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ABSTRACT 

Secondary school pupils' concepts of energy were probed by clinical interviews 

and a multiple choice survey administered to 84 Alberta students. Preliminary 

information was gathered from curriculum documents, misconceptions literature and 

eight preliminary interviews. Both the interviews and the written survey were based 

on the interview-about-instances approach and used multiple-choice questions with 

free-response justification of answers. 

The wide range of alternative conceptions that were expressed paralleled findings 

of similar studies elsewhere. Most descriptions of energy were framed in substantive 

or ambiguous terms. Energy was frequently associated with living things, movement, 

and task performance. It was confused with concepts of heat, force, and pressure. 

Changes in physical systems were seen variously as consuming energy or as producing 

it upon demand. 

Aspects of a scientific conception were more evident among senior physics 

students, but differences between classes and grade levels did not generally reach 

statistical significance. Very few responses involved notions of energy as an abstract 

or conserved quantity. References to energy degradation or dissipation during 

changes were infrequent in interviews, survey responses, and curriculum documents. 

Subjects tended to choose similar responses on parallel interview and survey 

questions. Interview subjects showed evidence of preferred conceptual orientations 

towards a variety of situations, although their survey responses showed no parallel 
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consistency. Conflicting evidence was obtained regarding the spontaneous use of 

energy-based descriptions of physical situations. 

Findings were interpreted from a constructivist stance, and implications for the 

study and teaching of specific topics were drawn. In addition, results suggested the 

efficacy of appropriate multiple choice instruments as an alternative to clinical 

interviews in the investigation of alternative conceptions. 
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Chapter 1 

Introduction 

Problem and Context 

Children's ideas about the natural world have a certain intrinsic charm that invites 

investigation. Systematic exploration of "children's science" dates from the time of 

Piaget's early work and extends beyond cataloguing childish errors and distortions 

(Confrey, 1987). Investigators have probed children's thinking about particular science 

topics, methods of solving problems, and about science itself. A variety of data 

collecting strategies and interpretive devices have been developed for these tasks 

(Sutton, 1980). Children's ideas have been shown to exhibit a degree of coherence and 

persistence which suggests links to underlying structures or conceptual frameworks 

(Driver & Bell, 1986). 

Cognitive researchers have placed findings about children's science into both 

theoretical and practical contexts. Existing knowledge, they argue, affects the 

perception and interpretation of new experience in subtle and pervasive ways. In 

particular, children make sense of school experiences according to their existing stock 

of images, concepts and cognitive skills (see, for example, Posner, Strike, Hewson & 

Gertzog, 1982). From this perspective, gaps between children's, teachers' and 

scientists' images and ideas represent a major pedagogical challenge on several levels 

(Pfundt & Duit, 1988). 
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1. Curriculum design: Topics of instruction might profitably be chosen and 

sequenced in order to build upon naive conceptions which parallel or underlie accepted 

scientific ideas. 

2. Instructional design: Children might need to recognize and express existing 

ideas before they can be modified or replaced. "Conceptual change" models of 

instruction take explicit account of childrens' existing ideas and attempt to build upon 

them (Osborne & Freyberg, 1985). Implementations of these models rely heavily on 

dialogue and student interaction. 

3. Instructional materials: The daily stuff of school teaching - textbooks, 

discussions, activities, questions - might profitably be built upon common conceptions 

or misconceptions. 

A considerable body of information about children's conceptions of the natural 

world has accumulated in this "constructivist" tradition. Some teaching methods and 

materials have been based upon it, but their impact appears to have been more on the 

rhetoric and appearance of schooling than on the substance of typical classroom 

interaction (Edwards & Furlong, 1978; Edwards, 1987; Yager & Stodghill, 1979). 

Observational studies suggest that schooling continues to be overwhelmingly devoted 

to control, ritual, and transmission of adult knowledge, at least at secondary level in 

England and the United States (Edwards, 1987; Goodlad, 1984.) 
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Purpose and Design of the Study 

In Alberta, a major revision of secondary science programs is in progress. To 

unify instruction across topics and grade levels, six themes have been identified: 

change, diversity, energy, equilibrium, matter, and systems. Perhaps surprisingly, the 

literature contains virtually no data concerning the ideas of Alberta (or even Canadian) 

students about these themes or the topics being used to exemplify them. The present 

study represents an attempt to gather such information about student conceptions of 

one theme: energy. 

The study of energy, which has applications in physical science theory, 

technology, and current social issues, appears in both past and incoming Alberta 

science curricula. Unfortunately, investigations from several countries suggest that the 

study of energy poses considerable difficulty for many students. The concept itself is 

abstract and easily misconstrued, and popular usage of the term differs considerably 

from its scientific meaning (Duit, 1984). Teachers, at least in the early grades, may 

share the misunderstandings held by their students (Kruger, 1990). Validation of these 

and similar findings in an Alberta context appears to be appropriate and timely. 

The study was based on an adaptation of a method outlined by Treagust (1988). 

Curriculum documents were examined to identify knowledge of the topic which 

students might reasonably be expected to demonstrate. Common alternative 

conceptions within this domain were identified from the literature and from eight 

semi-structured interviews. These preliminary findings were used to construct a survey 
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instrument employing multiple choice questions together with written justification of 

answers. 

The survey instrument was then tested on a larger population of 84 students. 

Frequency tables were used to compare response patterns of different groups of 

students. The significance of observed differences in response patterns was estimated 

using the chi-square statistic. The consistency of individual student's responses across 

several items was also investigated. Written justifications of responses were analyzed 

thematically and compared with interview and literature findings. The consistency of 

responses to parallel items in the interview and survey was established for the eight 

students who participated in both aspects of the study. 

Research Questions 

The study addressed five specific questions arising from the existing literature 

about alternative conceptions. 

1. Would misconceptions and alternative conceptual orientations reported in the 

literature also be evident in interviews and written surveys of Alberta students? 

2. Would subjects show a similar pattern of responses to interviews and written 

surveys? The ease of using written, multiple-choice instruments makes them more 

suitable than interviews for use on a broad scale or for instructional purposes in 

classrooms. It is not clear, however, that written instruments can provide similar 

information to interviews. 



3. Would there be noticeable differences in responses between grade 9 subjects, 

who have not received a formal introduction to energy at secondary school level, and 

grade 11 subjects, who were introduced to the subject two years previously? Previous 

studies have shown alternative conceptual orientations to be remarkably persistent in 

the face of standard classroom instruction (see, for example, Driver and Bell, 1986). 

4. Would the proportion of students utilizing a scientific orientation vary between 

classes? In particular, physics students have been assumed to be more interested and 

academically capable in science than general science students. They may be expected 

to have assimilated comparatively more of the reasoning patterns and scientific 

knowledge presented in previous science courses. 

5. Would students consistently utilize a given conceptual orientation? Previous 

studies have found student responses to be situation-specific and often contradictory. 

Which conceptual framework to use seems to depend on a variety of cues, not all of 

which are logically relevant to the particular problem being considered. 

Significance of the Study 

The present study extended the body of existing knowledge about alternative 

conceptions of energy to a previously unstudied population: Alberta secondary school 

students. Additional evidence for the widespread existence and nature of 

previously-described alternative conceptions was obtained. The majority of responses 

fit the widely-used categories of alternative conceptions about energy developed by 

Watts (1983a). Contrary to earlier studies, however, significant differences in response 
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patterns were found to exist between groups of secondary students. This result calls 

into question the postulated stability of alternative conceptions in the face of school 

instruction. 

A novel view of Watts' categorization of alternative conceptions of energy was 

developed during the study. Three dimensions of the energy concept were defined and 

described using Watts' terms. This reinterpretation of previous findings proved useful 

in analyzing student responses and represents an extension of earlier analyses. 

In terms of methodology, the study provided evidence of both the general utility 

and the limitations of Treagust's method of developing multiple-choice survey 

instruments. Firstly, the search of curriculum documents produced an unexpectedly 

large number of primitive factual statements, which greatly complicated the production 

of a coherent concept map outlining such a broad curriculum area. Secondly, initial 

fears about student reticence during interviews carried out by their own instructor 

proved unfounded. Interviews were effective in providing a stock of illustrations and 

descriptive phrases for multiple-choice questions. Finally, although the survey 

instrument was able to elicit clear differences in responses between students, it proved 

extremely difficult to word multiple-choice responses which reflected specific 

alternative conceptions. 

In practical terms, the study has several significant outcomes. Because subjects 

included the last group of grade 9 students who followed the 1978 Alberta junior high 

school science curriculum, the study provides baseline data for future studies of the 

impact of new Alberta science programs. Second, the information about student 
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conceptions of energy has already proven useful to the researcher in his role as high 

school science instructor. Similar investigations of the other five themes in the new 

Alberta science programs could provide useful background for teachers across the 

province. 

Finally, the present investigation could be extended to prepare a more elaborate 

survey for use in classroom instruction or teacher preparation or inservice. Treagust 

and colleagues have used similar studies as the basis for two-tier objective surveys. 

These instruments are designed to elicit alternative conceptions by presenting, in 

multiple-choice form, both a situation to analyze and a number of justifications for the 

chosen response. The production of suitable items poses considerable difficulties, but 

their potential ease of use is appealing. 

Definitions 

Descriptions of children's thought have not, unfortunately, been reported in a 

standardized vocabulary. Some commonly used terms have an evaluative cast which 

might best be avoided lest it subtly shade the writer's (and reader's) perception 

(Abimbola, 1988). Other words have technical connotations in cognitive psychology 

which may not be immediately apparent and preclude loose or intuitive use. 

Vocabulary for the present study was chosen after considerable deliberation, which for 

purposes of clarity is discussed below. 

Following Pines (1985), the term "concepts" will be taken as signifying "packages 

of meaning [which] signify regularities (similarities and differences), patterns, or 

relationships among objects, events, and other concepts....Concepts are regularities 
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labelled with words and employed in thought and communication" (p.108). Watts and 

Gilbert (1982) emphasize that concepts are multi-dimensional. Different aspects may 

prove more useful in particular situations, so a concept may not be displayed with a 

consistent profile. 

Abimbola (1988) analyzed a number of labels used in studies of widespread 

everyday notions which differ from currently orthodox scientific conceptions. The 

once dominant term 'misconceptions' clearly locates this research in the enormous body 

of knowledge about concept formation and conceptual change. This literature is 

especially fruitful when considering possible pedagogic applications of information 

about children's ideas. 

However, the designation :'alternative conceptions' seems preferable to 

'misconceptions' on several counts. 'Alternative' carries no implication of truth or 

falsity, and is relatively free from implications that student ideas are suitable objects of 

diagnosis, remediation, benign neglect, or quaint amusement. It does suggest 

comparison, discussion and choice, all of which are commonly regarded as essential 

elements of the scientific enterprise. It even allows for the disturbing possibility that 

students may, as a result of truly scientific investigation, choose to maintain their 

alternative conceptions rather than adopt the desired scientific view (Erickson, 1983; 

Watts & Pope, 1989). 
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Mental activity beyond the level of immediate recognition and labelling of 

sensation involves relating concepts. Therefore, in Pines' (1985) words, 

"A concept is involved in an immense network of relations. A concept can be thought 
of as a theoretical point where meaningful relations converge, and each concept is a 
crossing point for a multitude of relations. The relations are the fibres from which 
meaning is constructed. No fibre exists in isolation....The fibres are propositions, each 
signifying a single (or several) conceptual rclation(s)." (p. 109) 

It is possible that conceptual relations form in idiosyncratic, ad hoc responses to 

situations as they arise. Carey (1986) dismissed this notion as theoretically 

unproductive and observationally suspect. It appears more fruitful to hypothesize 

an organized body of stored information which serves as a foundation for interpreting 

present situations in the light of past experience. Sutton (1980) offered a brief 

summary of evidence for this position. Furthermore, our memory of past experience is 

not restricted to isolated specifics: we generalize. Thus, everyday knowledge can be 

regarded as theoretical in nature, although it is not identical to scientific theory in 

purposes, criteria, or ideals (Hills, 1983). 

Networks of related concepts are frequently called "frameworks". This description 

conveys several important connotations. Frameworks are organized, so the term 

invites application of a variety of tools used to study organized knowledge, from 

cognitive psychology's schema theory to the history of scientific ideas. Furthermore, 

the linkages implied by the term frameworks need not be limited to the cognitive 

domain. They may extend to the student's linguistic, cultural, social and emotional 

worlds. Methodology and theory from all these fields have in fact been applied to the 

study of student ideas in science. 
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Similarly, a framework need not involve the strictly logical relations of formal 

scientific theory. It may, like much literature and everyday thought, be analogic in 

nature (Bruner, 1986). A broader analysis than is usually applied to scientific theory 

is thus invited. 

On the negative side, "framework" carries a possibly misleading sense of stability. 

Student ideas and minitheories appear to be formed and modified in response to 

specific situations. Mental organization appears to be flexible and fluid, not rigid and 

stable (Millar, 1989; Sutton, 1980). Watts and Gilbert (1982) state that "to have a 

concept is to have a disposition to organize experience in a certain way" (p. 5). 

Johansson, Marton, and Svensson (1985) capture a similar sense in their analysis of 

preferred stances from which a subject views and interprets the world. Unfortunately, 

their term ("conception") appears wanting, as it lacks any sense of dynamic orientation. 

The present study uses the phrase "alternative conceptual orientation" to convey a 

non-judgemental, fluid view of relations between concepts. Description of alternative 

conceptual orientations thus implies going far beyond the "highly productive cottage 

industry" which engages in cataloguing student errors (Carey, 1986, p. 1124). 

Improved teaching and learning involves probing student responses with considerable 

sensitivity in order to penetrate superficial variations in expression and grasp the extent 

of understanding (Hills, 1983; Millar, 1989). In particular, the use of approved 

scientific vocabulary does not necessarily indicate a scientific conceptual orientation 

(Osborne & Freyberg, 1985; Schuster, 1983; Viennot, 1983). Altogether, the 

description "alternative conceptual orientations" is meant as a constant reminder of the 
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need for, and dangers of, somewhat subtle methods of investigation, with the 

consequent need to interpret findings. 

Assumptions 

Not all models of education attach importance to students' ideas. "Banking" 

metaphors describe the transmission of information from an authoritative teacher to an 

uninformed and accepting student (Freire, 1970). "Medical" models regard student 

misconceptions as informative insofar as they suggest appropriate remedial strategies 

(Illich, 1970). However, both Freire and Illich suggest that these approaches are 

ultimately disempowering, leading to intellectual dependence and passivity rather than 

active, meaningful learning. 

As a basis for science teaching, the banking and medical models have additional 

flaws (Watts & Pope, 1989). Children's experience in a technological society is 

permeated by scientific words and artifacts. Students do not approach science classes 

in ignorance. Nor do they easily relinquish their ideas, as has been noted by virtually 

every researcher in this field. Thus, it appears that knowledge of student conceptions 

could be of fundamental value in teaching, a claim that Strike (1983) suggests implies 

a "constructivist" view of education. 

A constructivist model, as outlined by Driver and Oldham (1986), for example, 

locates the essence of learning in students' efforts to make sense of past and present 

experience. George Kelly's psychology of personal constructs is often cited as a 

theoretical basis for constructivist thought (for an outline, see Kelly, 1966/1970). 
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Here, it is sufficient to note Kelly's stress that knowledge is actively constructed by the 

learner, unique to the individual and dependent upon prior experience. People do not 

merely associate experiences, or even discover inherent meaning. They construct 

meanings using their available cognitive resources: perceptual abilities, mental 

operations, memories of previous experience, and the interpretive framework of 

language, metaphor, social patterns and their culture's world view. Knowledge thus 

gained is embedded in a complex web of cognitive, affective and social influences. 

As Millar (1989) pointed out, such a view of learning does not necessarily favour 

a particular model of instruction. Nor need it spring from a particular epistemological 

commitment. For purposes of this study, the following specific assumptions, which 

spring from a constructivist view of learning, will be made: 

1. Human beings continuously strive to make sense of their environment. 

2. Existing knowledge forms the basis of and influences both perception and 

subsequent sense-making efforts. 

3. An individual's knowledge is organized. Features of the organizing framework 

can be inferred from careful analysis of responses to specific situations. 

4. A variety of reasonable individual interpretations will be made from any 

information. However, these interpretations are not totally idiosyncratic, as many 

indi \" ' i als share common knowledge frameworks. 

5. Knowledge does not imply belief. Individuals may use diverse and 

contradictory knowledge frameworks, depending on their situation and purposes. 
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Three further assumptions will be made relating to the learning of scientific 

knowledge. They have no particular relation to constructivist thought, and are: 

6. Scientific inquiry proceeds within a developing body of consensual knowledge 

and interpretive frameworks which are commonly held by scientists. Learning science 

thus involves both personal experience and enculturation to the current paradigms of 

the scientific community. 

7. Acquainting students with current scientific interpretations is a main aim of 

school science. This must be done "in a way that neither undermines pupils' 

confidence in their own abilities to make sense of learning experiences, nor grossly 

misrepresents scientific ideas" (Driver & Oldham, 1986, p. 110). 

8. The most desirable activities in school science are those which embody many 

aspects of scientific inquiry: acceptable interpretations, fruitful imagery, and 

characteristic epistemology. 

Research Perspective 

The study adopted a naturalistic research paradigm to investigate students' 

understanding of a science concept. Such inquiry is interpretive in nature, and aims at 

probing beyond the surface of a child's knowledge to determine its personal meaning 

and unique story (Bloom, 1990a). It recognizes the probability of a multitude of 

influences upon a child's response to any particular cognitive task. Its practical goal is 

to understand students' responses from their point of view, in order to facilitate access 

to a scientific view (Duit, 1990). 
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Examination of the literature has revealed a great variety of perspectives that have 

been adopted to stu^y children's ideas about the world. Those which impinge most 

directly on the study are outlined below. 

The organization of knowledge in memory clearly affects the cognitive resources 

which can be recalled and used in a given situation. It appears necessary to 

distinguish general knowledge from domain-specific knowledge, which has a decisive 

influence upon task performance. Eylon and Linn (1988) make the Lakatosian 

distinction between "core" conceptions and procedures, which are very difficult to 

change, and "protective belt" knowledge, which is readily altered. More 

complex models of cognitive structure found in the psychological literature include one 

(Perkins & Simmons, 1988) which is based specifically on alternative conceptions 

research. It postulates four interlinked "frames" of knowledge: content (or 

declarative), problem-solving (or procedural), epistemic, and inquiry. 

Other research perspectives provide hints of different linkages in the child's mental 

world. Lakoff and Johnson (1980), for example, argued on linguistic grounds that 

language, and thus the knowledge that it represents, is structured metaphorically. 

Bruner (1990, 1986) took a literary approach, suggesting that over time, knowledge is 

assembled into stories which function as key mental organizers. Head and Sutton 

(1985) stressed the importance of affective influences on cognitive structure. 

Rather than considering the organization of a child's knowledge, some researchers 

have focussed on its origins. Claxton, cited in Manuel (1990), postulated a two-tier 

structure of knowledge. Minitheories arising from immediate personal 
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experience form a foundation of "gut science", on which is erected a cultural 

superstructure of "lay science", which exists as part of shared vocabulary, experiences 

and images. Osborne and Wittrock (1985) have extended this model and added a third 

tier, school science, which is distinct from both the gut and lay levels of knowledge. 

Solomon (1983b) emphasized the importance of social interaction in shaping 

knowledge, but emphasized that it produced a loose, context-bound structure, the 

"familiar, undemanding clutter" of lifeworld knowledge. Similarly, Bloom (1990a) 

viewed knowledge in terms of complex "contexts of meaning": interlocked factual 

knowledge, emotions, values and aesthetics which cannot be represented in a purely 

logical fashion. 

Yet another viewpoint concentrates on finding limits to a child's ability to 

construct meaning for experiences. Defining these limits, from a Piagetian perspective, 

means investigating progress through a sequence of mental stages. In contrast, 

Ausubel (discussed in Novak, 1983) suggested focussing on the number and 

complexity of conceptually-organized regions of experience, rather than any general 

cognitive capabilities. 

To picture the complex web of influences upon the knowledge we display, 

Toulmin (1972) suggested the image of a "conceptual ecology". It is the features of 

this ecology, in a constructivist view, that shape the student's response to learning 

opportunities. In these terms, the present study has attempted to discern and describe 

the ecological niches which students create for the orthodox scientific conception of 

energy. 



Chapter 2 

Related Literature 

Historical Overview 

Piaget's work of the 1920's and 1930's can be considered as the beginning of one 

major strand of research in science education. Using the clinical interview as their 

research tool, investigators in this tradition probed the nature and development of 

children's understanding of the physical world. Other research focussed on students' 

content knowledge of different science topics. A third line of investigation examined 

knowledge in action, as subjects made predictions or solved problems. By the late 

1970's a variety of factual errors and flawed problem solving strategies had been 

uncovered and were catalogued by Driver and Easley (1978). 

Watts (1988) cites two articles as providing major impetus for a second generation 

of more interpretive research. First, Driver and Easley's (1978) review of the literature 

urged that children's ideas be considered as reasonable attempts to deal with 

experience, having their own coherence, power and purposes. Second, large-scale 

studies of physics students and teachers conducted and originally published in South 

Africa were reported more widely by Helm (1980). He found misconceptions of 

sufficient scope and persistence to suggest underlying cognitive structures that resisted 

conventional instruction. Soon after, the interview about instances (IAI) and interview 

about examples (IAE) techniques were developed and widely used to explore children's 

ideas about a variety of specific topics in a sensitive and non-evaluative manner. 
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Confrey's (1987) historical summary outlines major themes of subsequent research. 

An extensive bibliography of the literature has been prepared by Pfundt and Duit 

(1987), while a more detailed cross-section of results and interpretations can be found 

in the reports of the International Seminars on Misconceptions (Helm & Novak, 1983; 

Novak, 1987). Recently, major syntheses of research have been prepared to identify 

promising directions for future study (Eylon & Linn, 1988) and to draw out practical 

implications for classroom instruction (Osborne & Freyberg, 1985). 

Children's Science 

Children's descriptions and explanations of science-linked situations have 

consistently surprised observers who expected some parallel to stereotypically 

"scientific" language, images or reasoning. And yet, children's conceptions are far 

from idiosyncratic. Only a small number of meaningful knowledge patterns are found 

in any topic area, and there are many consistencies across topics (Eylon & Linn, 

1988). Much alternative conceptions research has been directed at establishing the 

distinctive characteristics of "children's science" in contrast to "scientists' science". 

Unfortunately, parallel investigations of students' and scientists' conceptions are 

rare in the literature. Data about scientists is generally drawn from "common 

knowledge" or secondary sources: curriculum or textbook statements, or the work of 

historians and philosophers of science. Only a relatively small number of 

investigations have applied the same analysis to both students and scientists; for 
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example, Lin's (1983) exploration of the culture of physics, Cobern's (1988) study of 

world views, and Ameh and Gunstone's (1985) test of student teachers. 

Furthermore, the majority of studies have used topics from the physical sciences. 

At best, they can be expected to provide only a limited view of scientists' and 

children's thought, one which may overlook significant characteristics of the life and 

social sciences. With those caveats, however, the following synthesis draws from 

generalizations proposed by Driver and Easley (1978), Driver, Guesne and Tiberghien 

(1985), and Osborne and Freyberg (1985), as well as particular findings by other 

researchers. 

Explanations. Scientists try to produce a minimum number of decontextualized 

theories which permit the use of logical reasoning to obtain verifiable answers. 

Children are satisfied with a variety of different explanations to fit specific situations. 

They see little need for logical rigor or reduction of inconsistencies, and may propose 

different explanations for the same phenomena, depending on the manner in which 

questions are presented. Children see no need to explain equilibrium, preferring to 

focus on dynamic situations. They tend to associate single features or quantities with 

prior knowledge on the basis of observable similarity. Scientists, on the other hand, 

try to explain both change and equilibrium by linking as many interacting features as 

possible in a mechanistic (cause and effect) or contextual (ecological interrelationship) 

fashion. 

Expression. Children are comfortable using words in an ambiguous, 

undifferentiated fashion, in which meanings may overlap and shift. Images are drawn 
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from the world of concrete experience. Scientific exposition, by contrast, insists on 

specific, explicit definition of terms, and produces abstract images and conceptual 

referents. 

Reasoning. Children's reasoning tends to be one-way or causal, and attends to 

absolute, perceptible elements. Much scientific theory aims at extending perception to 

identify abstract entities, establishing characteristic descriptive parameters and then 

describing observable interactions by formal (and if possible, reversible) logical 

propositions. The propositions are often proportional, involving three elements, and 

may include mediating variables. Especially in the physical sciences, reasoning is 

based on componential analysis: breaking a problem into small steps, each of which 

contributes to the final solution via a clear chain of reasoning. Children more often 

propose functional relationships (only two variables) based on an informal logic of 

experience. They approach problems holistically, with no distinction between global 

and local variables, no explicit binding of variables to numerical values, and few 

attempts to approach a solution through a series of intermediate results. 

Proof. Children tend to ignore distinctions between observation and interpretation 

and typically see no need to provide evidence for accepted ideas. The scientific 

enterprise, on the other hand, is based on the primacy of observation and continually 

tests accepted paradigms against new evidence. 

Change. Over time, children's explanations grow in number and in associations. 

Contradictory ideas are ignored, explained away, or tolerated as alternative opinions 

about the same subject. Scientists follow the principle of parsimony, aiming at a 
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reduced number of ever more comprehensive theories. They seek to resolve 

contradictions, if necessary by modifying existing theories. 

Context Children, especially when young, regard the world as animate and even 

anthropomorphic. They relate to their environment in an affective and personal way, 

offering egocentric explanations for natural phenomena. Commonsense is accepted as a 

reliable and adequate tool for reasoning and action. Scientists generally adopt a more 

distant stance, using methods which seek to transcend commonsense and purely 

personal viewpoints. Depending on the discipline, the natural world is treated as 

inanimate or at least possessing characteristics which are clearly differentiated from the 

human. Aesthetic and intellectual factors supplant emotional identification when 

testing the adequacy of explanations. 

Interests. Children focus on novelty and change, whereas scientists attempt 

prediction through the discovery of regularity and pattern. Also, the child's 

explanations are based on and need fit with only his restricted personal and social 

experience. The scientist's work is enriched by scholarly tradition and paradigms, but 

at the same time must satisfy the demands of the community of his peers. Scientists, 

therefore, maintain a high and explicit consciousness of the limitations of their 

observations and explanations which is absent from children's thinking. 
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Theoretical Models 

General Perspectives 

A variety of analytic frameworks, primarily those outlined below, have been used 

to organize data about children's scientific conceptions. No single one has proven 

generally effective at integrating observations or suggesting systematic 

methods of improving science instruction (Claxton, 1986; Confrey, 1987; Watts, 1988). 

Cognitive Abilities. Lawson and Thomson (1988) reviewed evidence that ability 

to adopt scientific frameworks might be related to mental capacity, verbal intelligence 

(ability to recognize analogies in verbally presented material), cognitive style (field 

dependence or independence), and Piagetian stage of development. From the latter 

perspective, they suggested that skill training in formal mental operations might 

directly improve students' ability to systematically compare alternative explanations of 

observed phenomena. 

Metacognition. Explicit monitoring of the progress of one's own thinking, 

especially the linkages between concepts, might facilitate conceptual elaboration and 

comparison of alternative conceptual frameworks. A diagrammatic procedure called 

"concept mapping" has been developed and taught successfully to adults and early 

adolescents (Novak, 1983; Novak & Gowin, 1984). Improved test scores have been 

observed when college teachers employed concept mapping as part of their planning 

and class presentations (Clibum, 1986). A similar method called "concept webbing" 

has long been used for planning early childhood instruction (Levin, 1986). 
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Epistemoloirv. Students and scientists do not appear to have the same objectives, 

procedures and standards for the generation and validation of knowledge. For 

example, Allen, Statkiewicz, and Donovan (1983) observed students who failed to 

differentiate between observation and interpretation, and described their tendency to 

exempt ideas which are believed to be true from the requirement of evidence. They 

noted a good fit between their observations and William Perry's stages of intellectual 

development, which proceed from belief in single answers confirmed by authority, 

through acceptance of a multiplicity of views regarded as unverifiable opinions, to 

relativism that views all knowledge in context. Direct studies of considerable scope 

and elegance conducted by Kuhn and colleagues (1988) support and extend this 

observation. Preadolescent students, and many adults, fail to recognize the possibility 

of alternative views, support theories by elaborating on known examples rather than by 

seeking evidence, and distort observations to fit their beliefs. 

Furthermore, students do not share scientists' view of the provisional nature of 

theory. Waterman (1983) found widespread student belief in the infallibility of 

scientific knowledge. This, he pointed out, leads logically to a strategy of learning by 

memorization, and emotionally to unrealistic expectations that hypotheses can be 

proven absolutely. 

Students might become more comfortable with scientific viewpoints if their 

attention were focussed explicitly on those beliefs about knowledge which underlie 

scientific inquiry. Thus Helm (1983) argued the utility of explicit instruction about the 

epistemological foundations of science, instruction which would go far beyond the 
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usual presentation of the legendary "scientific method". In particular, a graphical 

framework, the "Vee heuristic" has been developed and used to specify 

epistemological roots of any study and their interaction with data (Gowin, 1983; 

Novak & Gowin, 1984). 

History. Naive viewpoints often resemble elements of abandoned scientific 

models. Common views of motion, for example, appear similar to aspects of 

Aristotelian physics. Although this testifies to the persuasive explanatory power of 

historical theories, it must be remembered that they were integrated into the intellectual 

and cultural frameworks of earlier times. The ideas of modern students spring from a 

different ethos and only mirror the historical development of scientific theory in a 

fragmentary and superficial way (Lythott, 1983). Nevertheless, study of the history of 

science has been suggested as a source of ideas for research into possible alternative 

frameworks and curriculum development (Ben-Zvi, Bat-Sheva, & Silberstein, 1986; 

Nersessian, 1989; Wandersee, 1986). It can also illustrate the nature of scientific 

theory and inquiry processes (Hills, 1983), and to this end even the lack of agreement 

over interpretation of the historical record could be instructive. 

Concept Development Theories 

Two particular theories which relate directly to alternative conceptions research 

have been productive in generating instructional strategies and materials. One, 

conceptual change theory, focusses on the learner's reaction to new ideas and features 

which might lead them to displace existing conceptions. The other deals with the 

context within which ideas acquire meaning. 
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Conceptual change theory. P. Hewson (1981) and Posner et al. (1982) have 

defined four necessary conditions which must be satisfied before concepts can find a 

niche with a person's conceptual ecology. The conditions and their implications, 

which are inventoried in Posner (1983), are: 

1. Dissatisfaction with existing conceptions. This implies awareness of both the 

conceptions and their shortcomings, as well as conviction that minor repairs will not 

suffice. 

2. Minimal understanding of the new conception. The subject must be able and 

willing to relate it, by metaphor, analogy, or image, to his inner world of existing 

knowledge. Furthermore, the concept must be related to the outer world of experience, 

often through prototypical exemplars. A fuller understanding, which would involve 

links to a wider variety of concepts and more complex images (Kleineman, et al., 

1987) can evolve later. 

3. Initial plausibility of the new concept. It must be consistent with past 

knowledge and existing beliefs, concepts, and images of the world. 

4. Apparent fruitfulness. The concept must offer explanatory, predictive or 

problem-solving power. 

Several general instructional strategies have been proposed as ways of presenting 

scientific ideas so that they satisfy all four conditions. According to Osborne and 

Freyberg's (1985) synthesis, they share three common stages, dubbed focus, challenge, 

and application. In the focus phase, students explore, clarify and express their view of 

a concept. The challenge phase consists of considering and testing the views of other 
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students and of scientists. Finally, students apply the scientific view to problems, 

presenting and debating solutions and evaluating their merits. Considerable teacher 

input appears necessary to provide extended examples and bridging analogies which 

extend the new concept to both familiar and novel problems (Brown, 1988). 

Osborne and Freyberg have also suggested that a preparatory phase is a necessary 

preliminary for implementing this type of instruction. In it, teacher and student draw 

on historical and alternative frameworks research to identify and clarify their own 

views. In addition, the teacher needs to develop considerable sensitivity to explanatory 

frameworks which students may hold and express somewhat chaotically. Only then 

will an instructor be able to facilitate expression and clarification of differing views, 

help uncover underlying rationales, and sympathetically evaluate the merits of 

alternative conceptions. 

Concept change theory has provided a foundation for development of instructional 

and teacher in-service materials, notably those produced by the Children's Learning in 

Science Project (CLISP) in the United Kingdom (see, for example, Needham and Hill, 

1987; Scott, et a l , 1987). In New Zealand, the Learning in Science Project (LISP) at 

Waikato University has produced an extensive set of recommendations, background 

materials and teaching suggestions (see Kirkwood & Carr, 1989; Learning in science 

project. 1982). However, the effectiveness of these offshoots of the theory is as yet 

uncertain. Rogan (1988), for example, reported that teaching directed to concept 

change did not result in achievement gains over other teaching methods. Evidence is 

lacking, however, on possible benefits in terms of long-term retention, facilitation of 
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subsequent learning, mastery of process skills, affective responses, and changes in 

underlying cognitive structures. 

Some writers have questioned whether adherence to a particular model of learning 

must lead to a particular sequence of instructional steps. Millar (1989) suggests that 

there is no logical necessity for such a link. Rather, any teaching method which 

sparks a personal commitment to reconstructing existing ideas will be effective. 

Identifying specific topics for -hich conceptual change teaching strategies are 

particularly suitable is, in this view, an appropriate direction for future research. 

Reflective transformation. Authors such as Hulland (1990) and McClelland 

(1983) place even more stress on the learner's role in conceptual change. Students 

must be willing to make the considerable effort of incorporating scientific concepts 

more fully into their repertoire. A particular kind of dialogue is seen as an essential 

element in this process, and conversational "language games" are thought to be critical 

factors in organizing thought, perception and social interaction. From this viewpoint, 

conceptual change is fostered more by attempts to verbalize perceptions and 

knowledge than by concrete experience alone (Barnes, 1976). Schon (cited in Hulland, 

1990) proposed the term "reflective transformation" to describe the gentle process of 

encouraging meanings to evolve and concepts to change. 

In this view, the character of classroom discourse becomes a critical factor in the 

analysis of learning. A number of studies have delineated features of actual classroom 

talk that may hinder the meaningful acquisition of new ideas, including concentration 

on discipline, management and control, lack of attention to student questions, and 
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1987; Edwards & Furlong, 1978; Elliott, 1976-77; Goodlad, 1984). The sort of 

"exploratory talk" needed for active learning, according to Barnes (1976), is 

characterized by hesitations, false starts and rephrasing. It emerges in the context of 

supportive relationships which reduce the risk inherent in rearranging old meanings 

and developing new ones. Similarly, Kelly's (1964) description of the "language of 

hypothesis" suggests a particular phraseology or "invitational mood" which invites the 

playful consideration of new ideas, without the risk of definite commitment to them. 

Clearly, exploratory talk is a far cry from the usual "transmission and control" 

mode of classroom operation. It is equally distinct from scientific debate, which relies 

on logical, precise expression and public criticism as effective methods of exposing 

error (Lin, 1983). Challenging student ideas is certainly part of teaching, but Dillon 

(cited in Doll, 1989) emphasized the need to balance it with supportive behaviours. 

Within this general view of science education as dialogue, several authors have 

suggested the pedagogic utility of deliberately exploring a variety of metaphors for 

scientific concepts (Ortony, 1975; Pratte, 1981; Schon, 1988). A whole new teaching 

sequence can result, as in Steinberg's (1983) innovative introduction to the study of 

electric current. As yet, however, experimental studies to determine the effect of 

incorporating metaphor in written instructional material are few. 

Bloom (1990a, 1990b) goes further and proposes exploring, not just semantic and 

metaphoric links to scientific topics, but their affective content as well. He 

characterizes alternative conceptions as "context markers" or "triggers" for 
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non-semantic "contexts of meaning". In his view, by elaborating many elements of 

that context to incorporate scientific aspects, teaching may produce indirectly the very 

conceptual change which appears so resistant to direct instruction. 

This type of speculation exhibits some of the qualities that Doll (1989) has 

identified as characteristic of post-modern thought. It postulates a complex, web-like 

structure, is directed toward transformatory change in viewpoint, and suggests that 

such change is internally produced, rather than imposed upon individuals. Studies 

based on it and reviewed above are relatively few in number, tend to be small-scale, 

use naturalistic and interpretive research paradigms, and do not aim at producing 

prescriptions for instruction. Nevertheless, they offer an orientation, if not a recipe, 

for effective teaching. 

School Science 

For most children, school brings the first systematic opportunity to link their ideas 

to those held by the scientific community. However, even in secondary school and 

university, few students observe scientists modelling their craft, participate in current 

scientific inquiry, or explicitly consider the structure of scientific knowledge. Instead, 

the topics which are studied, the expectations, methods and evaluation of learning, and 

the school setting bear a close parallel to a ritual initiation (Lin, 1983). For many 

students, participation in the ritual facilitates neither entry into advanced studies 

(Yager, Snider, & Krajcik, 1988) nor personal appropriation of scientific methods and 

findings to everyday life. 
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Many undergraduates are not exactly overburdened with a need to have what they 
learn in science classes be consistent either with other scientific ideas or with their 
own experience. Somewhere they have gotten the idea that science is allowed to be 
paradoxical and is not supposed to have anything to do with their everyday experience. 
(Strike, 1983, p.93) 

Core topics in school science generally lie comfortably within the body of 

well-understood knowledge. Facts are unambiguous, theories are accepted, 

prototypical problems and solution algorithms have been developed, and above all, 

correct answers exist. Key epistemological features are distorted, as when "scientific 

method" is presented as a heuristic of discovery rather than a mode of presentation 

designed to facilitate challenge and verification (Lin, 1983). Other features of 

scientific inquiry, like the character of evidence and interpretation, are treated 

implicitly (Allen, Statkiewicz, & Donovan, 1983). A sense of the unpredictability, 

incompleteness and systematic scepticism of scientific activity is absent from much 

instruction. 

Instead of ideas, Doyle (1983) proposed that the currency of the classroom is 

answers. A large proportion of school work consists of completing assigned tasks by 

providing answers. Students attempt to do this with the least possible risk, which 

leads variously to reticence in oral work, delaying tactics aimed at obtaining hints from 

the teacher, or attempts to redirect dialogue to a rote or procedural level. There is 

little opportunity or encouragement for student views to emerge (Goodlad, 1984), so 

the actual intellectual goal becomes "to decipher and use the framework presented by 

the text and the teacher" (Erickson, 1983, p. 42). 
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Teachers expediently impose comfortably short-term, low-level tasks in order to 

obtain and maintain the co-operation of a "herd of arbitrary size, interests and abilities" 

(McClelland, 1983, p. 117). Lortie (1975) has documented the lack of institutional 

encouragement and personal characteristics which might lead teachers towards 

innovation or long-term goals for themselves, their students or their programs. More 

recent studies (for example, Yager & Stodghill, 1979) confirm that even in the face of 

learning materials which have been deliberately and explicitly structured around 

alternative instructional models, most science teachers revert to traditionally didactic 

methods. Ornell, cited in Osser, Durmin & Sorenson (1983), saw this type of 

teaching-as-one-was-taught as "an implied invitation for kids to circulate among 

themselves meanings and procedures which get the job done" (p. 109). Rather than 

extending their use and grasp of scientific meanings, children in such a setting must 

continue to rely on increasingly inadequate everyday ideas. "Progressive" teachers 

who have interpreted new teaching models as a variant forms of discovery learning 

can leave students in a similar position, summarized in Driver's quip that the maxim "I 

do and I understand" should perhaps be amended to "I do and I become even more 

confused." Driver (1983) and Smith and Lott (1983) offer detailed critiques of 

discovery learning. 

As a result, most students "play the game" with little personal commitment, their 

ideas either unexpressed or neglected (Edwards & Furlong, 1978). Knowledge and 

skills remain firmly embedded within the setting of compartmentalized classroom 

tasks. Success is not necessarily dependent upon generalization which results in 



3 ! 

Results of Instruction 

Whatever the inadequacies of school science instruction, it clearly has some effect 

upon students' ideas. Gilbert, Osborne and Fensham (1982) described five theoretical 

results of instruction, all of which are apparent in observational studies. 

1. Naive ideas are undisturbed. Students' use of scientific vocabulary may mask 

the fact that their everyday ideas have not otherwise been influenced by their 

classroom experience. 

2. Naive ideas are reinforced. Experiences in science class are construed as 

supporting existing ideas, even if that was not the intent of the lesson. 

mastery of a body of knowledge, nor upon personalization and deployment in everyday 

life (Doyle, 1983). Instead, academic success in secondary school is confirmed by 

passing examinations which consist of representative classroom tasks. The student has 

little choice in the topic or manner of presentation, social interaction during the 

examination task is strongly discouraged, and judgement is made by r.n external 

authority (the teacher or surrogate). As Lin (1983) observes, such a procedure bears 

little similarity to the peer evaluation of the scientific community. It seems equally 

remote from the continual social nudges that confirm or modify lifeworld knowledge. 

Again, as in its mode of discourse, school science has a mode of transmission and 

evaluation that is distinct from both the scientific and everyday life. Rather than 

acting as a link between those two realms, school becomes a third world for students 

to conquer. 
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3. Naive ideas are discarded but not replaced. The student is left confused, 

without confidence in everyday ideas and without adequate comprehension of scientific 

explanations. 

4. Both scientific and naive ideas are adopted. Students use whichever set of 

ideas seems appropriate to a particular situation. As a result, the ideas do not conflict, 

and students typically do not attempt to reconcile contradictions between them. 

5. A coherent scientific framework is adopted. Scientific ideas are gradually 

extended, related to other aspects of student experience, and used fruitfully in everyday 

life. 

Much of the interest in alternative conceptions stems from the apparent prevalence 

of the first three or four of these outcomes, even though they are not generally 

considered desirable educational objectives. Scholars have hoped that study of 

alternative frameworks might suggest more effective methods of modifying or 

replacing naive ideas with scientific ones. A meta-analysis of experimental studies 

produced the predictable finding that feedback helps to improve subjects' subsequent 

task performance (Yeany & Miller, 1983). However, there was no evidence that 

instruction designed to take account of alternative conceptions was uniquely effective. 

Another negative result; was reported by Griffiths, Thomey, Cooke and Normore 

(1988), who attempted to key corrective teaching to inferred misconceptions. This 

proved no more effective than remedial instruction that followed the random order of 

test items. 
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The persistence and robust nature of children's specific ideas and inferred 

alternative frameworks has been noted by virtually all researchers who have tried to 

change them (see, for example, Driver & Bell, 1986; Champagne & Klopfer, 1983; 

and Viennot, 1979). Halloun and Hestenes (1985) had to place university chemistry 

students under intense pressure in an interview situation before lifeworld viewpoints 

would be replaced by more scientific ones, and then only with reluctance. Similarly, 

Lin (1983) noted students' reluctance to abandon familiar but non-productive 

problem-solving strategies for standard physics methodologies. Although mastered in 

a tutoring situation, the standard methods were apparently not trusted to be effective in 

other contexts. 

When instruction apparently has changed students' thinking, the shift has often 

been in directions unanticipated by curriculum designers and teachers (Osborne & 

Wittrock, 1983). New scientific vocabulary has sometimes been adopted to label 

unchanged ideas (Osborne & Gilbert, 1980). Students confronted with anomalous 

observations have learned to misperceive, ignore, or explain them away as irrelevant, 

exceptional, or due to factors other than those under consideration (Kuhn, Amsel, & 

O'Loughlin, 1988; Posner, 1983). 

In general, it has not proven very fruitful merely to tinker with science teaching. 

Remediation or initial instruction designed to expose the inadequacies of everyday 

ideas does not ensure the adoption or spur the discovery of more scientific ones. 

Apparently our objectives or our pedagogy require more radical revision if the present 

results of science teaching are deemed inadequate (Yager, 1991). 
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Images and Objectives 

One possible summary of the research discussed so far is that it details the 

ineffectiveness of school science instruction in its task of developing accepted 

scientific conceptions. However, the universal necessity and desirability of this 

objective have been questioned, as well as its feasibility. More limited goals may be 

more appropriate, and information about alternative conceptions may play a significant 

role in formulating and achieving them. 

Value of Lifeworld Knowledge 

Solomon (1987) focussed on social factors when suggesting that school instruction 

must inevitably have only limited impact on student thinking. Most students encounter 

and employ scientific conceptions almost exclusively in school settings. Lifeworld 

knowledge is reinforced far more extensively in terms of time, situation and affective 

involvement. By implication, students who meet scientific frameworks in other 

socially significant settings might show more fluency in utilizing them. This 

hypothesis is supported by Osborne and Freyberg's (1985) observation that 

misconceptions were least stable in students whose parents were scientists. 

Lifeworld frameworks are usually adequate for everyday systematic thought and 

performance of routine tasks. They can be thought of as the basis for automatic 

information processing mechanisms which handle most of our sensory input (Fisher, 

1983). However, even when conscious information processing is required, it need not 

be scientifically correct to be functional. Kempton (1986), for example, observed that 

a scientifically incorrect concept of how household thermostats operate led directly to 
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energy conserving usage. Correct concepts led in an apparently logical fashion to 

more wasteful usage, unless the subject had an unusually subtle grasp of 

thermodynamics. 

Images of Learning Situations 

Clearly, there are grounds for believing that science instruction cannot and should 

not aim at general eradication of non-scientific frameworks. In an attempt to delineate 

those situations where the attempt is appropriate, Pines and West (1983) borrowed a 

vine metaphor first suggested by Vygotski (1934/1986). Lifeworld knowledge is 

pictured as growing up from personal experience. Formal (school) knowledge grows 

down and is imposed from someone else's reality. Concept learning becomes the 

intertwining of the two vines. The four w.<. •• ir. which this can happen define four 

domains of instruction, which have distinctive objectives and forms of instruction. 

1. Both forms of knowledge may be congruent. There is no conflict, and the 

learner's task is to extend his limited personal experience into the more extensive 

scientific framework. Instruction needs to focus on articulating and expanding 

personal frameworks, rather than challenging them. Aspects of biology are offered as 

examples of this type of situation. 

2. Only lifeworld ("folk") knowledge may exist. No relevant formal instruction 

has been given. Alternative conceptions research largely ignores this domain, which 

likely exerts a powerful influence on student thought. Studies of student epistcmologist 

and images of scientists and their activities are important exceptions. 
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3. Only formal, school-generated knowledge may exist. Topics in this domain are 

not required or encountered in everyday life. They may be heavily symbolic or taught 

through pseudo-examples which are as remote from life experience as the topics they 

are supposed to illuminate. Non-classroom reality checks are not possible (Kass & 

Fensham, 1990). The instructional task is to convey scientific concepts clearly and 

understandably. The limited metaphors, images and symbolism that are initially 

utilized may later have to be modified or replaced, so in a sense they represent 

misconceptions, but according to Pines and West, there is no need for modification 

until they begin to inhibit performance or subsequent learning. Much of introductory 

organic chemistry or particle physics falls in this category of learning. 

4. There may be a conflict between formal and lifeworld knowledge; or, in Hills' 

(1983) terminology, a tension between scientific and commonsense theories. Both 

offer explanation of phenomena, but with differing perspectives, objectives and 

epistemologies. In school, students are expected to show some allegiance to the 

formal concept or their instruction is deemed to have failed. Only in this conflict 

situation do Pines and West recommend teaching strategies which induce conceptual 

change. 

Science Education 

In light of these considerations, Osborne and Freyberg (1985) have formulated a 

three-tier set of objectives for science education. They suggest that all children should 

be encouraged to investigate things, explore how they behave, and develop 

explanations that are sensible and useful to them. Many children, especially in our 
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technological society, must recognize that scientists investigate the world in ways that 

are sensible, useful, and broadly applicable. To this group, scientific explanations will 

be intelligible, plausible, and of social (if not direct personal) utility. Finally, some 

children should move towards accepted scientific explanatory frameworks and a 

personal commitment to extending scientific knowledge. 

Teachers are more able to work towards these goals, according to Osborne and 

Freyberg, when they are clearly aware of alternative conceptions of topics they attempt 

to teach. They need materials to clarify their own views, which may resemble the 

conceptions of their students more than the scientific approach they are expected to 

teach and model (Ameh & Gunstone, 1985). They must have a firm grasp of current 

and past scientific views, so they can perceive opportunities to nudge students towards 

them. Finally, they need tools and skills for eliciting and clarifying student views, and 

a respect for their logic and utility. 

Summary 

Systematic investigation of children's notions of the world dates from the early 

1920's. On many topics, children express a limited number of alternative conceptions 

with a character and content distinct from orthodox science and school experiences of 

science. Not bound by logical rigor, children's science is expressed in a loose, holistic, 

concrete fashion, paying more attention to experience than proof. It tends to be an 

animistic, personalized conglomeration rather than the scientist's abstract and 

parsimonious systems. These and other features of children's science have been linked 
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to cognitive and metacognitive abilities, epistemological commitments, and historical 

development of scientific thought. 

The task of developing scientific notions from preexisting alternative conceptions 

is taken as a fundamental pedagogical problem by instructional methods based on 

conceptual change theory and reflective transformation. School science as generally 

practiced neither elicits nor acknowledges students' alternative conceptions, nor does it 

model or include actual scientific investigation. As a result, alternative conceptions 

persist, providing a generally functional, if not scientifically orthodox view of the 

life-world. A reasonable goal for science education might therefore be to lead children 

towards an appreciation of, and for some, an acceptance of, scientific conceptual 

orientations. 



Chapter 3 

Method 

Background 

A review of research methods used in previous investigations of alternative 

conceptions was undertaken before the design of the present study was finalized. 

Important findings are summarized below. 

Research Methods 

Inferences about the existence and features of students' alternative conceptions are 

based on a wide range of observational data. The limitations of early approaches were 

summarized by Sutton (1980), and methods of enhancing reliability and validity have 

been proposed by Hoz (1983). 

Tasks 

Straightforward attempts to catalog some part of a subject's mental database have 

commonly used lists of statements or beliefs to be judged as true or false. The degree 

of scientific knowledge or the prevalence of various beliefs or belief structures has 

then been estimated for the population as a whole (for example, Trembeth, 1984). 

This type of task does not probe subjects' comprehension or interpretation of the 

stimulus statements, or the way in which their knowledge is structured. 

Research based on word association and word definition tasks (for example, Duit, 

1984; Solomon, 1983a) also investigates what Sutton (1980) called "static aspects of 

the library" (p. 118). However, it probes organization as well as content knowledge. 

Subjects have been asked to provide word and image associations for a given term, to 
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write free-response definitions, to select from alternative definitions, to rank terms on 

semantic dimensions such as passive-to-active, to explain resemblances and 

differences, and to identify exemplars of a concept. Refinements of this sort of task 

such as the Semantic Differential Test and the repertory grid technique have seldom 

been used in alternative conceptions research. Alternative methods of exposing 

linkages between students' ideas include preparing concept maps (Novak & Gowin, 

1984) and essay writing (Brumby, 1984). 

A large body of research examines the deployment of knowledge in order to make 

sense of novel situations. Subjects have been asked to describe and/or sketch 

situations (Griffiths & Preston, 1989; Hulland, 1990), to make and/or explain 

predictions about the behaviour of objects (Halloun & Hestenes, 1985; McCloskey, 

Caramazza & Green, 1980), and to solve problems (Hoz & Gorodetsky, 1983). 

Student progress through instructional or remedial units of study has been tracked with 

computer (Browning & Lehman, 1988) and without (Smith & Lott, 1983). 

Stimuli 

The majority of studies reviewed have employed written presentation of problem 

situations to students. Accompanying diagrams are common, and in the case of 

Osborne and Gilbert's (1980) widely used interview-about-instances (IAI) procedure, 

form the core of the problem presentation. Kleineman (1987) and Wheeler and Hill 

(1990) have noted that in textbooks, even the use of simple and conventional diagrams 

may introduce unanticipated problems of interpretation. Whether diagram 
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interpretation represents an actual confounding variable in alternative frameworks 

research has not, to the writer's knowledge, been investigated. 

A small number of studies have used teacher demonstrations of problem situations 

to entire classes (Lawson, 1978; Tobin & Kapie, 1981). Alternatively, students can be 

taken out of the class and placed in an environment of interest (Bloom, 1990a; 

Hulland, 1990). Powell and Hoffman (cited in Lawson, 1978) set up lab apparatus for 

individual students, who worked according to an accompanying booklet of directions 

and questions. Manipulation of concrete apparatus has also been allowed in clinical 

interviews (Wheeler, 1983; Gair & Stencliffe, 1988). 

Hoz (1983) has argued the necessity of basing any investigation on several tasks 

whirl- employ different stimuli. In his own interviews, he employed concrete objects, 

diagrams, and verbal descriptions and explanations attributed to other students. The 

variety of stimuli and tasks were designed to increase subjects' engagement and 

encourage complexities of thought to emerge, a process which might be masked by 

more restricted research designs. 

Probes 

Some common research designs offer no opportunity for probing a subject's 

responses. Such investigations may reveal alternative conceptions which produce 

unusual or ineffective responses but will fail to detect non-standard reasoning which 

produces acceptable conclusions (Karrquist & Anderson,1983). Furthermore, absence 

of response probes does not permit any check that subject and researcher share a 

common understanding of words and symbols. Thus, reliance upon a subject's initial 
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responses forces one to assume that careful task design and the researcher's interpretive 

skill can provide clear, accurate descriptions of students' thinking (Duit, 1983b). 

Clinical interviews offer more freedom to explore and confirm the meaning of 

responses and linkages between them (Schuster, 1983). They can also be used to 

reveal the development of thought in a problem situation (Sutton, 1980). Because they 

are such a widespread source of raw data, interview procedures have been subject to 

considerable methodological scrutiny. It has become clear that the interview setting is 

extremely reactive. Seemingly tiny variations in sequencing and formulation of 

questions may have a clear influence on responses (Viennot, 1983). However, 

attempts to increase reliability by using a very tightly structured interview format risk 

losing the flexibility that is the clinical interview's main advantage. 

Guesne, Sere, and Tiberghien (1983) have pointed out a related dilemma. Open 

questions, in which the interviewer gives no cues to appropriate responses, may fail to 

evoke answers which actually lie within a subject's repertoire. However, closed 

questions, which suggest a particular type of response, may result in the suppression of 

alternative conceptions, especially if the subject wishes to please the interviewer. 

Such dilemmas appear in principle to be incapable of resolution. In relatively 

unstructured situations, the interviewer's care, restraint and sensitivity would seem to 

be the main defense against production of unduly distorted information. Hoz (1983) 

has pointed out the particular need to avoid qualitative questioning about topics which 

students have studied in a largely quantitative fashion. Guidelines and procedures for 
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conducting and interpreting interviews have been prepared by Osborne and Freyberg 

(1985, Appendix "A") and Schuster (1983). 

Another method of probing student thought utilizes objective or semi-objective 

written questions which require both a response and a justification. The latter can be a 

written statement (Lawson, 1978; Tobin & Capie, 1981) or a multiple choice response 

(Halloun & Hestenes, 1985; Treagust, 1988). Multiple choice alternatives have 

generally been prepared from the results of preliminary free response instruments, a 

procedure first suggested by Tamir (1971). As with clinical interviews, the wording 

and sequence of questions and possible responses may exert a great influence upon 

student performance (Fisher, 1983; Guesne, Sere, & Tiberghein, 1983). 

Data Recording 

Many studies rely on questionnaires and written responses. Interviews have been 

videotaped (Smith & Good, 1984), but the usual practise has been to prepare annotated 

transcripts from audiotapes (Gilbert, Watts, & Osborne, 1985). Think-aloud piotocols 

are common in studies of mathematical learning, but have only been used occasionally 

to investigate conceptions in science (for example, Tolman, 1982). Conversational 

probing of a subject's strategies and actions by an interviewer is more common. 

Interpretation 

The majority of studies reviewed are descriptive in nature and do not propose or 

attempt to confirm hypotheses. The exceptions, which include studies by Fisher 

(1983), Griffiths and Preston (1989), and Wandersee (1983), utilize only the most 

basic statistical tools for prediction and confidence checking. Gilbert, Watts, & 
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Osborne (1985) argued that statistical checks of reliability and validity are largely 

inapplicable in descriptive/interpretive research, and Schuster (1983) proposed 

methodological safeguards in their stead. 

Many investigators do attempt classification of responses and comparison of their 

frequencies. Some studies utilize categories established on theoretical grounds (Duit, 

1984) or according to prevailing scientific views (Cobern, 1988). Others allow 

categories to emerge from the data, either in an intuitive fashion (for example, 

Johansson, Marton, & Svenson, 1985), by using semantic networks (Watts, 1983b) or 

through other systematic methods of data reduction (Hoz & Gorodetsky, 1983). 

Generalizations from the data have been drawn at several different levels: 

1. Shared surface meanings for scientific words, and the extent of factual 

knowledge within a population, have been estimated from word association and 

definition studies. Although limited in depth, some conclusions have been 

substantiated in a variety of contexts, and thus appear to be robust clues to deeper 

meaning structures (Duit, 1983a). 

2. Commonly occurring frameworks which individuals use to organize their 

conceptual knowledge have been inferred on the basis of direct probes of linkages 

between words, images and ideas. Attempts have been made to clarify both logical 

and metaphoric connections within these alternative conceptual frameworks. Again, 

findings show a stability over time and between individuals which gives some 

confidence in this level of analysis, despite difficulties in obtaining and interpreting 

interview data (Osborne & Freyberg, 1985). Recent efforts to apply ANOVA 
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techniques to this analysis lend further support to the notion of conceptual frameworks 

(Boyes & Stanistreet, 1990). 

3. Typical ways in which individuals represent and solve problems have been 

investigated for a few topics, largely in the physical sciences. This 

knowledge-in-action exhibits little stability and appears sensitive to a variety of 

contextual variables, characteristics which have so far prevented general conclusions 

(Head & Sutton, 1985). Marton (1988) has argued that prolonged consideration of a 

subject's responses in a variety of situations can lead researchers beneath superficial 

variations to the discovery of recurrent underlying relationships between the subject 

and the world. The appropriate mode of investigation is intensive and interpretive, 

rather than extensive and analytic. Nevertheless, according to Marton, such 

"phenomenographic reasearch" can result in descriptions of "conceptual orientations" 

which are able to be generalized beyond particular subjects and situations. 

4. Subtle and pervasive cultural influences upon perception and thought have been 

outlined by investigations adopting world-view and anthropological perspectives 

(Cobern, 1988; Lin, 1983). These studies provide the least certainty and the greatest 

degree of abstraction from observed data. 

Summary 

Alternative conceptions research has gone beyond cataloguing knowledge and 

misconceptions to more interpretive exploration of the meaning, linkages, and 

functionality of children's ideas. In general, recent research has favoured the use of a 

variety of verbal and concrete stimuli in interview settings. Subjects' ideas are probed 
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in order to establish the actual sense in which words are being used. Responses are 

inter-related rather than analyzed in isolation. Studies have been largely descriptive in 

nature, with small sample sizes and non-statistical analysis. The theoretical constructs 

of concept, conceptual framework, conceptual orientation, and world view have been 

applied to the data. 

Overview of Study Design 

A major purpose of the present study was to establish whether Alberta students 

display previously identified alternative conceptions of energy. For the sake of 

parallelism with significant earlier studies, an interview-about-instances approach was 

adopted. However, to maximize opportunities to explore conceptual linkages, question 

structure and content was deliberately varied. A number of approaches used or 

suggested by earlier investigators were incorporated into the interviews and survey: 

totally free response; open response cued in terms of energy; consideration of the 

presence of energy; and description of energy changes. All situations were presented 

diagrammatically, but to increase interest and engagement, concrete stimuli 

accompanied them when possible, as suggested by Hoz (1983). 

A second focus of the study was to establish the practicality of survey-type 

investigations of alternative conceptions in a classroom setting. Methods of 

presentation such as demonstrations by an instructor or on videotape or computer were 

considered to be unnecessarily complex for an initial exploration. Written instruments 

were therefore developed to serve as stimuli for the survey and the interviews. 
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Multiple choice questions with an opportunity for open-ended justification and 

explanation of responses were chosen as providing an opportunity for both interpretive 

and statistical analysis. To ensure face and content validity of items, they were based 

on an initial survey of relevant Alberta Education curriculum documents, supplemented 

by a review of previous research into conceptions of energy. 

Analysis was planned to test the widest possible range of previous findings, 

excepting the early word-association studies of Duit and colleagues. Given the wide 

variety of common and scientific connotations of the word "energy", adopting single 

words as the unit of analysis seemed likely to lead to misinterpretations, a point 

acknowledged by Duit himself in more recent studies (1990). Instead, sentences and 

entire statements were examined and classified by the concepts they reflected. For 

interview subjects, the entire transcript was reexamined for evidence of preferred or 

recurrent conceptual orientations. To keep the study within practical bounds, no 

attempt was made to generalize to the level of cultural characteristics or world views. 

Potential items for the interview and survey were developed in parallel, to 

facilitate exploration of consistencies of response in the two settings. No sophisticated 

statistical analysis was considered appropriate, given the small number of interview 

subjects and the variation between items in this sort of exploratory study. Nevertheless, 

it was hoped to establish a basis for further investigations using more refined and 

sharply focussed instruments. 

The detailed procedure of the study (Table 1) followed steps outlined by Treagust 

and colleagues (1988), who employed an interview and survey technique as a first step 
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Table I. Procedural Outline 

1. Define content 
I.I examine curriculum documents for statements about energy 
1.2 construct a list of factual propositions about energy 
1.3 define concepts underlying and relating the factual propositions 
1.4 validate content knowledge base 

2. Explore alternative conceptions 
2.1 examine literature for identified alternative conceptions about energy 
2.2 construct interview/survey items based on knowledge base and 

embodying alternative conceptions 
2.3 conduct clinical interviews 
2.4 transcribe and analyze interviews 

3. Develop and apply survey instrument 
3.1 refine items based on interview findings 
3.2 administer survey instrument 
3.3 analyze survey results 
3.4 compare interview and survey responses 

Defining Content 

Construct Knowledge Propositions 

Topics probed by the interview and survey questions were drawn from those 

prescribed in the Alberta science curriculum. By so doing, it was hoped to ensure that 

all subjects would have been exposed to a scientific discussion of the questions, as 

well as to everyday, lifeworld ideas and experiences. Curriculum statements also 

in developing more sophisticated, two-tier multiple choice survey instruments to 

investigate alternative conceptions. A very similar item development and interview 

procedure outlined by Gilbert, Watts, and Osborne (1985) also shaped the interview 

phase of the present study. 
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suggested the depth of scientific knowledge which could be expected from secondary 

students, and thus aided in the construction of alternative multiple-choice responses. 

In this phase of the study, 131 factual statements about energy drawn from 

current Alberta Education curriculum documents were amalgamated into a restricted 

list of 28 factual propositions, which is reproduced below (Tables 2a and 2b). 

Because of the large number of energy-related curriculum statements, it was not 

considered necessary to follow Treagust's method exactly and examine textbooks or 

supplementary references for additional material. Similarly, although a tentative 

cognitive map was constructed to relate the curriculum statements, their number and 

extent made the map extremely complex and cumbersome. Although its creation may 

have helped crystallize the investigator's ideas, the actual map was less useful than 

traditional specification grids when the content validity of the interview and survey 

instruments was being checked. Therefore, the map was not refined and is not 

reproduced herein. 
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E: elementary science C senior high chemistry 
J: junior high science P: senior high physics 
B: senior high biology G: science 14/24 

1. Numbers reference those of the 131 curriculum statements which underlie the 
proposition. 

2. Lettered propositions are drawn from a single senior high school course. As they would 
not have been studied by all students in the sample, they were not used to construct 
items for the interview or survey. 

Table 2b. Propositions about Energy as a Definable Quantity 

1. Energy is the ability or capacity to do work or cause motion. J.P 1,2, 5.8 

2. Energy is involved in every change in matter. E,P 3,4 

3. Energy enables organisms to carry out activities in order to sustain 
life. 

J 6 

4. Energy can be measured in quantitative terms. P .G 16-20 

S. Heat is a measure of the total energy content of a substance due 
to its molecular motion. 

J.P 12-15, 131 

6. Temperature is a measure of the average kinetic energy of the 
molecules of a substance. 

J 10, II 

a. Efficiency of an energy system can be calculated. G . ; 21,23,24 , 

b. Personal energy consumption can be determined. G 22 

c Kinetic energy is equal to mva/2. p 7 } 

Table 2c. Propositions About Energy Forms and Conversions 
7. Energy exists in many forms. E.J.P, 

G 
26 -30 

8. One form of energy may be changed into another. J.G 44, 52-60 

9. Energy may be described as either kinetic or potential. J.P.G 62-65, 
129, 130 

10. Electricity is a form of energy that can be transmitted through a 
variety of materials. 

E 31-33 

II. Sound is a form of energy produced by vibrating objects. E.G 34,35 

12. Light is a form of energy. E 36 

13. Heat is a form of energy produced in predictable amounts from 
other forms of energy. 

J. G,P 37-43, 45 
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14. We obtain energy from the food we consume. J. B,G 46. 47. 
110.114 

15. Radiant energy from the sun is converted into heat and chemical 
energy on earth. 

J. B. G 48-51. 61, 
128 

Table 2d. Propositions about Energy Transfer 

16. The sun is the primary source of earth's energy. E.J.G 97-99. 78 

17. Energy flows through the biotic world can be traced and are non-
cyclical. 

B, G 95. 96, 
100, 101 

18. The addition or removal of heat energy causes matter to change 
temperature or state. 

E.J 102-104 

19. Chemical changes generally involve more energy than physical 
changes to the same amount of matter. 

E.J.G 105-107 

20. Heat energy flows from areas of higher temperature to areas of 
lower temperature. 

J.G 117 

21. Heat energy is transferred by convection, conduction, and 
radiation. 

J.G 115, 118-
126 

d. Energy is transferred In collisions. G 127 

e, y. Energy is transferred by waves. P 89-94 

f. Dissolving involves energy changes. C 108 

Table 2e. Other Propositions about Energy 

Conservation 

22. Heat lost by one body is gained by another. J 66. 67 

23. Kinetic energy is conserved in collisions. P.G 68, 69 

24. The total energy of a system is conserved. G.P 72-76 

Not all systems conserve mechanical energy. P 70 

Degradation 

25. In changes in matter, some energy is lost to our use. E 77 

Husbanding 

26. Humans are capable of regulating their use of energy. E.G 79-61 

27. Intensive energy use by man has resulted in changes to the 
environment 

E 88 
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28. Conservation of energy and development of alternative energy 
sources arc essential to our future well-being. 

Lli 86,87 

h. There are renewable and non-renewable energy sources. G 82-85 

The propositions listed above outline a knowledge base about energy which is 

taken to be scientifically acceptable, significant, and considered by curriculum and 

teaching materials designers as appropriate for Alberta secondary school students. 

Table 3 shows the distribution of statements about energy across grade level and 

discipline. 

Table 3. Distribution of Core Curriculum Statements about Energy 

Level Aspect Total 

Abstract 
quantity 

Form Transfer Conserve Degrade Husband 

elementary 1 7 4 0 1 4 17(13%) 

junior high II 12 II 2 0 0 36 (27%) 

biology 0 4 2 0 0 0 6 (5%) 

chemistry 0 0 1 0 0 0 1(1%) 

physics 6 7 6 4 0 0 23 (17%) 

general 
science 

8 19 10 in
 

0 6 48 (37%) 

totals 26 49 34 II ,. .1.: ' 10 131 

(20%) (37%) (34%) (8%) . (l%) (8%) 

As a result of their elementary school studies, all Alberta students should have 

been exposed to the idea that scientists identify certain common phenomena (light, 

heat, sound) as forms of a more general quantity called energy. Energy is described as 

moving from place to place. Fuels are sources of energy. Energy needs to be 
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husbanded, because the fuel resources that supply it are in limited supply. Ultimately, 

the earth's supply of energy can be traced to the sun. 

In junior high school, heat and mechanical energy are studied in grade 9. 

Mathematical calculation of work and energy is introduced. The 1978 curriculum 

(which at the time of the study had been followed by all interview and survey 

subjects) includes no mention of energy degradation or husbanding. 

Senior high biology and chemistry curricula to grade 11 level make almost no 

reference to energy. The study of chemical energetics occurs in grade 12. Grade 11 

physics follows a historical development of the notion of conservation, so mechanical 

energy, both kinetic and potential, is introduced quantitatively. Again, none of these 

courses focus on energy degradation or husbanding. 

The general science curriculum being followed by students in the study (Science 

14/24) was introduced in 1989. It contains a large number of statements about the 

scientific conception of energy and about energy husbanding. The treatment is largely 

qualitative and practical, concentrating on everyday instances and application. 

However, because the selection of units is left to the teacher, students may not be 

exposed to these topics. 

At the time of the study, greatly revised science programs were being introduced at 

junior and senior high level in Alberta. In them, energy is used as one of six unifying 

themes across topics and grade levels. Also, the initial steps in elementary science 

curriculum revision were underway. 
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Identify Underlying Concepts 

A first step in identifying alternative conceptions of energy is to describe the 

scientific concepts underlying the factual propositions identified previously. Physicist 

Richard Feynman has offered a widely-cited description of the scientist's understanding 

of energy: 

"...there is a certain quantity, which we call energy, which does not change in 
the manifold changes which nature undergoes. That is a most abstract idea, because it 
is a mathematical principle; it says that there is a numerical quantity that does not 
change when something happens. It is not a description or a mechanism, or anything 
concrete; it is just a strange fact that we can calculate some number and when we 
finish watching nature go through her tricks and calculate the number again, it is the 
same." (Feynman, cited in Approaches to teaching energy. 1987, p. 4) 

Since scientists regard energy as an abstract numerical quantity, non-mathematical 

discussion of energy and its characteristics must perforce involve the use of metaphor. 

Driver and Miller (1986) report three fundamental energy-pictures suggested by 

participants in a workshop on study and teaching of energy: 

1. degradation-dissipation: Energy changes in location and distribution. Its 

characteristics do not change. 

2. flow-trans formation: Energy is like a river, an actor with different disguises, or 

a person with different roles (worker, husband, father) adopted for different purposes 

or in different circumstances. Historically, this picture may have been the genesis of 

the abstract energy concept discussed earlier. 

3. sources-containers: Some objects provide energy, either because it is stored in 

them or because it appears from them, like water from a tap. Energy is implicitly 

viewed as a kind of stuff and granted some degree of material character. This image 

may be inevitable whenever energy is quantified. 
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A more detailed and widely-accepted analysis of the scientific concept of energy 

was outlined by Duit (1981). He suggests that scientists conceive of energy in terms 

of five essential features: quantity, transfer, conversion of form, conservation, and 

degradation. 

1. quantity: Physical systems and processes can be described in terms of a 

calculated quantity called energy. Energy is thus an abstraction. Nevertheless, it is 

often convenient to speak of it as a quasi-material thing, a sort of generalized fuel 

associated with changes in the world. Energy is associated with differences (Ogborne, 

1990) and with mass, according to Einstein's description of mass-energy equivalence 

(Ogborne, 1986). 

2. transfer: Energy can be transferred from one system or place to another. 

3. conversion: The energy involved in a change is often pictured as having a 

specific form; for example, kinetic energy or the various types of potential energy. 

Although ubiquitous, this model has been challenged by Ellse (1988), who argues that 

it would be preferable to describe calculations of energy changes as taking various 

forms. Students could thus distinguish between different types of "working" (electrical 

working, heat working, and so on) while maintaining an unitary, abstract concept of 

energy itself. 

4. conservation: In a closed system, the total energy remains constant, despite 

transfers and changes in parts of the system. It is for this reason that physicists find 

energy a useful quantity to calculate. 
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5. degradation: When a physical system changes, the energy involved may not 

remain available for the same process in the future. In particular, as energy is 

progressively transformed it becomes less capable of being harnessed to do useful 

work. Mathematically, the "value" of energy to cause change is described by another 

abstract quantity called entropy. Qualitatively, energy is said to be degraded or 

dissipated as it becomes less able to cause changes. 

Jn summary, energy is a characteristic of physical systems that appears in various 

forms and can be transferred between parts of a system, but under appropriate 

conditions it is seen to be conserved and progressively degraded by physical processes. 

This characterization of the scientific energy concept has been adopted in much 

alternatives conception research. 

To account for all the knowledge propositions drawn from the Alberta science 

curriculum, it was necessary to add an additional category to Duit's scheme: 

"husbanding". In it were placed curriculum statements about restraining use of energy 

resources on personal and societal levels. It is recognized that this sort of energy 

education is, at best, an application of scientific conceptions rather than a core element 

of them. Current public school science curricula, however, commonly go beyond 

strictly scientific ideas to technological implementations and applications to social 

issues (Alberta education, 1990). Indeed, developing a "citizen's conception" of energy 

has been proposed as a main goal for the study of energy in schools (Approaches to 

Teaching Energy. 1987; Solomon, 1986; Wellington, 1986). Thus, the addition of a 
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"husbanding" category to Duit's scheme was considered appropriate for the purpose of 

classifying curriculum statements. 

Validate Content Knowledge Base 

The content validity of the description of scientific knowledge prepared so far 

was established by systematically comparing the knowledge propositions and concept 

statements. As previously shown in Table 2, each of the 28 knowledge propositions 

exemplifies at least one of the six essential features of a scientific energy concept. 

Similarly, each of the essential features is represented by several knowledge 

propositions. Thus, the propositions drawn from the Alberta science curriculum and 

the expanded Duit characterization of energy were taken as referring to the same area 

of knowledge. Instruments based on the knowledge base were presumed to have 

content validity. 

Exploring Alternative Conceptions 

Literature Search 

Interview and survey items for the study needed to incorporate known alternative 

conceptions of energy in order to establish their existence and prevalence among 

Alberta students (research question 1). Therefore, an extensive review of existing 

studies of student understanding of energy was undertaken, in order to identify 

common mistaken beliefs as well as functional alternatives to the scientific conception 

described earlier. An extensive literature was discovered, dating back to the late 

1970's. In it, questionnaire studies of students' free associations and definitions for 
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energy conducted by Duit (1984) and extensive interview studies by Stead (1980) and 

Watts (undated, 1983a) suggested two major differences between alternative and 

scientific conceptions of energy. 

First, non-scientists tend to associate energy with particular circumstances rather 

than viewing it as a general, abstract characteristic of physical situations. Young 

children, for example, commonly maintain that living creatures have energy, but non­

living objects lack energy by their very nature. Second, non-scientists do not share the 

scientists metaphoric use of energy language and images. Of necessity, a non-

mathematical scientific discussion of energy must utilize metaphoric images and 

language, as discussed above, but scientists recognize such usage as metaphor. 

Non-scientific conceptions may grant the images a greater degree of reality. Everyday 

consideration of energy conservation is a case in point, in which energy (rather than 

fossil fuel) is seen as a consumable substance. (It should be noted that these examples 

are intended to highlight differences in alternative conceptions of energy, not to 

suggest that one is more functional or "correct" in some general sense.) 

Information from observational studies has been organized in several ways. Seven 

recurrent alternative frameworks were outlined by Watts (1983a). They were used in 

reviews by Brook (1986) and Brook and Driver (1984) to integrate findings to those 

dates. 

A simpler organizational structure had been used by Solomon (1983c), who linked 

student examples of energy use to four everyday language "provinces of meaning," 

two related to living things and two related to machines. A further reduction was 
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made by the Children's Learning in Science Project (CUSP) (Approaches to teaching 

energy. 1987), which noted that the word "energy" is closely associated with force, 

power and similar terms, and that lay usage often appears ambiguous. Nevertheless, 

CUSP identified three key features of a "lay meaning" of energy: (1) energy is 

substantive and can change into other things; (2) energy causes things to happen when 

it is present or active; (3) energy, like a fuel, is used up by activity, so activity stops 

when it is gone. 

During the present study, the CLISP statements came to be considered as answers, 

for which three questions were eventually constructed: (1) What situations is energy 

associated with? (2) What is the nature of energy? (3) What happens to energy over 

time? The findings of previous research, as well as observations from the present 

study, fit well into this framework. It has been used to organize the following 

description of known alternative conceptions of energy, which was synthesized from 

primary sources and the review articles mentioned above. (Identifying labels in 

quotations are this author's; others are those originally used by Watts.) 

1. What is energy associated with? A scientific concept associates energy with 

any physical situation. Alternative associations include: 

1.1 living things (Solomon, 1983a; Stead, 1980) - "animate" framework; 

1.2 human beings or objects considered to have human characteristics (Stead, 

1980; Watts, 1983a) - human-centred framework; 

1.3. movement (Brook & Driver, 1984; Solomon, 1983a; Watts, 1983a) - obvious 

activity framework; 
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1.4. the performance of useful work by technological devices (Duit, 1981; 

Solomon, 1983a; Watts, 1983a) - functional framework; 

1.5 force or power (Approaches to teaching energy. 1987; Brook & Driver, 1984; 

Duit, 1981; Watts & Gilbert, 1982) - "undifferentiated" framework. 

2. What is the nature of energy? A scientific conception sees energy as a 

convenient, abstract, calculable quantity. Alternative conceptions include: 

2.1 a health/life force present when living creatures are "energetic" (Solomon, 

1983a) - "vitalism" framework; 

2.2 a substance-like source of activity or causal agent (Gilbert & Pope, cited in 

Brook, 1986; Watts, 1983a) - "substantive" framework. 

3. What happens to energy over time? A scientific conception sees energy 

being transferred, transformed and degraded, but always conserved in closed systems.. 

Alternative conceptions include: 

3.1 energy is possessed or stored by some objects until it is needed or used up by 

others (Gilbert & Pope, cited in Brook, 1986; Watts, 1983a) - depository framework; 

3.2 energy circulates or is carried through a system like a fluid (Duit, 1981; 

Watts, 1983a) - flow transfer framework; 

3.3 energy is suddenly produced from other ingredients or triggered into activity 

from a dormant state or possibility (Watts, 1983a) - reactive ingredient framework; 

3.4 energy is released or given off as result of some other activity (Stead, 1980; 

Watts, 1983a) - byproduct framework. 
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Interview Card 0 

Ball on track 

The ball is stuck to the side of the track. 

Then the ball breaks loose and starts to roll down the track. 

Item Preparation 

Items were developed in pairs within the framework of the content propositions 

identified earlier. The members of each item pair depicted different situations but 

were based on the same factual propositions. One item of each pair was used in the 

survey while the other was used during the interview. The resulting interview and 

survey instruments are reproduced below. 

Interview Items 

The cards reproduced below were presented to subjects in order, following the 

script (Appendix C). Items 0, 4, 8, and 10 were also represented by the apparatus 

pictured on the cards, which was displayed while the item was being discussed. 
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Interview Card 1 
House in winter 

The house door has been left open on a cold winter da/. 

Interview Card 2 
Car on hoist 

The car is not moving. 
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Interview Card 3a 
Hot metal 

ecrc <2> 

A piece of hot metal is put into a beaker of cold water. 

After several minutes, some students observe this result. 
Is this possible? 
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Interview Card 4 
Mickey's truck 

This Isrllcke/a truck. 

b. 

He winds It up. 
c. 

2 

It moves along.... and then it stops. 

When is there an energy change? 
a. from a to b 
b. from b to c 
c from c to d 
d. There Is no energy change. 

Interview Card 5 
Fireworks 

1, 

a 
V J 

tu 

d 

F i 

When does the firework have the most energy? 
a. before it is lit 
b. just as it is about to go off 
c as it goes off 
d. after it has gone off 
e. There is no change in energy. 



Interview Card 6a 
Weightlifter 

The weightlifter is not moving the barbell while he holds it. 

Interview Card 6b 
Weightlifter 

held by weightlifter held by machine held up by table 

When does the bar have the most energy? 
a. when it is held by the weightlifter 
b. when it is held by the machine 
c when it is held up by the table 
d. It has the same energy in each situation. 
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Interview Item 7a 
Electric Light 

The battery is connected to the bulb, but the switch is open. 
Which part of this circuit would you describe using the word energy? 

Interview Card 7b 
Electric light 

Now the battery is connected to the bulb, and the switch is down. 
Which part of the circuit would you describe using the word energy? 
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Interview Card 8a 
Grip strengthener 

The athlete is squeezing the grip strengthener. 

Interview Card 8b 
Grip strengthener 

a. 

holding tightly 

b. 

loosening the grip 

c. 

letting go completely 

When is there an energy change? 
a. from a to b 
b. from b to c 
c from a to b and from b to c 
d. There is no energy change. 



Interview Card 9a 
Climbing stairs 

The person is standing still, read/ to carry the load upstairs. 

Interview Card 9b 
Climbing stairs 

a. 

ready to climb climbing up resting at the top 

Where is there an energy change? 
a. from a to b 
b. from b to c 
c from a to b and from c to c 
d. There is no energy change. 
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Interview Card 10b 
Ball on track 

\ / T \ 
xy A \ry xv A V / D \ / D 

The ball is stuck to the side of the track. The ball breaks loose and starts to roll 
down the track. 

How far will the ball roll? 
a. to point a 
b. to point b 
c to point c 
d. to point d 
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Survey Instrument 

This survey is part of a research project about the way Canadian students describe and think 
about various situations. 1 am interested in the different ideas that people have, so there are 
no right or wrong answers. Try to explain your ideas clearly, so I will be able to understand 
how you arc thinking. You can use examples or diagrams in your explanations if you want. 

PLEASE DO NOT MARK THE QUESTION BOOKLET. On the answer sheet, circle the letter 
of your answer and write your explanation in the space provided. In a few days, after I have 
read your survey, I may ask you to clarify some answers. After I am sure that I understand 
your thinking, your name will be removed from the answers before they are analyzed and 
reported. Your answers will not affect your grades in this course! 

Thanks for your help with this research. 

Survey Item I 
Refrigerator 

The freezer door on the refrigerator has come open. 
In a few sentences, describe as much as you can about what is happening in this situation. 



71 

Survey Item 2 
Rock and fencepost 

The rock is balanced on top of the fencepost. 

Which statement below gives the best description of energy in this situation? 
a. There is no energy here. 
b. The rock has more energy on top of the post than if it were lying on 

the ground. 
c The rock and post (and the earth below them) have more energy 

than if the rock were lying on the ground. 
d. The energy of the post is being used up holding the rock. 
e. The energy of the rock and post (and the earth below Uiem) is being 

used up holding the rock. 

Survey Item 3 
Lemonade 

A glass of cold lemonade is left 
on a table on a hot day. 

40 C 

38 After a few minutes a student 
c measures temperatures of the 

air and lemonade. 

The student must decide whether the measurement is reasonable. What is most important in 
making that decision? 

a. The lemonade would not warm up so much in just a short time. 
b. The air near the glass would cool down more as the lemonade warms 

up. 
c The two temperatures would end up equal. 
d. The lemonade would never get hotter than the air around it 
e. The measurement seems reasonable, but it would be sensible to 

repeat it just to make sure. 
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Survey item 4a 
Bicycle 

The bike is being pedalled along the street 
Think about energy in this situation. 

Survey Item 4b 
Bicycle 

a b c 

no pedalling, no braking 
G&fo 

pedalling slowing down stopped 

The rider stops pedalling. The bike coasts along, slows down, and stops. 
Where are there energy changes? 

a. from a to b 
b. from b to c 
c from a to b and from b to c 
d. There are no energy changes. 



Survey Item 5a 
Balloon 
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The balloon has been blown up and tied with a string. 
Think about energy here. 

Survey Item 5b 
Balloon 

O 
string Is lit 

J / 
N o 

V 

balloon explodes 

The string burns and the balloon explodes. 
When does the balloon have the most energy? 

a. before the string is lit 
b. after the string is lit 
c as it explodes 
d. after the explosion 
e. The energy stays the same. 



Survey Item 6a 

The person has lifted the book and Is holding it still. 
Think about energy here. 

Survey Item 6b 
Holding a book 

held up by person held up by a machine 

In which situation is there the biggest energy change? 
a. when the book is lifted up by the person 
b. when the book is lifted up by the machine 
c. The energy change is the same for both ways of lifting. 
d. There is no energy change when the book is lifted. 

Holding a book. 



Survey Item 7a 

The solar cell is connected to a lightbulb, but a cloud shades it from the sunlight 
Think about energy in this situation. 

Survey Item 7b 
Solar cell 

solar 
cell •bulb 

Now the cloud has moved and the lightbulb lights. Which description best fits your idea of 
energy in this situation? 

a. Sunlight releases the energy of the solar cell so the bulb lights up. 
b. Electricity produced by the solar cell makes the bulb release its energy 

and tight up. 
c The electric current in the circuit gets "charged up" with energy in the 

solar cell and carries it to the bulb, which lights up. 
d. Light energy from the sun is changed into electrical energy by the solar 

cell and then back into light energy by the bulb. 
e. Electrical currents from the solar cell go through both wires, meet in the 

bulb, and react to produce light energy. 

Solar cell 
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Survey Item 8a 
Ping-pong ball 

The person is holding the ping-pong ball under water. 
Think about energy in this situation. 

The person lets go and the ping-pong ball pops to the surface. Which part of this situation could 
be described using your idea of energy? 

a. Only part a where the person is forcing the ball to stay underwater. 
b. Only part b where something is moving. 
c Only part c where the ball is at a higher level and the person is (a little 

bit) tired. 
d. My idea of energy applies to more than one part. 
e. There is no energy here at all. 
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Survey Item 9a 
Load and hill 

The person is standing still, ready to push the box up the hill. 
Think about energy in this situation. 

Survey Item 9b 
Load and hill 

getting ready going uphill resting at the top 

The person pushes the box up the hill and then sits down to rest. Which description best fits 
your idea of the person's energy as the box is pushed up the hill? 

a. Energy is being produced in the person's body so the work can be done. 
Energy is being transferred from the person into the box. 
Energy is being shared between the box, the surroundings, and the 
person's body. 
Energy is being used up pushing the box-
My idea of the person's energy is different from all of these. 

b. 

d. 
e. 



Survey Item 10a 
Pendulum 
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Survey Card I Ob 
Pendulum 

stuck to wall swinging down swinging back up 

The glue breaks, and the pendulum swings down and then up again. If we measured the 
pendulum's energy, our answer would 

a. be highest in a and go steadily down as the pendulum swings 
b. be lowest in a and go up as the pendulum gathers energy to swing 
c be high in a, go down as the pendulum swings lower, and then go back 

up in c 
d. be low in a, go up as the pendulum swings faster, and then go back down 

in c 
e. stay the same in a, b, and c 



79 

Item Content 

Table 4 (below) summarizes the content basis for each pair of items in terms of 

the propositions extracted from the Alberta science curriculum and described earlier. 

Because all items portrayed situations which can be described and explained using 

knowledge included in Alberta science programs, the items are considered to have 

content validity. 

The interviews and survey were designed as a selective, rather than exhaustive, 

probe of knowledge defined by the content propositions. No items were directly 

related to propositions 11 (sound as a form of energy), 15 and 16 (the sun as source of 

earth's heat and chemical energy), 23 (kinetic energy in collisions) and 27 and 28 

(energy use and environmental change, and alternative energy sources). These 

omissions were made primarily to reduce the number of items, to restrict them to 

topics which all subjects would likely have considered during recent school courses, or 

to meet the additional item design criteria discussed below. 

It was previously established that a scientific conception of energy, as described by 

Duit (1981), underlies the content propositions. Thus, items based on those 

propositions allowed students to display a scientific conception of energy. In addition, 

either the situation or the multiple choice responses for each item embodied alternative 

conceptions of energy described in the literature (Table 5, below). 



Table 4. Content Basis for Items 

Proposition Interview/Survey Items Proposition 
i 2 3 4 5 6 7 8 9 10/0 

i X X X X X X 

2 X X X X X X X 

3 X X X 

4 X X X X X X 

5 X X 

6 X X 

7 X X X X X X X X 

CO X X X X X X X 

9 X X X X X X X 

10 X 

II 

12 X 

13 X X X 

14 X X X 

15 

16 

17 X X X X 

16 X X 

19 X 

20 X X 

21 X X 

22 X X 

23 

24 X X X X X X X X X 

25 X X X X X X X X 

26 X 

27 

2B 
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Table 5. Conceptions Illustrated by Item Responses 

Conception Item Conception 

4a 4b Sc 6a 7a 7b 7c 7e 8a 8b 9a 9b 9c 9d 10 
a 

10 
b 

10 
c 

to 
d 

Animate X X X 

Motion X X X X x 

Useful task X 

Depository X X X 

Flow/ 
Transfer 

X X X X 

Ingredient/ 
| Byproduct 

X X 

All items contained an open-ended opportunity to express unforseen 

interpretations. Items were thus designed to elicit a wide range of conceptions, from 

the orthodox scientific to the completely idiosyncratic. Development of items was 

also guided by several additional criteria. 

1. familiarity: Situations which are familiar in students out of school experience 

were selected as being most likely to evoke "commonsense" description and 

explanation. Totally novel situations, and those familiar only through school science, 

were avoided. It was hoped that this would reduce subjects' attempts to plead 

ignorance or to please the interviewer by providing the sort of answers usually 

expected in a school context. 

2. variety: Situations were chosen to reflect all underlying concepts and 

alternative orientations identified in the previous phase of the study. 



3. availability of parallel items: Items for the interview and written survey were 

developed in pairs intended to present similar underlying concepts in superficially 

different situations. Comparison of subjects' responses to parallel items could thus be 

used to provide an indication of the instrument's construct validity. 

4. previous use: Interview-about-instance situations and interview questions found 

useful in previously reported studies were used as a basis for all items except 1 and 7. 

Sources are listed in Chapter 4, "Findings". 

5. visual character: To permit the widest possible latitude in description and 

explanation, situations were presented in sketch form, with minimal captions and 

directions. Three items were represented with concrete objects as well as diagrams: a 

marble rolling on a curved plastic ruler was used to model item 1; a wind-up model 

truck demonstrated item 4; and an actual grip strengthener was displayed during the 

presentation of item 8. 

The items were ordered from free responses toward more specific cues and forced 

choices. This was done in order to test previous findings that students seldom utilize 

the term "energy" in explanations unless directly cued (Brook & Driver, 1984; Duit, 

1990). Items 0 and 1 therefore contained no reference to energy, although the 

situations invite use of the concept. Item 2 specifically proposed energy as a possible 

descriptor. Item 3 again presented a situation in general terms, without reference to 

energy. All remaining questions included specific, energy-related alternative answers, 

as well as opportunity for free responses. 
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The use of sequences of pictures was intended to evoke comparisons and 

discussion of the dynamics of energy change. Multiple-choice responses were also 

intended to focus discussion and provide a degree of parallelism between the interview 

and written survey. Finally, item 10 repeated item 0, providing the subject with a 

chance to amplify or modify previous responses once an energy-related mind-set had 

been established. 

Items chosen for use in the survey included a request for written justification of 

the choseo response. In addition, responses to selected items were worded to reflect 

the same conceptual orientation, so that the consistency with which students expressed 

particular orientations could be ascertained (Chapter 4, "Findings: Consistency of 

Responses" and Tables 19 and 20). It was anticipated that survey items would need to 

be augmented or revised in the light of interview results, but this was not necessary. 

However, a minor clarification of wording for item 6 was suggested by the instructor 

of the physics 20 class and incorporated into the surveys given to all other classes.. 

Interview and Survey Administration 

Population and Sample 

Subjects for the study were a stratified sample of students at Crescent Heights 

High School in Medicine Hat, Alberta. One of two public high schools in a city of 

about 45 000 people, Crescent Heights has a student population of about 1100, largely 

drawn from middle class families of European origin. The school offers a 
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comprehensive program of studies with an academic focus. Senior students who wish 

vocational programs attend the other public high school in the city. 

Thirty nine students in two grade 9 classes (roughly 20% of the grade 9 population 

of the school) participated in the study before beginning their unit on energy. The 

students were heterogeneously grouped, and although their class rosters had been 

rearranged each year, all students had received similar science instruction since 

grade 7. 

One grade 11 class in each of general science, biology, and physics participated in 

the study. These 45 high school students represented about 30% of the school's grade 

11 population. Within each high school class, students tend to show a greater 

homogeneity of interests and abilities than in grade 9. This arises naturally as students 

choose whether to study one or several of the specific disciplines or to remain in 

general science. At the time of the study, the general science courses did not qualify 

students for post-secondary study and thus tended to be chosen by those who were less 

academically interested or capable. 

The largest proportion of students attempting to qualify for post-secondary study 

choose biology, either through interest or to satisfy graduation requirements in what is 

perceived as the least demanding way. A much smaller proportion of students choose 

physics, which requires some mathematical competence and is seen by many students 

as the most difficult science. 
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Chemistry students were not included in the study because the majority of them 

also take physics or biology. Grade 12 classes were not surveyed because no general 

science class is available at that level. 

Permission to conduct student interviews and written surveys was obtained from 

Medicine Hal School District #76, the school principal, and the teachers involved. 

Parents of participating students were notified of the study and their permission for 

student participation in interviews was sought (Appendix A). Approval of the Faculty 

of Education Human Subject Research Committee of the University of Lethbridge was 

obtained and the committee's research guidelines were followed. 

From each class two interview subjects, one male and one female, were randomly 

selected from students having parental permission to participate. Table 6 (page 92) 

gives relevant demographic information for the interview subjects. Because some 

permission slips were not returned, interview subjects were not a truly random sample 

of students in the selected grade 9 and 11 classes. However, since the purpose of the 

interviews was to explore a few individual's ideas in depth, this sampling procedure 

was considered adequately representative. 

The survey instrument was completed by all students in the participating classes, 

including the interview subjects, except for those absent on the chosen day. Table 11 

(page 111) gives a breakdown of survey subjects by grade level and course of study. 
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Research Procedures 

Interviews. Eight interviews were conducted during class time over a period of 

three days. The interviewer and subject were able to work undisturbed in preparation 

rooms adjacent to classrooms. Each 20 to 30 minute interview was tape recorded, 

with the subject's permission, for later transcription and analysis. 

A semi-structured format was employed using a predefined script. Subjects were 

asked to describe and analyze pictorial representations or models of ten situations. 

The interview script is reproduced as Appendix B. In general, the discussion was 

crafted to move from general description and free responses toward more specific cues 

and forced choices. It was thus hoped to provide opportunities both for expression of 

novel ideas and for the validation of specific previous findings. 

Survey. Eighty four survey instruments were completed during a 1 week period 

under the supervision of the co-operating teachers, who determined the time of 

administration. No time limit was imposed upon the students as they worked through 

the survey, but teachers reported that most students required 30 to 40 minutes of 

apparently diligent effort. 

Analysis 

Interviews 

Transcripts were examined on two levels. First, student generated statements 

about energy were matched with the knowledge base of propositions, concepts, and 

common misconceptions identified earlier. The resulting variety of statements related 
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to each item was given a preliminary examination to establish the likelihood that 

existing alternative conceptions research on energy might indeed be applicable to 

Alberta students and thus confirm the wisdom of proceeding with the study. 

Student statements were then reexamined as possible indicators of alternative 

conceptual orientations. Statements which did not fit orientations already described in 

the literature, were described according to their underlying theme and structure. 

Since the purpose of the interviews was essentially to confirm and flesh out 

previous findings, their number was kept small enough to be managed by informal 

means. Formalized systems of transcript annotation and proposition or thematic 

sorting were not used. 

Survey 

For each question, survey papers were sorted according to which multiple-choice 

response was chosen. Papers were then grouped according to the justification 

proposed by the student. These clusters of responses were then described, illustrated 

with quotations, and if possible linked to common alternative conceptions. 

One group chi-square analysis was used to confirm that question responses were 

unlikely to have occurred by chance. Patterns of multiple choice responses in different 

classes were compared using contingency tables and multiple group chi-square 

analysis. However, the number of responses was only marginally adequate for such 

analysis, and the questions were not designed primarily for this purpose. Thus, the 

statistics must be regarded as suggestive rather than definitive. 
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The strength of individual subjects' adherence to particular conceptual orientations 

was then investigated (research question 5). Responses to selected pairs or triples of 

alternatives which expressed the same orientation on different items were tallied. The 

actual number of subjects who expressed the same conceptual orientation on more than 

one question was compared to the theoretical probability that independent choices 

would produce similarly consistent responses. 

Responses from 7 of the 8 subjects who participated in both the interview and the 

survey were used to investigate the concurrent validity of the survey. The interview 

response was taken as criterion. Because the survey and interview schedule were not 

identical, no statistical measure of test-retest reliability was strictly applicable. The 

number of subjects and sufficiently parallel items was, in any case, too small to justify 

statistical inference. However, the number of consistent and inconsistent responses to 

similar questions was tallied and considered to be an indication of concurrent validity. 

Summary 

A variety of research methods developed to probe children's alternative conceptions 

were reviewed and, within the limitations of small-scale, exploratory research, drawn 

upon in the initial study design. Following procedures outline by Treagust (1988) and 

Gilbert, Watts & Osborne (1985), an interview protocol and a survey instrument were 

created to investigate children's ideas about energy. Specific features of the study 

were designed to facilitate investigation of each of five research questions. 
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1. Would alternative conceptual orientations reported in the literature also be 

evident in interviews and written surveys of Alberta students? The study utilized 

question situations drawn from previous studies, as well as original items. Student 

responses could thus be directly compared with those found in the original studies. 

Original questions and multiple choice responses were written to reflect alternative 

conceptions described in previous research. 

2. Would subjects show a similar pattern of responses to interviews and written 

surveys? Interview subjects also wrote the survey, so their responses in the two 

situations could be compared. Although the situations portrayed in the survey differed 

from those considered during the interview, corresponding items on the two 

instruments were developed in parallel, were similar in key features, and exemplified 

similar conceptions. The inclusion of an open-response justification for each survey 

response permitted elaboration of answers and provided an opportunity for interpretive 

analysis of an otherwise objective instrument. 

3. Would there be noticeable differences in responses between grade 9 subjects, 

who have not received a formal introduction to energy at secondary school level, and 

grade 11 subjects, who were introduced to the topic two years previously? The sample 

included subjects at both grade levels. Both multiple-choice and open responses could 

be tallied by class and compared. Patterns of multiple choice responses from different 

classes could be analyzed using multiple-group chi-square analysis, although the 

limited size of the sample meant that results could not be treated as definitive. 
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4. Would the proportion of students utilizing a scientific orientation vary between 

classes? Essential features of a scientific conception of energy were established and 

opportunities to express them were incorporated into the interview and survey. The 

number of student responses which reflected aspects of a scientific orientation could be 

tallied by class and compared. 

5. Would students consistently utilize a given conceptual orientation? Multiple 

choice responses exemplifying each of several particular conceptions were included in 

more than one survey question. The number of subjects whose responses consistently 

expressed a particular orientation could thus be tallied and compared to chance 

expectations. Additionally, interview transcripts could be considered at length, tn 

order to uncover underlying consistencies of orientation in an interpretive fashion. 



Copter 4 

Findings 

Introduction 

The eight exploratory interviews provided ample evidence of many previously 

described alternative conceptions of energy. All of the questions proved successful in 

eliciting divergent responses, variations of interpretation, and novel, student-generated 

examples and phraseology. Summaries of recurrent and unusual responses and 

illustrative quotations documenting findings related to the research questions are 

presented below. 

Survey items were administered in their original form to the physics 20 students. 

A revised wording of item 6 was suggested by the instructor, adopted, and used in the 

surveys completed by the remaining 73 subjects. Comments on the anticipated and 

actual responses and written justifications for each of the 10 questions are presented 

below, along with multiple-choice response patterns by class and illustrative 

quotations. Additional discussion of each alternative response, supported by further 

quotations, is presented in Appendix C. 

Interview Results 

Overview 

Demographic information about the eight interview subjects is summarized in 

Table 6, below. 
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Subject Class Sex Age Science 
Achievement 

* 

Interview 
Date 

1. Physics 20 -n
 

17 A 91-05-08 am 

2. Physics 20 M 17 B 91-05-09 am 

3. Biology 20 -n
 

17 C 91-05-10 am 

4. Biology 20 M 16 A 91-05-10 am 

5. Science 24 F 17 B 91-05-09 pm 

6. Science 24 M 17 B 91-05-09 pm 

7, Science 9 M 16 C 91-05-10 am 

8. Science 9 F 15 A 91-05-10 am 

Throughout the interview process, initial reservations about the wisdom of working 

with subjects who had been, and might again be students of the author proved 

unfounded. There was no evidence of any felt need for caution or protective reticence. 

Rather, subjects were relaxed and ventured far beyond obedient co-operation. They 

worked hard to find helpful examples, provide detailed descriptions and generally 

establish shared meanings. Subjects appeared to enjoy having the lengthy, undivided 

attention of a listener and the opportunity to explore their own ideas in unusual depth. 

The resulting conversation was focussed and relevant, but also unexpectedly genial. 

Several aspects of the conversations stood out by virtue of being frequent, 

unexpected or of unsuspected importance. They are summarized below and discussed 

later in the context of the particular interview items. Quotations are coded according 

to the system outlined in Table 7. 

Table 6. Interview Subjects 



Table 7. Quotation Coding 
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Example 

(What do think?) Well... it [the energy] has xx // just disappeared 
2:14 3 (024) 

2: 
US: 
4: 
3: 
(024) 

sequential citation number 
interview or survey 
item number 
subject number 
transcript segment 

XX 

( ) 

[ 3 

interviewer's speech 
pause 

explanation added during transcription 
undecipherable 
omitted material - judged irrelevant during transcription 

1. Subjects' ideas were not always stable, but neither were they whimsical or 

chaotic. Instead, there was a sense of trying to describe the same situation from 

various perspectives, which occasionally led to contradictions as one account was 

replaced by an apparently more suitable one. 

(When would you say it had the most energy?) When it was up in the air. When it 
was flying. (Explain why.) Because to get up in the air so quick and so fast you need 
lots of energy, and so £ has to be where all the energy comes from. Well, the most 
part of the energy // Like, I don't know what makes it go off, like ... probably the 
flame makes it go off, so ... as soon as the flame gets down, then it all goes up in the 
air. So, it's both. Like there's energy from there [the burning wick] that makes it go 
up, so... it's both of them. 14:15 5 (134-139) 

(Does the bar have energy?) No // He's holding the bar up. But he's not moving it. 
So, if he was moving it then ... I don't know ... (But he's not. He's just holding it 
still.) OK. Well, then, I think he has all the energy. He has to hold the bar up, so 
he's got the energy. 15:16 5 (150-155) 

2. The term "energy" was seldom used spontaneously in descriptions or 

explanations, (items 0, 1 and 10). 
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3. Subjects had difficulty constructing accounts of energy flow through open 

systems, especially those which included living creatures. Steps involving energy 

degradation into evenly distributed heat energy were seldom included. 

Does it [energy] have anything to do with the hoist, or is it just the car? // Well, if it's 
just sitting still then ... there'll be no energy, wet) ... it has to have energy to keep the 
tiling up, the car up. I don't know if that's energy or whatever, but ... 
6: 12 5 (055-056) 

(What's happening with the energy as it's moving along, then?) Well, it's being used 
up, probably, from the wind and the ... friction, I guess // I just see it ... unwinding 
and the wheels are using that [energy] to make it go, I guess. (What happens as it's 
used up?) It just... is, probably, no longer and it stops. It just... I don't know ... 
11:14 3 (076-081) 

4. The process of establishing temperature equilibrium in a familiar physical 

system was surprisingly poorly described and was seldom related to energy flows in 

the system. Hot and cold objects were not considered in relation to their surroundings. 

Fluctuations above and below initial temperatures appeared to be as plausible as 

progressive movement towards equilibrium. 

(Would they [the final temperatures] still be different, or would they be the same?) I 
think they'd be a little bit different. The metal could be a little bit hotter still // 'cause 
the water was kind of colder and I don't think it's going to drop that far down. Like, 
it's not going to release all of its heat. 9:13 8(079-082) 

(What do you think it would be like in another few minutes?) Uh, the temperature of 
the thermometer would have dropped a couple of degrees and the metal would have 
dropped, too // (What would ... set the limit?) Probably zero // (Why do you think that 
would be a ... sort of limit?) 'Cause zero is when the, is the starting of the freezing 
point and the melting point... of ice and water. 10: 13 7 (059-066) 

5. Subjects expressed a surprising variety of relationships between heat and 

energy, considering the extensive study of heat they had all made in grade 9. 

Well, energy ... is like heat. It's like friction. When you move something very fast, it 
would warm up. If not, if you move it very slow, it would probably get cooler. 
7:12 7 (036) 

The metal... it could be attracting heat, and the heat's making energy inside of it // It's 
just the amount of heat it attracts that's creating the energy in it // 16: 16 8 (124-126) 
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6. The term "potential energy" was sometimes used to signify an unfilled 

capacity, rather than a particular form of energy. "Potential" energy thus contrasts 

with "actual" energy (which subjects often termed "kinetic"). In this usage, accounts 

of conversion from potential to kinetic energy, although superficially orthodox, refer to 

more than a change between two equally "real" guises. Instead, they have a strong 

sense of the sudden appearance or actualization of a previous possibility. 

It [has] potential energy. And once it rolls down it would go into kinetic and then that 
will turn into heat energy. (In your mind, what do you mean by potential energy?) It 
has the ability to do work ... to release heat... if it is released. (Has it got that ability 
right now // as I'm holding it?) No. (So when I release it, what happens?) Then it has 
energy // when it's released it's got kinetic energy // It changes into kinetic. 
I: 10 2 (012-028) 

7. In static situations, such as a car on a hoist, energy was sometimes considered 

as necessarily present to prevent motion. This extends the notion of energy as a fuel 

which causes motion. 

(Is there any energy there [initially]?) While it's sitting there? ... hm ... Probably just to 
keep it there. There's got to be, if that's a slope and this [marble] is sitting there. 
2: 10 3 (178-179) 

Detailed Discussion of Responses to Interview Items 

Each interview item is reproduced below and its intent is summarized. A brief 

description of an appropriate scientific response is given, followed by a discussion of 

the main features of student responses. 
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Item 0. Ball on track 

The ball is stuck to the side of the track. 
Then the ball breaks loose and starts to roll down the track 

(item 10 only: How far will the ball roll? 
a. to point a 
b, to point b 
c to point c 
d. to point d 

source: original 

Figure I 

The intent of the question was to determine if subjects would spontaneously use 

any conception of energy when describing a physical system. In scientific terms, an 

appropriate description would involve energy transformations, conservation, and 

degradation due to friction. 

When initially asked to describe the system, 3 of 8 subjects, including both physics 

students, spontaneously mentioned energy. At the end of the interview, when 

specifically asked to describe the same situation in terms of energy, 6 subjects were 

able to comply. (The remaining 2 subjects did not consider item 10, as their 

interviews were terminated so they could proceed to other classes.) That is, although 

subjects were generally capable of describing the situation in terms of energy, fewer 

than half did so spontaneously. Among these students, energy was not a favoured 

descriptive stance. By contrast, as indicated earlier, physical scientists regard energy 

as a powerful and pervasively useful descriptive tool. 
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Two subjects (1 and 2) proposed superficially scientific descriptions involving 

energy transformation, degradation and conservation. However, questions about the 

initial energy of the marble, when it was glued high on the side of the track, evoked a 

variety of alternative conceptions. 

It [lias] potential energy. And once it rolls down it would go into kinetic and then that 
will turn into heat energy. (In your mind, what do you mean by potential energy?) It 
has the ability to do work ... to release heat... if it is released. (Has it got that ability 
right now // as I'm holding it?) No. (So when I release it, what happens?) Then it lias 
energy // when it's released it's got kinetic energy // It changes into kinetic. 
1: 10 2 (012-028) 

Here, "potential" appears to have the sense of "possible". The marble has an unfilled 

capacity for "real" (kinetic) energy, which only materializes when the marble is 

released. 

Some subjects claimed that energy was necessary to cause the ball's motion down 

the slope. Others proposed that it was necessary to prevent such motion. 

(Is there any energy there [initially]?) While it's sitting there? ... hm ... Probably just to 
keep it there. There's got to be, if that's a slope and this [marble] is sitting there. 
2: 10 3 (178-179) 

However, for one subject the absence of both motion or animate objects removed the 

possibility of energy. 

(Here's a ball stuck to the track. Is there any energy there?) It's just stuck there, like, 
nobody's holding it?// Uh,no. 3:10 7 (230-232) 
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Item I: Winter house with open door 

The house door has been left open on a cold winter day. 
source: original 

Figure 2 

The familiar situation was intended to elicit everyday notions of husbanding 

energy. Appropriate scientific descriptions could be made generally, in terms of 

energy transfer, or specifically in terms of heat (energy) loss or transfer. 

No subject spontaneously described the situation in terms of energy. All responses 

were in terms of moving air, resulting in a cooling of the house. Only one subject (2) 

ventured beyond description of observables to any sort of theoretical account. To him, 

heat apparently consisted of two particular kinds of atoms, hot and cold, whose 

proportion determines the temperature of a substance. 

There's a mixture of heat. The atoms and stuff are bouncing around and stuff. It's 
getting colder in the house // (Explain that a bit.) Well, as the hot and cold air come 
together and the atoms or whatever start bouncing around and mixing up ... they kind 
of dilute the hot air from inside. 4: II 2 (048-052) 

One subject (3) mentioned the inefficiency of trying to heat a house with an 

open door. However, as she specifically rejected description of the situation in terms 
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of energy, her comment cannot be taken as indicating a husbanding orientation towards 

a well-differentiated concept of energy. 

Item 2: Car on hoist 

The item portrays no motion or animate objects, so it was expected that 

subjects holding these orientations would deny the presence of energy. An appropriate 

scientific description would mention the gravitational potential energy associated with 

the elevated car. The mechanism of the hoist, although not shown, might be described 

as converting chemical or electrical energy into heat if it is thought to continue 

running while the car is elevated. 

One subject (3) strongly linked energy with motion. 

(Tell me about energy as you think of it in this situation.) Urn ... Gaugh) I don't think 
there is any energy if it's not moving. If it's not running, if it's just sitting there. 
5: 12 3 (025-026) 

To subject (5), the lack of energy implied by a motionless car conflicted with the 

apparent need for some energetic agent to keep the car raised. 

The car is not moving. 
source: Stead (I960) 

Figure 3 
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Does it [energy] have anything to do with the hoist, or is it just the car? // Well, it* it's 
just sitting still then ... there'll be no energy, well ... it has to have energy to keep the 
tiling up, the car up. I don't know if that's energy or whatever, but... 
6: 12 5 (055-056) 

An undifferentiated orientation was also evident, conflating energy, heat, friction 

and motion. 

Well, energy ... is like heat. It's like friction. When you move something very fast, it 
would warm up. If not, if you move it very slow, it would probably get cooler. 
7: 12 7 (036) 

Item 3. Hot metal in cool water 

Start Finish 

A piece of hot metal is put into a beaker of cold water. 
After several minutes, some students observe this result. 

Is this possible? 
source: Duit (1990) (modified) 

Figure 4 

A scientific analysis would apply the notion of transfer of energy (specifically, 

heat energy) to conclude that the situation is not possible. The metal and the water 

could not both lose heat energy and get colder. The analysis is consistent with a 

substantive, flow-transfer image of energy. It was expected that undifferentiated views 

which confuse heat and energy might also surface. 
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Faced with a specific request to describe the situation in terms of energy, two 

subjects (5 and 7) found no indication of energy in the situation. Two more (3 and 6) 

were unsure if heat was a type of energy. Others spoke of energy (or heat energy), 

primarily in a depository, substantive fashion. 

The energy amount, the energy in this water is less than what's in that rock, so when 
Hie rock is there (in the water) the heat energy is lost to the water, until both equal and 
there's no more to give and no more ... to take // (How does that work?) Well, by 
touch ... transformation, like ... When this [metal] enters into the water it'll give off the 
energy, like from the outside, and then ... this [water] will be taking in // the water 
will keep taking or this [metal] will keep giving off energy until it's completely ... like, 
after a little period of time it will, they will balance. 8:13 4 (063-067) 

Despite the familiarity of the situation, one student (8) mistakenly thought the final 

temperatures would never quite equalize. 

(Would they [the final temperatures] still be different, or would they be the same?) I 
think they'd be a little bit different. The metal could be a little bit hotter still // 'cause 
the water was kind of colder and I don't think it's going to drop that far down. Like, 
it's not going to release all of its heat. 9:13 8 (079-082) 

Other subjects thought temperatures would oscillate around an intermediate value, or 

equalize at some arbitrary limit rather than at the ambient temperature. 

(What do you think it would be like in another few minutes?) Uh, the temperature of 
the thermometer would have dropped a couple of degrees and the metal would have 
dropped, too // (What would ... set the limit?) Probably zero // (Why do you think that 
would be a ... sort of limit?) 'Cause zero is when the, is the starting of the freezing 
point and the melting point... of ice and water. 10:13 7 (059-066) 



102 

I t em 4: Mechanical truck 

When is there an energy change? 

ThiBtatlldcBv'atnmL Htwlrria I t m . 

a. from A to B 
b. from B to C 
c. from C to D 
d. there is no energy change 

source: Brook & Driver (1984) 

Figure 5 

Scientifically, the item invites description of energy transformation. Energy 

degradation due to friction as the truck slows down might also be mentioned. There 

are energy changes between all four illustrations. Potential energy of the truck 

increases from a to b, is transformed to kinetic energy from b to c, and is degraded 

into heat from c to d. It was anticipated that alternative conceptions might associate 

energy only with motion, or with the action of a person winding the truck. 

Substantive views of energy as a fuel and depository notions of the truck getting the 

energy it needs to move were also expected. 

Subjects did not agree about the effect of winding the truck motor. One (6) 

believed that winding created a possibility (potential) that only became energy at the 

moment the truck was released. Two (1 and 4) thought that winding actualized 

potential energy that was already present in the truck, or changed it to a form that 

could result in motion. Two others (7 and 8) saw winding as establishing the proper 

conditions for energy to begin flowing through or accumulating in the truck. Two 

subjects (2 and 5) viewed winding as itself increasing the truck's energy. 
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Several responses exemplified the functional view of energy as a generalized fuel, 

used up in the performance of tasks. One subject struggled with the thought that 

expended energy just ceases to exist. 

(What's happening with the energy as it's moving along, then?) Well, it's being used 
up, probably, from the wind and the ... friction, I guess //1 just see it... unwinding 
and the wheels are using that [energy] to make it go, I guess. (What happens as it's 
used up?) It just... is, probably, no longer and it stops. It just... I dont't know ... 11: 
14 3 (076-081) 

Other subjects expressed a flow-transfer orientation. For them, energy first moved 

into the truck and then moved out of it, becoming lost or unavailable, rather than 

nonexistent. 

... As you're winding it, you'd be putting a little bit more energy in it, so it moves. 
And then when it slows down I think it's kind of losing its energy // it just kind of... 
goes away. (Does it just vanish?) I think it just kind of mixes in with the air. And 
you can't tell it's there, but it is there. I think when you're winding it up, it's moving 
the stuff inside. And it's picking up more energy. (From where?) Outside, like ... from 
the air particles and everything. 12:14 8 (084-098) 

Item 5: Exploding firecracker 

Scientifically, the situation is one of energy transfer and transformation. The 

potential (chemical) energy of the firework is dissipated during the explosion, 

primarily as heat. The most appropriate multiple choice response is A. It was 

When does the firework have the most energy? 
a. just before it is tit 
b. just as it is about to go off 
c as it goes off 
d. after it has gone off 
e. There is no change in energy. 

source: Watts & Gilbert (1982) (modified) 

Figure 6 
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expected that conceptions of energy as a reactive ingredient or a by-product of the 

explosion might surface, leading to response C. Associations of energy with motion 

would lead to the same response. 

In fact, subjects did not restrain themselves to a literal reading of the question. 

Significant and varied roles were attributed to the burning wick. Three subjects (2, 5 

and 7) saw its flame as adding energy to the firecracker, one (8) viewed it as releasing 

energy, and three (1 ,4 and 6) thought it neither augmented nor diminished energy, but 

rather triggered energy changes. 

(What importance does the wick have in all of this?) It sets the change off. It's like 
winding the truck. It's going to set the change. 13: IS 4 (100-103) 

In addition, there were different assessments of initial energy. Five subjects 

believed that energy was stored in the firecracker even before its wick was lit. A 

contrary view saw the firecracker, which initially lacked energy, as gaining it when the 

wick was lit. Two subjects (4 and 5) described energy as only potentially or partially 

present until triggered by the wick. 

When would you say it had the most energy?) When it was up in the air. When it 
was flying. (Explain why.) Because to get up in the air so quick and so fast you need 
lots of energy, and so £ has to be where all the energy comes from. Well, the most 
part of the energy // Like, I don't know what makes it go off, like ... probably the 
flame makes it go off, so ... as soon as the flame gets down, then it all goes up in the 
air. So, it's both. Like there's energy from there [the burning wick] that makes it go 
up, so... it's both of them. 14:15 5 (134-139) 



held by weightlifter held up by held up by the table 
machine 

When does the bar have the most energy? 
a. when it is held by the weightlifter 
b. when it Is held by the machine 
c when it is held up by the table 
d. It has the same energy in each situation. 

Source: Stead (1980) modified 
Figure 7 

The energy of the bar, in a scientific analysis, depends on its height, so the most 

appropriate response is D. It was expected that subjects who associated motion with 

animate objects would choose response A, and that those who adopted a functional 

view would view both A and B as correct. 

The goal of the multiple-choice responses, to compare energy attributed to people, 

machines, and inanimate objects, was not met. All 7 subjects believed either that the 

bar's energy depended on its height, or that it was zero. Thus, all were able to chose 

response D (constant energy) without considering the nature of the barbell's support. 

Subjects differed in their description of the energy associated with the barbell. A 

motion-centred conception was reflected by some (3 and 5) who focussed on the 

barbell's stillness. 
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(Does the bar have energy?) No // He's holding the bar up. But lie's not moving it. 
So, if he was moving it then ... I don't know ... (But he's not. He's just holding it 
still.) OK. Well, then, I think he lias all the energy. He has to hold the bar up, so 
he's got the energy. 15:16 5 (150-155) 

Subjects who did attribute energy to the barbell cited its height (1,2,4 and 6) or 

heat (8). In the latter view, energy appears as a by-product of heat flow. 

The metal... it could be attracting heat, and die heat's making energy inside of it // It's 
just the amount of heat it attracts that's creating the energy in it // 16: 16 8 (124-126) 

A second difference concerned the fate of the person's energy. A substantive view 

was suggested by subjects who thought energy would be carried away by the person's 

sweat (7), be converted into heat (8), or move into the barbell (2 and 6). However, 

energy reduction was also described in less substantive terms. 

(Is anything happening to his energy?) Yeah, it's getting tired. (Is it going 
somewhere?) No, it's just staying in one spot. Like, it's staying on his arms ... 
17:16 5 (156-159) 

Item 7. Electric circuit 

The battery is connected to the bulb but the 
switch is open. 

Now the battery is connected to the bulb 
and the switch is down. 

Which part of the circuit would you describe using the word energy? 

source: Watts & Gilbert (1982) 
Figure 8 
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A scientific description would mention the potential energy of the battery and its 

transformation in the bulb into light and heat energy. It was expected that descriptions 

would utilize a substantive, flow-transfer model. A depository view, in which the 

battery has energy which the bulb needs, was also anticipated. 

All responses were consistent with a flow-transfer orientation and involved 

something that originated in the battery and circulated around the circuit. The 

circulating 'substance' was most frequently identified as energy itself (2, 3, 5, 7, 8). 

However, several subjects distinguished (with some difficulty) between energy and a 

circulating carrier such as vibrations (1) or electricity (6). 

(Is there energy there?) It's in the battery. (How do you think of it?) I don't know. 
It's ... like they're sticking to something inside the battery. And then once the switch 
is on it... just sort of has an opening and drains through the wire ... 
(What is it that's travelling there?) Energy. Electricity. (Is that the same thing?) 

Um ... no. Well... in a way, yeah // Energy just isn't electricity. Energy is different 
... things. There's different... types of energy. Electricity is electricity. 

18: 17 6(123-126; 137-142) 

The greatest variation in responses concerned what happens when the bulb lights. 

Subjects suggested that energy was being created (5), triggering a dormant potential of 

the bulb (4), being transformed (1 and 6), losing something that emerged as light (7), 

being carried away as heat (8), or being used up and vanishing (3 and 6). Energy was 

again described as a reactive ingredient, activated in the particular environment of the 

bulb. 
The negative energy or whatever is going into the light, into the socket, but it's not... 
it doesn't do anything without the positive // (What happens if we close the switch?) 
The battery's giving off energy, pt'sj just going to the light bulb and himing into heat 
energy and light energy. (Explain that a little bit more.) Energy's corning all the way 
through [the switch] to here [the bulb]. And from here [the other battery pole] to here 
[the bulb]. And they meet up and then it creates heat energy and light energy. And 
the light gives off them energies. The battery's losing energy. 19:17 2 (162-166) 
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Item 8. Squeezing a grip strengthener 

i. 

A 
holding tfghtly loostning tha grip totting go complexly 

The athlete 1$ squeezing the grip strengthener. 
When is there an energy change? 

a. from a to b 
b. from b to c 
c from a to b and from b to c 
d. There is no energy change. 

source: original 
Figure 9 

Scientifically, there are energy changes as the "gripper" is being held (chemical 

energy being converted into heat in the squeezing hand), as it is released (potential 

energy of the spring being converted into kinetic energy), and while it springs open 

(kinetic energy being converted into heat and transferred to the surroundings). 

Response C is thus the most appropriate. Alternative conceptions might associate 

energy with animate objects or with motion, leading to responses B or C respectively. 

Introducing the discussion with an actual 'gripper' as well as by sketches, may 

have contributed to the comparatively lengthy and detailed responses. All subjects 

agreed that energy was present, even when there was no motion, and that it changed in 

some way as the gripper was released. A change in form (1 and 2), an increased 

amount (7), a decreased amount (3, 4 and 6) and a change in density (8) were all 

suggested. 
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] think some of the energy is letting loose in b. ... as you're letting go, it's not held as 
tightly together. And the energy is kind of moving around more freely, and not as 
packed together as it was. So it's looser and has more places to go. So it's kind of... 
moving out. 'Cause when you're packing it tightly together, it's all kind of... 
bunched up, and it kind of just... goes back into the handles more, and up into the 
ring [spring?]. Or else, it could be escaping and stuff. 
20: 18 8 (172; 185-186) 

Four subjects used heat in their explanations. Two (1 and 6) described energy 

conversions which developed heat in the hand of the person squeezing the gripper. 

Two others (7 and 8) reversed the process and described heat as a source of energy. 

Three subjects (2, 3, 7) expressed an undiffeientiated view which associated or equated 

energy with a force or pressure necessary to overcome the resistance of the gripper. 

The spring's got potential energy which stays constant once it's closed. Your hand's 
giving off energy to keep it closed // It repels, like, the force of the spring, so it equals 
out. There's no [net?] force right now, 'cause nothing's moving. 
21: 18 2(180-182) 

Item 9. Carrying a load up stairs 

reaoy to climb climbing up resting at uw top 

Where is there an energy change? 
from a to b 
from b to c 
from a to b and from c to d 
There is no energy change. 

a. 
b. 
c 
d. 

source: Stead (1980) modified 
Figure 10 
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A scientific analysis sees energy transformation from a to b (potential chemical 

energy from the person's food to kinetic energy and heat) and from b to c (kinetic 

energy to increased gravitational energy). The most appropriate response is thus C. 

Alternative conceptions of energy as associated with animate objects, motion, and the 

performance of useful tasks were anticipated. Descriptions of energy as a state, rather 

than a substance, were also expected. 

Different views were expressed about changes in the quantity of energy as the 

stairs were climbed. One subject (1) maintained that it did not vary. Others suggested 

that an initially large amount of energy was being tapped for the climb, decreasing 

steadily (7) or decreasing and then being restored as the climber rested at the top of 

the stairs (3 and 8). Alternatively, the initial amount of energy was also described as 

low (or zero). One subject (2) saw the maximum amount of actual energy becoming 

available instantly, as soon as the climb began and then being converted to a potential 

for energy. A more functional orientation described energy as present only (or 

primarily) while the climber performed his task. 

It goes from low, and when he's walking up the stairs it goes up a bit, and when he 
rests his energy goes back down 'cause he's not doing anything. // (Where does this 
extra energy come from?) Urn ... from the food he ate. (Wliat starts it coming out?) 
Um ... I guess your mind. Like, you see the stairs coming so you kind of know that 
you're going to have to use energy to walk up the stairs. So I guess you just, you sort 
of tell yourself that you've got to walk up the stairs and kind of get some energy. 
22:19 6(170-174) 

A second clear divergence of interpretations concerned whether energy could 

properly be associated with the box. Two subjects (1 and 2) believed it could; two (6 

and 7) expressed no clear opinion, and two (3 and 8) expressed an animate view in 

which the box had nothing to do with energy. 
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(What about the load?) //1 don't know. It's hard to say that there's energy in 
someUiing that's not moveable. (What about on the stairs being carried up? In a way 
it's moving there.) Yeah, well, not itself. Like, it's being held by something else. 
23: 19 3 (172-175) 

As in item 8, energy was closely associated with heat or sweat in several 

descriptions (1, 3, 7, and 8). 

Survey Results 

Overview 

Survey items are reproduced and analyzed below. Quotations are identified by 

subject number, which is keyed to the student's level and class in Table 8, below. 

Table 8. Survey Identification 

Class Code Class Group Size Survey Numbers 

9 Science 9 

- class E 17 1 - 17 

- class F 22 18-39 

11G General Science (Grade 
H) 

15 4 0 - 5 4 

1 IB Biology (Grade 11) 19 5 5 - 7 3 

IIP Physics (Grade 11) 11 7 4 - 8 4 

An additional survey, number 0, was partially completed and of uncertain origin. 

Response patterns for all multiple choice items except #6 were significantly 

different from chance (one group chi-square, p < 0.001). This suggests that students 

took the survey seriously, not treating it as a multiple guess task, and that they found 

some basis for their answer- \*her than whimsy. Item 6 was used in two slightly 
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considerable appeal, as shown in Table 9. 

Table 9. Non-scientific Conceptions Illustrated by Survey Responses 

Item Conception Item 

Animate Motion Useful 
task 

Depository Flow/ 
transfer 

Ingredient/ 
byproduct 

4a 20 of 84 

4b 20 of 84 

5c 58 of 85 

6a 24 of 80 

7a 13 of 75 

7b 6 of 75 

7c 7 of 75 

7e 2 of 75 

8a 24 of 80 

8b 15 of 80 

9a 20 of 81 

9b 18 of 81 

9c 12 of 81 

9d 27 of 81 

10a 16 of 80 

10b 12 of 80 

10c 19 of 80 

lOd 17 of 80 

Totals 68 (28%) 122 (30%) 20 (25%) 62 (26%) 37(16%) 21 (9%) 

different forms, having been modified after administration to the physics 20 class, so 

no statistical analysis of its results was attempted. 

A number of findings emerge from the data and appear worthy of comment. 

1. Survey responses showed evidence of many previously identified alternative 

conceptions. Responses designed to appeal to non-scientific conceptions had 
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2. Differences in response patterns between classes were statistically significant 

(p < 0.05) for items 2, 5 and 9, and were on the borderline of significance for item 

10. This small degree of difference was not unexpected in view of previous findings 

suggesting the stability and pervasiveness of alternative conceptions. The cause of the 

differences cannot be determined from existing data. 

3. Compared to previous findings, the open response question (#1 - open 

refrigerator) produced an unexpectedly large proportion of answers which described 

the situation specifically in terms of energy (25%). This contrasts with the interviews 

and Duit's (1990) report that energy was seldom used spontaneously as a descriptive 

concept for similar situations. It is possible that particular circumstances, such as open 

refrigerators and empty rooms with lights on, have been linked in common parlance to 

energy-based descriptions, most likely by conservation programs. Such linkages need 

not imply any appreciation of the underlying nature of the situation. Subjects might 

fail to employ similar energy-based descriptions in different circumstances, such as 

those portrayed in the interview or Duit's study, even though the concept appears 

equally applicable. 

An additional 45% of responses referred to heat or heat loss without explicitly 

describing them as forms of energy. It was not possible to determine from the data 

whether these responses implied an energy-based view of the refrigerator. 

4. Grade 11 physics students tended to chose the largest proportion of 

scientifically acceptable answers. This was true for five of nine questions which 

contained multiple choice responses which clearly exemplified a scientific conception 
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(Table 10). More generally, grade 11 students, who had received more science 

instruction than grade 9 subjects, also chose a larger proportion of "scientific" answers. 

The sample was not large enough to justify more sophisticated statistical treatment. It 

must be remembered that, although some more advanced students make greater use of 

scientific concepts, alternative conceptions are not abandoned (finding 1, page 112) 

and were still preferred in most situations (finding 2, page 113). 

Table 10. Scientifically Acceptable Responses 

Item Frequency by Class % Frequency by Class Item 

9 IIG 1 IB IIP 9 IIG 1 IB IIP 

2 b or c 6 of 39 8 of 15 9 of 18 8 of II 15 53 50 73 

3 c or d 13 of 38 9 of 15 6 of 19 6 of 10 34 27 32 60 

4 c or d 17 of 35 9 of 15 13 of 19 5 of II 49 60 68 45 

7 d 16 of 34 8 of 15 13 of 16 10 of 10 47 53 81 100 

8 d 13 of 38 6 of 14 9 of 18 7 of 10 34 43 50 70 

9 c 1 of 39 3 of 15 6 of 17 2 of 10 3 20 35 20 

10 e 5 of 38 2 of IS 3 of 18 6 of 9 13 13 17 67 

mean (%) 29 38 48 62 

5. Justifications almost always treated energy in substantive terms. The 

physicist's abstract conception of energy as a convenient numerical quantity calculable 

for any system whatsoever was seldom in evidence. Only in connection with people 

did "energy" sometimes have the sense of "an energetic state", and this was a limited 

usage which tended to be differentiated from descriptions of non-human energy. 

With the person holding the book it is human energy, but when a machine lifts, it's 
energy produced by electricity or whatever the machine runs on ... 35: S6 27 
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6. Reference to energy degradation was conspicuous by its absence. Situations in 

which energy clearly "runs down", such as the coasting bicycle (item 4), the exploding 

balloon (item 5), pushing a box (item 9) and the swinging pendulum (item 10) did not 

elicit any responses which indicated a general appreciation that energy is degraded or 

dissipated during the performance of useful work. Unfortunately, this aspect of a 

scientific energy concept is not merely an elegant, albeit abstract thermodynamic tidbit. 

It provides an essential conceptual foundation for programs of energy management and 

conservation, and could thus be of considerable practical importance. 

7. The labels "kinetic" and "potential" were used frequently, but not necessarily 

scientifically. Because of the researcher's realization that "potential" could have the 

sense of "capacity for" energy (a result of the interviews), use of these two terms was 

not of itself taken to indicate a scientific energy conception. 

8. As in the interviews, heat was invoked as a carrier or mediating agent for 

energy (item 7). This suggests a limited, substantive view of energy. Similarly, some 

responses to item 8 treated energy as only one of several possible causes of action 

A machine has no life, so it should need no energy. It runs on gas or electricity. No 
energy is needed for the machine. 36: S6 33 

The only reason the ball rises is because of density, not energy. 42: S8 17 

[There is] only buoyancy, and I'm not sure if that is considered energy. 43: S8 32 

9. Energy was not clearly differentiated from related concepts like force, pressure, 

and momentum. 

The force of energy being used to keep the ball and the particles inside the ball held 
down is by the human. 44: S8 30 
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Item 1. Open Refrigerator 

The freezer door on the refrigerator has come open. 
Describe as much as you can about what is happening in this situation. 

source: original 

Figure 11 

Table 11. Survey Item I Response Summary 
Response Totals Frequency by class Response 

n % 9 IIG 1 IB IIP 

energy not mentioned 25 of 83 30 15 of 38 
(38%) 

4 of 15 
(27%) 

2 of 19 
(11%) 

4 of II 
(36%) 

heat or hot air loss 37 of 83 45 

energy mentioned explicitly 21 of 83 25 

-unrelated to heat loss 

-related to heat loss, 

-fridge works harder 

2 of 83 

nTiToTiSr 
i 7 of 83 

2.4 

14.4 

8.4 

Subjects were confronted with a familiar situation that was easily described in 

terms of energy but were given no cues that this perspective would be appropriate. 

Detailed Discussion of Responses to Survey Items 

Each survey item is reproduced below with a summary of its intent, a brief 

scientific analysis of energy in that situation, and a discussion of student responses. 
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Item 2. Rock on Fencepost 
The rock is balanced on top of the fencepost 
Which statement gives the best description of energy in 
this situation? 

a. There is no energy here. 
b. The rock has more energy on top of the post than 

if it were lying on the ground. 
c The rock and post(and the earth below them) have 

more energy than if the rock were lying on the 
ground. 

d. The energy of the post is being used up holding the 
rock. 

e. The energy of the rock and post (and the earth 
below them) is being used up holding the rock. 

source: Stead (I960) modified 

Figure 12 

Nevertheless, over 2/3 of the subjects made explicit mention of specific or general 

concepts of energy in their descriptions. This proportion was lowest in the grade 9 

and physics classes and highest in the biology class. The most common response 

involved energy loss, or energy being released (40, 56, 60, 63, 69). Apparently the 

energy used to operate the freezer was seen as placing it in a high-energy state which 

was jeopardized when the door was opened. The majority of descriptions focussed on 

a particular energy form (heat) and were framed in concrete terms: 16 subjects 

mentioned the escape of cold air, and another 16 coupled that with an inrush of warm 

air. 

This item was intended to parallel interview item 1 (house with open door). The 

widespread use of energy concepts in survey responses stands in sharp contrast to the 

interview, in which no subject mentioned energy. No explanation for this divergence 

is apparent. 
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Table 12. Response Summary for Item 2 

Class Response Frequency Total Response Percentage 

a b c d e a b c d e 

9 18 4 2 9 6 39 46 10 5 23 15 

IIG 3 8 0 0 4 15 20 53 0 0 27 

MB 4 9 0 2 3 18 22 50 0 II 17 

IIP 1 

CO
 0 0 2 II 9 73 0 0 18 

total 26 29 2 II 15 83 31 35 2 13 18 

significance of response patterns: p = 0.0041 

Response A was intended to differentiate between conceptions which link energy 

to change, motion or human agents, and progressively more general scientific 

conceptions (responses B and C). Responses (D) and (E) were designed to appeal to 

undifferentiated conceptions which equate energy with force necessary to hold the rock 

in what might be seen as an unnatural position. 

Differences in response patterns were significant (p = 0.0041). Almost half the 

grade 9 students saw no evidence of energy (response a), compared to less than 1/4 of 

the grade 11 students, and only 9% of the physics students. 

These are non-animated, non-living things. The are not being crashed together to 
create any sort of fusion or energy. They just sit there. 24: S2 33 

However, even though high-school students were more willing to interpret this static, 

inanimate situation in terms of energy, their justifications showed a variety of 

conceptual orientations which are far from orthodox scientific ideas. Two contrasting 

viewpoints are especially evident: 

(1) motion (falling) is the natural state for a raised object, but this can be 

prevented by a resisting energy. 
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If the post was flimsy with no strength, the rock would fall. In order for the rock to 
stay, the post lias to have energy. 25:S2 20 

(2) balanced objects (or those on the ground) are naturally at rest, but can acquire 

energy by falling. 

There is no energy if the rock doesn't fall. If it falls, gravity might give it energy. 
26: S2 5 

Students who saw energy as being expended did so in general terms, associating it 

with all parts of the system (response e) more frequently than with the post alone 

(response d). The post was seen as transmitting energy from the earth to the rock. 

Energy has to come from the earth in order to hold the fence post up, and from the 
post to hold the rock in place. 27: S2 55 

This item was intended to parallel interview item 2 (car on hoist). Both sets of 

responses did link energy to motion and to the process of maintaining an object in a 

raised position. However, the fact that a hoist needs a motor to raise it, and the motor 

uses energy, introduced an unforseen complication to the interview situation. 
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Item 3. Lemonade 

4 glum ol cold lemonade Is left 
on a table on a hot day. 

42 C 

40 C 

38 Alter a tew mlnutei a atudont 
C measures temperatures of lie 

i _ air and lemonade. 

The student must decide whether the measurement is 
reasonable. What is most important in making that 
decision? 

a. The lemonade would not warm up so much in just 
a short time. 

b. The air near the glass would cool down more as 
the lemonade warms up. 

c The two temperatures would end up equal. 
d. The lemonade would never get hotter than the air 

around it. 
e. The measurement seem reasonable, but it would be 

sensible to repeat it just to make sure. 

source: Duit (1990) modified 

Figure 13 

Table 13. Response Summary for Item 3 

Class Response Frequency Total Response Percentage Class 

a b c d e 

Total 

a b c d e 

9 7 5 4 9 13 38 18 13 II 24 34 

IIG 5 3 1 3 3 15 33 20 7 20 20 

1 IB 1 6 2 4 6 19 5 32 II 21 32 

IIP 0 2 1 5 2 10 0 20 10 50 20 

total 13 16 00
 

21 24 82 16 20 10 26 29 

significance of response patterns: p > 0.05 

The question situation was deliberately chosen to be familiar, in order to evoke 

lifeworld frameworks without specifically cuing them. From a scientific viewpoint, 

energy degradation, transfer, and conservation are particularly relevant to this situation. 

However, science classes are unlikely to have provided explanatory vocabulary and 

concepts directly. Although examples of heat transfer should have been familiar to all 
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students from their grade 9 studies, discussion of energy degradation is not a required 

topic, and energy conservation is introduced in other contexts. 

The most scientifically correct responses are C and D. A and B are not 

incorrect, but bear less directly on the question. 

There was no significant difference in the response distribution between classes. 

However, the physics 20 students gave about double the proportion of scientifically 

acceptable answers (c or d) compared to the other groups (60% compared to 31%). 

Only 13% (11 of 82) explanations mentioned energy; all but 3 of them were from 

physics students. No explanations involved the idea of energy degradation. Only 2 

responses (both from physics students) made specific mention of energy conservation. 

A variety of other explanations were proposed, but were not well clustered in 

support of particular multiple choice responses. Apparently the responses provided do 

not tap consistent patterns of reasoning, if such patterns do exist for this situation. 

The item was designed to parallel interview item 3 (hot metal in cold water). It 

was less successful in eliciting discussions of heat energy. Many students focussed on 

the idea of 'coldness', which was described quite substantively. 

The glass is letting off cold particles which turn the air around the glass cold. The 
glass is getting warmer as this is happening. 28: S3 38 
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Item 4. Bicycle 

pedalling 
no pedalling, no braking 
slowing down stopped 

The rider stops pedalling. The bike coasts along, slows down, and stops. 
Where are there energy changes? 

a, from A to D 
b. from B to C 
c from A to B and from B to C 
d. There are no energy changes. 

source: Stead (I960) modified 

Figure 14 

Table 14. Response Summary for Item 4 
Class Response Frequency Total Response Percentage Class 

a b c d 

Total 

a b c d 

9 12 10 15 2 39 31 26 38 5 

IIG 3 3 9 0 15 20 20 60 0 

1 IB 4 2 13 0 19 21 II 68 0 

1 IP 1 5 4 1 II 9 45 36 9 

total 20 20 41 3 84 24 24 49 4 

significance of response patterns: p > 0.05 

The question was designed to evoke conceptions which define energy in terms 

of human activity or of motion. It is thus an inverse of question 2, which involved 

neither motion nor animate objects. In addition, it provides an opportunity to explain 

answers in terms of energy transformations. 
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Response C is most correct scientifically. Response D is also acceptable in the 

limited sense of an unchanged total quantity of energy. Responses A and B are each 

incomplete from a scientific viewpoint. 

There was no significant difference in the pattern of responses for different 

classes. However, an unexpectedly high proportion of physics students chose response 

B, compared to the other high school groups (45% compared to 20% and 11%). 

Three students maintained that there were no energy changes (response D), but this 

did not necessarily arise from an orthodox view of energy conservation. Rather, it was 

an outcome of an equilibrium between energy supply and demand. 

The person has to use his energy to push the bike, but the more harder it is, the more 
energy you need. If you were pedalling up a hill you would need lots of energy. 
29: S4 9 

Many students offered explanations which referred to particular frames in the 

question illustration, rather than to changes between them. It would be clearer to letter 

the transition between pedalling and coasting as a and that between coasting and 

stopped as b . Nevertheless, explanations fell into easily identifiable groups. 

For many students, energy was identified only with activity by the rider. A 

second group identified energy with any motion, and often quantified energy according 

to speed. However, this view often differed from the scientific conception of kinetic 

energy. Rather, the bike was apparently regarded as something which needs a 

continuing supply of energy-fuel in order to keep moving (depository framework). 

The bike begins to slow down because of a decreasing supply of energy. 30: S4 68 
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A final group of students distinguished between two forms of energy, often using 

the words "kinetic" and "potential", but identified the former with energy release 

(pedalling) and the latter with storing up or loss of energy (coasting and stopping). 

The energy of moving is kinetic because something is being used a lot. But the 
energy of coasting and stopping is potential because the energy is being stored. 
31: S4 44 

The question was designed to parallel interview item 4 (mechanical truck). Both 

items provoked similar idiosyncratic usage of the terms 'potential' and 'kinetic' and 

revealed a view of energy as a sort of fuel, used up or called upon when something 

moves. 

Item S. Exploding Balloon 

The string burns and the balloon explodes. 
When does the balloon have the most energy? 

a. before the string is lit 
b. after the string is lit 
c as it explodes 
d. after the explosion 
e. The energy stays the same 

source: original 

Figure 15 
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Table 15. Response Summary for Item 5 

Class Response Frequency Total Response Percentage Class 

a b c d e 

Total 

a b c d e 

9 4 5 29 1 0 39 10 13 74 3 0 

1 IG 1 1 12 1 0 !5 7 7 80 7 0 

1 IB 3 4 12 0 0 19 16 21 63 0 0 

1 IP i 1 5 0 3 10 10 10 50 0 30 

total 9 II 58 2 3 83 11 13 70 2 4 

significance of response patterns: p < 0.05 

The question was designed to elicit conceptions of energy as a fuel or causal 

agent, or as a byproduct of changes. A focus on motion would lead to response C. 

Students regarding the situation from a scientific orientation were expected to discuss 

energy conservation or transfer. 

However, students interpreted the question as referring variously to the balloon 

alone, the balloon and string, and the system of balloon, string and surrounding air. 

Therefore, responses B and C, A, and E, respectively, could be justified scientifically. 

In fact, the great majority of students chose response C. The response patterns of the 

different classes were significantly different and justifications fell into the expected 

patterns. 

Many students viewed energy as a fuel for the explosion. One student restricted 

this energy-fuel even more, associating it only with useful human activity (Watts' 

functional framework): 

It has more energy after the string is lit, because the fire is a means of warmth to the 
people around it. There is no energy when it blows up, because it is of no use except 
to scare people, which causes them to jump and use energy of their own. 32: S5 4 



Energy was also seen as a reactive agent, dormant or stored in the balloon before the 

explosion. 

AH the balloon particles fly outward. So does the energy front inside, and the energy 
is pushed so hard and fast [that] more energy is released, because of the flame hitting 
the balloon. 33: S5 23 

A large group of subjects proposed that the explosion created energy (Watts' 

by-product framework). 

As it explodes, all the forces inside the balloon are let out and converted to energy. 
34: S5 81 

This question was intended to parallel interview item 5 (exploding firecracker). 

Responses to the two items were very similar. In each, subjects assigned a similar 

variety of roles to the flame in augmenting, releasing, or triggering energy changes. 

Both questions provoked disagreement over the initial presence or absence of energy 

in the balloon. 

Item 6. Holding a book 

o 

hold up by person 

hi 
held up by a machine 

In which situation is there the biggest energy change? 
a. when the book is lifted up by the person 
b. when the book is lifted up by the machine 
c The energy change is the same for both ways of lifting, 
d. There is no energy change when the book is lifted.. 

source: Watts & Gilbert (1982) modified 

Figure 16 
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Table 16. Response Summary for Item 6 

Class Response Frequency Total Response Percentage Class 

a b c d 

Total 

a b c d 

9 20 12 5 0 37 54 32 14 0 

IIG 7 3 5 0 15 47 20 33 0 

1 IB e 2 7 2 19 42 II 37 (t 

IIP * * * * * * * * 

total 35 17 17 2 71 49 24 24 3 

* Class 11P did not receive the same question wording as the other groups, 
significance of response pattern: p not calculated 

The question was designed to directly contrast a person and an inanimate device, 

both performing the same useful task involving movement (lifting a book). It was 

expected that concepts of energy as unique to animate objects would be distinguished 

from those which visualize it as a generalized fuel. Students with a scientific 

orientation were expected to link energy required with the height to which the book is 

lifted, rather than the lifting agent. Response C is most acceptable scientifically, at 

least if the comparative efficiency of the person and the machine is ignored or 

considered equal. 

The question was modified after the initial trial with physics 20 students. 

Therefore, their responses are not included in the tally, although their explanations 

were analyzed. Thus, significances cannot be calculated on the same basis as for the 

other questions. However, answers were well distributed between responses A, B, and 

C. Response D was included for symmetry and was chosen only twice. 

There was a clear difference between justifications for response C, which tended 

to focus on the book as the receiver of the action, and those for responses A and B, 
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which focussed on the agent doing the lifting. Many students clearly explained that 

"mechanical energy" is different than "human energy" in kind, not just in form. 

With the person holding the book it is human energy, but when a machine lifts, it's 
energy produced by electricity or whatever the machine runs on ... 35: S6 27 

Some subjects regarded human agents as displaying "real" energy; they could thus 

speak of energy of both humans and machines while maintaining a basically animate 

framework for the concept. A second group considered mechanical energy as more 

"real", thus preserving a functional framework. Still others categorically restricted 

energy to either living beings or machines. 

A machine has no life, so it should need no energy. It runs on gas or electricity. No 
energy is needed for the machine. 36: S6 33 

The stick guy isn't using energy. He just locked his bone structure up to hold the 
book. 37: S6 II 

The machine is mechanical. Sure, it's using energy, but it would take more strength 
for the man to hold it up. The machine doesn't feel. 38: S6 41 

The situation was designed to parallel interview item 6 (supporting a barbell). 

However, the revised wording of the survey item focussed attention on energy change, 

rather than total amount of energy of the object. Perhaps as a result, the survey item 

was much more successful in producing a range of multiple choice responses. 
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The solar cell is connected to a light bulb, but a cloud 
shades it from the sunlight. [Now] the cloud has moved 
and the bulb lights. Which description best fits your idea of 
energy in this situation? 

a. Sunlight releases the energy of the solar cell, so the 
bulb lights up. 

b. Electricity produced by the solar cell makes the 
bulb release its energy and light up. 

c The electric current in the circuit gets "charged up" 
with energy in the solar cell and carries it to the 
bulb, which lights up. 

d. Light energy from the sun is changed into electrical 
energy by the solar cell and then back into light 
energy by the bulb. 

e. Electrical currents from the solar cell go through 
both wires, meet in the bulb, and react to produce 
light energy. 

source: original 

Figure 17 

Table 17. Response Summary for Item 7 

Class Response Frequency Total Response Percentage 

a b c d e a b c d e 

9 9 3 5 16 1 34 26 9 15 47 3 

IIG 4 2 0 8 1 IS 27 13 0 53 7 

1 IB 0 1 2 13 0 16 0 6 13 81 0 

IIP 0 0 0 10 0 10 0 0 0 100 0 

total 13 6 7 47 2 75 17 8 9 63 3 

significance of response pattern: p > 0.05 

The question was designed to explore various notions of energy as a substance 

which changes over time (Watts' substantive framework). Response D is most 

acceptable scientifically and was chosen by a large proportion of subjects (63%), with 

no statistically significant difference in response patterns between classes. An 

Item 7. Solar cell 
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unexpected feature of several of the written explanations was the use of heat as an 

element in whatever transformation or other process was being proposed. 

The sun gives off heat, and heat causes energy.... 39: S7 20 

The solar cell needs sun or heat for it to work, and when the sun shone on it, it heated 
up the wires electrically, which lit the bulb. 40: S7 41 

Unfortunately, the item appears to have three major flaws. First, the 

multiple-choice alternatives need to be simplified. This is suggested by the large 

number of written responses which offered a justification that did not clearly support 

the chosen response. It is likely that the rather subtle distinctions between the multiple 

choice alternatives, often dependent on only a few words, were not noticed or 

pondered. Therefore, the alternative responses are considered to require simplification 

and clarification. 

Secondly, the diagram needs to be redrawn so that the solar cell appears to face 

the sun, not the light bulb. Several students described perpetual motion machines 

based on the diagram provided. 

What sun does get to the cell makes energy to run the light bulb. Then the light bulb 
keeps itself going by lighting the solar cell. 41: S7 11 

Finally, the alternative responses need to be more clearly focussed on a specific 

aspect of the circuit which is likely to elicit alternative conceptions. All the physics 

students, about 4/5 of the biology students, and half the grade 9 and science 24 

students chose the scientific response (D). Differences in response patterns between 

classes were not significant. 

It is not clear why the orthodox response was so widespread. Only the science 24 

students were likely to have encountered electrical circuits in their science classes. 
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Item 8. Submerged ping-pong ball 

held underwater 

The person lets go and the ping-pong ball pops to the surface. 
What part of this situation could be described using your idea of energy? 

a. Only part a where the person is forcing the ball to stay underwater. 
b. Only part b, where something is moving. 
c. Only part c, where the ball is at a higher level and the person is (a little bit) tired. 
d. My idea of energy applies to more than one part. 
e. There is no energy here at all. 

Source: Watts & Gilbert (1982) modified 

Figure 18 

Table 18. Response Summary for Item 8 

Class Response Frequency Total Response Percentage 

a b c d e a b c d e 

9 II 10 1 13 3 38 29 26 3 34 8 

IIG S 2 1 6 0 14 36 14 7 43 0 

1 IB 7 1 0 9 1 18 39 6 0 so 6 

IIP 1 2 0 7 0 10 10 20 0 70 0 

total 24 15 2 35 4 80 30 19 3 44 5 

significance of response pattern: p > 0.05 

The majority of male students would have constructed simple circuits in grade 8 

Industrial Education class, but without much theoretical consideration. The parallel 

interview item (question 7, electrical circuit) elicited a greater variety of energy 

descriptions, although not the association with heat. 
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The question was designed to directly contrast those conceptions of energy which 

centre on motion (response B) and those which see people (or animate objects) as 

central (response A). It also contrasts such one-feature characterizations of energy 

with more complex conceptions (responses C and D). It was expected that confusion 

of energy with force would be stimulated by the wording of response A ("...the person 

is forcing the ball to stay underwater.") 

Response D is scientifically acceptable. Response E is scientifically incorrect, and 

responses A, B and C are of insufficient scope to be complete. 

There was no statistically significant difference in the pattern of responses from 

different classes. Nevertheless, there is a noticeable shift towards response D in the 

high school classes, reaching 70% for physics students. By contrast, biology students 

showed a greater tendency than physics students to choose response A, which 

associates energy with human activity (38% compared to 10%). 

The expected contrast between motion-centred and animate-object based 

conceptions of energy was observed in the justifications. In addition, several 

responses contrasted energy with other causes of action. Energy was portrayed as just 

one possible trigger or fuel rather than being used as a general way of analyzing 

physical situations. 

The only reason the ball rises is because of density, not energy. 42: S8 17 

[There is] only buoyancy, and I'm not sure if that is considered energy. 43: S8 32 

As previous investigators have noted, student explanations sometimes do not 

distinguish clearly between energy, force, and related terms. 
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The force of energy being used to keep the ball and the particles inside the ball held 
down is by the human. 44: S8 30 

The person is exerting energy on the ping-pong ball. The ball is absorbing energy 
until it is released... (emphasis added) 45: S8 60 

This question is somewhat parallel to interview question 8 (grip strengthener), 

which provided ideas for the specific responses in the survey question. In both cases, 

the expected confusion of force, work and pressure was evident. Heat was prominent 

in the interview discussions but absent from the survey responses. Although neither 

question demonstrated serious flaws, their difference in focus obviates any direct 

comparison of responses. 

Item 9. Pushing a box uphill 

Sitting nwty going whtll mllnoitlhatco 

The person pushes the box uphill and then sits down to rest. 
Which description best fits your idea of the person's energy as the box is pushed up the hill? 

a. energy is being produced in the person's body so the work can be done. 
b. Energy is being transferred from the person into the box. 
c Energy is being shared between the box, the surroundings, and the person's body. 
d. Energy is being used up pushing the box. 
e. My idea of the person's energy is different from all of these. 

source: Watts & Gilbert (1982) modified 

Figure 19 
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Table 19. Response Summary for Item 9 
Class Response Frequency Total Response Percentage Class 

a b c d e 

Total 

a b c d e 

9 M 6 1 15 3 39 36 15 3 38 8 

IIG 3 6 3 3 0 15 20 40 20 20 0 

1 IB 1 2 6 8 0 17 6 12 35 47 0 

IIP 2 4 2 1 1 10 20 40 20 10 10 

total 20 18 12 27 4 81 25 22 15 33 5 

significance of response pattern: p < 0.05 

The item deliberately focusses on the person's energy in order to elicit everyday 

associations with strength and force. Response A localizes energy to the person and 

views it from a functional framework as necessary for the performance of a useful 

task. Response B was intended to elicit flow-transfer frameworks, as was response C. 

Response D is compatible with views of energy as a fuel. 

The most scientifically acceptable response is C, which is compatible with ideas of 

energy transfer, degradation and conservation. Response B is more limited, as it does 

not include the environment. Responses A and D are commonplace descriptions which 

are not scientifically accurate: strictly speaking, energy is neither produced nor used 

up. 

Differences in the response pattern between classes are statistically significant at 

0.05 level (p = 0.013). Choices were well distributed across responses A to D. The 

small number of students (4) choosing response E suggests that the other choices were 

acceptably comprehensive. Unfortunately, many "explanations" supplied less insight 
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than was hoped into the subject's underlying reasoning. Perhaps the explanatory nature 

of the multiple-choice responses reduced the answering task to one of identification, so 

subjects felt less need to create individualized models of the situation. 

The wording of the item could likely be improved. Only a small proportion of 

physics students chose response C, which was intended to reflect the scientific view 

most completely. The wording "energy is being shared" may be at fault. A possible 

alternative, which is also more parallel to responses A and B, would be "Some of the 

person's energy is being distributed between the box and the surroundings." 

The expected confusion between energy and force was observed in only a few 

instances. 

The force the person supplies to the box is where energy is given off.... 46: S9 50 

More common was the everyday equation of strength with the presence of energy (or 

an energetic state) and tiredness with its absence. 

When you push something, you get tired creating energy. 47: S9 16 

Three subjects explained the choice of response (d) (energy is being used up) with 

the term "exerting" energy. 

The man has to exert his own physical energy to push the box up the hill. 48: S9 55 

This explanation appears to reflect identification of energy with force or overcoming 

resistance. Also, rather than suggesting that energy is "used up" or consumed, it has 

the sense that energy is "utilized". That is, energy is a required element in the 

process, but not necessarily one that is expended. It could be conserved, transformed, 

transferred, or just act like a catalyst. 
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Item 10. Pendulum 

stuck to wall swinging down swinging back up 

The glue breaks, and the pendulum swings down and then up again. 
If we measured the pendulum's energy, our answer would 

a. be highest in a and go steadily down as the pendulum swings 
b. be lowest in a and go up as the pendulum gathers energy to swing 
c be high In a, go down as the pendulum swings lower, and then go back up In c 
d. be low in a, go up as the pendulum swings foster, and then go back down in c 
e. stay the same in a, b, and c 

source: Duit (1990) modified 
Figure 20 

Survey item 9 depicts a similar situation to interview question 9. However, the 

survey item focusses more specifically on the person's energy, using ideas elicited 

from the more general interview question. Several features of the interview responses, 

including the amount of energy possessed by the box and the role of heat in energy 

changes, are not tapped by the survey question. 
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Table 20. Response Summary for Item 10 

Class Response Frequency Total Response Percentage Class 

a b c d e 

Total 

a b c d e 

9 7 8 11 7 5 38 18 21 29 18 13 

1 IG 3 3 4 3 2 15 20 20 27 20 13 

1 IB 6 1 3 5 3 18 33 6 17 28 17 

IIP 0 0 1 2 6 9 0 0 II 22 67 

total 16 12 19 17 16 80 20 15 24 21 20 

significance of response pattern: p > 0.05 

The question was designed to probe the role of energy in creating and sustaining 

motion. Response A embodies the idea that motion continually uses energy (fuel 

focus). Response B suggests that energy is released or created in order for something 

to happen (functional focus). Response C involves the expenditure and replenishment 

of energy (depository focus). Response D associates energy with speed (motion 

focus). Response E was intended to cue explanations involving energy conservation 

and/or transformation. 

The most scientifically acceptable response to a literal reading of the question is E. 

Other responses can, however, be scientifically justified if the question situation is 

appropriately limited or extended. If energy is restricted to potential or kinetic, 

respectively, responses C or D become acceptable. If the oscillation of the pendulum is 

imagined to continue until it eventually dies away, response A is scientifically 

appropriate. 
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Some confusion was caused by the difference in height of the pendulum bob in 

sketches a and c. Sketch c could be revised to show the pendulum at its maximum 

height. Also, several students extended the question to more than one oscillation, 

sometimes considering the effects of air resistance and the resulting slow decrease in 

amplitude. These complications were not intended to be introduced, and might be 

avoided by a more precise question wording, such as "If we measured the energy of 

this system at different points in its first swing, our answer would 

Differences in the response patterns of different classes approached significance at 

the 0.05 level (p = 0.06, chi-square). There was a noticeable shift towards the 

scientific view in physics students (67% chose response E, compared to an average of 

14% in the other classes). Inasmuch as physics 10 and 20 stress the historical 

development of conservation laws for motion, physics students are likely to have 

considered pendulums in this context. Also, biology students showed a relatively high 

tendency to interpret motion in terms of continuous energy use (33% chose response 

A, compared to an average of 20% in the other groups). 

Explanations of answer choices showed several clear divisions. There were two 

distinct views of energy when the pendulum was glued to the wall. One interpretation 

held that this required a lot of energy; oscillation of the pendulum, by contrast, was a 

more natural state requiring little or no energy. An opposing view was also expressed* 

the stuck pendulum has no energy, but oscillation requires it. 

It takes more energy for the pendulum to stay glued than to swing back and forth - it 
(swinging) takes energy, but not as much. 49: SI0 65 

It wouldn't need any energy to be stuck to the wall, but it would need some to break 
through all the molecules in the air. 50: S10 37 
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A number of students linked energy with momentum. Only physics students 

would likely have received a formal introduction to the scientific view of momentum, 

so others probably used the term in an everyday sense that remains unexplored. 

Some responses suggest that "real" energy is present only when something is being 

accomplished. Potential energy, in this sense, apparently is taken to mean "potential to 

have or contain energy.11 "Using energy" may thus imply generating or gathering, as 

well as expending it. Alternatively, if energy is regarded as a characteristic rather than 

a substance, "using energy" can be taken as meaning "acting energetically." "Potential 

energy" could thus have the sense of "the ability to be energetic". 

It doesn't take energy to sit, but when something is moving is (it?) uses energy. So 
when the pendulum swings down and comes back, it is using energy. 51: S10 20 

It would only have potential energy in (A) (stuck to the wall). In (B) it gains energy 
as its speed increases. In (C) its energy would decrease because its speed decreases as 
well. 52: S10 74 

The question is quite parallel to interview item 10 (ball on track). Although the 

alternatives in the interview item concern distance, consideration of energy was 

prompted by the interviewer. Responses to the two items were similar, with 

disagreement over the initial energy of the objects, the reality of potential energy, and 

the need for energy to prevent or cause motion. 
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Consistency of Subjects' Responses 

Consistency within Survey 

Subjects' responses to several pairs or triples of questions were compared to 

establish how consistently individuals displayed particular conceptual orientations. 

Questions chosen for this comparison contained at least one response that strongly 

reflected a particular conception, while other responses effectively precluded that 

conception. For example, question 6 response (a) strongly associates energy with 

people, but no other responses for question 6 do so. Similarly, in question 8, only 

response (a) displays this animate orientation. 

6a (lifting book) energy change is biggest when the book is lifted by a 

person 

8a (submerged ball) there is energy only where the person is forcing the ball 

to stay underwater 

In five such cases, the number of students actually choosing responses which 

expressed the same conception was tallied and compared to the number that would be 

expected by chance (Table 21). The results, however, must be interpreted with great 

caution, for several reasons. 

1. The number of subjects is so low that the apparent presence or lack of 

consistent responses might itself be a chance occurrence. 

2. A given conceptual orientation expresses a preferred tendency to interpret 

situations in a certain way. It is the basis for judgement, not the judgement itself, so 

particular features of any particular situation may override a general preference. 
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Table 21. Consistency of Survey Responses 

Conception Item Single Responses Multiple responses* 

f P f P 
(observed) 

p ** 
(chance) 

Human or 4a 20 of 84 0.2381 20 of 0.24 0.24 *** 
animate 6a 35 of 80 0.4375 80 

8a 24 of 80 0.3000 

Not human or 6c 17 of 51 0.3333 5 of 0.059 0.145 
motion 8d 35 of 80 0.4375 84 

Depository 9d 27 of 81 0.3333 13 of 0.16 0.15 

10 a or c 37 of 80 0.4625 80 

Flow-transfer 7c 7 of 75 0.0933 1 of 0,093 0.035 

9 b or c 30 of 81 0.3704 75 

Transformation 4c 41 of 84 0.4881 19 of 0.25 0.31 

7d 47 of 75 0.6267 75 

Conservation 5e 3 of 83 0.0361 3 of OtQ375 0.007 

10 e 16 of 80 0.2000 80 

* At least two of the responses exemplifying this conception were chosen. 
** Calculated as P (A and B), assuming responses are chosen independently. 

*** Calculated as P [(A and B and not C) ... or (A and B and C)]. 

Thus, an individual's conceptual orientation is more likely to be uncovered through 

discussion and explanation of responses, rather than inferred from a small number of 

objective test responses. In this respect, interview and survey methodologies are 

certainly not equivalent, at least on the scale of this study. Larger-scale surveys 

designed to permit factor analysis might reveal an underlying structure in responses. 

This, however, would still require interpretation, which would presumably be 

facilitated by probing individual's responses, presumably in an interview setting. 

Bearing in mind the cautions discussed above, the data suggest a difference in the 

consistency with which scientific and lifeworld conceptions were expressed, especially 
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Table 22. Consistency between Interview and Survey 

Subject Survey 
No. 

Item Responses 
(Survey [Interview) 

Agreement 

4 5 8 

I 77 d 1 d e e d d 3 of 3 

3 69 c 
i 

| c* c c b a 2 of 3 

4 72 c 
t 

i c* b a d I I of2 

5 41 c 1 c* c c c ) 2 of 2 

6 53 b | b* c a a b 1 of 3 

7 25 c ! c c d c* 3 of 3 

8 7 c ! a a d c* 3 of 3 

* Subject expressed some agreement with other responses during interview. 
I Interview terminated before this point. 

This result is limited primarily by the small number of subjects and items. Also, 

the questionnaire items were worded in the light of interview results, so there is 

less-than-perfect parallelism in response wording. Several of the interview alternatives 

by high school students. The small number of students who expressed a conservation 

orientation did so in more that one situation. It is tempting to speculate that once this 

key aspect of a scientific conception of energy has been adopted, it tends to displace 

the lifeworld conceptions with which it competes. 

Consistency between Survey and Interview 

Seven of the 8 interview subjects also completed survey questionnaires. Their 

responses on parallel multiple-choice items (4, 5, and 8) were compared (Table 22). A 

substantial degree of consistency was shown. All subjects proposed identical answers 

to at least 1 of the items, and 4 of the subjects did so for all 3 items. 
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were not mutually exclusive, so in extended conversation, subjects often found reason 

to give partial support to several answers. This was especially true for item 4. 

Nevertheless, if the interview responses are taken as criterion, their observed 

agreement with the survey responses suggests a degree of concurrent validity for the 

survey. This does not contradict Treagust's (1988) claim that multiple-choice 

instruments offer a valid alternative to the traditional interview for revealing alternative 

conception. The small number of subjects prevents any stronger conclusion. 

Consistency within Interviews: Student Profiles 

As the conversation with each subject progressed, it often took on a distinct 

"flavour." The interviewer began anticipating particular features of the replies with 

some success. Study of the interview transcripts and survey questionnaires conveyed a 

similar sense of underlying consistency concerning those aspects of the situation which 

the subject attended to (or neglected) and the style of analysis applied to them. 

The construct of conceptual orientation attempts to capture this structure by 

postulating a small number of favoured stances from which individuals perceive, 

describe and analyze any aspect of the physical world. A final aspect of this study, 

then, was an attempt to enter into each interview subject's orientation to energy, 

largely on an intuitive basis, in order to identify and describe the distinctive flavour of 

each individual's responses. 

To support this effort, subjects' descriptions and explanations were examined for 

the presence or absence of words, phrases or complete statements characteristic of 

previously described conceptual frameworks (Table 23). Evidence suggesting a given 
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Table 23. Conceptions Suggested during Interviews - by Subject 

Conception Sub ect Total Conception 

I 2 3 4 5 6 7 8 

Total 

Associations 

1.3 useful activities .... 

1.4 undifferentiated ... 

Associations 

1.3 useful activities .... 

1.4 undifferentiated ... 

3 1 2 2 8 

Associations 

1.3 useful activities .... 

1.4 undifferentiated ... 

2 7 3 7 7 6 4 36 

Associations 

1.3 useful activities .... 

1.4 undifferentiated ... 

2 3 5 

Associations 

1.3 useful activities .... 

1.4 undifferentiated ... 2 3 3 8 6 22 

Nature 

2.1 energized state .... 

Nature 

2.1 energized state .... 3 2 2 2 2 II 

Nature 

2.1 energized state .... 

1 2 3 5 3 6 3 7 30 

What happens 

3,1 depository/used up 

3,3 dormant/triggered 

What happens 

3,1 depository/used up 

3,3 dormant/triggered 

1 2 5 5 3 7 3 5 31 

What happens 

3,1 depository/used up 

3,3 dormant/triggered 

1 1 1 1 1 4 6 2 17 

What happens 

3,1 depository/used up 

3,3 dormant/triggered 2 1 6 2 I 2 14 

What happens 

3,1 depository/used up 

3,3 dormant/triggered 

1 2 1 3 7 

Scientific aspects 

4.1 abstract quantity 

4.3 convertible forms 

I Scientific aspects 

4.1 abstract quantity 

4.3 convertible forms 

1 2 3 

Scientific aspects 

4.1 abstract quantity 

4.3 convertible forms 

3 4 1 2 4 4 2 20 

Scientific aspects 

4.1 abstract quantity 

4.3 convertible forms 7 8 4 1 6 26 

Scientific aspects 

4.1 abstract quantity 

4.3 convertible forms 

4 4 

Scientific aspects 

4.1 abstract quantity 

4.3 convertible forms 

1 1 I 1 4 

Scientific aspects 

4.1 abstract quantity 

4.3 convertible forms 

0 

framework was tallied only once for each item, even if it was expressed several times 

or in different ways. Ambiguous responses were tallied under all appropriate 

frameworks. Recognizing that particular words and phrases were used in various 

senses and were occasionally introduced by the interviewer, context was considered in 

the analysis. The resulting data is suggestive, but not truly objective. 
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An attempt was then made to construct a coherent descriptive profile of each 

subjects' approach towards those aspects of energy raised in the interview. This 

proved possible, although difficult. The results (presented below) are taken as evidence 

in favour of discernable consistencies in each student's conceptual orientation. They 

thus provide internal evidence of the construct validity of the interview and survey. 

The profiles may also be dismissed as attesting to nothing more than the 

inventiveness of the researcher. Which judgement is more correct will only become 

apparent, according to Johansson, Marton, and Swensson (1985), if the orientations 

used herein prove to have descriptive power when applied by other researchers to 

other subjects. 

Subject 1. In one form or another, this subject identified energy in 8 of the 10 

interview situations. The total amount of energy in a system was always considered to 

be constant. Instead of being used up, therefore, energy was described as being 

transferred from one part of a system to another, or converted from one form to 

another. Thus, most elements of a scientific concept of energy were present in her 

analysis. 

However, the concept of energy degradation was not conspicuous in her 

descriptions. Also, she appeared to rely on known examples of closed mechanical 

systems. When describing open biotic systems, she postulated a type of biological 

potential energy rather than tracing energy inputs. Similarly, although she recognized 

heat as a form of energy, she did not identify it as a major output of biological 

systems. 
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Subject 2. Some form of energy was identified in 8 of 10 situations. Energy in 

non-biotic systems was seen as being transformed, often to heat, and transferred from 

one part of a system to another. However, the amount of energy was described as 

varying, depending on the degree of activity, force or pressure present. Similarly, 

animate creatures were described as having energy only when they were active. Their 

energy was considered to be used up rather than transformed or transferred. 

Electrical energy was described in quite different terms. It was thought to be 

concentrated in a battery in two forms, which would move through a closed circuit but 

stay dormant until they met. They would then react and be transformed into heat and 

light energy. 

Subject 3. In all but one case, energy was associated only with motion or activity 

of animate creatures. Electricity was the exception: an open electrical circuit was 

considered to have energy concentrated in the battery. Although this subject generally 

used vocabulary appropriate to a substance, energy was also described as "weakening" 

and "being exerted", terms which evoke a less material picture. 

Different forms of energy were named, but the possibility of change from one 

form to another was only recognized in one situation. Similarly there was only one 

mention of energy transfer. However, the amount of energy was not described as 

constant. Instead, it was said to be used up by activity. 

Subject 4. This subject's interview was cut short, but in 6 of 8 situations, energy 

was described as a possibility ("potential"), suddenly triggered into existence as actual 

("kinetic") energy. The latter was seen as able to be stored and then used up by 
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causing motion, or active resistance to motion. Apart from this unorthodox use of the 

terms "potential" anL "kinetic", there was only one reference to different forms of 

energy. 

In static situations such as the car on the hoist, energy was assigned to whatever 

active or potentially active agent was being resisted (gravity) as well as to the resisting 

object (the hoist). The object being acted upon (the car) was not seen as having energy 

until resistance weakened. Then, energy suddenly appeared in it. Only in situations 

involving heat and electricity was energy transfer identified. 

Subject 5. This subject did not express any aspects of the scientific conception of 

energy. Opportunities to mention energy transfer, transformation and conservation 

were not seized. Energy was seen as present in situations involving activity or active 

resistance to motion. However, no consistent image emerged: energy was variously 

spoken of as a state and as a substance that is stored and expended, circulated, 

triggered, or created from something else. In conversation, one image of energy 

tended to be proposed, considered briefly, and then abandoned (not rejected) in favour 

of other, possibly opposing ideas. Non-verbally and by intonation, the subject 

conveyed little impression of commitment to any of her proposals. Instead, there was 

a consistent tendency to flirt with ideas, flitting lightly from one to another, with little 

detailed examination or comparison. 

Subject 6. Energy is associated with morion or activity. It takes different forms 

and can change from one form to another. Living things produce (or activate) it from 

food when needed for some activity or task. Although this subject usually described 
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energy as being used up, it was sometimes said to be transferred to different parts of a 

system, or just released into the air. In electrical circuits, energy circulates (but energy 

is not electricity). In any event, the quantity of energy varies over time; suggestions 

that it might be conserved were categorically rejected. 

Subject 7. Energy is associated with motion, but also in a quite intricate fashion 

with heat. Motion is said to involve a force or pressure of energy, which pulls or 

pushes an object. The amount of energy varies with the object's speed. The energy 

originates with outside sources like the air or gravity, but is transferred into the object 

"on demand", when it moves. The energy is described as moving or circulating 

through the object along with heat (and cold). Heat is seen variously as a carrier, a 

product, and (in people ) as a source of energy. Human energy is also produced when 

needed from food, and circulates out of the body along with sweat. 

Electrical circuits are viewed differently. Energy is stored in a battery and moves 

through the circuit wires without a carrier. In a light bulb, however, some substantive 

part of the energy is lost and circulated into the air along with heat and light. 

Apart from being transferable, this view of energy has none of the characteristics 

of the scientific conception. Energy is not recognized to have different forms, is not 

conserved, and does not undergo any process of degradation. 

Subject 8. Energy is associated with the performance of tasks. Objects like 

tables don't do anything active, so they don't need or have energy unless (and while) 

they are moved or heated up. Energy is then created in them from the gravity, force 

or heat they receive, as a byproduct of being acted upon. 
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Machines and people, by contrast, can do things, and they use energy in the 

process. Energy moves through machines as a type of fuel, building up or being 

picked up from the surroundings before the task begins, and being burned off or 

carried by heat into the surroundings as a sort of exhaust. 

Similarly, people become energetic when they perform tasks. Their energy is 

gathered from the air or created from food as needed, but is just lost when they 

become inactive. 

In all cases, energy is associated with, but not identical to, heat and motion. 

Energy serves as a carrier for heat, and is active or powerful to the extent that it 

moves and is charged with heat. Energy is described in very physical, substantial 

terms: it can be compressed and in electrical circuits it hits various components, 

losing part of its substance in the process. 

Energy (carrying heat) can be transferred, but only when objects touch. No other 

aspects of the scientific energy concept were evidenced during the interview. 



Chapter 5 

Summary and Conclusions 

Summary of the Study 

A long tradition of research has documented how children appear to think about 

the natural world quite differently than scientists. Objectives, style of thought, and 

actual concepts of" children's science" appear to be distinctive, persistent, and resistant 

to direct instruction. Many research perspectives and methods have been applied to 

this problem, largely by investigators outside of North America. Interpretive research 

based on varieties of clinical interviews has been favoured. The theoretical notions of 

misconceptions, alternative frameworks, and conceptual orientation have been 

developed to structure the research. 

Conceptual change theories and constructivist pedagogy propose that expression 

and acknowledgement of alternative conceptions is an essential task of school science 

instruction. Observational studies show that these activities are rare in actual school 

science teaching. Thus, gathering and organizing knowledge of alternative conceptual 

orientations and incorporating it into school science programs is a significant challenge 

on both theoretical and practical grounds. 

The present study investigated alternative conceptions of energy in a previously 

unstudied population: Alberta secondary school students. It addressed five research 

questions: 

1. Would misconceptions and alternative conceptual orientations reported in the 

literature also be evident in this population? 
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2. Would interviews and written surveys result in similar patterns of responses? 

3. Would there be noticeable differences in responses between grade 9 students 

and grade 11 students? 

4. Would the proportion of students utilizing a scientific orientation vary between 

classes in different disciplines? 

5. Would students consistently utilize a given conceptual orientation? 

A three phase methodology adapted from Treagust (1988) was used in a modified 

form for the study. Surveys of curriculum statements and of previous research were 

used as the basis for constructing ten pairs of questions about energy. Eight 

semi-structured interviews were conducted around one question of each pair, using 

interview-about-instances drawings and actual models. Audiotapes of interviews were 

transcribed and used to refine the second question of each pair for use on a survey 

instrument. Both open-ended questions and multiple choice items with written 

justification of answers were included. The survey was completed by 84 students, 

including seven of the eight interview subjects. 

Interview transcripts and survey responses were examined for indications of 

alternative conceptual orientations. Multiple-choice response patterns for each class 

were compiled and statistically analyzed for significant differences. Responses to 

survey questions expressing the same conception of energy were compared. For 

interview subjects, responses to selected item pairs (interview and survey) were 

examined to determine whether similar conceptions were revealed by the two 

methodologies. 
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An unexpectedly large number of survey respondents, but not interviewees, 

spontaneously used energy concepts to describe a familiar situation. Participants in the 

study expressed a variety of alternative conceptions about energy similar to that found 

in previous studies. Scientific terms such as kinetic and potential energy were used to 

label distinctly non-scientific conceptions. Poor differentiation of energy from ideas of 

heat, force, and pressure was also evident. 

The construct of conceptual orientation was found to be applicable to analysis and 

description of interview conversations and written responses on the survey. Interview 

responses exhibited sufficient consistency to enable the construction of individual 

profiles of conceptual orientation. Furthermore, interview subjects appeared to respond 

in a relatively consistent manner on parallel interview and survey questions. 

Response patterns for 3 of 8 survey questions showed statistically significant 

differences between classes and grade levels (p < 0.05, chi square). A trend towards 

more scientific responses by grade 11 students, compared to grade 9 subjects, was 

noted for many questions. There was some indication that students who most strongly 

expressed aspects of a scientific conception did so more consistently than students who 

expressed other conceptions. 
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Discussion of Findings 

Research Question 1 

Will misconceptions and alternative conceptual orientations reported in the 

literature also be evident in interviews and written surveys of Alberta students? 

Conclusion 

Using sentences as the unit of analysis, interview responses and written 

justifications of surveys were found to resemble many of the alternative frameworks 

described by Stead (1980), Watts (1983a) and subsequent researchers. Subjects' 

acceptance of multiple choice responses which exemplify specific conceptions further 

supports this finding. Several other alternative conceptions were not precluded by the 

data, but no unambiguous exemplars of them were obtained. 

This result was anticipated, although no parallel studies have been reported for 

North American students. Subjects in the present study were expected to have 

lifeworld and school experiences similar to those of students in ether English-speaking, 

technologically advanced countries. Research conducted in the United Kingdom, New 

Zealand, West Germany and the Philippines has revealed similar alternative 

conceptions between populations with much greater linguistic and cultural diversity. 

Discussion 

Evidence of particular alternative conceptions has been presented in the discussion 

of interview and survey findings. It is summarized thematically below, arranged 

according to the three major aspects of energy identified in Chapter 4: (1) situations 

energy is associated with, (2) the nature of energy, and (3) what happens to energy 
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Three survey responses which directly associated energy with human beings were 

chosen by about one quarter of the subjects. 

Item Responses Description 

4 response a 20 of 84 Energy changes of a moving bicycle occur when the cyclist 
stops pedalling, rather than when the bike slows or stops. 

6 response a 24 of 80 Energy is involved in lifting a book only when a person 
does the lifting, not if a machine is used. 

8 response a 24 of 80 A submerged ping-pong ball has energy when a person 
holds it underwater but not after it is released. 

over time. Findings which bear directly upon the scientific concept of energy are 

discussed later, with research question 4. 

1.1 Energy is associated with living things. No non-human living creatures 

were portrayed in the interviews or survey, so no direct evidence was obtained about 

the prevalence of this conception, which was described in detail by Solomon (1983b) 

and Stead (1980). 

1.2 Energy is associated with human beings. For some subjects, the presence or 

activity of human beings was the prime criterion in deciding that a situation involved 

energy. The absence of human beings, or other living creatures, indicated an absence 

of energy. 

How can a fence have energy like human beings do? 53: S2 9 

A machine has no life, so it should need no energy. It runs on gas or electricity. No 
energy is needed for the machine. 36: S6 33 

Humans would put most of their energy into their arm so they could hold the book. A 
robot arm doesn't transfer any energy because he's made out of metal. 54: S6 9, 35 

The person is using all the energy to push the box up [the hill] because even if the box 
had energy it can not push itself up. 55: S9 24 
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These finding parallel those originally reported by Solomon (1983b) and Stead 

(1980). They suggest a sort of vitalism which equates energy with a life-force or 

quality possessed only by animate creatures. Machines may be powerful, but their 

metal parts and fuels are only a substitute for the self-directed focussing of energies by 

which people accomplish tasks. 

1.3 Energy is associated with movement. In this view, a lack of motion can 

imply no energy. For example, there is no energy associated with a rock balanced on 

a fencepost because, 

... it's just sitting there on the fencepost. It's not moving or anything. 56: S2 2,7,12, 
17,21,28, 48 

No motion, no energy! 57: S8 69, 81 

Lack of motion can also suggest the presence of energy which is opposing an 

apparently natural motion. When a ping-pong ball is held underwater, 

the person is holding back the energy of the ping-pong ball, and while pushing against 
the ball's energy he is using up energy. 58: S8 64 

It takes more energy to hold it underwater because the ball wants to float. 59: S8 
19, 20, 29, 62 

Moving objects, on the other hand, are seen as having (or needing, or creating) 

energy. 

As the pendulum moves faster, the more energy is created. 60: S10 19 

[A pendulum] wouldn't need any energy to be stuck to the wall, but it would need 
some to break through all the molecules in the air. 61: S10 34 

If [a bicycle] was coasting there was a loss of speed and a loss of energy. When the 
bike is completely stopped ... there now is no motion and ultimately no energy. 62: 
S4 33,62, 80 
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Item Responses Description 

4 response b 20 of 84 There are energy changes as a bicycle slows down and 
stops. 

5 response c 58 of 85 An exploding balloon has most energy as it breaks into 
moving fragments. 

8 response b 15 of 80 A submerged ping-pong ball has energy only when it is 
rising to the surface. 

10 response d 17 of 80 The energy of a pendulum varies with its speed. 

A common conceptual link between motion and energy was reported by Brook and 

Driver (1984), Solomon (1983b) and Watts (1983a). A number of comments reported 

earlier in the present study further illustrate this conception. 

1. Motion implies energy: quotations 5 (page 99), 14 (page 104), 26 (page 119) 

and 52 (page 139). 

2. Lack of motion implies no energy: quotations 15 (page 106), 23 (page 111) 

and 24 (page 118). 

3. Energy is needed to prevent natural movement: quotations 2 (page 97), 21 

(page 109) and 25 (page 119). 

1.4 Energy is associated with useful work. Getting something done can be seen 

as a sufficient indication of the presence of energy. Whether the task is performed by 

a person or by a machine seems, in this view, to be unimportant. 

You have to use energy to do anything, no matter how big or small the task is ... M: 
S9 23,44 

A solar cell's energy is released by sunlight because, 

You need some light for the light bulb, so that is an easy way [to get it]. 64: S7 43 

Four survey responses were compatible with the association of energy with motion 

and gathered considerable support. 
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Item Responses Description 

9 response a 20 of 81 Energy is produced in a person's body so that a box can be 
pushed up a hill. 

10 response b 12 of 80 A pendulum's energy increases as it gathers energy to 
swing. 

It seems clear that some subjects are inclined to associate energy more strongly 

with task performance than with speed, presence of humans or animate objects, or 

si.nilar particular features of a situation. Apart from quotation 32, above, however, 

there was no explicit demand that the task be useful to human beings. Inclusion of 

items which directly contrast useful and trivial tasks might clarify this point. 

There is energy involved in pushing a box up a hill because, 

If there was no energy the box would still be at the bottom of the hill. 65: S9 28, 73 

A balloon has the most energy when it explodes, because it 

... is doing the most when it explodes and gives a great deal of energy to do that. 66: 
S5 26 

An extreme version of this conception described by Watts (1983a) would restrict 

energy to tasks that are of direct benefit to human beings. Thus, energy becomes a 

sort of technical aid to comfortable living. This view was clearly expressed by a 

subject who saw a balloon as having more energy just after its string is lit, because 

... the fire is a means of warmth to the people around it. There is no energy when it 
blows up because it is of no use except to scare people, which causes them to jump 
and use energy of their own. 32: S5 4 

Other illustrations of a conceptual link between energy and task performance 

include quotations 15 (page 106) and 22 (page 110). Two survey responses also were 

compatible with this conception. 
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The way in which subjects actually relate energy and task performance is also 

uncertain. It is not clear from the written responses whether energy is seen as a 

necessary prerequisite of action, whether it if. an accompanying feature, appearing "on 

demand" when something is being done, or whether, as Watts (1983a) suggests, energy 

is equated with the action. Again, these possibilities could be directly contrasted in a 

revised survey instrument. 

1.5 Energy is confused with other physical quantities. Energy was sometimes 

described in direct sensory terms which seem more appropriate to other physical 

quantities. A bicycle coasts to a stop, for example, because 

... the pressure of the energy pushes the bike to a stop. 67: S4 13 

... there is no energy pushing you to go. 68: S4 73 

Energy was also linked in an overly specific, and therefore scientifically incorrect, 

manner to other quantities. 

no force = no work done = no energy 69: S4 81, 83 

The most common confusion in the interview responses appeared lo be an overly 

differentiated view of energy. Rather tnan an all-embracing concept applicable to any 

physical situation, energy appeared to be regarded as just one of many physical 

quantities, applicable in some situations but not in others. When a rock is balanced on 

a fencepost, 

There is no energy. However, there is gravity involved. 70: SI 29, 5, 8, 19 

As a pendulum swings, 

... it is using no energy at all. It is using the force of gravity. 71: SIO 4, 17 
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When a person releases a ping-pong ball that is being held underwater, 

The only reason the ball rises is because of density, not energy. 72: S8 17 

... there is only buoyancy, and I'm not sure if that is considered energy. 73: S8 32 

Energy was also seen as something other quantities could create or into which they 

could be transformed. As a balloon explodes, for example, 

all the forces inside are let out and converted into energy. 74: S5 81 

A solar cell can light a flashlight bulb because 

Sun gives off heat and the heat causes energy ... 75: S7 20 

Such comments suggest the inverse of a scientific conception. Rather than a general 

characteristic (energy) which can appear in different forms, they describe energy itself 

as formed from other, more primary physical quantities. As in quotation 75 (above), 

heat was strongly associated with energy by several interview subjects, either as 

something produced by energy, or as an ingredient that makes energy, energetic. 

The hand is using energy from the body to hold [the grip strengthener). Um ... the 
little gripper tiling has energy 'cause it could pop open. There's heat because you're 
holding it so tightly, your hand is getting hot and that. (So is there anything 
happening to the energy right now?) It's changing to heat.... 76:17 1 (140-142) 

You're just using up your energy to squeeze the things together.... And, it takes energy 
to keep them squeezed .... (What happens to the energy?)... It's ... I don't know, I 
think it's just being, maybe switched to heat, or... and then you can just sort of feel it. 
Your hand gets sweaty after a while of holding something, And it's just sort of 
released into the air. 77:17 6 ( 145-152) 

[In an electric circuit] ... the energy and stuff come out of the battery and go into the 
light bulb and turn it on. (In the light bulb, what's happening to it?) I think it's kind of 
getting used up, like... I think the heat goes out of the energy. And causes ... I don't 
know ... a spark or something. And the light comes on and then it has to glow. (What 
happens when the battery goes dead?)... Well, maybe there's like, no heat left. Like 
you can't put anything else into the energy, so it stops. 78:17 8 (140-156) 

None of the multiple choice survey responses directly contrasted energy and related 

concepts. However, a number of other examples of lack of differentiation between 
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energy and other physical quantities appeared in the written responses and have been 

cited earlier. Those related to heat include quotations 7 (page 100), 8 (page 101), and 

16 (page 106). Confusion with electricity is evident in quotation 18 (page 107), and 

with force in quotations 21 (page 109), 44 (page 133) and 46 (page 135). Quotation 

42 (page 132) confuses energy with density, and quotation 43 (page 132) with 

buoyancy. 

Similar confusions have been noted by other researchers, including the CUSP 

group (Approaches to teaching energy. 1987), Brook and Driver (1984), Duit (1981), 

and Watts and Gilbert (1982). It is possible that they reflect nothing more than the 

linguistic imprecision common to everyday conversation. In an interview setting, 

however, subjects are given every opportunity to clarify their statements. Their 

inability to make appropriate distinctions between energy and related concepts seems 

likely to indicate imprecision in the concepts themselves, rather than in the labels used 

for them. 

2.1 Energy is a state of vitality. An everyday sense of the term "energy" 

associates it with health, strength, and well-being (Solomon, 1983b). 

The box can be pushed quicker if you use strength and energy. 79: SI0 38 

The person is alive. We have lots of energy, and when we use a little, lots has to be 
made. 80: S6 44 

This nuance was also evident when subjects in the present study contrasted the human 

ability to make an effort with the way in which machines work. 

When a person lifts a book there is an energy change because they are using their 
strength, but a machine is just using power. 81: S6 14, 1,3, 12, 15,20,21 
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Machines are much stronger than humans. Therefore [they] can lift with little energy. 
82: S6 38, 7, 39, 64, 68) 

Quotations 35 (page 128) and 38 (page 128) further illustrate this view. 

The descriptive terms used for energy were sometimes appropriate to a state of 

being, rather than a "thing". Examples were few, but striking. 

... all his energy starts to relax when he's at the top of the hill. 83: S9 9 

(Is anything happening to his energy?) Yeah, it's getting tired. 17:16 5 ( 157-157) 

More commonly, descriptions were ambiguous, equally applicable to energy seen as a 

state of being or as a more substantial entity. Moving a box 

... takes a lot out of a person, you know. 84: S9 26 

The person needs energy to push and after he's done pushing he's lost his energy. 85: 
S9 37) 

No multiple choice responses directly contrasted a view of energy as a vital state 

with the more substantive view discussed next. The explanations quoted above merely 

admit the possibility of a vital-state concept of energy in the sample population, at 

least to some limited extent. The more limited claim of a widespread association 

between energy and human (or animate) agents or activities, discussed earlier in this 

chapter (sections 1.2 and 1.4) appears better justified than inferences about the nature 

of energy as a substance or vital state. 

2.2 Energy is a substantive causal agent. Previous research has suggested that 

talk about energy is usually couched in concrete, substantial terms, suggesting that it is 

regarded as a sort of generalized fuel for change (Gilbert & Pope, cited in Brook, 

1986; Watts, 1983a). Associations of energy with motion and accomplishing tasks, 
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illustrated in previous sections, appear to support the fuel aspect of this interpretation. 

One subject stated the matter quite explicitly: 

... no matter what you do, you're using energy. 86: S8 34) 

Various properties of material substances are commonly ascribed to the energy-

fuel: ability to be stored, circulated, used up, transferred from place to place, and so 

forth. The physicist's abstract conception of a convenient "energy-number" calculable 

for any ph/i leal system is seldom expressed. This tendency was also evident in the 

present study, especially in interviews. Several examples have already been cited. 

When a grip strengthener is released, for example, 

I think some of the energy is letting loose // as your letting go, it's not held as tightly 
together. And the energy is kind of moving around more freely, and not as packed 
together as it was. So it's looser and has more places to go. So it's kind of... moving 
out. 

(Where does it go?) Well now, it could be moving. 'Cause when you're packing it 
tightly together, it's all kind of... bunched up, and it kind of just... goes back into the 
handles more, and up into the ring. Or else, it could be escaping and stuff. 20: 18 8 
(172, 185-186) 

Other descriptions, however, are framed in less physical terms. They could apply to 

an energized state as well as to an energy substance. 

... as you're winding [a toy truck] you'd be putting a little bit more energy in it, so it 
moves. And then when it slows down I think it's kind of losing its energy // it just 
kind of... goes away. (Does it just vanish?) I think it just kind of mixes in with the 
air. And you can't tell it's there, but it is there. 12:14 8 (084-095) 

It is not clear whether such comments reflect any strong commitment to a 

substantive conception of energy. Everyday discourse, at least in English, commonly 

lends a concrete, quantifiable air to the insubstantial. We say there is "not enough 

light to read by" at least as easily as we describe a room as "dimly lit." A person is 
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said at one time to be "displaying a great deal of courage" and at another to be "very 

courageous." Scientific talk can be similarly inclined to the concrete. We say a 

stretched spring "has a lot of potential energy", rather than describing it as "potentially 

highly energetic." 

When reflecting upon his concept of energy, of course, a philosophical physicist 

may find graceful words to express its insubstantial character (see Feynman, cited in 

Approaches to teaching energy. 1987, p. 4). Subjects in this (and similar) studies are 

unlikely to have considered the matter in such depth. Their comments might be 

interpreted as reflecting an undifferentiated conception expressed with the ambiguity of 

everyday speech. To go further and postulate a widely held alternative conception of 

energy as substantive seems unwarranted, at least on the basis of the present study's 

findings. 

The concrete tone of everyday speech also presents a methodological problem. In 

the present study it proved extremely difficult to formulate concise descriptions and 

carry on comfortable conversations in terms which would be neutral in their 

presentation of energy as a state or as a substance. It is possible that subjects were 

predisposed towards responses with a substantive tone even by such almost 

unavoidable phrases as "getting" or "having the most" energy. Alternative 

formulations such as "becoming energetic" or "in the most energetic state" are 

sufficiently pedantic to impede conversation, and sufficiently unusual to act as strong 

cues for a similar style of answer. Similarly, no satisfactory multiple choice responses 
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could be phrased in a manner which directly contrasted the two views without drawing 

undue attention to one or the other. 

As a result of these limitations of design and interpretation, the present study is not 

considered to have provided clear evidence for or against a widespread substantive 

conception of energy. 

3.1 Energy is stored in some objects, needed and used bv others. Previous 

researchers have reported many examples of this "depository" conception (Gilbert & 

Pope, cited in Brook, 1986; Watts, 1983a). As a result, it was not surprising to 

encounter statements reflecting all three of its main characteristics during the present 

study. However, each aspect had unexpected shadings, and will therefore be discussed 

separately. 

Some objects were described as reservoirs, storing energy by virtue of their nature 

or particular situation. In a balloon, 

... before the string is lit, it is storing its energy and not using it. 87: S5 7,49, 60) 

If a person holds a ping-pong ball underwater, 

... the ball is absorbing energy until it is released. 88: S8 60 

The person is storing potential energy in the ball as the person holds it underwater. 
89: S8 49 

As previously noted, some subjects used the term "potential" energy to indicate the 

capacity of such energy reservoirs (page 95). The reservoirs were viewed as lacking 

energy until some necessity triggered its sudden appearance. 

Objects and people were frequently described as needing energy to do things or to 

be in anything but some presumed natural state. Energy may not be considered 
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necessary for a stone to lie on the ground, for example, but when it is placed on a 

fencepost the situation changes. 

You need energy to hold up everything: the earth to hold up the post, the post to hold 
up the rock. 90: S2 15,26,40,41,44,51,55,65) 

A pendulum stuck to a wall 

... needs its energy to break free, then swing, but as it starts to climb it needs its 
energy again. 91: S10 9 

An inflated balloon 

... needs lots of energy to pop // in little shreds. 92: S5 37, 51, 61 

It needs energy to explode, and that is when it has the most. 93: S5 33 

Other descriptions of a need for energy are found in quotations 6 (page 100), 11 (page 

102), 14 (page 104), 15 (page 106), 21 (page 109), 29 (page 123) and 50 (page 138). 

The somewhat mysterious appearance of energy in times of need, apparent in 

quotation 92 (above), also featured in other responses. Possibly it represents an 

extension of the human experience of gathering or focussing energy to perform a task 

like climbing stairs. 

(Where does this extra energy come from?) Urn ... I guess your mind. Like, you see 
the stairs coming so you kind of know that you're going to have to use energy to walk 
up the stairs. So I guess you just, you sort of tell yourself that you've got to walk up 
the stairs and kind of get some energy. 22:110 6 ( 173-174) 

A third element of the depository view is that objects use energy up in the 

performance of a task. 

When the [bicycle] rider stops pedalling, there is no more energy being given to the 
wheels. Therefore, the wheels use up the energy stored in its speed and eventually 
stop. 94: S4 59, 65 

The pendulum has energy to swing down, uses it up going up, and gathers more going 
down. 95: S10 36) 
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Item Responses Description 

9 response d 27 of 81 Energy is being used up pushing a box. 

10 response a 16 of 80 A pendulum's energy goes down as it swings 

The image of a limited supply of energy-fuel which diminishes as events occur 

parallels to some extent the thermodynamic concept of free energy. As such, this 

aspect of the depository framework has been suggested as a suitable starting point or 

anchoring conception from which to develop the broader scientific view of energy 

(Clement, Brown, & Zietsman, 1989; Ross, 1988). 

3.2 Energy circulates like a fluid. Previous research has shown that electrical 

and hydraulic systems, as well as instances of heat transfer, are often described 

according to this "flow-transfer" conception (Duit, 1981; Watts, 1983a). Further 

examples of this orientation were evident in the present study. In an electric circuit, 

energy 

... is in the battery. // It's like they're sticking to something inside the battery. And 
then once the switch is on it... just sort of has an opening and drains through the wire 
... 18: 17 6 (123-126) 

When a solar-powered flashlight operates, 

Energy produced in the solar cells is carried to the bulb through wires, charging the 
bulb, therefore causing it to light up. 96: S7 0 

Clearly, a flow-transfer conception does not preclude notions of energy 

accumulations. It also accommodates the notion of certain objects or tasks needing or 

Two survey responses also embodied descriptions of energy as diminishing or 

being used up during changes. Their appeal gives further evidence of the widespread 

tendency to adopt this aspect of a depository orientation towards energy. 
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Item Responses Description 

7 response c 7 of 75 A solar cell charges electricity with energy, which is then 
carried through the circuit 

9 response b 18 of 81 Energy is transferred from a worker to a box being pushed 
uphill. 

3.3 Energy is dormant until triggered. Energy is sometimes described as a sort 

of possibility associated with objects or situations (Watts, 1983a). It is not really 

present, at least not in an active, full sense, until the proper conditions are established. 

At that time, this dormant ingredient or "potential" is released or triggered into action. 

Occasional suggestions of such a conception, or aspects of it, were gathered in the 

using energy. However, Instead of being used up like a fuel, energy in this model is 

dissipated, or loses its potency. It moves in and out of objects without ceasing to 

exist. When a wind-up toy is operated, for example, 

I think when you're winding it up, it's moving the stuff inside. And it's picking up 
more energy. (From where?) Outside, like ... from the air particles and everything. 

And then when it slows down I think it's kind of losing its energy // it just kind of ... 
goes away. (Does it vanish?) I think it just kind of mixes in with die air. And you 
can't tell it's there, but it is there. 12: 14 8 (095-098, 084-095) 

Because responses displaying a flow-transfer conception describe energy as 

persistent rather than consumable, this orientation may provide a useful stance from 

which to approach the idea of conservation of energy. 

Two survey responses explicitly contrasted a view of energy flow and transfer with 

descriptions of energy being used up. Support for them is considered to be further 

evidence of a flow-transfer conception. 
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Item Responses Description 

7 response a 13 of 75 Sunlight releases the energy of a solar cell. 

7 response b 6 of 75 Electricity releases the energy of a light 
bulb. 

Watts (1983a) provides an illustration which likens an object's dormant energy to a 

seed, able to flourish and mature given the proper conditions. A similar flavour 

pervades several other descriptions of the bursting balloon. 

It has energy when it is blown up, but has way more as it explodes. 99: S5 46 

As it explodes the air in the balloon is suddenly given a radical boost of energy ... 
100: S5 73 

All the balloon particles fly outward. So does the energy from inside, and the energy 
is pushed so hard and fast more energy is released, because of the flame hitting the 
balloon. 101: S5 23 

As previously noted in the discussion of interview findings, the term "potential" 

energy was occasionally used to indicate the energy-capacity of some object or 

situation (page 95). The energy was not described as stored or actually present. 

Rather, it was a possibility, actualized when some event or necessity triggered its 

sudden appearance. This distinctly non-scientific usage, identified by Stead (1980), 

present study. A few subjects spoke of energy being released without any suggestion 

that it had previously been stored up. For example, in the solar powered flashlight. 

Sunlight releases rays that hit the solar cell and it releases energy and makefsj the bulb 
light up. 97: S7 7, 10, 14,23,51,54 

A balloon has most energy as it explodes because 

... that is when the energy is released from the balloon. 98: S5 17, 31,53, 54, 65, 83 

Two survey responses described situations in which energy release was triggered, and 

are thus considered compatible with this conception. 
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appears quite parallel to the dormant ingredient conception. When a marble is held 

high on a track, 

It [has] potential energy. And once it rolls down it would go into kinetic and then that 
will turn into heat energy. (In your mind,what do you mean by potential energy?) It 
has the ability to do work ... to release heat... if it is released. (Has it got that ability 
right now // as I'm holding it?) No. (So when I release it, what happens?) Then it 
has energy // when it's released it's got kinetic energy " It changes into kinetic. 1:10 
2 (012-028) 

In the exchange quoted above, considerable probing was required before a clear 

statement of the conception emerged. Had survey responses that hint of energy release 

without energy storage been subject to equally intense probes, perhaps more definitive 

statements would have resulted. However, the existing data is viewed as providing 

only oblique support for the presence of a dormant ingredient conception in the sample 

population. 

3.4 Energy is a byproduct of activities. Previous studies have suggested that 

energy is sometimes described as a non-essential accompaniment or result of activities, 

a sort of short-lived exhaust. (Stead, 1980; Watts, 1983a). Similarly, in the present 

study energy was frequently described as appearing or being created as activities 

occurred. 

When a biker stops pedalling the motions which caused the energy stop and the bike 
just coasts along and no energy is being produced any more. 102: S4 27, 2 ,3 , 16, 
17, 19,66, 68) 

All action or movement creates energy. 103: S4 16) 

In an exploding balloon, 

All that heat and pressure builds up into energy and that is why it explodes. 104: S5 
3,41 

Because of the explosion the particles fly out in different directions, slamming into 
other particles, creating energy. 105: S5 2 
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When a person works to push a box uphill, 

The box being pushed by the human makes the person produce energy. 106: S9 30 

When a pendulum swings, 

... the speed of the object produces a lot of energy moving back and forth. 107: S10 
25 

The most energy is when it's pushing the air out of the way to swing down, producing 
lots of energy. 108: S10 27 

Other sources of energy have been mentioned in previous quotations: heat (quotations 

16, page 106, and 39, page 130), light (quotation 41, page 130), mechanical collisions 

(quotation 34, page 126), and pushing an object (quotation 46, page 135). 

These findings must be regarded cautiously. While they do not preclude the by­

product conception, they do not clearly explain the role energy is considered to have 

once it has been produced. In particular, they admit the possibility that energy is 

being used as a global term for all the movement and change which comprise the 

action situation itself. The only survey item which probed this conception (7e) 

suggested that energy could be produced by a reaction between electrical currents. It 

gathered little support (2 of 75 responses). Thus, while the present study provides 

evidence of the possible existence of a byproduct conception in the sample population, 

it is not considered to definitely establish the presence of this conception. 
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Research Question 2 

Will subjects show a similar pattern of responses to interviews and written 

surveys? 

Conclusion 

Subjects tended to choose similar responses on parallel interview and survey 

questions (Table 20). This is taken as limited support for Treagust's (1988) claim that 

carefully constructed multiple choice instruments offer a valid alternative to interviews 

for probing alternative conceptions in a classroom setting. 

Discussion 

This finding is a very limited byproduct of the investigation and must be regarded 

as suggestive, not definitive. As previously discussed, the multiple choice responses 

proposed for the interview items were exploratory and often not mutually exclusive 

(page 142). Several subjects found reason to support more than one response to a 

given question. Also, interview findings were used, as planned, to refine potential 

survey questions. For most questions, this reduced the original parallelism between the 

two sets of items and rendered direct comparison of results impossible. Finally, 2 of 

the subjects did not complete the entire interview schedule, and only 7 of the 8 

interview subjects also completed surveys. 

As a result of the small number of items and subjects which could be compared, 

no statistical validation of the apparent similarity of their interview and survey 

responses was warranted. Nevertheless, the indications of parallelism are intriguing. 
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Table 24. Survey Response Patterns - Significance by Class 

Item 1 2 3 4 5 6 7 

CO
 9 10 

p * 0.0041 0.4322 0.2643 0.008 ** 0.1122 0.5077 0.0127 0.0641 

Significant? 
p < 0.05 

- yes no no yes - no no yes no 

* Open response question ** Two versions of question used, so no analysis attempted. 

Discussion 

The widespread presence of alternative conceptions among secondary students at 

different age levels was expected. Previous investigators have found non-scientific 

conceptions to be tenaciously maintained, even as scientific concepts are learned. 

The question certainly admits to further research using refined interview and survey 

schedules designed for the purpose. 

B ' ; tarch Question 3 

Will there be noticeable differences in responses between grade 9 subjects, who 

have not received a formal introduction to energy at secondary school level, and grade 

11 subjects, who were introduced to the subject two years previously? 

Conclusion 

With three exceptions (questions 2, 5, and 9), survey responses showed no 

statistically significant difference in response patterns between classes at (he different 

grade levels (Table 24). HoweVer, analysis of interview transcripts showed that the 

two grade 9 subjects accpunted for only 6 of 57 references to aspects of the scientific 

concept of energy (Table 23, page 144). 
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Results of the present study are compatible with the notion that scientific ideas may be 

segregated from more everyday notions, being held in reserve, so to speak, for 

situations in which their use is clearly indicated. Thus, students may display technical 

vocabulary in science class and choose correct answers on science tests, even while 

maintaining and applying quite different and even contradictory lifeworld notions 

outside of class (Osborne & Freyberg, 1985). 

If this is the case, scientific ideas of energy would not likely be raised in 

conversation except by people who have been specifically introduced to them. They 

are sufficiently abstract and counter intuitive to preclude spontaneous discovery and 

expression by students such as the grade 9 subjects of the present study. Older 

students, having been introduced to scientific notions, might discuss them if they were 

raised in a school setting by a science teacher. (Both conditions were embodied in the 

present study.) The same students might not, however, have developed sufficient 

commitment to a scientific viewpoint for it to displace alternative conceptions when 

interpreting situations independently. In effect, the scientific conception could be 

known but not adopted, appearing in conversation when cued by the situation but not 

being reflected in more everyday, independent judgements. 

Research Question 4. 

Will the proportion of students utilizing a scientific orientation vary between 

classes? 
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Conclusion 

In both interviews and surveys, grade 11 physics students produced the largest 

proportion of responses which exemplified scientific energy conceptions. This resull is 

based partially on qualitative analysis of interview transcripts. In the survey, questions 

2, 5 and 9 produced differences in response patterns between classes that reached 

statistical significance (p < 0.05). This result is based only on quantitative analysis of 

survey results, which must be regarded with considerable caution due to the small 

number of subjects and the leading and exploratory nature of some of the questions. 

Discussion 

Physics students are often regarded as more likely to be academically engaged and 

capable than general science students. They might, therefore, be expected to have 

adopted comparatively more of the reasoning patterns and scientific knowledge taught 

in school science courses. In fact, during the eight interviews, the 2 physics students 

made 31 of 57 references to aspects of a scientific conception of energy, while the 

general science students made only 10 such references, all by the same student (Table 

23, page 144). 

Table 10 (page 112) shows that in the seven survey questions for which a 

scientifically acceptable response could be clearly identified, physics students showed a 

greater preference than other subjects for that response in all but two cases. In only 

one case (question 4) was the most scientific response chosen by a greater proportion 

of general science than physics students. Question 4 involves changes in energy as a 

cyclist stops pedalling and coasts to a stop. A focus on motion of inanimate objects, 
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which might be expected from physics students, leads to a response which neglects 

energy conversions involved in pedalling. Both general science and biology students 

were more successful than physics students in associating energy changes with this 

activity by a living organism. In one other case (question 9) physics and general 

science students showed an equal attraction for the most scientific response. As 

previously discussed, the wording of the most scientifically acceptable response was 

somewhat anthropomorphic, which may have made it appear less plausible (page 135). 

During the data analysis, some insights were gained about subjects' reaction to 

each aspect of the scientific concept of energy. These interpretations are summarized 

briefly below. 

4.1 Energy is an abstract quantity. Only the two physics students made any 

reference during the interviews to energy as a general characteristic of any physical 

situation (Table 23, page 144). According to the core curriculum, however, this idea 

should be stressed at junior high level for all students (Table 3, page 52). From a 

Piagetian viewpoint, one might speculate that junior high students are not generally 

capable of dealing with this degree of abstraction. Instead, the concept of energy may 

be subdivided into manageable instantiations. 

With the person holding the book, it is human energy, but when a machine lifts, it's 
energy produced by electricity or w ' Uever the machine runs on ... 35: S6 27 

Other subjects restricted energy to a particular type of situation: motion, for example, 

or accomplishing a task. Still others differentiated the concept until energy became 

just one of many roughly equivalent situational features which might trigger physical 

changes. 
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The only reason the [submerged ping-pong] ball rises is because of density, not 
energy. 42: S8 17 

The presentation of different forms of energy throughout elementary and junior high 

school may support this "divide and conquer" strategy. Students with limited ability to 

generalize across concrete examples may focus on the initially obvious difference 

between, for example, "heatenergy" and "lightenergy". The generalization intended by 

labelling them as different forms of energy may not be perceived or internalized. 

4.2 Energy is transferred from place to place. This concept figured in all but 

one interview (Table 23, page 144). It was also used in justifications of survey 

responses. In a solar powered flashlight, for example, 

Light energy from the sun is stored within the solar panels and than transported to the 
bulb, lighting it up. 109: S7 58, 6,9, 62 

When cold lemonade sits in a hot room, 

The heat energy taken from the air is absorbed by the lemonade. This should continue 
to occur until an equilibrium is reached ... 110: S3 76,75 

Survey responses 9b and 9c spoke directly of energy "transfer" and "sharing", and 

were supported by 18 and 12 subjects (out of 81), respectively. 

The idea of energy transfer appears to arise quite logically from a flow-transfer 

conception, which views energy as circulating through a system, perhaps losing 

potency, but not being consumed. Transfer is equally possible to visualize whether the 

object of the transfer is conceived in concrete terms or as a less substantial, but still 

mobile, quality. The relative accessibility of this aspect of a scientific conception of 

energy is thus not difficult to understand. 
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4.3 Enemv occurs in many interconvertible forms. The notion of different 

forms of energy was suggested by 5 of the 6 grade 11 interview subjects. It also 

appeared in a number of explanations for survey responses. 

[A cyclist] has potential energy which he converts to kinetic energy. Then the kinetic 
energy is changed to heat energy and possible sound energy. Il l: S4 42, 82 

[In a burning balloon] energy changes from potential to heat and then to kinetic and 
heat again for the explosion. There is no energy change, just transfer. 112: S5 76 

[In a solar cell] the light energy is changed into heat energy, which then transferring 
into electrical energy by the solar cell. The electrical energy is then transformed into 
light energy and heat energy again [by a light bulb]. 113: S7 60 

A. man has stored energy 
B. man uses energy to push box, transferring some to box to make kinetic energy 
'cause they are moving 
C. heat energy in the air because of friction on the ground and the man's exertion 
(sweat)... 114: S9 77 

One multiple choice survey response (7d) explicitly described energy transformation 

from light to electrical to light form. It was supported by 47 of 75 respondents, 

including almost half the grade 9 students, even though they had not undertaken their 

major study of energy at the time of the survey, which includes an extended 

consideration of its forms and transformations. Altogether, the idea of energy forms 

and conversions appears on the surface to be reasonably accessible to students in this 

study. 

Nevertheless, as discussed in connection with energy's abstract nature (section 4-1, 

page 149), it is less clear that students view the various energy forms as different 

manifestations of the same underlying quality. Many descriptions quoted above are 

quite compatible with a view of energy forms as essentially different things which just 

happen to be susceptible of change from one to the other. Turning an egg into a cake 
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might be termed "conversion" in this sense, which is clearly distinct from the 

"conversion" of a dollar into some other currency. Similarly, as pointed out earlier, 

use of the terms "potential" and "kinetic" energy, and discussion of the conversion of 

one to the other, does not necessarily indicate a scientific conception of the forms or 

conversion process. 

4.4 Energy is conserved in closed systems. During the interviews, only subjeci 

1 consistently attempted to analyze situations in terms of energy conservation. For a 

simple mechanical systems, her statement was quite precise. 

There's different kinds, like, of energy that you can have, but, like, if you added them 
all up it would still equal the same before and after... 115: 14 1 (062) 

Situations less typical of remembered examples from physics classes gave more 

difficulty. Item 5 asked about the energy of exploding fireworks. 

I'd still say there was no change, but... we haven't had that situation brought up ... 1 
know it would have chemical potential energy of some sort there [initially] ... but then 
I can't figure out what kind of potential energy would be in that one [after the wick is 
lit]... 116: 15 1 (074) 

Biological syslums proved least familiar, and even more difficult to analyze. 

[A weightlifter] ... kinda has biological energy ... stuff inside him to be doing 
something, like ... 'cause he has to work at it. So he has potential energy to move the 
barbell. He has, like, energy stored in him, in his fat or something like that. // I 
think some of that energy in ... in him is being used up, because, like, he has to hold it 
... it takes energy to hold it... // (What happens to the energy that he had?) I don't 
know ... I don't really know about biological energy. I don't know where it went. He 
used it up... 117:16 1 (096-106) 

Occasional survey justifications by other physics students suggested that they, too, 

were familiar with statements of energy conservation. However, their responses 

showed no evidence that they applied the principle in an analytic fashion. 
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Energy totals never change, but energy forms may. 118: S4 77 

Energy is not destroyed or constructed. There is a "conservative energy" present. The 
amount of energy is constant, although the forms of energy change. 119: S5 81 

Either potential energy or kinetic energy is greater in each picture [of a swinging 
pendulum], but they always add up to an equal total ... 120: S10 84 

One survey item (10e) stated directly that energy remains the same while a pendulum 

swings. It received moderate support (16 of 80 responses) drawn from all classes. 

Taken together, these observations suggest a grasp of energy conservation that 

generally does not extend much beyond a regurgitated statement applied to 

remembered examples. This conclusion appears to support Solomon's (1982) account 

of both conceptual and practical difficulties associated with teaching and learning the 

concept, even though it is not usually considered particularly difficult. 

4.5 Energy is degraded in physical changes. Only four rather imprecise 

suggestions of energy becoming unavailable or degraded emerged during the 

interviews (Table 23, page 144). Survey responses revealed that the essential role of 

heat energy in this process was misconstrued in several ways. For example, 

descriptions of energy flows through systems seldom extended to waste heat. The 

uncertain fate of a toy truck's energy as it moved along provides one illustration. 

... it's being used up, probably from the wind and the ... friction, I guess / /1 just see it 

... unwinding and the wheels are using that [energy] to make it go, I guess. (What 
happens as it's used up?) It just... is, probably, no longer and it stops. It just... I 
don't know ... 11:14 3 (076-081) 
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The tendency of systems to move towards thermal equilibrium was not appreciated 

by some subjects. After hot metal is dropped in cold water, 

... the temperature of the thermometer [in the water] would have dropped a couple of 
degrees and the metal would have dropped, too // (What would set the limit?) 
Probably zero // 'cause zero is when the, is the starting of the freezing point and the 
melting point... of ice and water. 10: 13 7 ( 059-066) 

Heat was described more than once as a carrier or mediating agent which created 

energy in objects. A barbell being held by a weightlifter has energy because, 

The metal ... it could be attracting heat, and the heat's making energy inside of it // It's 
just the amount of heat it attracts that's creating the energy in it... 16: 16 8 (124 -
126) 

These confusions, and the general lack of reference to energy degradation, appear 

more serious in light of Solomon's argument (op cit) for the practical utility of this 

concept. It provides, she suggests, a useful stance from which citizens can approach 

questions of resource use and energy conservation. The common conception of energy 

as a sort of fuel that is consumed in changes, discussed earlier, has been suggested as 

a suitable "anchoring conception" or jumping off point for explicit discussions of fuels 

in general, focussing on fuel use and conservation (Ross, 1988). Concepts thus 

developed would be useful "citizens' science" and could be subsumed if necessary by 

later studies of thermodynamics for those so inclined. The CUSP Energy materials do 

in fact make use of this approach (Approaches to teaching energy. 1987; Needham and 

Hill, 1987; Scott, et al., 1987). 
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4.6 Available energy can be husbanded in practical situations. Only a few 

references to this outgrowth of a scientific viewpoint emerged from the survey. All of 

them came in response to an open-ended question showing a refrigerator with door 

ajar. 

The fridge is having to expend extra energy that is very expensive. 121: SI 21,71, 
79) 

Someone must have left [the fridge] open not thinking that they're wasting energy. 
122: SI 13, 62 

The corresponding interview item showed a house with door open to the winter air. 

No subject described the situation in terms of undesirable energy loss. 

Both elementary and senior general science curricula make explicit reference to this 

concept. Furthermore, the development of a conservation ethic has been widely urged 

as socially useful, if not essential. Energy conservation programs are widely 

advertised and promoted. It is, therefore, the more unexpected, and distressing, that a 

viewpoint which appears to be part of current culture appeared so infrequently during 

the present study. 

Research Question 5 

Will subjects consistently utilize a given conceptual orientation? 

Conclusion 

Neither the interviews nor the survey results produced evidence that individual 

students consistently chose responses which exemplified the same concept of energy. 

However, some notion of energy was frequently used as a descriptive framework for 

the open response survey question. In addition, interview transcripts did show evidence 

of preferred conceptual orientations for several subjects. 
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Discussion 

Previous qualitative studies have found student responses to be situation-specific 

and often contradictory (Osborne & Freyberg, 1985). Thus, it was not unexpected to 

find that survey responses showed little evidence of consistent themes when analyzed 

by conception (Table 21, page 141). Two exceptions, flow transfer and conservation, 

were each chosen by so few subjects that any apparent consistency could easily be a 

chance effect. As previously discussed, however, this result is a very limited offshoot 

of the study, whose small scale and interpretive focus precluded sophisticated 

statistical analysis. At best this aspect of the present study provides no conclusive 

reason to doubt previous findings of the apparently fickle nature of student's allegiance 

to particular conceptions. 

Even the spontaneous use of any sort of energy-based description was not expected 

to occur frequently. Duit's (1990) interview studies produced very few unprompted 

references to energy. The interview portion of the present study resulted in similarly 

negative results for items 0, 1, and 10, which were designed to test Duit's finding. 

Survey results were expected to be similar. 

It was unexpected, therefore, to find survey item 1, depicting a refrigerator with 

door ajar, producing a large proportion (25%) of answers which specifically described 

the situation in terms of energy. An additional 45% of responses referred to specific 

forms of energy, mainly heat or heat loss. 

It is possible that this particular situation prompted energy-based descriptions as a 

result of students' previous experience. Discussion in elementary science, "Energuide" 
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labels on new fridge doors, and energy conservation advertising campaigns might all 

have linked refrigerators with energy Alternatively, students might have approached 

the item with an energy mind-set established by leafing through the survey papers. 

Conversation with interview subjects in the time between interviews and survey might 

have produced a similar effect. In neither case would increased use of the term 

"energy" imply greater understanding of a scientific energy conception. 

Lack of consistency in the responses that students eventually chose does not rule 

out the concept of preferred conceptual orientation. Subjects may have approached 

questions from a small number of favoured stances which, when modified by 

situational factors, produced a seemingly inconsistent variety of responses. The 

successful construction of subject profiles is taken as modest, non-statistical evidence 

to that end (page 143 ff). Many interview subjects' discussion seemed to show a 

degree of consistency in approach, even though no parallel consistency was evident in 

survey results. Similarly, lack of individual consistency does not endanger the idea of 

alternative conceptions. Responses from large groups of subjects can be grouped 

according to apparently similar basic ideas, even by a casual examination. Statistical 

analysis, although not widespread, has supported this appearance. A recent large-scale 

study designed to permit factor analysis has produced evidence for an underlying 

structure in subjects' ideas about sources of energy (Boyes & Stanistreet, 1990). 
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Implications of the Study 

Research Methodology 

The author's initial reservations about the merits of studying his own students 

proved unfounded. Interview subjects were more than co-operative and appeared to 

enjoy the experience of clarifying and expounding upon their own ideas. There was 

no initial reticence, and a businesslike and congenial tone was evident throughout. 

Survey participants, for the most part, appeared to take the exercise as seriously as it 

was intended. Supervising teachers reported that they pondered the items at 

considerable length. The resulting explanations were clearer and more detailed than 

the author had expected on the basis of the same students' performance on written 

examination questions. 

The value of the preliminary steps suggested by Treagust for preparing interview 

and survey instruments was established in practise. A similar methodology would 

appear generally suitable for other studies. The systematic gathering of curriculum 

statements was helpful in defining an appropriate breadth and depth of expected 

student knowledge. Semi-structured interviews provided a stock of examples and 

student-generated expressions of alternative conceptions that differed so considerably 

from the author's perspective that they could never have been generated by his unaided 

efforts. The written justifications of multiple-choice survey questions suggested many 

further refinements to the questions which could be incorporated in the next phase of a 

more extensive study. 



The survey results testify to the power of such instruments for revealing alternative 

conceptions. In classroom teaching, they appear to represent, as Treagust has argued, 

a viable alternative to the clinical interviews favoured by researchers. Even the 

preliminary form used in the present study clearly revealed differences in viewpoints 

which could be used as the basis for class discussion and teaching. Whether 

significant additional benefit would arise from recasting the instrument into the two-

tier multiple choice form favoured by Treagust is uncertain. The task of wording 

appropriate distracters for the second (justification) level of each question seems likely 

to be formidable, at least for a broad topic like energy, where different conceptions 

tend to overlap rather than being mutually exclusive. For teaching, open responses 

would seem able to provoke the desired discussion of alternative conceptions. For a 

research study of this scope, analysis of open-response justifications did not prove to 

be an overwhelming chore. Only in the case of large-scale studies designed for 

statistical analysis would the additional step of creating a totally objective form of the 

instrument appear essential. 

The depth of analysis employed in the study proved generally suitable for 

exploratory purposes. Criteria for more formalized systems of transcript annotation 

and conversational analysis would have been impossible to formulate until after a 

preliminary study of this nature. More elaborate statistical investigations would have 

been unwarranted until the existence and scope of alternative conceptions had been 

established in the target population. Moreover, the elaboration of multiple-choice 

responses, especially in the interview setting, revealed unsuspected nuances of 
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understanding that were not apparent from consideration of the responses alone. The 

value of interview probes to establish shared understanding, which has been remarked 

upon by many previous investigators, also became apparent to the author in the course 

of the study. 

However, using key words or even sentences as unit of analysis to catalogue 

alternative conceptions was not entirely satisfactory. The image of an energy octopus 

gradually emerged from the data. Students seemed to be analyzing situations with one 

or the other of several tenacious conceptual tentacles. The tentacles sometimes acted 

alone, and sometimes supported each other. Tne octopus as a whole was seldom 

visible, only twining tentacles which refused to maintain any rigid relationships. 

The construct of conceptual orientation proved helpful in making sense of this sort 

of complex data at the octopus level of entire interviews. Emerging as it does from 

protracted, personal and phenomenographic consideration of the transcripts, in this case 

for a period of over a year, the validity of the resulting interpretations is 

difficult to establish on objective grounds. There is a clear danger of ascribing to the 

data more coherence than it contains and discerning in it structures which exist 

primarily in the eye of the researcher. The appropriate test, according to Johansson, 

Marton, and Svensson (1988) is whether the eventual crystallization of diverse and 

apparently conflicting findings into a coherent whole is echoed when other researchers 

examine the same topic. In the case of the present study, such validation is awaited. 
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Teaching 

As a classroom teacher, the author undertook this study only partly out of 

academic curiosity. On a professional level, he was also concerned with improving 

pedagogic skills and materials. It was personally important to establish whether 

theories and practices developed after observations of other student populations might 

also apply to Alberta students. 

At least in their understanding of energy, the Alberta students in this study did 

exhibit alternative conceptions similar to those discerned elsewhere. A wide range of 

distinctly unorthodox notions appeared, and despite personal variations in expression, 

appeared to cluster in identifiable and previously described groups. Some were openly 

expressed; others lurked beneath a veneer of scientific vocabulary. A basic tenet of 

constructivist pedagogy was being upheld: students were approaching the learning 

situation with a range of functional interpretive concepts. Furthermore, vocabulary and 

constructs taught in school science were being used to elaborate and express these 

preexisting conceptual frameworks, as well as their scientific competitors. 

It is possible that constructivist teaching strategies and materials developed to deal 

with parallel situations elsewhere might be equally applicable in Alberta. In particular, 

teachers might be better equipped to build upon existing conceptions if given some 

foreknowledge of what they are. In general, it would seem appropriate that guides 

such as Teacher Resource Manuals and other service publications include information 

from the extensive literature on alternative conceptions. Teacher preparation and in-
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service activities for new science courses could incorporate similar information and 

opportunities for teachers to explore their own conceptions of significant topics. 

Existing approaches to the study of energy clearly require examination. The topic 

has been designated a main theme of new secondary science programs, but present 

curricula and teaching practises apparently leave many students with little ability to use 

the concept of energy as a descriptive or analytic tool. A constructivist pedagogy 

would focus on bringing students to an awareness of their existing conceptions as an 

essential step in their reconsideration and reconstruction. Survey instruments such as 

that developed for the present study offer an entry point for this sort of discussion. 

The present instrument could easily be refined, and similar ones could be developed by 

teachers or researchers for other key topics in the Alberta curriculum. 

Specific barriers to a scientific understanding of energy also emerged from the 

study, and with them implications of revised teaching practises. The precise scientific 

usage of the term "potential" energy, which has as much "reality" as any other form of 

energy, might better be conveyed by explicit contrast with the more ambiguous 

everyday usage connoting "possible, but not there at the moment." Overly 

differentiated notions of energy as a sort of hitchhiker attached to heat or sweat, as one 

of many causes of action, or as a generic term for action itself also appear susceptible 

to direct contrast with the more scientific view of energy as a general characteristic of 

physical situations. In particular, the applicability of energy descriptions to static 

situations involving inanimate objects is not apparent to many students and needs to be 

established. 
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Finally, some consideration of the purpose of emphasizing energy concepts at 

secondary school level appears warranted. Two apparently useful aspects of "citizen's 

science" or "scientific literacy" about this topic have been identified as a grasp of the 

concept of energy degradation and adoption of a conservation ethic. In the present 

study, both were noteworthy for their lack of expression by the students studied. 

Literature and activities directed specifically towards these considerations have been 

developed elsewhere (by the CLISP and LISP groups) and in Alberta by the SEEDS 

Foundation. The incorporation of these and similar materials into individual teacher's 

programs, or into the prescribed science curriculum can be seen as an essential step if 

Alberta science education is to develop a scientifically literate population. This social 

goal is rooted in the individual. Knowledge of alternative conceptions can help define 

both the starting point of relevant instruction and its eventual outcome. 

Further research 

If Treagust's methodology were carried further, the next step would be to use the 

survey data to refine both the survey instrument and interview schedule. If greater 

parallelism could be maintained between items, more sophisticated investigations of 

consistency of response could be undertaken, both from one item to another, and 

between the interview and survey. Revising multiple choice responses to more clearly 

reflect specific conceptions of energy would aid in this task. 

Two major revisions of format could be undertaken. Open response justifications 

gathered in the present study could be used to revise the survey into the two-tier 

multiple choice format used by Treagust and colleagues. Alternatively, the items could 



190 

be rewritten in a format which meets the constraints of factor analysis, to permit 

statistical investigation of possible deep structures - conceptual frameworks -

underlying subjects' answers. A suitable format might resemble that devised by Boyes 

and Stanistreet (1990), in which subjects use a Likkert scale to indicate the extent of 

their belief that content-laden statements are correct or incorrect. 

The study could also be extended to other populations. Parallel investigation of 

students who have gone through the incoming Alberta secondary science program will 

be possible as new high school programs are phased in from 1992 to 1994. Revised 

instruments could be used with younger students, before and after new elementary 

science programs are introduced. Such studies might shed light on the roots of 

connections between energy, motion, and animate beings. A third suitable population 

for further studies would be teachers, in view of Ameh and Gunstone's (1985) finding 

that they shared many of their students' alternative conceptions. 

The present study could be refined and extended in its treatment of many 

problematic themes. Conceptions of energy as more or less substantial could be 

directly contrasted. Animate, non-human objects could be included in some items. 

Various ideas about energy's role as a prelude to changes could be stated more 

explicitly: is it seen as a prerequisite of changes, an accompaniment, or is it just used 

as a general label for change itself? Does it appear on demand, or is it actually 

present before a change, as a dormant ingredient or a stored fuel. What happens to 

energy after a change: is it consumed, released as a short-lived byproduct, or does it 

persist? 
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Two especially interesting sub-topics arise from the findings of the current study. 

A surprising number of students appeared to lack a functional grasp of the concept of 

thermal equilibrium. As it appears in discussions of physical, chemical and biological 

processes, this topic represents potentially useful grounds for future research. A 

second finding, the unexpectedly high number of students who made spontaneous use 

of energy descriptions (survey item 1), invites verification, especially as it stands in 

direct opposition to Duit's (1990) report that energy was seldom used as a descriptive 

concept in similar situations. 

Finally, action research appears warranted in order to find appropriate ways of 

embedding results of alternative conceptions research in teaching practise. In 

particular, the present study has uncovered some possible links between alternative 

conceptions of energy and desired scientific understandings, as well as several possible 

anchoring conceptions for scientific concepts. For example, views of energy as a 

si'vstantive, consumable fuel could lead to the study of energy degradation. A flow-

transfer conception, by contrast, seems more allied to conservation of energy. 

Consideration of objects in "unnatural" situations, like a car on a hoist might 

foreshadow the notion of potential energy. These and other bridges from everyday to 

scientific conceptions need to be identified, elaborated, embodied in teaching materials, 

and tested for instructional utility. Science instruction and curricula resulting from 

such a process could be truly child-centred, respecting both the personal and social 

aspects of knowledge. 
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Appendix A 

Letter of Permission 

107 Hamilton Court, N.E., 
Medicine Hat, Alberta TIC 1J2 

Dear Parent/Guardian: 

With permission of Medicine Hat School District #76,1 am investigating student understanding of 
science topics as part of a degree program at the University of Lethbridge. Your son/daughter has 
been randomly chosen as a possible participant in the part(s) of the project checked below. 

An interview lasting about 20 to 30 minutes, during school 
time, about a particular topic. Interviews will be tape 
recorded so the conversation can be transcribed for study. 
The tapes will then be erased. Student names will not appear 
on the transcripts or in quotations used in reports on the 
study. 

A written survey of student understanding of the topic, taking 
15 to 30 minutes, during class time. Student names will be 
put on the papers to allow follow-up of unusual or unclear 
answers. After this is done, the names will be removed from 
the papers and will not appear in reports on the study. 

Participation in the study will not affect students' grades in science in any way. It will, I hope, be 
interesting for them, and is certainly essential to my research project. The results of the study 
could be very useful in improving our science instruction in the future. 

Please feel free to contact me, my supervisor Dr. Richard Butt (329 2434) or Dr. Myrna Greene 
(329 2424), Director of Graduate Studies, at any time if you have concerns or questions about the 
study. Your son/daughter also has the right to withdraw from the study without prejudice at any 
time. 

Please complete and sign the permission slip below and have your son/daughter return it to bis/her 
science teacher as soon as possible. 

Yours truly, 

D. Gue 

above. 
has my permission to participate in the research project described 
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Appendix B 

Interview Script 

Introduction 

This interview is part of a research project about the way Canadian students 
describe different situations. I am interested in the different ideas people have, so 
there are no right or wrong answers. And of course, your answers here will have no 
effect on your mark in (name of science course). 

I am going to tape-record our conversation because I won't be able to remember 
exactly what we say. If there's any part of the tape that you want me lo erase, 1 can 
do that. Is that okay with you? 

Do you have any questions before we start? 

Item 0 

Here is a marble. I'll hold it on the side of the ruler, here. 

1. Would you tell me everything you think will happen when I let go of the 
marble? 

2. How would you explain why the marble does that? 

Item 1 

In this picture, the house door has been left open on a cold winter day. 

1. Would you describe as much as you can about what is happening here? 

2. Is anything else happening? 

Item 2 

This picture shows a car balanced on top of a hoist. The car is not moving. 
1. Is there anything here that you would describe using the word 'energy'? 
2. Suppose someone didn't believe you. What evidence would you give that there 

is/isn't energy here? 
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Item 3a 

The pictures show a firecracker, the kind that explodes and makes a loud noise. 

1. When does the firecracker have the most energy? 
2. How do you know when the firecracker has the most energy? 
3. What happens to the energy? 

Item 6a 

The picture shows a weightlifter holding a barbell over his head. The barbell is 
not moving; he's just holding it steady. 

1. Tell me about energy in this situation. 
2. Does the energy change in any way? 
3. What happens to the energy? 

You may have done an experiment like the one shown in this picture. A piece of 
hot metal is put in a beaker of cold water. 

1. Tell about energy in this situation. 

2. Does the energy change in any way during the experiment? 

Item 3b 
After several minutes, some students observe this result. The temperature of the 

hot metal has gone from 80 degrees down to 15 degrees. The temperature of the 
water has gone from 20 degrees down to 2 degrees. 

1. Do you think this result is possible? Can you trust the students' observations, 
or do you think they have probably made a mistake somehow? 

2. Does energy have anything to do with this? 

Item 4a 

The picture shows a toy truck, like this one. Mickey winds it up, and lets go of it. 
It moves along and then it stops. 

1. Where is there an energy change here? 
2. Where does the energy come from? 
3. What happens to the energy? 

Item 5 
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Item 6b 

Suppose we had different ways of holding the barbell at the same height. 

1. When does the bar have the most energy? 
2. How do you know it has the most energy then? 
3. Some students say the energy (is/is not) the same. Why do you suppose they 

think that? 

Item 7a 

The diagram shows a flashlight battery connected to a bulb. The switch is open, 
and the bulb is not lit up. 

1. Which part of this circuit would you describe using the word 'energy1? 

2. What about the (battery/light bulb/switch)? 

Item 7b 

Now the switch is down, so the battery is connected to the bulb. The bulb lights 
up. 

1. Now which part of the circuit would you describe using the word 'energy'? 
2. When the switch is closed, does the energy change in any way? 
3. Exactly how do you think that happens? 

Item, 8a 

The picture shows someone using a gripper, like this one. They have squeezed it 
and are holding it closed. 

1. Can you tell me about energy here? 
2. Where does the energy come from? 
3. What happens to the energy? 

Item 8b 

Here the athlete starts to let go of the gripper (sketch b) and here it springs open 
again (sketch c). 

1. When is there an energy change here? 
2. How would you explain that to a young child, who didn't know much about 

energy? 
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Item 9a 

This sketch shows a person holding a heavy load. He is standing still at the 
bottom of some stairs, getting ready to carry the load up the stairs. 

1. Tell about energy in this situation. 
2. Do you think the energy here is any different from the energy in the last item 

(the grip strengthener)? 
3. Explain the (difference/similarity). 

Item 9b 

Now the person climbs the stairs, and then rests after getting to the top. 

1. Where is there an energy change? 
2. Where does the energy come from? 
3. Where does the energy go? 

Item 10a 

Let's look back at a sketch of the first example. Here is a marble on a curved 
track. The marble is stuck to the side of the track with glue. 

1. Would you say there is energy here? 

2. What do you suppose the energy depends on? 

Item 10b 

Now the glue breaks. The ball comes loose and starts to roll down the track. 
1. How far will the ball go without changing direction. 
2. Explain why you think that. 
3. If you keep watching, the ball might roll around for quite a while before it 

finally stops. What will you see happening if you watch the ball roll for a 
while? 

4. What sets a limit on how far the ball can go? 
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Appendix C 

Survey Justification Analysis bv Response 

Question 2 

The rock is balanced on top of the fencepost. Which statement below gives the 
best description of energy in this situation? 

Response A: There is no energy here. 

Although scientifically incorrect, this response was selected by almost half the 
grade 9 students and 3 1 % of subjects overall. As expected, many justifications related 
to the absence of motion and animate objects. 

How can a fence have energy like humans do? 123: S2 9 

Other justifications reflected a substantive orientation. For some, particular features of 
this balancing situation made it "natural" or energy-neutral: 

The rock can sit on a flat surface, especially if they are both flat. 124: S2 24 

The rock does not need to use up any energy to balance on the post. 125: S2 66, 69 

...all is stable... 126: S2 64 

Other students could find no process or reservoir which might serve as a source of 
energy. 

The rock is not taking in oxygen or releasing anything; therefore, there is no energy. 
127: S2 67 

If the post did give energy, we humans wouldn't have to eat at all - we'd just have to 
sit on a fencepost! 128: S2 1 

Several justifications mentioned gravity as a factor in the situation. However, they 
saw it as an alternative to energy, or merely a potential source of energy, rather than 
an indication of present (potential) energy. 

There is no energy being used here because there is another force at work. 129: S2 8 
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Response B: The rock has more energy on top of the post than if it were lying on 
the ground. 

This response was selected by the majority of high school students, including 
almost 73% of the physics students. It parallels typical high-school science text 
descriptions of objects lifted above the earth's surface. Nevertheless, it is limited 
scientifically because it localizes the energy to the rock, rather than the rock-earth 
system, and because it suggests that the rock would have zero energy at ground level. 

On the ground there would be no energy 'cause it's on the ground. 130: S2 43 

On the ground there really isn't any other place lower the rock can go. 131: S2 27 

Some students saw the rock as having energy because energy is a necessary 
ingredient for balancing, which the rock is doing, or falling, which the rock could do 
(depository framework). 

The [rock] can be balanced on the post, which [is] not like the ground. So the rock 
needs more energy to stay up there. 132: S2 3 

This rock has the energy stored up so that it can fall. If it was laying on the ground, it 
wouldn't have any energy. 133: S2 73 

Statements of what happens to the "energy fuel" varied. It might be used up, or 
just given off. 

The rock lias the potential to fall off the fence post and use up that energy. 134: S2 
53 

If the rock was to fall, more energy would be released than if it was rolling on the 
ground. 135: S2 60 

Many justifications differentiated between potential and kinetic energy. However, 
no student clearly expressed the idea of conversion between the two energy forms. 
Some students used the term 'potential energy' in the sense of "potential for containing 
energy": the rock was seen as an empty energy container which could be filled with 
kinetic energy created by falling. Saying that it has potential energy, to them, is 
apparently akin to giving the capacity of the empty container. 

On the fencepost the rock may blow over, giving it energy as it falls to the ground. 
136: S2 58 

The rock has potential energy. If it falls, its energy will increase. 137: S2 79 

Response C: The rock and post (and the earth below them) have more energy 
than if the rock were lying on the ground. 
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This is the most scientifically precise alternative, yet it was chosen by only two 
grade nine students. Neither justification clearly indicated an orthodox scientific 
viewpoint; rather, the connections expressed in the response apparently triggered a 
flow-transfer framework. 

The rock is forcing the post down and it is pushing into the ground. The ground is 
receiving all the energy. 138: S2 38 

Response D: The energy of the post is being used up holding the rock. 

This scientifically incorrect response was intended to trigger conceptions of energy 
as a fuel or necessary causal agent which is expended rather than being conserved. All 
but one of the responses, however, overlooked the suggestion of energy consumption 
and centred on the post's function of opposing the tendency of the rock to fall. 

The post has to have enough energy to hold up the rock so the post and the rock won't 
fall. 139: S2 6 

The post energy is holding the rock up by having it pushed up at such a rate that it 
stays in one spot. 140: S2 39 

Energy is thus seen as the strength to resist falling. 

The post looks fairly sturdy, unlike a twig if it were in this position. 141: S2 30 

Identifying energy with strength is easily linked with a conception of energy as 
characteristic with living things. 

The post once came from a tree, which had energy because it was alive. And even 
though the post is not alive, it was at a time, and its energy is being used to hold up 
the rock. 142: S2 35 

Response E: The energy of the rock and post (and the earth below them) is being 
used up holding the rock. 

This scientifically incorrect response was devised so that responses B and C, which 
speak of 'having energy', would be paralleled by responses which speak of 'using 
energy'. However, no justifications spoke specifically of energy use, although several 
students spoke of the necessary presence of energy in terms which would not exclude 
its consumption. 

It takes energy to hold up a rock. 143: S2 51 

It also takes energy to hold all three [earth, post, rock] together. 144: S2 44 
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The more common justifications focussed on energy flowing up or down through the 
physically connected rock, post and ground (flow transfer framework). 

The energy of the rock and post and ground below holds up the [rock] by directing 
energy towards balancing the rock on the post. 145: S2 34 

Question 3 

A glass of cold lemonade is left on a table on a hot day. After a few minutes the 
temperature in and beside the lemonade is measured by a student. The student must 
decide whether the measurement is reasonable. What is most important in making that 
decision? 

Response A: The lemonade would not warm up so much in just a short time. 

10 of 13 students merely restated the response, perhaps reflecting a comparison 
with personal experience rather than any attempt at considered explanation. Of the 
other three subjects, two applied personalized versions of particle theory. 

The air that goes into the glass would have to warm up a bunch of cold particles. It's 
just about the same as when a human breathes. 146: S3 2 

The lemonade wouldn't have time for the molecules to move as fast... 147: S.i 22 

Response B: The air near the glass would cool down more as the lemonade 
warms up. 

Many of the explanations (9 of 16) focussed on 'coldness', usually described in 
substantive terms and going from the lemonade to the surrounding air. This process 
was often distinguished from the warming of the lemonade. 

The lemonade warms up, releasing its coolness, and the air around it cools down. 
148: S3 12 

The lemonade absorbs heat as it gives off cool air. 149: S3 56 

Two puzzling explanations suggested that the air near the cool lemonade would 
warm up rather than cooling down. 

The air around can only warm up, because the air from around it moves in to warm 
up. 150: S3 13 

The actual temperature in the environment rose, but because the thermometer was 
close to the glass it took an inaccurate reading of environment temperature. 151: S3 
70 
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Two other justifications gave orthodox descriptions of energy transfer, without 
explaining how they would favour this response over the others. 

Response C: The two temperatures would end up equal. 

Without exception, explanations of this response involved heating. 

Some of the hotness will escape out into the air...wanning the air up. 152: S3 7 

Room temperature was often clearly identified as setting a limit to the temperature 
increase of the lemonade. However, the process was seen as one way, with room 
temperature remaining unchanged. 

Because the temperature outside the glass is 40 degrees, the lemonade must be able to 
reach that mark also. The temperature in the room would heat up the glass along with 
the lemonade within it. 153: S3 58 

One student used the idea of common cause. 

The sun is warming up the air and the lemonade is outside, so afler awhile they sound 
end up equal because the sun is heating both. 154: S3 14 

Several explanations pointed to a need for extra energy if the lemonade were to 
become warmer than its surroundings. 

No solution would end up warmer than the surrounding environment unless outside 
interference had taken place. 155: S3 60 

Response D: The lemonade would never get hotter than the air around it. 

Three explanations cited personal experience with condensation and water. 

I've seen that in [swimming] pools the water is always colder than the air around no 
matter what the size is. 156: S3 35 

The glass would let off perspiration [condensation] but the lemonade would not get 
cold because the air around it is hot. 157: S3 50 

The most detailed explanations (both from physics students) invoked conservation of 
energy and energy transfer. 

Heat energy can't just happen. Something needs to cause it. Nothing caused the 
lemonade to heat up the last 2 degrees. Nothing that hot was around to give it the 
heat energy. 158: S3 74 

The lemonade's particles would not end up moving faster than the air's. If heat energy 
is used, something has to slow down, meaning the air particles would be cooler. 
There is conservation of energy. 159: S3 77 
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Response E: The measurement seems reasonable but it would be sensible to 
repeat it just to make sure. 

Only a few students attempted to explain why the measurement was reasonable, 
but their attempts were ingenious. 

The glass will act as a magnifying glass and the lemonade will attract the heat, so it 
will be warmer. 160: S3 24 

The pulp particles in the lemonade absorb the sun energies more than the particles in 
the air, thus making the lemonade hotter than the air. 161: S3 29 

Condensation and heat gain cause the temperature of lemonade to rise. As for the 
outside temperature, it is probably released from die coolness of glass. 162: S3 69 

The remainder of the answers pointed to the possibility of various errors and the need 
to guard against them. 

You must try it twice to have an experiment, just in case the first test was wrong. 
163: S3 67 

Question 4 

The bike is being pedalled along the street. The rider stops pedalling. The bike 
coasts along, slows down, and stops. Where are there energy changes? 

Response A: There are energy changes from a (pedalling) to b (coasting). 

Most explanations identified the source of energy as the biker (animate 
framework). To some, when pedalling stops, no more energy is being generated. 

The motions which caused the energy stop and the bike just coasts along, and no 
energy is being produced any more. 164: S4 27 

To many others, stopping pedalling means energy is no longer being used up (fuel 
framework). 

He stopped using the energy for pedalling. 165: S4 6,11, 26,37 

The boy is no longer using his energy to propel the bicycle. The bike is just driving 
because it cannot stop on its own accord. 166: S4 4 

A few thought in terms of energy transfer or release ceasing along with pedalling 
(depository framework). 

There is energy being released only when the bike is pedalling or braking. 167: S4 
66 
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When the rider stops pedalling there is no more energy being given to the wheels. 
Therefore the wheels use up the energy stored in its speed and eventually stop. 168: 
S4 59 

Response B: There are energy changes from b (coasting) to c (stopped). 

Many explanations overlapped with those for response A, equating lack of action 
by the cyclist with lack of energy. 

No force = no work done = no energy 169: S4 81 

A more distinctive set of justifications focussed on factors which retard the bike's 
motion such as friction, wind, and energy itself. 

The pressure of the energy pushes the bike to a stop. 170: S4 13 

The bike is apparently regarded as something which needs a continuing supply of 
energy-fuel in order to keep moving (depository framework). 

The bike begins to slow down because of a decreasing supply of energy. 171: S4 68 

There is no energy being created, but because there was energy before, it cannot 
abruptly stop. 172: S4 3 

From b to c energy is being lost through friction and heat. In a, any energy lost is 
replaced by energy from the rider. 173: S4 74 

Response C: There are energy changes from a to b (pedalling to coasting) and 
from b to c (coasting to stopped). 

Two students concisely identified energy as involved in any change. Only three 
offered more extended descriptions of energy conversion. 

It takes energy to do everything. 174; S4 51 

The guy has potential energy which he converts to kinetic energy. Then the kinetic 
energy is changed to heat energy and possible sound energy. 175: S4 42 

Many explanations focussed only on the speed of the bike and its effect on energy. 

There is a loss of energy at each of the three points... If the bike was coasting there is 
a loss of speed and a loss of energy. When the bike is completely stopped ... there 
now is no motion and ultimately no energy. 176: S4 55 

Once the bike rider starts slowing down he loses energy and once he stops he also has 
lost energy and now is full of potential energy. 177: S4 72 
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Several other students made a more direct link, adopting a substantive view of energy 
as a thing which has speed. 

The energy slows down as the bike slows down. 178: S4 61 

The changing source of energy was also mentioned. 

A person can't coast unless he pedals first, to make the energy.... 179: S4 39 

In a, human power is moving the bike. In b mechanical power is moving the bike, 
and in c, no power is moving the bike. The energy source changes... 180: S4 54 

Response D: There are no energy changes. 

All three students who chose this response explained it in terms of quantity of 
energy. One spoke in orthodox scientific terms. 

Energy totals never change, but energy forms may. 181: S4 77 

The others described a balance between the energy supply from the rider and the 
energy demand of the bike. 

Question 5 

The string burns and the balloon explodes. When does the balloon have the most 
energy? 

Contrary to expectations, students interpreted the question in such a variety of 
ways that all responses except D were able to be justified in scientific terms. If the 
string is considered part of the balloon, then response A is correct. If the balloon, 
string, and surrounding air are considered a closed system, then response £ is correct. 
If the question is taken as referring only to the balloon and not the string, B is 
acceptable if heat from the burning string is seen as increasing the temperature of air 
in the balloon. If this process continues, response C becomes acceptable if it is taken 
as referring to the balloon at the instant of explosion. 

Response 1: The balloon has the most energy before the string is lit. 

Most responses focussed on the balloon, full of stored energy until it is used or 
released in the subsequent events. 

Energy is being stored. When the balloon blows up, the stored energy is released. 
182: S5 49 

The string has the most energy before it is lit. While the fire is lit, the balloon loses more and 
more energy as the fire bums. 183: S5 58 



Two other responses viewed the situation in distinctly animate terms. 

The molecules of energy in the balloon are bouncing from side to side trying to keep 
the balloon in [the] air, and therefore more energy is needed to do that. 184: S5 52 

When the string is lit the particles slow down because of the heat. 185: S5 30 

Response B: The balloon has the most energy after the string is lit. 

The majority of answers concentrated on the effect of the lit string on the balloon* 
energy, either generally or by suggesting a specific mechanism. 

The lit string gives the balloon energy until it blows up and loses all its energy. 186: 
S5 36 

Once the string is lit this increases the heat, which then heats up the air particles and 
makes them move faster, when before the air particles were just moving around as 
usual. 187: S5 27 

Being heated by the sun makes them [air particles in the balloon] move more quickly. 
The balloon can't handle it and explodes. But there's no sun in the picture... 188: S5 
18 

Other answers described the burning string as creating new energy, increasing the 
total amount present (substantive framework). 

There is potential energy, and heat energy, and motion. 189: S5 47 

Energy from inside is pushing the balloon in all directions to make it round. Also, 
(because) the string is lit and fire creates a lot of energy. 190: S5 29 

Response C: The balloon has the most energy as it explodes. 

Many answers proposed that the explosion created energy. 

Because of the explosion, the particles fly out in different directions, slamming into 
other particles and creating energy. 191: S5 21 

It has energy when it is blown up, but has way more as it explodes. 192: S5 46 

Almost as many explanations spoke of the explosion releasing energy which was 
dormant or stored before the explosion. 

All the energy is shot out into many areas of the room. Pieces of the balloon go 
flying everywhere, too. 193: S5 25 
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Response E: The energy stays the same. 

Three physics students viewed the balloon, string, and air as a closed system and 
chose this response as describing the quantity of energy in it. One explained energy 
transformations! in detail; the others quoted a memorized rule without elaboration. 

Energy changes from potential to heat (A to B) and then to kinetic (B to C) and to 
heat again from the explosion. There is no energy change, just transfer. 203: S5 76 

Many students explained that energy was necessary for an explosion, but not for the 
other, less violent events pictured in the question. 

If it didn't have the most energy, it wouldn't have exploded. 194; S5 15 

The balloon has to have energy to explode. If not, it would just melt. 195: S5 6 

It takes more energy to explode through a balloon than keeping air inside the balloon. 
196: S5 65 

Just like when a star explodes it is at its (most) brightest and strongest, and that shows 
there is more energy. 197: S5 32 

Three students went farther, viewing energy itself as the fuel that exploded. 

It [energy] has built up and is finally exploding. 198: S5 33 

Another group of answers linked energy with motion, in contrast to the static 
situations in other parts of the question. 

Before and after the balloon explodes, it is stable. As it explodes, little pieces are 
mobile... 199: S5 69 

It has kinetic energy as it explodes because the pieces are being scattered at high 
speed. 200: S5 78 

Two physics students offered orthodox scientific explanations; one which included 
the concept of energy conservation, and one which did not. 

There is greater kinetic energy [in C] but great potential at B. 201: S5 70 

There is heat energy, potential energy and kinetic energy all at once. 202: S5 75 

Response D: The balloon has most energy after the explosion. 

Only two students chose this response, and neither explanation clearly explained 
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Energy is conserved in an ideal system. 204: S5 82 

Question 6 

The person has lifted the book and is holding it still. The book can also be lifted 
by a machine. In which situation is there the biggest energy change? 

Response A: The biggest energy change is when the book is lifted by the person. 

Some students emphasized the contrast between living person and non-living 
machine. 

The person is alive. We have lots of energy, and when we use a little, lots has to be 
made. 205: S6 44 

Other explanations associated energy with the source of the person's ability to lift the 
load, but not with the machine's fuel. 

When the person eats, he uses the energy in the food (calories) and converts it into 
energy that will lift the book, battling the force of gravity. The machine just uses 
electricity. 206: S6: 1 

When a person lifts the book there is an energy change because they are using their 
strength, but a machine is just using power. 207: S6 14 

Potential energy that is stored by the body is converted into kinetic energy as the book 
is being lifted. The machine has no stored energy. 208: S6 42 

A large group of explanations pointed out effects of work that are evident in 
humans but not in machines. These were offered as evidence of greater energy use by 
people. 

It affects a person more... 209: S6 37 

The person is creating more energy because soon he will start sweating... 210: S6 16 

Some answers suggested that humans must use energy as a substitute for the superior 
capabilities of machines. 

Humans would put most of their energy into their arm so they could hold the book... 
A robot arm doesn't transfer any energy because he's made of metal. 211: S6 9 

A machine is constantly on, so there would be no change, but when a person lifts it, 
lots of blood and energy will go to that arm to help it lift the object. 212: S6 24 
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A final set of students pointed out that holding the book still requires continual energy 
use by the person, but (possibly) not by the machine. 

The person is using energy to hold the book up in addition to the gravitational 
potential energy. 213: S6 84 

It takes more energy for a human to bold a book still than for a machine. 214: S6 0 

Response B: The biggest energy change is when the book is lifted by the 
machine. 

One group of answers associated energy only with the fuel or mechanism used by 
machines. Human action does not require energy. 

The machine uses fuel to lift it; we don't. 215: S6 4 

A person uses muscles to lift something, but a machine uses wires... 216: S6 2 

A second cluster of answers hinted that operation of a complex machine must require 
more energy than the apparent simplicity and directness of bodily action. 

It [the machine] is only able to work (only) by energy being in it through electricity or 
something, and that'd be much more than a person just picking it up. 217: S6 54 

Response C: The energy change is the same for both ways of lifting. 

Most answers disregarded the type of lifting agent and focussed on the identical 
initial conditions, action, or final result. Height was mentioned most often (8 of 17 
answers), but other factors were identified. 

The book would not change its weight; therefore, the same amount of energy would be 
required. 218: S6 57 

Energy depends on the mass of the book, the height lifted, and the gravitational pull of 
the earth. 219: S6 60 

The book is being lifted in both cases. 220: S6 10 

If there was no energy the book would have fallen. 221: S6: 20 

One student traced the energy involved to a common source. 

In order to get energy we must live in the sun and get the energy from there. And I 
think it will stay the same. 222: S6 18 

Another explanation could not quite reconcile apparently the apparently 
incommensurable situations. 
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It takes muscle and energy for a human to lift it, but it only takes a few spare parts 
and electricity for the machine. So I don't know. 223: S6 12 

A physics student offered a concise analysis of two views of the situation. 

The book has the same amount of energy. The person may arguably have more 
energy, since he needs muscle to hold the book up, but that is transferred to heat 
energy.... 224: S6 77 

Response D: There is no energy change when the book is lifted. 

Only two students chose response D. They apparently interpreted the question as 
referring to the form of energy involved in the lifting, which was taken as kinetic in 
both cases, and thus was unchanged. 

Question 7 

This solar cell is connected to a light bulb, but a cloud shades it from the sunlight. 
Which description best fits your idea of energy in this situation? 

Response A: Sunlight releases the energy of the solar cell, so the bulb lights up. 

Several students restated the key feature of this response, that the source of energy 
is the solar cell, sometimes adding more detail to the process. Two other students saw 
the solar cell as transferring sunlight to the bulb without any apparent transformation 
or energy involvement. 

You need some light for the light bulb, so that [sunlight] is an easy way.... 225: S7 
43 

Response B: Electricity produced by the solar cell makes the bulb release its 
energy and light up. 

Again, one student explained the process in terms of heat. 

The sun heats the solar cell up and the bulb lets off light energy. 226: S7 50 

Another answer saw the bulb using energy produced by sunlight, but with no 
suggestion of energy transfer (fuel framework). 

The sunlight's raise (rays) produce energy so the light can shine, but when there is no 
light the bulb uses up all the energy and slowly dies out. 227: S7 25 
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Response C: The electric current in the circuit gets "charged up" with energy in 
the solar cell and carries it to the bulb, which lights up. 

Of the students who chose this response, one explanation identified the bulb's light 
with sunlight, but with an energy boost from the solar cell. 

The sun is trying to make the light lite (sic) up but it won't. The solar cell gets all 
energized up and produces a energy for the bulb. 228: S7 31 

Two students pleaded ignorance. 

Sounds good! Not sure why. 229: S7 16 

Response D: Light energy from the sun is changed into electrical energy by the 
solar cell, and then back into light energy by the bulb. 

The majority of students choosing this response made no comment. Of those who 
did, two spoke of a physical transformation of the sunlight. 

When sunlight hits a solar cell it changes to electrons and then flows into the bulb's 
current, which causes light to appear. 230: S7 2 

Two students spoke of the circuit in terms of energy storage and release (depository 
framework). 

The stored light energy is being blocked by the cloud. Therefore the energy is being 
stored until the cloud is gone. 231: S7 49 

One physics student proposed an analogy to photosynthesis. 

It reminds me of photosynthesis. Light energy is converted to another type of energy 
(here it is electrical, in photosynthesis it is chemical) and then the energy is put back 
into the system.... 232: S7 80 

Response E: Electrical currents from the solar cell go through both wires, meet in 
the bulb, and react to produce light energy. 

Two explanations for this choice were given, one of which clearly accepted it. 

It's like plugging in a lamp into a socket. Energy is reacting to produce light energy. 
233: S7 12 

Open response suggestions Two responses added heat as an element in the 
energy transformations. 
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I think the light energy is changed into heat energy, which then transforms in(to) 
electrical energy by the solar cell. The electrical energy is then transformed into light 
energy and heat energy again. 234: S7 60 

Two other students located the source of energy in the solar cell, with the sunlight as 
an assist. 

The energy is really more from the solar cell-but it never could have done it without 
the sunlight. 235: S7 26 

Several explanations treated energy in substantive terms, as a thing which can be 
transported and stored. 

I think the light energy from the sun is stored within the solar panels and then 
transported to the bulb, lighting it up. 236: S7 58 

The sun is energy and energy can be electricity, and it bounced off the solar cell, went 
through the wires, then lit the bulb. 237: S7 9 

Question 8 

A person is holding a ping-pong ball under water. The person lets go and the 
ping-pong ball pops to the surface. Which part of this situation could be described 
using your idea of energy? 

Response A: There is energy only in part A, where the person is forcing the ball 
to stay underwater. 

Many answers saw energy only in the work done, or force exerted, by the person 
against the resistance offered by the ball. 

The person is manually holding the ball under. I think it is just human energy. 238: 
S8 11 

Other explanations identified energy in several aspects of the situation. 

Most energy is from the person. Knowledge of holding the ball down and when to 
let go takes energy. Sure, energy is used as it come to float on the surface, but not as 
much energy [as] humans use. 239: S8 65 

Two answers differentiated between energy and energy use, or energy release. 

The person is holding back the energy of the ping-pong ball, and while pushing against 
the ball's energy, he is using up energy. 240: S8 64 

There is energy in (a), but it's not released until (b). 241: S8 46 
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One student considered energy to be created by the situation (fuel framework). 

When the person holds the ping-pong ball down energy occurs because the ball wants 
to get to the surface, forcing against the water. It would take a lot of energy to do 
that. 242: S8 20 

Several explanations focussed on a transfer of energy from the person to the ball 
(flow-transfer framework). 

The person is exerting energy on the ping-pong ball, the ball is absorbing energy until 
it is released. 243: S8 60 

Four answers used the term "more energy" without specifying the comparison. It is 
not clear why these students did not choose response (D). 

Response B: There is energy only in part (b), where something is moving. 

The majority of explanations expanded on the movement cue. 

No movement, no energy. 244: S8 69 

The violence of the motion was noted by two students. 

All of the pressure from the water is pushing up the ball. When it touches the top of 
the water it's like an explosion. 245: S8 25 

Two students described energy as moving with the ball, but distinct from it 
(substantive orientation). 

The ping-pong ball is moving to the surface and all the energy is moving up. 246: S8 
14 

Two explanations linked movement with the creation of energy 
(ingredientfty-product framework). 

When the person is holding die ball there's no energy and when the ball is just floating 
there's no energy, but in (B) the ball is moving, pushing the water out of the way, 
causing energy. 247: S8 27 

In addition, the movement was seen as requiring or using energy. 

Because the ping-pong ball is moving there is energy. The ping-pong ball is using 
energy to go to the top of the water. 248: S8 28 
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Response C: There is energy in part C, where the ball is at a higher level and the 
person is (a bit) tired. 

None of the three explanations for this answer choice gave clear reasons why it 
was preferable to other responses. 

Response P : My idea of energy applies to more than one part. 

Many explanations merely restated the situations depicted in the question, 
sometimes classifying them as showing kinetic and potential energy. Another large 
group spoke of energy use, by the person, ball, and/or water (fuel framework). 

In (a) the person is using energy and in (b) the ball and the water are using energy. 
249: S8 45 

The person uses energy to hold it underwater and the water is putting out energy by 
rising the ball to the top. 250: S8 22 

One student combined energy use with energy creation. 

I think that it takes energy for the person to hold tfie bail down, but I also think that 
the ball coming up at such forces creates a :>ort of energy. 251: S8 33 

Three explanations were in terms of energy release, rather than use 
(ingredient/by-product framework). 

Energy is being released as the ball is held down and as water resists it coming up. 
252: S8 66 

Water is constantly giving off energy. 253: S8 67 

Several physics students were able to write detailed orthodox analyses of parts (b) 
and (c) but were not as specific when describing part (a). 

In (a) energy is like potential gravitational energy except in the opposite manner. 
There is a potential for the ball to float, but the person is preventing it, so 
energy is present. In (b) there is kinetic energy .... 254: S8 76 

Response E: There is no energy here at all. 

One answer was unclear. The other three explanations identified causal agents 
other than energy for the motion of the ball. 

It is merely air in the ball making it pop to the surface. 255: S8 12 

Only buoyancy, and I'm not sure if that is considered energy. 256: S8 32 
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Question 9 

The person pushes the box up the hill and then sits down to rest. Which 
description best fits your idea of the person's energy as the box is pushed up the hill? 

Response A: Energy is being produced in the person's body so the work can be 
done. 

The largest number of explanations viewed energy as produced in order to perform 
a task (functional framework). 

Energy has to be produced so the box can be pushed up the hill. No energy is 
required to rest or get ready to push it. 257: S9 4 

The energy ... is the boy getting ready to lead the box up the hill. He is making his 
energy to do work. 258: S9 31 

One student contrasted the particular task with a background of normal activity. 

Energy is being produced by the person because they're using energy they really don't 
use everyday. 259: S9 34 

Other answers associated energy directly with movement or change of position. 

The person uses a force to move up the hill, which is also work, so energy is 
produced. 260: S9 78 

If there was no energy, the box would still be at the bottom of the hill. 261: S9 28, 
73 

The source of energy was localized to the person, rather than the box (animate 
framework). 

The person is using all the energy to push the box up because even if the box had 
energy it can not push itself up. 262: S9 24 

Several students traced the energy production back farther, one to muscles, and two 
back to food (depository framework). 

In our bodies we have stored food and energy. When we need energy it is either 
made or already made so it can be used. To have lots of energy, eat healthy. 263: S9 
33 

Response B: Energy is being transferred from the person into the box. 

The largest number of explanations attempted to identify an intermediary in the 
transfer process. Muscles, force and work were all proposed. 
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Energy is being transferred from the person to the box by the person's muscles. 264: 
S9 2 

The work the person does by giving it [the box] distance and force causes the box to 
have kinetic energy. 265: S9 76 

Various reasons were given to support the conclusion that energy moves from the 
person to the box. Two answers embodied the view that the box must have energy in 
order to move. 

If the energy only stayed in the person then the box wouldn't move. It has to be 
pushed up by the energy of Uie person to the box. 266: S9 40 

The person gives the box energy. That's Uie only way it is going to get up the hill. 
267: S9 46 

Other students spoke of energy use in a manner which implies conservation: used 
energy must go somewhere (flow-transfer framework). 

Energy is being used when the box is being pushed up the hill, transferring the energy 
to the box. 268: S9 61 

Several descriptions of energy transformation were offered in orthodox scientific terms. 
However, they considered only the person and the box, not the surroundings. 

Energy that is stored in his body is converted and transferred to the box, as welt as 
moves (moving?) him up the hill. As this happens both him and the box gain 
gravitational potential energy. 269: S9 274 

The man does work on the box to push it uphill as well as overcome the force of 
friction. Therefore, energy is transferred. 270: S9 83 

Response C: Energy is being shared between the box, the surroundings, and the 
person's body. 

Two students considered the mass of the box and the ground's ability to support it 
to be evidence of energy when justifying this answer. 

The person is using energy pushing the box up the hill. The box is heavy, so it also 
has energy. The ground has energy also, because it's holding up the box and person. 
271: S9 41 

Two explanations included overcoming friction as an energy-consuming aspect of the 
situation. 
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The most energy comes from when everything is touching or moving. Because of 
friction and all the things you are going up against. 272: S9 54 

Two physics students gave concise elaborations of how energy is distributed in this 
situation. 

Energy is being transferred from the person to the box. However, because of frictional 
effects, some of the energy is also being transferred to heat energy. 273: S9 82 

Response D: Energy is being used up pushing the box. 

The majority of explanations proposed the necessity of energy to accomplish either 
this particular task, any task that is more strenuous than normal activity, or anything at 
all. They accepted that the energy was used up and did not elaborate on its fate. 

You have to use energy to do anything, no matter how big or small the task is.... 274: 
S9 23 

When Uie person pushes the box [he] uses more energy than when he rests at the 
beginning and end. 275: S9 0 

The person needs energy to push and after he's done pushing he's lost his energy. 276: 
S9 37 

Another group of answers offered evidence of energy use: the person is tired after 
performing the task. Again, no comment was made on what happens to the energy. 

...it takes a lot out of a person, you know. 277: S9 26 

Two students traced the source of the energy to muscles and to food, respectively. 
Three others spoke of it being produced as if from a reservoir. After being released, 
in their view, it is available for use. 

The stored energy in the man is getting ready to be released to push the box up the 
hill. 278: S9 49 

At the same time he's releasing energy, he's using it up to push the box. 279: S9 67 

Rather than production and use, one explanation pictured a process of temporary 
focussing of diffuse energy in order to accomplish the task. 

He needs his energy in his arms and legs to help him walk and to help him push up 
the hill. Then all his energy starts to relax when he's at '.he top of the hill. 280: S9 9 
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Response E: My idea of the person's energy is different from all of these. 

Two students viewed the pushing process as creating energy of itself, separate from 
the production of energy in the person's body. 

I think that there's energy being produced in the person to push the box, but there's 
also energy produced while he's pushing the box up the hill. 281: S9 27 

Another proposal suggested the presence of active opposition to the motion of the box, 
possibly a sort of opposing energy. 

Energy is being exerted on the box to push it up the hill, but the hilt and box 
(environment) are working against it. 282: S9 71 

One student took an extremely functional view of the situation. 

I think he should pull the box up the hill. But if he had time and money he could 
make a conveyor belt. 283: S9 11 

Question 10 

The pendulum is glued to the wall. The glue breaks, and the pendulum swings 
down and then up again. If we measured the pendulum's energy, our answer would be 

Response A: The pendulum's energy would be highest in (A - glued to the wall) 
and go steadily down as the pendulum swings. 

Three answers identified energy with speed of the pendulum. Seeing the speed as 
fastest immediately after the glue breaks, they concluded that energy was highest then. 

The pendulum slows down as it swings; therefore, energy is highest at (A). 284: SIO 
66 

Two students suggested that maintaining the unnatural position of the pendulum in 
(A) required energy in the glue (depository framework). 

The energy would be the glue trying to keep the pendulum to the wall. The pendulum 
[is] trying to break it so hard that the energy is being used up.... 285: SIO 31 

Four other answers used similar reasoning, but located the energy in the pendulum 
rather than in the glue. 

There is a lot of energy in (A), as the pendulum gets ready to become unstuck from 
the wall. 286: SIO 68 
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The pendulum needs its energy to break free, then swing, but as it starts to climb it 
needs its energy again. 287: SIO 9 

The largest number of explanations treat energy as necessary for swinging, but they 
proposed two ideas about where the energy came from. Some saw the pendulum 
accumulating it until there was a large enough amount to start moving; others saw the 
action as producing energy (ingredient/ by-product framework). 

The pendulum is storing its energy up and then it goes down and uses its energy up as 
it swings back and forth. 288: SIO 7 

The potential energy is high and the pendulum wants to break off the wall and swing, 
which would produce less energy. 289: SIO 55 

Response B: The pendulum's energy is lowest in (A-stuck to the wall) and goes 
up as the pendulum gathers energy to swing. 

Most answers explained that energy is necessary for motion. Moving objects, in 
one view, are said to "use energy". However, the chosen response requires that their 
energy increase. There is no contradiction if "using energy" is taken in a descriptive 
sense, as meaning "energetic" (see Discussion, above). 

It (energy) would be lowest in (A-stuck to the wall) because it's stored. When it 
(pendulum) lets go it is in motion, so it's using energy. 290: SIO 41 

Three students differentiated between upward and downward movement in very similar 
terms. However, it is not clear how their analysis supports the chosen response. 

It takes more energy to go up than it does to go down, so after it has gone to (C - end 
of first oscillation) it (energy) will be lowest...because the ball has to fight gravity to 
get up. 291: SIO 33 

Another group of explanations had the pendulum creating energy as it moves, either 
gradually or suddenly. 

...it swings down and gathers energy as it moves until it stops. 292: SIO 12 

All the pressure of it being tied up is released when the glue unsticks. 293: SIO 63 

It is like getting a push to give it more swing. 294: SIO 16 

The energy rise was described both as a necessity for, and as a byproduct of the 
motion. 

The pendulum needs energy to swing back and forth. If it is glued no energy is used 
because it is stuck there.... 295: SIO 14 



Energy rises more when there is motion rather than sitting still. 296: S10 50 

Response C: The pendulum's energy would be high in (A - stuck to the wall), go 
down as the pendulum swings lower, and then go back up in (C - pendulum rises 
again). 

Three students described a cycle of energy accumulation, use, and replenishment in 
neutral terms, as accompanying its motion. 

There is high potential energy in the pendulum. At first energy is released and it 
swings. As it climbs, it gains energy and starts its descent again. 297: S10 62 

Three other descriptions were framed in more active terms, suggesting that energy 
becomes available to the pendulum on demand, in proportion to the difficulty of the 
task. 

The pendulum is trying to get away from the wall. When it does, it basically free-falls 
until it has to fight against the gravitational pull. 298: S10 63 

A still more active description portrayed energy as creating a force to move the 
pendulum. 

Energy pushes the pendulum in order for it to swing forward. 299: SIO 13 

As in the second quotation above, many students identified the initial high energy 
state with the need to break the glue, rather than interpreting the energy changes 
entirely in terms of motion. When the pendulum does begin to oscillate, downward 
motion was described as a low-energy activity, while moving up was associated with 
higher energy, as in the first quotation above. 

One physics student attempted to describe a kinetic-potential energy transformation. 
However, his description only supports this choice of response if the two forms are not 
considered quantitatively equivalent. Energy would thus be transformed, but not 
conserved throughout the motion. 

There is both potential and kinetic energy in (A -stuck to the wall), but as the 
pendulum comes closer to (B - low point) the potential energy decreases and the 
kinetic energy increases. At (C - end of first oscillation) the energy is almost the same 
as (A) because there is both kinetic and potential energy. 300: SIO 75 

Response D: The pendulum's energy would be low in (A - stuck to the wall), go 
up as the pendulum swings faster, and then go back down in (C - end of first 
oscillation). 
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Many explanations were in terms of speed or momentum (see Discussion, above) with 
the connection to energy left implicit. 

Gravity pulls ou the pendulum and makes it travel faster. The as it goes up it slows. 
301: SIO 21 

Other answers explicitly associated speed (or momentum) with energy, energy use, or 
energy creation. 

As the pendulum swings from the wall it gains speed and energy, but as it begins to 
rise again the force of gravity takes some energy away. 302: SIO 81 

As it [pendulum] picks up momentum, more energy is used. 303: SIO (0 

As the pendulum moves faster, the more energy is created. 304: SIO 9 

Two students associated energy changes with the direction of motion, rather than 
its speed. 

It gathers energy as it swings so it can go back up in (C). 305: S10 73 

Response E: The energy of the pendulum would stay the same. 

Two students defended this choice by explaining that no energy was involved in 
the motion, since another "causal agents" was acting. 

It is using no energy at all. It is using Uie force of gravity. 306: S10 4 

Two answers stopped at naming a type or effect of energy in each part of the 
pendulum's motion, but four others explicitly stated that the amount of energy stayed 
constant. 

Either potential energy or kinetic energy is greater in each picture, but they always add 
up to an equal total. 307: S10 84 

One student described the situation as one of energy conservation, but apparently 
intended the everyday meaning of husbanding energy (or, more correctly, fuels). 

The energy is conserved, then lost as the pendulum is released. 308: S10 58 




