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Abstract

The class of high Tc superconductors share one common structural aspect, the exis-

tence of planes of copper and oxygen ions. These planes are thought to be the source

of the superconducting behaviour. They can be represented as a two-dimensional

lattice of ions, which facilitates their study using numerical models. One such model

is the t− J model. In most studies utilising numerical models, the planes have been

considered isotropic. However, recent analysis of cuprate structure has illustrated

that this may not be representative of the copper oxide planes. A number of cuprate

structures exhibit different phases in which the planes are not isotropic, such as the

low temperature orthorhombic and low temperature tetragonal phases. This work

will examine the effects of introducing anisotropy into the t − J model in order to

understand how these phases affect the results gained from numerical studies.
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Chapter 1

Introduction

1.1 Birth of a New Phenomenon

In 1911, the publication of the paper “On the Sudden Rate at Which the Resistance

of Mercury Disappears” by H.K. Onnes introduced a major discovery of the 20th

century [1]. By cooling mercury to temperatures lower than 4.19 K through the use

of liquid helium, the electrical resistance of the material was shown to disappear

completely. The material became a perfect conductor of electricity, and was later

given the name “superconductor”. The mystery of superconductivity was examined

throughout the remainder of the century, and continues to be an active area of research

to this date. Since 1911, a number of other defining characteristics of superconductors

have been found. One of the more fascinating is the Meissner effect, discovered in

1933 by Meissner and Ochsenfeld [2]. It was shown in their work that materials in

the superconducting state expel applied magnetic fields, which can cause a magnet

to levitate above a superconducting material, as seen in figure 1.1. Other properties

include the Josephson effect, which describes the current flow present at the interface

between two superconductors separated by a very thin insulating layer [3]. This effect

has been utilised in superconducting quantum interference devices (SQUIDs), which

are currently the most sensitive devices for the detection of magnetic fields. However,

technological applications of superconductors have been somewhat hindered by the

extremely low temperatures required to instantiate the phenomenon.

The discovery of superconducting compounds with critical temperatures greater
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Figure 1.1: Levitation of a magnet above a superconducting material immersed in
liquid nitrogen.

than 30 K was a major accomplishment of the 1980’s. The compounds that ex-

hibit superconductivity in this temperature regime, hereafter referred to as high Tc

superconductors, share a number of characteristics. The most notable of these char-

acteristics is the presence of planes of copper and oxygen ions in the majority of

high Tc superconductors. These compounds form a class known as the cuprate su-

perconductors. The first such material discovered to exhibit superconductivity was

La2−xBaxCuO4, found by Bednorz and Muller in 1986 to have a superconducting crit-

ical temperature of 36 K when x = 0.15 [4]. Previously, superconductivity was found

only in certain metallic and organic compounds, most of which were poor conductors

at room temperature. The highest Tc of these compounds was 23.2 K for the com-

pound Nb3Ge [5]. Superconducting critical temperatures had grown less than 20 K

over a span of 75 years since the initial discovery of superconductivity. The increase of

13 K to 36 K was consequently met with a great deal of enthusiasm from the physics

community. In addition to the Tc increase, one of the more striking aspects of this

discovery was the insulating nature of the parent compound La2CuO4 in the normal

state [6]. The ceramic constitution of the compound was also somewhat puzzling, as
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previously this type of material was not known to display superconducting behav-

iour. Further experimental studies of cuprate materials resulted in the discovery of

superconductivity in YBa2Cu3O7−x at temperatures up to 92 K [7], a very drastic

increase in Tc. Given that the boiling point of nitrogen is 77 K, this allowed the

attainment of the superconducting state without the use of liquid helium. But why

is this important? The simple answer is cost. Nitrogen is a more abundant mate-

rial than helium, and as such, liquid nitrogen is considerably cheaper and easier to

manufacture than liquid helium. This makes liquid nitrogen an ideal medium for the

attainment of superconductivity, which in turn marks the advancement of Tc to these

temperatures as one of particular importance.

While the superconducting state was understandably the focus of the initial re-

search of these materials, interest in other properties steadily grew as more experi-

mental data became available. The scope of cuprate compounds now goes well beyond

the realm of high-Tc superconductivity. The wealth of experimental study done on

these materials has revealed a variety of interesting behaviours in phases other than

the superconducting phase. In most conducting materials, it suffices to view the con-

duction electrons as a “sea” of non-interacting particles. This is known as the Fermi

liquid [8]. The interactions between electrons, most notably the Coulomb interaction,

are introduced as a perturbation to the non-interacting ground state. There are sev-

eral predictions that this theory provides. Two such predictions are the temperature

independence of the magnetic susceptibility, and the resistivity being proportional to

T2 at low temperatures [9]. Both of these properties are not seen in cuprates [10, 11],

suggesting that the Fermi liquid description may be inadequate for these compounds.

The exact nature of the normal state in these compounds has yet to be determined,

and as such research on these materials remains active. The materials have also

been shown to exhibit strong antiferromagnetism in certain phases, which makes the

cuprate superconductors an ideal subject of studies on magnetism. In particular, the

3



cuprates appear to be one of the best physical examples of the Mott insulator [12](see

section 1.2.1), and as such research into these two fields has been strongly linked.

Cuprate study can now be considered a field unto itself, independent of supercon-

ductivity. However, even though these compounds have been examined for almost 20

years, the existence of a predictive model for cuprates has yet to arise. The strong

correlation between electrons has been one of the major obstacles in this area, as this

property limits the effectiveness of simple perturbation calculations which are ap-

plicable to most Fermi-liquid type materials. The need for more research into these

materials is clear, since they apply to so many different areas of condensed matter

physics.

1.2 Cuprate Structure

The crystalline structure of these compounds provides the starting point for their

analysis. No theoretical model can be justly applied to these materials without some

advance knowledge of even the most simple crystal properties, such as lattice pa-

rameters. As one might expect, all of the cuprate materials share a similar crystal

structure. As an example of this structure, the conventional unit cell of La2CuO4

is shown in figure 1.2. This compound has a body-centered tetragonal (bct) crystal

structure, in which there are six planes of ions [13]. In terms of stoichiometry, four of

these planes are LaO, while the remaining two are CuO2. The Cu and O ions form an

elongated perovskite-type structure, in which the copper ions have six nearest neigh-

bour oxygen ions. Four of these ions lie within the CuO2 planes, while the remaining

two, known as the apical oxygens or simply Oz, lie above and below these planes on

the LaO planes. The Cu-O distance in-plane is roughly 1.9 Å, while out of plane

it is a much larger 2.4 Å, hence the elongated nature of the perovskite structure.

This disparity results in interactions within planes being substantially stronger than

those between planes. It should be noted that the picture shown of La2−xSrxCuO4,
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Figure 1.2: Structure of La4Cu2O8, the parent compound of La2−xSrxCuO4. The
large yellow circles denote La atoms, the medium-sized blue circles denote Cu atoms,
while the small red circles denotes O atoms.

and all subsequent discussion, is based on one phase of this compound. A variety of

different phases are possible for this compound, and this aspect of this material will

be discussed in section 1.3. The fundamental physical characteristic that all cuprates

share is the CuO2 planes. The chemical constituents of the other planes will vary

from material to material, as will the relative population of the CuO2 planes, but the

existence of these planes in all high-Tc materials is indeed the most intriguing aspect

of the field. The importance of this aspect is made clear through experimental results

showing the highly anisotropic nature of superconductivity within these compounds.

The planes lie along the a- and b-axes of the crystal, and along these axes the resistiv-

ity of the materials is much less than along the c-axis [14, 15]. Between planes, along

the c-axis of the material, conductivity is strongly suppressed. It is therefore believed
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that the superconducting behaviour is limited to the copper oxide planes themselves.

Thus a large number of studies on these materials have essentially ignored all other

physical aspects of cuprate materials and focussed purely on the copper oxide planes.

This work will do the same.

1.2.1 CuO2 planes

The planes found in the cuprate superconductors are indeed their most interesting

physical characteristic, and warrant further analysis. Within the planes, the copper

ions have four nearest neighbour oxygen ions, while each oxygen lies between two

copper ions. The copper and oxygen bonds are of mixed covalent and ionic character,

and in the undoped state, the majority of copper atoms become Cu2+, while oxygen

becomes O2− [16]. In terms of electronic orbitals, the copper ions have a filled 3p shell

and 9 electrons in the 3d shell, while oxygen has a filled 2p shell. It should be noted

that this behaviour is representative of the bulk nature of the lattice, since quantum

fluctuations can alter the ionic state of each individual lattice constituent, even at

absolute zero. Due to the effects of the crystal field, the degeneracy between orbitals

of the same quantum number n is removed. The highest energy orbital of copper in

these materials is the dx2−y2 orbital, and it is this orbital that then contains a hole [17].

The highest energy orbitals in the oxygen ions are the 2px and 2py orbitals, which

strongly hybridize with the copper 3dx2−y2 to form 3dsp molecular orbitals. The hole

in the d shell of the Cu2+ ions results in these ions having a net spin of ± 1
2
, while the

oxygen ions are not magnetic due to their filled orbitals. The half-filled state then is

characterised by a magnetic arrangement of spins, with magnetic Cu2+ ions containing

one valence electron being mediated by non-magnetic O2− ions containing two valence

electrons. These mediating O2− ions assist in a magnetic process known as Heisenberg

superexchange [9], which couples the spins on neighbouring copper ions. Note that

this magnetic interaction is in fact electronic in nature, arising from the overlap of
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electron orbitals concomitant with the Pauli exclusion principle. The exchange energy

of this interaction is U = 2J S1 · S2, which can lead to either a ferromagnetic (FM) or

antiferromagnetic (AF) ground state, depending on the sign of the exchange integral

J . On the copper oxide planes, J carries a positive sign, giving rise to a strongly AF

ground state with Néel temperatures above room temperature. This type of magnetic

behaviour was confirmed experimentally via neutron scattering data [18, 19, 20].

Given the half-filled band structure of the copper ions, one would expect La2CuO4,

and other undoped cuprate superconductors, to be metallic conductors. However,

these materials are AF insulators. The cause lies in the strong Coulomb repulsion

between two electrons in the same copper orbital. Even though the Fermi level lies

within a half-filled band, an energy gap ∆ splits this band into an upper and lower

section due to this Coulomb repulsion. The lower band is filled by electrons residing

on singly-occupied Cu2+ ions, while the upper band is filled by electrons residing on

doubly-occupied Cu+ ions. Therefore, with a half-filled band, electrons are localised,

since motion of one electron to a neighbouring site would result in an energy cost

equal to the band gap. Compounds that exhibit this behaviour are known as Mott

insulators. In cuprate compounds, the oxygen p-band is placed between the upper

and lower d-bands due to the splitting of the copper d-band. The energy gap ∆

then lies between the lower d-band and the p-band, as opposed to the upper and

lower d-bands. This type of behaviour is slightly different than that seen in Mott

insulators, and compounds of this nature are referred to as charge-transfer insulators.

The difference between the two is seen schematically in figure 1.3. The study of

Mott insulators and specifically metal-insulator transitions is an active field of study.

Readers with an interest in this field can refer to a recent review article on the subject

[17], and the references contained therein.
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Figure 1.3: Schematic representation of Mott and charge-transfer insulators. The
gray area denotes a filled orbital. The parameter U indicates the strength of the
on-site Coulomb repulsion on the copper ions, while ∆ is the energy gap between the
highest energy occupied band and lowest energy unoccupied band.

1.2.2 Doping

The hole concentration of the planes can be altered via a process known as doping.

In La2−xSrxCuO4, when La3+ ions are replaced with Sr2+ ions, electrons are removed

from the planes due to the differing valency of these two ions. The electrons removed

have been shown by X-ray diffraction studies to be removed from the O2− ions on the

CuO2 planes [16]. This can also be viewed as introducing positively charged “holes”

into the planes. It has also been shown by experimental measurement of the Hall

coefficient that the positive holes are the charge carriers [21]. The effect of doping

on the physical behaviour of these compounds is substantial. Superconductivity in

cuprates is highly dependent on the concentration of charge carriers, as shown by the
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Figure 1.4: Phase diagram for La2−xSrxCuO4. These types of diagram are abundant,
and can be found in such works as Imada et al. [17], and the references contained
therein.

phase diagram of La2−xSrxCuO4 (Figure 1.4). In general, a minimum level of charge

carriers is required to initiate superconductivity, with greater numbers of charge car-

riers resulting in a higher Tc. This behaviour holds until a critical level is achieved

where Tc is maximised. Doping beyond this concentration results in suppression of

Tc, until it reaches zero at some finite level of doping. Doping beyond this critical

level moves the material into the overdoped regime of this phase space, where the

behaviour can be modelled by Fermi liquid theory. A number of different phases

have been found at the lower doping (or underdoped) regions of the phase diagram,

including a spin-glass phase, a pseudogap phase, and the AF insulating phase. Most

of these phases are not particularly well understood, which certainly contributes to

the popularity of these materials for study.
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This behaviour is consistent for most cuprates. However, the exact nature of dop-

ing can certainly differ from material to material. For materials such as YBa2Cu3O7−x,

electrons are removed from Cu-O chains that form off-plane, while other materials

such as Nd2−xCexCuO4 have negative charge carriers rather than positive. The result

of doping remains the same, the addition of charge carriers to the copper oxide planes

via alteration of the off-plane constituents. These constituents are then often referred

to as the charge reservoir.

1.3 Anisotropy in CuO2 Planes

In 1995, a study by Tranquada et al. [22] on La1.6−xSrxNd0.4CuO4 examined the

peaks found in the static magnetic structure factor S(~q). This factor, expressed as

S(~q) =
1

NT

∑

j,~r

e−i~q·~r
〈

EN
0

∣

∣

∣ Sj · Sj+~r

∣

∣

∣EN
0

〉

, (1.1)

is a measure of the static orientation of electron spin within the material [23]. Here

Sj is the spin operator, |EN
0 〉 represents the ground state wave vector, and NT is

the number of sites. The expected results should have included a strong peak at

the ~q = (π, π) position, which would indicate the presence of antiferromagnetism.

However, four smaller peaks were found surrounding the ~q = (π, π) position, at

positions equally displaced from this point along the x and y directions (see figure 1.5).

These types of peaks are referred to as incommensurate (IC) peaks, and are indicative

of a magnetic structure which does not have the same period as the lattice. The

theory put forward by the authors to explain these peaks involved the alignment of

charge carriers into horizontally or vertically aligned domain walls of charge separating

antiferromagnetically aligned regions of spin containing no charge. These domain

walls were referred to as “stripes”. Further experimental study into stripe phases

led to their discovery in other cuprates. Yamada et al. [24] showed the existence
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incommensurability, which varies by experiment, being affected by a number of factors
including material and doping concentration.

of stripe behaviour in La2−xSrxCuO4 over a range of dopings in the superconducting

phase of this compound, while Dai et al. [25] showed similar types of IC peaks in

the underdoped regime of YBa2Cu3O7−x. The stripes found in these materials are

dynamic in nature, and represent a fluctuating state characterised by an anisotropic

modulation of spin. The stripes can be seen to move throughout the lattice. This is

opposed to the static stripe phase seen in La1.6−xSrxNd0.4CuO4, in which the stripes

become pinned by the crystal structure at x=0.12. The doping dependence of the

incommensurability was also studied in La2−xSrxCuO4 [24] and YBa2Cu3O7−x [26],

and both were found to have an approximately linear relationship with the doping

concentration up to effective planar dopings of 0.10. These results suggest that there

exists a stripe phase that is common to all cuprates, which would warrant further

study.
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A different type of stripe was found soon in the underdoped phase of La2−xSrxCuO4.

Work done by Wakimoto et al.[27] examined the stripe phase in the spin-glass regime

of La2−xSrxCuO4, at doping concentrations 0.03 ≤ x ≤ 0.05. The stripe phases found

here were of a slightly different nature than those found in the superconducting phase,

having an orientation rotated by 45o from the previously discovered stripes. In ad-

dition, later results on the same compound [28] yielded results suggesting that the

stripe phase at this range of doping was unidirectional, with the pair of IC peaks

lying along the orthorhombic b-axis being much stronger than the pair found along

the a-axis.

It is now widely accepted that the stripe phase is an important aspect of cuprate

superconductors. This in turn begs the important question “What causes this phase?”.

The answer to this question is most likely to be found within the physical structure of

the CuO2 planes. As a prime example, consider the compound La1.6−xSrxNd0.4CuO4,

since the stripe phase was first discovered in this material. The cause of the stripe

phase in this compound was attributed by the authors to the change in the crystal

structure of La2−xSrxCuO4 upon Nd doping [22]. Doping of this material with Nd

induces a structural phase change from the low temperature orthorhombic (LTO)

phase to the low temperature tetragonal (LTT) phase at low temperature. This

phase transition corresponds to a tilting of the CuO6 octahedra along the LTO a-

axis, which produces a buckling of the copper oxide planes [29]. In the LTO phase,

Cu-Cu bond lengths in-plane are only slightly anisotropic, while in the LTT phase

these anisotropies are enhanced. A diagram of these phases is shown in figure 1.6.

Also shown in this figure is the high temperature tetragonal (HTT) phase, in which

the in-plane Cu-Cu bond lengths are isotropic. La2−xSrxCuO4 is in this phase at high

temperature and high doping. Typical values for a and b for this phase within this ma-

terial are a = b = 3.78 Å[30]. The LTT phase, which shares the same axes as the HTT

phase, distorts these axes so that a 6=b, with b − a = 0.06 for La1.48Sr0.12Nd0.4CuO4
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Figure 1.6: The three phases of La2−xSrxCuO4 examined in this work, which are the
a) HTT phase, b) LTO phase, and c) LTT phase. The squares denote copper ions,
which are all in the same plane. The circles denote oxygen ions, which are displaced
either out of (+) or in to (-) the plane, or lie on the copper plane (unmarked).

[31]. The level of distortion is a function of both temperature and doping. The a and

b axes within the LTO phase are oriented along the orthorhombic axes shown in figure

1.6, as opposed to the usual tetragonal axes. Typical values for the lattice parameters

within this phase of La2−xSrxCuO4 are aortho = 5.34 Å , bortho = 5.41 Å[27].

The strength of the Cu-O orbital hopping is a function of bond length and bond

angle, two properties which are altered upon the transitions between these phases.

As a result, the most prevalent interaction on-plane becomes anisotropic, which could

potentially lead to a one-dimensional arrangement of charge. Other cuprate materials

exhibit this same type of transition. For example, a similar type of phase transition

occurs in YBa2Cu3O7−x at x = 0.30 [32], but the change in bond length associated

with this change is comparatively small.

Certainly the study of anisotropy in cuprates has been studied most fervently in

the context of stripes. However, the effects of anisotropy in the planes may have

a much broader scope than the stripe phase. The effects of anisotropic exchange

interactions on the physical properties of the CuO2 planes will be the focus of this
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work. In order to study these effects, numerical simulations on a two-dimensional

lattice will be used. These simulations will be carried out within the framework of

the t− J model, which will be introduced in Chapter 2. The model will incorporate

two different types of anisotropy, one of which will be suitable for the 45o stripes

seen in underdoped La2−xSrxCuO4, while the other will be suitable for the 90o stripes

seen in La1.6−xSrxNd0.4CuO4. Results using each of these types of anisotropy will be

presented in chapters 3 and 4, respectively.
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Chapter 2

The t-J Model

2.1 Introduction

The primary focus of this chapter will be to examine the origins of the t− J model,

and discuss the agreement between its results and those gained from experiment.

The data in this work will all be generated using this model. The current state of the

model, its merits and shortcomings, will also be discussed. The model is based on

the Hubbard model, which itself is based on the tight-binding approximation. These

two theories will be discussed first in order to provide the theoretical background for

the t− J model. Extensions to this base model will then be discussed.

2.2 Analytical Analysis of Cuprates

There exists in the field of condensed matter physics a vast array of theoretical pro-

cedures that one may employ to garner knowledge of crystalline materials. Which of

these methods is the most appropriate for cuprate materials is, of course, a matter

of contention. However, there is a degree of consensus in this issue in regard to the

appropriate starting point. The strong on-site Coulomb repulsion present in these

materials localises electrons, as discussed in section 1.2.1. Thus a model that explic-

itly accounts for this tendency towards localisation would be appropriate. Models

that account for this tendency are known as tight-binding models.
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2.2.1 Tight-binding approximation

The tight-binding approximation, also referred to as the generalised tight-binding

method, relies on construction of a basis set of localised one-electron wave functions.

The many body wave functions of a collection of atoms are then represented by a linear

combination of these atomic wave functions, and as such, the model has also been

named the linear combination of atomic orbitals method. In general, one constructs

a wave function of the type

|ψ〉 =
∑

i

ai|i〉, (2.1)

where the states |i〉 are the localised atomic orbitals. The coefficients ai satisfy the

normalisation condition
∑

i |ai|2 = 1. In this basis, the Hamiltonian matrix elements

assume the form Hij = 〈i|H|j〉 =
∫

ψ∗
i (r)Hψj(r) dV . The diagonal terms Hii = ǫi are

the on-site energies of the electrons on their respective sites, while the off-diagonal

terms Hij = tij represent hopping terms between sites i and j. Determination of

these hopping elements can be somewhat complex, given the nature of the atomic

wave functions |i〉, which are solutions to the spherically symmetric single-electron

Hamiltonian. These solutions can be found in any introductory quantum mechanics

text, and are generally presented as products of a radial function and a spherical

harmonic function. Even though evaluation of the atomic orbitals themselves poses

no great difficulty, evaluation of the overlaps between wave functions such as these

is almost a field unto itself, and in general requires a large amount of computational

work. For now it will suffice to say that these hopping elements are generally pa-

rameterised, and in most cases focus only on nearest neighbour hopping between

sites. The result is then a set of linear equations involving parameters describing the

energies of various sites and the hopping between these sites. These equations can

then be solved and the band structure of the lattice can be evaluated. The critical

assumption in this approximation is that the lowest occupied states of the material
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are bound states, and that the unbound states represent much higher energy excited

states. These excited states can then be neglected.

Note that this description contains only a formulism of the kinetic energy of the

electrons, as well as their on-site energies. The potential energy can be included by

the use of additional terms, the most important of which is the Coulomb repulsion.

This repulsion can be modelled by incorporating a V term into the diagonal elements

of the Hamiltonian. This term will add to the energy of a given state when electrons

exist on nearby orbitals. The 1/r dependance of the term implies that the potential

from a single electron would affect sites at large r, but in general the potential is

restricted to at most nearest neighbours. This is justified physically by the screening

effect of the ion cores and the electrons on this potential.

2.2.2 The Hubbard model

Now consider a case of the tight-binding model which only includes the highest energy

occupied orbitals present at each site, and includes a short-range Coulomb repulsion

term U that only affects electrons in the same orbital. The Hamiltonian corresponding

to this model is

H = −
∑

i,j, σ

tij(c
†
iσcjσ + c†jσciσ) + U

∑

i

ni↑ni↓, (2.2)

where c†iσ, ciσ are the creation and annihilation operators, respectively, of an electron

at site i with spin σ, niσ = c†iσciσ is the number operator, and tij is a parameter

measuring the orbital overlap between sites i and j. This model is the well-known

Hubbard model [33], which has been the topic of a great deal of study. Although very

simple, it can aptly describe the dominant physics in materials that exhibit strong

correlation between electrons, such as Mott insulators. Materials showing a strong

tendency towards a magnetic phase such as ferromagnetism or antiferromagnetism are

also well described by this model. Given that the cuprates are in both of these classes

of material, an extension of this model was applied to the copper oxide planes by V.
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Emery in 1987 [34]. This work considered the three highest energy orbitals occupied

in the low-temperature limit of the CuO2 planes, the Cu 3dx2−y2 orbital, and the O

2px and 2py orbitals. The model is known as the three-band Emery model. It was

postulated by Emery that the holes doped onto the O2− ions can couple with one

another via the local Cu spins, producing transition temperatures above 30 K. Since

this work, the three-band Hubbard model has become the basis of many theoretical

works on cuprates. The simplicity of this model does lend it some appeal, but this

simplicity is offset somewhat by its detail, which enlarges the size of the Hilbert space

it considers. Given that each site in the lattice can hold 0, 1, or 2 electrons, and that

singly occupied sites can have spin up or spin down electrons, the sheer volume of

states can severely limit the size of lattices that can be analysed with this model.

This in turn creates difficulties with extrapolating the results to the bulk limit of an

infinite lattice.

2.2.3 The t-J model

While the three-band Hubbard model is certainly a detailed and fairly accurate de-

scription of the electronic structure of the planes, simplifications to it have been made

in order to alleviate the complexity caused by its detail. Prior to the introduction of

the three-band model, Anderson proposed that a one-band Hubbard model could be

appropriate for the cuprates [35]. The one-band model proposed in this work contains

singlet pairs of holes, formed between a hole on a copper ion and a hole on one of

the adjacent oxygen ions. The benefit of this assumption is that each primitive CuO2

cell in the planes can be represented as one site, which greatly reduces the number

of states that need to be considered. However, it is unclear whether the one-band

model is sufficient to describe the low-energy physics of the system. Theoretical work

supporting the one-band model was presented by Zhang and Rice in 1988 [36]. This
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work examined all the states possible in a system containing a single Cu2+ ion con-

taining one 3d hole and four neighbouring O atoms, one of which contained a single

2p hole. By explicitly accounting for the phase of the Cu 3dx2−y2 , O 2px, and O 2py

orbitals, the singlet state formed between the O hole and the Cu hole was found to

have an energy of −15.4t, roughly 15t less than the triplet state. If one assumes that

holes doped into the planes can be represented by these singlet states, then the O

orbitals surrounding a Cu site can be expressed with one band instead of two. The

model can be further reduced by assuming that U ≫ t, ridding the model of Cu+ and

Cu3+ ions. By applying these two approximations, the three-band model can then be

reduced to a one-band model, with the holes being doped onto the O2− ions within

the planes. The spin of these holes is opposite that of the hole occupying the central

Cu2+ ion. It is then these local singlets that propagate through the lattice carrying

charge. The Cu2+ holes appear rigid, while the O holes appear to move throughout

the lattice.

One consequence of this reduction is the addition of magnetic exchange terms,

introduced in the perturbation theory upon elimination of the doubly occupied states.

The most prominent of these terms is the nearest neighbour copper-copper magnetic

exchange term, which appears as

J
∑

<i,j>

(

Si · Sj −
ninj

4

)

. (2.3)

Here the sum over < i, j > implies that each bond is only counted once. This

term couples the spins on neighbouring coppers, resulting in the AF configuration of

spin present in the planes, with positive J . This term represents the same type of

magnetic interplay discussed in section 1.2.1. The magnitude of the parameter J can

be expressed in terms of the Hubbard parameters t and U by the relation J ≈ 4t2/U .

Proof of this relation is given in Appendix A.
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The result of the approximations introduced by Zhang and Rice is the t−J model,

which describes a lattice with a single site per unit cell with two interactions present,

represented by the parameters t and J . Since it is assumed that U ≫ t, all the copper

sites contain a single electron, and all holes doped into the planes reside on oxygen

ions. The effective sites then have three possible states. If a hole is present on a

neighbouring oxygen ion, then the local singlet formed with the copper hole can be

represented by a spinless vacancy on the site. If a local singlet is not present, the spin

of the electron is represented as either up or down. Again, it should be stressed that

a “hole” on a site in this lattice does not simply correspond to a hole on a copper

site. All sites in the lattice have holes, regardless of which state described above is

present. The Hamiltonian of the t− J model can then be written as

H = −t
∑

<i,j>, σ

(c̃†i,σ c̃j,σ + h.c.) + J
∑

<i,j>

(

Si · Sj −
ninj

4

)

, (2.4)

where the index j is limited to nearest neighbour sites of i. The operators c̃†i,σ and

c̃j,σ are the projected Fermion creation and annihilation operators. The relations

c̃†i,σ = c†i,σ(1 − ni,−σ) and c̃j,σ = (1 − nj,−σ)cj,σ ensure that double occupancy of sites

is not allowed. Si is the spin operator, while ni = c†i,↑ci,↑ + c†i,↓ci,↓ is the number

operator. The number operator simply equals 1 if an electron is present at the site,

and 0 otherwise.

The elimination of oxygen sites and doubly occupied copper sites results in a large

reduction of the Hilbert space when compared to the Hubbard model. As an example

of this, consider a lattice involving four copper sites at the corners of a square, with

four intervening oxygen ions. In the half-filled case, with the total spin S fixed to

S=0, the Hubbard model has 784 states. In contrast, the t − J model has only 6

states. This makes the t−J model a suitable model for study on larger lattices. The

results from these lattices can then be extrapolated to the bulk limit with the use of
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periodic boundary conditions.

2.2.4 Parameter values

The hopping parameter t represents the ability of the singlet state centered about

one CuO2 cell to hop to an adjacent site. This parameter is based on the Hubbard

parameters Ud, tpd, and ǫp, where the subscripts p and d denote oxygen 2px, 2py

and copper 3dx2−y2 orbitals, respectively. Zhang and Rice [36] estimated the relation

between effective singlet hopping parameter t and the Hubbard parameters as t =

−1.5t2pd/(U − ǫp). Values for the Hubbard model parameters are numerous, and can

be obtained through the use of a wide variety of methods. Feiner et al. [37] used a

cell perturbation method on the three-band Hubbard model to obtain the parameter

set Ud = 7tpd, ǫp = 2.7tpd, and tpd = 1.3 eV. These parameters result in t = 368 meV

according to the relation given by Zhang and Rice. Other band structure calculations

of the Hubbard parameters give Ud = 5.7tpd, ǫp = 2.1tpd, and tpd = 1.4 eV [38].

These numbers are similar to that of Feiner, with the resulting value for t being 576

meV. Belinicher et al. [39] used these Hubbard parameters in a reduction of the full

three-band Hubbard model to the t− t′−J model, and concluded that t = 427 meV.

The exchange integral J has been estimated in a variety of ways, both theoretical

and experimental, for a number of cuprate compounds. Experimental fits for La2CuO4

have resulted in values of J = 133 meV [40], J = 128 meV [41], and J = 125 meV [42],

using different experimental techniques. Theoretical procedures yield similar values.

One can attempt to approximate J by evaluating the orbital overlaps, as discussed in

section 2.2.1. Values gained from such attempts place J between 100 and 140 meV

for most cuprates [43]. This approach can be quite complex, and relies on evaluation

of difficult integrals. As such, this method has not been used extensively. A more

popular method of evaluating the exchange integral within the t − J model is to

begin with the Emery model (see section 2.2.2) and map the model onto the t− J or
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extended t− J model. This has resulted in values of 126 meV [39] and 115 meV [44].

The generally accepted “realistic” values for t lie somewhere between 300 and

500 meV, with J being between 120 and 140 meV. If t is used as the energy scale,

then values for J/t lie somewhere between 0.25 and 0.45. There have been a number

of studies using J = 0.3t, J = 0.35t, and J = 0.4t . This work will primarily use

J = 0.4t. It should be noted that the ab initio calculations done using the Emery

model rely themselves on approximations to the Emery parameters. These parameters

include the on-site and next-site Coulomb repulsion terms, as well as the direct Cu-

O and O-O orbital hopping terms. Determination of these parameters is generally

conducted in the same way as the t parameter, by some sort of fitting to experimental

data that results in a range of values for the parameters. Thus, the values for t and J

gained by reducing the Emery model to the t− J model represent an approximation

which itself is based on an approximation.

2.3 t-J Model Results

To this point in time, it remains controversial as to whether the t − J model can

accurately describe the low-temperature behaviour of the high-Tc superconductors.

