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Abstract

Evaluation of the Jacobian is the most computationally expensive operation while solving a

non-linear system. Knowledge of the sparsity pattern in advance reduces the computational

cost. Bi-directional partitioning to determine non-zeroes in the sparse matrix works bet-

ter than unidirectional partitioning for dense rows and dense columns. We have developed

a bidirectional coloring algorithm that determines all the non-zeroes of a sparse Jacobian

matrix. Our algorithm is inspired by complete direct cover [17]. Several numerical exper-

iments have been carried out on standard data sets. Test results ensure that our proposed

algorithm works better than existing algorithms. We have implemented our algorithm using

the data structures and partitioning algorithms defined in software tool kit DSJM (Deter-

mine Sparse Jacobian Matrices). We have added new procedures in DSJM, which facilitates

bi-directional partitioning.
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Chapter 1

Introduction

A set of vertices of a graph grouped into two disjoint sets such that no two vertices from the

same set are connected is known as a bipartite graph. A bipartite graph is a k-partite graph

where k=2.

Figure 1.1: Bipartite graph

When the vertices of a graph are colored in a way that no two adjacent vertices have the

same color and any path of length 3 is not bi-colored, then it is called star bi-coloring [7]. It

has been established that the star bi-coloring problem is computationally hard (NP-Hard).

Consequently, a large segment of research endeavors has been directed toward designing

efficient heuristics that run faster and achieve reasonably good solutions. Unfortunately, the

quality of solutions returned by heuristics is challenging to assess. A good lower bound on

1



1.2. OBJECTIVE

the chromatic number (number of colors in an optimum coloring) is helpful in this regard.

A good lower bound on the chromatic number in a standard graph coloring is the size

of a (maximum) clique. For star bi-coloring, a similar structural measure is much more

challenging to characterize.

1.1 Problem Definition

Consider a bipartite graph G = (Vc,Vr,E) where Vc and Vr are sets of vertices in the

bipartition and the edges E connect vertices in Vr and Vc. A star bi-coloring of graph G is

to assign colors (integer labels) to the vertices such that

1. vertices connected by an edge, assume distinct colors.

2. every path of four vertices assumes at least three distinct colors.

The objective is to assign colors such that the number of colors is minimized. The star bi-

coloring problems arise, among others, in the determination of sparse derivative matrices in

nonlinear optimization [5, 10, 19]. In this research, we plan to approach the determination

of non-zero entries of the sparse matrix as the star bi-coloring of the bipartite graph. All the

rows of a sparse matrix are considered as one disjoint set of vertices, and all the columns of

that matrix are considered as another disjoint set of vertices of the bipartite graph. The non-

zero entries of the sparse matrices need to be determined for the evaluation of the Jacobian

matrix. Our proposed star bi-coloring algorithm will determine all the non-zero entries

using bi-directional partitioning. Bidirectional partitioning for determining non-zeroes in

a dense sparse matrix works better than uni-directional partitioning [13]. The partitioning

will start from the vertex with maximum degree. A vertex will be grouped together with

the vertices from the same disjoint set, and vertices in the same group can not have a path

of length 2. This approach is based on complete direct cover [17]. All the vertices of the

bipartite graph will be grouped in numeral groups by determining all the non-zeroes of the

sparse matrix.

2



1.4. THESIS ORGANIZATION

1.2 Objective

• Finding out row-column compression [9] for Jacobian’s.

• Developing methods to determine non-zeroes of large sparse Jacobian matrices.

• Implementing star bi-coloring for the bipartite graph in DSJM (Determine Sparse

Jacobian Matrices) [16] using complete direct cover [17].

• Implementing star bi-coloring of the bipartite graph for different ordering and parti-

tion algorithms and compare the results with the natural order.

1.3 Our Contribution

Our contributions of this thesis are as follows-

1. In-depth study of software tool kit DSJM (Determine Sparse Jacobian Matrices) [16].

The data structures and the algorithms for ordering and partitioning included in DSJM

are studied thoroughly.

2. Implementation of finding the degree of vertices of a bipartite graph using efficient

data structures used in DSJM.

3. Implementation of finding the transpose of a matrix using the data structures used in

DSJM.

4. Implementation of ordering and partitioning algorithms for row intersection graph of

DSJM using bucket heap data structure.

5. Implementation of a star bi-coloring algorithm using efficient data structures used in

DSJM.

6. Numerical experiments to show the differences between new implementation and the

previous ones.

3



1.4. THESIS ORGANIZATION

1.4 Thesis Organization

There are six chapters in the thesis. Chapter 1 introduces the research work with prob-

lem definition. Then we discuss the objectives of this works along with the contributions

made during this thesis. This chapter ends with explaining the organization of the rest of

the thesis.

Chapter 2 discusses the background and preliminaries. We start the chapter defining

basic graph terms such as a graph, clique of a graph, bipartite graph. Then we illustrate

about sparse matrix, Jacobian matrix and direct determination. Next, we explain how bi-

partite graph coloring relates to matrix problems by discussing algorithmic differentiation.

After that, graph coloring is defined. Then the representation of the partition problem as

a graph coloring problem and the comparison between uni-directional and bi-directional

partitioning are illustrated. This chapter ends with discussing complete direct cover based

on which we developed our coloring algorithm.

Approaches to the partition algorithm are illustrated in Chapter 3. In the beginning, dif-

ferent data structures such as Compressed Sparse Row (CSR), Compressed Sparse Column

(CSC), and Bucket data structure used in DSJM are described. Then different ordering and

partitioning algorithms are introduced, which we used in the Star bi-coloring algorithm.

Smallest last Ordering (SLO), Largest First Ordering (LFO), and Incidence Degree Order-

ing are discussed using an example.

Chapter 4 describes the implementation of this thesis. Different steps of the implemen-

tation, such as degree calculation of bipartite graph, distance-2 neighbor calculation, the

formation of the groups, updating degree are illustrated in this chapter. Then the heuristic

approach for star bi-coloring is introduced. The chapter ends with the verification of the

coloring.

Numerical experiments are discussed in Chapter 5. The efficiency of our data structure

and algorithm are demonstrated using the numerical results. We compared our results with

several previous research works on coloring algorithms.

4



1.4. THESIS ORGANIZATION

Chapter 6 wraps up the thesis with the concluding summary of the research work. Some

future research directions are also listed in this chapter.

5



Chapter 2

Background and Preliminaries

In this chapter, we will discuss some definitions and background works which will be ben-

eficial to understand the thesis.

2.1 Graph

A graph is generally known as a network. Graphs can represent all real-world systems.

For example, a city’s transit route can be represented as a graph where bus stops can be

denoted by vertices and connecting roads between two bus stops can be represented by

edges.

A graph is represented by G (V, E) where V is the set of vertices and E is the set of

edges. Suppose there are two vertices u,v ε V. If u,v is connected by an edge such that (u,v)

ε E, then they are adjacent to one another.

In figure 2.1, a graph is represented with 6 vertices V = {u1,u2,u3,v1,v2,v3} and 5 edges

E = {{u1,v1},{u1,v3},{u2,v2},{u3,v2},{u3,v3}}. In the figure, vertices are represented as

circle and edges are represented as lines connecting two vertices.

Adjacent vertices are connected using an edge. Adjacent nodes are neighbors of each

other. In the figure 2.1, u1 and v1 adjacent to each other. The number of neighbors of a

vertex is known as its degree. Degree of u1 is 2, degree of u2 is 1, degree of v3 is 2.

In this thesis, we worked with simple graphs. Simple graphs do not contain multiple

edges, self-loop.

6



2.2. CLIQUE OF A GRAPH

Figure 2.1: Graph

2.2 Clique of a Graph

A clique of a graph is a complete sub-graph of that graph. In a complete graph, all the

vertices are connected to each other. For a graph G(V, E), clique is the complete sub-graph

Gs(Vs,Es) where Vs are the member of V and Es are the members of E, and all the vertices

of Vs are connected to each other.

There can be multiple cliques in a graph. The clique having the maximum number of

vertices is known as a maximum clique.

Figure 2.2: Clique of a graph

In figure 2.2, there are several cliques such as {v1,v4,v5}, {v1,v2,v3,v4}, {v1,v2,v4},

{v1,v2,v3}, {v1,v4,v5}, {v1,v2,v4}, {v2,v3,v6}. Maximum clique is {v1,v2,v3,v4} and

7



2.4. SPARSE MATRIX

maximum clique size is four. Maximum cliques are sometime referred as cliques [14].

2.3 Bipartite Graph

Bipartite graph are formed using two disjoint sets of vertices. Suppose a bipartite graph

is G (Vc,Vr,E). Vc and Vr are two disjoint sets of vertices and there are edges between

V ⊂Vc to V ⊂Vr. There is no edge between the vertices of Vc or between the vertices of Vr.

Figure 2.3: Bipartite graph

Figure 2.3 represents a bipartite graph. The bipartite graph in figure 2.3 has two disjoint

sets of vertices U = {u1,u2,u3,u4} and V = {v1,v2,v3,v4}. The edges of this graph are

E = {{u1,v1},{u1,v3},{u2,v1},{u2,v2},{u3,v4},{u4,v4}}. There are edges between the

vertices of U and the vertices of V.

The graph in figure 2.4 does not look like a bipartite graph at first. But the vertices

of the graph in figure 2.4 can be divided into two disjoint sets U and V where edges are

between U and V.

The bipartite graph in figure 2.4 has two disjoint sets of vertices U = {u1,u2,u3,u4,u5}

and V = {v1,v2,v3,v4,v5}.

8



2.5. JACOBIAN MATRIX

Figure 2.4: Complex Bipartite graph

2.4 Sparse Matrix

A matrix containing few non-zero values is known as a sparse matrix. In a sparse matrix,

there are more zero-valued elements than non-zero valued elements.

The following matrix is a sparse matrix.

A =



5 0 1 0 0 0

0 2 0 0 0 0

0 0 0 0 7 0

0 0 4 0 0 0

0 0 0 5 0 0

1 0 0 0 0 9


(2.1)

Computational advantage can be ensured from the knowledge of many zero entries. We

may store only non-zero values of the matrix to make the computation faster.

Sparse matrix bcspwr03 collected from [2] is shown in figure 2.5. Suppose there is an

m by n matrix. The (1,1) element is represented in the top left corner, and (m,n) element

is shown in the bottom right corner in the rectangular structural plot. The black rectangles

represent non-zero entries. bcspwr03 has 118 rows, 118 columns, and 297 non-zero entries.

9



2.6. DIRECT DETERMINATION

Figure 2.5: Structure plot of bcspwr03 (sparse matrix)

2.5 Jacobian Matrix

The first order partial derivative of a vector valued function is the jacobian matrix of

that vector valued function. Suppose F : Rn→ Rm is a continuously differentiable vector

valued function. Vector x ∈ Rn is the input of the function and vector F(x) ∈ Rm is the

output of the function. Jacobian J of F where F = ( f1, f2, f3, .... fm)
T is-

J =



∂ f1
∂x1

∂ f1
∂x2

.... ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

.... ∂ f2
∂xn

∂ f3
∂x1

∂ f3
∂x2

.... ∂ f3
∂xn

.... .... .... ....

∂ fm
∂x1

∂ fm
∂x2

.... ∂ fm
∂xn


(2.2)

2.6 Direct Determination

The evaluation of mathematical derivatives is often required to solve the problems in

nonlinear optimization and differential equations. We are approaching the problem, de-

termination of Jacobian matrix F ′(x) of a once continuously differentiable mapping F :

10



2.6. DIRECT DETERMINATION

Rn→Rm at a given point xεRn. The product of the Jacobian matrix with a vector s may be

estimated as

∂F(x+ ts)
∂t

∣∣∣∣
t=0

= F ′(x)s≡ As≈ 1
ε
[F(x+ εs)−F(x)]≡ b, (2.3)

with one additional calculation of F at F(x+ εs), where ε > 0 is a small addition. We are

assuming that F(x) is already being computed. Forward mode of algorithmic differentiation

[18] gives the value b = F ′(x)S. The numerical value b is correct up to the machine round

off. The cost of calculating b is a small multiple of the cost of one function evaluation. In

conclusion we can say that, the product of the Jacobian matrix of function F at a point x

with a vector s can be evaluated as AS. The cost of calculating AS is a small multiple of

the cost of evaluating the function F(x). Therefore the computational cost of determining a

Jacobian matrix can be represented in terms of the number of matrix-vector products in the

form of AS.

A =



a11 0 a13 0

a21 a22 0 0

0 0 0 a34

a41 a42 0 0


(2.4)

S =



1 0

0 1

0 1

1 0


(2.5)

Consider the sparse matrix A in equation (2.4). We are defining matrix S where S(:,1) =

e1+e4, and S(:,2) = e2+e3 reproduced from [9] where ei denotes the i-th coordinate vector.

Here the colon notation [12] is used to represent submatrices.
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2.7. ALGORITHMIC DIFFERENTIATION

B = AS =



a11 0 a13 0

a21 a22 0 0

0 0 0 a34

a41 a42 0 0





1 0

0 1

0 1

1 0


=



a11 a13

a21 a22

a34 0

a41 a42


(2.6)

Now compute the product B = AS using the finite difference formula from equation

(2.3). The multiplication is shown in equation (2.6). Forward difference (FD) estimation

of the unknown elements of A can be read-off from the compressed matrix B at a cost of

only 2 (instead of 4) additional evaluations of function F. Matrix A is said to be directly

determined if all the non-zero elements can be read-off from compressed matrix B.

2.7 Algorithmic Differentiation

Algorithmic Differentiation (AD) is the approach to differentiate a function F to com-

pute derivative matrices, where F is given by a computer program. The cost of determining

the Jacobian matrix depends on the cost of algorithmic differentiation. Determining the

sparse Jacobian matrix would be faster by using the sparsity pattern. Algorithmic dif-

ferentiation, which is also known as automatic differentiation determines derivatives of a

function based on arguments with no truncation error. Algorithmic differentiation is a chain

based rule method.

Let f be a function of the vector y ∈ Rm, which is a function of the vector x ∈ Rn. The

derivative of f with respect to x using chain rule is-

∇x f (y(x)) =
m

∑
i=1

∂ f
∂yi

∇yi(x) (2.7)

where ∇ denotes the gradient. At a time one or two arguments are used in sequence of

operations during the evaluation of automatic differentiation. We demonstrate the basic

12



2.8. COLUMN INTERSECTION GRAPH

algorithm by the following example borrowed from [9].

f (x1,x2) = x1sin(x2)+ x2cos(x1) (2.8)

A sequence of arithmetic operations are evaluated to compute f-

v1 = x1

v2 = x2

v3 = sin(x2)

v4 = cos(x1)

v5 = v1 ∗ v3

v6 = v2 ∗ v4

v7 = v5 + v6

(2.9)

where vi, i = 3,4,5,6 are intermediate quantities. The result of computation is obtained in-

f (x1,x2) = v7 (2.10)

The sequence of operations in equation (2.9) are known as code lists. It is possible to

form different code lists from same function. The rules of differentiation can be applied to

evaluate the derivative of a function with respect to the variables x1 and x2.

Automatic differentiation has two modes: forward mode and backward mode. Forward

mode of automatic differentiation is able to determine the non-zero values in a column

group, and reverse mode can determine the non-zero entries in row groups. The cost of

determining the Jacobian matrix depends on the cost of algorithmic differentiation.

13



2.9. GRAPH COLORING

2.8 Column Intersection Graph

A matrix can be represented as a column intersection graph. Every column of the matrix

is considered as a vertex in the graph. There will be an edge between two vertices (columns)

when there are non-zero entries in both columns in the same row position.

Figure 2.6 represents the column intersection graph of the following matrix B.

B =



1 0 0 1 0

0 1 1 0 1

1 0 1 1 0

0 1 0 0 1


(2.11)

There are five columns in the matrix. For that the graph in figure 2.6 has five vertices

V={v1,v2,v3,v4,v5}. Column 1 and column 4 of matrix B has non-zero entries in the same

row. For that v1 and v4 has an edge in the graph. Also column 1 has overlapping non-zero

entry with column 3. So there is an edge between v1 and v3. In this manner, the column

intersection graph is constructed.

Figure 2.6: Column Intersection Graph

2.9 Graph Coloring

Vertices of a graph is colored in a way that no two neighboring vertices are appointed the

same color. A graph G (V,E) is p-colorable when there is a function φ : V → {1,2, ....., p}

14



2.10. REPRESENTATION OF PARTITIONING PROBLEM AS A GRAPH COLORING
PROBLEM

such that φ(u) 6= φ(v), when {u,v} ∈ E.Optimal coloring is achievable using minimum

number of colors. The minimum number of colors required to color a graph is known as

chromatic number X(G) of a graph. Whether a graph is p-colorable or not, is a NP-Complete

prblem [8]. Suppose, G(U ∪ V, E) is a bipartite graph. Here the vertices are split into two

Figure 2.7: Graph colored using 3 colors

disjoint sets U and V. G is path p-colorable, if there are atleast three colors required to color

a path of length three. Also

{φ(u) : u ∈U}∩{φ(v) : v ∈V}=∅ (2.12)

2.10 Representation of Partitioning Problem as a Graph Coloring Prob-

lem

A sparse matrix A ∈ Rm×n has m rows and n columns. This matrix can be represented

as a bipartite graph G(U ∪ V, E) where columns of the matrix are denoted as the ver-

tices in U = {c1,c2,c3, .....,cn} and rows of the matrix are denoted as the vertices in V =

{r1,r2,r3, ...,rn}. Total number of vertices in the bipartite graph will be the summation of

15



2.11. UNI-DIRECTIONAL PARTITIONING VS BI-DIRECTIONAL PARTITIONING

number of rows and number of columns of the matrix. There is an edge between ri and c j,

when there is a non-zero value at ai, j of matrix A.

A =



1 0 1 0

0 1 1 0

1 0 0 1

0 1 0 0


(2.13)

Bipartite graph representation of a sparse matrix A is shown in figure 2.8.

Figure 2.8: Bipartite graph representation of matrix A

Matrix A has four rows and four columns. Bipartite graph in the figure 2.8 has eight ver-

tices. The vertices are split into two disjoint sets U = {c1,c2,c3,c4} and V = {r1,r2,r3,r4}.

Total number of edges in the bipartite graph is seven which is the total number of non-zeroes

in the matrix A.

Theorem 2.1 on path p-coloring of a bipartite graph based on a matrix is discussed in

[17].

Theorem 2.1. Suppose A be an m×n matrix. A mapping φ induces a row-column consistent

partition of matrix A if and only if φ is a path p-coloring of Gb(A).
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2.12. COMPLETE DIRECT COVER

2.11 Uni-directional partitioning vs Bi-directional partitioning

In uni-directional partitioning, sparsity can be exploited either in columns or rows. The

sparsity pattern of a sparse matrix can be exploited in both rows and columns using bi-

directional partitioning. The following example shows that using bi-directional partition-

ing to determine non-zero elements in a sparse matrix works more efficiently than uni-

directional partitioning.

A =


0 0 a13

0 0 a23

a31 a32 a33

 (2.14)

In the beginning, we are considering uni-directional partitioning based on columns.

Three column groups consisting of each column in each group are needed to determine all

the non-zeroes of matrix A of equation (2.7). Three groups are required as a31, a32 and a33

are in same row. For that column 1, column 2 and column 3 can not be grouped together.

In the same manner, three groups are needed to determine all the non-zeroes of A using

uni-directional partitioning based on rows.

All the non-zeroes can be determined using two groups in bi-directional partitioning.

Group 1 consisting column 3 determines a13, a23 and a33. Group 2 having row 3, row 1 and

row 2 determines a31 and a32. Therefore, bi-directional partitioning require less group than

uni-directional partitioning to determine all the non-zero elements of a sparse matrix.

2.12 Complete Direct Cover

Hossain and Steihaug [17] introduced the direct cover property regarding the approxi-

mation of the Jacobian matrix. Following [17], we are reproducing the definition of com-

plete direct cover.

We assume that there is an m by n sparse Jacobian matrix (A) where non-zero ele-

ments are denoted as ai j. Suppose, there is a group Z of rows or columns in a row-column
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2.12. COMPLETE DIRECT COVER

partition.

Definition 2.2. A non-zero ai j is covered by Z where row ri ∈ Z or column c j ∈ Z.

Definition 2.3. A non-zero ai j covered by Z is said to be directly determined by Z when

there are no column in Z (except c j) that has a non-zero in row ri.

Definition 2.4. Suppose, Vc is the collection of subsets of columns and Vr is the collection

of subsets of rows. Then there will be complete direct cover set [Vc,Vr] of sparse matrix A

if-

• The intersection of any two subsets is empty.

• For each nonzero element ai, j of a sparse matrix A, there is a subset Z ∈Vc∪Vr, such

that ai, j is directly determined by Z.
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Chapter 3

Approaches to Partitioning Algorithm

In this chapter, we discuss the different partitioning algorithms defined in DSJM [16]. We

will explain the largest first ordering, smallest first ordering, and incidence degree ordering.

All of these partitioning and ordering algorithms scan the columns based on degree and

colors sequentially using minimum colors.

At the beginning of the chapter, the data structures used in the implementation are dis-

cussed. The data structures, such as Compressed Sparse Row, Compressed Sparse Column,

and Bucket Data Structure, are defined in DSJM [16]. These data structures are also demon-

strated using detailed examples.

Then the ordering and partitioning algorithms are illustrated using graphical examples.

3.1 Data Structures

Here we are going to discuss the data structures used for the implementation. The

sparse matrix contains a few numbers of non-zero entries. Storing the entire sparse matrix

is not cost-effective as it contains a lot of zero-valued elements. We will discuss the data

structures used to store the sparse matrix efficiently. Also, we will discuss the bucket data

structure. The bucket data structure is used for the implementation of different partitioning

and ordering algorithms.

3.1.1 Compressed Sparse Row (CSR)

The compressed sparse row [16] is a data structure that stores the non-zero entries of a

sparse matrix efficiently.
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3.1. DATA STRUCTURES

Compressed sparse row (CSR) is implemented using three arrays :

• value: value array stores the values of matrix elements.

• rowptr: rowptr points the column indices.

• colind: colind stores the column index of non-zero elements of the matrix.

For a sparse matrix Rm×n, where the number of rows is m, and the number of columns

is n, the size of rowptr is m+1. Suppose there is nnz number of non-zero entries in the

sparse matrix. The size of the value array and the size of the colind is nnz. In CSR, rowptr

and colind are integer arrays. Let ai j is a non-zero entry in the matrix A. To access the

value, rowptr(i) is retrieved first. rowptr(i) returns the starting column index for ith row.

The number of non-zero entries in the i-th row can be computed by-

number of non-zero elements in i-th row = rowptr(i+1)− rowptr(i) (3.1)

The elements of the i-th row can be accessed using-

colind(rowptr(i)) to colind(rowptr(i+1) - 1) (3.2)
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3.1. DATA STRUCTURES

Suppose there is a matrix A.

A =



a11 0 a13 0 0 0 0 0

0 a22 0 0 a25 0 a27 0

0 0 0 0 a35 0 0 0

0 0 a43 0 0 0 0 0

0 0 0 a54 0 0 0 0

a61 0 0 0 0 a66 0 0

0 0 0 a74 0 0 0 0

0 a82 0 0 0 0 a87 a88



(3.3)

Figure 3.1 is showing the bipartite graph representation of the above matrix. There are

eight rows, and eight columns in the matrix A. Rows and columns formed two disjoint

sets to construct the bipartite graph. There are eight vertices in the upper portion in figure

3.1, which represents columns, and there are eight vertices in the lower portion, which

represents the rows. a11 is a non-zero element in the matrix. There is an edge between row

1 and column 1. Also, there is an edge between row 2 and column 5, as a25 is a non-zero.

There are fourteen edges in the bipartite graph as there are fourteen non-zeroes in matrix

A.

Figure 3.1: Bipartite graph representation of matrix A
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3.1. DATA STRUCTURES

Matrix A is stored using a compressed sparse row, and it is graphically displayed in

figure 3.2. The size of the rowptr is nine, which is m+1 (m=8). The value array is storing

14 non-zero values. colind has fourteen column indices where the non-zero exists. Suppose

we would like to determine the number of non-zero entries for row 2. There is rowptr(3) -

rowptr(2) = 6 -3 = 3 non-zero entries in row 2. 2nnz + m + 1 memory locations are needed

Figure 3.2: Compressed sparse row (CSR) representation of matrix A

to store the non-zeroes of a matrix using compressed sparse row.

3.1.2 Compressed Sparse Column (CSC)

Compressed sparse column (CSC) [15] is column based data structure to store the non-

zeroes of sparse matrix. CSC is also implemented using three arrays-

• value: value array stores the values of matrix elements.

• colptr: colptr points the row indices.

• rowind: rowind stores the row index of non-zero elements of the matrix.

In CSC, colptr and rowind are integer arrays as they point to an array index. Figure 3.3

shows the CSC representation of matrix A from equation (3.3). There are eight columns
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3.1. DATA STRUCTURES

in the matrix. The size of the colptr is nine, which is n+1 (n=8). The size of rowind is

fourteen, as there are fourteen non-zeroes in matrix A.

Figure 3.3: Compressed sparse column (CSC) representation of matrix A

The number of non-zero entries in the j-th column can be computed by-

number of non-zero elements in j-th column = col ptr( j+1)− col ptr( j) (3.4)

The elements of the j-th column can be accessed using-

rowind(colptr(j)) to rowind(colptr(j+1) - 1) (3.5)

Suppose we would like to find out the number of non-zeroes in column 3. There are

colptr(4) - colptr(3) = 7 -5 = 2 non-zero entries in column 3.

nnz + n +1 memory locations are needed to store the sparse matrix using CSC when the

number of columns is n, and the number of non-zeroes is nnz.

Harwell-Boeing collection at the matrix market [6] is represented using CSC. Matlab

also uses CSC to represent sparse matrices [11].

In our implementation, both CSR and CSC have been used. Therefore, 3nnz + m + n +

2 memory locations are needed to store the sparse matrix.
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3.1. DATA STRUCTURES

3.1.3 Bucket Data Structure

Apart from CSR and CSC, bucket [22] is the frequently used data structure in the par-

titioning and ordering algorithms. The bucket data structure is also used in the coloring

algorithm, along with CSR and CSC. The bucket data structure is implemented using three

arrays and multiple degree lists. Based on the degrees of vertices, a multiple degree list is

constructed. Three arrays of the bucket data structure are-

• HEAD: HEAD array stores the first vertex of each degree list.

• PREVIOUS: PREVIOUS array stores the previous vertex of the processing vertex.

• NEXT: NEXT array stores the next vertex of the current vertex.

The size of the HEAD is the maximum degree (maxdeg) of the vertex in a graph. The

size of the NEXT and PREVIOUS is n+1, where n is the number of columns. So, in

summation, maxdeg + 2n + 2 memory locations are required to use the bucket data structure.

Figure 3.4 represents the column intersection graph of the following matrix A.

A =



a11 0 0 a14 0

0 a22 a23 0 a25

a31 0 a33 a34 0

0 a42 0 0 a45


(3.6)

Figure 3.5 represents the bucket representation of matrix A. In figure 3.5, ndeg is an

array that stores the degree of each vertex. This degree information is required at the begin-

ning of some partition algorithms, such as the smallest last ordering (SLO). After the first

iteration, this degree information is not required in SLO. Degree information can be re-

trieved from degree lists. However, some partitioning algorithms, such as incidence degree

ordering (IDO), require the degree information during the whole procedure. ndeg (1) = 2

means that the degree of vertex 1 is 2. There are two-degree lists on this example. Vertices

1,2,4 and 5 have degree 2. Vertex 3 has degree 4.
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3.2. PARTITION ALGORITHMS

Figure 3.4: Graph representation of matrix A

HEAD(2) = 5 points that, vertex 5 is the first vertex in degree list 2. Also, HEAD(4) =

3 represents that, vertex 3 is the first vertex in the degree list 4.

Figure 3.5: Bucket representation of matrix A

Degree lists can be traversed using PREVIOUS and NEXT array. NEXT(2) = 1 means

that, the next vertex of vertex 2 is vertex 1. Also, NEXT(3) = 0 means that there is no vertex

after vertex 3. Suppose PREVIOUS(1) = 2. It denotes that the previous vertex of vertex 1

is vertex 2. When PREVIOUS(3) = 0, it represents that there is no vertex before vertex 3.

3.2 Partition Algorithms

Traversing vertices in a specific order during coloring of vertices may lead to better

outcomes [9]. A better outcome means a fewer number of groups may be needed to color
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3.2. PARTITION ALGORITHMS

or group all the vertices of a graph. Apart from the natural order, we have used SLO, LFO,

and IDO in order to scan the vertices in our proposed coloring algorithm. Partition and

ordering algorithms are implemented using a compressed sparse row (CSR), compressed

sparse column (CSC), and bucket data structure. Matrix A from equation (3.6) and the graph

representation of matrix A from figure 3.4 are used to discuss the smallest last ordering

(SLO), largest first ordering (LFO), and incidence degree ordering (IDO).

3.2.1 Smallest Last Ordering (SLO)

Suppose V ′ is the set of ordered vertices where V ′ = {vn,vn−1, ....,vi+1}. The vertex vi

is placed in the ordered set of vertices, which was an unordered vertex u such that deg(u) is

minimum in G[V\V ′]. The unordered set of vertices is in G[V\V ′]. The algorithm [22] of

the smallest last ordering (SLO) is shown in figure 3.6.

Figure 3.6: SLO Algorithm

The input of SLO is the sparsity pattern S(A) of the matrix A and the output is the order

array, which stores the ordering of vertices returned by SLO.

In SLO, vertex with the smallest degree is stored in the last position of order array. For

that, slindex is initialized to n in the algorithm in figure 3.6. j is an array consisting of all

the column vertices. Loop in line 3 executes until all the column vertices are traversed.

SLO processes the vertex with a minimum degree at first and assigns that vertex to the last

position of order array. Then slindex gets updated by decremented by 1. Line 7 removes
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3.2. PARTITION ALGORITHMS

the ordered vertex from the unordered set of vertices. While loop in line 3 continues until

all the vertices assigned in the order array. This algorithm is for column vertices. We have

adopted this algorithm for row vertices.

Now we will discuss SLO using the matrix A from equation (3.6) and the graph repre-

sentation of matrix A from figure 3.4.

Figure 3.7 represents the data structures after the initialization step of SLO. ndeg array

has the degree information of every vertex. Initially, there are two-degree lists, which are

HEAD (2) and HEAD(4). HEAD array contains the first vertex of each degree list. HEAD

(2) = 5 means that, degree list (2) starts with vertex 5. In the beginning, all the vertices

are unordered. So V ′ is initially empty. Degree lists can be traversed using the NEXT and

PREVIOUS array.

Figure 3.7: Data Structures after initialization of matrix A (SLO)

SLO starts processing with the vertex having the smallest degree. Among the two-

degree list 2 and 4, 2 is the smaller one. In degree list (2), there are 4 vertices. Nevertheless,

HEAD(2) is 5. Therefore, 5 is placed on the last position of the order array. There are edges

{5,2} and {5,3}. So the degrees of vertex 2 and 3 will be decreased. 2 will move to the

degree list (1), and 3 will move to the degree list (3). HEAD, NEXT, and PREVIOUS are

also updated as degree lists are changed. The updated data structures after the first iteration

are shown in figure 3.8.

In the second iteration vertex, 2 will be added to the order array as it has the lowest
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3.2. PARTITION ALGORITHMS

Figure 3.8: Data Structures after first iteration (SLO)

degree. There are edges {2,3}. The degree of vertex 3 will be reduced and move to the

degree list (2). The updated data structures are shown in figure 3.9.

Figure 3.9: Data Structures after second iteration (SLO)

At this moment lowest degree is 2 and HEAD(2) = 3. Vertex 3 is removed from the

unordered set and is added to the order array. The degree of vertex 1 and 4 are updated as

they have edges with vertex 3. The new values of data structures looks like figure 3.10.

Vertex 1 will be processed next as HEAD(1) = 1. 1 will be added to the order array, and

the degree of 4 will be updated. The updated data structures are represented in figure 3.11.
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3.2. PARTITION ALGORITHMS

Figure 3.10: Data Structures after third iteration (SLO)

Figure 3.11: Data Structures after fourth iteration (SLO)

Only vertex 4 is remaining in the unordered list. Vertex 4 is added to the order array,

and the final ordering is shown in figure 3.12.
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3.2. PARTITION ALGORITHMS

Figure 3.12: Final ordering of vertices (SLO)

3.2.2 Incidence Degree Ordering (IDO)

Let us assume that V ′ = (v1,v2, ...,vi−1) is an ordered set of vertices. The algorithm

adds the next vertex u in the i-th position of ordered set from the unordered set of vertices

where deg(u) is maximum in G[V ′]. There might be more than one vertex with maximum

degree. Vertex with a maximum degree in G[V\V ′] is chosen to break the tie.

The algorithm of Incidence Degree Ordering is listed in figure 3.13.

Figure 3.13: IDO Algorithm

Sparsity pattern S(A) of the matrix A is the input of IDO, and the ordering of vertices

returned by IDO is stored in order array is the output.

The first ordered vertex of IDO is stored in the first position of order array. For that,

idindex starts at 1 in line 1 of the algorithm in figure 3.13. In IDO, two-degree values

are considered. Incidence degree is calculated from induced subgraph, and the vertices in

induced subgraph are O in line 4. An unordered set of vertices are u in line 3. While loop

in line 5, iterates until all the vertices are added in the order array. Vertex has the maximum

sum of incidence degree, and normal degree is assigned in the first position of order array
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using line 6. Line 10 updates the incidence degree of vertices, and line 11 updates the

unordered set of vertices.

Figure 3.14 shows the initialized Data Structures of matrix A for IDO. In the beginning,

there is no vertex in the ordered set V ′. Incidence degree is the degree of unordered vertices

in the subgraph induced by ordered vertices of graph G[V ′]. The incidence degree of all

the vertices is 0. For that, there is an only one-degree list (0). To break the tie, we need the

degree of unordered vertices in G[V\V ′]. These degrees are stored in ideg.

Figure 3.14: Data Structures after initialization of matrix A (IDO)

In the first iteration, the algorithm searches for a vertex with the maximum incidence

degree. However, at this moment, all the vertices have the same incidence degree. ideg

is used to break the tie. From ideg, we can see that vertex 3 has a maximum degree in

G[V\V ′]. Therefore vertex 3 is added to the ordering. There are edges {v3,v1}, {v3,v2},

{v3,v4} and {v3,v5}. Incidence degree of 1,2,3 and 4 is increased to 1. A new degree list

(1) is formed. Also, ideg is updated as the degree of 1,2,3 and 4 is decreased in G[V\V ′].

HEAD, NEXT, and PREVIOUS get updated to traverse the new list. The updated data

structures are shown in figure 3.15.

All the unordered vertices have the same incidence degree. Also, they have the same

degree in ideg. In this case, vertex 1 is selected as it is the first element of the list. Vertex

1 is added to the ordering. The incidence degree of vertex 4 is increased as there is an

edge between vertex 1 and vertex 4. Also, the degree of vertex 4 is decreased in ideg. The
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Figure 3.15: Data Structures after first iteration (IDO)

updated data structures are in figure 3.16.

In the third iteration, there is two incidence degree list. The maximum incidence degree

list is 2. HEAD(2) = 4. Vertex 4 is added to the ordering. Incidence degree and degree

at ideg of vertex 1 is updated as vertex 1 has an edge with vertex 4. The updated data

structures are shown in figure 3.17.
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Figure 3.16: Data Structures after second iteration (IDO)

Now there are two vertices 2 and 5 in the unordered set. Both of them have same

incidence degree as well as same degree in the ideg. HEAD(1) = 2 is processed first. Vertex

2 is added to the ordering. As vertex 2 and vertex 5 has an edge, incidence degree and

degree at ideg is updated for vertex 5. The updated data structures are shown in figure 3.18.

33



3.2. PARTITION ALGORITHMS

Figure 3.17: Data Structures after third iteration (IDO)

In the end, there is only one vertex remaining in the unordered set, which is vertex 5.

Vertex 5 is added in the last position of order array. The final ordering is shown in figure

3.19.
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Figure 3.18: Data Structures after fourth iteration (IDO)

Figure 3.19: Final ordering of vertices (IDO)

3.2.3 Largest First Ordering (LFO)

Largest first ordering is the straightforward ordering algorithm. In LFO, vertices V =

{v1,v2, ...,vn} are ordered in decreasing order. The algorithm [15] of LFO is listed in figure

3.20.

LFO gets the sparsity pattern S(A) of the matrix A as input and returns order array,

which stores the ordering of vertices returned by LFO.

In LFO, vertex with the maximum degree is stored in the first position of order array.

For that, lfindex is initialized to 1 in the algorithm in figure 3.20. j is an array consisting of

all the column vertices. Loop in line 3 executes until all the column vertices are traversed.
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Figure 3.20: LFO Algorithm

LFO processes the vertex with a maximum degree at first and assigns that vertex to the first

position of order array. Then lfindex gets updated by incremented by 1. Line 7 removes

the ordered vertex from the unordered set of vertices. While loop in line 3 continues until

all the vertices assigned in the order array. This algorithm is for column vertices. We have

adopted this algorithm for row vertices.

Data structures after the initialization of matrix A for LFO is in figure 3.21.

Figure 3.21: Data Structures after initialization of matrix A (LFO)

Initially, there are two-degree lists (2) and (4). Degree 4 is the largest one. HEAD(4) =

3. So 3 will be added at the beginning of the order array. In LFO, there will be no degree

update of the remaining vertices after each iteration. Only the recently added vertex will be

removed from the list. The updated data structures after iteration 1 are in figure 3.22.
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Figure 3.22: Data Structures after first iteration (LFO)

In the second iteration, there is only one-degree list (2). HEAD (2) = 5. So vertex 5

is removed from the unordered set and added to the order array. Data Structures after the

second iteration is listed in figure 3.23.

Figure 3.23: Data Structures after second iteration (LFO)
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In the third iteration vertex, 4 is added to the ordering. There will be no changes in the

degree lists. The updated data structures are represented in figure 3.24.

Figure 3.24: Data Structures after third iteration (LFO)

In the fourth iteration, there is an only one-degree list (2). HEAD(2) is vertex 2. There-

fore vertex 2 is added to the ordering. The updated data structures are represented in figure

3.25.

Figure 3.25: Data Structures after fourth iteration (LFO)
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Finally, there is one vertex left, which is vertex 1. This vertex is added to the ordering.

The final ordering is shown in figure 3.26.

Figure 3.26: Final ordering of vertices (LFO)
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Chapter 4

Efficient Implementation of Coloring
Algorithm

In this chapter, we describe the star bi-coloring algorithm we developed. The proposed

algorithm is developed based on complete direct cover [17]. The star bi-coloring algorithm

we propose determines non-zero entries of sparse matrices by forming groups of vertices

representing rows and columns. The collection of vertices representing rows that are not

connected by length-2 path can be grouped and known as row groups. In the same way,

column groups can be formed. In a row, if there are more than one non-zero element in

different columns, then one row group or color cannot determine all the non-zeroes. One

group can determine one non-zero element in a row. Remaining non-zero elements need

to be determined by either a separate row group or a column group. The same condition

works for the column. If there are more than one non-zero elements in a column in different

rows, then one column group or color can not determine all the non-zero elements in that

column. One non-zero will be determined by a column group. The rest of the non-zeroes

need to be determined by different column groups or row groups.

Different steps of our coloring algorithm are discussed in this chapter. Then all the steps

are combined to state our algorithm. In the end, coloring by the algorithm is verified.

Matrix A from equation (3.3) and the graph representation of matrix A from figure 3.1

will be used as a reference matrix for different illustrations.
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4.1 Background

In the earlier research works on partitioning algorithms mainly focused on unidirec-

tional partitioning. Graph coloring can be used to solve the partitioning problem was first

proposed by Coleman and More [3]. They developed their algorithm for the column in-

tersection graph. They worked with different partitioning algorithms, such as SLO, LFO,

and IDO. Hasan [15] proposed Recursive Largest First (RLF)ordering method for star bi-

coloring. Khan [22] also worked on unidirectional partitioning and implemented a branch

and bound type exact coloring algorithm. For optimal partitioning, Suny [24] proposed a

new algorithm that combines existing exact and heuristic algorithms for optimal partition-

ing.

All the above research works were done focusing on the column of the matrices. Only

column groups were constructed to partition the matrix. The bidirectional approach can

determine more non-zero entries of a matrix than a unidirectional approach. In [13], Mini

goyal worked on bidirectional partitioning and showed that it has a better result than uni-

directional partitioning. Anik Saha [23] also worked on Bi-directional determination of

sparse Jacobian matrices. He proposed heuristic and iterative algorithms to determine the

non-zero entries of a sparse Jacobian matrix. Juedes and Jones proposed a new star bi-

coloring algorithm in [20], which is known as approximate star bi-coloring. In this thesis,

we are proposing a star bi-coloring algorithm inspired by the complete direct cover algo-

rithm proposed in [17]. We can represent a matrix as a bipartite graph by constructing a

graph putting rows in one vertex set and putting columns in separate vertex sets. In our al-

gorithm, the degree of both row and column vertices are computed first. We start processing

with vertex having a maximum degree. This can be row vertex or column vertex. Vertices

with distance-2 neighbors are grouped separately. Vertices that are not in the distance-2

neighbor list can be grouped together.
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4.2 Degree Calculation

Calculating the degree of vertices is an important part of our algorithm. The vertex with

maximum degree starts a group, and the rest of the process continues. We calculated the

degree for both column and row vertices. We wrote a procedure called computedegreefor-

bipartite(), and that procedure is listed in figure 4.1.

Figure 4.1: Algorithm for Degree Calculation
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In the algorithm, deg(vi) denotes the degree of a vertex vi. Degree of a vertex is equal

to the number of adjacent nodes of that vertex. Degree of column vertices are computed

using the loop in line 1. The variable maxDegree col stores the maximum degree of column

vertices, and maxCol denotes the column number, which has a maximum degree. maxDe-

gree col and maxCol are evaluated using the loop in line 5. maxDegree col is initialized

with the degree of first column vertex and maxcol is initialized with column 1. Line 6 to

line 8 compares the degree of other column vertices with maxdegree col and assigns the

maximum degree in maxdegree col. Also maxcol gets the column vertex having maximum

degree. The variables maxDegree row and maxRow works in same way for row vertices.

The degree of vertices of matrix A is shown in figure 4.2.

Figure 4.2: Degree of vertices of Matrix A from equation 3.3

The maximum degree among row vertices is 3, and the maximum degree among column

vertices is 2.

4.3 Distance-2 Neighbor List Calculation

To be in the same group, the vertices need to be from the same bipartition, and there can

not be a length 2 path among the vertices. For that, the distance-2 neighbor list calculation

is a significant operation before forming the group.

The algorithm for distance-2 neighbor list calculation for columns is represented in

figure 4.3.

The variable processingCol has the column vertex for which we need to find the distance-

2 neighbor list. Line 3 retrieves the list of rows connected to processingCol. The list re-

trieved in line 3 is considered as distance-1 neighbor list. The loop in line 4 iterates for
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Figure 4.3: Algorithm for distance-2 neighbor list calculation for columns

all the row vertices of distance-1 neighbor list. Line 5 retrieves the list of adjacent column

vertices for processing row vertex. A column vertex is added to the distance-2 neighbor list

if the edge between processing row vertex and processing column vertex is not covered and

the processing column is not already in the distance-2 neighbor list.

The algorithm for distance-2 neighbor list calculation for rows is represented in figure

4.4.

Figure 4.4: Algorithm for distance-2 neighbor list calculation for rows

The algorithm for distance-2 neighbor list calculation for rows works in the same man-

ner as the algorithm for columns.

Now We will illustrate the distance-2 neighbor calculation using the graph in figure 3.1.

We will also need to use the CSR and CSC representation of matrix A in figure 3.2 and
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figure 3.3.

Suppose we would like to find out the distance-2 neighbors of column 3. Rows con-

nected to column 3 = colptr(3) : colptr (4) - 1 = 4 : 5. Now, rowind (4:5) = {1,4}. So, row

1 and row 4 are connected to column 3.

Now we need to find out the columns connected to row 1 and row 4. Columns connected

to row 1 = rowptr(1) : rowptr (2) - 1 = 1:2. Now, colind (1:2) = {1,3}. Therefore, column

1 is a distance-2 neighbor of column 3. As a result, column 3 and column 1 can not be

grouped together.

Again, columns connected to row 4 = rowptr(4) : rowptr (5) -1 = 6 : 6. Now, colind(6)

= 3. So the final distance-2 neighbor list of column 3 is = {column1}. So column 1 can not

be grouped with column 3. Other columns can be grouped with column 3.

Now we will discuss about how to determine the distance-2 neighbor list of a row vertex.

Suppose we are processing row 8. Columns connected to row 8 = rowptr (8) : rowptr (9) -

1 = 12 : 14. colind (12:14) = {2,7,8}. Therefore, row 8 is connected to column 2, column

7 and column 8.

Then we need to find out the rows connected to column 2, column 7 and column 8.

Rows connected to column 2 = colptr (2) : colptr (3) - 1 = 3 : 4. Now, rowind (3:4)

= {2,8}. As a result, column 2 is distance-2 neighbor of column 8. Rows connected to

column 7 = colptr (7) : colptr (8) - 1 = 12 : 12. Now, rowind(12) = 2. We again find that

column 2 is distance-2 neighbor of column 8. Rows connected to column 8 = colptr(8) :

colptr(9) - 1 = 13:14. Now, rowind (13:14) = {8}. The final distance-2 neighbor list of row

8 = {2}. For that, row 2 can not be grouped together with row 8.

4.4 Formation of the Groups

After determining the distance-2 neighbor list of a vertex, any vertices which are not in

the distance-2 neighbor list can be added to the current group. When a vertex is added to

the group, then the distance-2 neighbor list of newly added vertex needs to be merged with
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the previous distance-2 neighbor list. We determined the distance-2 neighbor list of row 8

in the previous section. The list is {2}. Therefore, row 2 can not be grouped together with

row 8. Adding row 1 in the group = {1,8}. Distance-2 neighbor list of row 1 = {4,6}.

Updated distance-2 neighbor list = {2}∪{4,6} = {2,4,6}. So row 2, row 4 and row 6 can

not be added to current group. Row 3 is added to the group = {1,3,8}. Distance-2 neighbor

list of row 3 = row 2. Distance-2 neighbor list remains same. Row 5 is added to the group

= {1,3,5,8}. Distance-2 neighbor list of row 5 = row 7. Updated distance-2 neighbor list

= {2,4,6,7}. So the first row group is {1,3,5,8}.

In the same procedure, column groups can be constructed.

4.5 Updating Degrees

The proposed algorithm iterates, while edgecount is less than E. Here E, is the total

number of edges, which is equal to the total number of non-zero entries. Algorithm starts

with edgecount = 0. After each iteration, the edgecount gets updated.

In the last section, we formed a row group, {1,3,5,8}. All the edges connected to the

group members are removed from the graph. So, all the group members’ degree will be 0,

and the degree of columns which are connected to the rows of the groups are updated. The

degree of both row and column vertices are decreased. Edgecount increases by the number

of edges removed from the graph in that iteration. 7 edges are removed from the graph after

forming the row group {1,3,5,8}. Edgecount is 7 after the first iteration. Degree of row

1,2,5,8 are 0. The degree of column 1,3,4, 5,7,8, is reduced as they have edges with the

rows belonging to the group.

After the degree of vertices is updated, vertex with the maximum degree will be selected

to start a group for the next iteration.
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4.6 Partitioning Algorithms for Row

We have implemented the proposed coloring algorithm using DSJM [16]. Partitioning

algorithms such as SLO, LFO, and IDO are defined in DSJM. However, DSJM was imple-

mented using unidirectional partitioning. Basically, all the partitioning algorithms are im-

plemented based on the column intersection graph in DSJM. Executing partition algorithms

returns the ordering of column vertices. As we are considering bidirectional partitioning,

ordering of row vertices is also needed. We transposed the given matrix. After the trans-

pose operation, the column of matrix A becomes the row of AT , and the row of matrix A

becomes the column of AT . Then we wrote the ordering functions such as SLO, LFO, and

IDO for row by adopting the ordering functions defined in DSJM for the column. We used

AT in the ordering algorithms for the row to get the ordering of row vertices.

4.6.1 Transpose of Matrix

Both square and non-square matrix can be transposed using the algorithm in figure 4.5.

Figure 4.5: Algorithm for making transpose of a matrix

Transpose of a matrix converts the rows into columns and columns into rows. The

row data of matrix A are stored in rowptr and colind using compressed sparse row (CSR).

The column data of matrix A are stored in colptr and rowind using compressed sparse

column (CSC). We have taken four new arrays transrowptr, transcolptr, transrowind and

transcolind to store the transpose of matrix AT . We assigned row information of matrix A

to the column data structure of AT . For example, we assigned rowptr values in transcolptr.

After performing this algorithm, we got the transpose of the input matrix A. Using these

new arrays SLO, LFO, and IDO are executed, which returned the ordering of row vertices.
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4.7 Coloring Algorithm

In this section, we are merging all the procedures stated above to derive the coloring

algorithm. This coloring algorithm determines all the non-zero entries of a sparse matrix in

a bi-directional manner. Figure 4.6 shows the coloring algorithm.

Figure 4.6: Coloring Algorithm

In section 4.2, we have discussed degree calculation. Degrees of all the vertices are cal-

culated using computedegreeforbipartite(). This function also calculates the maxDegree row,

maxrow, maxDegree col and maxcol. Before executing the algorithm, these values are

computed. Here, edgecount is the loop control variable. Initially, the value of the edge-

count is 0. In each iteration, the value of edgecount increases based on the number of the

edge covered by the vertices in groupk. E is the total number of edges. The total number

of edges is equal to the total number of non-zeroes in the matrix. The grouping procedure

starts with the vertex having a maximum degree. Step 5 checks whether a column vertex

has a maximum degree or not. The same checking is executed for row vertex in step 11.

If both row and column vertex have the same maximum degree, we start the grouping pro-

cedure with column vertex. After starting a group with the maximum degree vertex, the

distance-2 neighbor list is calculated for processing vertex. Distance-2 neighbors can not
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be added to the group. Vertices that are from the same bipartition and which are not in the

distance-2 neighbor list can be added in the group. Using the loop of step 8 and step 14,

remaining vertices from the same bipartition are traversed. Whenever a vertex is added to

the group, the distance-2 neighbor list is updated. After forming the group, the edgecount

is updated by adding the number of edges that have endpoints to the vertices of the group.

These edges are considered to be covered by the vertices of the group and need to be left

out from the degree calculation of the next iteration. Step 8 and step 14 denote the natural

order of processing. We have also used SLO, LFO, and IDO ordering in these steps and

found different results based on a number of colors and time taken.

We are going to explain the algorithm using an example matrix A from equation (3.3)

and graph representation form figure 3.1.

There are 14 non-zeroes in matrix A. So E = 14. At the beginning edgecount= 0. So,

edgecount is less than E. The degree of the vertices are shown in figure 4.2. From the figure

4.2 we can deduce that, maxDegree row = 3, maxrow = 2, maxDegree col = 2 and maxcol

= 1.

As maxDegree row is greater than maxDegree col, the first group will be formed using

row vertices. First member of the group is row 2. Distance-2 neighbor list of row 2 = {3,8}.

Therefore, row 3 and row 8 can not be added to the current group. Then row 1 is added

to the group = {1,2}. Updating distance-2 neighbor list as row 2 is a new member of the

group = {3,4,6,8}. Adding row 5 in the group = {1,2,5}. updating distance-2 neighbor

list = {3,4,6,7,8}. Let us assign color blue to group 1.

Figure 4.7 shows the current state of the graph after removing the edges which have

endpoints at the grouped vertices.

After the first iteration, the edgecount is 6. The current state of the degree of vertices is

listed in figure 4.8.

maxDegree row = 3, maxrow = 8, maxDegree col = 1 and maxcol = 1.

In the second iteration, edgecount = 6 is less than E (=14). maxDegree row is greater
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Figure 4.7: State of the graph after first iteration

Figure 4.8: Degree of vertices after first iteration

than maxDegree col. Starting a new group with row 8. Distance-2 neighbor list of row 8

= {∅}. Adding row 3 in group = {3,8}. Updating distance-2 neighbor list = {∅}. Adding

row 4 in the group = {3,4,8}. Distance-2 neighbor list is still empty. Adding row 6 in the

group = {3,4,6,8}. Distance-2 neighbor list is still empty after adding row 6. Adding row

7 in the group = {3,4,6,7,8}. All the row vertices are grouped which makes the edgecount

to 14. As the edgecount becomes equal to E, the while loop terminates. All the edges are

covered. That means all the non-zeroes of matrix A are determined. Suppose we assigning

color green to the new group. The final state of graph with all edges is shown in figure 4.9.

4.8 Verification of the Coloring

We verified the coloring of our proposed algorithm by using vector-matrix product.

Group1 vector is [1 1 0 0 1 0 0 0]. The product of group1 vector with matrix A is represented
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Figure 4.9: Final state of the graph after coloring

in figure 4.10.

Figure 4.10: Multiplication result of group1 vector with matrix A

We assumed that all the non-zero values of matrix A are 1. If the multiplication result

has any value greater than 1, that denotes non-zeroes can not be determined in that row.

But in the result above, all the values are 0 or 1. The encircled 1 values are determined by

group 1.
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We are assigning 0 to the determined values of matrix A. Then multiplying A with group

2 vector = [0 0 1 1 0 1 1 1]. The product of the group 2 vector with matrix A is represented

in 4.11.

Figure 4.11: Multiplication result of group 2 vector with matrix A

All the remaining non-zero elements are determined by group 2. There are no non-zero

entries left undetermined.
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Chapter 5

Numerical Experiments

In this chapter, we will discuss the numerical experiments we carried out and their results.

In the beginning, we will explain about test data set and test environment. Then, we will

present the results of numerical experiments. In the end, we will discuss the findings from

the result.

