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ABSTRACT 

Cannabis sativa, or ‘cannabis’, is an herbaceous plant that possesses 

hallucinogenic and medicinal properties. The primary constituents found within cannabis 

are CBD and THC, both of which are capable of eliciting behavioural and physiological 

effects in mammals. CBD has shown promise in controlling the adverse effects of THC. 

THC and CBD together have shown promising synergistic and medicinal effects. With 

the increased use of cannabis as a medicine, it is imperative we determine the safety of 

consumption in an adolescence. Using two high-CBD cannabis extracts at two dosing 

levels, adolescent animals were dosed for 14 days. Following dosing, animals were tested 

on a behavioural test battery looking for altered anxiety and learning and memory skills. 

Overall, there were no major impacts of sex, treatment or Treatment x Sex Differences in 

behaviour. In conclusion, there are no lasting behavioural impacts of consuming high-

CBD cannabis extract. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

1.1.1 What is Cannabis 

Cannabis sativa, or ‘cannabis’, is an herbaceous plant that possesses 

hallucinogenic and medicinal properties. Cannabis has been used for centuries by a 

variety of cultures for both its medicinal and intoxicating properties; currently cannabis is 

recognized as the world’s most frequently used illicit drug and is among the oldest drugs 

known to man (Nunes 2012). Understanding the extent of cannabis’ effects has been 

pivotal in the use of cannabis as a medicine. To date, cannabis has been used to treat a 

variety of ailments including nausea, inflammation, cancer, Multiple Sclerosis (MS), 

Alzheimer’s Disease (AD), childhood seizure disorders and many more (Tramer et al., 

2001; Croxford & Yamamura, 2005; Chong et al., 2006; Velasco, Sánchez & Guzmán, 

2016; Karl, Garner & Cheng, 2017; Dale et al., 2019).  

1.1.2 Cannabis constituents 

Cannabis is comprised of over 150 individual constituents. These constituents are 

responsible for a variety of medicinal and recreational effects including increased 

appetite, euphoria, and anti-inflammatory properties (Mechoulam, 2005; Russo & Guy, 

2006). With the vast number, each constituent is organized into one of 18 classifications 

of chemicals, including: nitrogenous compounds, carbohydrates, fatty acids and, the two 

we will discuss as they pertain to the variety of effects cannabis elicits, cannabinoids and 

terpenes/terpenoids (Russo, 2011). 
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1.1.3 Cannabinoids 

Cannabis contains over 100 discovered individual cannabinoids. Cannabinoids in 

general are the constituents capable of eliciting effects in mammals.  The variety of 

effects is still being researched and is not yet fully understood. What is known is that 

cannabinoids induce behavioural effects in mammals by binding to receptors within the 

brain (Vann et al., 2008). The cannabinoid classification is further subdivided into three 

broad categories: Endocannabinoids phytocannabinoids, and synthetic cannabinoids.  

Endogenous cannabinoids (or endocannabinoids) are cannabinoids synthesized 

within the human body. These cannabinoids are responsible for maintaining your body’s 

homeostatic state as well as many cellular processes (Zhu, 2006; Katona & Freund, 2012; 

Mechoulam & Parker, 2013). The existence of naturally occurring endocannabinoids 

within our bodies is the reason we possess receptors that are capable of binding phyto- 

and synthetic cannabinoids.  

Synthetic cannabinoids are cannabinoids artificially synthesized in a lab (Klein & 

Cabral, 2006). These cannabinoids will not be discussed in detail within this review. For 

more information on synthetic cannabinoids see Vandrey et al. (2012) and Castenato et al. 

(2014). 

The third classification is phytocannabinoids. Phytocannabinoids are cannabinoids 

that are organically synthesized outside of the human body such as those found within the 

cannabis plant. These are the cannabinoids people are most familiar with as this category 

includes Δ9-tetrahydrocannabinol and cannabidiol which are commonly known as THC 

and CBD respectively. Phytocannabinoids, which we will hence forth refer to as 

cannabinoids, are known to affect sleep, temperature regulation, food intake, arousal, and 
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pain perception by binding to receptors within brain regions that support these body 

functions (Vann et al., 2008).  

 

1.1.4 Terpenes 

Terpenes are a parent category of terpenoids. Terpenoids are components of 

essential oils that are naturally occurring in plants and commonly found in a wide range 

of products from food to cosmetics, to pharmaceuticals and more specifically, cannabis. 

[For more details see a review by Russo (2011)].  Simply, terpenoids are the molecule 

responsible for the unique aromas of each cannabis strain. The terpenoids most frequently 

found within cannabis are limonene, myrcene, and pinene. Independently, terpenes are 

pharmaceutically diverse; they can interact with enzymes, cell membranes, ion channels, 

neurotransmitter receptors, and second messenger systems (Ben-Shabat et al., 1998; 

Gurgel do Vale et al., 2002; Nuutinen, 2018). Beyond that, terpenes are thought to have 

some impacts to the effects of cannabis.  This will be discussed later along with other 

‘entourage effects’.  

 

1.2 The Endocannabinoid System 

As previously mentioned, cannabinoids elicit behavioural and physiological 

effects in mammals by binding to receptors in a variety of places within the body and 

brain, hence, directly interacting with the endocannabinoid (eCB) system. In a sense, one 

can think of the endocannabinoid system as the body’s natural cannabinoid system. The 

eCB system is comprised of at least two receptors known as cannabinoid type 1 and 

cannabinoid type 2 receptors (CB1R and CB2R). These G protein-coupled receptors can 

bind all three classes of cannabinoids listed above. Within the central nervous system 
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(CNS), eCBs are neuroactive lipids that are involved in plasticity and memory, 

motivation, emotional control, and potentially the reward response (Gardner et al., 1988; 

Hampson, Heyser & Deadwyler, 1993; Hampson & Deadwyler, 2000; Bossong et al., 

2010; Busquets-Garcia et al., 2011; García-Gutiérrez & Manzanares, 2011). 

Dysregulation of the eCB system has been linked to psychiatric disorders, anxiety, and 

depression (Hillard, Weinlander & Stuhr, 2012; Mechoulam & Parker, 2013). 

 

1.2.1 Cannabinoid Receptors 

CB1R are expressed abundantly throughout the brain. This expression has been 

related to involvement in various brain areas and the cognitive, motor, emotional, and 

physiological functions they support. Specifically, CB1Rs are located in the prefrontal 

cortex (executive functions and mental skills), basal ganglia and cerebellum (control of 

fine motor activity), pons and medulla (autonomic functions) as well as the limbic system 

including the hippocampus (memory), amygdala (emotional control), thalamus (sensory 

perception), and the hypothalamus (endocrine control). CB1R are also expressed in the 

peripheral nervous system in the terminus of nerves, eyes, and testes (Herkenham et al., 

1991; Porter & Felder, 2001; Howlett, 2002; Vann et al., 2008). CB2R are expressed 

throughout the body and are thought to play a role in modulating inflammation, immune 

response, and injury recovery (Pertwee, 2008; Turcotte et al., 2016).  

 

1.2.2 Endocannabinoids 

The two most extensively studied endocannabinoids are anandamide (AEA) and 

2-arachidonylglycerol (2-AG) (Mechoulam et al., 2014). Both act upon CB1 and CB2 

receptors. Specifically, within the CNS these eCBs have been linked to learning and 
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memory directly through their impacts to long-term potentiation (LTP) and long-term 

depression (LTD) (Castillo et al., 2012). eCB synaptic regulation occurs via retrograde 

messengers supressing neurotransmitter release in both excitatory and inhibitory synapses 

(Chevaleyre et al., 2007). Beyond signalling in mature synaptic systems, the eCB system 

has been linked to synaptic formation and neurogenesis (Harkany, Mackie & Doherty, 

2008). Endocannabinoids AEA and 2-AG as well as CB1 and CB2 receptors have been 

found in the dentate gyrus and hippocampal regions of both developing and adult 

individuals suggesting the relation of the eCB system to neurogenesis (Harkany et al., 

2007; Goncalves et al., 2008). This neurogenesis is abolished in CB1 deficient mice, 

deepening our understanding of the eCB’s relation to neurogenesis (Jiang et al., 2005). 

Similar to endocannabinoids, phytocannabinoids are capable of binding to both CB1R and 

CB2R throughout the body and brain (Mechoulam et al., 2014). For the purposes of this 

study, we will primarily focus on CB1 receptors due to their presence in the CNS and 

their implications in cognition, and learning and memory. 

 

1.3 Endocannabinoid Signalling 

Endocannabinoids regulate synaptic functioning through retrograde signaling, 

non-retrograde signalling and neuron-astrocyte signalling (Navarrete & Araque, 2008). 

CB1R are localized at the terminus of neurons suggesting that they specifically play an 

important role in synaptic functioning via short-term and long-term plasticity (Heifets & 

Castillo, 2009; Regehr, Carey & Best, 2009).  
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1.3.1 Retrograde Signalling 

Retrograde signalling occurs when postsynaptic activation leads to eCBs being 

released into the synaptic cleft to travel backwards to bind to cannabinoid receptors on the 

presynaptic surface hence supressing neurotransmitter release (Regehr, Brown & 

Brenowitz, 2003). Short-term plasticity occurs when CB1R are activated for only a few 

seconds. This postsynaptic activity triggers Ca2+ influx via voltage gated Ca2+ channels 

(VGCC). Increasing post synaptic Ca2+ content results in a cascade that stimulates the 

release of 2-AG from the post-synaptic neuron which then binds to pre-synaptic CB1R. 

Stimulation of the CB1R inhibits VGCC receptors, reducing the amount of presynaptic 

Ca2+ present. This reduction in presynaptic Ca2+ reduces the amount of neurotransmitter 

being released into the synaptic cleft (Kreitzer & Regehr, 2001; Regehr, Brown & 

Brenowitz, 2003). 

 During long-term plasticity, the endocannabinoid system is only involved in the 

initial induction on long-term depression (eCB-LTD) (Chevaleyre & Castillo, 2003; 

Heifets & Castillo, 2009). Presynaptic release of glutamate (the primary excitatory 

neurotransmitter) stimulates postsynaptic metabotropic glutamate receptors (mGluRs) 

that unbind phospholipase-Cb (PLCb) and diacylglycerol lipase (DAGLa) that then 

promote the synthesis and release of 2-AG from the post synaptic terminus (Maejima et 

al., 2001; Tanimura et al., 2010). The released 2-AG targets and binds to presynaptic 

CB1R. A Gai/o-dependent reduction in adenylyl cyclase (AC) and protein kinase A 

(PKA) activity suppresses neurotransmitter release (Marinelli et al., 2008). This occurs on 

both excitatory and inhibitory presynaptic neurons (Lovinger, Gerdeman & Ronesi, 2002; 

Chevaleyre & Castillo, 2003). 
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Retrograde signaling is essential for the development, maintenance, and activity-

dependent modification of synapses. In adolescent, eCB signalling plays an integral role 

in regulating stress and anxiety (Hill et al., 2009). The eCB system regulates the activity 

of local and circuit populations of neurons and is particularly important for mediating the 

balance between excitatory and inhibitory neurotransmission during adolescence via these 

retrograde signalling pathways (Dow-Edwards & Silva, 2017; Meyer, Lee & Gee, 2018). 

 

1.3.2 Nonretrograde Signalling 

There is growing evidence that shows transient receptor potential cation channel 

subfamily V member 1 (TRPV1) also participates in eCB signaling (De Petrocellis & Di 

Marzo, 2010; Pertwee et al., 2010). TRPV1 receptors are found both in the peripheral and 

central nervous systems and can bind lipophilic substances including AEA (Di Marzo et 

al., 2002; Cristino et al., 2006). Activation of mGluR and Ca2+ release from intracellular 

stores promotes the synthesis of AEA that activates TRPV1 channels (Liu et al., 2008). 

AEA acting on TRPV1 causes increased postsynaptic Ca2+ levels which results in the 

endocytosis of the glutamate cation channel receptors, AMPAR, mediating postsynaptic 

eCB-LTD (Grueter, Brasnjo & Malenka, 2010). This supports the concept that AEA acts 

as an intracellular messenger (van der Stelt et al., 2005). Unlike eCB receptor signalling, 

there is no definitive proof that TRPV1 signalling acts on inhibitory neurons (Liu et al., 

2008). 

 Nonretrograde signalling can also occur following elevated Ca2+ levels in the cell 

resulting in the synthesis of AEA and 2-AG, as a result of sustained neuronal activity 

(Prince, Bacci, & Huguenard, 2004). Repetitive activation of specific GABAergic 

neurons triggers a CB1R-dependent postsynaptic hyperpolarization (Jung et al., 2007). 
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This slow self-inhibition results from increasing K+ channel conductance, hyperpolarizing 

the cell which reduces the cells excitability (Prince, Bacci & Huguenard, 2004; Marinelli 

et al., 2008). 

 

1.3.3 Neuron-Astrocyte and Other eCB Signalling 

 The presence of eCBR on glia, specifically astrocytes has recently been 

demonstrated (Gutiérrez‐Rodríguez et al., 2018). Postsynaptic activity generates 

endocannabinoid release that binds to CB1R on the astrocytic surface activating astrocyte 

Ca2+ signaling, which releases adenosine and activates adenosine-1 receptors (A1Rs) on 

the presynaptic surface, decreasing inhibitory neurotransmitter gamma-aminobutyric acid 

(GABA) release (Stella, 2009; Castillo et al., 2012; Hablitz et al., 2020). In hippocampal 

cells, it was shown that astrocytes potentiate synaptic efficacy by the same mechanism of 

increased Ca2+ stimulation by endocannabinoids (Navarrete & Araque, 2008; 2010). Both 

endo- and phytocannabinoids are capable of binding to eCB and TRPV receptors making 

them a good target for medicinal research (Muller, Morales & Reggio, 2019). Beyond 

that, the eCB system has been linked to microglia cells. The presence of CB1 and CB2 

recpetors on microglial cells has been linked to chemokine and cytokine expression, this 

is thought to be linked to modulation of part of the inflammatory response (Cabral, 2005). 

In vitro microglia cells have been shown to be capable of producing both 2-AG and AEA 

(Carrier et al., 2004). The relationship of this endocannabinoid production and synaptic 

transmission is unknown. 
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1.3.4 Exocannabinoids (THC and CBD) 

Exogenous- or exocannabinoids are cannabinoids synthesized outside of the 

human body such as phyto- and synthetic cannabinoids. Beyond THC and CBD there are 

many other cannabinoids that have been studied including cannabichromene (CBC), 

cannabinol (CBN) and other variants of THC (Δ8-THC) (Thompson et al., 1973; Izzo et 

al,. 2012; Hill et al., 2021). THC produces the effects commonly associated with cannabis 

intoxication; the “stoned” feeling. THC administered alone elicits dose dependent 

impairments to delayed verbal memory and psychosis symptoms reminiscent of 

schizophrenia (Ranganathan & D’Souza, 2006; Broyd et al., 2016). Expanding on that, 

THC administration has been associated with increases in positive and negative 

schizophrenia-like symptoms, increased anxiety, euphoria, altered perception, and 

disruptions to recall and working memory (D’Souza et al., 2004; D’Souza et al., 2008; 

Morgan et al., 2018). Furthermore, recent data demonstrate that THC increases striatal 

glutamate levels which can be associated with the expressed psychosis (Colizzi et al., 

2020). This risk of psychosis is higher in chronic and adolescent cannabis users who use 

cannabis that is high in THC and low in CBD (Zuardi, Rodrigues & Cunha 1991; 

D’Souza, Sewell & Ranganathan, 2009; Di Forti et al., 2012; Broyd et al 2016; Lorenzetti 

et al., 2016). CBD lacks the psychoactive effects that THC possesses (Zuardi, Rodrigues 

& Cunha, 1991). The lack of psychoactive effects has led to research into CBD as a 

therapeutic agent. Currently, it has been suggested that CBD can be used as a therapy 

against anxiety, certain types of cancers, AD, and in conjunction with other medications 

to treat Dravet Syndrome, a drug resistant epilepsy (McAllister et al., 2010; Das et al., 

2013; Devinsky et al., 2017; Karl, Garner & Cheng, 2017). It was demonstrated that CBD 

can increase neurogenesis in adult mice without impacting learning whereas THC 
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impaired learning without impacting neurogenesis, further reinforcing that the two 

molecules function very differently (Wolf et al., 2010). 

 

1.4 Strains, Constituent Interactions, and Entourage Effects 

There are a multitude of different names for cannabis reflecting both the history of 

cannabis as a drug and variations in genetics and constituent content. Cannabis strains 

possess differences in the relative amounts of constituents within cannabis, resulting in 

the variety of smells, tastes, and potencies (Ilan et al., 2005). As previously mentioned, 

cannabis constituents, specifically, cannabinoids and terpenes, can interact resulting in the 

unique properties possessed by each strain. Additionally, this means that some 

combinations elicit more pain relief while others have larger neuroactive effects that can 

lead to higher levels of intoxication or even memory impairments (Fadda et al., 2004; 

Morgan et al., 2010; Darkovska-Serafimovska et al., 2018). Many of these constituents 

are found in trace amounts in cannabis, but the effects when taken together is what 

researchers are interested in. The possibilities for cannabis use and research are 

unprecedented as more data about different constituent ratios and individual strains are 

being published daily. 

Cannabinoids and terpenes can interact with one another in a variety of ways. 

Each cannabinoid or terpene can elicit an individual effect as well as an additive, an 

antagonistic, or a synergistic effect (Chaudhary et al., 2012; Finlay et al., 2020). Additive 

effects occur when the effect of the compounds together is equal to the summation of the 

individual compound’s effects. Antagonistic effects occur when the overall effect is equal 

to less than the summation of the individual effects. Synergistic effects are often the ones 
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most scientists are interested in, and they occur when the effect of the compounds 

together is equal to more than the summation of the individual compound’s effects. 

 

1.4.1 Cannabinoid Interactions 

Shortly after the identification of various cannabinoids, research began on how 

they may impact one another. This research has primarily focused on how THC’s 

psycholytic effects are impacted by other non-psychoactive cannabinoids. Previously, the 

idea was that CBD was able to reduce the negative side effects of THC, but data have 

been conflicting on whether this is the case or not (Karniol & Carlini, 1972; Hložek et al., 

2017). Data frequently suggest that there are many factors including age, sex, 

predispositions for drug use and psychosis, dose, and route of administration that impact 

this complex relationship (Varvel et al., 2006; Morgan et al., 2010; Hillard, Weinlander & 

Stuhr, 2012; Raup-Konsavage et al., 2020). Research on consumption of CBD in 

conjunction with THC has varied greatly over the last 50 years and has thus provided no 

definitive proof of the relationship between THC and CBD.  An overview of this 

literature leads to the conclusion that CBD can alter a variety of THC’s effects under 

some circumstances (Bhattacharyya et al., 2010; Morgan et al., 2010; Englund et al., 

2013; Taffe, Creehan & Vandewater, 2015; Morgan et al., 2018). In a study done in 2013, 

participants given CBD prior to THC showed a reduction in paranoid symptoms and 

hippocampal memory impairments (Englund et al., 2013). THC is known to reduce social 

play in rodents; this was reversed when it was administered in conjunction with CBD 

(Malone, Jongejan & Taylor, 2009). Beyond that, historical data demonstrated the 

potential of THC consumed alone to be a sufficient analgesic, but more modern data have 

shown this is not the case. Rather, THC analgesia only occurs when consumed in 
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conjunction with CBD either in Sativex (an oral mucosal spray of a 1:1 ratio of CBD and 

THC) or in orally or inhaled cannabis (Noyes et al., 1975; Ware et al., 2010; Andreae et 

al., 2015; Romero-Sandoval, Kolano & Alvarado-Vázquez, 2017; Darkovska-

Serafimovska et al., 2018).  

 

1.4.2 Terpene Interactions  

In addition to cannabinoid interactions, it has been suggested that terpenes are 

able to enhance the psychoactive and medicinal properties of cannabis. (Gurgel do Vale et 

al., 2002; Nuutinen, 2018). As it is important to consider the interaction terpenoids may 

have with the cannabinoids present, researchers have now begun to focus their attention 

on these aromatic molecules. The phenomenon of potentiation by lesser 

phytocannabinoids and phytoterpenoids coined “entourage effect” was first described in a 

study done by Ben-Shabat et al. (1998) using endogenous glycerol esters to increase 

target affinity of the endogenous cannabinoids 2-AG and AEA. The term entourage effect 

is more recently used to refer to the idea that whole cannabis plant extracts may possess 

greater therapeutic potential than the individual constituents (Russo, 2011; Finlay et al., 

2020). The idea of entourage effects has been recently disputed in a study done by Finlay 

et al. (2020) where 5 common terpenes were administered in vitro alone or with either 

THC, CBD, or 2-AG and no definitive increase in therapeutic potential was observed. 

Although direct interactions between terpenoids and binding affinity may not exist there 

are likely other mechanisms mediating the changes observed in the historical data (Ben-

Shabat et al., 1998; Blasco-Benito et al., 2018; Santiago et al., 2019; Finlay et al., 2020). 

Taken together, this information provides insights into why research into whole plant 

cannabis extracts beyond the constituents alone is required. Further research, including 
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the research reported in this thesis, will provide deeper insight into what secondary 

constituent relationships may exist.  

 

1.5 Adolescent Exposure  

1.5.1 Adolescent Exposure and Use 

 As mentioned, cannabis is the most frequently used illicit drug worldwide, with 

over 20% of Canadians beginning their use by age 15. Adolescent use is an important 

consideration not only for the medicinal benefits but for recreational concerns as well 

(Currie, 2016). “Street cannabis” tends to have a higher percentage of THC leading to 

concerns with increases in positive and negative schizophrenia-like symptoms, increased 

anxiety, reduced movement, euphoria, altered perception, and disruptions to recall and 

working memory in adult humans (D’Souza et al., 2004; D’Souza et al., 2008; Morgan et 

al., 2018). Cannabis consumption in adolescence may interfere with brain development 

(Schneider, 2008; Squeglia, Jacobus & Tapert, 2009). A review of a collection of studies 

looking at cannabis use in adolescence and its effects on the brain and ultimately 

behaviour, demonstrated an association between cannabis use and hyperactivity of 

parietal and frontal networks but in most studies, there were little to no apparent 

behavioural changes (Lorenzetti et al., 2016). Behavioural changes documented in this 

review also indicate a parallel between what is observed in adult and adolescent use 

(Lorenzetti et al., 2016). An important consideration related to this review is that many of 

the studies included cannabis users who consumed their choice of street cannabis. This 

review did not attempt to differentiate between the strains consumed and therefore the 

relative CBD and THC content in the cannabis studied in each publication was not 

accounted for. There are various other reports of adolescent consumption of exogenous 
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cannabinoids resulting in behavioural changes including locomotor activity, play and 

overall impaired cognitive abilities (Rubino et al., 2015; Renard et al., 2016; VanRyzin et 

al., 2019). As previously mentioned, the relative amounts of the cannabis constituents 

may thus have varied a great deal from study to study. More research, including this 

thesis, will attempt to resolve some of the informational gaps that remain. 

 

1.5.2 Adolescent Sexually Dimorphic Cannabis Effects 

 A variety of different publications have shown a higher density of CB1 receptors 

observed in males compared to females in almost all the cerebral regions analyzed 

(Rubino, et al., 2008; Burston et al., 2010; Riebe et al., 2010; Mateos et al., 2011).  There 

is evidence to suggest sexually dimorphic changes in endocannabinoid levels that 

accounts for differences in pain perception experienced by each sex (Tseng & Craft, 

2001; Bradshaw et al., 2006). In the study done by Tseng and Craft, 3 different 

cannabinoid agonists produced greater effects in female rats than their male counterparts. 

These relative levels are impacted by hormones and change throughout different phases 

of the hormonal cycle in females (Scorticati et al., 2003; Riebe et al., 2010). Both the 

differences in receptor density and relative hormone levels have been shown to be true in 

adults, adolescent, and neonatal animals and humans and seem to have lasting impacts 

(Burston et al., 2010; Krebs-Kraft et al., 2010; Riebe et al., 2010; Long et al., 2012; 

Renard et al., 2016; Meyer, Lee & Gee, 2018; VanRyzin et al., 2019). Taken together, 

considering both sexes individually including developmental differences and general 

behavioural differences, is imperative to gain a full understanding the effect of cannabis 

on the brain. 
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1.6 Medicinal Applications of Cannabis  

Cannabinoids can impact the human body and brain in a variety of ways, but this 

review will now focus on how cannabis can be utilized for its medicinal rather than 

recreational properties. An eCB system that fails to maintain a homeostatic state can 

result in the development of a variety of diseases. An example of this is the upregulation 

of CB1 and CB2 receptors and an increase in endocannabinoids that has been observed in 

neurodegenerative and cardiovascular diseases as well as in cancer (Miller & Devi, 2011; 

Kovalchuk & Kovalchuk, 2020). Understanding the mechanisms of action in the eCB 

system is therapeutically relevant for cannabis as a medicine as it allows scientists better 

knowledge on how to mediate upregulation of receptors and efficacy of agonists. There 

are many more medicinal uses for cannabis that are currently being researched but the 

remainder of this review will focus on the use of cannabis as it relates to treatment of 

diseases that impact the brain.  

 

1.6.1 Cancer 

The impacts that cannabinoids, specifically THC and CBD have on cancer 

(defined as the uncontrolled division of cells) has been vigorously researched.  

Cannabinoids were shown to reduce tumor growth in mice and were later shown to inhibit 

tumor growth by modulating different cellular pathways of a variety of cancers 

(McAllister et al., 2010). Recently, this data has been disputed, and one study even 

reported the opposite effects (Hart, Fischer & Ullrich, 2004; McKallip, Nagarkatti & 

Nagarkatti, 2005; Raup-Konsavage et al., 2020). It does seem as though cannabinoids can 

help in very specific instances including breast, prostate, and colorectal cancers 

(McAllister et al., 2010; Morell et al., 2016; Cherkasova, Kovalchuk & Kovalchuk, 
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2021). Beyond that, cannabinoids have been shown to reduce the nausea experienced as a 

side effects of standard cancer treatments and chemotherapy (Tramer et al., 2001). Based 

on the cumulative evidence, continued research into the use of cannabis as cancer 

treatment appear to be a good prospect. 

 

1.6.2 Inflammation 

With regards to inflammation, cannabinoids work by inducing apoptosis, 

preventing cell proliferation, reducing cytokine production, and enhancing T-regulatory 

cells (Nagarkatti et al., 2009; Suryavanshi, Kovalchuk & Kovalchuk, 2021). 

Cannabinoids have been shown to trigger apoptosis in malignant immune cells (such as 

those in leukemia or lymphoma) in vivo, effectively modulating immune cell function 

(Rieder et al., 2010). Taking that information into account, research began to focus 

attention on how both endo- and exogenous cannabinoids impact hepatitis. In a study 

done by Hegde et al., (2008), both THC and AEA treatment slowed the liver injury 

caused by hepatitis. Studies have also demonstrated that CBD can increase adenosine 

signaling which is thought be a mechanism by which CBD can reduce inflammation 

(Carrier, Auchampach & Hillard, 2006). The data hint at the complex relationship 

between endo- and exogenous cannabinoids and inflammation. 

 

1.6.3 CBD and Neuroinflammatory Disease 

Chronic neuroinflammation contributes to the development of AD (Akiyama et 

al., 2000; Wenk et al., 2000). Neuroinflammation promotes neuronal death, powering a 

vicious cycle responsible for the progression of AD, by interfering with the molecules 

responsible for neuroinflammation.  In a rat model CBD acts as a neuroprotective 
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molecule and slows the progression of AD (Esposito et al., 2011). CBD has also been 

shown to increase neurogenesis which has implications for cognitive recovery from AD 

in mice (Wolf et al., 2010). CBD also promotes microglial cell migration both in vitro 

with human cell lines and in mice which is shown to be beneficial in the treatment of AD 

(Lunn et al., 2006; Wolf et al., 2010; Karl, Garner & Cheng, 2017; Tagne et al., 2019). 

Beyond CBD, high CBD cannabis extracts showed more potent microglial migration than 

CBD alone indicating there is beneficial interactions between the other constituents 

within cannabis in vitro on AD pathology (Tagne et al., 2019). In both rats and mice CBD 

has been shown to reduce the neuronal damage that occurs with AD without impairing 

spatial learning and memory (Esposito et al., 2011; Martín-Moreno et al., 2011). This is 

understandable when related to a meta-analysis by Watt & Karl (2017) that compared the 

effects of THC+CBD together on AD. These authors showed that not only did the 

combination therapy work better, but the CBD content limited the adverse effects of THC 

consumption making it an ideal treatment option for AD. 

The pathologic changes of MS include neuroinflammation, excitotoxicity, 

demyelination, and neurodegeneration (Maroon & Bost, 2018). In an early study, MS 

patients reported a reduction in symptoms and relapses when smoking cannabis (Consroe 

et al., 1997). In more recent work Sexton and colleagues (2014) detected a significant 

increase AEA in serum from individuals with MS compared to control subjects thereby 

indicating a relationship between the eCB system and MS (Centonze et al., 2007; Sexton 

et al., 2014). Moving forward, research has focused on enhancement of the eCB system as 

a means to promote neuroprotection and therapeutic effects for MS (Loria et al., 2010; 

Zajicek et al., 2012). 
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1.6.4 Epilepsy 

Despite the existence of antiepileptic drugs, many people with epilepsy continue 

to have seizures (Brodie et al., 2012). Use of cannabinoids to treat epilepsy first stemmed 

from the idea that AEA can control neuronal excitability by binding to the TRPV1R 

(Pertwee, 2008). Patients with epilepsy have been shown to have lower amounts of AEA 

in cerebrospinal fluid and less expression of CB1R. There was also a reduction in DAGLa 

which, as mentioned above, is involved in the synthesis of 2-AG in post-synaptic 

terminals (Tanimura et al., 2010).  Administration of CBD was shown to restabilize the 

homeostatic state of neuronal networks by altering neuronal excitability by binding to 

TRPVR which antagonizes a G-protein–coupled receptor, leading to decreased 

presynaptic release of glutamate, activating 5-hydroxytryptophan 1A receptors, and 

inhibiting adenosine reuptake (Carrier, Auchampach & Hillard, 2006; De Petrocellis et 

al., 2011; Campos, Ferreira, & Guimarães, 2012; Sylantyev et al., 2013). Thus, CBD is 

presented as a prospective treatment for generalized or partial seizures (Consroe et al., 

1982; Friedman & Devinsky, 2015). Treatment of temporal lobe seizures and penicillin 

model of partial seizures (an experimental model of generalized spike-and-wave 

discharges occurring during clinical absence attacks) with CBD showed a significant 

decrease in the frequency of the most severe seizures (Jones et al., 2012). CBD 

administered as a supplement to standard epileptic treatment led to a reduction in the 

frequency of convulsive seizures.  Unfortunately, it was also shown to have adverse 

interactions with other medications (Devinsky et al., 2017). Research is now being 

conducted into how to manage these additional side effects, including research into the 

safety of using high CBD cannabis extracts in adolescence. 
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1.7 Purpose of Study and Thesis Overview 

Consumption of multiple constituents of cannabis at a time demonstrates the 

likelihood of entourage effects. These entourage effects have the capacity to both enhance 

the medicinal benefits of individual constituents as well as reduce the adverse side effects 

of cannabis consumption, precisely those related to THC. This thesis reports the impact 

that acute consumption of high CBD cannabis strains elicited on adolescent behavioural 

development.  Understanding the potential for the therapeutic use of cannabis in 

adolescence, while monitoring for negative behaviour consequences will broaden our 

understanding of the utility and effectiveness of cannabis as a medical treatment during 

development.  

With all of this in mind, this project sought to resolve the concerns of safety of 

adolescents chronically exposed to high CBD cannabis extracts by assessing the 

following questions: 

1. Does adolescent exposure to high CBD cannabis extract result in lasting 

behavioural changes in a rodent?  

2. Are there long-term sex differences in behavior that arises from exposure to high 

CBD cannabis extracts in adolescent rodents?  

Based on these questions, I hypothesized: 

1. Exposure to high CBD cannabis extract will have little to no long-term impact on 

adolescent rodent behaviour. 

2. The if the effects of high CBD cannabis extract on adolescent rodent behaviour 

occur, they will be sexually dimorphic in nature. 
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Consequently, I do predict that any behavioural impacts will be minimal. Male 

and female Long-Evans rats were evaluated on a battery of behavioural tasks assessing 

anxiety, and learning and memory after excretion of cannabis metabolites. Despite the 

differences in pharmacology of high CBD whole plant extracts and pure CBD it was 

predicted there would be no behavioural difference between the two. Based on the profile 

of CBD, no withdrawal symptoms were expected. Based on inherent differences, it was 

predicted that males would outperform females on spatial navigation tasks (memory) and 

there would be no apparent difference in anxiety. Chapter 2 will delve into the details of 

methodology used. The project at hand will help preclinically determine the safety of 

using high CBD cannabis extracts in an adolescent model. This will in turn provide a 

natural alternative to the standard medical treatments available to adolescents. 
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CHAPTER 2: METHODS 

 

2.1 Animals  

Female and male Hooded Long-Evans rats were obtained from Charles River and 

were allowed to acclimate to the University of Lethbridge animal housing rooms for 

approximately 1 month until post-natal (P)day 90. Rats were paired and allowed to breed 

for 7 days. Animals were returned to their previous home cages until approximately 2 

days before parturition where females were separated. 10 breeding pairs yielded a total of 

127 pups. At P7 all animals were weighed daily to monitor health and acclimate to 

handling. All pups were weaned at P21 and placed into sex-matched pairs or triplets. All 

rats were housed in standard laboratory conditions (21˚C and 35% relative humidity; 

12D:12L) in double decker laboratory housing units with libitum access to food and water 

unless otherwise indicated. A total of 116 animals were used for this experiment; extra 

animals were transferred off the animal handling protocol. All rats handling and 

procedures were done in accordance with the University of Lethbridge’s Animal Welfare 

Committee and the Canadian Council on Animal Care guidelines. 

At P21 rats were pseudorandomly assigned into testing cohorts were housed in a 

home cage with subjects of the same treatment group. All housing units were multi-level 

and equipped with a PVC tube for play and enrichment (Kolb, Gibb & Gorny, 2003; 

Sutherland, Gibb & Kolb, 2010). A total of 10 females and 10 males were assigned to 

each extract x dose cohort and a total of 10 females and 10 males comprised the control 

animals. As per University of Lethbridge Animal Welfare Guidelines, a total of 16 (8 

male, 8 female) animals were housed in standard conditions but did not undergo any 

treatments as a control for proper growth comparison of the test subjects.  
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2.2 Cannabis Preparation 

Extracts were prepared as described (Casiraghi et al., 2018; Wang et al., 2020). 

Two different cannabis cultivars were used in these experiments and were grown in a 

licenced facility at the University of Lethbridge. The cultivars were labeled #81 for 

extract 1 and CD10 for extract 2. Both cultivars are considered to have a high CBD: low 

THC content with varying amounts of other constituents, with approximate levels of CBD 

and THC to be 40% and 2%, respectively. Flowers were harvested, dried and ground 

before being mixed in liquid nitrogen, and 10mg/mL of ethyl acetate, then centrifuged. 

The supernatant was dried in a sterile rotor evaporator and suspended in food grade 

grapeseed oil to create extract at concentration of 100mg/mL and allowed to dissolve for 

approximately 24 hours then filtered. The preparations were then stored at four degrees 

Celsius until administration. At administration the extract was combined with powdered 

rat chow and 0.4g of peanut butter to create simulated protein balls that we denoted as 

“chow balls”. Individual chow balls were prepared immediately prior to administration. 

 

2.3 Exposure  

Animals were pseudorandomly assigned to 1 of 5 groups: Administration of 

10mg/kg of body weight of Extract 1, 40mg/kg of body weight of Extract 1, 10mg/kg of 

body weight of Extract 2, 40mg/kg of body weight of Extract 2 or control (vehicle only).  

Animals were dosed with cannabis-free “blank” chow balls for 3 days in their 

home cages followed by 2 days in the dosing chambers. For the first 5 days of dosing 

animals were food deprived from approximately 7:45 – 12:00. Food hoppers were 

returned post dosing and water was available ad libitum for the duration of the 

experiment. Pre-exposure occurred from P35-39. 
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The animals were removed from their home cage and put into an isolated dosing 

chamber for 1.0 hour during administration. Animals were dosed daily at 12:00 for 14 

consecutive days. Dosing occurred under standard laboratory conditions (21˚C and 35% 

relative humidity; 12D:12L) in Plexiglas® shoebox cages (46cm x 25cm x 20cm). During 

dosing, animals did not have access to food or water. The chow balls were deposited into 

each dosing chamber prior to the animals. Extract doses were calculated based on their 

individual weight recorded at 8:00 that day. Dosing occurred from P40-54. 

 

2.4 Controls 

10 female and 10 male control animals were given blank chow balls for the 5 pre-

exposure days and the 14 exposure days. Dosing was administered under the same 

conditions as test subjects. Individual blank chow balls were mixed immediately prior to 

administration. 

 

2.5 Behavioural Analysis and Data Recording 

2.5.1 Morris Water Task 

Apparatus - The Morris Water Task (MWT) described by Sutherland, Whishaw & 

Kolb (1983) is a test designed to determine a rodent’s spatial memory abilities and 

locomotion. The apparatus consisted of a large circular pool with a diameter of 1.4m that 

was filled to a depth of 40cm with 21˚C water mixed with white non-toxic acrylic paint 

(CraftSmart, Rajasthan, India) to render the pool opaque. A clear Plexiglas® square 

platform (13cm X 13cm) was placed in the pool approximately 3.0cm below the water 

surface. Extra maze cues, including posters, the computer, the experimenter, animal 
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holding chambers and the water hose placement remained stationary throughout the 

acquisition and experimental period. 

Trials - Trials began 36 hours following dosing to control for remaining cannabis 

metabolites. MWT training was done as described previously. Starting positions labeled 

N, S, E, W were determined in a quasi-random fashion such that all starting positions 

were used every day. For all trial days 1-5, rats were placed in the pool facing the wall 

and allowed 60s to reach the submerged platform. If they did not reach the platform after 

60s, they were guided to it by the experimenter. Once rats had mounted the platform, they 

were to remain there for 15s. For all trials on days 1-5, the platform was in a consistent 

position in the centre of the NE quadrant. On day 6, the platform was removed for a probe 

trial, and rats were allowed to freely swim for 60s before being removed from the pool. 

The probe starting position was from W and remained consistent for all probe trials. The 

animals were tested in groups of 8 or less with an interim interval of 300-600s excluding 

November 2nd in which a medical emergency resulted in 5 male (3 40 mg/kg #81 and 2 10 

mg/kg CD10) animals with half (2) of their trials run 3 hours after their other trials. Task 

acquisition from days 1-5 was analysed, latency and heading direction was analysed from 

probe day (day 6). 

 

2.5.2 The Elevated Plus Maze 

Apparatus - The elevated plus-maze (EPM) protocol as described by Guimeres et 

al. (1990) is a test that provides a direct measure of the animal’s anxiety during testing. 

Each elevated plus maze session was video recorded for a duration of 5 minutes. The base 

of the apparatus was 94cm high off the floor and was made of black Plexiglas®. Both 

open and closed arms measured 10cm in width and 40cm in length. The walls of the 
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closed arms were 40cm in height. A video camera was placed at the end of one of the 

open arms at a 40˚ angle looking downward to record behaviour. 

Trials – Trials occurred 7 days post dosing to control for residual cannabis 

metabolites. All trials were run with the lights on and began at approximately 15:15. Rats 

were placed in the centre square of the apparatus facing the open arm (and camera) and 

were allowed to freely explore for 5.0 minutes. Experimenters would deposit the subject 

onto the apparatus and leave the room as to not bias the animal’s response. Following 

testing, rats were removed from the maze and immediately placed in their home cage. 

Only 1 animal could be run on the apparatus at a time and the testing apparatus was 

thoroughly cleaned between each subject. Quantification of behaviour was done through 

video scoring after the experiment. The number of arm entries and the amount of time 

spent in open and closed arms were recorded. 

 

2.5.3 The Activity Box (Open Field) Test 

Apparatus - The Activity Box, described by Seibenhener & Wooten (2015) is a 

test to determine a rodent’s locomotion, exploratory behaviour, and anxiety in a novel 

environment. The apparatus was composed of 8 Accuscan activity monitoring Plexiglas® 

chambers (41cm x 41cm x 30.5cm) allowing for 8 animals to be simultaneously 

monitored during each test. Each chamber has 4 infrared bars creating a beam along the 

bottom of the chamber, as well as two upper beams to count the number of times each 

subject reared. Activity was measured as the number of beam breaks during 10, one 

minute sample periods that were recorded using VersaMax software. The total distance 

covered (cm) during the testing period was used as the metric of total activity. 
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Trials – Trials occurred 7 days post dosing to control for residual cannabis 

metabolites. Animals were deposited into the testing chamber at 15:00, and the 

experimenter left the room as to not bias the animal’s response. Each chamber was 

thoroughly cleaned between subjects. The open-field test was run for a duration of 10 

minutes, divided into 10 1-minute datums. Rearing and movement were analysed for each 

subject. Rearing is when the rats stand on their hind legs as to get a better look around the 

space, a behaviour associated with reduced anxiety levels (Guimaraes et al., 1990). 

Following the activity box, subjects were immediately transported to the EPM test. 

 

2.6 Physiological Analysis 

 The day following final behavioural testing day, all rats body weights were 

recorded, then deeply anesthetized using isoflurane followed by 100 mg/kg of body 

weight sodium pentobarbital injected into the intraperitoneal space. Animals were whole 

body transcardially perfused using a 0.9% saline solution as to not contaminate the sera 

and organ tissues. Following perfusion, animals were be decapitated and brains extracted 

immediately. The whole sample brains were then weighed and analysed for brain weight 

and stored for future analysis. 

 

2.7 Statistics 

Analysis of spatial learning and memory was conducted using the Morris Water 

and was analyzed using a repeated measure contrast of day with treatment (control, 10 

mg/kg or 40 mg/kg) and sex (female or male) as between subject factors, and training 

days as within-subject factors. Analysis of anxiety-like behaviour in the Elevated Plus 

Maze was conducted using a one-way ANOVA paradigm with treatment (control, 10 
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mg/kg, or 40 mg/kg) and sex (female or male) as between subject factors. EPM data was 

double scored, and a correlation was run to demonstrate significance between scorings. 

Analysis of anxiety-like behaviour and locomotion in the Activity Box was conducted 

using a one-way ANOVA paradigm with treatment (control, 10 mg/kg, or 40 mg/kg) and 

sex (female or male) as between subject factors. 

All data were analyzed through IBM SPSS Statistics 27 software. All data were 

reported using alpha level of .025 as the control animals were used for comparison of 

multiple analyses. 
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CHAPTER 3: RESULTS 

 

3.1 MWT and Spatial Learning and Memory 

3.1.1 Extract #81 and Task Acquisition 

Mauchly’s Test of Sphericity indicated that the assumption of sphericity was 

violated, χ2 (9) = 16.910, p < .001, therefore, Huynh-Feldt corrections were applied to the 

following statistical observations (ε  = 1.000).  

There was a main effect of Testing Day [F(4, 50) = 73.171, p < .001], suggesting 

that each sequential day the animals performed the task, their latency to locate the 

platform decreased. There was a trending toward significant Day x Sex interaction, F(8, 

50) = 2.750, p = .029, suggesting that although males and females were not statistically 

different, males had acquired the task somewhat faster than females. There was no 

significant Day x Treatment interaction F(4, 100) = 1.830, p = .073, suggesting all 

animals were able to acquire the task equivalently. There was no significant Day x Sex x 

Treatment interaction F(8, 100) = 0.892, p = .524, suggesting that the effect of treatment 

on the acquisition of the task was not reliant on the sex of the subject. 
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Figure 3.1.1 
Acquisition of the MWT by animals exposed to cannabis extract #81 as compared to 
controls. 

 

Note. This figure is a graphical depiction of the mean latency male and female animals 
took to find the hidden platform during 5 days of testing following exposure to either 10 
mg/kg [81(10)] or 40 mg/kg [81(40)] of cannabis extract #81. 
a There was a significant effect of day, there was no significant effect of treatment in 
males or females. Animals were able to learn the information of the task at a similar rate 
regardless of treatment group. Error bars represent the SEM. 
 

3.1.2 Extract 81 and Latency to Platform 

ANOVAs were conducted using Bonferroni’s post-hoc test. There was no 

significant effect of Treatment on the time it took the animals to make contact with the 

outline of the removed platforms previous location, F(2, 54) = 2.761, p = .072, suggesting 

that the animals were able to learn the location of the platform equivalently regardless of 

treatment. There was no significant effect of sex on the time it took the animals to find the 

location of the removed platform, F(1, 54) = 0.476, p = .493, suggesting that the animals 

were able to learn the location of the platform equivalently regardless of sex. There was 

no significant Sex x Treatment interaction on the time it took the animals to find the 
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location of the removed platform, F(2, 54) = 0.016, p = .984, suggesting that the animals 

were able to learn the location of the platform statistically equivalently regardless of the 

combined effects of their sex and treatment. 

 

Figure 3.1.2 
Latency of animals exposed to cannabis extract #81 to reach the location of the removed 
platform in the MWT 
 

 

Note. Graphical depictions of the latency in seconds it took for animals to make contact 
with the outlined position of the removed platform on probe day (day 6) of testing by 
animals exposed to 10 mg/kg [81(10)] or 40 mg/kg [81(40)] cannabis extract #81.  
a There was no significant effect of treatment, sex or Treatment x Sex interactions 
observed in the latency to find the location of the removed platform. Error bars represent 
the SEM. 
 

3.1.3 Extract 81 and Initial Heading Direction 

ANOVAs were conducted using Bonferroni’s post-hoc test. There was no 

significant effect of Sex on the degree of heading angle relative to platform centre, F(1, 

54) = 0.220, p = .641, suggesting that the animals were able to learn the location of the 

platform equivalently regardless of sex. There was no significant effect of treatment on 

the degree of heading angle relative to platform centre, F(2, 54) = 0.068, p = .934, 

suggesting that the animals were able to learn the location of the platform equivalently 
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regardless of treatment. There was no significant Sex x Treatment interaction on the 

degree of heading angle relative to platform centre, F(2, 54) = 1.269, p = .289, suggesting 

that the animals were able to learn the location of the platform statistically equivalently 

regardless of the combined effects of their sex and treatment. 

 

Figure 3.1.3 
Heading angle of animals exposed to cannabis extract #81 relative to the centre of the 
location of the removed platform in the MWT 
 

 

Note. Graphical depictions of the angle relative to centre of the platform of initial 
movement animals took locate the position of the removed platform on probe day (day 6) 
of testing by animals exposed to 10 mg/kg [81(10)] or 40 mg/kg [81(40)] cannabis extract 
#81.  
a There was no significant effect of treatment, sex or Treatment x Sex interactions 
observed in the heading angle to the location of the removed platform. Error bars 
represent the SEM. 
 

3.1.4 Extract CD10 and Task Acquisition 
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There was a main effect of testing day F(3.474, 47) = 101.233, p < .001, 

suggesting that each sequential day the animals performed the task, their latency to locate 

the platform decreased. There was no significant Day x Treatment interaction F(3.474, 

47) = 0.294, p = .955, suggesting all animals were able to acquire the task equivalently. 

There was no significant Day x Sex interaction, F(6.949, 94) = 0.864, p = .474, 

suggesting males and females performed statistically equivalently. There was no 

significant Day x Sex x Treatment interaction F(6.949, 94) = 0.577, p = .773, suggesting 

that the effect of treatment on the acquisition of the task was not reliant on the sex of the 

subject. 
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Figure 3.1.4 
Acquisition of the MWT by animals exposed to cannabis extract CD10 as compared to 
controls. 

 

Note. This figure is a graphical depiction of the mean latency male and female animals 
took to find the hidden platform during 5 days of testing following exposure to either 10 
mg/kg [CD10(10)] or 40 mg/kg [CD10(40)] of cannabis extract CD10. 
a There was a significant effect of day, there was no significant effect of treatment in 
males or females. Animals were able to learn the information of the task at a similar rate 
regardless of treatment group. Error bars represent the SEM. 
 

3.1.5 Extract CD10 and Latency to Platform 

ANOVAs were conducted using Bonferroni’s post-hoc test. There was no 

significant effect of treatment on the time it took the animals to make contact with the 

outline of the removed platforms prior location, F(2, 53) = 0.569, p = .070, suggesting 

that the animals were able to learn the location of the platform equivalently regardless of 

treatment. There was no significant effect of sex on the time it took the animals to find the 

location of the removed platform, F(1, 53) = 3.327, p = .570, suggesting that the animals 

were able to learn the location of the platform equivalently regardless of sex. There was 
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no significant Sex x Treatment interaction on the time it took the animals to find the 

location of the removed platform, F(2, 53) = 0.844, p = .436, suggesting that the animals 

were able to learn the location of the platform statistically equivalently regardless of the 

combined effects of their sex and treatment.  

 
Figure 3.1.5 
Latency of animals exposed to cannabis extract CD10 to reach the location of the 
removed platform in the MWT  
 

 

Note. Graphical depictions of the latency in seconds it took for animals to make contact 
with the outline of the removed platform on probe day (day 6) of testing by animals 
exposed to 10 mg/kg [CD10(10)] or 40 mg/kg [CD10(40)] cannabis extract CD10.  
a There was no significant effect of Treatment, Sex or Treatment x Sex interactions 
observed in the latency to find the location of the removed platform. Error bars represent 
the SEM. 
 
 

3.1.6 Extract CD10 and Initial Heading Direction 
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significant effect of sex on the degree of heading angle relative to platform centre, F(1, 
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suggesting that the animals were able to learn the location of the platform equivalently 

regardless of treatment. There was no significant Sex x Treatment interaction on the 

degree of heading angle relative to platform centre, F(2, 53) = 1.333, p = .272, suggesting 

that the animals were able to learn the location of the platform statistically equivalently 

regardless of the combined effects of their sex and treatment. 

 

Figure 3.1.6 
Heading angle of animals exposed to cannabis extract CD10 relative to the centre of the 
location of the removed platform in the MWT 
 

 

Note. Graphical depictions of the angle relative to centre of the platform of initial 
movement animals took locate the position of the removed platform on probe day (day 6) 
of testing by animals exposed to 10 mg/kg [CD10(10)] or 40 mg/kg [CD10(40)] cannabis 
extract CD10.  
a There was no significant effect of treatment, sex or Treatment x Sex interactions 
observed in the heading angle to the location of the removed platform. Error bars 
represent the SEM. 
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= .009, suggesting male entries into the closed arm accounted for higher percentage of 

their entries. There was no significant effect of treatment on the percent of entries into the 

closed arm, F(1, 54) = 1.296, p = .282, suggesting the animals entered the closed arm at 

an equal ratio regardless of treatment. There was no Sex x Treatment interactions 

observed with regards to percent of entries into the closed arm, F(2, 54) = 0.917, p = .406, 

suggesting the effect of the treatment was not influenced by the subject’s sex. There was 

no significant effect of treatment on the percent of time spent in the closed arm, F(1, 54) 

= 1.119, p = .334 suggesting the animals spent comparable time in the closed arm 

regardless of treatment. There was no significant effect of sex on the percent of time spent 

in the closed arm, F(2, 54) = 3.917, p = .053, suggesting the animal’s sex did not impact 

the time spent in the closed arm. There was no Sex x Treatment interactions on the 

percent of time spent in the closed arm, F(2, 54) = 0.241, p = .717 
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Figure 3.2.1 
Anxiety-like behaviour during the EPM of animals exposed to cannabis extract #81 as 
compared to controls 
 

 

Note. Graphical depictions of a. the percent of time spent in the closed arm of the EPM, 
and b. the percent of total entries that were into the closed arm of the EPM by animals 
exposed to 10 mg/kg [81(10)] or 40 mg/kg [81(40)] cannabis extract #81.  
a There was no significant effect of treatment, sex or Treatment x Sex interactions 
observed in the time spent in the closed arm of the apparatus. 
b There was an effect of sex on the percent number of entries into the closed arm overall, 
there was no effect of treatment on the percent number of entries. Error bars represent the 
SEM. 
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suggesting the effect of the treatment was not influenced by the subject’s sex.  There was 

no significant effect of treatment on the percent of time spent in the closed arm, F(1, 53) 

= 0.025, p = .975, suggesting the animals spent comparable time in the closed arm 

regardless of treatment. There was no significant effect of sex on the percent of time spent 

in the closed arm, F(2, 53) = 2.639, p = .110, suggesting the animal’s sex did not impact 

the time spent in the closed arm. There was no Sex x Treatment interactions on the 

percent of time spent in the closed arm, F(2, 53) = 0.625, p = .539. 

 

Figure 3.2.2 
Anxiety-like behaviour during the EPM of animals exposed to cannabis extract CD10 as 
compared to controls 
 

 

Note. Graphical depictions of a. the percent of time spent in the closed arm of the EPM, 
and b. the percent of total entries that were into the closed arm of the EPM by animals 
exposed to 10 mg/kg [CD10(10)] or 40 mg/kg [CD10(40)] cannabis extract CD10. 
a There was no significant effect of treatment, sex or Treatment x Sex interactions 
observed in the time spent in the closed arm of the apparatus. 
b There was an effect of sex on the percent number of entries into the closed arm overall, 
there was no effect of treatment on the percent number of entries. Error bars represent the 
SEM. 
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3.3 Activity Box and Anxiety-Like Behaviour 

3.3.1 Extract #81 Marginal Time and Distance 

Post hoc analyses were conducted using Bonferroni's post-hoc test. There was no 

significant effect of sex on percent time spent in the margins of the chamber F(1, 53) = 

0.166, p = .685, suggesting males and females spent equivalent time in the margins of the 

chamber. There was no significant effect of treatment on percent time spent in the 

margins of the chamber, F(2, 53) = 0.082, p = .454, suggesting animals spent equivalent 

time in the margins of the chamber and the lack of increased anxiety. There was no Sex x 

Treatment interactions F(2, 53) = 0.019, p = .982, suggesting that the effect of treatment 

was not influenced by the subject’s sex. 

Post hoc analyses were conducted using Bonferroni's post-hoc test. There was a 

significant effect of sex on percent distance travelled in the margins of the chamber F(1, 

54) = 7.144, p = .010, suggesting males travelled less of their distance in the margins of 

the chamber. There was no significant effect of treatment on percent distance travelled in 

the margins of the chamber, F(2, 54) = 1.279, p = .287, suggesting animals traveled 

equivalent percent distances in the margins of the chamber. There was no Sex x 

Treatment interactions F(2, 54) = 0.643, p = .530, suggesting that the effect of treatment 

was not influenced by the subject’s sex. 
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Figure 3.3.1 
Percent time spent in the marginal region of the Activity Box of animals exposed to 
extract #81 as compared to controls 
 

 

Note. A visual depiction of the mean percent time and distance travelled of each group of 
animals exposed to cannabis extract #81 spent in the margins of the activity box.  
a There was no significant effect of treatment on time spent in the margins of the 
apparatus. Error bars represent the SEM. 
b There was a significant effect of sex with males traveling less of their total distance in 
the margins. There was no significant effect of treatment on percent distance traveled in 
the margins of the apparatus. Error bars represent the SEM. 
 
3.3.2 Extract #81 on Rearing 

Post hoc analyses were conducted using Bonferroni's post-hoc test. There was no 

significant effect of treatment on number of rears per minute, F(2, 53) = 3.344, p = .043, 

suggesting animals reared equivalently regardless of treatment indicating no significant 

increase in anxiety. There was no significant effect of sex on number of rears per minute 

F(1, 53) = 0.311, p = .579, suggesting males and females reared statistically equivalent 

amounts. There was no Sex x Treatment interactions F(2, 53) = 0.310, p = .735, 

suggesting that the effect of treatment was not influenced by the subject’s sex. 
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Figure 3.3.2 
Average rears per minute in the Activity Box of animals exposed to extract #81 as 
compared to controls 

 

Note. A visual depiction of the average rears per minute over 10 minutes for each group 
of animals exposed to cannabis extract #81 in the activity box. Error bars represent the 
SEM. 
a There was no significant effect of treatment on average rears per minute. Error bars 
represent the SEM. 
 

3.3.3 Extract CD10 Marginal Time and Distance 

Post hoc analyses were conducted using Bonferroni's post-hoc test. There was no 

significant effect of sex on percent time spent in the margins of the chamber F(1, 52) = 
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the margins of the chamber, F(2, 52) = 1.324, p = .275, suggesting animals traveled 

equivalent percent distances in the margins of the chamber. There was no Sex x 

Treatment interactions F(2, 52) = 0.517, p = .600, suggesting that the effect of treatment 

was not influenced by the subject’s sex. 

 

Figure 3.3.3 
Percent time spent in the marginal region of the Activity Box of animals exposed to 
extract CD10 as compared to controls  
 

  

Note. A visual depiction of the mean percent time and distance travelled of each group of 
animals exposed to cannabis extract CD10 spent in the margins of the activity box.  
a There was no significant effect of sex on time spent in the margins of the apparatus. 
There was no effect of treatment. Error bars represent the SEM. 
b There was a significant effect of treatment on percent distance traveled in the margins of 
the apparatus with males travelling less of their total distance in the margins. Error bars 
represent the SEM. 
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3.3.4 Extract CD10 on Rearing 

Post hoc analyses were conducted using Bonferroni's post-hoc test. There was 

significant Sex x Treatment interactions F(2, 53) = 4.049, p = .023, suggesting that the 

effect of treatment was influenced by the subject’s sex, with males exposed to a 40mg/kg 

dose of CD10 rearing significantly less. There was no significant effect of sex on number 

of rears per minute F(1, 53) = 1.894, p = .180, suggesting males and females reared 

statistically equivalent amounts. There was no significant effect of treatment on number 

of rears per minute, F(2, 53) = 0.580, p = .564, suggesting animals reared equivalently 

regardless of treatment.  

 
Figure 3.3.4 
Average rears per minute in the Activity Box of animals exposed to extract CD10 as 
compared to controls 

 

Note. A visual depiction of the average rears per minute over 10 minutes for each group 
of animals exposed to cannabis extract #CD10 in the activity box. Error bars represent the 
SEM. 
a There was a significant Sex x Treatment effect of average rears per minute. There was 
no significant effect of treatment or sex on average rears per minute. Error bars represent 
the SEM. 
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3.4 Physiological Analysis 

3.4.1 Extract #81 

Post hoc analyses were conducted using Bonferroni's post-hoc test. There was a 

significant effect of sex on body weight of the animal F(1, 54) = 512.141, p < .001, males 

are statistically larger than females. There was no significant effect of treatment on body 

weight, F(2, 54) = 3.48, p = .708, suggesting animals body growth was statistically 

normal regardless of treatment. There was no significant Sex x Treatment interactions 

F(2, 54) = 0.591, p = .557, suggesting that the effect of treatment was not influenced by 

the subject’s sex. 

Post hoc analyses were conducted using Bonferroni's post-hoc test. There was a 

significant effect of sex on brain weight of the animal F(1, 51) = 35.257, p < .001, males 

are statistically larger average brain size than females. There was a significant effect of 

treatment on brain weight, F(2, 51) = 5.239, p = .009, suggesting animals exposed 

specifically to the 10mg/kg dose of extract #81 had a larger average brain size. There was 

no significant Sex x Treatment interactions F(2, 51) = 0.453, p = .639, suggesting that the 

effect of treatment was not influenced by the subject’s sex. 

Post hoc analyses were conducted using Bonferroni's post-hoc test. There was a 

significant effect of sex on brain weight as a percent of body weight of the animal F(1, 

51) = 346.327, p < .001; females have a statistically larger average brain size than males 

when controlled for body weight. There was no significant effect of treatment on brain 

weight, F(2, 51) = 0.590, p = .558, suggesting the subject’s brain weights as controlled 

for body weight are not impacted by consumption of extract #81. There was no 

significant Sex x Treatment interactions F(2, 51) = 0.131, p = .877, suggesting that the 

effect of treatment was not influenced by the subject’s sex. 
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Figure 3.4.1 
Average body and brain weight of animals exposed to extract #81 as compared to 
controls 
 

  

Note. A visual depiction of the mean raw body and brain weights of each group of 
animals exposed to cannabis extract #81.  
a There was a significant sex effect, with males being larger. There was no effect of 
treatment on body size. Error bars represent the SEM. 
b There was a significant effect of sex with males having larger brains. There was a 
significant effect of treatment on with the 10mg/kg groups having significantly larger 
brains. Error bars represent the SEM. 
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Figure 3.4.2 
Average brain weight as a percent of body weight of animals exposed to extract #81 as 
compared to controls 
 

 
Note. A visual depiction of the mean brain weight as controlled for body weight of each 
group of animals exposed to cannabis extract #81.  
a There was a significant sex effect, with females having a proportionally larger brain as 
compared to their body weight. There was no effect of treatment on brain size as relation 
to body weight. Error bars represent the SEM. 
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treatment on brain weight, F(2, 53) = 7.158, p = .002, suggesting animals exposed 

specifically to the 10mg/kg dose of extract #81 had a larger average brain size. There was 

no significant Sex x Treatment interactions F(2, 53) = 0.029, p = .971, suggesting that the 

effect of treatment was not influenced by the subject’s sex.  

Post hoc analyses were conducted using Bonferroni's post-hoc test. There was a 

significant effect of sex on brain weight as a percent of body weight of the animal F(1, 

53) = 237.170, p < .001, females have a statistically larger average brain size than males 

when controlled for body weight. There was no significant effect of treatment on brain 

weight, F(2, 53) = 1.295, p = .282, suggesting the subject’s brain weights as controlled 

for body weight are not impacted by consumption of extract CD10. There was no 

significant Sex x Treatment interactions F(2, 53) = 0.043, p = .958, suggesting that the 

effect of treatment was not influenced by the subject’s sex. 
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Figure 3.4.3 
Average body and brain weight of animals exposed to extract CD10 as compared to 
controls 
 

   

Note. A visual depiction of the mean body and brain weights of each group of animals 
exposed to cannabis extract CD10.  
a There was a significant sex effect, with males being larger. There was no effect of 
treatment on body size. Error bars represent the SEM. 
b There was a significant effect of sex with males having larger brains. There was a 
significant effect of treatment on with the 10mg/kg groups having significantly larger 
brains. Error bars represent the SEM. 
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Figure 3.4.4 
Average brain weight as a percent of body weight of animals exposed to extract CD10 as 
compared to controls 
 

 
Note. A visual depiction of the mean brain weight as controlled for body weight of each 
group of animals exposed to cannabis extract CD10.  
a There was a significant sex effect, with females having a proportionally larger brain as 
compared to their body weight. There was no effect of treatment on brain size as relation 
to body weight. Error bars represent the SEM. 
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CHAPTER 4: DISCUSSION AND CONCLUSION 

 

4.1 General Discussion 

As cannabis consumption has been linked to increases in anxiety and deficits in 

learning in memory it was important to explore how these extracts may be related to these 

behaviours (Ranganathan & D’Souza, 2006, Vann et al., 2008). As well, these effects are 

exaggerated when looking at an adolescent model (Rubino et al., 2008; Schneider, 2008; 

Renard et al., 2016; Meyer, Lee & Gee, 2018). Much of the available literature 

demonstrates that THC is the primary culprit in producing these effects. Much research 

has been conducted on the effects of THC but the contribution of CBD to observed 

physiological and behavioral changes remains relatively unknown. As a result, there has 

been a change in gears to CBD as a primary research candidate (Bhattacharyya et al., 

2010; Taffe, Creehan & Vandewater, 2015). Although CBD demonstrates novel 

medicinal properties, we would be remiss to not discuss the variety of medicinal 

properties of THC (Noyes et al., 1975; El-Alfy et al., 2010; Karl, Garner & Cheng, 2017). 

Beyond the individual constituents, whole-plant cannabis extract may be able to produce 

synergistic effects beyond those of the constituents alone (Fernandes et al., 1974). It has 

been shown that, in addition to the divergent effects between an adolescent brain and an 

adult brain, there are sex differences in how cannabis is metabolized in a mammalian 

system resulting in added complexities in the effects of cannabis consumption (Tseng & 

Craft, 2001; Bradshaw et al., 2006; Krebs-Kraft et al., 2010). Demonstrating the lack of 

significant behavioural impacts that cannabis containing both THC and CBD opens new 

avenues of research regarding utilizing both constituents in conjunction; this was done 

through unpublished data in our lab. Expanding beyond that, determining that there are no 
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significant sex differences in these effects and that there are no novel effects that occur 

when looking at a developing brain are imperative to preclinical and clinical research of 

cannabis.  

As there were no treatment dependent nor Sex x Treatment effects in this specific 

study indicates that there is likely minimal to no significant behavioural impacts 

following exposure to either a low dose (10 mg/kg of body weight) or a high dose (40 

mg/kg of body weight) of the extracts that was used. This exposure was done as a 

chronic/long-term exposure, such as what would be recommended when attempting to 

control a chronic illness. A major difference between this study and much of the currently 

available research is the timing of behavioural testing, for the MWT there was over 36-

hour rest period between final dosing and testing, and for the EPM and Activity Box tests, 

there was an 8-day delay. This break allowed for all cannabis constituents to be 

metabolized as the study aimed specifically to look for lasting impacts of high-CBD 

cannabis extract exposure. The analyses performed were designed to explore the effects 

of long-term oral consumption of high-CBD whole plant cannabis extracts on adolescent 

behaviour. Specifically, the test battery used was designed to reveal any behavioural 

impacts to anxiety, locomotion and spatial learning and memory in the Long-Evans rat 

after consumption has ceased.  

 

4.2 Behavioural Analysis Discussion 

4.2.1 Morris Water Task and Spatial Learning and Memory 

 Consumption of either extract #81 or CD10 demonstrated no lasting impairments 

to learning and memory in the Long-Evans rat. Treated animals were able to acquire 

information about the hidden platform at a statistically equivalent rate as non-treated 
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animals. Acquisition curves for animals treated with 40mg/kg of body weight, 10mg/kg 

of body weight and controls followed a comparable curve that plateaued at approximately 

Day 4 of acquisition. Unpublished data from our laboratory showed that adult animals 

treated with extract #81 for 10 days demonstrated no significant in acquisition curves and 

learning and memory effects, data comparable to what was seen here.  

These data are reinforced by the lack of significant findings on the probe day trials 

for heading direction and latency to cross the location of the removed platform. There 

were no sex differences in effects, there were no Sex x Treatment effects observed in this 

task indicating high-CBD cannabis consumption is presumably safe for both developing 

males and females. The data presented in this thesis demonstrates the lack of lasting 

learning and memory impairments following chronic consumption of high-CBD cannabis. 

This opens the possibility of using these extracts as an additional treatment option in 

conjunction with a patients current medicinal regime for a variety of chronic illnesses that 

impact adolescents such as rheumatoid arthritis, specific cancers, and epilepsy.  

 

4.2.2 Elevated Plus Maze and Anxiety-Like Behaviour 

 Consumption of either extract #81 or CD10 demonstrated no lasting increases to 

anxiety behaviour with regards to time spent in the closed, “safe” arm. There was also no 

significant effect of treatment with either extract indicating no significant increases in 

anxiety following treatment with either extract.  

There was an overall significant effect in both treatment groups of percentage of 

total entries that were into the closed arm. This shows that overall, the males in this 

experiment preferred entering the closed arms but still spent equivalent time in the open 

and closed arms. Therefore, although they entered the closed arms with a higher 
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frequency, each individual entrance to the open arm was associated with a longer stay in 

the open arm and each entrance into the closed arm was associated with a short stay in the 

closed arm. We therefore do not believe that this significance in percentage of entrances 

into the closed arm by the male animals holds any relation to anxiety rates in the males. 

This will be further explained when compared to the Activity Box data. 

 

4.2.3 Activity Box and Anxiety-Like Behaviour 

 Consumption of extract #81 or CD10 resulted in no significant effects of sex, 

treatment, or Sex x Treatment interactions. Overall, there were no significant effects on 

percentage of time spent in the marginal region or percentage of distance travelled in the 

marginal region of the chamber. This coincides with the data on rearing that only depicted 

significance in the high dose CD10 males. These data, when taken in conjunction with the 

other data depicting no significant increase in anxiety levels, could likely be a result of 

these animals choosing not to rear as much per minute. This behaviour is associated with 

decreased anxiety of a rat (Slawecki, 2005; Turner & Burne, 2014).  

Taking into account rearing behaviour, percent distance traveled (did they enter 

the marginal space and hide, still, against a wall) and percent time in each region gives us 

a better understanding of the relationship high-CBD cannabis has to anxiety. If a decrease 

in the rate of rearing had occurred, there could have been an association of increased 

anxiety when compared to the significant amount of time spent in the margins of the 

activity box which may also be associated to the significant number of entries the males 

made into the closed arm of the EPM. 
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4.3 Physiological Analysis Discussion 

 Physiologically, we would expect that males have a larger body size and brain size 

than females overall as rats are sexually dimorphic in their size. This is what we saw 

clearly presented through the significant sex differences observed. The most interesting 

data point is that that the low dose groups in both extracts had significantly larger average 

brain size raw data, a significance that was lost when accounting for the individual 

animal’s body weight. This is explainable through basic genetics, although 

pseudorandomly organized, the females coming from litters that were predominantly 

male would likely have a larger brain size, as well, some animals will in general have a 

larger brain (Wolf et al., 2002). When brain weight was accounted for as a percent of 

body weight this significance disappears as the animal’s overall size controls for the 

differences in brain size, indicating that high CBD cannabis is not likely impacting 

overall brain size. 

 

4.4 Final Remarks and Conclusion 

4.4.1 Overall Adolescent Effects 

 Although behaviour is imperative to our understanding and diagnosis of an 

appropriate developmental trajectory, it is critical that further research is conducted into 

examining the brain tissue of these animals. Developmental alterations in cell density and 

number of connections in regions of the prefrontal cortex and hippocampus can be 

associated with changes in learning and memory, and anxiety behaviours that may be 

being compensated for in these examinations (Farrell et al., 2016; de Melo et al., 2018). 

This research creates the steppingstone to continue research into the field of the lasting 

impacts of consumption of high-CBD cannabis extracts. 
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 It was expected that there would be changes to anxiety levels in the adolescent 

animals, increases from the THC or decreases from the CBD, yet no alterations were 

observed in this study (Guimarães et al., 1990; Bhattacharyya et al., 2010; Campos, 

Ferreira & Guimarães, 2012). There may then be hidden effects that are not severe 

enough to be presenting themselves as behavioural impacts. In a realistic medicinal 

setting, lack of behavioural impacts is ideal as the drug, therefore, should not impact the 

day-to-day life of an adolescent patient. Furthermore, this data reinforces the idea that 

there are major interactions between constituents within cannabis as there were no 

observable behavioural changes. It is important to note that much of the data available 

related to adolescent consumption of cannabis focusses primarily on illicit consumption 

or consumption of street cannabis, these, as mentioned above, are strains specifically high 

in THC and low in CBD (Scheider, 2008; Squeglia, Jacobus & Tapert, 2009; Lorenzetti et 

al., 2016). Understanding the difference in these strains will aid researchers in providing 

the best quality data on cannabis as a medicine further aiding practitioners with the tools 

required for recommending personalized treatment options.  

 

4.4.2 Overall Sex Differences 

 Expanding on personalized treatment, it is important to focus on the differences 

between male and females. Cannabis not only impacts males and females differently, it 

impacts those of the same sex differently at different time points (estrus, season, etc.) 

(Scorticati et al., 2003; Riebe et al., 2010). Within this study there were sexually 

dimorphic results on brain and body size but overall, no observable sexually dimorphic 

treatment effects. Further anatomical data of cell counts, dendritic spine density, thalamic 

volume and cortical thickness currently being processed in our lab will aid us in 
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determining any underlying effects that did not present through behavioural testing. 

Another interesting tidbit of data to touch on is the females having a generalized larger 

brain when body weight is accounted for. This can likely be attributed to the 

developmental stage of the animals as the females are developing faster than the males 

(Hernandez et al., 2020). As mentioned above, behavioural development, learning and 

memory and overall cognition are associated with areas of the prefrontal cortex and 

hippocampus. Examining the associated areas will give us better insight into if there is a 

lack of significant structural changes that resulted in the lack of lasting behavioral 

changes.  

 

4.4.3 Future Directions of Research 

 This research is topical to current medicinal research as it demonstrates that 

cannabis consumption for a chronic period in adolescence may not be inducing lasting 

impacts to behaviour. Expanding beyond that, learning and memory are extraordinarily 

important during adolescence as the frontal cortex is undergoing immense structural 

changes that will have lasting impacts (Rubino et al., 2008; Oliveira‐da‐Silva et al., 2009; 

Hehar et al., 2015; Renard et al., 2016). It is known that THC impacts learning and 

memory, this is especially true in adolescents (Schneider, 2008). Using the MWT, we 

were able to demonstrate that there are no lasting impairments to learning and memory 

following chronic use of high-CBD cannabis extract (which still contains THC).  It thus 

appears to be important to consider the use of whole plant cannabis extracts as a treatment 

for chronic illness. 

As previously stated, research on the medicinal use of cannabis is showing 

positive outcomes for patients battling many inflammatory diseases, neuroinflammatory 
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diseases, cancers, and more (Esposito et al., 2011; Lowin, Schneider & Pongratz, 2019; 

Kovalchuk & Kovalchuk, 2020; Cherkasova, Kovalchuk & Kovalchuk, 2021). Allowing 

for adolescents battling these diseases to use novel, natural medicinal products, such as 

cannabis, allows for larger options for personalized treatment. Specifically with regards to 

epilepsy, CBD has been shown to restabilize the homeostatic state of an overexcited brain 

but has strange interactions with other drug-resistant epilepsy controls resulting in 

unfortunate side effects (Devinsky et al., 2017; Laux et al., 2019). Researching and 

approving the use of whole plant cannabis extracts allow for a potential new therapy in 

addition to CBD that may reduce the side effects experienced by patients. Using whole-

plant cannabis also allows for synergistic interactions from other constituents present in 

cannabis. This has already been shown through the interactions of THC and CBD as CBD 

reduces some negative effects of THC, allowing for patients to gain the medicinal 

benefits of both THC and CBD with fewer side effects. 

There is currently a lack of data available regarding the differences in 

consumption of cannabis via different routes of administration. High-CBD cannabis 

inhaled, injected, topically applied, or orally administered has different absorption and 

metabolizing rates, which may result in different behavioural impacts (Phillips, Turk & 

Forney, 1971). Specifically, data are needed to compare consumption of high-CBD 

cannabis taken orally versus inhaled as these are the two most common routes of 

administration of cannabis, with inhalation having a faster onset of effects with other 

strains. Using oral ingestion and expanding upon the methods in this study, it would be 

interesting to conduct a comparative study using these specific cannabis strains to those 

that have equal CBD and THC content and furthermore to those that have higher THC 
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than CBD content to better understand what the critical THC/CBD ratio is where the 

behavioural impacts begin to outweigh the medicinal benefits. 

 Blood was taken from these animals at 3 time points, pre-dosing, immediately 

post-dosing, and at time of euthanasia and tissue samples were taken from the animals at 

endpoint. Analysis of inflammatory biomarkers in these tissues will provide deeper 

insight into the lasting effects of chronic high-CBD cannabis consumption in adolescence. 

Analyzing cell density in the brain and dendritic connections in the prefrontal cortex and 

hippocampus of sampled brains will also reinforce our understanding of the underlying 

impacts that may not be presented through behavioural changes. All these data are 

currently being analysed. 

 

4.4.4 Limitations  

There were numerous limitations within this study. First and foremost, it is 

imperative to recognize that these were living organisms with ethics associated with their 

use. Using adolescent animals (which are more susceptible to additional stressors such as 

testing time, time away from housing unit, handling experience) limits the number of tests 

that can be conducted on each animal within a given time frame. Therefore, we had to 

limit the number of behavioural tests conducted as the animals needed down time to 

recover from excess stress. Due to the age of the animals and the nature of the tests, it was 

imperative that tests be conducted at the same post-natal day and with accelerated aging 

in a rodent model, there were limitations associated with the timing of conducting dosing 

and behavioural testing. Originally, we were to conduct an additional social behaviour 

test to analyse the effects of high-CBD cannabis on social interaction during adolescence 

but we unable to do so with the limited time frame during this study and the nature of this 
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specific test being a repeated measures model requiring baseline testing. With such a 

young age, we had to push back dosing because of the stressors caused from weaning and 

litter separation that occurred at P21 and P22-25, therefore we were unable to test 

baseline behaviours for even the tests used in this test battery. Replicating this experiment 

in an adult model yields this additional ability, a method done in unpublished data from 

our lab.  

Beyond behaviour, we only had access to high-CBD cannabis. Using a larger 

variety of strains and in particular those with different CBD:THC ratios would provide 

more insight into individual strain differences. Using living organisms also limits the N of 

our test populations, replicating this study with more animals, an extended dosing 

regimen, different strains of cannabis with different constituent content will most 

definitely yield the most promising data. Overall, this experiment was conducted to the 

best of our abilities and has provided deeper insight into the lasting behavioural effects of 

high-CBD cannabis in adolescence.  

 

4.4.5 Conclusion 

Understanding the extent of cannabis’ effects has been pivotal in the use of 

cannabis as a medicine. Historically there has been a debate over the interaction of THC 

and CBD in the literature (Malone, Jongejan & Taylor, 2009; Zuardi, Hallak & Crippa, 

2012; Taffe, Creehan & Vandewater, 2015; Hložek et al., 2017). Both THC and CBD are 

able to independently elicit medicinal effects ranging from analgesia, and antiemesis, 

anti-inflammation and antitumor properties (Noyes et al., 1975; Tramer et al., 2001; 

Kovalchuk & Kovalchuk, 2020; Cherkasova, V., Kovalchuk & Kovalchuk; 2021). 

Utilizing both constituents in conjunction, whole-plant cannabis extract may produce 
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synergistic effects beyond those of the constituents alone (Fernandes et al., 1974). 

Accordingly, this study aimed to investigate the sexually dimorphic behavioural impacts 

of consuming high-CBD cannabis extract. Overall, there were no significant behavioural 

impacts of consuming high-CBD cannabis extract at either dosing level. Neither were 

there sexually dimorphic behavioral impacts of treatment. This is consistent with 

available data on consumption of CBD (Hložek et al., 2017).  In conclusion, this study 

demonstrates that adolescent consumption of high-CBD cannabis lacks long-term or 

lasting behavioural impacts. Further research into the anatomical and physiological 

impacts are recommended to reinforce the safety of these products. 
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