
INVESTIGATING PAST AND PRESENT CODE REVIEWER
RECOMMENDATION SYSTEMS

PALAK HALVADIA
Bachelor of Computer Engineering, Gujarat Technological University, 2017

A thesis submitted
in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Palak Halvadia, 2021

INVESTIGATING PAST AND PRESENT CODE REVIEWER RECOMMENDATION
SYSTEMS

PALAK HALVADIA

Date of Defence: April 14, 2021

Dr. J. Anvik Associate Professor Ph.D
Thesis Supervisor

Dr. W. Osborn Associate Professor Ph.D
Thesis Examination Committee
Member

Dr. Y. Chali Professor Ph.D
Thesis Examination Committee
Member

Dr. J. Sheriff Assistant Professor Ph.D
Chair, Thesis Examination
Committee

Abstract

Context: Selecting a code reviewer is an important aspect of software devel-

opment and depends on several factors.

Objectives: The aim is to understand existing solutions for code reviewer

recommendation systems (CRRSs), factors to be considered when building

them and various dimensions based on which they can be categorised. Our

goal is to understand important features of CRRSs and what can be improved

in existing CRRSs.

Methods: A literature review study was conducted to understand the existing

CRRSs. A survey of software development project members was conducted

to understand the important and missing features in CRRSs.

Results: We categorized the selected papers into two categories: based on

the data type used to make recommendations and the kind of project used for

evaluation. The survey helped us understand the features missing in CRRSs

and observe some trends and patterns.

iii

Acknowledgments

First and foremost, I would like to thank my parents for their continuous love and support

throughout my life and especially during this journey of my masters. Thank you for

encouraging me to pursue my dreams and giving me strength to pursue my dreams. I would

also like to thank my brother for giving all the moral support.

I would like to sincerely thank my supervisor Dr. John Anvik for his guidance and

support throughout this study and having the confidence in me. Thank you for giving me

the opportunity to explore the fields I wanted to study during my thesis. I would also like to

thank the Sibyl Lab for all their support throughout my graduate journey.

I would also like to thank all my friends for your understanding, encouragement and

support during my moments of crisis. The friendship we have shared has made my journey

really amazing and though I cannot list all the names here, I would always be thankful that

you all were there for me in times of need. The friendship I share with you all has taught me

a lot and made me a better person than I was.

iv

Contents

Contents v

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Overview of work . 4

1.2 Why this work is needed . 4

1.3 Contributions . 6

2 Related Work 7

2.1 Recommender Systems Literature Reviews 8

2.2 Literature Reviews in Software Engineering 10

2.3 Literature Reviews in Data Mining . 12

2.4 Summary . 12

3 Code Review Practices and Tools 14

3.1 Methodology . 15

3.2 Results . 16

3.3 Systems Found . 18

3.3.1 REVFINDER . 18

3.3.2 cHRev . 20

3.3.3 CoRReCT . 22

v

CONTENTS

3.3.4 TIE . 23

3.3.5 CodeFlow . 26

3.3.6 CRITIQUE . 30

3.3.7 Profile-based CRRS . 35

3.3.8 Categorization of systems . 36

3.3.8.1 Project Used for Evaluation 37

3.4 Summary . 41

4 Information Needs of Code Reviewers 42

4.1 Methodology . 42

4.1.1 Screening Survey . 42

4.1.2 Demographic and Code Reviewer Recommendation Systems/Tools

Usage Survey Questions . 44

4.2 Results . 50

4.3 Some observed trends and patterns . 62

4.4 Summary . 67

5 Discussion 68

5.1 Proposal for an Improved Code Review Recommender System 72

6 Conclusion 75

6.1 Contributions: . 75

6.2 Future Work . 76

7 Appendix 78

7.1 Ethical Review Certificate . 78

vi

List of Tables

3.1 Search Strings . 16

3.2 Extracted Research Papers and Data Used. 17

3.3 Data Sources for Code Review Recommendation Systems 37

3.4 Project used for evaluation . 38

4.1 Job roles of the participants . 51

4.2 Geographic location of the participants . 52

4.3 Size of the project team . 52

4.4 Distribution of the team . 53

4.5 Familiarity of the CRRS amongst the participants 54

vii

List of Figures

1.1 Research Questions and Methodology . 5

3.1 A calculation example of the Code-Reviewers Ranking Algorithm[12] . . . 19

3.2 Architecture of TIE [13] . 24

3.3 Three stage research method[11] . 27

3.4 Decision tree model to classify useful comments[11] 29

3.5 Relationship diagram that describes the themes of review expectations ap-

pearing primarily in a particular author/review context[22] 33

4.1 Reported usefulness of CRRS features . 55

4.2 Criteria for selecting a code reviewer . 56

4.3 UI features of CRRS . 60

4.4 Preference of when to have the code review recommendation 61

4.5 Kind of code reviews . 62

4.6 Type of CRRS and job role . 63

4.7 CRRS features and job role . 65

viii

Chapter 1

Introduction

Code review is a systematic examination of computer source code and

is most often done as a peer review. Code review aims at identifying and

rectifying the mistakes in the source code as well as improving the quality

of code and a software developer’s skills. Also, it does not only aim at code

quality improvement or finding defects in the source code; it also increases the

team awareness as well as help in knowledge distribution. It also encourages

the shared code ownership. There are four types of code reviews:

1. Pair programming: In this type of code review two developers produce

source code simultaneously, as well as reviewing at the same time.

2. Tool-assisted code review: For this kind of code review the authors

and developers use tools for peer code reviews.

3. Walk-through code review: Here, the developer walks the reviewer

through a set of code changes.

4. Formal code review: This kind of code review involves a careful and

1

1. INTRODUCTION

detailed inspection of code with the involvement of multiple number of

participants and in multiple phases. It is a traditional method of code

review which involves attending a number of meetings and reviewing

the code line-by-line.

Code review can be considered as a manual inspection of the changes

in source code [21]. There are a number of tools and recommendation

systems developed for the purpose of code review by a number of different

organizations [22].

There are number of fields where the contribution of recommendation

systems has proved to be useful to software development project members.

To assist with the task of code review, a significant amount of research

has been conducted on recommendation systems which aim at providing

recommendations of code reviewers based on various aspects. There are

various reasons as to why a code reviewer is needed in addition to finding

code defects. This is because code reviewers also focus on code improvement,

finding alternative solutions to a problem, knowledge transfer, improvisation

in the development process, avoiding build breaks 1, sharing of ownership

of code, as well as team assessment [9]. For example Rahman, Roy, and

Collins [16], proposed a code review system in which the expertise of a code

reviewer is based on the information obtained from a cross-project work
1When a developer adds changes to the source code repository that result in the failure of a subsequent

build process, the developer has “broken the build.”

2

1. INTRODUCTION

history, as well as the specialization of a code reviewer in a particular field

based on their pull requests.

Examples of more general recommendation systems in software engi-

neering include graphical code recommender systems [15] and the Hipikat

system [2]. Lee and Kang [15] conducted a study on ‘graphical code recom-

mender systems’ to understand to what extent software visualization tools

have helped developers to comprehend the code. The authors learned that

developers spend a significant amount of time on understanding the code

bases. To make this easier, a number of graphical code recommenders were

created for them. These recommender systems used two abstractions: the

designing and explanation of code and the documentation of the software

system, as well as its analysis.

A recommender system was developed called Hipikat which provides

the developers with access to a group memory that contains project-related

artifacts created during the development of the project [2]. This helps the

developers to save time in overcoming the technical and sociological dif-

ficulties. This tool creates the group memory automatically with very few

or no changes to the existing work practices. This recommendation system

helped in sharing the information related to a project from each and every

perspective to all of the members of the development team, thereby saving

time on the explanation of concepts to the existing and new members of the

3

1.2. WHY THIS WORK IS NEEDED

development team.

1.1 Overview of work

1. Types of code review. This work will focus on tool-supported code

review.

Our research aim is two-fold-first, to find the answers to the ‘past’ questions

by conducting a ‘systematic literature review’ and second to find answers to

the ‘present’ questions by conducting a survey of software project members.

A ‘Systematic Literature Review’ will help in finding the details about the

existing code reviewers recommendation systems whereas the survey will

help in finding what changes the software engineers think are needed or what

is lacking in the existing code reviewer recommendation systems.

1.2 Why this work is needed

The aim of this research is to document the learnings obtained from the

‘systematic literature review study’ as well as the ‘survey’ conducted on a

broad range of software project members. This work was done as there has

been very less research done on Code Reviewer Recommendation Systems

(CRRS) and more research done on code review practices and procedures.

The objectives that will help us in finding answers to the required outcome

are mentioned below:

• To analyze the solutions provided by currently existing ‘code reviewer

4

1.2. WHY THIS WORK IS NEEDED

recommendation systems’.

• To understand the solutions/features missing in the existing ‘code re-

viewer recommendation systems’.

• To analyze the different means of bifurcation of existing ‘code reviewer

recommendation systems’ based on their way of implementation.

Figure 1.1: Research Questions and Methodology

The research questions for this work are as follows:

RQ1. What are the existing solutions for recommendation systems for code

reviewers?

RQ2. What are the factors that need to be taken into consideration when

creating a recommendation system for code reviewers?

RQ3. How can existing recommendation systems for code reviewers in the

literature be categorized?

RQ4. What are the important features for a recommendation system for code

reviewers?

5

1.3. CONTRIBUTIONS

RQ5. How can existing recommendation systems for code reviewers be

improved? In other words, what features are missing from existing

implementations for recommendation systems of code reviewers?

RQ1, RQ2 and RQ3 will be answered using the systematic literature review

whereas RQ4 and RQ5 will be answered by surveying broad range of software

project members.

1.3 Contributions

This research makes the following contributions:

C1: We identified a number of features present in the existing Code Review

Recommendation Systems (CRRS) and ranked those features based on

their usefulness.

C2: We categorized the existing CRRSs based on different dimensions.

C3: We identified the features that can be considered important when select-

ing a code reviewer.

C4: We identified possible improvements to existing CRRSs to facilitate the

finding of appropriate code reviewers.

Chapter 2 presents the related work. The results of the literature review

study is presented in Chapter 3. Chapter 4 is the survey of results. Chapter 5

consists of discussion. The thesis has been concluded in Chapter 6.

6

Chapter 2

Related Work

This chapter presents summaries of previous literature reviews done in soft-

ware engineering, data mining, and recommender systems. These studies are

presented to show how literature review studies have been conducted in the

past and used to guide the methodology for our literature review.

The literature review conducted on recommender systems includes recom-

mender systems which aim at extracting relevant information from a huge

amount of knowledge and recommendation systems for software engineering

that presents the features in the existing systems, research gaps and possible

future work. Similarly, a literature review study was done in the field of

software engineering regarding fault prediction studies and the agile soft-

ware development methodology. The literature review done in data mining

discovered the two most used models for data mining in CRM (Customer

Relationship Management).

7

2.1. RECOMMENDER SYSTEMS LITERATURE REVIEWS

2.1 Recommender Systems Literature Reviews

A literature review was conducted by Haruna, Ismail, Suhendroyono, et

al. [18] on Context-Aware Recommender Systems (CARS) that aim at ex-

tracting the relevant information required from a huge amount of knowledge.

These kind of recommender systems aim at giving contextual and relevant

information based on the ‘user searches’ and providing more personalized

user recommendations. Haruna, Ismail, Suhendroyono, et al.’s [18] approach

consists of three main steps. The first step includes the in-depth review

and classification of literature based on various domains of the application

models, filtering, extraction, as well as evaluation approaches. The second

step involves presenting the results of the review with the advantages and

disadvantages of review. The third and final step involves highlighting the

possibles challenges/opportunities or the future work or research that can be

done. This include helping the novice and new researchers understand the

prerequisites for the development of CARS as well as provide this review as

a benchmark to develop CARS for expert users.

A recommendation system is a type of software application which aims

at providing/recommending relevant information to the users based on the

user requirements. For this area, a systematic literature review study was

conducted similar to Gasparic and Janes [14], which examines the results of

the functionality that existing RSSEs (Recommendation System for Software

8

2.1. RECOMMENDER SYSTEMS LITERATURE REVIEWS

Engineering) provide, the research gaps, as well as the possible research

directions. They followed a methodological approach that included filtering

out the gathered, relevant research papers based on various criteria. Their

exclusion criteria included papers that were irrelevant to the research field,

papers that described unimplemented solutions or papers that were not fully

accessible. For extracting relevant papers, the papers were filtered and di-

vided based on the content described in the abstract of the paper or sometimes

the title. After following their methodological approach, the authors obtained

answers to their four research questions which include: the output given by

the existing RSSEs, the benefits that these RSSEs provide to the software

engineers, the types of input that these RSSEs require and what efforts does

a software engineer require to put in for using these RSSEs. It was seen that

some of the outputs given by the existing RSSEs include binary source code

files, changes in the deployment environment, design patterns and digital

documents that might be interesting for the software engineer. The exist-

ing RSSEs mainly support reuse, debugging, implementation, maintenance

phases/activities and support the improvement of system quality to benefit

the software engineers. Some of the inputs that these existing RSSEs use

include a log files, communication between software engineers, source code,

user input (e.g., search terms, a query, settings, preferences), test artifacts

and software development process. Also, the efforts that a software engineer

requires to put in for using the existing RSSEs are categorized as extensive

9

2.2. LITERATURE REVIEWS IN SOFTWARE ENGINEERING

efforts, low efforts and no efforts.

Another literature review was conducted for RSSEs by Park, Kim, Choi,

et al.[8] where the authors categorized the research papers based on eight

application fields and eight data mining techniques. The aim of the authors

was to provide information regarding the trends in the field of research

for recommender systems, as well as defining the possible future research

direction on recommender systems.

2.2 Literature Reviews in Software Engineering

Accurately predicting faults in code can reduce the cost of testing, to a

great extent, as well as increase the quality of the software product. For this

purpose, a literature review study was done by Hall, Beecham, Bowes, et

al. [7] which concentrated on fault prediction studies. The authors followed

the systematic literature review approach as proposed by Kitchenham and

Charters [4] where the initial steps consist of including the relevant papers

and studies and excluding the repeated studies. Various aspects are taken into

consideration when excluding and including the papers, such as the papers

were extracted from various resources, such as journals, conferences and

databases, and sorted based on the content of their title and abstract. The

authors ended up with around 208 papers. The findings show that most of

the studies report insufficient contextual and methodological information to

enable full understanding of a model. The authors present a set of criteria

10

2.3. LITERATURE REVIEWS IN DATA MINING

that identify the set of essential contextual and methodological details that

fault prediction studies should report.

The Agile software development methodology is a common software

development methodology used by many software development projects.

The methodology aims to assure a good delivery of product as per the user’s

requirements and a suitable User Experience (UX). In order to deliver a

quality product, the involvement of stakeholders and users is necessary, along

with feedback loops from both sides. A literature review study was conducted

on the Agile methodology by Schön, Thomaschewski, and Escalona [19]

in order to capture the current state of work in this field and possible future

enhancements to address any aspects that are lacking in the current state.

They conducted the study in three main phases: planning, conducting and

reporting. The ‘planning’ phase included finding the identification need for

a review, framing the research questions and developing and evaluating the

review protocol. The ‘conducting’ phase aimed at searching for the research

papers, selecting the relevant papers for study, qualitative assessment and

data extraction and analysis. The last phase, ‘reporting’ aimed at extracting

and discussing the results obtained from the previous phase and then writing,

evaluating and formatting the final report for the study. Similar to other

studies, the authors followed the methodology posed by Kitchenham and

Charters [4].

11

2.4. SUMMARY

2.3 Literature Reviews in Data Mining

The literature review conducted by Ngai, Xiu, and Chau [6] provides

another example of a methodology for a systematic literature review in the

area of data mining.

Data mining techniques are applied to Customer Relationship Manage-

ment (CRM) and Ngai, Xiu, and Chau [6] provides a thorough insight on

this with the help of a literature review they conducted. The authors gathered

about 87 relevant research papers for this purpose which were split based

on four CRM dimensions which include Customer Development, Customer

Identification, Customer Attraction and Customer Retention and seven data

mining techniques; Association, Classification, Clustering, Forecasting, Re-

gression, Sequence Discovery and Visualization. Apart from this, for more

clarity, the CRM dimensions were further classified into nine sub-categories

of CRM elements falling under the data mining techniques. Based on the

study, it was found that Classification and Association were the two most

used models for data mining in CRM. Also, from the four CRM dimensions,

Customer Retention is the most researched one, though most of them were

related to one-to-one marketing and loyalty programs.

2.4 Summary

Literature review studies were presented for recommender systems, and

from the fields of software engineering and data mining. For recommenda-

12

2.4. SUMMARY

tion systems, the literature reviews focused on context-aware recommender

systems and recommendation systems in software engineering. In the field of

software engineering, the presented study was conducted on the area of fault

prediction, as well as on the Agile methodology. In the field of data mining,

a literature review study was conducted where the concept of data mining

applied to Customer Relationship Management (CRM) was targeted.

13

Chapter 3

Code Review Practices and Tools

There have been a number of code reviewer recommendation systems/tools

developed in the past. For example, a tool named Review Bot is one such

other tool developed by Balachandran [10] which was used in the VMware

project. Review Bot consisted of an algorithm that examines the code changes

done in a line of code in a way that is quite similar to the git blame command.

Each and every author who has worked on the code change in the source code

is awarded points but authors with more recent changes gain more points

than the authors with older changes. At the end, the summation of each

individual author is used to decide the top-k authors and then recommend

them to become code reviewers.

We conducted a systematic literature review study in order to find answers

to our first three research questions. First, we define our methodology before

presenting the results of our study.

14

3.1. METHODOLOGY

3.1 Methodology

A Systematic Literature Review Study is a methodology where the avail-

able literature that is related to the research is determined, then assessed

and finally comprehended. For our research, we have followed the approach

adopted by Kitchenham and Charters [4] which consists of the following

steps:

1. All of the possible keywords related to the research are identified. We

identified the following words: code, reviewer, recommendation, sys-

tems, tools and recommender. These keywords were identified based on

our research topic.

2. Use the identified keywords to form search strings. The search strings

are used to obtain research papers from online databases. We used a

search string of all of the possible keywords and their synonyms. We

created two search strings. See Table 3.1 for the search strings.

3. The obtained research papers are then filtered based on various exclusion

and inclusion criteria. The papers are first filtered by reading the titles

and the abstract of the research papers.

The filtering of the search results was carried out in three main steps:

(a) Filtering out the research papers based on reading the title of the

research paper,

15

3.2. RESULTS

(b) Filtering out research papers based on the abstract of the research

paper and

(c) Filtering out the research papers based on full-text reading

4. Filtered papers are fully read, assessed and interpreted to obtain relevant

information.

Table 3.1: Search Strings

1.

(Code) AND (Reviewers) AND ((Rec-

ommender) OR (Recommendation))

AND ((Systems) OR (Tools))

2.

((Recommendation) OR (Recom-

mender)) AND ((Systems) OR

(Tools)) AND (Code) AND ((Re-

views) OR (Reviewers))

At each step of filtration, a number of research papers were filtered out.

After reading the paper titles 19 papers were filtered out. From these obtained

papers, 21 papers were filtered out after reading the abstract of the papers.

Lastly, 7 papers were filtered out after reading the full-text of the research

papers. In the end 14 papers were obtained.

3.2 Results

After reading the full-text of the filtered research papers, nine code review

recommender systems were identified. Table 3.2 lists these systems and

16

3.3. SYSTEMS FOUND

the data used by the system for making a recommendation. The rest of this

section presents descriptions of each of these systems.

Table 3.2: Extracted Research Papers and Data Used.

Data Type Research Paper Title

Code Review Histories Automatically Recommending Peer Review-

ers in Modern Code Review [17]

Commits Modern Code Review: A Case Study at

Google [22]

Tracks state of each re-

viewer or author

Characteristics of Useful Code Reviews: An

Empirical Study at Microsoft [11]

File-Path Similarity

(FPS)

A large-scale study on source code reviewer

recommendation [12]

Relevant cross-project

and Technology Experi-

ence

CoRReCT: code reviewer recommendation

in GitHub based on cross-project and technol-

ogy experience[16]

Text Mining and file lo-

cation

Who should review this change?[13]

Profile based Profile based recommendation of code re-

viewers [20]

17

3.3. SYSTEMS FOUND

3.3 Systems Found

3.3.1 REVFINDER

There have been a number of CRRSs proposed based on the File Path Sys-

tems (FPS) or File Location-Based approach. Thongtanunam, Tantithamtha-

vorn, Kula, et al.[12] proposed REVFINDER which follows the approach

of file location-based code-reviewer recommendation. The intuition behind

this approach is that multiple files with a similar location/file path would be

reviewed and managed by similar experienced code-reviewers.

Thongtanunam, Tantithamthavorn, Kula, et al.[12] also conducted an ex-

ploratory study about how the code-reviewer assignment impacts reviewing

time. The exploratory study showed that about 4%-30% of code reviews face

the problem of determining the correct code reviewer and it takes around 12

days longer to approve a code change. Based on the results of this study, the

authors proposed REVFINDER.

REVFINDER consists of two parts: the Code Reviewers Ranking Algorithm

and the Combination Technique. The authors used the Code Reviewers Rank-

ing Algorithm (as shown in the Figure 3.1 [12]) to evaluate the scores of

the code reviewers based on the similarity of files paths previously reviewed.

Given a new review R3 and two past reviews R1 and R2, the algorithm cal-

culates the review similarity score for each of the past reviews (R1,R2) by

comparing the file paths with the new review R3. Hence, there were two

review similarity scores of size two: (R3, R1) and (R3, R2). From the figure

18

3.3. SYSTEMS FOUND

it can be seen that review R3 and R2 share more common keywords as com-

pared to R3 and R1 which means that Reviewer A can be considered as the

potential reviewer for review R3. In order to compute the file path similarity

the authors used four state-of-the-art [1] string comparison techniques:

Figure 3.1: A calculation example of the Code-Reviewers Ranking Algorithm[12]

1. Longest Common Prefix (LCP)

LCP calculates the common file path components that appear in both of

file paths from start to end.

2. Longest Common Suffix (LCS)

LCS calculates the common file path components that appear in both of

file paths from the end of both of the file paths.

19

3.3. SYSTEMS FOUND

3. Longest Common Substring (LCSubstr)

LCSubstr calculates the common file path components that appear in

both of the file paths consecutively but also appear at any position in the

file paths.

4. Longest Common Subsequence (LCSubseq)

LCSubseq calculates the common file path components that appear in

both of the files paths in the same relative order.

Now, In order to calculate the file path similarity between file fn and file

fp, the filePathSimilarity(fn, fp) function is calculated as follows:

filePathSimilarity(fn, fp) =
StringComparison(fn, fp)

max(Length(fn),Length(fp))

The file path is split into tokens using the slash character (”/”) as a delim-

iter. The StringComparison(fn, fp) function is then used to compare the file

path components of fn and fp which returns the common file components

that appear in both file paths.

3.3.2 cHRev

A number of CRRS have been built based on past reviews and Zanjani,

Kagdi, and Bird [17] built one such recommendation system called cHRev.

cHRev automatically recommends code reviewers based on their past contri-

butions made in their prior reviews. cHRev stands for code review Histories

20

3.3. SYSTEMS FOUND

over other types of past information to recommend Reviewers. This recom-

mendation system has two key features:

1. The code reviewers recommended by cHRev may not be necessarily

involved in developing the part of source code that they are reviewing

but might have worked on source code that is indirectly dependent on

the source code they are reviewing.

2. The expertise changes over time and hence recency and frequency must

be accounted for when searching for the most appropriate code reviewer.

The process used by cHRev consists of three steps:

1. Extract the source code that needs to be reviewed.

2. Formulate reviewer expertise based on various details such as who, how

many and when were reviews performed in the past.

3. Obtain a ranked list of candidate reviewers based on the source code

files in step 1 and the cumulative contributions of reviewers from step 2

and then recommend the top m number of candidates from the obtained

list using a user-defined parameter.

In order to test the effectiveness of their approach, Zanjani, Kagdi, and

Bird [17] compared their approach with REVFINDER[12], xFinder [5] and

RevCom. It was found that cHRev makes more accurate reviewer recom-

mendations in terms of precision and recall. Also, it was seen that cHRev

21

3.3. SYSTEMS FOUND

performed better than REVFINDER, in terms of reviewers based on the files

having similar names and paths and xFinder, which depends on the source

code repository data. cHRev was found to be statistically equivalent to

RevCom [17], which requires both past reviews and commits.

3.3.3 CoRReCT

Rahman, Roy, and Collins [16] proposed a code reviewer recommenda-

tion system called CoRReCT (Code Reviewer Recommendation based on

Cross-project and Technology experience) which aimed at recommending

coder reviewers based on relevant cross-project work history, as well as the

experience of developers in a specific specialised technology related to the

pull-request2. These two information sources were used for determining

the developer’s experience for code reviewing. The basic idea behind their

proposed CRRS is that if the past pull requests have similar libraries or spe-

cialised technologies to the current pull requests, then the code reviewers who

reviewed those pull requests can be considered as potential code reviewers

for the current pull requests.

According to the authors’ proposed idea, the developers having more

experience in external libraries and the adopted specialised technologies in

the change files in the token set of the current pull requests are considered

as more appropriate choices to perform code review than the ones with less
2A pull requests are a mechanism in a version control system for a developer to notify team members that

they have completed a feature and are requesting that their changes be merged into the master code base.

22

3.3. SYSTEMS FOUND

experience.

The authors conducted an exploratory study with commercial projects

and 10 external libraries with specialized technologies present in them. The

authors hypothesize that two pull requests with shared libraries and common

technologies would be similar in the files that are changed. Based on this as-

sumption, they calculated the cosine similarity using the library or technology

names as a bag of tokens. The bag of tokens is divided into two sets of tokens,

one for the current pull request and one for the past pull request. The cosine

similarity value ranges from 0 to 1 with 0 being complete dissimilarity of

libraries and technologies, and 1 being a complete similarity of libraries and

technologies. Next the authors proceeded to calculate the similarity estimates

(as a proxy to review expertise) to the corresponding code reviewers of the

past pull requests.

3.3.4 TIE

Xia, Lo, Wang, et al. [13] proposed a hybrid and an incremental approach

called TIE (Text mIning and a filE location-based approach) which utilizes

the advantages of the text mining and a file location-based approach for

code reviewer recommendation. The idea behind this approach is to analyse

textual content in a review request using an incremental text mining model

and calculate the similarity between the reviewed file paths and changed file

paths using a similarity model.

The overall architecture of TIE is divided into three phases: model construc-

23

3.3. SYSTEMS FOUND

tion, recommendation and model update as shown in Figure 3.2.

Figure 3.2: Architecture of TIE [13]

1. Model Construction Phase

The model construction phase consists of a composite model called

TIECOMPOSER which is constructed using the historical reviews of

known reviewers. In this phase, the TIE system first collects the training

reviews of known reviewers from the textual content of past reviews and

file paths, as well as the upload time. Next, TIE will build a text mining

model based on the textual data processed using a text classification

technique. The intuition behind the data mining mode is that the same

reviewers are more likely to review the changes with similar terms or

words.

TIE also uses a time-aware file location based approach which aims

at calculating the similarity between new and historic reviews. This

similarity is calculated between the changed file paths (i.e. those paths

of files that have been changed or modified in the new review request)

24

3.3. SYSTEMS FOUND

and the reviewed file paths (i.e. paths of files that have been reviewed in

historical reviews). The intuition behind the file-location based approach

is that the same reviewers tend to review the same files or files with

similar paths.

These two models are blended together to build the TIECOMPOSER

model.

2. Recommendation Phase

For this phase, TIE is used to recommend code reviewers for the new

unassigned review request. TIE first extracts the change description,

file paths and the upload time as it was done for the historical reviews

in the ‘Model Construction Phase’. For the next step, the textual data

is extracted from the description and used as input in the data mining

model constructed in the ‘Model Construction Phase’. Similarly, the

system also inputs the file paths and upload time in the similarity model

constructed in the ‘Model Construction Phase’.

These two models then output a list of code reviewers and these two

lists are then combined by leveraging the TIECOMPOSER model con-

structed in the ‘Model Construction Phase’.

3. Model Update Phase

In the model update phase, the TIE system is updated using the newly

assigned code reviewers. In practice, the developers normally check the

25

3.3. SYSTEMS FOUND

list of potential reviewers and then assign a new pull request to a group

of reviewers.

In order to evaluate the performance of TIE, the authors used the data sets

provided by Thongtanunam, Tantithamthavorn, Kula, et al.[12] containing

42,045 reviews and compared TIE’s performance with RevFinder [12]. Each

of the reviews in these data sets was labeled either ‘merged’ or ‘abandoned’

and contained at least one file path. It was seen that on an average across 4

open source projects TIE achieved top-1, top-3, top-5 and top-10 prediction

accuracies of 0.52, 0.73, 0.79 and 0.85 and Mean Reciprocal Rank (MRR)

value of 0.64 which beat the RevFinder results by 61%, 33%, 23%, 8% and

37% respectively.

3.3.5 CodeFlow

Bosu, Greiler, and Bird [11] did an empirical study at Microsoft on

the characteristics of the useful code reviews by conducting interviews of

developers, as well as analyzing the review comments of five Microsoft

projects made using the CodeFlow CRRS. The study was conducted in three

steps. First, they performed an exploratory study by conducting an interview

of developers to understand their interpretation of ‘useful’ in the context of

code reviews. Secondly, they build a classifier to segregate the ‘useful’ and

‘not useful’ comments using the data from the interviews. Lastly, they applied

their classifier to five Microsoft projects to distinguish the ‘useful’ and ‘not

26

3.3. SYSTEMS FOUND

useful’ comments. Figure: 3.3 [11] shows the three-stage research method.

Figure 3.3: Three stage research method[11]

The workflow of CodeFlow is relatively straightforward. First, an author

submits a review change and the reviewer is notified about the review request

via email. Then the reviewer can review the change in the tool itself. When

a reviewer wants to comment about a line or block of code, the reviewer

highlights and adds comments for that part of the code. These comments

appear as threads where the discussion starts, as well as interaction points for

the people that are involved in the review. Each of these threads have a status

that the participants can change during the course of review. This status is

initially ‘Active’ and over time can be changed to ‘Pending’, ‘Resolved’,

‘Won’t Fix’ and ‘Closed’. In CodeFlow, each update is termed an ‘iteration’

and it constitutes another review cycle. Therefore, there could be numerous

27

3.3. SYSTEMS FOUND

iterations before the change in the code is finally merged into the source code

repository.

As mentioned previously, the research study was done in three steps where

the first step helped in distinguishing the useful and not useful code review

comments based on interviewing developers. A semi-structured individual

interviews of developers having different levels of experience in code re-

viewing and code development from four different Microsoft projects was

conducted. The interviewees were asked to rate the comments from scale

1 - 3 (1- Not Useful, 2- Somewhat Useful and 3- Useful). The results of the

interview showed that 69% of the review comments were either ‘useful’ or

‘somewhat useful’. The review comments that indicated functional defects

were considered as useful comments. On the other hand, the comments that

belonged to the categories of: documentation in the code, visual represen-

tation of the code (e.g. blank line or indentation), organization of the code

(e.g. how functionality is divided into methods) and solution approach were

considered as somewhat useful. All of the comments that were either false

positives (e.g. due to the lack of expertise when a reviewer incorrectly points

out a problem in the code) or did not fall into any category as mentioned

before were categorized as Not Useful comments.

In the second phase, the authors built an automated classifier using the

findings obtained from the first phase. In order to build the classifier, the

authors classified the review comments manually into two categories, Useful

28

3.3. SYSTEMS FOUND

and Not Useful. The comments that were classified as Somewhat Useful in

the exploratory study were included into the Useful category for this second

phase. Based on the interview and the manual analysis, the next 8 attributes

of comments were identified. Based on these attributes and categories a

‘Decision Tree Model to Classify Useful Comments’ was built as shown

below.

Figure 3.4: Decision tree model to classify useful comments[11]

Based on the decision nodes, the comments are classified as useful or

not useful. In order to assess the proposed methodology, the authors used

the comments from five major Microsoft projects which included Azure,

Bing, Visual Studio, Exchange and Office. Based on the results, the authors

concluded the following:

1. The developers who made changes or reviewed a piece of code or an

artifact in the past give more useful comments.

29

3.3. SYSTEMS FOUND

2. There is a noticeable difference in the usefulness between the comments

(i.e. those comments that have words like ’fixed’, ’bug’ or ’remove’

were considered as ’useful’ comments) that are made by the reviewers

on the same team and the comments made by the author and reviewer

from different teams.

3. The number of useful comments increased over time for four out of five

projects and the reason behind this was considered to be the increased

experience of reviewers with time.

Below are the implications of the results for the code review participants

as well as for researchers:

1. The study showed that the number of the usefulness of code review

comments increased with the experience of the developer of a code

base.

2. The study also suggested that the effectiveness of the reviews decreased

with the increase in the number of files. It was suggested that developers

should submit smaller changes with more number of files for review.

3. The comment usefulness density can be used by a team of developers to

identify areas where code reviews are less effective.

3.3.6 CRITIQUE

Sadowski, Söderberg, Church, et al.[22] did a case study where they

conducted an exploratory study of Modern Code Review practices at Google.

30

3.3. SYSTEMS FOUND

Their exploratory study focused on 3 aspects of code review: 1) The motiva-

tions driving the code review, 2) the present practices and 3) interpretation of

developers of code reviews.

In order to bring more structure into reviewing the code, several tools

emerged in the Open Source Software (OSS) and industrial settings. For

this, the authors studied some tool-based review approaches. These tools

include CodeFlow [11] used by Microsoft, Gerrit [23] used by Google’s

Chromium, ReviewBoard [3] developed by VMware and Phabricator [24]

used by Facebook. The following is a short overview of each of these code

reviewer recommendation systems.

1. CodeFlow: CodeFlow tracked the status of each person (developer or

reviewer) and where they stood in the process (i.e. waiting, reviewing,

signed off). CodeFlow did not stop the author from submitting any

changes without approval as well as provided support for chats in the

comment threads.

2. Gerrit: Google’s Chromium used the externally available code reviewer

recommendation system called Gerrit where the changes are merged

into the master branch only after approval from the reviewers and an

automated verification that the change does not break the build.

3. ReviewBoard: ReviewBoard was developed by VMware and aims at

integrating static analysis into the review process. This integration relies

31

3.3. SYSTEMS FOUND

on changes for which the authors are manually requesting analysis,

resulting in quite an improvement in the code review quality.

4. Phabricator: Phabricator, which is used by Facebook, allows a re-

viewer to “take over” a change and commit it themselves. Also, the

system provides a fix for automatic static analysis or continuous integra-

tion errors.

In order to understand the code review process at Google, the authors

focused on two main aspects: the review process that the developers experi-

ence during specific reviews and whether the developers are satisfied with

the reviews given despite the challenges. For the code review at Google, they

used CRITIQUE, an internally developed, centralized web-based code review

tool. In this tool, a reviewer can see the highlighted diff of the proposed

change as well as start a threaded discussion over lines of code with devel-

opers or other reviewers. CRITIQUE also offers a view of all of the logging

functionalities of a developer, as well as its interaction with the tool which

include opening the tool, making changes, viewing the diff and approving

the changes. In order to understand the motivation of the developers for code

review at Google using CRITIQUE and the perceptions of the developers

regarding the same, the authors used interviews as a tool to collect the data.

Based on the data collected from the interviews conducted, the following

findings that were obtained.

Finding 1: The code reviews done at Google are not only aimed at correcting

32

3.3. SYSTEMS FOUND

the errors or problems, but also to ensure the code readability and maintain-

ability which was considered as an educational aspect.

Finding 2: Expectations about a specific code review depends upon the

relationship shared by a developer/author and a code reviewer (see Figure

3.5.).

When it comes to the developer and the project lead, as well as new team

members, they share the education (teaching or learning from a code review)

aspect of code review. For developer and other teams, they share the gate-

keeping (establishment and maintenance of boundaries around source code)

aspect of code review. Similarly, for the developer and readability reviewers,

they share the maintaining norms (maintaining organizational rules such as

formatting or API usage patterns) aspect of code review. Finally, for the

developer and other team members, they share the education accidental pre-

vention (teaching the bugs, defects or other quality related issues) aspect of

code review.

Figure 3.5: Relationship diagram that describes the themes of review expectations appearing
primarily in a particular author/review context[22]

33

3.3. SYSTEMS FOUND

Finding 3: The code review process is aligned with the convergent prac-

tice of it being lightweight and flexible. The code review process is tightly

combined with CRITIQUE which works as follows:

Creating The authors start creating, adding or editing a code.

Previewing With the help of CRITIQUE, the authors will then view the diff

of the change and the results of the automatic code analyzers.

Commenting The authors/reviewers will see the diff in the UI of CRITIQUE

and then start commenting as they go from one change to another.

Addressing Feedback Based on the comments from the previous steps, the

authors will either start replying to comments or start making changes

as per the requests made mentioned in the comments.

Approving Once all the comments have been addressed, the reviewers than

approve the changes and mark it as ’LGTM’ (Looks Good To Me).

Finding 4: Code reviews at Google have come to a point where the review

process has become quicker with smaller changes when compared to the

older projects. Also, one reviewer is considered to be enough, as compared

to two reviewers required for older projects.

Finding 5: Despite the years of improvement, there have been a number

of coding breakdowns at Google which are mostly linked to the complexity

of the interactions that revolve around the code reviews.

34

3.3. SYSTEMS FOUND

It was seen that during the period of one week, almost 70% of the changes

were committed in less than 24 hours after mailing out for the initial review.

Based on the interviews, it was also seen that the developers were happy

with the requirement to code review, the majority of the changes were small,

reviews have one reviewer, and no comments other than the authorization to

commit. These characteristics have made the process of code review faster

and more light weight as compared to the other projects adopting similar

process.

3.3.7 Profile-based CRRS

Fejzer, Przymus, and Stencel [20] proposed a profile- based code review

recommendation system. In the proposed reviewer recommendation model,

the reviewer’s profile includes the review history and commits of a potential

reviewer.

In their reviewer recommendation model, when a new commit request

arrives in the repository, it is compared to the multi-set representation of

commits (multiple sets of sequence of words present in a modified file path

in a commit) as well as profiles of reviewers. The similarity between the

multi-set representation of commits and profiles of reviewers is calculated

and the top n reviewers are selected. Here, updating a reviewer’s profile is

one of the most important and frequently performed operations. Whenever a

new comment is made by a reviewer, the commit gets added to his/her profile.

Also, when it comes to a potential profile of a reviewer, time is one of the

35

3.3. SYSTEMS FOUND

important factors that needs to be taken into consideration. A candidate who

has more recent reviews or commits in his/her profile is considered as a more

probable candidate to review a commit request.

The authors did an empirical evaluation of their proposed method using

Android, LibreOffice, OpenStack and Qt. The empirical results were as

follows:

1. The number of reviews per a single reviewer: Most reviewers created

less than 20 reviews for Android and LibreOffice and less than 60

reviews for OpenStack and Qt.

2. Duration of individual reviewers’ activity: In the case of Android and

LibreOffice, the reviewers took more time as compared to reviewers for

Qt and OpenStack. The probable cause behind this result was considered

to be the designated maintainers working for companies contributing to

these projects.

3. Duration of individual reviews: Most of the reviews were completed

within three days for LibreOffice and OpenStack projects, up to two

days for Qt and up to six days for Android projects.

3.3.8 Categorization of systems

The categorization of the systems was done based on the data used for

making a code reviewer recommendation. The data include similar file paths,

code review histories, commits and technology experience.

36

3.3. SYSTEMS FOUND

Table 3.3: Data Sources for Code Review Recommendation Systems

System Name Data Source

cHRev [17] Code Review Histories

REVFINDER [12] File Path Similarity

CodeFlow [11] State of each reviewer or author

Gerrit [22] Changes are merged after explicit approval

from reviewers

ReviewBoard [22] Integrates static analysis into the review pro-

cess

Phabricator [22] Automatic static analysis or continuous

build/test integration

CORRECT [16] Relevant cross-project and Technology Expe-

rience

TIE [13] Text Mining and file location

Profile based CRRS [20] Code reviewer profile

3.3.8.1 Project Used for Evaluation

Apart from the data source as one of the factors to categorize the research

papers, the kind of project on which these code reviewer recommendation

systems are experimented on can be considered as another factor on which

the papers can be categorized. These projects include open source projects

and commercial projects.

37

3.3. SYSTEMS FOUND

Table 3.4: Project used for evaluation

System Name Type of Project

REVFINDER [12], TIE

[13] and Profile based

CRRS [20]

Open Source Projects

CodeFlow [11] Commercial Projects

CORRECT [16] and

cHRev [17],

Open Source and Commercial Projects

CRITIQUE [22] No Project (Interview)

1. Open Source Projects: The follwing is a list of systems that were

evaluated only on open source projects.

For the evaluation purpose, RevFinder, TIE and Profile based CRRS

used 42,045 reviews of open source projects which included Android

Open Source Project (AOSP), OpenStack, Qt and LibreOffice. There

were numerous reasons behind choosing these systems. First, these

systems use the Gerrit system as the code review tool. Second, these

systems are active, large, real-world software projects. Finally, each

of these systems maintains a good code review system which helps to

build a good oracle data set to evaluate the recommender system. Below

mentioned are the results that we obtained through experimentation:

38

3.3. SYSTEMS FOUND

(a) RevFinder [12] achieved the top-10 accuracy (Top-k accuracy cal-

culates the percentage of reviews that an approach can correctly

recommend code reviewers over the total number of review) of

86%, 87%, 69% and 74% for Android, OpenStack, Qt and LibreOf-

fice, respectively. On average, for 79% of the reviews, RevFinder

ended up recommending CoRReCT code reviewers with a top-10

recommendation.

(b) It was seen that on average across 4 projects TIE [13] achieved top-

1, top-3, top-5 and top-10 prediction accuracies and MRR values of

0.52, 0.73, 0.79, 0.85 and 0.64 which outperformed the RevFinder

results by 61%, 33%, 23%, 8% and 37% respectively.

(c) Similar to TIE and RevFinder, the profile based CRRS [20] was

experimented using 4 open source systems namely Android, Open-

Stack, Qt and LibreOffice. It was seen that for LibreOffice and

OpenStack, that the majority of the reviews were completed within

three days, for Android it took up to 6 days and for Qt it took up to

2 days.

2. Commercial Projects: CodeFlow [11] was experimented using five

Microsoft projects which include Azure, Bing, Visual Studio, Exchange

and Office. It was observed that there was an increase from 60% to 66%

in the useful comments received from the reviewers in Azure, 62% to

67% in Bing, 60% to 70% in Visual Studio, 60% to 68% in Office and

39

3.3. SYSTEMS FOUND

60% to 65% in Exchange.

3. Open Source and Commercial Projects: There are some systems that

were experimented using both the commercial projects and the open

source projects which are mentioned below with the results obtained

from the experiments performed.

(a) CoRReCT [16] was experimented using 17,115 pull requests from

ten commercial projects and six open source projects. The perfor-

mance metrics that the authors used here include Top-K Accuracy,

Mean Reciprocal Rank(MRR), Mean Precision(MP) and Mean

Recall(MR).

• When experimented on open source projects it was seen that

CoRReCT has a Top-k accuracy of 85.20% whereas for com-

mercial projects Top-K accuracy of 92.15% was achieved.

• CoRReCT obtained a result of 85.93% precision for commercial

projects and a precision of 84.76% for the open source projects.

• For the commercial projects CoRReCT returned a recall of

81.39% whereas for the open source project the system achieved

78.73% recall.

• CoRReCT obtained a MRR value of 0.62 for commercial

projects whereas for the open source projects the authors did

not mention the value of MRR but it was comparatively higher

40

3.4. SUMMARY

(b) cHRev [17] was evaluated on 3 open source projects (Android,

Mylyn and Eclipse) and one commercial project (MS Office). It

was seen that the recall and precision gains obtained for MS Office

were better than those achieved in Android, Mylyn and Eclipse for

cHRev.

4. No project (Interview)

CRITIQUE [22] which is used as a code review recommendation system

at Google used the mode of interview to evaluate their system. It was

seen that the developers spent on average of 2.6 hours a week reviewing

changes which was low compared to the 6.4 hours/week of self-reported

time for the Open source projects.

3.4 Summary

Based on the literature review study conducted, we found seven coder

reviewer recommendation systems: cHREv, CoRReCT, profile-based CRRS,

RevFinder, CodeFlow, TIE and CRITIQUE. These systems where divided

based on two dimensions: the data source used to build the system and the

type of project used to evaluate the system.

41

Chapter 4

Information Needs of Code Reviewers

4.1 Methodology

In order to conduct the survey of software engineers to determine the

information needs for code reviewers we used the following steps to ensure

that correct, non-biased and accurate results were obtained.

4.1.1 Screening Survey

Our survey for software engineers is divided into two parts where the first

part is a screening survey. We used the screening survey in order to make sure

we get responses from software product development members who have

experience with code reviewer recommendation systems and can therefore

provide accurate and unbiased information. Below are the questions that we

included for our screening survey.

1. Please enter your email address.

42

4.1. METHODOLOGY

2. How many year/s of software development experience

do you have?

(a) Less than 1 year

(b) 1-2 year/s

(c) 3-5 years

(d) 6-10 years

(e) 11+ years

3. Are you 20-years or older and able to provide
informed consent?

(a) Yes

(b) No

4. How many years of experience you have in using code
reviewer recommendation system/s?

(a) Less than 1 year

(b) 1-2 year/s

(c) 3-5 years

(d) 6-10 years

(e) 11+ years

5. Which of the following code reviewer recommendation
systems (CRRS) are you familiar with? (Multiple
answer question)

(a) Gerrit Code Review System (Chromium)

(b) GitHub/GitLab

(c) Code Flow Review Tool (Microsoft)

(d) Review Board (VMware)

43

4.1. METHODOLOGY

(e) Phabricator

(f) Bitbucket

(g) Other

6. Which CRRS you have used?

7. If you have used a CRRS that is not listed, please
provide their name or description of the system?

4.1.2 Demographic and Code Reviewer Recommendation Systems/Tools Usage Sur-

vey Questions

A demographic and CRRS experience survey was given to those that

passed the screening step that is the participants having at least two years of

work experienc and have an experience in using CRRSs. These questions

helped us understand the information needs of code reviewers, what features

they considered to be important in the code reviewer recommendation systems

and what features they found missing in the existing systems.

1. What is your job role regardless of the position
level in your organization?

(a) Developer/Programmer/Software Engineer

(b) Team Lead

(c) DevOps Engineer/Infrastructure Developer

(d) Architect

(e) UI/UX developer

44

4.1. METHODOLOGY

(f) Technical Support

(g) Data Analyst/Data Scientist/Data Engineer

2. What is your age group?

(a) 20-25

(b) 26-35

(c) 36-45

(d) 46-55

(e) 56-60

(f) Above 60

3. What is your geographic location?

(a) Europe

(b) Africa

(c) South America

(d) North America

(e) Asia

(f) Australia

(g) New Zealand

(h) Pacific Islands

4. What size is your project team?

(a) I work on my projects individually

45

4.1. METHODOLOGY

(b) 2-7 people

(c) 8-12 people

(d) 13-20 people

(e) 21-40 people

(f) More than 40 people

5. Is your team distributed or co-located across the
world?

(a) Distributed

(b) Co-located

(c) Both

6. Which of the following code reviewer recommendation
systems (CRRS) are you familiar with? (Multiple
answer question)

(a) Gerrit Code Review System (Chromium)

(b) GitHub/GitLab

(c) Code Flow Review Tool (Microsoft)

(d) Review Board (VMware)

(e) Phabricator

(f) Bitbucket

(g) Other

7. Which CRRS you have used?

46

4.1. METHODOLOGY

8. If you have used a CRRS that is not listed, please

provide their name or description of the system?

9. Which features present in the above mentioned CRRS
proved to be useful? (Multiple answer question)

(a) Pre commit code review

(b) Code discussion with old and new versions being
highlighted to show the change in code

(c) Code improvement suggestion by the code reviewer
(Other than just pointing out the code errors)

(d) Prioritizing code changes based on its level of
importance and its effect on the functionality of
the software

(e) Integration of project tracking software (such as
Trello, JIRA etc.).

(f) Integration of source-code editor (such as Visual
Studio, Atom etc.).

(g) Integration of business communication platform
(such as Slack)

10. The following is a list of criteria that can be

used for selecting a code reviewer. Please indicate

how important you believe they are to selecting a

code reviewer. (Likert scale: Extremely likely,

somewhat likely, neither likely nor unlikely,

somewhat unlikely, extremely unlikely)

47

4.1. METHODOLOGY

(a) Number of years of work experience

(b) Code reviewer’s expertise in programming language

(c) Code reviewer’s expertise in a domain(such as

software engineering, artificial intelligence

etc.)

(d) Language of communication between the code

reviewer and software developer

(e) Role of the code reviewer

(f) Count of projects worked on

(g) Count of code reviews done

11. What criteria were missing from the above list?

What importance would you give them?

12. Which of the following User Interface (UI) features

would make the User Experience (UX) more interactive,

approachable, and convenient to use? (Multiple

answer question)

(a) Presence of a dashboard for everyone showing the

statistical data of all actions performed (such

48

4.1. METHODOLOGY

as number of commits, number of code reviews

done, number of code errors/warnings in the

current project etc.)

(b) An option to select a specific ‘branch/file’ in a

project to maintain a systematic workflow and an

organized code review procedure

(c) Presenting a pipeline showing which stage the

project is in i.e. build, test, code review,

deployment etc.

(d) Moved code detection using colour coded scheme

with the developer/s name.

(e) Colour coded new and old code discussions when

there is change in code.

13. Do you think that field of expertise of a code

reviewer is important even if the reviewer has a

little experience /knowledge in the field he is

asked to review the code in?

14. What are some specific things you will look for

in a code review (such as number of years of work

49

4.2. RESULTS

experience, field of expertise etc.)?

15. At what point in your workflow would you prefer to

have the code review recommendation?

(a) Before the merge conflicts

(b) After the merge conflicts

(c) Does not matter at what point in the workflow the

code review is done

16. What kind of code reviews would you prefer from the

following?

(a) More number of tiny code reviews

(b) A long code review

(c) Does not matter (depending on the kind of

project)

4.2 Results

We obtained 27 queries about our survey but only 15 of those moved

forward and responded to our screening survey. From these 15 responses we

filtered out 4 responses which did not meet the minimum criteria using the

50

4.2. RESULTS

Screening Survey. Below are the results obtained for the Demographic and

Code Reviewer Recommendation Systems/Tools Usage Survey.

1. Job role of the participants

Based on the results obtained it was seen that most participants were

either developers, or software engineers or programmers.

Table 4.1: Job roles of the participants

Field Percentage

Developer/Programmer/Software Engineer 72.73%

Team Lead 9.09%

DevOps Engineer/Infrastructure Engineer 9.09%

Product Owner 9.09%

As seen in Table 4.1, 72.73% were developers/programmers/software

engineers whereas there were 9.09% for each of teams leads, DevOps

Engineer/Infrastructure Developer and Product Owner respectively.

2. Geographic location of the participants

Most of our participants were from Asia and the remaining equivalent

percentage of people were from North America and South America as

shown in Table 4.2.

51

4.2. RESULTS

Table 4.2: Geographic location of the participants

Field Percentage

South America 9.09%

North America 9.09%

Asia 81.82%

3. Size of the project team

Of all of the participants who participated in our study, 45.45% of

them have worked/are working in a team of 2-7 people and 8-12 people

respectively whereas 9.09% of people have worked/are working in a

group of more than 40 people as shown in Table 4.3.

Table 4.3: Size of the project team

Field Percentage

2-7 people 45.45%

8-12 people 45.45%

More than 40 people 9.09%

4. Distribution of the team

We also gathered information on how the teams are distributed, mean-

ing if they are working in teams that are co-located or distributed. It

was observed that 45.45% of the teams were co-located, 18.18% were

distributed and 36.36% were a mix of both co-located and distributed.

52

4.2. RESULTS

Table 4.4: Distribution of the team

Field Percentage

Co-located 45.45%

Distributed 18.18%

Both 36.36%

5. Familiarity of the CRRS amongst the participants

The majority of participants that took part in our survey were familiar

with GitHub/GitLab. On the other hand, no one was familiar with Gerrit

Code Review System (Chromium) and ReviewBoard. It was observed that

47.62% of the participants were familiar with GitHub/GitLab, 23.81% of

the participants were familiar with BitBucket, 14.29% of the participants

were familiar with Code Flow Review Tool (Microsoft), 9.52% were

familiar with other review tools (which include SVN) and 4.76% of the

participants were familiar with Phabricator. Below is the line graph that

shows the distribution of the familiarity of the the CRRS amongst the

participants.

53

4.2. RESULTS

Table 4.5: Familiarity of the CRRS amongst the participants

CRRS Percentage of choices

Gerrit Code Review System (Chromium) 0%

GitHub/GitLab 47.62%

Code Flow Review Tool(Microsoft) 14.29%

Review Board (VMware) 0%

Phabricator 4.76%

Bitbucket 23.81%

other 9.52%

6. Usefulness of the features of CRRS

We listed a number of CRRS features to our participants and asked

them to select all those features that proved to be useful for them. The

following are the features that we posed to the participants with the

percentage of participants that found it useful.

(a) Code discussion with old and new versions being highlighted to

show the change in code: 25.53% of the participants found it useful.

(b) Integration of project tracking software (such as Trello, Jira etc.):

20.59% of the participants found it useful.

(c) Pre commit code review: 14.71% of the participants found it useful.

(d) Code improvement suggestion by the code reviewer (Other than

just pointing out the code errors): 14.71% of the participants found

54

4.2. RESULTS

it useful.

(e) Integration of business communication platform (such as Slack):

11.76% of the participants found it useful.

(f) Integration of source-code editor (such as Visual Studio, Atom etc.):

11.76% of the participants found it useful.

(g) Prioritizing code changes based on its level of importance and its

effect on the functionality of the software: 2.94% of the participants

founds it useful.

Figure 4.1: Reported usefulness of CRRS features

55

4.2. RESULTS

7. Criteria for selecting a code reviewer

There are a number of factors that need to be taken into consideration

when selecting a code reviewer. We listed several of them from which

the participants selected the importance of each of them. The partici-

pants marked the importance of each of these features on a likert scale

ranging from Extremely Likely to Extremely Unlikely as shown below.

Figure 4.2: Criteria for selecting a code reviewer

(a) Number of years of work experience

• Of all the participants 9.09% of them considered this feature

as extremely likely, 72.73% of them considered it as somewhat

likely, 9.09% of them considered it as neither likely nor un-

likely, 9.09% considered them as somewhat unlikely whereas

no one considered it as extremely unlikely.

(b) Code reviewers expertise in programming language

56

4.2. RESULTS

• It was observed that 54.55% of the participants considered this

feature as extremely likely, 36.36% of them considered it as

somewhat likely, 9.09% of them considered it as neither likely

nor unlikely whereas no one considered it as somewhat unlikely

or extremely unlikely.

(c) Code reviewer’s expertise in a domain (e.g: software engineer-

ing, artificial intelligence etc.)

• For this criteria, 45.45% of the participants considered this

feature as extremely likely, 45.45% of them considered it as

somewhat likely, 9.09% of them considered it as neither likely

nor unlikely whereas no one considered it as somewhat unlikely

or extremely unlikely.

(d) Language of communication between the code reviewer and

software developer

• Of all the participants 54.55% of them considered this feature

as extremely likely, 18.18% of them considered it as somewhat

likely, 27.27% of them considered it as neither likely nor un-

likely whereas no one considered it as somewhat unlikely or

extremely unlikely.

(e) Role of the code reviewer

• For this criteria, 18.18% of the participants considered this

57

4.2. RESULTS

feature as extremely likely, 45.45% of them considered it as

somewhat likely, 36.36% of them considered it as neither likely

nor unlikely whereas no one considered it as somewhat unlikely

or extremely unlikely.

(f) Number of projects worked on

• It was also observed that 9.09% of the participants considered

this feature as extremely likely, 63.64% of them considered

it as somewhat likely, 27.27% considered them as somewhat

unlikely whereas no one considered it as extremely unlikely and

neither likely nor unlikely.

(g) Number of code reviews done

• For this criteria, 27.27% of the participants considered this

feature as extremely likely, 45.45% of them considered it as

somewhat likely, 9.09% considered them as somewhat unlikely,

18.18% of them considered it as neither likely nor unlikely

whereas no one considered it as extremely unlikely.

We also asked the participants to provide some features other than

those presented that they considered as important features when

selecting a code reviewer. The reported features include:

• Making sure the reviewer is keeping himself/herself updated

with technology and programming language (the participant

58

4.2. RESULTS

considered this feature as extremely likely)

• Number of pull requests assigned to reviewers

8. User Interface (UI) of the CRRS:

Apart from the features of CRRS, we also asked a question regarding

numerous different UI features that can be found useful for a CRRS by

making the User Experience (UX) more interactive, approachable and

convenient to use. The percentage of people who found the following

features useful are as follows with a pie chart distribution shown below:

(a) Presenting a pipeline showing which stage the project is in i.e. build,

test, code review, deployment etc. : 31.25% of the participants found

this UI feature useful and more convenient to keep the track of the

project.

(b) Presence of a dashboard for each individual showing the statistical

data of all actions performed (such as number of commits, number

of code reviews done, number of code errors/warnings in the current

project etc.): 28.13% of the participants found this feature useful to

look up details and actions performed by each individual.

(c) Colour coded new and old code discussions when there is change

in the code: 15.63% of the participants found this feature useful

making the code review process easier for the reviewer as well as

developer.

59

4.2. RESULTS

(d) Moved code detection using colour coded scheme with the develop-

er/s name: 12.50% of the participants found this feature useful.

(e) An option to select a specific ’branch/file’ in a project to maintain

a systematic workflow and an organized code review procedure:

12.50% of the participants found this feature useful by making the

code review process more organized.

Figure 4.3: UI features of CRRS

60

4.2. RESULTS

9. Preference of when to have the code review recommendation:

A code review recommendation can be made at various stages of the

software development process which include before the merge conflicts,

after the merge conflicts or at any point in the workflow. It was seen that

60% of the participants believed that the code recommendation should

be done before the merge conflicts, 20.00% of them thought it should

be done after the merge conflicts whereas to 20.00% of them it did not

matter at what point in the workflow the code review is done.

Figure 4.4: Preference of when to have the code review recommendation

10. Type of code review

The participants were asked as to what type of code review would they

prefer which includes either many smaller code reviews or a long code

review or depends on the kind of project. It was seen that 60.00% of

the participants preferred to do many smaller code reviews whereas the

rest (40.00%) of the participants felt that it did not matter. None of the

61

4.3. SOME OBSERVED TRENDS AND PATTERNS

participants preferred to do long code reviews.

Figure 4.5: Kind of code reviews

4.3 Some observed trends and patterns

Based on the results obtained we found some patterns and trends be-

tween the results of two or more survey questions. Some of the trends

that we observed are as follows:

(a) The type of CRRS used and the job role

Based on our observations, it was seen that the Developer was

aware of almost all the CRRS systems that we had mentioned in

the question whereas the DevOps Engineer was just aware of one

CRRS, the Team lead was aware of 2 of the CRRSs and the product

owner knew about 4 of the CRRSs.

62

4.3. SOME OBSERVED TRENDS AND PATTERNS

Figure 4.6: Type of CRRS and job role

63

4.3. SOME OBSERVED TRENDS AND PATTERNS

We obtained the following results for each of the following CRRS

along with the pie chart distribution in Figure 4.6:

i. Github/GitLab: Of participants who were familiar with this

CRRS, 10% of the participants were team lead, another 10%

were product owners and the rest (80%) were the developer-

s/programmers/software engineers.

ii. Code Flow Review Tool(Microsoft: Of the participants that

were familiar with this CRRS, 33.33% were developers/pro-

grammers, software engineers, DevOps Engineer/Infrastructure

Developer and others.

iii. Phabricator: Developers/programmers/Software engineers were

the only people who were familiar with Phabricator.

iv. BitBucket: Of the participants who were familiar with this

CRRS, 60.00% of them were developers/programmers/software

engineers, 20.00% of them were team leads and others.

v. Others: There are a number of other CRRSs in the market and

the participants were asked to select that option if they knew

of any other CRRSs not mentioned in the survey. For, we got

50.00% responses from developers as well as others.

Of the participants that took part in our survey, none of them were

familiar with two of the Code Review Recommendation Systems/-

Tools: ReviewBoard (VMware) and Gerrit Code Review System

64

4.3. SOME OBSERVED TRENDS AND PATTERNS

(Chromium).

(b) CRRSs features and job role

We posed a number of CRRS features to the participants which

they considered to be important to make use of the CRRSs more

convenient and easier to use. Figure 4.7 shows what job role found

which features useful.

Figure 4.7: CRRS features and job role

i. Pre commit code review:

It was seen that of all the participants who agreed to consider

this feature important 60% of them were developers, 20% were

65

4.3. SOME OBSERVED TRENDS AND PATTERNS

DevOps engineer/Infrastructure developer and Others (i.e. prod-

uct owner).

ii. Code discussion with old and new versions being highlighted

to show the change in code:

Of all the participants, 75% of them were developers, 12.50%

of them were team leads and DevOps engineer/infrastructure

developer who considered this CRRS feature as important.

iii. Code improvement suggestion by the code reviewer (other

than just pointing out the code errors): Of all of the partic-

ipants who found this feature useful, 40.00% of them were

developers, 20.00% of them were team leads, DevOps engi-

neer/Infrastructure developer and others (product owner).

iv. Prioritizing code changes based on its level of importance

and its effect on the functionality of the software: Of all the

participants, only the product owner found this feature to be

useful.

v. Integration of project tracking software (such as Trello, Jira,

etc.): For this feature, 71.43% of the developers, 14.29% of the

team leads and project manager found it useful.

vi. Integration of source-code editor (such as Visual Studio,

Atom etc.): Only developers were the ones from all the partici-

pants who considered this feature as an important one.

66

4.4. SUMMARY

vii. Integration of business communication platform (such as

Slack): This feature was found useful only by the developers

of all the participants who participated in our survey.

4.4 Summary

We presented the results obtained by surveying a broad range of software

project members here where we found which CRRS features were found

to be most useful, which features were missing in the existing system and

what factors were important when choosing a relevant code reviewer. We

also obtained a developer/reviewers preference to what kind of code reviews

should be done (long or short review) and at what stage in the workflow it

should be done. Apart from this, we also found some trends and patterns

between the usage of the CRRS system and its relation with the demographic

information of the reviewer/developer.

In the following chapter we answer and discuss our research questions

67

Chapter 5

Discussion

This section answers and discusses our research questions. By conducting

the systematic literature review, we found answers to the first three research

questions and using the survey we found answers to the last two research

questions

By conducting a Systematic Literature Review (SLR) we identified some

existing solutions for recommendation systems for code reviewers, factors

that need to be taken into consideration when creating a CRRS and catego-

rization of the existing CRRSs. On the other hand, by conducting the survey

we found out the features that are important for a recommendation system for

code reviewers and what improvements can be made in the existing CRRSs.

[RQ1.] What are the existing solutions for recommendation sys-

tems for code reviewers?

Answer: We reviewed a number of papers and found a number of

existing code review recommendation systems. These systems/tools

include cHRev, REVFINDER, CoRReCT, TIE, CodeFlow, ReviewBoard,

68

5. DISCUSSION

Phabricator, Gerrit, rDevX and Profile-based CRRS which make recom-

mendations based on a number of factors/data types. These data types

include code review history, file path similarity, relevant cross-project

and technology experience, text-mining and file-location and tracking

state of each reviewer or author.

[RQ2.] What are the factors that need to be taken into considera-

tion when creating a recommendation system for code reviewers?

Answer: The primary factor to take into consideration when creating a

recommendation system for code reviewers is the data source evaluation

metrics or the type of project on which the system was experimented (i.e.

open source or commercial or both). When it comes to recommending

a code reviewer based on the reviewer’s profile, it necessary to keep the

reviewer’s profile updated which include the past review and commit

history. Similarly, when it comes to past review history, it is important

to update the repository/data set of past reviews to recommend relevant

code reviewers in the future based on the past reviews.

[RQ3.] How can existing recommendation systems for code review-

ers be categorized?

Answer: The existing recommendation systems have been categorized

based on the datatype which include code review history, file path sim-

ilarity, relevant cross-project and technology experience, text-mining

69

5. DISCUSSION

and file-location, tracking state of each reviewer or author. cHRev was

a code reviewer recommendation system that recommended code re-

viewers based on the code review histories. REVFINDER was another

CRRS that recommended code reviewers based on the file path sim-

ilarity. Similarly, we found a CRRS called CoRReCT which aimed

at recommending code reviewers based on the relevant cross-project

and technology experience. TIE (Text mIning and a filE) as the name

says, recommends code reviewers with the help of text mining and file

location.

[RQ4.] What are the important features for a recommendation sys-

tem for code reviewers?

Answer: Based on the software project member survey that was con-

ducted, we found a number of features that were considered to be

important for a recommendation system for code reviewers which in-

clude:

1. Code discussion with old and new versions being highlighted to

show the change in code.

2. Integration with an issue tracking software such as Trello, JIRA

etc.

3. Pre-commit code review.

4. Code improvement suggestions by the code reviewer, beyond point-

70

5. DISCUSSION

ing out the code errors.

5. Integration with a source-code editor, such as Visual Studio or

Atom.

6. Integration with a business communication platform, such as Slack

or MS Teams.

7. Prioritizing code changes based on its level of importance and its

effect on the functionality of the software.

8. Presenting a pipeline showing which development stage the project

is in including build, test, code review and deployment.

9. Presence of a dashboard for all project members showing the sta-

tistical data of all actions performed, such as number of commits,

number of code reviews done, and number of code errors/warnings

in the current project.

10. Colour-coded new and old code discussions when there is change

in code.

11. An option to select a specific branch or file in a project to maintain

a systematic workflow and an organized code review procedure.

12. Moved code detection using a colour-coded scheme with the devel-

oper/s name.

[RQ5.] How can existing recommendation systems for code review-

ers be improved? In other words, what features are missing from

71

5.1. PROPOSAL FOR AN IMPROVED CODE REVIEW RECOMMENDER SYSTEM

existing implementations for recommendation systems of code re-

viewers?

Answer: Based on the survey results the following are some of the

features that can be improved or are missing in a code reviewer recom-

mendation systems or when looking for a relevant code reviewer:

1. When it comes to selecting a code reviewer, the participants be-

lieved that the reviewers expertise in the project’s programming

language, field of expertise, years of work experience, code quality

expertise and understanding of the project architecture are impor-

tant factors.

2. Some of the participants believed that, number of years of work

experience, as well as field of expertise, are both important. The

reasoning was that these factors can prove useful when it comes to

finding an optimized approach to a problem and giving suggestions

for LLD (low-level design). Also, these factors are helpful in

writing a standard code of practice which comes from experience

and expertise.

5.1 Proposal for an Improved Code Review Recommender System

Based on the findings from our research, we propose an improved code

reviewer recommendation system that would have all the necessary features

that are not present in all systems or features found to be missing in the exist-

72

5.1. PROPOSAL FOR AN IMPROVED CODE REVIEW RECOMMENDER SYSTEM

ing systems. The proposed recommender system would have the following

features:

1. More transparent in the terms that all of the details about a code reviewer

would be visible on a dashboard. These details include the number of

projects they have worked on (i.e. their work experience), the specific

application field in which they hold expertise, the number of code

reviews done by them, and their workload (i.e. the number of reviews

the reviewer is currently reviewing) to make sure the reviewer is not

overburdened with new code reviews. It is believed that providing these

details will thereby speed up the code review process.

2. A broader combination of data for training the recommender. This

data set will include past review comments and commit messages, and

relevant cross-project and technology experience. This data will help in

knowing if the code that needs to be reviewed is a close match to the

project experience a reviewer holds. Similarly, the past history of review

comments and commits will help in choosing a relevant reviewer based

on the number of commits and reviews previously done by them and

how useful those past code reviews turned out to be for the developers.

This will help to ensure that their future review comments will be useful

for the code reviews.

3. Code reviews will happen before code merges and potential code con-

73

5.1. PROPOSAL FOR AN IMPROVED CODE REVIEW RECOMMENDER SYSTEM

flicts. Therefore, the proposed recommendation system will recommend

the code reviewers before merge conflicts may happen. However, the

system will also allow the choice of the code review to be done af-

ter merge conflicts to avoid delays if needed, and yet still ensure the

creation of a good quality software product.

74

Chapter 6

Conclusion

In this research we identified a number of code reviewer recommendation

systems (CRRS) found in the literature, the different ways in which these

systems can be categorized into, what features are important for a recom-

mendation system for code reviewers and how the existing systems can be

improved or which features are missing in existing CRRSs. A systematic

literature review study was conducted to identify the existing code reviewer

recommendation systems and understand the details regarding these systems,

which includes the features and factors that are important for a CRRS. Then

we conducted a survey to understand the needs of software project members

regarding code reviewer recommendation systems as to which features they

found to be important in a CRRS and what can be improved in the existing

CRRSs.

6.1 Contributions:

This research makes the following contributions:

75

6.2. FUTURE WORK

C1: A ranking of the features present in the existing code reviewer recom-

mendation systems as to which of these were found to be most useful.

C2: A categorization of existing CRRSs from the literature along with dif-

ferent dimensions.

C3: Improvements that can be made in the existing code reviewer recom-

mendation systems.

C4: Features that are important while selecting a code reviewer.

6.2 Future Work

Possible future directions based on this work include:

A broader systematic literature review: An expanded systematic literature

review study could be conducted which looks at not just code reviewer

recommendation systems but also code review practices and procedures.

This could help to give a better picture about the needs of software

project members regarding code reviews in junction with the use of with

the CRRSs.

Building a code review recommendation system: For future work, we aim

at building a system that would have all the details of the reviewer visible

on the system dashboard (i.e. work experience, technology experience,

number of code reviews done etc). Also, the system would have more

76

6.2. FUTURE WORK

data to train the recommender system which include past review com-

ments and commit messages, relevant cross-project and technology

experience. Based on the feedback obtained from survey, the reviews

would be done before the merge conflicts happen.

77

Chapter 7

Appendix

7.1 Ethical Review Certificate

Office of Research Ethics
4401 University Drive

Lethbridge, Alberta, Canada
T1K 3M4

Phone: (403) 329-2747
Email: research.services@uleth.ca
FWA 00018802 IORG 0006429

Monday, 19 October 2020

Student Investigator: Palak Halvadia, Graduate Student

Faculty Supervisor: John Anvik, Mathematics & Computer Science

Study Title: Assessing current attitudes and needs of code reviewer recommendation

systems

Action: Approved
HPRC Protocol Number: 2020-094

Approval Date: October 19, 2020

Term Date: November 30, 2020

Dear Palak,

Your human research ethics application titled “Assessing current attitudes and needs of code reviewer
recommendation systems” has been reviewed and approved on behalf of the University of Lethbridge
Human Participant Research Committee (HPRC) for the approval period October 19, 2020 to November
30, 2020, and assigned Protocol #2020-094. The HPRC conducts its reviews in accord with University
policy and the Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans (2018).

Please be advised that any changes to the protocol or the informed consent must be submitted for review
and approval by the HPRC before they are implemented. A final report will be required and is due to the
Office of Research Ethics on or before November 30, 2020.

We wish you the best with your graduate research.

Sincerely,

Susan Entz, M.Sc., Ethics Officer
Office of Research Ethics
University of Lethbridge
4401 University Drive
Lethbridge, Alberta, Canada
T1K 3M4

78

Bibliography

[1] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science and

Computational Biology. 1997.

[2] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth, “Hipikat: A project memory

for software development,” IEEE Trans. Software Eng., vol. 31, no. 6, pp. 446–465,

2005. DOI: 10.1109/TSE.2005.71. [Online]. Available: https://doi.org/10.

1109/TSE.2005.71.

[3] VMware, Reviewboard, 2006. [Online]. Available: https://www.reviewboard.

org/.

[4] B. Kitchenham and S. Charters, “Guidelines for performing systematic literature

reviews in software engineering,” Journal of Software Engineering and Applications,

2007.

[5] H. H. Kagdi, M. Hammad, and J. I. Maletic, “Who can help me with this source

code change?,” pp. 157–166, 2008. DOI: 10.1109/ICSM.2008.4658064. [Online].

Available: https://doi.org/10.1109/ICSM.2008.4658064.

[6] E. W. T. Ngai, L. Xiu, and D. C. K. Chau, “Application of data mining techniques in

customer relationship management: A literature review and classification,” Expert Syst.

Appl., vol. 36, no. 2, pp. 2592–2602, 2009. DOI: 10.1016/j.eswa.2008.02.021.

[Online]. Available: https://doi.org/10.1016/j.eswa.2008.02.021.

79

https://doi.org/10.1109/TSE.2005.71
https://doi.org/10.1109/TSE.2005.71
https://doi.org/10.1109/TSE.2005.71
https://www.reviewboard.org/
https://www.reviewboard.org/
https://doi.org/10.1109/ICSM.2008.4658064
https://doi.org/10.1109/ICSM.2008.4658064
https://doi.org/10.1016/j.eswa.2008.02.021
https://doi.org/10.1016/j.eswa.2008.02.021

BIBLIOGRAPHY

[7] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic literature re-

view on fault prediction performance in software engineering,” IEEE Trans. Software

Eng., vol. 38, no. 6, pp. 1276–1304, 2012. DOI: 10.1109/TSE.2011.103. [Online].

Available: https://doi.org/10.1109/TSE.2011.103.

[8] D. H. Park, H. K. Kim, I. Y. Choi, and J. K. Kim, “A literature review and classification

of recommender systems research,” Expert Syst. Appl., vol. 39, no. 11, pp. 10 059–

10 072, 2012. DOI: 10.1016/j.eswa.2012.02.038. [Online]. Available: https:

//doi.org/10.1016/j.eswa.2012.02.038.

[9] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of modern code

review,” D. Notkin, B. H. C. Cheng, and K. Pohl, Eds., pp. 712–721, 2013. DOI:

10.1109/ICSE.2013.6606617. [Online]. Available: https://doi.org/10.1109/

ICSE.2013.6606617.

[10] V. Balachandran, “Reducing human effort and improving quality in peer code reviews

using automatic static analysis and reviewer recommendation,” D. Notkin, B. H. C.

Cheng, and K. Pohl, Eds., pp. 931–940, 2013. DOI: 10.1109/ICSE.2013.6606642.

[Online]. Available: https://doi.org/10.1109/ICSE.2013.6606642.

[11] A. Bosu, M. Greiler, and C. Bird, “Characteristics of useful code reviews: An empiri-

cal study at microsoft,” M. D. Penta, M. Pinzger, and R. Robbes, Eds., pp. 146–156,

2015. DOI: 10.1109/MSR.2015.21. [Online]. Available: https://doi.org/10.

1109/MSR.2015.21.

[12] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida, and K.

Matsumoto, “Who should review my code? A file location-based code-reviewer

recommendation approach for modern code review,” Y. Guéhéneuc, B. Adams, and

A. Serebrenik, Eds., pp. 141–150, 2015. DOI: 10.1109/SANER.2015.7081824.

[Online]. Available: https://doi.org/10.1109/SANER.2015.7081824.

80

https://doi.org/10.1109/TSE.2011.103
https://doi.org/10.1109/TSE.2011.103
https://doi.org/10.1016/j.eswa.2012.02.038
https://doi.org/10.1016/j.eswa.2012.02.038
https://doi.org/10.1016/j.eswa.2012.02.038
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1109/ICSE.2013.6606642
https://doi.org/10.1109/ICSE.2013.6606642
https://doi.org/10.1109/MSR.2015.21
https://doi.org/10.1109/MSR.2015.21
https://doi.org/10.1109/MSR.2015.21
https://doi.org/10.1109/SANER.2015.7081824
https://doi.org/10.1109/SANER.2015.7081824

BIBLIOGRAPHY

[13] X. Xia, D. Lo, X. Wang, and X. Yang, “Who should review this change?: Putting text

and file location analyses together for more accurate recommendations,” R. Koschke,

J. Krinke, and M. P. Robillard, Eds., pp. 261–270, 2015. DOI: 10.1109/ICSM.2015.

7332472. [Online]. Available: https://doi.org/10.1109/ICSM.2015.7332472.

[14] M. Gasparic and A. Janes, “What recommendation systems for software engineering

recommend: A systematic literature review,” J. Syst. Softw., vol. 113, pp. 101–113,

2016. DOI: 10.1016/j.jss.2015.11.036. [Online]. Available: https://doi.

org/10.1016/j.jss.2015.11.036.

[15] S. Lee and S. Kang, “What situational information would help developers when using

a graphical code recommender?” J. Syst. Softw., vol. 117, pp. 199–217, 2016. DOI:

10.1016/j.jss.2016.02.050. [Online]. Available: https://doi.org/10.1016/

j.jss.2016.02.050.

[16] M. M. Rahman, C. K. Roy, and J. A. Collins, “Correct: Code reviewer recommenda-

tion in github based on cross-project and technology experience,” L. K. Dillon, W.

Visser, and L. Williams, Eds., pp. 222–231, 2016. DOI: 10.1145/2889160.2889244.

[Online]. Available: https://doi.org/10.1145/2889160.2889244.

[17] M. B. Zanjani, H. H. Kagdi, and C. Bird, “Automatically recommending peer review-

ers in modern code review,” IEEE Trans. Software Eng., vol. 42, no. 6, pp. 530–543,

2016. DOI: 10.1109/TSE.2015.2500238. [Online]. Available: https://doi.org/

10.1109/TSE.2015.2500238.

[18] K. Haruna, M. A. Ismail, S. Suhendroyono, D. Damiasih, A. C. Pierewan, H. Chi-

roma, and T. Herawan, “Context-aware recommender system: A review of recent

developmental process and future research direction,” 2017. [Online]. Available:

www.mdpi.com/journal/applsci.

[19] E. Schön, J. Thomaschewski, and M. J. Escalona, “Agile requirements engineering:

A systematic literature review,” Comput. Stand. Interfaces, vol. 49, pp. 79–91, 2017.

81

https://doi.org/10.1109/ICSM.2015.7332472
https://doi.org/10.1109/ICSM.2015.7332472
https://doi.org/10.1109/ICSM.2015.7332472
https://doi.org/10.1016/j.jss.2015.11.036
https://doi.org/10.1016/j.jss.2015.11.036
https://doi.org/10.1016/j.jss.2015.11.036
https://doi.org/10.1016/j.jss.2016.02.050
https://doi.org/10.1016/j.jss.2016.02.050
https://doi.org/10.1016/j.jss.2016.02.050
https://doi.org/10.1145/2889160.2889244
https://doi.org/10.1145/2889160.2889244
https://doi.org/10.1109/TSE.2015.2500238
https://doi.org/10.1109/TSE.2015.2500238
https://doi.org/10.1109/TSE.2015.2500238
www.mdpi.com/journal/applsci

7.1. ETHICAL REVIEW CERTIFICATE

DOI: 10.1016/j.csi.2016.08.011. [Online]. Available: https://doi.org/10.

1016/j.csi.2016.08.011.

[20] M. Fejzer, P. Przymus, and K. Stencel, “Profile based recommendation of code

reviewers,” J. Intell. Inf. Syst., vol. 50, no. 3, pp. 597–619, 2018. DOI: 10.1007/

s10844-017-0484-1. [Online]. Available: https://doi.org/10.1007/s10844-

017-0484-1.

[21] V. Kovalenko, N. Tintarev, E. Pasynkov, C. Bird, and A. Bacchelli, “Does reviewer

recommendation help developers?,” 2018.

[22] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli, “Modern code

review: A case study at google,” F. Paulisch and J. Bosch, Eds., pp. 181–190, 2018.

DOI: 10.1145/3183519.3183525. [Online]. Available: https://doi.org/10.

1145/3183519.3183525.

[23] Gerrit, Gerrit, 2021. [Online]. Available: https://www.gerritcodereview.com/.

[24] phacility, Phabricator, 2021. [Online]. Available: https://www.phacility.com/

phabricator/.

82

https://doi.org/10.1016/j.csi.2016.08.011
https://doi.org/10.1016/j.csi.2016.08.011
https://doi.org/10.1016/j.csi.2016.08.011
https://doi.org/10.1007/s10844-017-0484-1
https://doi.org/10.1007/s10844-017-0484-1
https://doi.org/10.1007/s10844-017-0484-1
https://doi.org/10.1007/s10844-017-0484-1
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1145/3183519.3183525
https://www.gerritcodereview.com/
https://www.phacility.com/phabricator/
https://www.phacility.com/phabricator/

	Contents
	List of Tables
	List of Figures
	Introduction
	Overview of work
	Why this work is needed
	Contributions

	Related Work
	Recommender Systems Literature Reviews
	Literature Reviews in Software Engineering
	Literature Reviews in Data Mining
	Summary

	Code Review Practices and Tools
	Methodology
	Results
	Systems Found
	REVFINDER
	cHRev
	CoRReCT
	TIE
	CodeFlow
	CRITIQUE
	Profile-based CRRS
	Categorization of systems
	Project Used for Evaluation

	Summary

	Information Needs of Code Reviewers
	Methodology
	Screening Survey
	Demographic and Code Reviewer Recommendation Systems/Tools Usage Survey Questions

	Results
	Some observed trends and patterns
	Summary

	Discussion
	Proposal for an Improved Code Review Recommender System

	Conclusion
	Contributions:
	Future Work

	Appendix
	Ethical Review Certificate