5.1 Test Data Sets

We have tested our algorithm on different sparse matrices. The sparse matrices are

collected from Matrix Market Collection [1]. The test matrices are general matrices. In

general, these matrices are defined using three attributes-

• m: m represents the number of rows of the matrix.

• n: n denotes the number of columns of the matrix.

• nnz: nnz indicates the number of non-zero elements in the matrix.

5.2 Test Environment

All numerical experiments are carried out in a computer located at the University of

Lethbridge. The details of the device are listed in table 5.1.
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Table 5.1: Details of the test environment

Processor Operating System Cache (L2) RAM No. of Core
Intel Core i7 4770 CPU
3.40 GHz

Linux 256 KB 8 GB 4

5.3 Test Results

We have used 2 sets of data for our experiment. Matrices in table 5.2 (data set 1) are

used to compare the result of our algorithm with [21]. These are large matrices. Other

matrices in table 5.3 (data set 2) are used in experiments to compare our algorithm with

[20]. These matrices are small matrices. The experimental results of data set 2 are also

compared with [23].

Table 5.2: Matrix statistics for data set 1

Matrix M N NNZ Row
Max

Col
Max

Row
Aver-
age

Col
Aver-
age

af23560 23560 23560 484256 21 21 20.55 20.55
cage11 39082 39082 559722 31 31 14.32 14.32
cage12 130228 130228 2032536 33 33 15.61 15.61
e30r2000 9661 9661 306356 62 62 31.71 31.71
e40r0100 17281 17281 553562 62 62 32.03 32.03
lhr10 10672 10672 232633 63 36 21.80 21.80
lhr14 14270 14270 307858 63 36 21.57 21.57
lhr34 35152 35152 764014 63 36 21.73 21.73
lp cre a 3516 7248 18168 360 14 5.17 2.51
lp cre b 9648 77137 260785 844 14 27.03 3.38
lp cre d 8926 73948 246614 808 13 27.63 3.33
lp dfl001 6071 12230 35632 228 14 5.87 2.91
lp ken 11 14694 21349 49058 122 3 3.34 2.30
lp ken 13 28632 42659 97246 170 3 3.40 2.28
lp ken 18 105127 154699 358171 325 3 3.41 2.32
lp maros r7 3136 9408 144848 48 46 46.19 15.40
lp pds 10 16558 49932 107605 96 3 6.50 2.16
lp pds 20 33874 108175 232647 96 3 6.87 2.15
lp stocfor3 16675 23541 76473 15 18 4.59 3.25

Here, matrix= represents the name of the matrix, M= number of rows in the matrix, N=
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number of columns in the matrix, Row Max= maximum degree among row vertices, Col

Max = maximum degree among column vertices, Row Average = average degree of row

vertices, Col Average = average degree of column vertices.

Table 5.3: Matrix statistics for data set 2

Matrix M N NNZ Row Max Col
Max

Row
Aver-
age

Col
Aver-
age

abb313 313 176 1557 6 26 4.97 8.85
ash219 219 85 438 2 9 2 5.15
ash331 331 104 662 2 12 2 6.37
ash608 608 188 1216 2 12 2 6.47
ash958 958 292 1916 2 13 2 6.56
bp0 822 822 3276 266 20 3.99 3.99
bp200 822 822 3802 283 21 4.63 4.63
bp400 822 822 4028 295 21 4.90 4.90
bp600 822 822 4172 302 21 5.08 5.08
bp800 822 822 4534 304 21 5.52 5.52
bp1000 822 822 4661 308 21 5.67 5.67
bp1200 822 822 4726 311 21 5.75 5.75
bp1400 822 822 4790 311 21 5.83 5.83
bp1600 822 822 4841 22 22 21 0
fs 541 1 541 541 4285 11 541 7.92 7.92
fs 541 2 541 541 4285 11 541 7.92 7.92
ibm32 32 32 126 8 7 3.94 3.94
shl0 663 663 1687 422 4 2.54 2.54
shl200 663 663 1726 440 4 2.60 2.60
shl400 663 663 1712 426 4 2.58 2.58
str0 363 363 2454 34 34 6.76 6.76
str200 363 363 3068 30 26 8.45 8.45
str400 363 363 3157 33 34 8.70 8.70
str600 363 363 3279 33 34 9.03 9.03
will57 57 57 281 11 11 4.93 4.93
will199 199 199 701 6 9 3.52 3.52

We have used natural order, SLO order, LFO Order, and IDO order in the coloring

algorithm. A comparison of the results of using different ordering on data set 1 is listed in

5.4.
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Table 5.4: Comparison of proposed coloring algorithm for Natural order, SLO order, LFO
order and IDO order for data set 1

Matrix Natural Order LFO SLO IDO
RG CG T RG CG T RG CG T RG CG T

af23560 0 48 36.91 0 64 36.67 0 45 37.53 0 49 36.54
cage11 0 79 48.83 0 77 41.56 0 62 41.50 0 64 41.85
cage12 0 97 652.51 0 89 546.93 0 69 599.84 0 70 548.21
e30r2000 0 68 18.04 0 89 17.37 0 69 17.65 0 71 17.73
e40r0100 0 95 57.02 0 91 56.17 0 71 57.54 0 71 58.46
lhr10 64 0 11.24 65 0 11.73 35 63 31.07 34 63 31.19
lhr14 64 0 19.15 66 0 20.72 35 64 54.55 34 64 55.02
lhr34 64 0 117.69 65 0 128.61 35 63 333.69 34 64 340.13
lp cre a 15 0 0.03 15 0 0.03 14 0 0.04 14 0 0.05
lp cre b 16 0 0.90 18 0 0.79 17 0 0.97 16 0 1.18
lp cre d 15 0 0.73 18 0 0.68 15 0 0.87 15 0 1.04
lp dfl001 15 0 0.10 15 0 0.10 14 0 0.11 14 0 0.22
lp ken 11 5 0 0.28 5 0 0.25 4 0 0.26 4 0 0.28
lp ken 13 4 0 1.08 6 0 0.92 4 0 1.05 4 0 1.15
lp ken 18 5 0 14.21 5 0 13.19 5 0 13.50 4 0 14.31
lp maros r7 72 0 3.16 96 0 3.13 86 0 3.11 94 0 3.13
lp pds 10 5 0 0.64 7 0 0.64 5 0 0.56 5 0 0.61
lp pds 20 5 0 2.83 7 0 2.79 5 0 2.40 5 0 2.70
lp stocfor3 0 15 1.29 0 17 1.41 0 15 1.22 0 16 1.30

Here, RG = Row Groups, CG = Column Groups, T = Time (in sec).

There are 19 matrices in data set 1. SLO requires a minimum number of colors (groups)

to determine all the non-zeroes for 12 matrices. Natural order returned a minimum number

of colors (groups) for 11 matrices. IDO returned a minimum number of colors (groups) for

10 matrices. LFO took less time to run the coloring algorithm in 10 instances. However,

LFO always needed more colors (groups) to determine the non-zeroes in comparison to

other ordering methods.

A comparison of the results of using different ordering on data set 2 is listed in 5.5.
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Table 5.5: Comparison of proposed coloring algorithm for Natural order, SLO order, LFO
order and IDO order for data set 2

Matrix Natural Order LFO SLO IDO
RG CG T RG CG T RG CG T RG CG T

abb313 0 11 0.0 0 13 0.0 0 10 0.0 0 10 0.0
ash219 0 5 0.0 0 5 0.0 0 5 0.0 0 4 0.0
ash331 0 6 0.0 0 7 0.0 0 6 0.0 0 6 0.0
ash608 0 6 0.0 0 7 0.0 0 6 0.0 0 6 0.0
ash958 0 7 0.0 0 6 0.0 0 6 0.0 0 6 0.0
bp0 17 3 0.0 18 2 0.0 15 5 0.0 15 3 0.0
bp200 21 0 0.0 21 0 0.0 21 0 0.0 16 7 0.01
bp400 21 0 0.0 21 0 0.0 21 0 0.01 18 7 0.01
bp600 21 0 0.01 21 0 0.0 21 0 0.0 17 8 0.01
bp800 23 0 0.01 22 0 0.01 21 0 0.01 21 0 0.01
bp1000 23 0 0.0 25 0 0.0 22 0 0.00 22 0 0.01
bp1200 23 0 0.01 23 0 0.01 21 0 0.01 21 0 0.01
bp1400 23 0 0.00 24 0 0.0 21 0 0.0 21 0 0.01
bp1600 24 0 0.01 24 0 0.01 21 0 0.01 21 0 0.01
fs 541 1 0 15 0.0 0 18 0.0 0 13 0.0 0 13 0.0
fs 541 2 0 15 0.0 0 18 0.0 0 13 0.0 0 13 0.0
ibm32 1 7 0.0 1 8 0.0 1 7 0.0 1 7 0.0
shl0 4 0 0.0 5 0 0.0 4 0 0.0 4 0 0.0
shl200 4 0 0.0 5 0 0.0 4 0 0.0 4 0 0.0
shl400 4 0 0.0 5 0 0.0 4 0 0.0 4 0 0.0
str0 4 35 0.0 4 34 0.0 4 30 0.0 6 25 0.0
str200 33 0 0.0 32 0 0.0 32 0 0.0 12 25 0.0
str400 18 23 0.0 36 1 0.0 35 1 0.0 10 25 0.0
str600 23 19 0.0 37 1 0.0 35 1 0.0 12 27 0.0
will57 7 10 0.0 6 10 0.0 11 3 0.0 11 2 0.0
will199 1 8 0.0 0 9 0.0 0 7 0.0 0 7 0.0

There are 26 matrices in data set 2. SLO and IDO require a minimum number of colors

(groups) to determine all the non-zeroes for 21 matrices. Natural order returned a minimum

number of colors (groups) for 8 matrices. LFO returned a minimum number of colors

(groups) for 4 matrices.

We can observe that SLO and IDO produce a better result than Natural order and LFO

based on the experimental results from table 5.4 and table 5.5. LFO takes less running time
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in comparison to SLO, IDO, and natural order, but LFO requires more groups to determine

all the non-zeroes in comparison to other ordering methods.

5.3.1 Comparison with [Juedes and Jones, 2019]

In [21], Juedes and Jones experimented on different greedy algorithms of star bi-coloring.

These algorithms are-

• Approximate Star Bi-Coloring (ASBC): ASBC is an approximation algorithm that

uses distance-2 independent sets of vertices in the bipartite graph [20].

• Max-Neighborhood (MN): MN selects the largest neighborhood among two alterna-

tives, independent sets to form the bipartition [21].

• Max-Ratio (MR): MRc where 0 < c < 1, forms bipartition showing the maximum

ratio of the size of its neighborhood (|d(Vi)|) with respect to the size of the opposite

bipartition (|Vnot−i|) [21].

• Local-Search-K: LS-K for some fixed k > 1, forms at most k distance-2 independent

sets by generating all sequences of distance-2 independent sets from one of the two

bipartitions and selecting the sequence that deletes the maximum number of edges

[21].

Table 5.6 shows the result comparison of our coloring algorithm with [21]. In the table

5.6, PCA means proposed coloring algorithm. The experimental results of our algorithm

are listed in column PCA.
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Table 5.6: Comparison of proposed coloring algorithm with [Juedes and Jones, 2019] [21]

Matrix ASBC MN LS-2 LS-3 LS-4 LS-5 MR
0.5

MR
0.67

MR
0.75

PCA

af23560 52 36 36 36 36 36 36 36 36 45
cage11 82 68 68 68 68 68 68 68 68 62
cage12 91 72 72 72 72 72 72 72 72 69
e30r2000 81 72 72 72 72 72 72 72 72 68
e40r0100 92 83 83 83 83 83 83 83 83 71
lhr10 45 40 40 39 39 38 40 40 40 64
lhr14 45 40 39 39 39 38 40 40 40 64
lhr34 45 40 39 39 39 39 40 40 40 64
lp cre a 16 16 16 17 14 14 23 19 19 14
lp cre b 60 15 15 15 15 15 15 15 15 16
lp cre d 75 15 15 15 15 15 15 15 15 15
lp dfl001 14 14 12 11 11 11 20 11 14 14
lp ken 11 15 4 4 4 4 4 4 4 4 4
lp ken 13 12 4 4 4 4 4 9 9 4 4
lp ken 18 13 4 4 4 4 4 11 11 4 4
lp maros r7 144 70 70 70 88 70 70 70 70 72
lp pds 10 29 6 6 6 6 6 6 6 6 5
lp pds 20 34 6 6 6 6 6 6 6 6 5
lp stocfor3 22 19 15 15 15 15 15 15 15 15

Here, we have enlisted the best result we get using natural order or SLO order or LFO

order or IDO order. In many cases, our proposed algorithm gives better results than oth-

ers. Our proposed coloring algorithm requires less colors to determine all non-zeroes for

cage11, cage12, e30r200, e40r0100, ip cre a, ip pds 10, ip pds 20 compared to the algo-

rithms of [21].

5.3.2 Comparison with [Juedes and Jones, 2011]

Juedes and Jones proposed a new star bi-coloring algorithm in [20], which is approxi-

mate star bi-coloring (ASBC). The authors have re-implemented minimum non-zero count

ordering (MNCO) developed by Coleman and Verma [4]. MNCO partitions the sparse ma-

trix into sub-matrices, which lead to either row-wise or column-wise coloring. There are
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two versions of MNCO: direct and substitution. MNCO direct was re-implemented in [20].

Table 5.7 shows the result comparison of our coloring algorithm with ASBC and MNCO

using data set 2.

Table 5.7: Comparison of proposed coloring algorithm with ASBC and MNCO direct

Matrix M N NNZ No. of cols
ASBC

No. of cols
MNCO di-
rect

No. of cols
PCA

abb313 313 176 1557 17 12 10
ash219 219 85 438 8 10 4
ash331 331 104 662 10 7 6
ash608 608 188 1216 11 11 6
ash958 958 292 1916 12 7 6
bp0 822 822 3276 16 15 18
bp200 822 822 3802 17 17 21
bp400 822 822 4028 19 19 21
bp600 822 822 4172 20 18 21
bp800 822 822 4534 22 21 21
bp1000 822 822 4661 22 21 22
bp1200 822 822 4726 21 22 21
bp1400 822 822 4790 23 22 21
bp1600 822 822 4841 22 22 21
fs 541 1 541 541 4285 18 14 13
fs 541 2 541 541 4285 18 14 13
ibm32 32 32 126 9 9 8
shl0 663 663 1687 7 5 4
shl200 663 663 1726 7 5 4
shl400 663 663 1712 6 5 4
str0 363 363 2454 25 27 31
str200 363 363 3068 31 28 32
str400 363 363 3157 36 30 35
str600 363 363 3279 36 30 36
will57 57 57 281 10 9 13
will199 199 199 701 9 6 7

Again, we have enlisted the best result we get using natural order or SLO order or

LFO order or IDO order. In many cases, our proposed algorithm gives better results than

others. Our proposed coloring algorithm requires less colors to determine all non-zeroes
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of abb313, ash219, ash331, ash608, ash958, bp1400, bp1600, f s 541 1, f s 541 2, ibm32,

shl0, shl200, shl400 compared to ASBC and MNCO direct.

5.3.3 Comparison with [Saha, 2015]

Saha proposed a heuristic approach for bi-directional partitioning. Table 5.8 shows the

result comparison of our coloring algorithm with the heuristic coloring proposed in [23].

Table 5.8: Comparison of proposed coloring algorithm with [Saha, 2015]

Matrix M N NNZ No. of cols
Saha

No. of cols
PCA

abb313 313 176 1557 10 10
ash219 219 85 438 4 4
ash331 331 104 662 6 6
ash608 608 188 1216 6 6
ash958 958 292 1916 6 6
bp0 822 822 3276 17 18
bp200 822 822 3802 19 21
bp400 822 822 4028 20 21
bp600 822 822 4172 19 21
bp800 822 822 4534 22 21
bp1000 822 822 4661 22 22
bp1200 822 822 4726 21 21
bp1400 822 822 4790 21 21
bp1600 822 822 4841 21 21
fs 541 1 541 541 4285 13 13
fs 541 2 541 541 4285 13 13
ibm32 32 32 126 7 8
shl0 663 663 1687 4 4
shl200 663 663 1726 4 4
shl400 663 663 1712 4 4
str0 363 363 2454 27 31
str200 363 363 3068 31 32
str400 363 363 3157 36 35
will57 57 57 281 7 13
will199 199 199 701 9 7

Our proposed coloring algorithm requires fewer colors to determine all the non-zeroes
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of bp800, str400, and will199. Both approaches require same amount of colors for abb313,

ash219, ash331, ash608, ash958, bp1000, bp1200, bp1400, bp1600, fs 541 1, fs 541 2,

shl0, shl200 and shl400 to determine all the non-zeroes. Our experimental results are almost

similar to the results of [23].
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Chapter 6

Conclusion and Future Work

In this thesis, we have proposed a star bi-coloring algorithm that ensures the determination

of all the non-zero elements of a sparse matrix. With numerous experiments on a standard

set of problems, we ensured that the proposed coloring algorithm works better than existing

coloring algorithms [21] [20]. Apart from the natural order of traversing row and column,

we used SLO order, LFO order, and IDO order. These different orders of traversals lead to

distinct outcomes.

We have implemented the algorithm using DSJM. For that, an in-depth study of DSJM

(Determine Sparse Jacobian Matrices) is required. The data structures and the algorithms

for ordering and partitioning included in DSJM are studied thoroughly. DSJM is developed

for unidirectional partitioning. We have added some procedures in DSJM, which facilitates

it to work with bi-directional partitioning.

6.1 Future Works

Following are the future research directions-

• Our proposed coloring algorithm works efficiently for graphs represented using the

general pattern of matrices. It needs to perform efficiently for all types of matrix

representations of graphs, such as symmetric matrices.

• Apart from the natural order for traversing row and columns, we have experimented

using the smallest last ordering (SLO), largest first ordering (LFO), and incidence

degree ordering (IDO). In the future, other ordering techniques such as recursive
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largest first partitioning (RLFPartition), saturation degree partitioning (SDPartition)

can be used. These ordering may lead to better results.

• In the real world, problems are getting larger day by day. The parallel implementation

of our proposed algorithm may lead to faster and better outcomes.
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