The model has reproduced many experimentally seen properties in the underdoped

region, including the strong quasiparticle peak found in angle-resolved photoemission

spectroscopy (ARPES) results, long-range AF correlations, and phase separation of

charge carriers. These results will be explained in detail in the following sections.

2.3.1 Spectral properties

The spectral properties of cuprates are generally associated with the spectral function

A(−)(~k, ω) and the density of states N (−)(ω). These quantities are defined as

A(−)(~k, ω) =
∑

n

|〈EN−1
n |c~k,σ|EN

0 〉|2 δ(ω − EN
0 + EN−1

n ) (2.5)
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N (−)(ω) =
∑

~k

A(−)(~k, ω), (2.6)

where EN
0 and |EN

0 〉 are the ground-state energy and wave function, respectively, and

EN−1
n and |EN−1

n 〉 are the nth excited energy and wave function of the eigenstate when

one electron is removed. Evaluation of these quantities numerically relies on the use

of the continuous fraction expansion [23], which involves a large number of Lanczos

iterations. Experimentally, A(−)(~k, ω) is measured using ARPES, while N (−)(ω) is

the angle-integrated intensity of this data. Due to the availability of ARPES data,

the spectral function is a well-studied quantity of the t−J model. Comparison of t−J

model results to experimental ARPES data has produced strong agreement with the

quasiparticle peak, the coherent part of the spectrum. However, the incoherent part

is missing from the t− J data. Numerical results for the energy dispersion using the

t−J model have produced similarities with experimental data along the ~k = (0, 0) to

~k = (π, π) cut of reciprocal space [45, 46]. However, there are discrepancies along the

~k = (π, 0) to ~k = (0, 0) line, and the ~k = (π, 0) to ~k = (0, π) line. The latter shows

a very flat dispersion in the numerical results [45], as opposed to the well-defined

peak of the experimental results [46]. The agreement between these results has been

augmented by inclusion of higher order hopping terms into the model, as discussed

in section 2.4.

2.3.2 Magnetism

The magnetic properties of the cuprates are in some cases well understood, and have

been well represented by theoretical models. The existence of an AF state in the

low temperature, low doping region of the phase diagram has been well supported in

theoretical models. Most studies of magnetic properties focus on the static magnetic

structure factor S(~q), defined in section 1.3, since this quantity is easily measurable

experimentally via neutron scattering. The strength of the AF order within the

lattice can be ascertained with this function by examining the weight of S(~q) at
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~q = Q = (π, π). A strong peak at this wave vector indicates the presence of AF

order. Early experimental results from Cheong et al. [47] showed the existence of IC

magnetic peaks in La2−xSrxCuO4 at x = 0.075 and x = 0.14. Subsequent theoretical

studies of S(~q) within the t− J and Hubbard models also showed the existence of IC

peaks in S(~q) around Q [48, 49]. These peaks diminished as the doping concentration

x was increased, with S(Q) scaling as 1/x. Thus the long range AF tendency of

the model was shown to diminish as the doping is increased, as has also been seen

experimentally. This agreement between experimental and theoretical results strongly

suggests that the magnetic portion of the model can aptly mimic the copper oxide

planes.

2.3.3 Charge ordering

The behaviour of the charge carriers on the planes carries a great deal of interest,

since the charge carriers are responsible for the superconducting behaviour. One of

the most discussed topics in this area is the debate over phase separation, and whether

this phenomenon is seen in the t− J model. Phase separation implies a congregation

of the holes into zones, with few or no holes in the spaces between these zones. The

real-space placement of the holes within the model can be evaluated through the use

of the hole-hole correlation function (HHCF) [23], defined as

Chh(~r) =
1

Nh

∑

i

〈

EN
0

∣

∣

∣ (1 − ni)(1 − ni+~r)
∣

∣

∣EN
0

〉

. (2.7)

The results from this function are highly sensitive to the value of the parameter

J . It has been shown that phase separation occurs within the model for J > 0.45,

while for J < 0.18 the holes separate as far apart as possible [50]. Between these

values, the holes tend to form bound pairs at distances of
√

2a [50, 51]. For most

compounds, J has been measured to be in the range of 0.3t to 0.4t, indicating that
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bound pair formation is the preferred behaviour of the charge carriers within the

model at realistic values of J . This result is encouraging for the validity of the model,

since bound pair formation is one of the key aspects of superconductivity. Charge

ordering has also been studied in the context of stripes. As discussed in section 1.3, the

current explanation for the charge and spin modulations seen in La1.6−xSrxNd0.4CuO4

is the orientation of the charge carriers into domain walls. This type of behaviour has

been seen in the t− J model using Density Matrix Renormalisation Group (DMRG)

techniques on four-leg ladders [52].

2.4 Extended t-J Model

As noted in section 2.3.1, the agreement between the numerical and experimental

results for the energy dispersion has been augmented through the use of additional

hopping terms. These terms allow motion of holes to sites at further distance than

nearest neighbour, and arise from the reduction of the Hubbard model to the t-J

model in a similar manner as the magnetic exchange. The most prominent of these

terms is t′, a second order term which allows holes to hop to next-nearest neighbour

sites. The importance of this parameter in reproducing experimental ARPES results

was shown by Nazarenko et al. [53].

There is some controversy surrounding these extended parameters. The effect

of t′ on the stripe phase has been tested using Hartree-Fock [54], DMRG [55], and

exact diagonalisation (ED) [56] calculations. The results clearly show a suppression

of stripe-like behavior for t′ < 0, and stabilization of stripes for t′ > 0. It has been

shown previously that t′ < 0 for hole doped cuprates and t′ > 0 for electron doped

materials [57, 58]. Also, experimental work using ARPES on Sr2CuO2Cl2 has provided

approximate values for t′ that are definitely negative for the hole doped materials [53].

Since a negative t′ suppresses stripes in the t− J model, an additional mechanism is

required to restabilize the stripes in the presence of a realistic t′ parameter.
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This mechanism could be a higher order hopping term t′′ that allows hole motion

to next-next-nearest neighbour sites a distance of 2a away. Even though t′′ has values

comparable to t′ and J [39], and the inclusion of t′′ was necessary for matching the

extended t− J model’s spectral function to the experimental ARPES data [59], very

little work has been done with this parameter to date, particularly in the context of

stripes.

Values for the extended parameters t′ and t′′ have been evaluated in much the

same way as the parameters t and J . A fit of the extended t−J model by Xiang and

Wheatley [59] to the ARPES data of Sr2CuO2Cl2 gave the following set of parameters:

J = 0.43t, t′ = −0.34t, t′′ = 0.23t. Later work by Leung et al. [60, 61] to the ARPES

data of Sr2CuO2Cl2 gave the following set of parameters: J = 0.3t, t′ = −0.3t,

t′′ = 0.2t and work by Kim et al. [62] with high resolution ARPES data obtain values

of: J = 0.40t, t′ = −0.34t, t′′ = 0.23t in agreement with Xiang and Wheatley [59].

The values for these parameters vary for each material, since the orbital overlaps are

different in each case. However, the differences are quite small. For La2−xSrxCuO4,

the parameters have been found to be somewhat less than for Sr2CuO2Cl2, with

0.3t ≤ J ≤ 0.4t, −0.2t ≤ t′ ≤ −0.1t, and |t′′| < |t′| [37, 63]. In general, values for the

extended parameters for all copper oxide planes lie within the range −J < t′ ≤ −0.1t

and 0 < t′′ ≤ |t′|. The extended parameter values used in this work will be within

this range.

2.4.1 Anisotropic models

The structural anisotropies discussed in section 1.3 can be represented in theoretical

models via anisotropic hopping parameters. The LTT phase of La2−x−yNdySrxCuO4

displays a disparity between the x- and y-directions, suggesting the need for anisotropic

t and J parameters. The effects of these parameters on the t − J model has been

examined using DMRG [54] and Monte Carlo [64] methods. These studies used
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anisotropic t and J parameters within the context of the standard t − J model to

examine the spin incommensurability and charge correlations. These properties are

the primary signatures of stripes. The results indicate that the anisotropic model

can enhance the incommensurability in the spin structure factor, while results for the

charge ordering signatures are inconclusive. The work done on the spin-glass regime

of La2−xSrxCuO4 focussed on the diagonal spin stripes of this compound [27]. In this

doping regime, the compound is in the LTO phase, which exhibits a small anisotropy

between the x̂ + ŷ and x̂ − ŷ directions. The diagonal stripe nature coupled with

the structural anisotropy suggest that an anistropic t′ term would be appropriate for

this level of doping. Recent work using such an anisotropic t′ term suggests this type

of anisotropy may enhance the spin incommensurability and one-dimensional charge

correlations [65].

Typically these anisotropies are ignored in theoretical models, since in most cases

the degree of anisotropy is small. However, the effects of even small anisotropies

have yet to be shown within the context of theoretical models. The extended t − J

model was treated in a similar way in early studies of CuO2 planes, with the extended

parameters being ignored due to the belief that the magnitude of these parameters is

much smaller than t. The strong effects of these parameters on the model has been

clearly shown, suggesting that the presence of even small changes in the parameters

may result in significantly different results from the model. This type of anisotropic

model will be the focus of this work. The precise values for the parameters and levels

of anisotropy will be discussed in the relevant chapters.

2.5 Numerical Analysis of Cuprates

The use of the tight-binding models allows theoretical cuprate analysis to be reduced

to the study of lattices of ions. The copper oxide planes can be represented as

small clusters of copper and oxygen sites, each of which can have a fixed number of
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possible states. The interactions between these states can be modelled using numerical

parameters. These clusters and their corresponding states can easily be represented

using computers, and can be solved using numerical methods. One such method is

the exact diagonalisation approach. In this method, the entire Hamiltonian of the

Hilbert space corresponding to a given set of quantum numbers is evaluated and

subsequently diagonalised. This gives the exact energy and ground state wave vector

for a given lattice. The method is somewhat restrictive in terms of the size of lattices

it can handle, since the Hamiltonian matrix is of dimensions NS × NS, where NS is

the size of the Hilbert space being examined.

There are a variety of methods which can be employed to carry out the diag-

onalisation of the Hamiltonian matrix. One of the more commonly used methods

is the Lanczos technique. In this method, a special basis is constructed in which

the Hamiltonian has a tridiagonal representation. This procedure is done in an it-

erative manner. Once the Hamiltonian is in this tridiagonal state, it can be easily

diagonalised using standard routines, such as bisection. To obtain the tridiagonal

representation, one begins with an initial random wave vector that serves as the trial

wave vector. With each iteration, the Hamiltonian is applied to the trial vector and

the resulting basis is orthogonalised. Each iteration gives values for one row of the

tridiagonal matrix, and a value for the energy can be extracted by diagonalising the

current form of this matrix. This results in a continued improvement of the energy

and trial wave vector with each iteration, until convergence in the energy is reached.

For calculations within the t − J model, this typically requires not more than 100

iterations. A more complete description of this technique can be found in a number

of works [66, 23, 67]. It should be noted that the Lanczos technique is generally

used at T = 0 K. It is possible to use the Lanczos technique at higher temperatures

using the Finite Temperature Lanczos Method [68]. This technique is generally more

time-consuming than the Lanczos method, but is able to examine the temperature
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dependence of calculated quantities. The standard Lanczos method will be used in

this work.

2.5.1 Finite lattices

Evaluation of the properties of cuprate compounds using numerical models requires

a model of the CuO2 plane. A simple and appropriate model for this is a two-

dimensional square lattice. For multiband models involving Cu-O interactions, such

as the three-band Hubbard model, each site on the lattice represents a copper or

oxygen ion, in alternating fashion. For single band models such as the t − J model,

each site can represent a single CuO2 cell.

Within the t − J model, each site can contain one of three possible states. The

size of the Hilbert space defined by a given lattice is then equal to 3N , where N is

the number of sites within the lattice. This creates a staggering number of states

for even a small sixteen site lattice, which is one of the smallest such lattices studied

using numerical models. The number of states can be reduced by fixing the total Sz

spin and total charge Q contained within the system. The fixing of these quantities is

justified by the absence of either a spin-flip term or a charge creation term within the

t− J Hamiltonian. Therefore each section of the Hamiltonian defined by a given set

of quantum numbers for Q and Sz comprises an independent system, which can be

examined separately. The total charge Q is set to mimic a given doping concentration,

while Sz is commonly set as close to zero as possible, representing an AF situation.

In order to represent an infinite lattice, periodic boundary conditions may be

used in conjunction with a finite lattice. The wave function is made periodic through

the use of Bloch’s theorem [69]. This theorem shows that the solution of the wave

equation for a periodic potential is a product of a periodic function u(~r) multiplied

by a plane wave of the form ei~k·~r. The wave function found through analysis of the

finite cluster of sites can then be applied to the infinite lattice. The relevance of
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these small clusters to the cuprates themselves is justified by the short correlation

length of the superconducting pairs. Pairing in cuprates has been shown to occur over

just a few lattice spacings, as opposed to the longer range pairing found in typical

Bardeen-Cooper-Schrieffer (BCS) superconductors. Thus the size of the cluster need

not be excessive in order to encompass the pertinent physics of the planes. However,

the size and shape of the finite lattice can rather unfortunately have a significant

impact on the results gained from numerical studies. These finite size effects are the

main drawback of the exact diagonalisation technique, which is restricted to small

clusters where these effects are most dramatic. Currently the largest size of cluster

to be studied using this technique is thirty two sites [60, 70], while studies on clusters

less than sixteen sites are scarce. The evolution of the Hilbert space to exponentially

greater sizes as the boundaries of the cluster are widened is a concern that can be

compensated for by the availability of faster and better computer systems.

One of the consequences of the imposition of a finite lattice is the discrete nature

of the allowed wave vectors ~k. According to the Bloch theorem, the wave function

satisfies the equation

Ψk(r) = eik·ruk(r). (2.8)

A translation through N sites in a given direction should leave the wave function

unchanged, so that

eik·a1N = 1, (2.9)

where a1 is the lattice spacing in that direction. This equation has N separate solu-

tions, of the form

k1 =
j

N
g1, j = 0, 1, . . . , N − 1 , (2.10)

where g1 is a reciprocal lattice vector. Therefore the number of wave vectors Nk

equals the number of sites within the finite lattice N .

This discrete set of wave vectors can prove to be an important hindrance when
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comparing results gained from numerical study with those gained from experiment.

For example, the energy dispersion relation is typically presented in experimental

studies along the ~k = (0, 0) → ~k = (π, 0), ~k = (0, 0) → ~k = (π, π), and ~k = (π, 0) →
~k = (π, π) lines. Several of these finite lattices have only two or three allowed wave

vectors along these lines. Fits to the experimental data can then be quite difficult

to create. Proof of IC magnetic peaks within the model is also hampered by this

discrete set of wave vectors. The IC peaks in La1.6−xSrxNd0.4CuO4, for example, lie

approximately at the ~k = (7
8
π, π) and ~k = (π, 7

8
π) positions within the first Brillouin

zone, wave vectors which are not found in most of the square clusters listed. Proof of

these peaks using numerical studies of small lattices is therefore more implicit than

explicit. The lack of the (π
2
, π

2
) wave vector in a number of square lattices is also a

concern, as this has been shown to be the proper ground state of the one hole model

[71].
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Chapter 3

LTO Phase

3.1 Introduction

As discussed in section 1.3, a number of cuprate materials exhibit the LTO structure.

This phase is depicted in figure 1.6. The most prominent of these is La2−xSrxCuO4,

which is in this phase at low doping and low temperature. In most numerical stud-

ies employing the t-J model, this phase has been considered isotropic. This is most

certainly true for the standard t-J model, which considers only nearest neighbour

exchanges. However, the LTO phase is anisotropic for all next-nearest neighbour ex-

changes. This can be modelled numerically via the use of an anisotropic t′ parameter.

The effects of including this anisotropy in the extended t-J model will be the primary

focus of this chapter. To this end, a variety of measurable quantities will be examined

with and without the use of anisotropy, to illustrate the effects of this change.

Three sets of values for the parameters t′ and t′′ will be used throughout this

chapter. t′ shall be set to values of −0.1t and −0.3t, while a case using t′ = −0.3t

with t′′ = 0.2t will also be examined in order to investigate the effects of t′′ on an

anisotropic t′ model. The anisotropy in t′ will vary from δt′ = 0.001t to δt′ = 0.01t,

where the relation between the isotropic t′ and the anisotropic t′x+y and t′x−y is given

by t′x+y = t′ + δt′, t′x−y = t′ − δt′.

In order to study the LTO phase, a square cluster of twenty sites will be used.

This cluster is pictured in figure 3.1. The twenty-site cluster is the largest square

cluster available that provides the ability to align charge in a stripe. The larger
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Figure 3.1: The twenty-site cluster that will be used in this chapter. Dashed lines de-
note the cluster boundaries. The site labelled as 4 is repeated to show the translation
vectors for this cluster.

twenty six-site square cluster can be represented as a single staggered row of twenty

six sites, which makes it unable to reproduce a striped arrangement of charge. The

square thirty two-site cluster is currently beyond the limitations of the computing

hardware available to the author of this work. The twenty-site cluster is then the

largest available choice. Although this cluster is quite small, the two-hole ground

state of this cluster is found at ~k = (0, 0) for a wide range of parameters. This

is representative of Cooper pairing, since Cooper pairs are comprised of two charge

carriers of wave vector ~k and −~k.

3.2 Binding Energy

The preference for holes on the planes to form bound pairs can be measured by the

binding energy, defined as

BE = E2 − 2E1 + E0, (3.1)

where En is the energy of the n−hole system. This quantity simply compares the

energy of a system containing two independent holes with that of a two-hole system.

A negative value indicates that the holes prefer to form a bound state, rather than
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act independently. The issue of binding is quite relevant to superconductivity, as the

formation of Cooper pairs is one of the primary aspects of the superconducting phase.

Results for the t − J model have shown binding energies that are strongly negative

for realistic parameter values. Given that the changes in the parameters of the model

are small when the anisotropy is included, one would not expect a great change in

the energy of the system. This hypothesis is confirmed in Table 3.1.

t′ t′′ δt′ BE
-0.10 0.00 0.000 -0.3540

0.005 -0.3465
0.010 -0.3395

-0.30 0.00 0.000 -0.2383
0.005 -0.2305
0.010 -0.2231

-0.30 0.20 0.000 -0.3488
0.005 -0.3408
0.010 -0.3332

Table 3.1: Binding energies of the twenty-site cluster as a function of t′, t′′, and δt′

While the strength of the binding is weakened by the anisotropy, the effect is

quite small, and bound pairs are still the most favourable behaviour of the charge

carriers. Note that while the energy changes are small, the introduction of anisotropy

can have a much more decided effect by changing the ground state wave vector of

the model. If an excited state with similar energy to the ground state is favoured by

the introduction of anisotropy, it is possible for this excited state to become the new

ground state. Given that the new ground state can have much different symmetry

than the old, this can have a profound effect on other measurable quantities. This

possibility will be discussed in further sections.
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3.3 Magnetic Properties

As discussed in section 1.3, the magnetic properties of the cuprates provide the pri-

mary signatures for stripes. The stripe phase is characterised by the formation of

spin waves, and static magnetic peaks which are IC with the lattice. These quantities

can be examined within the model with the use of the SSCF, and S(~q), respectively.

The SSCF [23] is defined as

Css(~r) =
1

NT

∑

i

〈

EN
0

∣

∣

∣ Si · Si+~r

∣

∣

∣EN
0

〉

. (3.2)

This function measures the averaged spin orientation as a function of distance. The

values given for a specific ~r value correspond to the probability of that site containing

an electron, with positive values indicating same spin, and negative values indicating

opposite spin. The results for the t− J model at low doping should show alternating

positive and negative values as ~r is increased by a lattice spacing, with the absolute

value of the results diminishing as ~r is increased. This result is indicative of strong

short-range AF behaviour, an important property of the cuprates. As the doping

level is increased, the magnetic correlations diminish, as one would expect since fewer

electrons are present. All of the values for this function presented in this work are

multiplied by a staggering term (−1)rx+ry . This term makes all the values positive

if they are antiferromagnetically aligned, while negative values indicate alignment of

spin not consistent with antiferromagnetism. This makes the presence of antiferro-

magnetism much clearer in the results.

In figure 3.2, the results found for this quantity are shown, for a cluster of twenty

sites with one hole and J = 0.4t. The results show the strong antiferromagnetism

previously discussed, with all spins within the cluster being antiferromagnetically

aligned. This tendency is affected very little by the parameters. As t′ is decreased

from t′ = 0t to t′ = −0.3t, the long-range correlations appear to strengthen, while the
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Figure 3.2: The staggered SSCF for the twenty-site cluster with one hole. The boxed
numbers denote ~r = (0, 0). The extended parameters used are shown above each case,
with J = 0.4t for all cases. The results on the left are for the isotropic case for the
parameters shown, while the results on the right are anisotropic with δt = 0.01t.

nearest neighbour correlations remain at the same values. However, the symmetry

of the nearest neighbour correlations is rotated by 90o. This is most likely due to a

change in the ground state symmetry of the problem, since the one hole ground state

wave vector is altered from ~k = (3π/5, 2π/5) to ~k = (π/5, 2π/5) with this change

in t′. The t′′ term appears to act as a dampening effect on t′, causing most values

to revert to values closer to the t′ = 0t case. When the anisotropy is introduced,

very little change occurs. Figure 3.2 shows the values for the SSCF when δt = 0.01t,

the extreme anisotropy limit. The values do not change by any appreciable amount.

The greatest change is approximately 0.008 in magnitude, which is less than 10% of
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the lowest value. The symmetry seems to be dominated by the wave vector, and the

small change in symmetry caused by the introduction of the anisotropy does little to

change this.

The results for the SSCF for the twenty-site cluster with two holes are presented

in figure 3.3. The left-hand side of the diagram illustrates the isotropic results for

the three different sets of parameters. As in the one hole case, the spins show AF

behaviour at short range, which diminishes as ~r increases. At the edges of the cluster,

the values become slightly negative, indicating that the orientation of the spins does

not follow the AF pattern with respect to the central spin. All the values are isotropic

in this case, due to the π/4 rotational symmetry of the two-hole ground state. The

values are not affected greatly by the differing parameters. The changes induced by

the introduction of extreme (10%) anisotropy can be seen on the right side of figure

3.3. The changes are much greater than those seen in the one hole case, which could

be attributed to the change in the ground state symmetry.

The LTO phase causes a preferred direction to appear, yet the sum of the values

at a given ~r value remains the same in both phases. The SSCF is therefore conserved

through the change, while the values are “split” between the two directions. The

splitting of the values is most prominent at
√

5a, with a similarly strong split at
√

2a.

The
√

5a sites are not equivalent and show a clear difference in the change of the

magnitude. Two of the
√

5a sites have the correct AF sign and the other four have

the opposite sign. The motion of the two holes in the LTO phase is less disruptive

to the spin background in the (1, -1) direction, while it is more disruptive to the

spin ordering in the (1, 1) direction. The cluster is too small to say for sure, but it

appears as though AF stripes are being formed along the (2, -1) direction that have a

modulation in the (1, 2) direction. It should be noted that on the twenty-site cluster,

the
√

8a sites are the 2a sites because of the periodic boundary conditions. Thus,

even though a spin modulation wave appears to occur, the precise direction is unclear
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Figure 3.3: The staggered SSCF for the twenty-site cluster with two holes. The
boxed numbers denote ~r = (0, 0). Negative results are printed in red, for clarity. The
extended parameters used are printed above each case, with J = 0.4t for all cases.
The results on the left are for the isotropic case for the parameters shown, while the
results on the right are anisotropic with δt = 0.01t.

because these sites are identical for this cluster.

The static magnetic structure factor S(~q), defined as

S(~q) =
∑

~r

ei~q·~rCss(~r), (3.3)

is another measure of the magnetic configuration of the lattice. While the SSCF mea-

sures spin correlations in real space, S(~q) measures these correlations in reciprocal

space. The AF tendency of the model can be seen in the (π, π) peak, the strength
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of which is indicative of the strength of the short-range magnetic correlations mea-

sured by the SSCF. The advantage of this function over the SSCF is that real-space

measurements are difficult to evaluate experimentally. The static magnetic structure

factor S(~q), however, can easily be found experimentally using neutron scattering.

The primary reason to examine this quantity is to probe the existence of IC

magnetic peaks. The AF (π, π) peak discussed above is split into four distinct peaks

in the neutron scattering data of Tranquada et al. [22]. In the t-J model, this can

be seen by the reduction of weight in the (π, π) peak of S(~q), and the increase in

weight of this quantity at values closest to this peak. This is generally difficult within

the confines of the small clusters available to the ED method, as discussed in section

2.5.1. The closest wave vectors within the twenty-site cluster lie at the ~k = (4π
5
, 3π

5
)

point, and all rotations of this point.

Table 3.2 shows the numerical values obtained for S(~q) for the reciprocal lat-

tice vectors (π, π), (4π/5, 3π/5), and (3π/5,−4π/5) in the LTO phase for the un-

doped, one-hole, and two-hole cases. This table illustrates the rapid decrease of

S(π, π) as a function of doping, and similarly the rapid increase of S(4π/5, 3π/5)

and S(3π/5,−4π/5) with doping. These results are consistent with the formation

of IC peaks around (π, π), although the lack of wave vectors around (π, π) for this

particular cluster prevents conclusive evidence of this. When the system is doped

with one hole, the anisotropy enhances S(π, π) in agreement with the experimental

results, which observed no IC peak at very low doping. The IC peaks start to form

at a larger doping concentration, which is in agreement with our results when the

doping is increased from one hole to two holes. The results for the anisotropic case

are also presented in table 3.2. This phase shows similar behavior, but note that the

symmetry evident here in the two-hole state is lost in this case at the same level of

doping. The difference between the phases is very small in the one hole case, but

becomes larger in the two-hole case. The values S(4π/5, 3π/5) and S(3π/5,−4π/5)
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~q = ~q1 ~q2 ~q3
|δt′|\ holes 1 2 1 2 1 2
(-0.1; 0.0)

0.000 3.6180 1.9079 1.0894 1.2809 0.9016 1.2809
0.010 3.6225 1.9078 1.0895 1.3155 0.9011 1.2465
0.020 3.6269 1.9073 1.0896 1.3498 0.9005 1.2127

(-0.3; 0.0)
0.000 3.7570 1.8252 0.9793 1.2676 0.8743 1.2676
0.010 3.7611 1.8252 0.9792 1.3017 0.8737 1.2337
0.020 3.7650 1.8252 0.9792 1.3354 0.8732 1.2003

(-0.3; 0.2)
0.000 3.5818 1.7068 1.0225 1.3098 0.9118 1.3098
0.010 3.5871 1.7068 1.0222 1.3384 0.9109 1.2812
0.020 3.5923 1.7068 1.0220 1.3670 0.9100 1.2530

Table 3.2: S(~q) as a function of doping, the anisotropy, and the parameters. The
three wavevectors are; ~q1 = (π, π), ~q2 = (4π/5, 3π/5), and ~q3 = (3π/5,−4π/5). The
three respective values for the undoped cluster are; 5.1546, 0.9222, and 0.9222.

in the anisotropic case exhibit a percentage change of +6.1% and −6.9% relative to

the isotropic case. The percentage difference between the two is proportional to δt′.

The nonsymmetrical growth of the values for S(4π/5, 3π/5) and S(3π/5,−4π/5) as

a function of doping seems to indicate unidirectional IC peaks in agreement with the

experimental results obtained by Wakimoto et al. [28] and by Fujita et al. [72] at x

= 0.05.

3.4 Charge Ordering

Given that the changes in the one hole case are fairly small, as shown in the previous

section, it is worthwhile to examine the relationships between the holes in the two-

hole case and what effects the anisotropy has on the two-hole state. While indeed

this may be outside the low doping regime for small clusters such as the twenty-site

cluster, the effect may well be based simply on the absolute number of holes rather

than the relative concentration. Therefore larger clusters could exhibit similar results
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while still being in the appropriate doping regime.

In order to study the real-space distribution of the holes, the HHCF defined in

equation 2.7 will be used. This function gives the numerical probability values for

hole placement as a function of distance. This probability is relative, and is indicative

of the hole spacing rather than the absolute placement of the holes within the cluster.

Previous measurements for this quantity within the t−J model have shown that two

holes prefer to form a bound pair with a separation of
√

2a [73, 50, 51, 70]. This

distribution is energetically favourable since the frustration to the spin background

caused by the holes is reduced. When additional hopping terms are included, as

in the extended t − J model, the holes separate as the kinetic energy of the holes

is increased. These results show a competition between the magnetic and kinetic

energies of the system. The magnetic energy is minimised by having the two holes on

opposite sublattices so that the magnetic frustration to the lattice is reduced, and on

nearest neighbour sites to reduce the number of missing bonds. Having two holes on

the same sublattice of the model, say two lattice spacings apart, would cause more

AF bonds to be broken. The kinetic energy of the holes is minimised by spacing the

holes far apart, as this allows motion of the holes to be free. A compromise between

these two factors is to have the holes spaced at distances of 3a or
√

5a. This agrees

with the results presented in figure 3.4. In the case where t′ = −0.1t, the maximum

in the HHCF occurs at
√

2a, which is in agreement with the previous results for the

t − J model [73, 50, 51, 70]. This is justified by the low kinetic energy present. As

t′ is decreased below −0.1t, the maximum shifts to
√

5a. The inclusion of a positive

t′′ shifts a significant amount of the weight from the inner sites to the outer sites so

that
√

10a is the maximum for the parameters t′ = −0.2t and t′′ = 0.1t. Figure 3.4

shows the same maximum at a distance of
√

10a for the parameters t′ = −0.3t and

t′′ = 0.2t. Note that even though the holes are as far apart as possible, they are

still bound together according to the binding energy results discussed in the previous
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Figure 3.4: Isotropic and anisotropic results for the HHCF for the twenty-site cluster
with two holes. The parameters used are printed above each case, with J = 0.4t.
The XXXX denotes the location of the first hole. The boxed number is the highest
probability of finding the second hole. The results on the left are for the isotropic
case for the parameters shown, while the results on the right are for the anisotropic
case with δt = 0.01t.

section.

The introduction of an anisotropic t′ produces some interesting behavior, as can

be seen in the results on the right side of figure 3.4. The HHCF at the
√

10a site

does not change as the anisotropy is increased. To a lesser degree, there is not much

change at the nearest neighbor sites (±a, 0) and (0,±a) either. The majority of the

change is at the
√

2a and
√

5a sites. Regardless of the values of t′ and t′′, the second

hole prefers to lie at site 8 in figure 3.1, which corresponds to a distance of
√

5a. The

placement of the holes at these locations results in a half-filled charge carrier stripe at
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Figure 3.5: Graphical representation of the placement of holes within the twenty-
site cluster with two holes, in the LTO phase. The whiter the area, the greater the
probability of hole placement. The parameters used are J = 0.40t, t′ = −0.09t/ −
0.11t, and t′′ = 0.00t. The cluster is shown in a ten site by ten site array by using
periodic boundary conditions. The boundaries of one cluster are shown for clarity.

an orientation of ∼ −25o due to the periodic boundary conditions. This is illustrated

graphically in figure 3.5.

The notion that the holes are forming bounded one-dimensional stripes in the

LTO phase is supported by the binding energies given in Table 3.1. Although for

each parameter set the binding energy is decreased in magnitude as the level of

anisotropy increases, the magnitude of the change is quite small. Thus, regardless of

the parameter set used, implementation of an anisotropic t′ into this model results in

the formation of half-filled, bounded, charge carrier stripes. The only effect that the

parameters have lie in the level of anisotropy required to produce this phase. For the

case where t′x+y = −0.09t, t′x−y = −0.11t, an anisotropy of δt′ = 0.008t is required

to shift the maximum from the
√

2a sites in the isotropic case to the
√

5a distance.

An anisotropy of only δt′ = 0.002t is required in the t′x+y = −0.29t, t′x−y = −0.31t,

t′′ = 0.20t case to shift the maximum from the
√

10a site in the isotropic case to the
√

5a distance in the anisotropic case.

The anisotropy in the HHCF is most robust at the four sites of distance
√

2a
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and the six sites of distance
√

5a with a percentage change on the order of δt′. The

emergence of a preferred direction is well supported, with values in the second and

fourth quadrants being higher than the corresponding distances in the first and third

quadrants. In an attempt to quantify the change, we can examine the percentage

difference of the HHCF, defined as

∆Chh(~r1, ~r2) = 200

∣

∣

∣

∣

∣

Chh(~r1) − Chh(~r2)

Chh(~r1) + Chh(~r2)

∣

∣

∣

∣

∣

. (3.4)

∆Chh(~r1, ~r2) is plotted in figure 3.6 as a function of δt′ and clearly shows the linear

relationship between the two. It is worth noting that ∆Chh(~r1, ~r2) depends linearly on

the difference in t′ and not on the percentage change in t′. These results illustrate the

split in the HHCF between the quadrants. It turns out that the percentage difference

in the HHCF is independent of the specific values of t′ and of t′′, and only depends

on δt′. This independence is only to leading order of magnitude since the values of t′

and t′′ will play a role with a large anisotropy.

3.5 Dynamic Magnetic Properties

The properties of transitions between magnetic states can be evaluated using the

dynamic magnetic structure factor Sµ(~q, ω) [23]. This function differs from its static

counterpart in its frequency dependence, and is defined as

Sµ(~q, ω) = 〈EN
0 |Sµ†(~q)

1

z −H
Sµ(~q)|EN

0 〉, (µ = +,−, z), (3.5)

where z = ω + iǫ + E0. Transitions between states of differing spin number S can

be evaluated using µ = +,−. Evaluation of this quantity results in an absorption

spectrum, the peaks of which correspond to the energy of the excitations. The ex-

istence of a spin gap can be ascertained from this spectrum by noting the location

of the first peak, which indicates the first available spin excitation. Note that in the
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Figure 3.6: The percentage difference in the HHCF as a function of the difference
in t′ for the parameters (t′, t′′) = (−0.3, 0.2). The first hole is located at site 11
in figure 3.1. The squares are for |~r| =

√
5a (sites 1 and 14), the triangles are for

|~r| =
√

2a (sites 8 and 17), and the circles are for |~r| =
√

5a (sites 3 and 18). A
detailed definition of the percentage difference can be found in the text.

absence of an external magnetic field, the components Sz, Sx, and Sy of the total

spin ~S are equal. Given that Sx = 1
2
(S+ + S−), it is sufficient to calculate only Sz

in the S = 0 state. In this state the S+,− operators are equivalent, and will therefore

each contribute half of the weight of the Sx spectrum. Note that the weight of the

spectrum provided by S(~q, ω) is directly related to S(~q), with
∫

S(~q, ω)dω = S(~q).

Previous results for this function [74, 75] within the t− J model have focussed on

the Sz results, at the AF wave vector ~Q = (π, π). These results show the existence

of a large low energy peak at ~q = (π, π) for x < 0.25, which diminishes and nearly

vanishes at higher doping concentrations. This is consistent with the static magnetic

results. Studies of this quantity typically examine S = 0 states, which are able to
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Figure 3.7: Sz(~q, ω) results for the twenty-site cluster with zero holes in the isotropic
case. The figure on the left is for ~q = (π, π), the right for ~q = (4π/5, 3π/5). J = 0.4t
for both figures. The units for the y-axis are arbitrary, while ω is in units of t.

reproduce the predominantly AF behaviour seen in the cuprates.

In order to view the effects of doping on Sz(~q, ω), results from zero- and two-

hole cases in the twenty-site cluster will be presented. The one-hole cases have been

omitted, since these do not represent an S = 0 state. The zero-hole results for

Sz(~q, ω) are presented in figure 3.7, for ~q = (π, π) and ~q = (4π/5, 3π/5). The latter

wave vector is the closest to the (π, π) point within this cluster, so any evidence of IC

peaks would most likely be seen here. The results for both wave vectors show a single

excitation peak, with no feature elsewhere in the spectrum. The peak for ~q = (π, π)

is quite large, with a magnitude approximately 5.7 times that of the ~q = (4π/5, 3π/5)

peak. The ~q = (4π/5, 3π/5) peak is also shifted to much higher energy, with the peak

at this wave vector occurring at ω = 0.89t as opposed to ω = 0.19t for the ~q = (π, π)

peak.

The two-hole results for Sz(~q, ω) in the twenty-site cluster for ~q = (π, π) and

~q = (4π/5, 3π/5) are presented in figure 3.8, for two different parameter sets. The

existence of the large low energy peak at ~q = (π, π) can still be seen, although the

magnitude is diminished somewhat from the zero-hole case. This peak is centered

at ω = 0.35t with a magnitude of 9.8719 for the t′ = −0.10t case, while the peak
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Figure 3.8: Sz(~q, ω) results for the twenty-site cluster with two holes in the isotropic
case. The figures on the top and bottom are for ~q = (π, π) and ~q = (4π/5, 3π/5),
respectively, while the figures on the left and right are for t′ = −0.10t and t′ = −0.30t,
respectively. J = 0.4t and t′′ = 0 for all the results. The units for the y-axis are
arbitrary, while ω is in units of t.

is centered at ω = 0.31t with a magnitude of 9.1354 for the t′ = −0.30t case. The

intensity of this first excitation peak is roughly 40% of that of the zero-hole case,

for both parameter sets. Note that this is approximately the same level of reduction

seen in S(π, π) when comparing the undoped case to the two-hole case. These results

agree with those seen in the previous studies of this quantity [74]. The results for the

~q = (4π/5, 3π/5) wave vector show a smaller peak than the ~q = (π, π) spectrum, but

the difference is less pronounced than in the zero-hole case. Note here the existence

of three peaks as opposed to the one primary peak of the ~q = (π, π) spectrum. The

first peak in the ~q = (4π/5, 3π/5) case is centered at ω = 0.28t with a magnitude of

3.8874 for the t′ = −0.10t case, while it is centered at ω = 0.19t with a magnitude
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Figure 3.9: ∆Sz(~q, ω) results for the twenty-site cluster with two holes, for q = (π, π).
The figure on the left is for t′ = −0.10t, the right for t′ = −0.30t.

of 3.4540 for the t′ = −0.30t case. The isotropic results show a similar response to

the parameter values for both wave vectors, with the t′ = −0.10t case having a larger

first excitation peak at higher energy than the t′ = −0.30t case.

Upon introduction of δt = 0.10, the spectra show changes similar to those seen

in S(~q). For ~q = (π, π), the location of the low energy peak shifts very slightly to

ω = 0.35t from ω = 0.34t for the t′ = −0.10t case, while the peak for the t′ = −0.30t

case remains at ω = 0.31t. The magnitude of the peak is relatively unchanged, which

agrees with the S(~q) results. To illustrate the difference between the isotropic and

anisotropic spectra, we shall define a quantity ∆Sz(~q, ω) = Sz
aniso(~q, ω) − Sz

iso(~q, ω).

Figure 3.9 shows ∆Sz(~q, ω) as a function of ω for both parameter sets used. The re-

sults are very similar in both cases, with two shifts in peaks being shown for each pa-

rameter set. These shifts are indicated by the portions of the graphs where ∆Sz(~q, ω)

makes a transition from positive to negative values, which would correspond to a shift

to lower ω. Note that the largest magnitude of ∆Sz(~q, ω) is roughly 0.01, which is

only 0.1% of the maximum isotropic value. Thus even though a reduction in the spin

gap is seen for both parameter sets, the difference is so minimal that it can essentially

be ignored for this wave vector.

The ~q = (4π/5, 3π/5) and ~q = (3π/5,−4π/5) results for ∆Sz(~q, ω) are shown in
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Figure 3.10: ∆Sz(~q, ω) results for the twenty-site cluster with two holes. The top and
bottom figures are for q = (4π/5, 3π/5) and q = (3π/5,−4π/5), respectively, while
the figures on the left and right are for t′ = −0.10t and t′ = −0.30t, respectively.

figure 3.10. These results illustrate a considerably larger degree of change for this

wave vector, as opposed to ~q = (π, π). The highest magnitude of change is 0.4265 for

the t′ = −0.30 case and 0.4501 for the t′ = −0.10 case, which are approximately 12%

of the peak values seen in the isotropic case. The values also appear shifted to lower ω

in both parameter sets. The prevalence of positive data for this function indicates that

the anisotropic case has higher values throughout most of the spectrum, represent-

ing an overall increase of the weight of S(~q, ω) upon introduction of the anisotropic

parameters. The increase in weight for this wave vector is offset by the decrease in

weight at the wave vector ~q = (3π/5,−4π/5), which is the ~q = (4π/5, 3π/5) vector

rotated by π/2. The spectra shown are almost identical in shape, but mirrored over

the x-axis. This would indicate that the magnitude of the change is the same in both
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cases, but the ~q = (3π/5,−4π/5) results have been shifted to higher ω as opposed to

lower ω.

The splitting of the weight between the ~q = (4π/5, 3π/5) and ~q = (3π/5,−4π/5)

results is also seen in the S(~q) results seen in the previous section. This is not

surprising considering the relation between the two functions. However, the S(~q, ω)

results illustrate the splitting of the position of the peak, in addition to the magnitude.

This indicates that the spin excitation is of lower energy in one direction than the

other, and thus represents a preferred direction for a spin modulation. From the

results shown in this section, it appears as though this spin modulation is forming

along the ~q = (4π/5, 3π/5) direction, which is rotated by almost 90o from the direction

of the charge stripe.

3.6 Summary

The chapter focussed on the examination of the LTO phase in the low doping regime

of La2−xSrxCuO4. This examination was carried out on a twenty-site cluster by using

a variety of correlation functions. Similar results were found for most of the functions

presented. The SSCF and S(~q) results show strong AF behaviour for both the one-

and two-hole cases. The anisotropy had little effect on the one-hole case, while a

much more pronounced effect is seen in the two-hole case. A spin modulation seems

to appear in the two-hole case, but the precise direction is unclear. The HHCF results

in the isotropic case show a different preferred configuration for each parameter set.

Upon introduction of anisotropy, the holes align in a state where they are all at a

distance of
√

5a apart, regardless of the parameters. This state appears as a stripe

when the periodic boundary conditions are considered. The existence of a “split”

of the correlation functions between the x̂ + ŷ and x̂ − ŷ directions can be seen in

the HHCF and SSCF, as well as in S(~q). This “splitting” is conserved, that is to

say, the increase in weight in one direction is equal to the decrease in weight in the
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other. When the magnitude of the split in the HHCF is graphed versus the level of

anisotropy, a perfectly linear relationship is found. This splitting is also seen in the

results for S(~q, ω), which show a shift in the peak positions for ~q = (4π/5, 3π/5) and

~q = (3π/5,−4π/5), in addition to a splitting of the weight.
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Chapter 4

LTT Phase

4.1 Introduction

The experiments by Tranquada et al. [22] on La1.6−xSrxNd0.4CuO4 revealed the ex-

istence of a static stripe phase for x = 0.125, which was thought to be responsible

for the suppression of the superconducting state at this level of doping. The reason

for the appearance of stripes in this compound as opposed to the lack of stripes in

La2−xSrxCuO4 was attributed to the structural change of the compound from the

LTO phase to the LTT phase when Nd ions are doped into the lattice. The LTT

phase, shown in figure 1.6, shows the structural change caused by the Nd ions. The

buckling of the planes causes the on-plane Cu-O-Cu bonds to become anisotropic.

Since these bonds are the nearest neighbour bonds in the t-J model, the nearest

neighbour parameters t and J should reflect this anisotropy if this compound is to be

analysed correctly.

4.2 Parameters

The buckling of the CuO2 planes caused by the LTO → LTT transition results in a

change in the bond angle of the copper-oxygen in-plane bonds. The separation be-

tween the ions remains mostly unchanged, but the orbital overlap between the copper

and oxygen ions is affected by the change in angle. Since the hopping parameter t

within the t−J model is based on this overlap, an anisotropy in t would be expected.
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Normand and Kampf [76] estimated the angular dependancy of t as

ty = tx | cos(π − 2Φ) |, (4.1)

where Φ is the bond angle. Investigation of the bond angle within the compound

has revealed the distortion to be not more than 5o, which results in the percentage

difference between tx and ty, | tx − ty | /tx, to be approximately 1.5%. Given that

J ∝ t2 within the model (see Appendix A), this would create an anisotropy in J of

roughly 3%.

Based on this information, four parameter sets will be used within this chapter to

investigate the effects of this anisotropy on the model. The maximum anisotropy in

t will be set to 10% of t, so that tx = 0.9ty. Cases where tx = 0.925ty, tx = 0.95ty,

and tx = 0.975ty will also be examined, with the latter being the closest to the 5o

distortion described above. Parameter sets involving ty > tx, Jy > Jx will also be

examined, since the twenty-four site cluster is not rotationally invariant under π/4

rotations. The values for J based on these t values are summarised in Table 4.1. The

extended t− J model parameters t′ and t′′ have been excluded from the data in this

chapter.

tx Jx Bond Angle (o)
1.000 0.400 0.0
0.975 0.380 6.4
0.950 0.361 9.1
0.925 0.342 11.2
0.900 0.324 12.9

Table 4.1: Values for tx to be used in this chapter with corresponding values for Jx,
with ty = 1 and Jy = 0.4. The same values will also be used for ty and Jy, with tx = 1
and Jx = 0.4.

While Chapter 3 focussed on results from a twenty-site cluster, this chapter will

primarily focus on the twenty-four site cluster shown in figure 4.1. The stripes found
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Figure 4.1: The 4x6 twenty four-site cluster that will be used in this chapter. Within
this chapter, the direction running from site 1 to site 21 shall be labelled as the
y-direction, while the direction running from site 1 to site 4 shall be labelled the
x-direction.

in the LTT phase of La1.6−xSrxNd0.4CuO4 lie directly along the copper and oxygen

bonds. In order to find such stripes on small clusters, the cluster should not be tilted

in a manner that would make it impossible to generate such a stripe using periodic

boundary conditions. Such is the case for most small clusters, including the twenty-

site, twenty six-site, and thirty two-site clusters. The 4x4 sixteen-site cluster has the

required symmetry, but is plagued by finite size effects. The 4x6 twenty four-site

cluster is the next available choice. All the data for this chapter has been obtained

from this cluster.

4.3 Binding Energy

The analysis of the anistropic model will once again begin with the binding energy.

This property is somewhat more pertinent for the LTT phase than the LTO phase, as

the levels of doping in which the stripes occur are higher for the LTT phase. The dop-

ing percentage for two holes on a twenty-site cluster, for example, is x = 0.083, which

lies within a doping regime in which the stripes are found in this compound. This

justifies further the examination of two-hole states when probing for stripe behaviour

in this cluster. The binding energies for the twenty four-site cluster as a function of
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Figure 4.2: The binding energy of the twenty four-site cluster as a function of the level
of anisotropy in t. The boxes correspond to tx < ty, while the diamonds correspond
to tx > ty.

the anisotropy are shown in figure 4.2. A strong tendency towards binding can be

seen when the anisotropy is introduced in either direction. As the level of anisotropy

is increased, the results indicate a suppression of binding for the tx < ty case, and an

enhancement of binding for the tx > ty case. The relation between δt and the BE is

approximately linear in the anisotropic tx case, where a change of 0.1t in tx results in

an increase of 0.0991t in BE. The anisotropic ty case does not follow the same linear

relation, with the change in BE diminishing as δt is increased. The total decrease in

BE is only 0.0164t for this case over the same change in δt. The suppression of the

binding energy in the tx < ty case is insufficient to break the bound state, with BE

at the highest level of anisotropy being −0.3032t. If the linear relation holds beyond

these levels of anisotropy, then values for tx lower than 0.6ty would be required to

cause the binding energy to become positive. It is then safe to assume that two holes

doped into the model using this cluster form a bound state for the parameter values

used.
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4.4 Charge Ordering

The binding energy results from section 4.3 show the formation of bound pairs within

the twenty four-site cluster. The orientation of these bound pairs within real space

should also be analysed. As in Chapter 3, this shall be measured using the HHCF.

The results for the HHCF on the twenty four-site cluster are shown graphically in

figure 4.3. The square indicates the location of the first hole and the size of the circle

indicates the relative probability of finding the second hole at that site. The results

found using isotropic parameters show some interesting behaviour. Even without

the presence of anisotropic parameters, the HHCF is highly anisotropic. The largest

probability of finding the second hole is at the sites horizontal to the first hole, which

corresponds to the large circles in figure 4.3, with slightly smaller probabilities just

above and below these sites. The three sites in the horizontal direction that contain

the largest circles have a combined probability of 33.25% of finding the second hole

at these three sites. If expanded to a 3 X 3 square formed with the largest circles

then the probability increases to 72.89%. Hence, the two holes are essentially aligned

in a horizontal row. When the periodicity of the lattice is accounted for and we

extend these results to the infinite two-dimensional lattice, the result is a horizontal

stripe-like structure, with pairs of holes aligning in a single row with a distance of

2a between holes in the row, and a distance of 6a between the rows. This type of

alignment can be seen more clearly in figure 4.4.

When the anisotropy is introduced into the parameters, the probability of the

second hole residing in the 3x3 square discussed above diminishes when tx < ty, and

strengthens when tx > ty. For the anisotropic x parameters in the most extreme

case, the probability of lying within the square is 68.95%, a reduction of only 3.94%.

The probability becomes 74.49% when the most extreme anisotropy is used in the

y-direction, an increase of 1.60%. Both changes are quite small given the high level

of anisotropy. This further supports the claim that the absence of π/4 rotational
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Figure 4.3: The HHCF for two holes on the twenty four-site cluster with J = 0.4t
and periodic boundary conditions. The black square indicates the location of the
first hole, while the sizes of the circles indicate the probability of finding the second
hole at that site. The largest circle corresponds to a probability of 13.25%, while the
smallest to a probability of 0.77%.

symmetry in the ground state effectively quenches any effect from the anisotropic

parameters, as seen in the twenty-site one-hole results from the previous chapter.

The total hole momentum of the system is ~k = (π, 0), which suggests a net

motion of the holes in the x-direction. Thus the bound pairs appear to move along

the direction of the stripe. The high correlations for the (2,-1) and (2,1) positions

seem to suggest that the holes do have a limited amount of motion in the y-direction.

The results are similar to those seen in Chapter 3, with the second hole having a high

probability of placement on a site that is degenerate with itself by a rotation of π/2.

However, results for the HHCF on a 12 x 12 cluster within the t − J model using

the Hartree-Fock technique have also shown orientation of the holes into horizontal

stripes with spacing of 2a [76], so this may indeed be indicative of the ground state

of the model.
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Figure 4.4: A graphical view of the hole alignment seen in the twenty four-site cluster.
A total of six clusters are shown, in 2 rows of 3 columns, aligned according to the
boundary conditions for this cluster. The light and dark regions denote high and low
probability of hole placement, respectively.

4.5 Magnetic Properties

The magnetic properties of the model are again the most important signatures of

stripes. The presence of a spin wave in the numerical results is a good indication of

the presence of a stripe in the model. IC peaks in the static magnetic structure factor

are also a key experimental signature of stripes.

Results for the SSCF using the isotropic parameter set are shown on the left side

of figure 4.5. The results are presented with the inclusion of the staggering term

outlined in section 3.3. Even without the anisotropic parameters, the results are

extremely anisotropic. The correlations in the x-direction are highly AF, while in the

y-direction the correlations are somewhat diminished. In fact, the AF behaviour in
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Figure 4.5: The results for the staggered SSCF for the twenty four-site cluster with
two holes. On the left are the results using isotropic parameters, while on the right
are the results using tx = 0.9ty. J = 0.4t in both cases.

the y-direction almost vanishes at a distance of only two lattice spacings. This implies

that AF behaviour is somewhat frustrated in this direction, yet remains strong in the

x-direction.

The effects of the introduction of anisotropy into the model can be seen on the

right side of figure 4.5. The results shown are for the case where tx = 0.9ty. This

reduction of the hopping in the x-direction strengthens the AF correlations in the y-

direction, while weakening them in the x-direction. The change is also linear, as seen

in figure 4.6, which shows the change in nearest neighbour correlation as a function

of δt. The difference in magnitude compared to the isotropic state is approximately

the same in each direction, with a change of 0.0254 in the y-direction and a change

of 0.0321 in the x-direction. If these numbers are expressed as a percentage of the

original isotropic values, then the y-direction change is 13.2% while the x-direction

change is 10.6%. With reduced hopping parameters in the y-direction, the changes are

reversed. The x-direction nearest neighbour AF correlations are increased by 0.0243,

while those in the y-direction are reduced by 0.0282. These changes in magnitude are
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Figure 4.6: The difference in magnitude of the SSCF at nearest neighbour distance
as a function of the anisotropy in t in the x-direction (tx < ty). The diamonds are for
~r = (0, a), while the boxes are for ~r = (a, 0).

similar to those seen in the tx = 0.9ty case, while the percentage changes in this case

are 8.0% and 14.6% for the x- and y-directions, respectively.

The behaviour of the function is similar to that seen in section 3.3, where the

introduction of anisotropy caused a “splitting” of the correlation function results

between the x + y and x − y directions. In the LTT case, where the anisotropy

is along the x and y axes, the values are “split” between the x and y directions.

However, unlike the results from Chapter 3, the values for the staggered SSCF at a

given distance are not conserved with the introduction of the anisotropy. For example,

the sum of the nearest neighbour SSCF values in the isotropic case is −0.5096, while

in the anisotropic case the sum is −0.5075. This may be due to the already anisotropic

nature of the cluster itself.

The appearance of spin modulation in a certain direction is clear in all cases

shown. The isotropic results show a strong modulation of spin in the y-direction,

perpendicular to the aligned pairs of holes seen in the previous section. This is

indeed an indication of stripe behaviour. The introduction of reduced hopping in
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the x-direction into the model reduces this modulation, which can be viewed as a

weakening of the stripe. This agrees with the results presented for the HHCF. The

introduction of reduced hopping in the y-direction reverses these changes, further

modulating the spins in the y-direction. This indicates a strengthening of the stripe

phase, which also agrees with the previous results.

In order to examine the existence of IC peaks within the model, S(~q) (equation

3.3) will again be used. While the twenty-site cluster used in Chapter 3 had no wave

vectors along the lines ~q = (π, 0) → (π, π) and ~q = (0, π) → (π, π), the twenty four-

site cluster has four wave vectors along the former line and three along the latter.

This facilitates the investigation of IC peaks within this cluster. In addition to the

two-hole state examined throughout this chapter, results from the zero- and one-hole

states will be included. These results will provide further evidence into the existence

of IC peaks in a similar manner to that seen in Chapter 3.

~q 0 holes 1 hole
~q = (0, π) → (π, π) (0, π) 0.4724 0.5092

(π
2
, π) 0.8392 0.8475

(π, π) 5.5998 4.1140

~q = (π, 0) → (π, π) (π, 0) 0.5325 0.5118
(π, π

3
) 0.6828 0.6671

(π, 2π
3

) 1.3025 1.3180
(π, π) 5.5998 4.1140

Table 4.2: Results for S(~q) on the twenty four-site cluster with zero and one holes.
J = 0.4t for both cases, with t′ = t′′ = 0.

The zero and one hole results for S(~q) within the twenty four-site cluster are

shown in table 4.2. Shown in this table are isotropic results for the wave vectors most

pertinent to the examination of IC peaks. Six wave vectors are shown, all of which

lie along the lines ~q = (π, 0) → (π, π) and ~q = (0, π) → (π, π). The reduction in the
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~q = (π, π) result as the doping is increased from zero holes to one hole can clearly be

seen, and this agrees with the results found in Chapter 3. However, this point marks

the only significant difference between the results for each doping level. The similarity

between the results for each level of doping at wave vectors other than ~q = (π, π) is

quite plain, suggesting that there is little change in the magnetic structure upon

removal of an electron from the zero hole ground state. Also of note in these results

is the disparity between the two directions shown. In a square cluster with isotropic

parameters, the results along each of these lines should be equivalent. This is not

seen here, as can be seen from the values for ~q = (0, π) and ~q = (π, 0). However, the

disparity is fairly small, particularly in the one hole case. Numerically speaking, the

~q = (π, 0) value is 12.7% larger than the ~q = (0, π) value in the zero hole case, and

only 0.51% larger in the one hole case. The values for the other ~q values presented are

more difficult to compare, since the points along each line are not rotations of each

other. However, it is worth noting that the value for the ~q = (π/2, π) wave vector

lies between the values for ~q = (π, π/3) and ~q = (π, 2π/3), suggesting a constantly

increasing function for S(~q) as ~q approaches ~q = (π, π).

~q tx = ty tx = 0.9ty ty = 0.9tx
~q = (0, π) → (π, π) (0, π) 0.3952 0.4847 0.3224

(π
2
, π) 0.7474 0.8540 0.6684

(π, π) 2.8255 2.8940 2.6623

~q = (π, 0) → (π, π) (π, 0) 0.6428 0.5573 0.7423
(π, π

3
) 0.8278 0.7206 0.9390

(π, 2π
3

) 1.7632 1.6353 1.8558
(π, π) 2.8255 2.8940 2.6623

Table 4.3: Results for S(~q) on the twenty four-site cluster with two holes. The
corresponding values for J are shown in table 4.1.

The results for S(~q) within the twenty four-site cluster with two holes are presented
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in table 4.3. The results for all parameter sets again show a peak at the ~q = (π, π)

location, indicative of the strong AF correlations present. The isotropic results show

much higher values for S(~q) along the ~q = (π, 0) → (π, π) line than the ~q = (0, π) →

(π, π) line, with the (π, 0) value being approximately 1.60 times larger than the (0, π)

value. This is a much larger difference than that seen in the zero- and one-hole

cases. To better illustrate the differences between the one-hole case and the two-

hole case, a graph of the these results along each of the aforementioned lines can be

seen in figure 4.7. The two-hole results clearly show a suppression of S(~q) along the

~q = (0, π) → (π, π) line when compared to the one-hole case, and an enhancement

of S(~q) along the ~q = (π, 0) → (π, π) line. This is suggestive of the formation of IC

peaks along the ~q = (π, 0) → (π, π) direction. From these results, it is doubtful that

if IC peaks are indeed seen in this cluster at this level of doping that they would be

equivalent along each of these lines. This would imply the existence of a unidirectional

stripe phase, in agreement with the experimental results of Wakimoto et al. [28].

The effects of the introduction of anisotropy into the model is also shown in table

4.3. These results show a reduction of S(~q) values along the ~q = (π, 0) → (π, π) line

with the introduction of anisotropic x parameters, and an increase in S(~q) values along

the ~q = (π, 0) → (π, π) line. The opposite is true with the introduction of anisotropic

x parameters. In accordance with the discussion of the stripe signature above, this

would appear to indicate the enhancement of the stripe phase with the introduction of

anisotropic ty, and suppression of the stripe phase with the introduction of anisotropic

tx. This is similar behaviour to that seen from the SSCF and HHCF results for this

cluster.

4.6 Correlations Across Holes

One of the major aspects of the stripe phase in La1.6−xSrxNd0.4CuO4 is the AF phase

boundary that results in the IC magnetic structure. Tranquada et al. [22] proposed
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Figure 4.7: S(~q) as a function of ~q within the twenty four-site cluster. The squares
and plus symbols denote results for the one-hole case along the ~q = (0, π) → (π, π)
and ~q = (π, 0) → (π, π) directions, respectively. The crosses and circles denote results
for the two-hole case along the same lines. For the results along the ~q = (0, π) →
(π, π) line, the ~q values labelled are for qx, with qy = π. For the results along the
~q = (π, 0) → (π, π) line, the ~q values labelled are for qy, with qx = π.

that the existence of AF correlations across holes contained within the stripe would

cause this type of magnetic structure. These correlations are perpendicular to the

stripe. Within the t − J model, these correlations can be measured using the 3-site

correlation function (3SCF), defined as

Cσ,µ(~r) =
1

Nh

∑

i

〈EN
0 |ni−~r,σ(1 − ni,↑)(1 − ni,↓)ni+~r,µ|EN

0 〉. (4.2)

This function measures the correlations between an electron of spin σ at site i − ~r

and an electron of spin µ at site i+~r surrounding a hole at site i. This can be viewed

as measuring the local spin background around the holes. Previous results for this

function have shown the existence of strong AF correlations across holes within the

t − J model [77, 78]. The implication of this type of correlation is that holes have

an increased chance of hopping to a nearest neighbour site if the spins on either side
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tx/ty
1.0/1.0 0.9/1.0 1.0/0.9

x-direction FM 0.3261 0.3411 0.3175
AF 0.4739 0.4733 0.4822

y-direction FM 0.3796 0.3718 0.3845
AF 0.5745 0.5897 0.5622

Table 4.4: Results from the 3SCF showing the AF and FM correlations between spins
on either side of a hole, in each direction, for the twenty four-site cluster. Note that
the values for each case do not add up to 1. The missing probability is the chance
that 2 holes are placed at nearest neighbour distance in that direction.

of the hole (along the axis of the hop) are antiferromagnetically aligned. After the

hole hops, the two spins will now be nearest neighbours and be antiferromagnetically

aligned, which is energetically favourable. Ferromagnetic correlations across the hole

would frustrate the antiferromagnetism after a hop, thus reducing the probability

that the hole will hop in that direction.

The 3SCF is ideal for examining these correlations within the twenty-four site

cluster, as the stripes are not tilted as they are in the twenty-site cluster. This allows

us to examine the AF correlations across holes within the stripe perpendicular to the

direction of the stripe. Isotropic and anisotropic results for this function within the

twenty four-site cluster are shown in table 4.4. The isotropic results show a strong

tendency towards AF correlations across holes in both directions, with the y-direction

correlations being particularly strong. As discussed above, this would seem to indicate

motion of holes predominantly in the y-direction. The ground state wave vector is

(π, 0), signifying a net zero momentum in the y-direction. This infers that the holes

would be moving in opposite directions. Net motion of holes in the x-direction is also

implied by the (π, 0) momentum of the ground state, and the strong AF correlations

also seen in this direction favour this behaviour.

The anisotropic results seen in the table are very similar to the isotropic results.

Lowering the exchange parameters in the x-direction results in an increase in the
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ferromagnetism across holes in that direction, while the AF correlation for the x-

direction is essentially unchanged from the isotropic state. These results infer a

slight reduction of hole motion in the x-direction, due to the magnetic frustration

caused. The opposite is true of the y-direction results, with higher AF and diminished

ferromagnetic correlations. When the anisotropy is introduced in the y-direction,

the change is similar in magnitude, but opposite in sign. This obviously suggests

a strengthening of the stripe, which agrees with the results from the two functions

already examined. However, the degree of change for this function when either type

of anisotropy is introduced is quite small, with the greatest percentage change from

the isotropic state being roughly 4.6%.

This 3SCF data assists in clarifying the results seen for the SSCF. With the holes

being predominantly displaced from one another in the x-direction, and the spins

having a strong tendency to antiferromagnetically align across these holes in the y-

direction, an AF frustration is introduced into the lattice in the y-direction. When

the strong AF correlations in the x-direction are coupled with the results from the

3SCF and the HHCF, the local spin structure around the holes is as seen in figure 4.8.

The HHCF suggests that the holes be placed two lattice spacings apart, while the

3SCF implies that the spins surrounding these holes should be antiferromagnetically

aligned in both the x- and y-directions. Using these results as a starting point, the

remainder of the spins are arranged as antiferromagnetically as possible. Note that

in the example configuration shown, the antiferromagnetism becomes frustrated in

the y-direction at the cluster boundary, which would serve to weaken the results

for the SSCF in the y-direction. The x-direction correlations would remain strong,

as there is no frustration present in this direction. This type of structure, along

with perturbations of it, would appear to be the most dominant configurations of

charge and spin within the model based on the results from the correlation functions

examined within this chapter. These preferred states are weakened by the inclusion
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Figure 4.8: An example of a preferred configuration of spins and holes for the twenty
four-site cluster with two holes. The circles denote the positions of the holes, while
the up and down arrows denote spin up and spin down electrons, respectively. The
bottom row of the cluster is repeated at the top of the figure to clearly show the
relation between spins at the cluster boundary. This structure is periodic in the
x-direction. Broken AF bonds are shown with the curved and dotted lines.

of tx < ty, and strengthened by tx > ty. Increasing the anisotropy further in the

x-direction could result in an altering of this state. Note that a lower degree of

magnetic frustration in the model, and therefore lower energy, could be achieved if

the correlations across the holes in the y-direction were FM. However, the 3SCF

results appear to indicate that antiferromagnetism in the region containing no charge

is secondary to having strong AF correlation across the holes in this direction. Since

this latter type of correlation is found in stripe phases, this provides further evidence

that a stripe phase is indeed preferred for this cluster.

4.7 Extreme Anisotropy

As seen in the results for the twenty four-site cluster presented in the preceding

sections, the introduction of anisotropic t and J parameters in the x-direction weakens
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Figure 4.9: Energy of the twenty four-site cluster as a function of δtx. The diamonds
denote the ~k = (π, 0) energies, while the boxes denote the ~k = (0, 0) energies.

the spin correlations in the x-direction while strengthening them in the y-direction.

This indicates a weakening of the state described in section 4.6, where the holes are

aligned in a horizontal row with the local spin background seen in figure 4.8. It

is worthwhile to investigate the possibility of disturbing this state even further by

introducing an even higher level of anisotropy. The SSCF results appear to indicate

that hole motion in the x-direction is being hampered as the level of anisotropy in

this direction is increased, so that motion in this direction would eventually cease

if the anisotropy continued to increase. To this end, results from a case involving

Jx = 0.306 and tx = 0.875 will be presented in order to show the effects of extreme

anisotropy on this cluster.

The energies of the model as a function of the level of anisotropy are shown in

figure 4.9, for the wave vectors ~k = (π, 0) and ~k = (0, 0). Up to a level of tx = 0.9ty,

the ground state wave vector remains ~k = (π, 0). However, the ground state changes
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Figure 4.10: HHCF results for the twenty four-site cluster with two holes under
extreme anisotropy (tx = 0.875ty). The black square indicates the location of the
first hole, while the sizes of the circles indicate the probability of finding the second
hole at that site. The largest circle corresponds to a probability of 7.23%, while the
smallest to a probability of 2.09%.

to a ~k = (0, 0) ground state between tx = 0.9ty and tx = 0.875ty. This represents a

change in rotational symmetry from the ~k = (π, 0) ground state, which would affect

all the values for the correlation functions. Each of these functions will be examined

in turn to determine these effects.

Upon examination of the charge ordering within the ~k = (0, 0) ground state using

the HHCF, the results shown in figure 4.10 are found. The probability of finding the

second hole at a distance of 2a away in the x-direction, previously the site with highest

probability, has diminished by roughly 57% from 0.1191 to 0.0507. No remnant of the

stripe phase can be seen in this data. The results are now similar to those previously

seen for this function in the t − J model, with holes having the highest probability

of being displaced by a distance of
√

2a or a. The probability that the second hole

is at these two sites is 0.07227 and 0.06320, respectively. The holes now appear to

prefer to lie on neighbouring columns as opposed to on the 3x3 square described in
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Figure 4.11: Staggered SSCF results for the twenty four-site cluster with two holes
under extreme anisotropy (tx = 0.875ty). The values on the left are for tx = 0.9ty,
provided for comparison. The boxed results denote the location of the first spin
(r = 0).

section 4.4. Also of note is the increased probability of holes being displaced from

one another in the y-direction when the extreme anisotropy is introduced. These

probabilities are approximately double the values for the tx = 0.9ty case. However,

the probability of a nearest neighbour alignment of spins in the y-direction is only

0.0429, considerably smaller than the 0.0632 probability of a nearest neighbour pair

in the x-direction. Therefore the state where the holes are vertically aligned could

correspond to a first order perturbation of the preferred state where the holes are in

neighbouring columns.

The effect of the extreme anisotropy on the static magnetic properties of the model

can be seen in the SSCF results shown on the right side of figure 4.11. The results for

the case where tx = 0.9ty are shown on the left for comparison. The change is quite

substantial, with the stronger AF correlations now being found in the y-direction

as opposed to the x-direction. The magnitude of the increase for all values directly

along the y-axis ranges from 0.0432 to 0.0642, while the decrease in the values along
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the x-axis is roughly the same magnitude. This implies that the spin modulation has

rotated by 90o, and that the stripe signature seen in the results with lower levels of

anisotropy has been destroyed. This agrees with the results seen for the HHCF. The

y-direction correlations remain fairly strong even at a distance of 3a away, suggesting

strong long-range AF behaviour along this direction. The frustration in the magnetic

correlations in the x-direction may be due to the increased probability of nearest

neighbour placement of holes in this direction.

The change in the static magnetic properties can also be observed with S(~q).

The results for this quantity shown in table 4.5 illustrate a drastic change from the

tx = 0.9ty case to the tx = 0.875ty case. All values along the q = (0, π) → (π, π)

line experience a large enhancement for both the one- and two-hole cases, while the

opposite is true of the q = (π, 0) → (π, π) line. The changes are similar to those seen

when comparing the isotropic case to the tx = 0.9ty case, but the magnitude of the

change from the latter case to the tx = 0.875ty case is much more pronounced. For

example, the change in magnitude for the S(~q) results from the isotropic case to the

tx = 0.9ty case was roughly equal to 0.1, for all wave vectors except q = (π, π). The

magnitude of the change for these same wave vectors has now grown to 0.2-0.4 when

δt is increased from δt = 0.10 to δt = 0.125, a very drastic increase.

The results for S(~q) now appear to exhibit a state with stronger results along the

q = (0, π) → (π, π) line than the q = (π, 0) → (π, π) line, in contrast to the results

seen for this function when isotropic parameters are used. This conclusion is again

difficult to assert since the wave vectors along each line are not equivalent, with the

exception of the endpoints. The final column in table 4.5 shows the one-hole results at

this level of anisotropy. These values are provided to show the similarity between the

one-hole and two-hole S(~q) results at all q 6= (π, π). Note that this level of similarity

is not seen in the isotropic results, where it was strongly suggested that the two-hole

results were indicative of IC peaks. The results for the tx = 0.875ty case would then
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2 holes 1 hole
~q tx = 0.9ty tx = 0.875ty tx = 0.875ty

~q = (0, π) → (π, π) (0, π) 0.4847 0.7766 0.7419
(π

2
, π) 0.8540 1.1396 1.0223

(π, π) 2.8940 3.1232 4.4405

~q = (π, 0) → (π, π) (π, 0) 0.5573 0.3500 0.3846
(π, π

3
) 0.7206 0.5657 0.5269

(π, 2π
3

) 1.6353 1.1920 1.1078
(π, π) 2.8940 3.1232 4.4405

Table 4.5: Results for S(~q) on the twenty four-site cluster with one and two holes, for
tx = 0.875ty.

appear to indicate that the incommensurability has been removed with this level of

anisotropy.

The 3SCF also appears affected in a similar manner by the extreme anisotropy.

Results for this function are shown in table 4.6. The most prominent result is the

reduction of the AF correlations and enhancement of the FM correlations in the x-

direction. The change in the FM correlations in this direction is quite pronounced,

with a 26.5% increase in this value when compared to the tx = 0.9ty case. The

equality of the AF and FM correlations in the extreme anisotropy case would suggest

that hole motion in the x-direction is no longer preferred. The changes in the y-

direction correlations are similar in sign to that of the x-direction, but dissimilar

in magnitude. The AF correlations are most affected, with the value for the 3SCF

being reduced by 10.6%. The FM correlations remain roughly the same. Even with

these changes, the y-direction AF correlations remain much stronger than the FM

correlations with this level of anisotropy, which would suggest that hole motion in

the y-direction is only slightly diminished.
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tx/ty
0.9/1.0 0.875/1.0

x-direction FM 0.3411 0.4316
AF 0.4733 0.4420

y-direction FM 0.3718 0.3869
AF 0.5897 0.5273

Table 4.6: Results from the 3SCF showing the AF and FM correlations between
spins on either side of a hole, in each direction, for the twenty four-site cluster in the
presence of extreme anisotropy (tx = 0.875ty). The results for tx = 0.9ty are also
included for comparison.

4.8 Summary

The results presented in this chapter focus on the LTT phase of cuprate materials,

specifically La1.6−xSrxNd0.4CuO4. This phase has anisotropy between the a- and

b-directions on-plane, which can easily be incorporated into numerical models using

anisotropic parameters. This chapter examined some of the results gained using these

parameters within the t− J model on a twenty four-site cluster that allows a vertical

or horizontal stripe.

The HHCF results coupled with the binding energy results strongly suggest the

existence of a phase involving aligned bound pairs of holes, which when viewed as

a sequence of aligned clusters results in what appears to be a stripe phase. The

AF correlations across the holes in the y-direction support this claim, as do the IC

magnetic peaks. The SSCF results for this cluster in the x-direction also indicate the

presence of an AF region of spin between the charge stripes. The spin correlations

in the y-direction are diminished, possibly due to a frustration caused by the AF

correlations across the holes in this direction. The anisotropic parameters served to

weaken this state when the hopping was reduced in the x-direction, and strengthen it

when the hopping was reduced in the y-direction. Upon introduction of an ever higher

level of anisotropy in the x-direction, the stripe structure vanishes and is replaced by

a state similar to that seen in other clusters within the t − J model. This state
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consists of holes found primarily at nearest neighbour and next-nearest neighbour

distances. The results for the correlation functions in the extreme anisotropy case are

still highly anisotropic, with a reduced chance of charge aligning in the y-direction,

and enhanced AF spin correlations in this same direction. This is most likely due to

the rectangular nature of the cluster.
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Chapter 5

Conclusion

The anisotropy present on the copper oxide planes of cuprate compounds has been

well illustrated in experimental data of the structure of these compounds. In most

cases, the degree of anisotropy is quite small, but the impact of this small change on

results gained from the model has had little study to date. The results in Chapters

3 and 4 of this work show that even small changes in the values of the parameters

can clearly alter the ground state of the system. In most cases, the changes seen in

the correlation functions are linear with the change in anisotropy, which represents a

simple change in the ground state purely based on the values of the parameters. In

other cases, such as the extreme anisotropy case studied in Chapter 4, the anisotropy

produces a change in symmetry of the ground state, drastically altering its behaviour.

The difficulty of examining the LTO phase using the ED technique has been

illustrated throughout Chapter 3. The appropriate doping range for the LTO phase

corresponds to a single hole for the twenty-site cluster. The single hole ground state

wave vector should lie at (π/2, π/2), a wave vector that is not allowed in this cluster.

Rather, the ground state wave vector lies near this point, and does not confer any type

of symmetry to the ground state. The introduction of the anisotropic parameters is

not enough to overcome the effects of the symmetry and thus the anisotropy does not

seem to have any effect on the model. The two-hole cases, however, show promising

results. The symmetry and ground state wave vector correspond to what should be

found on the copper oxide planes. Introduction of anisotropic parameters into the

two-hole systems results in a much higher degree of change than the one-hole cases,
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and a strongly linear relationship can be seen between the two. While the doping

concentrations are inappropriate for the LTO phase, it is quite possible that the same

results could be seen in larger clusters where the doping concentration would be more

appropriate. This would require either the use of a technique other than ED, or an

improvement in currently available computer hardware. The examination of a two-

hole state in the appropriate doping regime would require a lattice of approximately

forty sites or more, which is currently beyond the largest cluster size that has been

studied by ED.

The linear relationship between the change in correlation function and the level of

anisotropy is worthy of future analysis. This relationship was found in both Chapters

3 and 4. For most of the cases studied using anisotropic values for either the t or

t′ parameters, the values for the correlation functions could be predicted based on a

small number of values. The only deviation from this behaviour would be due to a

change in the ground state wave vector, which would necessitate a full study of the

ground state energies of the model. There also exists the possibility that this type of

relationship could be proved theoretically, which would offer a predictive model for

the effects of anisotropy within the t− J model.

The results for S(~q, ω) in Chapter 3 show the relatively small effect of the anisotropy

on this quantity. A splitting of the weight between wave vectors which are π/2 ro-

tations was clearly seen, but this is essentially the same result gained from the S(~q)

results. The shifting of the peak to higher or lower energy represents the most im-

portant result from this quantity. However, the shift was relatively small, and is

difficult to see without plotting the difference between the isotropic and anisotropic

results. This data seems to indicate that the spin gap is relatively unchanged by the

anisotropic parameters. This would imply that the energy of the excited spin states

is altered in a very similar manner to that of the S = 0 state. This possibility is easily

tested, and could be the focus of future work. The effect of the anisotropic parameters
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on other dynamical properties, such as the spectral function, could also be examined.

This function should show a greater change due to the anisotropy than that seen in

S(~q, ω), since the effects of anisotropy on states of different doping concentration was

shown in Chapter 3 to be quite dissimilar.

It should be restated that one of the main reasons for examining the effects of

anisotropy on the model was due to the work done by Tranquada et al. [22] on

La1.6−xSrxNd0.4CuO4, which has been shown to exhibit the LTT phase. This LTT

phase could be linked to the existence of the stripe phase seen within this compound.

Therefore the study of the LTT phase within the confines of the t− J model and the

study of the existence of stripe phases within the same model are closely tied. Within

this work, the existence of a stripe phase within the model is strongly suggested, but

this is certainly difficult to prove. The cluster sizes are simply too small to make any

clear conclusion in regards to this issue. In addition, the boundary conditions make

any kind of hole alignment have only a few available possibilities. For example, the

stripe state seen in the twenty-site cluster is the only possible arrangement of holes

that leads to a aligned stripe. However, the holes do prefer this alignment to any

other upon instantiation of anisotropic parameters, a result which strongly suggests

a striped ground state in the presence of anisotropy. The results from the twenty

four-site cluster are similar, with the holes aligning themselves parallel to one axis

of the cluster. Supporting evidence from other measurable quantities all agree with

the notion of a stripe phase within the twenty four-site cluster in its isotropic form.

While this may seem like a finite size effect at first glance, it was shown in Chapter

4 that upon instantiation of extreme anisotropy, the results from the twenty four-site

cluster mimicked previous results for charge distribution, with high probabilities of

holes being displaced by a or
√

2a. Indeed, all signatures of stripes disappear from

the results for all quantities measured once the extreme anisotropy limit is reached,

implying that the results seen in the isotropic state are a function of the parameters

77



as well as the shape of the cluster. However, it is difficult to say without doubt

that this is indeed a striped phase, since the number of holes within the cluster is

simply too small. The best conclusion that can be made is that the results suggest

a ground state that consists of aligned pairs of holes that share the characteristics of

striped phases. Further work on larger clusters with a higher overall number of holes

must be analysed before the results can be conclusively named a stripe phase. It

should be noted that 45o oriented diagonal stripes, such as those seen in underdoped

La2−xSrxCuO4, can only be seen in very few square clusters, such as the sixteen- and

thirty two-site clusters. This type of charge ordering is then quite difficult to see

within the confines of small lattices.

The shape of the twenty four-site cluster used in Chapter 4 is similar to four-leg

ladders used in a number of numerical works [52, 79]. The alignment of holes in

these ladders appears to be the same in most studies, with bound pairs separated by

two lattice spacings appearing on the rungs of the ladders. The results found here

support these results, which may be indicative of a finite size effect of clusters with

this shape. Examination of the same cluster with three holes should ideally result in

an alignment of holes along the y-axis direction as opposed to the x-axis. This would

indeed be representative of a stripe, if the same AF correlations were present across

the holes. These results are not available at this time, however, and present a case for

further study. The case involving extreme anisotropy presented in this chapter does

remove the effect seen, but again this level of anisotropy is not physically relevant.

The intended result of Chapter 4 was to begin with an isotropic, non-striped state

in the isotropic parameter case and induce a stripe phase with the introduction of

the anisotropic parameters. The appearance of stripes within the twenty four-site

cluster for the isotropic parameter case, and the subsequent breaking of the stripe

phase when the anisotropy is increased to a high level, is certainly one of the more

surprising results of this work. However, even though the results appear opposite to

78



what was intended, it was shown that the anisotropy can indeed have an effect on

the ground state symmetry of the model. Given that the goal of this study was to

examine the effects of anisotropy on the t− J model, the changing of this symmetry

still represents a satisfying result. The ability of the anisotropy to change the ground

state of other square or rectangular clusters poses a case for further work.

In summary, the anisotropic parameters used in this study provide results that are

suggestive, but not conclusive, of striped behaviour in the anisotropic t − J model.

The correlation functions examined are not only functions of the parameters, but of

the shape of the cluster. Thus the results gained could be due to either of these two

factors. The shape of the cluster also limits the study of reciprocal space, where the

wave vectors are discrete for a finite lattice, yet continuous within the compounds

themselves. Comparison of the two is therefore again merely suggestive rather than

conclusive. In order for the results to become more applicable to real compounds,

larger clusters must be analysed. Currently this can be accomplished using techniques

other than ED, but these methods have their own limitations. ED continues to be

a precise method that will only improve with the availability of faster computer

systems, which will allow the study of the effects of anisotropy on larger clusters

which can also allow stripes. One such cluster is the thirty two-site cluster, which as

stated previously can support either a 45o or 90o stripe. This cluster also contains

the (π/2, π/2) reciprocal lattice vector, making it an ideal candidate for study of a

single hole. While single hole results have been done to this date, two hole results

are limited, and it this level of doping that is more pertinent to stripes. Therefore

study of this particular cluster using the techniques of this work appears to be the

next logical step in the analysis of the effects of anisotropy on the physics of copper

oxide planes.
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Appendix A

Reduction of the Hubbard model

As discussed in Chapter 2, the Hubbard model can be reduced to the t− J model by

making the assumption that U ≫ t, thereby eliminating doubly occupied sites. This

process is non-trivial and will be explained within this appendix. The Hamiltonian

corresponding to the Hubbard model is shown in equation 2.2. Note that the U term

in this model simply equals U if the site i is doubly occupied, and 0 if it is not.

If one examines the copper oxide planes within the context of the Hubbard model,

there exists two bands for the copper sites due to the Coulomb repulsion between two

electrons on the same site. The lower Hubbard band represents the quantum states

with a maximum of one electron per site, while the upper Hubbard band represents

states with at least one site occupied by two electrons.

We shall define two projection operators P and Q, which will correspond to the

lower and upper band, respectively. These operators will be defined by the relations

P |ψ〉 = 0|ψ〉, Q|ψ〉 = |ψ〉 if the state |ψ〉 contains any doubly occupied sites, and

P |ψ〉 = |ψ〉, Q|ψ〉 = 0|ψ〉 if the state |ψ〉 contains no doubly occupied sites. This also

leads to the relations QP |ψ〉 = 0, PQ|ψ〉 = 0, QQ|ψ〉 = Q|ψ〉, PP |ψ〉 = P |ψ〉.
The Hubbard Hamiltonian can then be rewritten using these projection operators

as

H = −
∑

i,j, σ

tij(Pc
†
i,σcj,σP + Pc†i,σcj,σQ+Qc†i,σcj,σP +Qc†i,σcj,σQ) + U

∑

i

Qni,↑ni,↓Q

= Ht +HU . (A.1)

This equation explicitly accounts for the hopping of an electron from a site containing

one or two electrons to a site that, after the hop, now contains either one or two

electrons. Only one term is required for the U term, since the state |ψ〉 must contain

doubly occupied states for this term to be non-zero.

The goal of the reduction of the Hubbard model will be to eliminate any interaction

between the bands, thus allowing the study of either band individually. To this end,

we must perform a canonical transformation of the Hamiltonian given above to a new
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Hamiltonian H̃. This transformation will be done by evaluating the relation

H̃ = e−iS̃†

HeiS̃, (A.2)

where eiS̃ is a unitary operator [80]. This implies that S̃ is Hermitian so that S̃ = S̃†.

The operator S̃ is chosen in order to eliminate the interactions between the lower and

upper Hubbard bands. We shall let S̃ = −iS, where S will be chosen to be of the

form

S =
1

U

∑

i,j,σ

[αi,jQc
†
i,σcj,σP + βi,jPc

†
i,σcj,σQ], (A.3)

where the α and β terms are complex constants to be evaluated later. We can also

write S̃† = iS†, where

S† =
1

U

∑

i,j,σ

[α⋆
i,jPc

†
i,σcj,σQ+ β⋆

i,jQc
†
i,σcj,σP ]. (A.4)

Since S̃ is Hermitian, this implies that α⋆
i,j = −βi,j. The terms αi,j and βi,j are then

real, and we can write S as

S =
1

U

∑

i,j,σ

[αi,j Qc
†
i,σcj,σP − αi,j Pc

†
i,σcj,σQ]. (A.5)

Substitution of S̃ = −iS, S̃† = iS into equation A.2 gives

H̃ = e−iS̃†

HeiS̃ = e−SHeS. (A.6)

If one expresses the exponential functions in equation A.6 as a series, then this equa-

tion becomes

H̃ = (1 − S +
S2

2!
− . . .) (Ht +HU) (1 + S +

S2

2!
+ . . .)

= H − S(Ht +HU) + (Ht +HU)S − SHUS +
1

2
SSHU +

1

2
HUSS + . . . (A.7)

= H +H1 +H2 + . . . , (A.8)

where H1 = HUS − SHU and H2 = HtS − SHt − SHUS + 1
2
SSHU + 1

2
HUSS. Sub-

stitution of S into H1 gives

H1 = [U
∑

k

Qnk,↑nk,↓Q][
1

U

∑

i,j,σ

(αi,jQc
†
i,σcj,σP − αi,jPc

†
i,σcj,σQ)] − SHU (A.9)
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The second term is zero due to the presence of a QP operator. The first term can be

written as

HUS =
∑

i,j,σ

∑

k

αi,jQnk,↑nk,↓Qc
†
i,σcj,σP. (A.10)

Since the operator P will project out all states with a doubly occupied site, and Q

will project out all states that do not have a doubly occupied site, this term will

only be non-zero if there is a single doubly occupied site at site i. The sum over the

number operators will then equal 1. Therefore we can remove the sum over k and

write this term as

HUS =
∑

i,j,σ

αi,jQc
†
i,σcj,σP. (A.11)

The SHU term can similarly be shown to be

SHU = −
∑

i,j,σ

αi,jPc
†
i,σcj,σQ. (A.12)

If these terms are now substituted into equation A.8, H̃ becomes

H̃ = H +H1 +H2 + . . .

= −
∑

i,j, σ

ti,j(Pc
†
i,σcj,σP + Pc†i,σcj,σQ+Qc†i,σcj,σP +Qc†i,σcj,σQ) + U

∑

i

Qni,↑ni,↓Q

+
∑

i,j,σ

αi,jQc
†
i,σcj,σP +

∑

i,j,σ

αi,jPc
†
i,σcj,σQ+H2 + . . . (A.13)

Note that if αi,j = ti,j, H1 will cancel with the two inner terms from Ht. By making

this substitution, S and H become

S =
1

U

∑

i,j,σ

ti,j(Qc
†
i,σcj,σP − Pc†i,σcj,σQ) (A.14)

H̃ = −
∑

i,j, σ

ti,j(Pc
†
iσcjσP +Qc†iσcjσQ) + U

∑

i

Qni,↑ni,↓Q+H2 + . . . (A.15)

This Hamiltonian has no coupling terms between bands, to order t. This is the main

purpose of this reduction to the t−J model. The H2 terms still remain, however, and

must be evaluated to provide the proper correction terms to the model. Substitution

of S into the HtS and SHt terms of H2 gives

HtS = −
∑

i,j, σ

ti,j(Pc
†
iσcjσP + Pc†iσcjσQ+Qc†iσcjσP +Qc†iσcjσQ) ×

∑

m,n,µ

tm,n

U
(Qc†n,µcm,µP − Pc†n,µcm,µQ)
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=
∑

m,n,µ

∑

i,j, σ

−tm,nti,j
U

[Pc†iσcjσQc
†
m,µcn,µP +Qc†iσcjσQc

†
m,µcn,µP −

Pc†iσcjσPc
†
m,µcn,µQ−Qc†iσcjσPc

†
m,µcn,µQ] (A.16)

SHt =
∑

m,n,µ

∑

i,j, σ

−tm,nti,j
U

[Qc†iσcjσPc
†
m,µcn,µP +Qc†iσcjσPc

†
m,µcn,µQ−

Pc†iσcjσQc
†
m,µcn,µP − Pc†iσcjσQc

†
m,µcn,µQ] (A.17)

Both HtS and SHt contain coupling terms between the upper and lower Hubbard

models, of order t2/U . These coupling terms can be eliminated through another

canonical transformation, with the correction terms having a magnitude of the order

of t3/U2. This magnitude is low enough to justify the ignoring of these terms from

this point on. Evaluation of the remaining terms 1
2
S2HU , 1

2
HUS

2, and SHUS results

in

1

2
S2HU =

1

2

∑

i,j, σ

ti,j
U

(Qc†i,µcj,µP − Pc†i,µcj,µQ)
∑

m,n,µ

tm,n

U
(Qc†m,µcn,µP − Pc†m,µcn,µQ) ×

∑

k

U Qnk,↑nk,↓Q

= −1

2

∑

i,j, σ

∑

m,n,µ

∑

k

ti,jtm,n

U
Qc†i,µcj,µPc

†
m,µcn,µQnk,↑nk,↓Q

= −1

2

∑

i,j, σ

∑

m,n,µ

ti,jtm,n

U
Qc†i,µcj,µPc

†
m,µcn,µQ (A.18)

1

2
HUS

2 = −1

2

∑

i,j, σ

∑

m,n,µ

ti,jtm,n

U
Qc†i,µcj,µPc

†
m,µcn,µQ (A.19)

SHUS =
∑

i,j, σ

ti,j
U

(Qc†i,µcj,µP − Pc†i,µcj,µQ)
∑

k

U Qnk,↑nk,↓Q×

∑

m,n,µ

tm,n

U
(Qc†m,µcn,µP − Pc†m,µcn,µQ)

= −
∑

i,j, σ

∑

m,n,µ

∑

k

ti,jtm,n

U
Pc†i,µcj,µQnk,↑nk,↓Qc

†
m,µcn,µP

= −
∑

i,j, σ

∑

m,n,µ

ti,jtm,n

U
Pc†i,µcj,µQc

†
m,µcn,µP (A.20)

Substitution of equations A.16, A.17, A.18, A.19, and A.20 into H2 gives

H2 = −
∑

i,j, σ

∑

m,n,µ

tm,nti,j
U

[Pc†i,σcj,σQc
†
m,µcn,µP −Qc†iσcjσPc

†
m,µcn,µQ], (A.21)

if all the coupling terms from equations A.16 and A.17 are disregarded. We shall also

disregard the Qc†i,σcj,σPc
†
m,µcn,µQ term, since it deals solely with the upper band. Let
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∑

i,j, σ

∑

m,n,µ
tm,nti,j

U
Pc†i,σcj,σQc

†
m,µcn,µP = PQP . We can write this term as

PQP =
∑

i,j, σ

∑

m,n,µ

tm,nti,j
U

Pc†i,σcj,σQc
†
m,µcn,µP

=
∑

i,j, σ

∑

m,n,µ

tm,nti,j
U

Pc†i,σcj,σδj,mnm,−µc
†
m,µcn,µP

=
∑

i,j, σ

∑

n,µ

tm,nti,j
U

Pc†i,σcj,σc
†
j,−µcj,−µc

†
j,µcn,µP (A.22)

Expressing µ as µ = σ, µ = −σ and removing the sum over µ gives

PQP =
∑

i,j,n

∑

σ

tm,nti,j
U

(Pc†i,σcj,σc
†
j,−σcj,−σc

†
j,σcn,σP + Pc†i,σcj,σc

†
j,σcj,σc

†
j,−σcn,−σP )

(A.23)

The c operators obey the fermionic anticommutation rule ci,σc
†
j,µ = δi,j δσ,µ − c†j,µci,σ.

They also obey the rule ci,σci,σ = 0, c†i,σc
†
i,σ = 0, since two fermions are forbidden to

have the same quantum numbers. By applying these rules to the above equation we

can show that

PQP =
∑

i,j,n

∑

σ

tm,nti,j
U

(Pc†i,σcj,σc
†
j,σc

†
j,−σcj,−σcn,σP + Pc†i,σcj,σc

†
j,−σcn,−σP −

Pc†i,σc
†
j,σcj,σcj,σc

†
j,−σcn,−σP )

=
∑

i,j,n

∑

σ

tm,nti,j
U

(Pc†i,σc
†
j,−σcj,−σcn,σP − Pc†i,σc

†
j,σcj,σc

†
j,−σcj,−σcn,σP +

Pc†i,σcj,σc
†
j,−σcn,−σP ) (A.24)

The middle term contains nj,σnj,−σ, making this term non-zero only if the site j is

doubly occupied. However, this term also contains a P operator, which will be non-

zero only if there are no doubly occupied sites. This term is then zero. Therefore we

can write H2 as

H2 = −
∑

i,j,n

∑

σ

tj,nti,j
U

P (c†i,σcn,σc
†
j,−σcj,−σ − c†i,σcn,−σc

†
j,−σcj,σ)P (A.25)

For the case when i = n, this becomes

H2 =
∑

i,j

∑

σ

(ti,j)
2

U
P (c†i,σci,−σc

†
j,−σcj,σ − c†i,σci,σc

†
j,−σcj,−σ)P (A.26)

This can be expressed in terms of the spin operator S. If one evaluates the product
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~Si · ~Sj, we can arrive at

~Si · ~Sj =
1

2

∑

σ

(c†i,σci,−σc
†
j,−σcj,σ − c†i,σci,σc

†
j,−σcj,−σ) +

ninj

4
. (A.27)

If we substitute this expression into equation A.26, and restrict the sum over i and j

to be over bonds as opposed to sites to eliminate double counting, then H2 becomes

H2 =
∑

<i,j>

4t2i,j
U

P (Si · Sj −
ninj

4
)P. (A.28)

Now let H̃ = H̃PP + H̃QQ, where H̃PP only includes interactions between the lower

Hubbard band states, and H̃QQ only includes interactions between the upper Hubbard

band states. We can write H̃PP as

H̃PP = −
∑

i,j, σ

ti,jPc
†
i,σcj,σP +

∑

<i,j>

Ji,jP (Si · Sj −
ninj

4
)P, (A.29)

where Ji,j = 4t2i,j/U . This is the t− J model Hamiltonian, to second order in t. Not

included are the higher order terms of order t3/U2. Also note that this Hamiltonian

does not include the cases of equation A.25 where i 6= n. These terms are three-site

spin terms, the strength of which is generally indicated by the parameter ts. This

parameter is of the same order as J , but has generally been excluded from most

studies of the t− J model.

89


