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Abstract 

Biomass measurement provides a baseline for ecosystem valuation required by 

modern forest management. The advent of ground-based LiDAR technology, renowned for 

3D sampling resolution, has been altering the routines of biomass inventory. The thesis 

develops a set of innovative approaches in support of fine-scale biomass inventory, 

including automatic extraction of stem statistics, robust delineation of plot biomass 

components, accurate classification of individual tree species, and repeatable scanning of 

plot trees using a lightweight scanning system. Main achievements in terms of accuracy are 

a relative root mean square error of 11% for stem volume extraction, a mean classification 

accuracy of 0.72 for plot wood components, and a classification accuracy of 92% among 

seven tree species. The results indicate the technical feasibility of biomass delineation and 

monitoring from plot-level and multi-species point cloud datasets, whereas point occlusion 

and lack of fine-scale validation dataset are current challenges for biomass 3D analysis 

from ground. 
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Chapter 1. Introduction 

1.1 Towards a Systematic Forest Management Framework 

Forests cover one third of the global land surface and are an inseparable part of our 

living environment. Forests provide multiple ecosystem services such as supporting 

wildlife, providing fiber and fuel, and regulating atmospheric CO2 concentrations 

(Kimmins, 1997). Systematic forest valuation from Pretzsch (2009) points out that 82% of 

total economic forest values are non-commercial in which nutrient cycling and climate 

regulation are the two most valuable services accounting for 37% and 15% of total values, 

respectively. It is important to track the flow of forest nutrients such as nitrogen and mineral 

into food webs, and evaluate forest carbon consequences in terms of climate change. 

Therefore, a deliberate design of management rules regarding the complex forest roles in 

ecosystems is a primary agenda of modern forest sectors and industries. 

Yet managing a massive forest area, especially in highly forested countries like 

Canada, is a systematic project. First, forest diagnosis is site-specific, given varying 

conditions of species, geography and climate. For example, measurement methods and 

criteria usually vary with scale units such as individual trees, species, or ecozones (Vidal 

et al., 2016). Forest mapping and evaluation is thus a balanced consideration of different 

areas and scales. Second, forest conditions also require periodic inventory and monitoring. 

Forest dynamics contribute the greatest carbon flux (120 Pg/year) to the atmospheric 

carbon pool in the global terrestrial ecosystem (Lal, 2008). It is a frequent mission to track 

the amount and change of forests such as afforestation, harvesting, burning and natural 

disturbances. Finally, decision making is progressive and long-term. Valuing forests from 

ecosystem perspective is still relatively new among environmental programs and energy 
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industries. In the long run, it will be important to formulate a practical guidance of forest 

management, built upon a thorough knowledge of forest ecosystem functions and a 

persistent agreement from nationwide or intergovernmental decision makers such as 

Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+) 

(COP11, 2005; Miles & Kapos, 2008) and UN Convention on Biological Diversity (CBD) 

(Balmford et al., 2005; Campbell et al., 2009). 

A fundamental requirement of systematic forest management is to timely delineate 

and report the amount, condition and values of forests. The government of Canada has 

provided a referable example. Since 1980, Natural Resources Canada has been maintaining 

an annual report of the State of Canada's Forests. The amount of forests in Canada is 

characterized by several indicators (variables or attributes in other contexts), typically, the 

area indicator and wood volume indicator. Wood volume data are provided with a lookup 

table of more than seven species groups, eleven age classes and twelve terrestrial ecozones 

(Natural Resources Canada, 2018). The condition of forests is categorized by ownership, 

province and natural disturbance types. The amount and condition of forests are monitored 

based on periodical nationwide census such as National Forestry Database, National Forest 

Inventory (NFI) (Gillis et al., 2005), and Statistics Canada. The amount and conditions of 

forests are then converted to quantitative values of carbon emission, trade market and job 

employment to represent greenhouse effect, industrial productivity and social impact, 

respectively. Obviously, the State of Canada's Forests has established a general framework 

for diagnosing, monitoring and valuing forests. 

In the current framework of forest management, how to precisely convert the forest 

inventory and census data into forest values remains a challenge, partly due to a lack of 

suitable indicators. An overwhelmingly used indicator is the area indicator. Yet failure to 
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describe the structural information makes the area indicator insufficient to diagnose 

accurate forest values destroyed for example by wild fire, insect infection, and deforestation, 

or recovered from regeneration and afforestation. A three-dimensional (3D) indicator, 

wood volume, is mostly used to count harvesting for the timber market. Counting wood 

volume changes in tree growth, reproduction, and mortality, where volume is most related, 

is not yet compiled for the annual report. Wood volume is also not directly convertible to 

carbon-related valuation. A more informative 3D indicator, biomass, combining 

information of wood volume, species, age and nutrition (Poorter et al., 2012; van der Sande 

et al., 2015), can be a suitable indicator linking forest inventory and valuation. 

Biomass is defined as dry mass of organs, including living mass of trees, lichen, 

shrubs and vines, and also dead mass of the litter and soil (sometimes referred to as 

necromass). It has been used to predict fiber quality and timber value in silviculture, logging, 

and harvesting industry (Blanchette et al., 2015; Kankare et al., 2013a; Luther et al., 2013; 

Peuhkurinen et al., 2007). Because a constant portion of biomass is carbon (45% or 50%) 

(Vashum & Jayakumar, 2012), biomass is also pivotal to value carbon budget, ecosystem 

productivity, and biofuel availability (Houghton et al., 2009). Therefore, compared to area, 

wood volume and most other indicators, the biomass indicator has an advantage of closely 

tying to framework of forest management. A more precise annual report of forest status 

should be biomass-oriented with regard to the versatility and significance of the biomass 

indicator. The importance of biomass has already been recognized (Foody, 2003) and is 

listed as one of the main attributes in Canada’s Forest Inventory (CanFI) founded in 1981, 

NFI in 1997, Earth Observation for Sustainable Development of forests (EOSD) in 1999, 

and National Forest Information System (NFIS) in 1999 (Morrison et al., 1999). 
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1.2 Estimating Biomass from Ground: Methods and Uncertainties 

The biomass indicator still encounters the dilemma of rather few applications in 

forest management framework, due to many constraints and uncertainties of biomass 

measurement and modeling methods from ground. 

For a single tree in boreal or temperate forests on average, about 60% of live 

biomass is allocated in the stem and bark, 25% in branches and stump, and 15% in roots 

and foliage, whereas the proportions vary greatly in terms of species and ages (Lauri et al., 

2014). To accurately measure its biomass, above-ground biomass (AGB) is first harvested, 

dried and weighed, and root biomass is then inferred using default look-up table of shoot-

to-root ratio. The shoot-to-root ratio has about 15% average relative error summarized from 

eighteen forest types (Mokany et al., 2005), a considerable uncertainty term of individual-

tree biomass. Destructive methods for obtaining AGB is accurate, but has a known 

limitation of onerous labor and unrepeatable measurement. In practice, AGB is most often 

inferred from easy-to-measure tree metrics. Intuitively, AGB is a product of above-ground 

wood volume and density. Volume can be approximated by various structural variables, 

whereas stem diameter and tree height are among most influential ones. Thus AGB is often 

inferred using stem diameter-based parameters capped with constant coefficients in 

polynomial or logarithmic equations (Jenkins et al., 2003; Lambert et al., 2005). The most 

common stem diameter parameter is diameter at breast height (DBH) with the breast height 

usually defined as 1.3 m. These coefficients vary with species, locations, and tree 

components (e.g. bark, stem, branches, leaves). This type of inferring individual-tree 

biomass is named allometric model, which is an operational procedure to estimate forest 

attributes in many nationwide biomass projects such as the Energy from the Forest research 
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(ENFOR) program (Lambert et al., 2005; Ung et al., 2008; Ung et al., 2017) and the U.S. 

forest carbon inventories (U.S. EPA, 2008). In other studies, only partial biomass, 

particularly stem biomass, is known from harvesting or inference data. A biomass 

expansion factor (BEF) is then used to convert the partial biomass to tree biomass. For 

example, Heath et al. (2009) develops a component ratio method (CRM) which defines 

BEF as constant biomass percentages of bark, bole, tops, limbs, and stump. The biometric 

database from the Fluxnet-Canada Data Information System (DIS) specifies BEF of stem 

for each species and age class (Hopkinson et al., 2016). The aforementioned shoot-to-root 

ratio can be also categorized as BEF. 

Using stem diameter-based allometric equations is convenient, yet uncertainty 

cannot  be ignored. Jenkins et al. (2003) shows a low agreement of ± 30% between 

allometric estimates after comparing 389 biomass equations for over 100 eastern U.S. 

species from 104 literature sources. Unfortunately, the suggested nationwide allometric 

method from Jenkins et al. (2003) underestimates individual-tree biomass to a bias of −19.5% 

(Stovall et al., 2018). Colgan et al. (2012) points out that choice of allometric equations 

accounts for one-third to one-fifth of total biomass estimation error benchmarked by 

harvesting method in savannas area. Calders et al. (2015) further concludes that an 

underestimation of approximately 30% biomass is caused by simple allometric modeling 

of canopy structure. The underestimation effect is greatest for large trees with DBH above 

70 cm (Gonzalez de Tanago et al., 2018). Coincident findings are also available from forest 

studies using terrestrial laser scanning (TLS), a cutting-edge surveying technology capable 

of digitizing trees into millimeter-level 3D points. Hauglin et al. (2014) extracts DBH and 

height of individual trees from TLS point clouds, and calculates biomass of 29 Norway 

spruces based on allometric equations. The relative root-mean-square-error (RMSE%) is 
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32.4%, benchmarked by destructively sampled biomass. An RMSE%, of about 34.6%, is 

found in similar studies by Lindberg et al. (2012). Apparently, introducing TLS cannot 

reduce large uncertainty caused by diameter-based allometric modeling. According to 

Shettles et al. (2016), using inventory data for biomass, RMSE proportions from 

measurement, sampling, and allometric modeling are 11%, 23%, and 66%, respectively, 

whereas using TLS scans, proportions become 5%, 25%, and 70%, respectively. Accuracy 

of sampling and diameter-based allometric modeling does not rely on fine-scale TLS data.  

In open area with explicit individual trees, entire tree forms can be captured in TLS 

point clouds, leading to a more ambitious goal of biomass extraction other than simple 

metrics of stem diameter and height or destructive sampling. Recent studies exhibit that a 

3D tree geometry can be reconstructed from fine-resolution point clouds using cylinder-

fitting algorithms (Côté et al., 2012; Hackenberg et al., 2014; Yan et al., 2009), whereas 

above-ground wood volume can be automatically delineated along every inch of the tree 

geometry. Final wood biomass is a product of wood volume and a basic wood density 

constant. The density constant can be based on direct in-situ measurement (Calders et al., 

2015; Hackenberg et al., 2015) or from some standard density databases such as the global 

wood density database (Chave et al., 2009; Zanne et al., 2009). Interestingly, the pioneering 

3D reconstruction models, sometimes referred to as quantitative structural models (QSM), 

have shown preliminary success in accuracy. With harvested AGB of 65 Eucalyptus trees 

as reference, biomass estimation attains an RMSE% of 9.7% in Calders et al. (2015). 

Hackenberg et al. (2015) compares the reconstructed and harvested biomass of Q. petraea, 

E. fordii, and P. massoniana, 12 trees for each species with varying scanning conditions, 

and reports an RMSE% of 16.6%, 10.9%, and 15.0%, respectively. The high accuracies of 

the two studies meet typical requirements (10–20% error) of biomass measurement in NFIs 
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(Liang et al., 2016), making QSM a promising alternative of allometric models to provide 

individual-tree level biomass information (Kankare et al., 2013a). 

Considering the plot level where homogeneous trees cluster, the full form of trees 

(both stem and branches) as well as understory wood are not exhaustively measurable using 

inventory or TLS. In practice, other than diameter-based allometric models, merchantable 

stem volume is used to predict plot biomass, due to strong relationship between volume 

and biomass (Boudewyn et al., 2007). Biomass of understory sapling, non-merchantable 

volume can all be predicted from the merchantable stem volume. Other volume-based 

predictors such as growing stock volume and stand volume (total wood volume) are also 

used in the U.S. Public National FIA Dataset (FIADB). Then a scaling factor, also called 

BEF, converts plot volume to plot biomass (Boudewyn et al., 2007). This volume-based 

allometric prediction is considered more accurate than the diameter-based, but it is 

unfortunately a destructive method, not repeatable for nationwide and long-term 

management purpose. Recent efforts have been focused on using TLS plot scans to extract 

stem volume without the requirement for destructive sampling. Stem extraction relies on 

stem reconstruction models, a simpler version of QSM. The TLS-based stem volume 

method for biomass estimation can be highly accurate, with Yu et al. (2013) showing an 

RMSE% of 12.5%. An overarching work by Kankare et al. (2013a) investigates diverse 

structural metrics from TLS point clouds, including stem volume, stem diameters, crown 

size, crown shape, and many others. The reported biomass RMSE% is 12.93% for pine 

plots and 11.90% for spruce plots. Interestingly, among all structural metrics, the authors 

demonstrate that stem volume has the highest correlation (0.8-0.9) with predicted tree 

biomass, whereas metrics about stem curve and crown size are also contributive and 
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independent predictors. Combining metrics of stem volume, stem curve and crown size can 

achieve best accuracy.  

Currently, allometric modeling based on stem volume is the most mature solution 

to biomass estimation at plot level. Extracting explicit branch volumes from QSM without 

manual trimming and modification will encounter practical problems, for example, failure 

of fitting small branches with diameter below 5 cm and overestimation of wood biomass 

(Momo Takoudjou et al., 2018). Discarding small branches (usually < 10 cm in diameter) 

to compensate branch volume overestimation from QSM becomes a rule of thumb in recent 

studies  (Gonzalez de Tanago et al., 2018; Lau et al., 2018). Gonzalez de Tanago et al. 

(2018)  tuned the diameter parameter of the QSM (Calders et al., 2015; Raumonen et al., 

2015; Raumonen et al., 2013) based on 29 harvested large topical trees, and approaches an 

concordance correlation coefficient (CCC) of 0.95 compared to the CCC of 0.73–0.82 from 

traditional allometric method. However, their tuned QSM still encountered a high RMSE% 

of 28.4%. Compared to the stem-based allometric models, the branch-based QSM method 

still needs refinement with varying species and complex scenes. 

1.3 Estimating Biomass from Ground: More than Accuracy 

Accuracy is not the only measure of uncertainty. Rapidity, generalizability, and 

robustness of biomass calculation are other important measures of uncertainty as well 

which may prevent a study from approaching truth. First of all, rapidness cannot be ignored 

in order to collect quality TLS scans. To cover a plot of trees, TLS is sometimes irritating 

for long scanning time, as much as 2.5 hours per plot according to Rice et al. (2014). During 

long periods of instrument transportation, deployment and scanning, the environment can 

shift (e.g. wind or sun changes) and scanning targets may not stay static, giving rise to 
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artificial or jittering points in final point clouds. It usually forces surveyors to reduce 

scanning resolution or field of views as compromise. Second, generalization uncertainty is 

known by poor algorithm extension to change of data size and study site, and as well as 

unrepeatable or inconsistent results caused by human interferences. Increasing sample size 

can be a solution to improving algorithm extensibility, yet reducing human interference is 

challenging. Human interference is ubiquitous in the processes of registering image or point 

clouds, sampling training and testing dataset, parameterizing morphological models, and 

determining thresholds for model parameters. For example, Jenkins et al. (2003) notices 

that manual selection of allometric equations and variable combinations poses great 

difficulty to result compilation and generalization among existing biomass studies. 

Therefore, it is useful to design automatic or semi-automatic algorithms, especially rapid 

automatic algorithms, so as to remove or isolate the manual errors and facilitate exposing 

other sources of uncertainty. Automation is useful for applications with high requirement 

of usability, repeatability, comparability, and progressivity. For example, NFI takes a 

frequency of five years to record the biomass change. Hopkinson et al. (2008) suggested 

that the frequency of airborne LiDAR surveys be minimally three years in order to quantify 

the tree height growth beyond vertical error of point clouds. It can be concluded that finely 

monitoring the annual growth of trees is challenging. A strong control of error sources is 

needed and realizing the automation of analysis is one of the choices. 

To automate and generalize tree biomass retrieval in a natural plot, individual-tree 

volumes should not be the only concerned variable of biomass. Incomplete consideration 

of understory and biased sampling among species are the common issues preventing 

broader generalization of biomass modeling. From TLS scans, leafy crown and understory 

are locations where wood points are hardly differentiable. The differentiation problem 
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could limit TLS applications to leaf-off deciduous trees (Calders et al., 2015; Stovall et al., 

2018; Yan et al., 2009) or cause branch volume overestimation (Kunz et al., 2017; Momo 

Takoudjou et al., 2018). Many studies recognize the importance of independent wood 

filtering algorithm prior to QSM. Simple wood filtering algorithms have been proposed, 

which can be categorized into seeking high laser intensity (Béland et al., 2014; Côté et al., 

2011; Côté et al., 2009; Hackenberg et al., 2015), seeking high point density (Calders et al., 

2018; Hackenberg et al., 2014; Hackenberg et al., 2015)  or comparing dual-wavelength 

difference (Danson et al., 2014; Zhan et al., 2013). These ‘hard’ thresholds in filter 

configuration can lead to unstable filtering performance in varying scanning scenarios. 

Recent progresses provide more robust solutions to the wood filtering problem. Ma et al. 

(2016a) and Ma et al. (2016b) combine multiple low-level threshold filters with 

unsupervised Gaussian mixture models (GMM) classifiers to automate leaf segmentation, 

with an average validating agreement of surface areas above 90%. Disney et al. (2018) and 

Vicari et al. (2019) use similar multi-filtering and GMM methods and their average overall 

accuracy using simulated point clouds and field reference is 83% and 89%, respectively. 

Wang et al. (2018) designs an unsupervised method Dynamic Segment Merging (DSM) to 

partition point clouds into small regions and tunes up a linearity threshold to classify wood 

points. Their overall accuracy is 88% on average based on both one tree scan and four plot 

scans, outperformed the overall accuracy of 86% using random forest method. Ferrara et 

al. (2018) uses a density-based iterative clustering method to extract wood points with an 

overall accuracy between 95%-97%. These complex solutions to the leaf/wood separation 

problem have greatly benefited QSM biomass analysis (Disney et al., 2018; Malhi et al., 

2018) and leaf biomass inference (Åkerblom et al., 2018), yet still need proof of threshold 

invariance and species generalizability. 
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 Species mixture is common in natural forest plots. Field inventory cannot 

exhaustively cover all trees, especially young trees of different species, where uncertainty 

problem occurs. In practice, species classification is rarely mentioned in the contemporary 

ground-based LiDAR studies, and scan data is preferably collected in a homogenous stand 

or a plot with simple species composition. This is probably due to the complexity of 

processing mixed species plots for biomass estimation. However, scan datasets can explode 

with the time and detailed species surveys cannot be always available. Rapid scan 

collection from mobile-based laser scanning system (MLS) and unmanned aerial vehicle 

(UAV) are envisioned to further release the labor of biomass inventory (Liang et al., 2014a; 

Schneider et al., 2019). Automatic species classification from ground-based LiDAR will 

become a demanding compartment of biomass modeling framework. Technically, species 

classification from ground tree scans is not a challenging problem, considering the success 

of species classification using airborne laser scanning (ALS) technologies such as Kim et 

al. (2009) and Ørka et al. (2009). Holmgren and Persson (2004) point out that the basic 

structural metrics such as height, mean stem diameter, and proportion stems could produce 

95% accuracy when classifying between Norway spruce, Scots pine, and deciduous trees 

in Scandinavia forests. Comparably, TLS scans hold diverse understory portions with more 

short saplings and trees with richer morphology features. Yet due to lack of multi-species 

scans with plot size, species classification from TLS remains a problem. 

The focus of automation and generalization is usually related to processing and 

analyzing biomass data, whereas how data should be collected is often ignored. Indeed, the 

high expense and inconvenience in forest environment have prevented ground-based 

LiDAR (e.g. TLS, MLS and handheld scanner) from being distributed in large quantities 

as a broad-scale biomass monitoring tool. Unlike airborne LiDAR, ground-based LiDAR 
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is mostly used in localized studies on a temporary basis such as physiological analysis 

(Malhi et al., 2018), allometric adjustment (Momo Takoudjou et al., 2018) or radiative 

transfer modeling (Calders et al., 2018). Few cases demonstrate its temporal and repeatable 

values in, for example, assisting the widespread meteorological monitoring network to 

capture spatiotemporal variability of ecosystem carbon and energy flux. A cost-effective 

and flexible ground-based scanning system is needed for broad-scale environmental studies 

with emphasis on automation and repeatability instead of accuracy perfection. Several 

ground-based sensing systems have been endeavored for the plant monitoring purpose such 

as the use of structured light 3D cameras (Nock et al., 2013), stereo cameras (Koci et al., 

2017), and portable TLS (Eitel et al., 2013). These experimental systems have obvious 

drawbacks of having short range, low vegetation sensibility and low affordability, 

respectively, which is inadequate for a practical biomass surveying purpose. 

1.4 Objective and Rationale 

On the whole, fine-scale estimation of biomass from ground is not off-the-shelf 

without adjusting the way biomass is measured and analyzed. The objective of interest in 

this thesis is to optimize 3D tree-level biomass estimation accuracy and automation, in an 

effort to address current complexities of forest management in diagnosis, monitoring and 

valuation processes. 

Under time and technical constraints, this thesis is limited to point cloud data format 

and corresponding processing. Although many relevant methods have been investigated, 

there is no standard or universally accepted approach for estimating biomass in an accurate 

and efficient manner. The thesis focuses on four objectives as outlined below, to 

compensate particular sources of gap or imperfection in existing studies, with detailed 
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formation of problems, gaps, aims, methods, results, and discussions separated into paper-

based chapters: 

 accurate and efficient extraction of stem form from natural forest plots; 

 fine delineation of biomass components from natural forest plots with varying tree 

density, species and scanning conditions; 

 automatic species identification from individual tree scans in support of biomass 

prediction; 

 a lightweight fusion scanning system for canopy biomass change monitoring. 

These four objectives fit in an interconnected and complementary framework. Stem 

form (stem curve and diameters) obtained from Objective 1 are part of wood reconstruction 

algorithm in Objective 2, where new functions like branch reconstruction and wood point 

filtering are added. With filtered wood points of individual tree from Objective 2, species 

can be identified using point features in Objective 3. Combination of Objective 1-3 

provides a practical solution to automatic biomass analysis at plot size. Objective 4 

provides a low-cost and temporal biomass scanning solution from data acquisition 

perspective. The four objectives correspond to four chapters with a summary chapter in the 

end. 
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Chapter 2. Automating Plot-level Stem Delineation from TLS 

2.1 Context 

A baseline question of plot-level biomass analysis is how to retrieve accurate 

inventory attributes, particularly, stem volume. Another expression of stem volume is 3D 

stem form, represented as stem curve (medial axis) and axial diameters, or stem taper 

functions equivalently (Kublin et al., 2013). Earlier studies only focused on gross 

dimensions of stem curve, such as DBH and tree height (Aschoff & Spiecker, 2004; Bienert 

et al., 2006; Hopkinson et al., 2004; Maas et al., 2008). DBH can be estimated accurately 

using the circle-fitting method with an approximate error under 1 cm (Dassot et al., 2011; 

Kankare et al., 2013a; Pueschel et al., 2013). To unveil more stem form details, more recent 

studies have progressed to extracting stem taper from TLS point clouds (Ravaglia et al., 

2017), stem diameters at any height (Aschoff et al., 2004; Bienert et al., 2006; Henning & 

Radtke, 2006; Maas et al., 2008; Pueschel, 2013; Srinivasan et al., 2015), or diameters that 

are orthogonal to the stem directions based on cylinder fitting (Liang & Hyyppä, 2013; 

Liang et al., 2014c; Liang et al., 2012; Pfeifer & Winterhalder, 2004). 

Note that the cylinder fitting accuracy relies on a clear classification of stem points. 

Indeed, measuring upper-stem diameters with branches in the foreground is the most 

challenging part of stem form quantification due to strong occlusion and shadowing effects 

(Berger et al., 2014). Stem classification in heavy branching regions needs to be treated 

carefully. In process of delineating stem form, three problems are commonly confronted: 

point occlusion, stem shape variation, and noise interference. Point occlusion breaks a 

continuous surface down to a mixture of narrow or wide pieces, giving rise to a zigzagging 

pattern of the extracted stem node and diameters (Pueschel et al., 2013). Stem shape 
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variation adds complexity to the fitting models and parameters (Dassot et al., 2012; Pfeifer 

& Winterhalder, 2004). Noise points such as ghost points can affect accuracy of local circle 

fitting (Brolly, 2013; Huang et al., 2011). Solutions to these problems are still exploratory 

(Liang et al., 2016). 

Stem detection is a preprocessing step of delineating stem form attributes from plot 

scans. Stem locations can be detected efficiently based on 2D features of a point cloud slice 

at a specified height (e.g., 1.3 m). The 2D features include angular stem width (Lovell et 

al., 2011; Strahler et al., 2008), circle fitting error (Bienert et al., 2006; Maas et al., 2008; 

Pueschel, 2013), or convergence after Hough transformation (Aschoff et al., 2004; Ravaglia 

et al., 2017; Schilling et al., 2011). Other studies extract stem locations after 3D 

classification of stem points based on geometric characteristics such as flatness of a point 

cluster, point density, and vertical histogram (Huang et al., 2008; Lefsky et al., 1999; Liang 

et al., 2012; Srinivasan et al., 2015; Wezyk et al., 2007). The accuracy of tree detection is 

dependent on the number of scans (Thies & Spiecker, 2004), stem density (Watt & 

Donoghue, 2005), branching occlusion (Bienert et al., 2007), and understory occlusion 

(Ducey & Astrup, 2013). In general, 3D stem classification is more stable than stem 

detection using only one slice at a certain height, because it is less affected by point 

occlusion at the specific height (Brolly, 2013). However, the existing 3D classification 

methods are point-wise and require time-consuming spatial computation such as nearest 

neighbor search. An efficient stem detection based on 3D geometrical features is needed. 

Data reduction such as Digital Terrain Model (DTM) removal is also helpful to improve 

the efficiency and accuracy of stem detection (Litkey et al., 2011; Yang et al., 2013). 

The chapter aims to design an automatic approach for stem detection and stem form 

extraction, capable of reducing occlusion effect, tolerating stem shape variation, and 
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filtering out noise points from stem points. It is intended that these automatic methods will 

improve the robustness and rapidity in which TLS data can be analyzed, with results of 

interest to the forest industry. 

2.2 Methodology 

2.2.1 Data and Analysis Framework 

The study site is a Scott pine (Pinus sylvestris L.) plot with a stem density of 479 

stem per ha in Evo, Finland (61.19° N, 25.11° E). Our study plot is among a larger set of 

plots acquired for the EuroSDR International TLS benchmark project: Benchmarking of 

Terrestrial Laser Scanning for Forestry Applications (Hyyppa & Liang, 2013). The plot 

was scanned using Leica HDS6100 by the Finnish Geodetic Institute (FGI) during the 

summer of 2014. Two TLS datasets were acquired from FGI at this site: a single scan (SS) 

from the plot center and multiple scans (MS) from both the center and four corners. Both 

datasets were trimmed to the size of 32 m × 32 m with a point resolution of 15.7 mm and a 

distance accuracy of ±2 mm at the distance of 25 m per plot. The setting of plot size 

provides sufficient samples for stem analysis and the setting of scan resolution enables 

branch-level detail. Validation data are field mensuration of stem location, stem DBH, and 

tree height, as well as offline measurement of stem form and DTM from manual or semi-

automated software tools. Stem form is represented as diameters and horizontal center 

coordinates at each height, at 1 m height intervals up to the highest measurable height inside 

crown. DTM reference has a resolution of 0.2 m. 

A suite of algorithms was developed in MATLAB to automate the retrieval of stem 

attributes from point clouds without manual interference. The workflow consists of four 

steps: DTM extraction and removal, stem location detection and separation, branch and 
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stem segmentation, and stem form extraction. Figure 2.1 illustrates a flow diagram of 

methods used in this study, and described in the following sections. 

 

Figure 2.1 Flow-diagram overview of methods used to automatically extract 

plot-level tree stem attributes. DTM: digital terrain models; IDW: inverse 

distance weighted; DBH: diameter at breast height. 

2.2.2 DTM Extraction 

The extraction and removal of DTM is a preliminary procedure for the following 

step of stem detection and stem form extraction. The general approach of DTM extraction 
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is to detect the candidate ground points and interpolate full ground points from the 

neighboring candidate ground points. 

In forested terrain, initial separation of ground and canopy is a necessary procedure 

prior to fine DTM extraction (Kobler et al., 2007). An upper threshold (𝐸𝑢𝑝𝑝𝑒𝑟) for DTM is 

needed to distinguish ground and canopy. The 𝐸𝑢𝑝𝑝𝑒𝑟  can be estimated based on the 

histogram of point elevations (Figure 2.2) (Bienert et al., 2006; Douillard et al., 2011). The 

first histogram peak (E𝑝1) is detected when the slope of the histogram profile reduces to 0. 

The width of the first peak (Wp1) is calculated as full width at half maximum (FWHM). The 

upper threshold for the DTM elevation (𝐸𝑢𝑝𝑝𝑒𝑟) is defined following Equation 2.1: 

𝐸𝑢𝑝𝑝𝑒𝑟 = 𝐸𝑝1  +  𝑡𝑤 𝑊𝑝1 (2.1) 

where 𝑡𝑤 is the controlling parameter for adjusting 𝐸𝑢𝑝𝑝𝑒𝑟. The candidate ground points are 

considered lower than 𝐸𝑢𝑝𝑝𝑒𝑟 . In this study, we set 𝑡𝑤  to be as large as 5, in order to 

incorporate all ground points as candidate ground points. 
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Figure 2.2 Histogram filtering for DTM region. Triangles represent local 

maximum values of histogram profile. In this example, DTM is found to be 

lower than 2 m in elevation, which can be estimated based on the width of first 

histogram peak. 

In order to extract the local lowest points, point clouds are rasterized first. 

Compared to raw irregular points or Triangulated Irregular Network (TIN), raster format 

can greatly expedite search for spatial neighbors (Meng et al., 2010). All 3D points (𝑝𝑖) are 

mapped into a raster cell by normalizing the 𝑝𝑖 with DTM resolution (𝜎). We set 𝜎 to be 

0.2 m. The elevation of 𝑝𝑖 is assigned to be a cell value. Only the lowest elevation inside 

the cell is kept as the cell value. Empty cells, often a result of occlusion of laser returns, are 

initially assigned with a positive large value (e.g., 10,000). A square moving window at an 

initial length of 5 cells is then applied to each cell. The selection of the initial size can be 

arbitrary because the initial size has little influence on the final results. The local lowest 

points (𝑀𝑊𝑚𝑖𝑛) are thus computed as the lowest cell value inside the moving window. 

The candidate ground points can be filtered using Equation 2.2: 
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𝑣𝑡ℎ𝑟𝑒𝑠ℎ = min (𝐸𝑢𝑝𝑝𝑒𝑟, max(𝐸𝑝1,𝑀𝑊𝑚𝑖𝑛) + 𝛿) 
(2.2) 

𝑣𝑐𝑎𝑛𝑑 ≤ 𝑣𝑡ℎ𝑟𝑒𝑠ℎ 

where 𝑣𝑐𝑎𝑛𝑑  is the cell value of candidate ground points, 𝛿 (0.5 m in this study) is the 

elevation tolerance in the moving window, and 𝑣𝑡ℎ𝑟𝑒𝑠ℎ is the threshold to filter 𝑣𝑐𝑎𝑛𝑑. The 

candidate ground point cells are used as support cells to interpolate the center cell value 

inside the moving window. 

The ground points represented by the candidate ground points are likely to have 

large gaps in canopy areas. Our solution follows the concept from Zhang et al. (2003) which 

adaptively increases moving window size to proliferate candidate ground points. The size 

of the moving window keeps increasing until the window covers at least 𝑁𝑚𝑣 candidate 

ground point cells. 𝑁𝑚𝑣 should be large enough (e.g., 10) to avoid noise cells. Our intention 

is to preserve the lowest elevation information and constrain abrupt elevation changes in 

the step of interpolation. This can be achieved by designing a robust weight function in 

light of Kobler et al. (2007) and Kraus and Pfeifer (1998). The center cell value is set to be 

either unchanged or inverse distance weighted (IDW) neighbor values. It is determined by 

a piecewise function as Equation 2.3: 

𝑣(𝑚, 𝑛)final =

{
 
 

 
 

𝑣(𝑚, 𝑛) if 𝑣(𝑚, 𝑛) < 𝑣𝑡ℎ𝑟𝑒𝑠ℎ

∑ ∑  
𝑣(i, j)

𝑑(𝑖, 𝑗,𝑚, 𝑛)
𝑛+

𝑠
2

𝑗=𝑛−
𝑠
2

𝑚+
𝑠
2

𝑖=𝑚−
𝑠
2

∑ ∑  
1

𝑑(𝑖, 𝑗,𝑚, 𝑛)
𝑛+

𝑠
2

𝑗=𝑛−
𝑠
2

𝑚+
𝑠
2

𝑖=𝑚−
𝑠
2

else if 𝑣(𝑚, 𝑛) ≥ 𝑣𝑡ℎ𝑟𝑒𝑠ℎ
 (2.1) 

where 𝑑(𝑖, 𝑗,𝑚, 𝑛) = ∞, if 𝑣(𝑖, 𝑗) ≥ 𝑣𝑡ℎ𝑟𝑒𝑠ℎ  

where symbol 𝑠 is the size of the moving window, symbol 𝑑(𝑖, 𝑗, 𝑚, 𝑛) is the distance 

between cell (𝑚,𝑛) and cell (𝑖,𝑗), and 𝑣(𝑚, 𝑛)final is the final ground point value at row 𝑚 
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and column 𝑛 in the result raster. Only points > 0.1 m above the final ground point value 

are kept in the following analysis. Those points are regarded as the above-ground points. 

2.2.3 Stem Location Extraction and Isolation 

Tree stems are identified using template matching (or filter) in 3D space explained 

in Brunelli and Poggiot (1997). A 3D template is developed to detect tree stems that extend 

upwards from the ground surface, and have a leaning angle smaller than 𝜃max. First, above-

ground point clouds are divided into voxels at a resolution of 0.1 × 0.1 × 0.5 m (xyz). The 

voxel resolution is a user-defined parameter. The horizontal voxel resolution of 0.1 m is 

about half of DBH and is sufficient to detect stem locations. The vertical resolution of 0.5 

m can present vertical heterogeneity which is smaller than horizontal heterogeneity. Each 

voxel is assigned the value of the point count inside the voxel, thereby representing point 

density. Voxels from the point clouds are multiplied respectively by a 3D template, or what 

we call a 3D directional filter in our study. The 3D directional filter is also composed of 

voxels. A sum of the product of point cloud voxels and filter voxels is called convolution. 

It is efficient to enhance the near-vertical characteristics through 3D convolution, by 

assigning “1” or any positive value “𝐶𝑣” to a filter voxel as a reward, and “−1” as a penalty. 

The structure and size of the filter should be designed to reward all stem points within the 

stem cylinder, and penalize non-stem points outside the cylinder. If the stem points are 

partially occluded, the stem points are still rewarded except that reward strength is 

weakened. The mathematic description of our 3D directional filter is shown in Figure 2.3. 

We use the parameter s to represent the horizontal radius of “𝐶𝑣” voxels (reward voxels), 

numerically close to horizontal stem cylinder radius. We then set the ring thickness of “−1” 

voxels (penalty voxels) to be s as well. The filter height is b (1 m in this study). The filter 
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width and depth are both 0.5b tan𝜃 + 2s, where 𝜃 is the current leaning angle. A rough 

estimation of s is half DBH (0.2 m in this study). The voxel representation of the filter is 

demonstrated on the right side of Figure 2.3. Overall, the directional filter is a cylinder 

shape filled with the penalty voxels and reward voxels. Assuming lean angle is horizontally 

symmetric, the reward voxels as a whole appear like a revolution geometry, which is 

formed by rotating the two left thickest lines (Figure 2.3) 360° around the vertical axis. The 

penalty voxels appear like another revolution geometry, formed by rotating the two right 

thickest lines (Figure 2.3) 360° around the vertical axis. The remaining filter voxels are 

filled with “0”. We define ρ as a voxel’s distance to the centerline, k as the voxel’s distance 

along the rotational line to the line’s top end. For each voxel, when ρ < |0.5b − k| tan𝜃 − s 

or ρ > |0.5b − k| tan𝜃 + 2s, the voxel value is assigned “−1”; when |0.5b − k| tan𝜃 − s ≤ ρ 

≤ |0.5b − k| tan𝜃 + s, the voxel value is assigned 𝐶𝑣; when ρ doesn’t satisfy the above two 

conditions, the voxel value is kept “0”. To represent different leaning angles, five filters are 

created with the leaning angles of 0°, 5°, 10°, 15°, and 20°, respectively. The five filter 

masks are then averaged to get an overall 3D directional filter. 
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Figure 2.3 3D directional filter: a cube composed of voxels in the right. 

Mathematic expressions about the filter geometry and structure are noted aside. 

This convolution step can be accelerated using 3D Fourier transformation. 

Convolution in frequency domain is mathematically equivalent to convolution in spatial 

domain, but the computation complexity in frequency domain is often less. Interested 

readers can refer to Nixon (2008) about the theory. Specifically, we calculate the 3D Fourier 

form of the point cloud voxels and the 3D Fourier form of the overall 3D directional filter. 

The two Fourier forms are multiplied and the inverse Fourier form of multiplication is our 

convolution result. The convolution only enhances any near-vertical points within the filter 

size. To aggregate the enhancement for the whole stem, the 3D convolution value in each 

voxel is summed again vertically, and is projected to the horizontal plane as a 2D image. 

In this manner, near-vertical points are displayed as bright pixels in the 2D image, whereas 
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points with other spatial patterns turn to dark pixels. Only pixels with brightness greater 

than a threshold remain. The threshold is defined as the product of point density, sum of 

award voxels in the overall filter, and as well as a controllable parameter 𝑃𝑠 (0.5 in this 

study). If a remaining bright pixel has brightness greater than neighboring pixels, it is 

defined as a local extreme. The stem locations can be determined by searching the local 

extrema of the bright pixels from the 2D image. The image coordinates are converted back 

to real-world coordinates by inverting the voxelization step. 

The above-ground point clouds can be separated in to stem-wise occupation areas 

based on the detected stem locations. We define stem occupation area approximately as the 

Thiessen polygon around the stem location. From the point cloud dataset, we observed that 

pine stems did not move beyond 1 m horizontally from the center location. The point clouds 

are therefore trimmed to be within 1 m horizontal radius from the stem location, so as to 

reduce computing overhead. Trimming based on prior knowledge or exploratory analysis 

is not a necessary step, but helps improve automation efficiency. 

2.2.4 Stem Form Extraction: Segmentation 

A region growing method is useful to approximate stem and branch morphology 

based on the geometric properties of a surface, including local connectivity and fractals, as 

well as the dynamics of the geometry and curvature (Masutani et al., 1996; Roggero, 2002). 

An illustration of our 3D region growing algorithm is shown in Figure 2.4, where the 

algorithm is used to segment whole point clouds into numerous cylinders without a need 

for initial seeds. The region growing algorithm starts from one arbitrary point as shown in 

Figure 2.4a, and incorporates its neighboring points to be the 1st grown region. In this study, 

the neighboring points are defined as any remaining points whose absolute coordinate 

differences from a growing region are smaller than 𝑅𝑠. Intuitively, the neighboring points 
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lie inside nearest cubes (size 𝑅𝑠 × 𝑅𝑠× 𝑅𝑠) from the grown region. The setting of 𝑅𝑠  is 

related to the point density. A large 𝑅𝑠  could increase robustness against point density 

variation, since region growing would not be affected by point gap smaller than the 𝑅𝑠. Yet 

a large 𝑅𝑠 may cause coarse edges of grown regions. In the same manner, the next region 

growing iteration incorporates neighboring points around the boundary of the 1st growing 

region as the 2nd growing region, which is highlighted in blue in Figure 2.4a. The 4th, and 

6th growing regions are also highlighted in different colors. At this stage, the 6th growing 

region is no longer continuous. The upper side of the 6th growing region (“end 1”) is 

separate from the lower side of the 6th growing region (“end 2”). A visual illustration of 

“end 1” and “end 2” is also shown in Figure 2.4a. We consider the status of the 6th region 

growing as a “hit” of the surface boundary. The boundary “hit” condition is judged by near-

zero width increment of the nth grown region. Upon the “hit” of surface boundary, the 

grown regions together (from 1st to 6th) exhibit a cylindrical shape. After the “hit”, the 

growing region (i.e., “end 1” and “end 2”) continues growing, until the width of the “end 

1” or “end 2”increases by more than a user-determined width parameter 𝑊𝑖𝑟 (0.8 in this 

study), or the direction of the “end 1” or “end 2”changes by more than a user-determined 

angle parameter 𝐷𝑐 (60° in this study). The first termination condition indicates that the 

growing region reached a branch or a stem portion with a width at least 𝑊𝑖𝑟 greater than 

the current width. The second termination means that the growing region reaches another 

branch with more than an angular difference of 𝐷𝑐. Note that fixing these parameters does 

not mean the resulting cylinders of a branch or a stem would be limited to certain prototype 

geometry with fixed angle or width. The parameters 𝑊𝑖𝑟 and 𝐷𝑐 only serve to control the 

degree of fragmenting point clouds into small regions. Those regions will be merged or 
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connected in later steps to form complete branch or stem curves. After the current region 

growing is terminated, we select a new starting point from the rest of the points and repeat 

the above region growing, until no new points can be found from the remaining point cloud. 

  
(a) (b) 

Figure 2.4 Region growing example. (a) The starting, 2nd, 4th, and 6th growing 

regions colored in green, blue, pink, and yellow, respectively; (b) “end 1” and 

“end 2” (circled) recognized from a growing region with four clusters. 

Figure 2.4a displays a simple stem point cloud, whereas Figure 2.4b has the more 

complex situation with branching bifurcation. We intend to control region growing only 

along the same stem/branch surface. So bifurcated branch points need to be excluded during 

region growing. This is realized by partitioning the nth growing region points into clusters, 

and only keeping the largest two clusters. The nearest distance between any two clusters 

should be greater than a user-determined parameter 𝐺𝑡 . In other words, 𝐺𝑡  is a gap 

parameter to differentiate region connectivity. In this study, 𝐺𝑡 is assigned to be a constant 

0.01 m but can be also set as a multiple of the average point resolution, to adapt to different 

point cloud datasets. Here we focus on the largest two clusters. The largest cluster is 
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assigned to be the “end 1”, and the second largest cluster to be the “end 2”, so as to limit 

the growing region to be on the stem surface. However, due to point occlusion, the branch 

may be larger than the stem, and “end 2” may thus be a branch. As such, we add a restriction 

that “end 2” is classified as the second largest cluster only if that cluster is located in the 

opposite growing direction of “end 1”. The whole segmentation algorithm and its required 

parameters are described in Appendix 1. Note that our segmentation algorithm is not aimed 

to filter a perfect whole stem, instead, it prepares cylindrical segments for the next step of 

stem classification. 

2.2.5 Stem Form Extraction: Classification 

The grown region with the most points is selected to initiate stem classification. The 

first principle component of the principle component analysis (PCA) for the stem region is 

chosen as an overall stem direction. The initial stem points are then perpendicularly 

projected to the stem direction to create their projected lengths along the stem direction. 

The stem points are separated into slices by splitting the projected lengths at equal intervals 

of 0.2 m. The purpose of slicing at equal intervals is merely to conform to validation data 

format. Each slice is projected along the stem direction into a plane. A circle-fit algorithm 

which minimizes the geometric error using least square (Gander et al., 1994) is adopted to 

find the circle center and radius from the projected points. As a result, the form of the initial 

part of stem is delineated by a sequence of the circle centers (stem nodes), circle radii (node 

radii), and circle directions (node directions). 

More regions need to be classified as part of the stem. One condition is set to satisfy: 

the region points shall fall inside a cylinder. The centerline of the cylinder starts from the 

closest node and is collinear with that node direction. The radius of the cylinder is the 

closest node radius. A concentric buffer cylinder is used to search new regions. The radius 



Chapter 2. Automating Plot-level Stem Delineation from TLS  
 

28 
 

of the buffer cylinder is equal to the node radius timed by  𝐷𝑡. Here 𝐷𝑡 is a user-defined 

ratio parameter indicating the degree of tolerance to the buffer cylinder radius (1.3 in this 

study). Priority is given to closer and larger regions. After a new region is classified as part 

of the stem region each time, the stem form is re-delineated using the circle fitting algorithm. 

Upper-stem and occluded regions may have few points to support circle fitting. 

Neighboring regions are then searched until sufficient points (e.g., 200) are found. The 

whole classification process terminates when no regions are found to fall inside the cylinder. 

Upper-stem occlusion is common in plot-level TLS scans. Due to upper-stem 

occlusion, the extracted stem form contains only visible components, yet the full stem form 

should extend continuously from the bottom to the tree top. Tree height is determined in 

our algorithm as the vertical distance between the highest and lowest points inside each 

isolated stem point cloud. The previous delineated stem form is linearly interpolated to zero 

radius at the tree top. Deficient stems with height lower than 2 m, or diameter smaller than 

5 cm, usually not included in tree inventory, are removed from the final results of stem 

form extraction. 

2.2.6 Validation 

DTM, stem detection, stem DBH, stem height, and stem form can be validated using 

the reference data from FGI. The DTM error is defined by the mean distance between 

extracted DTM points and corresponding nearest points in reference DTM. We only focus 

on how well the extracted locations from TLS matched the surveyed locations. Our 

detection rate is defined as the number of detected stems within a tolerable distance to the 

closest reference stems, divided by the total number of reference stems. The tolerable 

distance is set to be 0.5 m, so as to allow for possible surveying error of reference locations. 

This automated calculation of detection rate produces the same results as manual matching 
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in our study. The reference stem nodes manually extracted from each stem point clouds by 

FGI are organized as 3D coordinates of the stem nodes following a height sequence of 0.65 

m, 1.3 m, 2 m, 3 m, 4 m, and so on. Automatically extracted stem nodes are also interpolated 

to the same height sequence in order to match the reference stem nodes. The match of our 

nodes and reference nodes is based on the nearest neighbor search from the reference nodes. 

For each detected stem curve, RMSE of diameters, and r2 of diameters between the 

extracted nodes and the reference nodes are investigated. 

The parameters needed in all steps are displayed in Table 2.1. The parameter values 

in the right column can be used as default values in different TLS datasets. Other values 

were attempted in a few trials and errors, and extraction results did not vary greatly, because 

the algorithms allow reasonable variations of scanning conditions, point density, and stem 

geometry. For example, if 𝑅𝑠  or 𝐺𝑡  is set to smaller values (larger than minimum point 

resolution), the point clouds will be segmented into smaller pieces, but the following 

classification step will still recognize stem points based on 𝐷𝑡 . The set of parameters, 

especially the controlling parameters in Table 2.1, are tunable for other datasets to 

maximize accuracy. For this study, we did not specifically optimize the parameters since 

we expected the algorithms to be unsupervised and efficient which could avoid tedious 

tuning processes. We fixed the parameter values as in the right column of Table 2.1 

throughout the processing of both SS and MS datasets. 
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Table 2.1 Parameter and settings for automated stem attribute analysis from TLS 

data. 

 1. DTM extraction  

 DTM resolution 𝜎 0.2 (m) 

* Local elevation tolerance in a moving window 𝛿 0.5 (m) 

 Minimum initial ground points in a moving window 𝑁𝑚𝑣 10 

* DTM upper threshold factor 𝑡𝑤 5 

 2. Stem detection  

 Horizontal resolution for voxelization 0.1 (m) 

 Vertical resolution for voxelization 0.5 (m) 

* Cylindrical filter width s (roughly close to DBH) 0.2 (m) 

 Cylindrical filter height b 1 (m) 

 Maximally-allowed cylindrical filter leaning angle 𝜃max 20° 

* Cylindrical filter value 𝐶𝑣 (larger value creates more peaks) 1 

 Filtered peak detection strength 𝑃𝑠 (larger value detects weaker peaks) 0.5 

 3. Branch and stem segmentation  

* Region growing step 𝑅𝑠 0.02 (m) 

 Point gap tolerance 𝐺𝑡 0.01 (m) 

* Maximum branch width increase ratio 𝑊𝑖𝑟 0.8 

 Maximum branch direction change 𝐷𝑐 60° 

 4. Stem curve extraction  

 Stem node interval 0.2 (m) 

* Stem radius tolerance 𝐷𝑡 1.3 

* Controlling parameters. 

2.3. Results and Discussion 

2.3.1 DTM Extraction 

Both SS and MS point clouds from plot-1 were processed fully automatically based 

on the a-priori parameters without referring to any mensuration data. The 3D points of the 

extracted DTM from the MS dataset are shown in Figure 2.5. The point color is rendered 

by the distance between extracted DTM point and its nearest point in reference DTM. 

Points with the distance <0.2 m are shown in blue, 0.2–0.4 m green, 0.4–0.5 m yellow, 

and >0.5 m red. As expected, our DTM extraction algorithm preserves local low points and 

smoothens upper points. Local low points are not smoothened, so distance is high in the 

area of pits and bulges. The upper land on the bottom right of Figure 2.5 also shows high 
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distance value, because ground points are inadequate in that vegetated area to support 

accurate interpolation. For plot-1, average DTM error is 0.16 m (SS) and 0.10 m (MS), 

respectively. The DTM errors are reasonable, for both the reference and the produced 

DTMs have a resolution of 0.2 m. 

 

Figure 2.5 DTM 3D points extracted from the plot-1 multiple scans (MS) 

dataset. Point distance between extracted DTM and reference DTM is rendered 

using color legend on the right. A scale bar is placed at lower right corner. 

2.3.2 Stem Location Extraction and Isolation 

The projected 2D image of 3D directional filter convolution using MS dataset is 

shown in Figure 2.6b, offering comparison to the projected image without applying the 

directional filter in Figure 2.6a. It can be seen that irrelevant matters such as branch and 

foliage are cleared using our directional filter in Figure 2.6b. The pixel brightness stays 

consistently high near the likely stem locations and drops drastically further away. The 

brightness change (or sharpness) is controlled by the 3D filter size parameter s and filter 

value 𝐶𝑣. A high degree of sharpness produces speckled effect of the 2D image and leads 
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to over-detection of stem locations. To avoid high sharpness, based on our practical 

experience, the choice of s is suggested to approximate or exceed the size of stem target 

and 𝐶𝑣  stay below 2. In addition, high sharpness can be mitigated by increasing the 

maximum-allowed leaning angle 𝜃max. A large leaning angle (e.g. >40°), however, causes 

a risk of detecting oblique branches. 

  
(a) (b) 

Figure 2.6 Stem location detection. (a) 2D image directly projected from point 

cloud voxels as a comparison; (b) 2D image projected from the convolution of 

3D directional filter and point cloud voxels, with Thiessen polygons around the 

extracted locations. 

In Figure 2.6b, Thiessen polygons are shown as lines surrounding each extracted 

stem location. Among the detected stems from filter convolution, deficient stems were 

further discarded in the stem classification step. As a result, a total of 50 (SS) and 58 (MS) 

stems were detected, where 40 (SS) and 41 (MS) stems match to reference stems (49 stems). 

Therefore, a few trees exist in TLS scans but are not sampled in the reference data. This 

coincides with the finding from Liang and Hyyppä (2013) that around 10% of reference 

stems do not show in their SS dataset. The detection rates are 81.6% (SS) and 75.5% (MS). 

A relatively lower detection accuracy from the MS is due to a greater commission error. 
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Indeed, either SS or MS has a greater commission error than its omission error. Our 

algorithms detect several understory young trees and thin saplings not included in the 

reference data. In general, our detection rates are satisfactory, considering Brolly (2013)’s 

summary of nine papers that detection rates are between 22%–94% (SS), and 52%–100% 

(MS). The detection rate from SS alone is also competitive, in comparison to the common 

range of 68%–90% from SS (Liang et al., 2014b). It is not absolute though, for detection 

rate relies on plot conditions such as tree species, stem density, age, and elevation. For 

example, detection rates of four different species with over 40 trees in Liang and Hyyppä 

(2013) range from 81% to 100%. 

2.3.3 Stem Form Extraction 

A visualisation of the stem curve extraction is shown in Figure 2.7 for a single tree. 

The stem points are heavily shaded by branches and leaves at the height above 10 m (Figure 

2.7a). The loss of stem points in upper stems above 10 m is also reported in Henning and 

Radtke (2006), and above 7.8 m reported in Bienert et al. (2007). The extraction algorithm 

used is able to identify the stem shape and taper through the canopy (Figure 2.7c) by 

segmenting branches (Figure 2.7b). Optimal region growing automation ideally requires 

the avoidance of a-priori estimates of stem or branch radius. A number of existing branch 

reconstruction studies use a predefined sphere as an initial guess of radius (Hackenberg et 

al., 2014; Hackenberg et al., 2015; Raumonen et al., 2015). The classified stem reaches a 

height of 14.8 m, 67% of field measured height. Heavy occlusion above that height prevents 

our stem classification algorithm from detecting further stem surfaces. In general, the 

average proportion of our classified stem height reaches 64% (SS) and 74% (MS), greater 

than the average proportion of FGI’s software measured stem height 62% (SS) and 61% 

(MS). Stem diameter narrowing in the crown is another bottleneck of stem classification 
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from branch clumps. A potential solution is to sacrifice time efficiency in order to gain 

classification accuracy. This could be, for example, finer region growing in terms of smaller 

𝑅𝑠 and 𝑊𝑖𝑟, or greater classification tolerance in terms of larger 𝐷𝑡. Figure 2.7d plots the 

shape and radius of the extracted curve nodes. Visually, the overall curve shape is smooth. 

The occlusion of the crown introduces biases in the node direction above 12 m and radius 

above 6 m. 
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(a) (b) (c) (d) 

Figure 2.7 Automation outcomes for tree No.23 from plot-1 MS. (a) raw 

isolated point clouds, colored by point intensity; (b) segmentation of the point 

clouds within 1 m horizontal distance to the stem location, colored by the 

segment random identity numbers; (c) a vertical section cutting tree in half, with 

branches in blue and classified stem in white; (d) stem radius and stem curve, 

represented by colored stem node circles and red connection line of stem nodes, 

respectively. The results are shown in local Cartesian coordinate system with 

plot center as the origin. 

Correspondence between TLS detected stem DBH, height, and form (for those 

identified within 0.5 m of the reference stems) and reference is provided in Table 2.2. 

According to Liang et al. (2014c)’s accuracy assessment of over five studies about stem 
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attribute extraction, DBH RMSE ranges between 0.82–9.17cm (mean: 3.8 cm), and stem 

diameter RMSE between 1.13–7.0 cm (mean: 3.9 cm). Our DBH and stem diameter results 

from MS show improvement over the average at 0.9 cm RMSE, yet results from SS are less 

satisfactory at 2.4 cm RMSE. The difference of DBH RMSE 1.5 cm represents 6.5% of the 

mean reference DBH. Here, we define “error” as the absolute difference between measured 

and extracted. A right-tailed two-sample t-test of DBH error comparing SS and MS shows 

a p-value of 0.0008 at the 5% significance level, and the same test of height error has a p-

value of 0.13 at the 5% significance level. It can be concluded that DBH error from SS is 

significantly greater than from MS and height error from SS is not. The detailed disparity 

between measured and extracted DBHs can be seen in Figure 2.8a,b. Systematic 

underestimation error can be found from Figure 2.8a where 67.5% of extracted DBHs from 

SS and 94.6% from MS are smaller than the reference. It is believed that the systematic 

error and bias are likely due to the circle-fitting algorithm’s imperfection in terms of 

asymmetric stem sampling from the TLS. The measured and extracted heights are 

compared in Figure 2.8c,d. The leading error is presented by two obvious outliers that are 

far from the dashed regression line in both figures. The outliers show errors greater than 5 

m. We visually examined the corresponding stems and found crown tops were actually 

overlaid by several higher crowns from neighboring trees. At such, tree crown overlapping 

contributes much of the error. The distance to scanner is plotted against DBH error (SS and 

MS) in Figure 2.9. From Figure 2.9a, it is clear that the largest DBH errors (>5 cm) from 

SS correspond to a distance greater than 10 m to the plot center. Indeed, with the increase 

of distance to plot center, stem surface points become thinner and more scattered (Litkey 

et al., 2008), and therefore challenge DBH extractions. In contrast, extracting DBH from 

MS is less affected by distance to plot center (Figure 2.9b), owing to additional corner scans. 
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This further indicate that using a circle-fitting model cannot really overcome the 3D 

sampling limitation from the field. 

Table 2.2 Accuracy assessment for stem attributes. 

 RMSE r2 

DBH (SS) 2.4 cm 0.81 

DBH (MS) 0.9 cm 0.97 

Height (SS) 1.7 m 0.58 

Height (MS) 1.7 m 0.68 

 Average RMSE Average r2 

Diameter (SS) 3.2 cm 0.58 

Diameter (MS) 2.4 cm 0.76 
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(a) (b) 

  
(c) (d) 

Figure 2.8 Scatter plot between the measured and the extracted: (a) DBH from 

single scan (SS); (b) DBH from multiple scan (MS); (c) height from SS; (d) 

height from MS. 
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(a) (b) 

Figure 2.9 Scatter plot between range and DBH error: (a) from single scan (SS); 

(b) from MS. Here, error is defined as the absolute difference between the 

measured ground truth and the extracted. 

Extracting full stem diameters is more challenging than extracting DBH. The 

increased difficulty is clear in the mean RMSEs of extracted stem diameters (SS: 3.2 cm, 

MS: 2.4 cm) in Table 2.2 compared to that of DBH (SS: 2.4 cm, MS: 0.9 cm). The average 

RMSEs of extracted diameters are 3.6 cm (SS) and 3.1 cm (MS) above half tree height, 

contributing 65.4% and 73.3% to total RMSEs, respectively. The relationship between 

diameter extraction errors and relative tree heights is illustrated in Figure 2.10. Outliers are 

mostly distributed near the ground and above 40% height. It is clear that more diameters 

are underestimated from SS (Figure 2.10a) than from MS (Figure 2.10b). Trying different 

circle-fitting algorithm may overcome this problem. A detailed comparison of different 

stem form extraction algorithms is illustrated in Liang et al. (2018). 
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(a) (b) 

Figure 2.10 Scatter plot between relative tree height and diameter error: (a) from 

SS; (b) from MS. Here, error is defined as the absolute difference between the 

measured diameters and the extracted. 

2.3.4 Time Efficiency 

In the process of stem form extraction, searching for the neighboring points is 

accelerated by a voxel indexing method. The voxel indexing method first groups the points 

into voxels and any nearby voxels are then searched directly by the spatial index. This 

method reduces the computation and storage cost of iterative point cloud subdivision in the 

octree method. Partitioning of the growing region into clusters is also facilitated by the 

voxel indexing method. In our test, the overall computation time is reduced to half by 

applying the voxel indexing method. 

Our overall processing time for the plot-1 using an Intel i7 2 GHz with 8 GB 

memory are 27 min (SS) and 2 h 28 min (MS), respectively. The processing time for MS 

is distributed approximately in Table 2.3. Note that processing time varies with the tree 

geometry, point number, scan quality, and computer specification. The numbers of points 

are 23,568,575 (SS) and 111,065,193 (MS). The point cloud files are 0.5 GB (SS) and 2.5 
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GB (MS) and isolated stem files had a median of 1 MB (SS) and 10 MB (MS), respectively. 

Table 2.3 illustrates that the time complexity of our algorithm is highly proportional to the 

point number, which is partly because our algorithms limit nonlinear traversal of point 

clouds. A countable processing time is essential to an unsupervised, ceaseless, and 

achievable product line of plot-size inventory. Foresters can rehearse processing smaller 

point clouds, determine desired point size and resolution, and then arrange a favorable 

processing timeline. Only a limited number of studies share information about processing 

time. Aschoff and Spiecker (2004) reported that their algorithms allocate 16.2 second per 

million points (sppm) to DTM creation, 10.8 sppm to tree recognition, but a large 865 sppm 

to noise reduction and export, based on a 2.0 GHz CPU. Bienert et al. (2006) provided 

sppm statistics for three SS plots and one MS plots using Intel Xeon CPU (2.4 GHz) with 

1.0 GB RAM. Their algorithm of DTM filtering, segmentation and classification has 

around 240 sppm (SS) and 180 sppm (MS), and their algorithm of stem form extraction has 

15–22 sppm (SS) and 23 sppm (MS), respectively. In comparison, our algorithms exhibit 

more stable sppm between SS and MS. 

Table 2.3 Time distribution in the automation algorithms in minutes. 

Process SS MS 

Reading point cloud 1 4 

(sppm) * (2.5) (2.2) 

Extracting and removing DTM 1 4 

(sppm) (2.5) (2.2) 

Extracting stem location 0.2 1 

(sppm) (0.5) (0.5) 

Isolating stem space 1 4 

(sppm) (2.5) (2.2) 

Extracting stem form 24 135 

(sppm) (61.1) (72.9) 

Overall 27 148 

(sppm) (68.7) (80.0) 

* sppm: seconds per million points. 



Chapter 2. Automating Plot-level Stem Delineation from TLS  
 

42 
 

2.4 Conclusions 

This study presents a new methodology for the automated extraction of tree 

locations, complex DBH cross sections and detectable stem heights within a plot with 

single and multiple TLS scan lines. The study uses automated methods to (a) filter and 

retain ground returns and high resolution variability of the ground surface using an 

automated, piece-wise interpolation function; (b) identify stem locations via rapid matching 

of 3D shapes within point clouds in entire 3D space instead of focusing on predefined slices 

or point-wise PCA described previously in the literature (Aschoff et al., 2004; Bienert et 

al., 2006; Maas et al., 2008; Schilling et al., 2011); and (c) applying an automated stem 

form extraction methodology for all identified trees within the plot such that issues 

associated with complex stem shape and point occlusion due to canopy interception of laser 

pulses are addressed. Although numerous steps are required to perform the analysis, the 

integration of these methods can be applied to answer numerous questions about canopy 

attributes that would otherwise require greater user intervention and processing time. For 

example, our segmentation algorithm can provide branch segments as a preliminary input 

to the cylinder fitting step in most branch reconstruction algorithms (Côté et al., 2011; 

Hackenberg et al., 2014; Livny et al., 2010; Newnham et al., 2015; Raumonen et al., 2013; 

Schilling & Maas, 2014). Differentiating branch segments is also an essential step to isolate 

overlapping trees (Raumonen et al., 2015; Yang et al., 2016). Our stem detection algorithm 

can also aid the process of multi-scan co-registration (Henning & Radtke, 2006). 

While this study may not provide the most accurate results compared with Liang et 

al. (2014c), the automation of steps for complete plot-level assessment will reduce time 

spent in the field and more manually intensive TLS-based extraction methods (Dassot et 
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al., 2012; Eysn et al., 2013). Our future work needs to improve the stem detection rate and 

the circle-fitting algorithm. The convolution filtering and local extrema extraction 

processes presented in this study are similar to the concept of the convolutional neural 

network (CNN) to be mentioned in the following chapters, except that the CNN model is a 

tunable process. It would be interesting to apply CNN specific for the stem detection and 

localization purpose. