable device, AI modeling, etc. 

Therefore, the next chapter will focus on the system following with the 

background in this chapter. Although this research aims to develop a real-time 

biomechanical feedback training just in hammer throw, it could be a practitioner’s desire 

that, like physiological, neurological and biochemical wearables, a biomechanical 

wearable device could also be universally applied to all motor skills for their learning and 

training in any sport (i.e., not only limited to the hammer throw). 
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CHAPTER 4: THE PROPOSED REAL-TIME BIOMECHANICAL FEEDBACK 

SYSTEM 

 In a traditional hammer-throw training session, a coach helps athletes to improve 

their performance just by watching their throwing movements. However, the men’s 

hammer-throw world record has not been broken for over three decades. The lack of 

scientifically based training may be one of the reasons for this stagnation. A scientific 

training method requires quantification of some fundamental features that can reveal key 

factors influencing athletes’ scores after a throwing movement. Although 3D motion 

capture systems can provide highly trustworthy biomechanical feedback, it is not in real-

time. In addition, a wearable device can help to reduce the negative effects (such as 

movement constraints, complicated operation, long procedure, etc.) of the motion capture 

markers attached to the athletes. It also helps to avoid carrying the whole camera system 

which usually consists of multiple high-speed cameras along with their corresponding 

heavy camera stands and the system machine to the training field. Thus, developing a 

wearable system for the elite training of the hammer throw is necessary. The proposed 

real-time biomechanical feedback system can be used to facilitate motor learning and 

optimize motor skills for the hammer-throw athletes. However, the quantification of one 

vital feature found by the pilot study [23], that the timely change of the vertical wrist and 

hip displacements can reveal the upper and lower limbs’ coordination, requires AI 

technology for validation. 

Figure 5 illustrates the flowchart of the proposed wearable system consisting of 

three basic elements: sensor node, receiver node and deep learning models. The sensor 

node, which is the wearable device, is used to collect data for transmission. A customized 
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PCB (printed circuit board) has been designed to miniaturize the wearable device, and a 

3D printed box along with its lid has been designed for housing the PCB and other related 

components. The receiver node has an XBee module connected to a laptop through USB 

for data transmission. A MATLAB program has been implemented to receive, process 

and display the collected data in real-time. The two nodes can communicate with each 

other remotely through XBee modules. Two deep learning models have been built to 

validate the predictions for the change of the following key joints’ angles: the left and 

right hip angles, the left and right knee angles, the left and right ankle angles, the left and 

right shoulder angles, the left and right elbow angles, the left and right wrist angles, and 

the thorax angle. Developing such a wearable system could replace the VICON motion 

capture system which can only provide post-processed biomechanical feedback. However, 

the motion capture technology is still the most reliable for obtaining 3D data. Therefore, 

the VICON system helps with the calibration of IMUs (inertial measurement units) and 

provides the training and testing datasets for the deep learning models. 
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Figure 5: The flowchart of the proposed system 
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 As discussed in 3.1.1 in Chapter 3, two issues were found from the previous design 

[19]. One is that the distance sensor could not work as expected. The other one is that the 

size of the device was still a little bit large due to the big size of the Arduino Mega board 

which was used as the microcontroller. Therefore, the new system was proposed to 

improve its efficiency by replacing the distance sensor and the microcontroller with the 

help of PCB design. Figure 6 illustrates the updated system architecture. The previous 

distance sensor and microcontroller have all been replaced with new components. So, the 

new sensor node consists of an XBee module [26], an Arduino Pro Mini board [40], and 

the sensors including two IMUs [38] and a load cell [39]. One IMU is on board and the 

other one is attached to the wrist of an athlete by an Ethernet cable (approximately 170 

cm in length). The load cell is embedded in the narrow end of a hammer-throw handle 

which is also attached by an Ethernet cable (approximately 325 cm in length). One reason 

of using Ethernet cables here is that there are various coloured wires inside the Ethernet 

cable which makes it convenient to connect the sensors to the PCB. The Arduino board is 

responsible for controlling all the sensors to collect the required data from a field test and 

sending the data through the XBee module to the receiver node. The receiver node has 

another XBee module connected to a laptop to receive and process the data. A GUI on the 

receiver node side, designed in MATLAB, is used to display real-time feedback. There is 

also a MATLAB program for saving and processing the raw data. 
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Figure 6: Updated system architecture 

In this chapter, the configuration of the XBee [26] modules which is the wireless 

communication channel in the system will be described in detail with the XCTU [25] 

software. Then, the sensor node and the receiver node will be introduced respectively. 

Lastly, the deep learning models will be discussed. 

4.1 XBEE CONFIGURATION 

The two XBee [26] modules are the key to wireless communication in the system. 

I configured the two XBee modules with XCTU [25], which is a free software application 

to configure and test the XBee RF (Radio Frequency) modules through a graphical 

interface, to pair them with each other, which allows the sensor node to send data to the 
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receiver node. One example of the XCTU configuration interface is shown in the Figure 

7. 

 

Figure 7: An example of the XCTU configuration interface 

For most of the parameters, the default values could be used. Some parameters 

could be set to the same value for both XBee modules in the sensor node and the receiver 

node. These parameters are: Channel, PAN (Personal Area Network) ID, Interface Data 

Rate, and Packetization Timeout. They can be set to any number within its range 

respectively depending on personal needs. The only requirement for these parameters is 

to set them to the same for both XBee modules. Some parameters need to be set to different 

values depending on personal requirements. Every parameter’s detailed description can 
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be found in the XCTU manual [25]. Some key parameters that were modified for this case 

study will be introduced. 

The interface data rate, which is also referred to the baud rate, was set to “57600”. 

The higher the baud rate is, the faster the transmission speed will be. However, a higher 

baud rate requires a greater bandwidth for the signal channel. In other words, its tolerance 

of noisy signals will be reduced as the baud rate is set to higher values. There are eight 

options to set the baud rate to, which are “1200”, “2400”, “4800”, “9600”, “19200”, 

“38400”, “57600”, and “115200”. A faster speed of data transmission was preferable. 

However, the data was influenced too much by some noisy signals with “115200” baud 

rate during the tests. So, it was set to “57600” for reliability and stability. 

The packetization timeout was set to “0”, whose default value is “3” and its range 

is from “0x0” to “0xFF”. This parameter was set to “0” to allow the XBee module to 

transmit characters as they arrive instead of buffering them into one RF packet. By 

performing some experiments with different settings, it was found that the receiver node 

can receive and process the data in MATLAB better with this specific setting. 

The destination address low was set to “2” for the XBee module in the receiver 

node, while the destination address low for the XBee module in the sensor node was set 

to “1”.  Its default value is “0” and its range is from “0x0” to “0xFFFFFFFF”. The 16-bit 

source address was set to “1” for the XBee module in the receiver node, while it was set 

to “2” for the XBee module in the sensor node. The default value of this parameter is “0” 

and its range is from “0x0” to “0xFFFF”. These two parameters were configured 

specifically for point to point wireless communication. 
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The XBee module in the receiver node is treated as a “coordinator” by setting the 

parameter of coordinator enable. This parameter for the XBee module in the sensor node 

was set to its default value – “end device”. The reason why I chose the XBee module in 

the receiver node as a “coordinator” is that the “coordinator” needs to start up before the 

“end device”. In this way, it can make sure the receiver node is always waiting for 

receiving data to avoid missing any data sent from the sensor node. 

4.2 SENSOR NODE 

A low-power and low-cost wearable prototype has been developed as the sensor 

node in the real-time biomechanical feedback system. By designing a customized PCB, 

its total expenditure (including the sensors, the XBee modules and the batteries) is roughly 

no more than CAD$1200 due to the high cost of the load cell (CAD$950). Without 

considering the sensors, the XBee modules and the batteries, the total expenditure of the 

board itself is less than CAD$100. Comparing to the VICON system (over US$300,000), 

the expenditure is dramatically reduced. 

In this section, the sensor node will be elaborated in detail. First, how to design 

and develop the hardware will be introduced. Second, the calibration procedures for 

ensuring that the sensors work properly before installing them on the PCB will be 

discussed. Finally, the Arduino program for controlling all the sensors will be discussed 

as well. 

4.2.1 HARDWARE 

The proposed device is sealed in a customized box as illustrated in Figure 8 and 

Figure 9. The customized box and its lid were both designed with Autodesk Inventor 2014 
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[37]. A virtual model was drawn in Autodesk Inventor 2014 with its provided designing 

tools. I measured the actual size of every single element and considered every detail very 

carefully, such as the distance between the board and the slots, the height and the radius 

of a screw slot, and so on. Every parameter needed to be as small as possible to miniaturize 

the device. The virtual box and its lid were drawn separately. Then an “assembly” function 

in the software ensured that the two virtual parts can match well with each other before 

printing them out in reality. 

Once the virtual model was created in the software, the model’s two parts – the 

box and the lid were printed out respectively by using a 3D printer. The dimensions of the 

box are 8.6 centimeters (cm) in length * 7.8 cm in width * 5.3 cm in height. It is used to 

hold the board and the sensors for stability and reliability during field tests. The power 

switch can be installed on the top of the lid, as shown in Figure 8. The batteries’ charge 

can be saved by turning off the switch when the device is on standby. There is a space 

(Figure 9) under the board at the bottom area of the box so that a belt can be put through 

the box and tied on the waist of an athlete. 
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Figure 8: One view of the customized box and its lid 
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Figure 9: Another view of the customized box and its lid 
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 Figure 10 shows the customized PCB inside the 3D printed box. An Arduino Pro 

Mini 328 – 5V board [40] was used as the microcontroller. This Arduino board is tiny and 

inexpensive. It uses the ATmega328P [134] chip which is an 8-bit AVR microcontroller 

with high performance but low power consumption. It is the key to make the wearable 

device low-cost and low-power. This feature is also the heart of many devices that make 

up the Internet of Things (IoT) according to [135] posted on the official website of Avnet, 

one of the biggest distributors of electronic components and embedded solutions in the 

world. 
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Figure 10: The board inside the 3D printed box 
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 As shown in Figure 10, in the box, the Arduino Pro Mini board and an XBee 

module were all inserted into the PCB. The six pins of the right-angle male headers were 

soldered on the Arduino board for uploading programs. These pins can reach to the outside 

through a hole in one side of the box so that it would be easy and convenient to upload 

programs. Because more field tests need to be performed in the future, the only reason for 

opening the lid is to fix any circuit issue. For example, if there is any further improvement 

from the software perspective, it will not have to be opened for uploading a revised 

program. An FTDI basic breakout module [136] is used to upload programs to the Arduino 

Pro Mini board through a USB connection. It has 6-pin female header on the bottom that 

can match the soldered 6-pin right-angle male headers on the Arduino board. On the other 

side, a USB Mini-B cable can be used to connect it with a laptop. 

The six pins of the FTDI basic breakout are: a DTR pin, an RXI pin, a TXO pin, a 

POWER pin, a CTS pin, and a GND pin [137]. The DTR pin allows the Arduino board to 

reset automatically when a new program is uploaded so that one does not have to hit the 

reset button by hand. The RXI and TXO pins are for transferring data. These two pins 

have similar functions of RX which is short for receiver or receive and TX which is short 

for transmission, but they have explicit directions for input and output. The RXI is the 

receiver input while the TXO is the transmitter output [138]. The POWER pin is for power 

supply and the default power of the breakout board is 5 volts (V). The CTS pin is an input 

pin as a handshaking [139] signal. The GND pin is for ground supply. 

On the bottom of the PCB, there are three slots for connecting the sensors. One of 

them is for connecting the load cell which is an LCFD-1K [39] made by Omega to collect 

the raw tension data. The other two slots are for connecting the IMUs which are MinIMU-
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9 v5 digital combo boards [38] made by Pololu to collect the raw data of the vertical 

displacements for the hip and wrist. As the IMUs can only provide the raw data of 

acceleration and rotation speed, it is required to apply an IMU data fusion algorithm [42] 

for calculating the displacements from the raw data, which will be introduced in the later 

sections in Chapter 4 and Chapter 5. A SparkFun 6 Degrees of Freedom (6DoF) IMU 

Digital Combo Board - ITG3200/ADXL345 [140] and a Teensy 3.2 USB Microcontroller 

Development Board [141] were used in the earlier development to measure distance 

(Figure 15). The calibration of IMU in the following sections were based on these 

configurations. Recently, another efficient and cost-effective 9DoF IMU – the Pololu 

MinIMU-9 v5 Gyro, Accelerometer, and Compass [38] was found. In addition, it is much 

easier to install two Pololu IMUs on the PCB because they have a “slave address” feature. 

The slave address pin is pulled high by default. So, simply alternating one IMU’s slave 

address pin (SA0) from high to low would realize making two IMUs connected on the 

same I2C (inter-integrated circuit) bus without any conflict.  In the final proposed 

wearable device, the Pololu MinIMU-9 v5, a compact (0.8²´0.5²) board that includes a 

LSM6DS33 (3-axis gyroscope and 3-axis accelerometer) and a LIS3MDL (3-axis 

magnetometer) [38] was used. 

Now that all the plug-in components on the surface of the board have been 

introduced, it is time to look at the PCB design. Figure 11 displays the PCB designed to 

miniaturize the physical size of the wearable device for data collection. The designed PCB 

depicts the top copper surface in red, bottom copper in blue, and pads which are visible 

on either side of the board in green. A copper ground pour is placed on either side of the 

board but is not depicted here. 
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Figure 11: PCB design 

The electronic components used in addition to the Arduino microcontroller and 

the XBee module are various resistors, capacitors, potentiometers, three voltage regulators, 

two MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistor), an operational 
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amplifier (OPAMP), and an instrumentation amplifier. Figure 12 shows the logic diagram 

of the major electronic components on the PCB. 

 

Figure 12: Logic diagram of the major electronic components on the PCB 

The principle of the circuit design is straightforward. An 18V power supply 

(consisting of twelve 1.5V AA batteries) is divided into two, providing a +/-9V dual-rail 

supply. The two voltage regulators change it to 5V power for the Arduino and digital 

circuitry, and the XBee module receives 3.3V. Both of the IMUs also require 5V. The 

additional pin on the second IMU port is required to drive the slave address pin so that the 

two IMUs work on the same I2C bus. The voltage regulators are selected so that the 

required current for all components could be provided by a single 5V or 3.3V regulator. 

The load-cell requires a constant and stable 10V supply because of power 

requirements for an excitation of greater than 25 pounds (lb) according to its datasheet 
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[39]. The linear voltage regulator – LM723 [142] is used to generate the required 10V 

supply. The voltage signal generated from the load cell is on a scale such that the analog 

to digital converter (ADC) on the Arduino is not sensitive enough to detect the signal 

during the calibration procedure. Thus, the instrumentation amplifier – LT1920 [143] is 

required to amplify the incoming signal. The OPAMP – UA741 [144], along with the 

accompanying resistors and potentiometers, can produce an offset voltage, allowing the 

signal to fall within the range of the Arduino’s ADC. 

JP5, shown in the middle right of Figure 11, allows the load cell of the circuit (pins 

1 and 2) to be disconnected from the instrumentation amplifier (pins 3 and 4) and be 

connected to a calibration circuit instead (pins 5 and 6), depicted in Figure 13. Two 

jumpers, placed vertically, either connect pins 1&3 and 2&4 or pins 3&5 and 4&6. The 

calibration circuit, consisting of a voltage divider and a potentiometer, provides a range 

of voltages to the instrument amplifier and the Arduino ADC so that the gain and the offset 

can be adjusted to provide the best signal from the load cell. 

 

Figure 13: Calibration jumper pins 

 The calibration jumper pins allow for the disconnection of the load cell and the 

connection of a controlled voltage source such that the gain and the offset can be adjusted, 

which helps to avoid any unpredictable damage to the load cell. GRN (green) and YLW 

(yellow) pins relate to the colour of the wires that lead to the load cell. +/- INs refer to the 



 61 

pins on the instrumentation amplifier. GND (ground) and CAL (calibration) refer to the 

ground level potential and the calibration voltage source. 

Due to the small size of these surface-mount electronic components, careful 

attention must be taken while assembling the board. There were two issues when 

embedding the previous design [19] into the PCB. One issue was an inappropriate 

potentiometer used in the circuits for the load cell. It had to be a 500-ohm potentiometer, 

but a 5000-ohm one was used instead. The difference between the two potentiometers is 

the sensitivity. The proper potentiometer requires it to be turned many times, but for the 

5000-ohm one, only a fraction of a turn was required to get the range of the required output 

signal. Because the potentiometer was too large, when tuning it, there would be a big 

chance of over adjusting that would lead to missing the desired value shown on the 

voltmeter. After replacing the potentiometer, it was discovered that two wires were 

mistakenly reversed; a correction of that restored the full function of the board. 

4.2.2 CALIBRATIONS 

 There were two calibration procedures in the development of the wearable device. 

The calibration procedures are important to make sure each sensor can work properly 

before installing them into the device, i.e., the IMU and the load cell must be ensured to 

collect data accurately. The load cell had already been tested in the field [19]. As discussed 

in Section 3.2.1, after fixing the issues of the new circuit for the PCB, the load cell was 

effective in the new device. However, a new calibration procedure was still needed to 

make sure the correct tension data can be obtained. 
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Figure 14 shows the settings of the calibration for the load cell. The device was 

put on the table. The load cell, which is placed into the narrow end of the hammer-throw 

handle, was hanging freely in the air until it was still. A cable was tied on the load cell to 

hang different weights as a simulation of different wire-tension values. The initial weight 

was zero, i.e., no weight is hanging initially. The weights were added by 5 lb every time 

until 35 lb. For every 5 lb, I recorded the raw data displayed on the laptop. I obtained eight 

analog-to-digital values matching the real weights: 0 lb, 5 lb, 10 lb, 15 lb, 20 lb, 25 lb, 30 

lb, 35 lb. First, the unit of the weight was converted from lb to kilogram (kg) as a 

convention. So, the array contained 0 kg, 2.27 kg, 4.54 kg, 6.8 kg, 9.07 kg, 11.34 kg, 13.61 

kg, 15.88 kg. 
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Figure 14: Calibration for the load cell 
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Then an online linear regression calculator [145] was used to get the calibration 

equation: 

𝑊 = 0.51225 × 𝑅 − 3.03672,    (1) 

where R is the raw data and W is the actual weight value whose unit is kg. This online 

calculator is quite straightforward. It calculates the slope and intercept of the regression 

line in the following steps: 

(1) Suppose the analog-to-digital values are a vector named X while the actual weights 

are a vector named Y; 

(2) Calculate ∑𝑋 and ∑𝑌; 

(3) Calculate 𝑋1 and 𝑌1; 

(4) Calculate ∑ (𝑋3 − 𝑋1)(𝑌3 − 𝑌1)5
3 ; 

(5) Calculate ∑ (𝑋3 − 𝑋1)65
3 ; 

(6) The slope is ∑ (78971)(:89:1)
;
8
∑ (78971)<;
8

; 

(7) The intercept is 𝑌1 − 𝑠𝑙𝑜𝑝𝑒 × 𝑋1. 

After getting the calibration equation, two tests were performed to examine its 

error with 45 lb (20.41 kg) and 55 lb (24.95 kg). The errors were 0.12 kg and -0.07 kg 

respectively, which are acceptable in the hammer-throw analysis. Therefore, by 

performing the calibration procedure, the meaningful data (weight) could be displayed on 

the laptop instead of a whole bunch of raw data (the analog-to-digital values). In other 

words, the calibration equation helps to convert to a unit that people can read. To get the 

tension value, I simply applied Newton’s second law of motion:  
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𝑇 = 𝑊 × 9.81,     (2) 

where W is the weight, T is the tension and 9.81 is the gravity of Earth. 

The other calibration procedure was for the IMUs. An IMU testing device was 

used as shown in Figure 15 (a), that consists of a 6DoF IMU module [140], a teensy 3.2 

board [141] and a breadboard. Because this IMU testing device was built in the early stage 

of the research, the new Pololu product [38] was not yet available at the time. The Pololu 

IMUs that were used in the final wearable device are 9DoF, but cheaper (about half price 

compared to the one in [140] which was used in the IMU testing device), and it could 

provide more accurate data. 

 

Figure 15: IMU testing device [24] 

Returning to the IMU testing device, the 6DoF IMU is designed as a combo board, 

which has an accelerometer – ADXL345 and a gyroscope – ITG3200. 6DoF refers to the 

tri-axial accelerometer and the tri-axial gyroscope, which can return the acceleration and 

the angular speed, respectively, on the X, Y, and Z axes of a coordinate system. In other 

words, 6DoF can be described as the freedom of movement of a rigid body in a 3D space, 
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which refers to the following: Forward/back (on X axis), left/right (on Y axis), up/down 

(on Z axis), roll (around X axis), pitch (around Y axis), and yaw (around Z axis). A 

magnetometer would construct a so-called 9DoF IMU along with the accelerometer and 

the gyroscope. However, the 9DoF IMU would actually still describe the same freedom 

(i.e., 6DoF) of movement of a rigid body in a 3D space. The magnetometer just helps to 

calculate the yaw angle because the accelerometer can only calculate the roll and pitch 

angles. Although the accelerometer and the magnetometer can calculate the orientation of 

an object to some extent, it requires an ideally stationary condition to provide accurate 

results, i.e., only gravity would be applied on the object, which is inexistent in reality [146] 

– [148]. Furthermore, the accelerometer is quite sensitive to vibration. Especially, when 

the object is moving, there will be more force applied on it. This is why the gyroscope 

plays an important role in the orientation calculation. In this project, the result was 

acceptable with only the 6DoF data from the accelerometer and the gyroscope. Hence, the 

magnetometer was not used. Indeed, the drifting error cannot be eliminated thoroughly 

without the magnetometer. In other words, the error will grow as time goes on. However, 

the hammer-throw movement is an explosive motor skill, i.e., it is usually completed very 

quickly (within 20 seconds). The error within a short period would not cause too much 

trouble. For example, Barshan and Durrant-Whyte [149] successfully developed an 

inertial navigation system. In their application, they set the testing period to 25 seconds. 

The error could be reset to zero at the beginning of every short segment. In addition, there 

is a benefit without using the magnetometer. The wearable device can be used more easily 

and conveniently without the complicated calibration to the magnetometer before using it. 
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It effectively avoids any magnetic interference in the testing environment. For every test, 

one can just reset the drifting error to zero by initializing the system. 

The Teensy 3.2 board is a breadboard-friendly microcontroller, which can be 

programmed in the Arduino IDE [41]. Compared to several Arduino boards, it is smaller 

than the Arduino UNO and Mega boards, and it has its own USB (Universal Serial Bus) 

port while the Arduino Mini board does not have one (i.e., Arduino Mini board needs 

soldering an FTDI basic breakout), which makes it more convenient as a testing device 

because a revised program can be uploaded anytime in an easier way and it is more 

portable. However, the Arduino Mini board was used in the final wearable device because 

the redesign of the PCB was based on the original circuits [19] using an Arduino Mega 

board. 

In addition, as shown in Figure 15 (b), three motion capture markers (two are 9 

mm in diameter and one is 5 mm in diameter) were glued on the IMU device for 

constructing a capture model for 3D motion capture using a 10-camera VICON MX40 

motion capture system (VICON Motion Systems, Oxford Metrics Ltd., Oxford, England) 

[44]. The motion capture rate was set at 200 frames/s. Calibration residuals were 

determined in accordance with VICON’s guidelines and yielded positional data accurate 

to within 1 mm. The VICON data was used to help in developing a motion tracking 

algorithm for the IMU in the vertical direction. 

First, a configuration program needed to be uploaded to the Teensy 3.2 

microcontroller, with the help of the Wire library [150], which allows communication 

with I2C (Inter-Integrated circuit) devices. Then, the accelerometer and the gyroscope 
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needed to be configured separately. I set the data format register of the accelerometer to 

0x09, which can set the acceleration range from -4 g (1 g = 9.8 m/s2) to +4 g. According 

to the datasheet of ADXL345 [151], it sets the device to a full resolution mode, where the 

output resolution increases with the g range set by the range bits to maintain a 3.9 mg/LSB 

scale factor (1 mg = 0.001 g and LSB is the least significant bit). So, the sensitivity of the 

output can be calculated as the following:  

E
F.G	IJ/LMN

= 0.256	𝐿𝑆𝐵/𝑚𝑔 = 256	𝐿𝑆𝐵/𝑔.   (3) 

This value is useful for converting the unit of the accelerometer’s raw data to g (the gravity 

of Earth). The raw data could be divided by 256 for unit conversion. The power control 

register was set to 0x08 to change the accelerometer to a measurement mode. Should one 

want to have minimum power consumption, this register could be set to 0x00 to change it 

to a standby mode. 

Similarly, the ITG3200 gyroscope’s settings needed to be configured as well 

following the instructions in its datasheet [152]. The range of rotation speed was set from 

-2000 degree/second (dps) to +2000 dps, which is a full-scale range. The sensitivity is 

14.375 LSB/dps, which can also be used for converting the unit of the gyroscope’s raw 

data to dps. The raw data could be divided by 14.375 for unit conversion. Various cut-off 

frequencies were tested and compared to the 3D motion capture data. The validations 

proved that the cut-off frequency of 98 hertz (Hz) could generate the highest accuracy. 

Therefore, the low pass filter bandwidth that determines the cut-off frequency was set to 

98 Hz in the program. 
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4.2.3 ARDUINO PROGRAMMING 

 There are two programs coded in the Arduino IDE [41]. One is for the IMU testing 

device, and the other one is for the PCB. The program for the IMU testing device is quite 

straightforward. As discussed in Section 3.2.2, the accelerometer and the gyroscope 

needed to be configured following their datasheets. The baud rate was set to 115200. A 

loop function was used to display the data of acceleration and angular speed with 

converted units. One thing to note was displaying the negative values for the 

accelerometer and the gyroscope. It was noticed that negative values were not displayed 

during the calibration procedure. Without the proper calculation, only positive values 

could be printed. Therefore, to display negative values, the number – 65536 needs to be 

subtracted with the following two conditions: (1) for the accelerometer, if the analog-to-

digital values are great than 1025; (2) for the gyroscope, if the analog-to-digital values are 

greater than 30000. 

 The program for the PCB is one of the core parts for the wearable device. It is used 

to configure and control all the sensors to collect the required data and send the data to the 

receiver node through an XBee module. I modified the program [153] provided by Pololu 

for their MinIMU-9 v5 product and added codes to control two IMUs and one load cell. 

The baud rate was changed to 57600 to match the baud rate of the XBee modules. It was 

the fastest transmitting speed that could be reached while still obtaining the stable and 

reliable data. If configured to the highest one baud rate – 115200, some unexpected values 

were received due to some noisy signals during the calibration. I also found that the load 

cell would always generate a very high voltage signal (over 1000 analog-to-digital value) 

when disconnecting the load cell (i.e., simulating the hammer would be thrown away by 
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an athlete). Therefore, the analog-to-digital value of 1000 was decided to be the ending 

threshold for determining when a hammer-throw movement is completed. The wearable 

device can automatically stop sending any garbage data as the threshold is detected. 

Similarly, when the analog-to-digital value of the load cell is less than 12, the pulling force 

is so tiny that it can be ignored (i.e., simulating no hammer is hanging on the load cell). 

Therefore, to avoid receiving lots of garbage data before an athlete is ready to start his/her 

movement, the starting threshold was set to 12 (analog-to-digital values). 

4.3 RECEIVER NODE 

As shown in Figure 16, the receiver node consists of an XBee module, an XBee 

explorer [154] and a laptop. The XBee module can communicate with the other XBee 

module used in the sensor node remotely by following IEEE 802.15.4 protocol [27]. It is 

very convenient for a research/lab-based environment. 
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Figure 16: Receiver node [19] 

During the field tests, I carried the laptop to collect data in real-time as shown in 

Figure 17. A graphical user interface (GUI) was implemented in MATLAB R2017a to 

display the received data in real-time. Based on the technique data and user instruction 

supplied by Madgwick [42], [155], I have designed and developed a data collection 

program for obtaining the data of the tension sensor and the two IMUs simultaneously. In 

the following sections, the GUI will be introduced first. Then the applied algorithm for 

the IMUs will be presented in detail. 
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Figure 17: A field test [19] 

4.3.1 GRAPHICAL USER INTERFACE 

 An updated GUI from the previous design [19] has been implemented in 

MATLAB (Figure 18). There are three buttons on the top. The left and the right buttons 

are used to generate an animation and a figure of the change of vertical hip displacements 

and the change of vertical wrist displacements respectively. The middle one is used to run 

the main program to collect, save and process all the raw data in real-time. It will keep 

drawing the curve of the change of the tension data in the figure below as the program is 

running. A filtered (Butterworth filter) curve will be generated immediately in the same 

figure once the program stops automatically from detecting that the hammer is released. 

As mentioned earlier in the sensor node section, there will be a super high analog-to-

digital value when the easy-release connector for the load cell is interrupted (i.e., the 

hammer is thrown away). 
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Figure 18: MATLAB GUI receiving, processing and displaying data 

 The GUI was designed as the following: 

(1) Initializing the system environment, variables and hardware setting prepared for 

serial data transmission; 

(2) Implementing the “Run” button, including receiving the serial input until no signal 

is transmitted from the sensor node, plotting the curve of the tension data in real-

time and adding a filtered curve after receiving all the data, and saving all the data 

into .csv files; 

(3) Implementing the “Vertical displacements on waist” button by calling “IMU1”; 

(4) Implementing the “Vertical displacements on wrist” button by calling “IMU2”. 
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4.3.2 MADGWICK’S IMPLEMENTATION OF MAHONY’S AHRS 

ALGORITHM 

 Madgwick’s implementation of MahonyAHRS algorithm [42], [155] is also 

known as the Madgwick’s MARG (magnetic, angular rate, and gravity) filter or the AHRS 

(attitude and heading reference systems) algorithm. In short, it is a gradient-descent 

algorithm that uses several analytic formulas based on a quaternion representation to fuse 

IMU data. It enables the performance of low-power and low-cost IMUs at a low sampling 

rate. The quaternion representation is a four-dimensional complex number which stands 

for the orientation of a rigid body or coordinate frame in 3D space. For example, Q = [q1 

q2 q3 q4] is a quaternion representation. The unit quaternion is represented as 𝑎 + 𝑏𝑖 +

𝑐𝑗 + 𝑑𝑘, where a, b, c, and d are real numbers, and i, j, and k are the fundamental units 

that have the imaginary numbers’ property (i.e., 𝑖6 = 𝑗6 = 𝑘6 = −1). It is also noticed 

that the unit quaternion has the property: 𝑎6 + 𝑏6 + 𝑐6 + 𝑑6 = 1. 

 To understand the algorithm better, there are some more preliminary mathematical 

equations to be introduced. For two quaternions A and B, their quaternion product (qProd) 

can be determined by the Hamilton rule: 

𝐴⊗ 𝐵 = [𝑎E	𝑎6	𝑎F	𝑎_] ⊗ [𝑏E	𝑏6	𝑏F	𝑏_] = a

𝑎E𝑏E − 𝑎6𝑏6 − 𝑎F𝑏F − 𝑎_𝑏_
𝑎E𝑏6 + 𝑎6𝑏E + 𝑎F𝑏_ − 𝑎_𝑏F
𝑎E𝑏F − 𝑎6𝑏_ + 𝑎F𝑏E + 𝑎_𝑏6
𝑎E𝑏_ + 𝑎6𝑏F − 𝑎F𝑏6 + 𝑎_𝑏E

b

c

 (4) 

where T refers to the transpose of the matrix. A rotation matrix R representing the 

orientation is defined as the following: 
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𝑅 = d
2𝑞E6 − 1 + 2𝑞66 2(𝑞6𝑞F + 𝑞E𝑞_) 2(𝑞6𝑞_ − 𝑞E𝑞F)
2(𝑞6𝑞F − 𝑞E𝑞_) 2𝑞E6 − 1 + 2𝑞F6 2(𝑞E𝑞6 + 𝑞F𝑞_)
2(𝑞E𝑞F + 𝑞6𝑞_) 2(𝑞F𝑞_ − 𝑞E𝑞6) 2𝑞E6 − 1 + 2𝑞_6

f  (5) 

where q1, q2, q3 and q4 are the basic elements of a quaternion Q. By replacing 1 in the 

above equation (5) with the above unit quaternion’s property, the rotation matrix R could 

be described as the following: 

𝑅 = d
𝑞E6 + 𝑞66 − 𝑞F6 − 𝑞_6 2𝑞6𝑞F + 2𝑞E𝑞_ 2𝑞6𝑞_ − 2𝑞E𝑞F
2𝑞6𝑞F − 2𝑞E𝑞_ 𝑞E6 − 𝑞66 + 𝑞F6 − 𝑞_6 2𝑞E𝑞6 + 2𝑞F𝑞_
2𝑞E𝑞F + 2𝑞6𝑞_ 2𝑞F𝑞_ − 2𝑞E𝑞6 𝑞E6 − 𝑞66 − 𝑞F6 + 𝑞_6

f (6) 

Suppose that the direction of gravity defines the vertical Z axis, the estimated direction v 

could be calculated as the following: 

𝑣 = 𝑅 × h
0
0
1
i = d

2𝑞6𝑞_ − 2𝑞E𝑞F
2𝑞E𝑞6 + 2𝑞F𝑞_

𝑞E6 − 𝑞66 − 𝑞F6 + 𝑞_6
f    (7) 

For two vectors A = [a1 a2 a3] and B = [b1 b2 b3], C = [c1 c2 c3] is the cross product of A 

and B, which can be calculated as the following: 

𝑐E = 𝑎6𝑏F − 𝑎F𝑏6, 𝑐6 = 𝑎F𝑏E − 𝑎E𝑏F, 𝑐F = 𝑎E𝑏6 − 𝑎6𝑏E  (8) 

Thus, Madgwick’s implementation of MahonyAHRS algorithm can be described 

as the following: 

(1) Setting the initial quaternion q to [1 0 0 0]; 

(2) Normalizing the acceleration data with Euclidean norm, i.e., 𝑎𝑐𝑐5klI =

m∑ 𝑎𝑐𝑐n6n  where 𝑎𝑐𝑐n refers to the acceleration data on the X, Y and Z axes, and 
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making the data in the range between -1 and +1 as 𝑎𝑐𝑐n =
oppq

opp;rst
 where 𝑎𝑐𝑐5klI 

cannot be 0; 

(3) Calculating the estimated direction v based on the current quaternion by using the 

above equation (7); 

(4) Calculating the error e, which is the cross product of the normalized acceleration 

data and v, by using the above equation (8); 

(5) Calculating the integral error eInt, depending on the integral gain’s value (i.e., if 

Ki > 0), as the following: eInt = eInt + e * samplePeriod, where eInt is 0 initially 

and samplePeriod is 0.02s, and eInt would remain 0 if Ki = 0; 

(6) Optimizing the gyroscope data with a proportional integral (PI) controller, which 

is a variation of PID (proportional integral derivative) controller [156], as the 

following: gyr = gyr + Kp*e + Ki * eInt, where gyr is the gyroscope data, Kp is 

the proportional gain, and Ki is the integral gain; 

(7) Calculating the rate of change of the quaternion q as the following: qDot = 0.5 * 

qProd (q, [0 gyrx gyry gyrz]) by using the above equation (4); 

(8) Updating the quaternion q by integrating qDot as the following: q = q + qDot * 

samplePeriod; 

(9) Normalizing the quaternion q with Euclidean norm to make it range between -1 

and +1. 

Finally, based on Madgwick’s implementation, the IMU1 and IMU2 programs 

both run mainly as the following steps: 
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(1) Importing raw data from the accelerometer and the gyroscope: acc(i) = [accx, accy, 

accz], gyr(i) = [gyrx, gyry, gyrz], where i is from 1 to n (i.e., from the first group to 

the last group of data); 

(2) Calculating the orientation: processing the raw data – acc(i) and gyr(i) through the 

MahonyAHRS algorithm as described above to get the quaternion, and using a 

quaternion-to-rotation-matrix function to get a 3*3 rotation matrix R(i), which 

describes the sensor relative to Earth (the unit of acceleration is “g” or “Gravity”); 

(3) Calculating the tilt-compensated acceleration data: from i = 1 to i = n, tcAcc(i) = 

R(i) * acc(i)T, where acc(i)T is the transposed matrix; 

(4) Calculating the linear acceleration in Earth frame by subtracting gravity (i.e., 

converting the unit from “g” to “m/s2”): linAcc = (tcAcc – [0,0,1]) * 9.81; 

(5) Calculating the linear velocity by integrating the acceleration data: from i = 2 to i 

= n, linVel(i) = linVel(i-1) + linAcc(i) * samplePeriod, where linVel(1) = 0 as the 

initial velocity; 

(6) Applying a high-pass filter to linear velocity to remove a drifting error: linVelHP 

= Butterworth_filter(linVel); 

(7) Calculating the linear position by integrating the velocity data: from i = 2 to i = n, 

linPos(i) = linPos(i-1) + linVelHP(i) * samplePeriod, where linPos(1) = 0 as the 

initial position; 

(8) Applying a high-pass filter to linear position to remove a drifting error: linPosHP 

= Butterworth_filter(linPos); 
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(9) Drawing corresponding figures and playing an animation to show the move of the 

device. 

4.4 DEEP LEARNING MODELS 

 By following an online tutorial [157] about a regression problem, two deep 

learning models have been built in Python with the help of TensorFlow [158] embedded 

in Anaconda [159], which is one of the most popular data science platforms in the world. 

The Sequential models from Keras API [43] imported from TensorFlow are used. Two 

densely connected hidden layers (i.e., dense layers) are set in the models. In each dense 

layer, a rectified linear unit (ReLU) [160] activation function is used for both models. The 

ReLU function refers to 𝑓(𝑥) = max	(0, 𝑥). For an input x coming from the previous 

layer, it will be calculated by the ReLU function in the current layer. Then its output will 

be the input of the next layer or the final output. ReLU has the advantage of increasing the 

sparsity of the neural network because some neuron’s outputs can be zero. In other words, 

it can reduce the dependence of each parameter so that it can help to avoid overfitting. It 

is known as an efficient gradient descent algorithm using backpropagation. By simplifying 

the calculation, the calculation cost can be reduced. The two models use RMSprop [161] 

as the optimizer, which is similar to the gradient descent algorithm with momentum. The 

gradient descent algorithm is used to minimize some function by iteratively moving 

towards the steepest descent. So, there will be some oscillations during iterations. The 

RMSprop optimizer limits the oscillations in vertical direction. Mean squared error (MSE) 

was used as the loss function for both models. Mean absolute error (MAE) and MSE were 

used as the metrics in both models for measuring accuracy. 
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All the datasets were collected by using the VICON camera system [44] from a 

college-level hammer-throw athlete. It recorded the subject’s trajectories (in millimeters) 

in a 3D coordinate system as a full-body model. All the VICON data are saved in .csv 

files and processed with Microsoft Excel. A sample of the raw data from the VICON 

system is shown in Figure 19. 

 

Figure 19: A sample of the raw data from the VICON system 

The data columns of the left wrist thumb side (LWRA) and the left wrist pinkie 

side (LWRB) are selected to calculate the vertical wrist displacements by using their 

average values. The data columns of the left anterior superior iliac spin (LASI) and the 

right anterior superior iliac spin (RASI) are selected to calculate the vertical hip 

displacements by using their average values. A sample of the processed data from the 

VICON system is shown in Figure 20. 
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Figure 20: A sample of the processed data from the VICON system 

Therefore, the subject’s timely change of the vertical wrist and hip displacements 

can be used as two input variables for the deep learning models. In addition to the 

displacements, the velocity values can also be calculated out from the trajectories so that 

two more input variables can be added to increase the data volume. Because of the known 

VICON system’s sampling rate – 200 Hz, i.e., the timestamp between two adjacent 

datasets is 0.005 seconds, the velocity values could be calculated as the following:  

𝑣𝑒𝑙3 = (𝑝𝑜𝑠3zE − 𝑝𝑜𝑠3) ÷ 0.005,    (9) 

where 𝑣𝑒𝑙3 is the velocity at time i, 𝑝𝑜𝑠3 is the position at time i, and 𝑝𝑜𝑠3zE is the position 

at the next timestamp. So, four groups of input variables can be used in the two models, 
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including Wrist_Pos (the wrist displacements), Wrist_Vel (the wrist velocities), 

Waist_Pos (the hip displacements), and Waist_Vel (the hip velocities). 

In addition, the VICON system’s data can also be used to generate the timely 

change of the subject’s specific joints’ angles by using some fundamental mathematical 

and physical formulas. For example, knowing the coordinates of the left hand, the left 

elbow and the left shoulder, one can calculate out the elbow’s angle (i.e., calculating a 

joint angle from three points’ coordinates). The calculation procedure by using Excel is a 

time-consuming course. Therefore, the data volume is quite limited in this research study. 

The main purpose of the research is not to obtain large amounts of data from the VICON 

system. The aim is to find the way to make use of a wearable system that can provide the 

biomechanical feedback, just like any 3D motion capture and analysis system can do. This 

is also the current AI modeling’s role that can train the synchronized data from a 3D 

motion capture system and the proposed wearable system. So far, the models have not yet 

reached the highest reliable stage because the volume of the training datasets is limited. 

However, the deep learning models will become powerful and reliable in the future by 

using the wearable device developed in this research along with a 3D motion capture 

system to test hundreds of athletes to collect and use large amounts data. Once the deep 

learning model is quite reliable, then it can be embedded in the wearable system that will 

realize the ultimate goal of substituting any 3D motion capture system. 

In this case study, the output variables were selected as the following: LHipAngle 

(the left hip angle), RHipAngle (the right hip angle), LKneeAngle (the left knee angle), 

RKneeAngle (the right knee angle), LAnkleAngle (the left ankle angle), RAnkleAngle 

(the right ankle angle), LShoulderAngle (the left shoulder angle), RShoulderAngle (the 



 82 

right shoulder angle), LElbowAngle (the left elbow angle), RElbowAngle (the right elbow 

angle), LWristAngle (the left wrist angle), RWristAngle (the right wrist angle), and 

ThoraxAngle (the thorax angle). More angles can be calculated out from the VICON’s 

data, but they are not used in this case. 

The models require a normalized form of datasets. So, all the data was normalized 

before using it to train in the models, as the following: 

𝑥5klI = |9|̅
~(|)

,     (10) 

where 𝑥5klI is the normalized data, 𝑥 is the original data, 𝑥̅ is the mean of the original 

data, and 𝜎(𝑥) is the standard deviation of the original data. All the data for the two 

models was randomly separated into two groups with a factor of 0.8. In other words, the 

two models randomly selected 80% of the data as their training datasets and selected the 

remaining 20% as their testing datasets. A sample of the training datasets for the simple 

model is shown in Figure 21, while a sample of the testing datasets for the same model is 

shown in Figure 22. 

 

Figure 21: A sample of the training dataset for the simple model 
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Figure 22: A sample of the testing dataset for the simple model 

 The first model was designed as a simple model in the biomechanical analysis. It 

focused on the athlete’s legs’ joints. This model was used to verify that the coordination 

of the lower limbs could be revealed by the data of vertical hip displacements. The model 

has two inputs that are Waist_Pos, and Waist_Vel. Because the position of the hip is very 

close to the position of the waist, the distance between these two points can be ignored in 

this case. It has six outputs: LHipAngle, RHipAngle, LKneeAngle, RKneeAngle, 

LAnkleAngle, and RAnkleAngle. 

The second model was designed as a complicated model in the biomechanical 

analysis. It focused on the athlete’s legs’ joints, arms’ joints and thorax. This model was 

used to verify that the coordination of both the upper and the lower limbs could be revealed 

by the change of the vertical hip and wrist displacements. The model has four inputs: 

Waist_Pos, Waist_Vel, Wrist_Pos, and Wrist_Vel. In addition to the above model’s 

output variables, each dataset of the complicated model has seven more variables to 
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represent the upper body, including LShoulderAngle, RShoulderAngle, LElbowAngle, 

RElbowAngle, LWristAngle, RWristAngle, and ThoraxAngle. 

4.5 SUMMARY 

 In this chapter, the proposed wearable system that can provide real-time 

biomechanical feedback in a hammer-throw case study has been introduced in detail. The 

current system has two elements – the sensor node (i.e., the wearable device) and the 

receiver node (i.e., software) that have been developed and realized their functions of 

providing three key parameters in real-time. However, the deep learning models are still 

not reliable enough due to the limited amount of data so that they are not worth being 

integrated into the system yet. The idea of making use of the wearable device combined 

with the AI modeling is quite clear. A lot of more data will be collected by using the 

wearable device, and those data will be trained in the deep learning models to improve 

their reliability. Eventually, the deep learning models will be integrated into the system to 

make the system smart. 

 Currently, the system uses XBee modules for wireless data transmission. How to 

configure the XBee modules in XCTU has been introduced. The wearable device was 

miniaturized with the help of PCB design. It consists of an Arduino Pro Mini board as the 

microcontroller, an XBee module for data transmission, a load cell for collecting the wire-

tension measurements, two IMUs for collecting the vertical hip and wrist displacements. 

The hardware design and the calibrations for the sensors have been presented in detail. 

The programming in Arduino IDE for data collection has been introduced. For the receiver 

node, a GUI and an IMU data fusion algorithm have been described as well. 
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 Last, the details about building two deep learning models in Python by using the 

Sequential models from Keras API have been provided. In the next chapter, the 

experiments and results of both the hardware and the deep learning models will be 

discussed. 
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CHAPTER 5: EXPERIMENTS AND RESULTS 

 The experiments can be described from a hardware perspective and a software 

perspective. The VICON motion capture system was used to examine all the experiments 

as a supervisor because it can provide quite reliable data. In terms of the hardware, a 

motion tracking algorithm was applied to both the IMU testing device and the PCB of the 

wearable device. In terms of the software, the deep learning models were used to verify 

the feature that the timely change of vertical wrist and hip displacements could reveal the 

upper and lower limbs’ coordination by validating their predictions. In this chapter, the 

experiments and the results of both the hardware and the deep learning models will be 

discussed. 

5.1 EXPERIMENTS AND RESULTS OF THE HARDWARE 

After calibrating the IMU testing device by configuring its accelerometer and 

gyroscope, an algorithm was required for predicting its orientation. Kalman-based filters 

have been widely used in orientation estimation [162]. Initially, a complementary 

Kalman-based algorithm was tried. However, the result of the orientation estimation was 

unacceptable due to a drifting error that kept occurring when calculating the velocity. 

Figure 23 displays the acceleration data obtained from the IMU sensor and the 

corresponding velocity data, which was calculated by the complementary Kalman-based 

filter. Figure 23 (a) shows the acceleration data obtained from the IMU testing device, and 

Figure 23 (b) shows the corresponding velocity data. As shown in the figures, the velocity 

data does not return to zero at the end of the test. This is known as a data drifting error. It 

is a typical issue during the integral calculation from acceleration to velocity. This issue 

will cause the error to be higher and higher (i.e., drifting up). 
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Figure 23: Drifting error [24] 

To avoid the data drifting error, another algorithm was tried. As Hamel and 

Mahony claim in their paper [163], it has been proven that traditional linear Kalman based 

filters are difficult to be applied robustly to low quality sensor systems. The inherent non-

linearity of a system and non-Gaussian noise that occurs in practice could lead to bad 

results from such filters. Hyyti and Visala also discuss that unlike high-quality and high-

precision gyroscopes and accelerometers, low-cost IMUs provide more inaccurate 

measurements so that their calibration has become a challenging problem [148]. In 

addition, Madgwick mentions in his work [42], Kalman-based filters are difficult to 

implement because they may require sampling rates far exceeding the device’s bandwidth. 

It is noticed that the sensor device used in the proposed wearable system has a fairly low 

sampling rate (only 50 Hz). This could be a major reason for the velocity drifting error 

that occurred in this application. As Madgwick claims in his study, his algorithm can be 

effective at even lower sampling rates, like 10 Hz. Also, Madgwick compares the 

performance of his algorithm with a complementary Kalman-based filter, and the results 

indicate his algorithm has a slightly better accuracy. Therefore, Madgwick’s filter was 

applied in the final system that has already been introduced in Section 4.3.2. 
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During a test, I moved the device up and down three times. As displayed in Figure 

24, relatively accurate feedback of the 3D positioning data could be obtained. Indeed, the 

Madgwick algorithm eliminated the drifting error from integrating the velocities. The 

three different curves stand for the changing distances over time on the X axis, Y axis, 

and Z axis in 3D space. The dynamic distance on the Z axis (blue lines) shows exactly 

three times up and down of the device. The range of vertical movements is ~0.33 m for 

the first vertical movement, ~29 cm for the second one, and ~32 cm for the last one. The 

next step was to validate the accuracy of the device. 

 

Figure 24: Three times of up-and-down movements by using the IMU testing device 

with Madgwick’s filter [24] 

3D motion capture technology provides an accurate and objective analysis of a 

variety of human motor skills [21], [55], [71], [104], [164]. Therefore, the synchronized 

data collection of the IMU and 3D motion capture was employed, such as in Figure 1 (b), 
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for validating and improving the accuracy of the IMU device. The VICON data was used 

to supervise the IMU testing device’s data. In other words, the curves of the IMU testing 

device’s vertical displacements generated from the MATLAB program were compared to 

the curves of the VICON’s data that was processed in Microsoft Excel (i.e., selecting the 

column of the Z axis of the marker glued on the IMU sensor and then inserting a Line 

chart by using the Chart tool provided in Excel). 

There were eight synchronized tests performed to obtain thousands of data for the 

validation. Since the aim was to gain the dynamic vertical distance, the validation of the 

Z axis was selected. Figure 25 shows a typical test’s data. The synchronized data 

demonstrate a matching vertical excursion over time between the IMU data and the 

accurate 3D motion capture data. The results suggest that the testing device works 

principally by comparing the two curves in Figure 25. The accuracy needs to be improved. 
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Figure 25: A synchronized test’s data obtained from 3D motion capture (VICON data, 

top, sampling rate 200 Hz) and the IMU testing device without re-calibration (IMU data, 

bottom, sampling rate 50 Hz) [24] 

A magnitude comparison shows that the excursion of the VICON data was larger 

than that of the IMU data as displayed in Figure 25. A timely comparison between the 

synchronized data of all trials revealed that the two excursions ran in a quasi-parallel way, 

which suggested that a factor for re-calibrating the IMU device could be applied to 

improve the accuracy of the IMU data. After the quantitative comparison between the two 

excursions of all trials, a re-calibration factor of 1.31 was determined. After the simple re-

calibration, a renewed synchronized measurement was done, and the result is shown in 

Figure 26. This time, the average data error of the IMU data decreases to under 6%, which 
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is accurate enough for sport skills analysis using a biomechanical modeling method [69], 

[97], [98], [102], [111]. 

 

Figure 26: A renewed synchronized test’s data obtained from 3D motion capture 

(VICON data, top, sampling rate 200 Hz) and the IMU testing device after calibration 

(IMU data, bottom, sampling rate 50 Hz) [24] 

Finally, it should be noted that the device needs an initial value for its application. 

As shown in Figure 26, the device will start at zero regardless of its actual vertical position. 

Therefore, for its application in the hammer throw, an accurate feedback needs the initial 

heights of the hip and wrist (Hhip and Hwrist) as shown in Figure 27. 
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Figure 27: The upper and lower limbs’ coordination (i.e., motor control pattern) revealed 

by the vertical distances of hip and wrist as well as the wire-tension during a hammer 

throw by a college-level athlete [24] 

After testing the IMUs and the load cell on the PCB, everything was assembled 

together to build the wearable prototype, as shown in Figure 28, for the real-time 

biomechanical feedback training of the hammer throw. The new wearable device was 

tested in the field. A varsity-level athlete (male, 25 years, 81 kg, 1.75 m with seven years 

training experience) tried out the real-time biomechanical feedback device. The wearable 

device permitted considerable freedom of movement for the subject with negligible 

influence on his performance. Taking advantage of this, no restrictions were placed on the 

subject’s movements during the in-field test to preserve his normal “control style”. Four 

trials were done. 
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Figure 28: The wearable prototype 
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The in-field test on the college-level athlete using the wearable prototype confirms 

the potential of using wire-tension and IMUs in real-time feedback training, as shown in 

Figure 27. In practice, the motor control of the hammer throw can be divided into four 

phases: initiation, transition, turns, and throw. The goal of the initiation phase is to launch 

the hammer spinning around the body. It commonly consists of a forward and backward 

swing of the hammer (i.e., to set the hammer to motion) and two over-head arm rotations 

(i.e., to set the hammer into rotation). The transition phase aims to switch the body from 

standing posture to the first body rotation, building a rotating system of the body and the 

hammer. The phase of turns accelerates the rotating system of the body and the hammer 

to their highest circulation. The final phase is the throwing. The data has revealed the 

following motor control information: (1) During the transition phase, the upper and lower 

limbs’ controls are transferring from an unclear coordination pattern to a quasi-out-of-

phase coordination in the turning phase as displayed in Figure 27. (2) The transition phase 

helps the power generation (i.e., wire-tension) become in phase (quasi) with the hips’ up-

and-down movement, indicating the hammer’s acceleration depends on the timely 

flexion/extension of lower limbs. (3) The characteristic of quasi-out-of-phase between the 

arm control and wire-tension finishes in the transition phase. 

5.2 EXPERIMENTS AND RESULTS OF THE DEEP LEARNING MODELS 

 The two deep learning models were trained for different epochs (i.e., iterations), 

such as 1000, 10000, etc. The training and validation accuracy were recorded. There was 

nearly no difference from the results of training with different epochs over 1000. So, 

training the models with 1000 epochs was selected in this case. An example of training 

the deep learning models for 1000 epochs is shown in Figure 29. Different learning rates 
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were also tried. The learning rate of 0.001 for both models provided the best results. The 

losses for both models decreased dramatically after training them. The last five losses for 

the simple model were around 10, while the last five losses for the complicated model had 

an even better result (down to around 3). 

 

Figure 29: An example of training the deep learning model for 1000 epochs 

 Finally, the two models were evaluated with the testing datasets. An example of 

the plot of the simple model’s predictions for those specific joint angles is shown in Figure 

30. Similarly, an example of the plot of the complicated model’s predictions is shown in 

Figure 31. The joint angles’ unit is in degree. The MAE for the simple model in a typical 

test, which only focuses on the lower limbs’ angles, (i.e., LHipAngle, RHipAngle, 

LKneeAngle, RKneeAngle, LAnkleAngle, and RAnkleAngle) was 2.62 calculated out in 

Python. The MAE for the complicated model in a typical test was 1.42. However, the 

complicated model focuses on both the upper and lower limbs’ angles (i.e., LHipAngle, 

RHipAngle, LKneeAngle, RKneeAngle, LAnkleAngle, RAnkleAngle, LShoulderAngle, 

RShoulderAngle, LElbowAngle, RElbowAngle, LWristAngle, and RWristAngle). If 
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comparing the two models, only the lower limbs’ angles in the complicated model should 

be considered. Therefore, the MAE of the lower limbs’ angles in the complicated model 

was calculated out in Python, that was 1.38. 

 

Figure 30: An example of the plot of the simple model’s predictions 

 

Figure 31: An example of the plot of the complicated model’s predictions 
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In more detail, the results from one typical test were obtained as the following. For 

the simple model (i.e., only focusing on lower limbs), the MAE of the LHipAngle was 

3.99, the MAE of the RHipAngle was 4.55, the MAE of the LKneeAngle was 0.71, the 

MAE of the RKneeAngle was 3.48, the MAE of the LAnkleAngle was 1.67, and the MAE 

of the RAnkleAngle was 1.33. So, the MAE of the simple model was calculated out from 

the average of the above MAEs, that was 2.62. For the complicated model (i.e., focusing 

on both lower and upper limbs), the MAE of the LHipAngle was 1.23, the MAE of the 

RHipAngle was 1.42, the MAE of the LKneeAngle was 1.23, the MAE of the 

RKneeAngle was 1.79, the MAE of the LAnkleAngle was 1.43, and the MAE of the 

RAnkleAngle was 1.19. So, the MAE of the lower limbs’ angles for the complicated 

model was 1.38, which was calculated out from the average of its above MAEs as well. 

It can be found that the complicated model looks better than the simple model from 

Figure 30 and Figure 31, because the points around the linear regression line are closer 

and more compact, which means the prediction values will be closer to the true values. As 

a result, the prediction errors from both models can be accepted. The complicated model 

has a slightly better result than the simple model, i.e., 1.38 degrees versus 2.62 degrees. 

However, their difference is only 1.24 degrees which can nearly be ignored in a 

biomechanical analysis. By comparing the results of these two models, it is still difficult 

to decide whether to use complicated models or simple models in a future biomechanical 

study. Although a complicated model may provide a bit more accurate result than a simple 

model, it is indeed more difficult to build because a complicated model requires to 

consider more details on 3D motion analysis and more IMUs are needed, which also might 
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cause movement constraints. Therefore, people may tend to build simple models instead 

of complicated models to analyze motor skills more specifically in the future. 

5.3 SUMMARY 

 In this chapter, the experiments and the results of the IMU testing device and the 

final wearable device have been provided. The results have indicated that the obstacles of 

the hardware and software development of a wearable device have been overcome. The 

wearable device is ready to be combined with a 3D motion capture system such as the 

VICON system to collect lots of more data from hundreds of hammer-throw athletes. 

 In addition, the experiments and the results of the deep learning models have also 

been discussed. The models need large amounts of synchronized data collected by the 

wearable device and the VICON system simultaneously to improve their reliability. 

Furthermore, the results from the current stage of the deep learning models indicate that 

simple models might be preferred than complicated models in the future. The conclusions 

of this thesis will be made in the next chapter and the future work will be discussed as 

well. 



 99 

CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

Dr. Yoshua Bengio, a Canadian computer scientist, who is famous for his work on 

artificial neural networks and deep learning, once answered a question on Quora: 

Science is NOT a battle; it is a collaboration. We all build on each other's ideas. 
Science is an act of love, not war. Love for the beauty in the world that surrounds 
us and love to share and build something together. That makes science a highly 
satisfying activity, emotionally speaking! 

 This thesis is based on a cross-disciplinary research study that collaborates with 

people from different areas, such as computer science, kinesiology, engineering, etc. It is 

a valuable experience of executing the spirit of science that mentioned by Dr. Bengio 

above. 

6.1 CONCLUSIONS 

The study on real-time biomechanical feedback consists of the development of 

both hardware and software and the AI modeling. If comparing the proposed wearable 

system to a simplified human system, its hardware are like body parts, including the brain 

(the Arduino microcontroller board), the skeletal or muscular system (the 3D printed box 

and its lid), the circulatory system (the power supply and the circuits), and different 

sensory organs (the sensors); while its software is like the neural control system that makes 

the whole system come alive. 

To establish a user-friendly and practical tool, 3D motion capture technology has 

been applied to quantify the throw skill, as such dominant parameters of the skill can be 

identified. In other words, the 3D motion analysis helps to minimize wearable sensors 

required for hardware development. AI modeling is another technology applied in the 

study. It helps to create biomechanical feedback by interpreting data obtained from 
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wearable sensors. The training of the deep learning models has been done by both 3D data 

and wearable data. 

The 3D data has shown that the dynamic data of the hip and wrist could be used 

for revealing the coordination between the upper and the lower limbs during a throw. To 

verify this, two deep learning models based on the related 3D motion captured data have 

been built and trained. It is validated by the results of the models that the timely change 

of the wrist and hip displacements could reveal the upper and lower limbs’ coordination 

in a hammer-throw movement. It is worth noting that the complicated model has a slightly 

better result than the simple model. However, their difference is so tiny that can be ignored 

in a biomechanical analysis. A tentative suggestion on a future biomechanical analysis is 

to build as many simple models as possible to provide solutions separately rather than to 

build a complicated model as an integral solution, considering the movement limitation 

caused by too many IMUs, etc. In addition, hundreds of hammer-throw athletes need to 

perform lots of tests by using the wearable device along with a 3D motion capture system 

so that “big data” will be able to improve the deep learning models’ reliability. Once the 

deep learning models can be proved to reach a high reliable stage, then the AI will play 

an important role of providing biomechanical feedback in real-time to help coaches in the 

hammer-throw training sessions to facilitate the motor skill learning and training. 

A customized PCB has been designed based on the previous schematics of the 

wireless device [19]. By embedding two IMUs, one load cell (i.e., tension sensor), an 

XBee module, and an Arduino microcontroller along with other required electronic 

components, a wearable prototype has been developed. Therefore, by combining the 

wearable wire-tension measurement with the vertical hip and wrist displacements, various 
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motor control patterns employed for the hammer throw could be identified. In short, the 

study has justified that three wearable sensors (i.e., one tension sensor and two IMUs) 

could be sufficient for creating a real-time biomechanical feedback device. 

In any elite sports training, people could use such a methodology developed and 

provided by this thesis. The general modus operandi for developing wearables of real-

time biomechanical feedback is summarized as the following: (1) 3D motion analysis at 

the beginning; (2) the first translation – simplifying the 3D motion capture to a practical 

wearable system (i.e., practicality of the wearable system); (3) hardware design and 

development (including selections of wearable sensors and wireless communication 

methods); (4) software development (i.e., programming of data collection); (5) system 

calibration; and (6) the second translation – returning to biomechanical parameters by AI 

modeling. Such an approach has great potential to become a coach-friendly tool for 

effective learning and/or training in practice. It would help coaches and athletes to 

facilitate their motor learning and optimize their motor skills efficiently. 

6.2 FUTURE WORK 

In the future, the wearable device can be applied into more field tests to examine 

its practicality and stability. After all, this is still a prototype. So, there still exists a 

potential to improve its reliability from a prototype to a mature product. For example, the 

cables that are used to connect the tension sensor and the external IMU to the 

microcontroller might be able to be cut shorter depending on more practical measurements 

of more athletes’ physical parameters, such as height, arm lengths, etc. 
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In addition, another IMU could be added into the system to be put on the back of 

an athlete so that an upper-body model could be analyzed as well. Then, by comparing the 

upper-body model, which can also be treated as a simple model, with the complicated 

model, a further validation can be made to determine whether a complicated model or a 

simple model should be used in future biomechanical study. 

The tension sensor can probably be replaced by an IMU as well if the efficiency 

of the IMU data fusion algorithm can be improved, or a high quality IMU can be used, 

because the wire-tension has a very close correlation with the acceleration or rotation 

speed. Furthermore, a high accurate IMU can be used to obtain the trajectories of the 

hammer in the air that is another key parameter. The concern is that how to avoid 

destroying the IMU sensor attached on the hammer. As the hammer will fly with a very 

fast speed in the air, when it drops down to the ground randomly, there will be a high 

possibility of destroying the sensor. 

The tension sensor and the external IMU can also be separated from the current 

wearable device. They can become two independent wearable devices with their own 

microcontrollers and wireless communication modules. If so, the wireless sensor network 

will be expanded rather than a point-to-point network. However, the concerns are the 

following: would the wireless data transmission still have high reliability when receiving 

data from several sensor nodes? Would the added weight of the wearable sensor from 

joining the microcontroller and the wireless communication module cause any movement 

constraint? 



 103 

Moreover, a server could be built to make the wearable product as an IoT 

application. A mobile GUI platform could be developed based on the proposed four types 

of the sensor nodes so that the customers can reconfigure the system’s communication 

method by their own requirements easily. 

For some other areas that may need privacy, such as healthcare, a security 

algorithm can be easily applied into the wearable system. For example, the XBee modules 

can be configured with an encryption setting. Also, a security algorithm of AES 

(Advanced Encryption Standard) can be implemented with Arduino IDE. 

Regarding the motor control information revealed by the data, there are still many 

questions. Would such characteristics appear at different levels of athletes? How can the 

real-time feedback (i.e., wearable devices) be helpful in the optimization of individual 

hammer-throw skills? Are there additional potentials of wearables in the learning and 

training of the hammer throw? Following the framework established in this study, future 

studies with more athletes at various levels would be able to answer the above questions. 
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APPENDIX 1: RESEARCH CONSENT FORM 

 

Development of new biomechanical feedback tools for improving human motor 

skill learning and training 

 

Hammer Throw Project 

  

Biomechanics Laboratory 

University of Lethbridge 

 

We invite you to participate in a study that aims to develop new tools for 

understanding of fundamental processes in humans and modulating various human 

movements, ranging from daily activities to specialized sport and music skills. Learning 

how to move is a challenging task. Even the most basic skill of walking requires years to 

develop and can quickly deteriorate with age and sedentary lifestyles. Age-related falls 

are the cause of 70% of accidental deaths in people 75 years and older and is the leading 

(74%) cause of hospitalization for seniors. More specialized skills such as violin playing, 

and soccer kicking require "talent" and years of extensive practice to fully master. These 

practices can easily cause career-ending vocational diseases if conducted improperly. Our 

research group uses the science of biomechanics and state-of-the-art motion analysis 

technologies to determine which muscle movements are critical for successful skill 

development and which expose us to vocational disease development. In this fashion, we 

are able to unlock some of the secrets of talented musicians and athletes and scientifically 
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inform music pedagogy and sports coaching, while preventing the occupational disease to 

occur, i.e. biofeedback learning and training. 

Biomechanical feedback can be broadly divided into two categories: real-time and 

post-measurement. Real-time feedback is more useful for practitioners and thus our 

ultimate goal, but its successful development hinges on robust post-measurement 

feedback. Therefore, your participation in the project will be the post-measurement one. 

Hammer throw has a long-standing history in track and field, but unlike other 

events, hammer throw has not seen a new world record since 1986. One reason for this 

stagnation could be the lack of scientific bio-feedback training. This study aims to develop 

a biofeedback analyser that can 1) measure real-time wire tension and vertical hip 

displacement, 2) establish how to reach desirable tension and displacement, and ultimately 

3) provide biomechanical-guided training plans customized to each athlete’s 

anthropometric data. 

The experiment takes about 60 minutes. The test will be in the hammer training 

area located in UofL gym (the training area is protected by a surrounding net). You will 

be asked to wear a black garment made of stretchable material, which covers the upper 

and lower body.  Affixed to the garment will be 42 reflective markers (reusable), each 

with a diameter of 9mm. The garment will be washed between each participant use. Before 

the test, you will be allowed to perform a sufficient number of warm-up exercises to get 

used to the test environment. After warm-up you will be asked to perform 6 throws using 

a real hammer (like throws in your training).  During each throw, the kinematic (3D 

motion) and wire tension data will be captured simultaneously. The kinematic data will 

be collected by a twelve-camera Vicon system. Wire tension will be measured by a tension 
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sensor system developed at Biomechanics Lab. The tension sensor is installed between 

the Hammer grip and wire. There are no anticipated risks from participating in this study.  

Nothing is intrusive into the body. The tests are natural and do not use any sort of 

medication.  

The information gathered from you during this study is considered confidential. 

To maximize your anonymity, you will be assigned a code, and this code will be used 

instead of your name at all times. Research assistants will also be required to sign a 

confidentiality agreement.  All personal information (body weight, body height, age, and 

training hours per week) will remain locked in a file cabinet that can only be accessed by 

researchers involved in this study and will not be disclosed without your permission. We 

may, however, wish to use your data measurements for a research presentation or 

education purposes in the future. Your identity will be kept confidential. It should be 

mentioned that the twelve-camera system will not in any way videotape participants’ 

faces, so that participants truly do remain anonymous.  

Your participation in this study is entirely voluntary and you may withdraw from 

participating at any time. Should you decide not to participate in this study, your 

relationship with the Biomechanics Lab or any other department of the University of 

Lethbridge will not be affected in any way. If you choose to withdraw, any information 

collected from you up to the point of withdrawal will be deleted or destroyed.  If you wish 

to see your performance analysis, we will supply you a CD containing your 3D dynamic 

analysis data.  If you have any further questions about this research, please feel free to 

contact Dr. Gongbing Shan, at (403) 329-2683 or g.shan@uleth.ca. If you have any further 
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questions regarding your rights as a participant, please contact the University of 

Lethbridge Office of Research Ethics at (403) 329-2747 or research.services@uleth.ca.  

Your signature below indicates that you have read and understood the information 

provided above, and that any and all questions you might ask to have been answered to 

your satisfaction. Your signature also indicates that you willingly agree to participate in 

this study, and that you understand you may withdraw from this experiment at any time. 

 

I have read the attached Informed Consent form and I consent to participate in the 

“development of new biomechanical feedback tools for improving human motor skill 

learning and training” research study.  

Printed Name:        Date:    

Signature:      

Witnessed by:         Date:    

 


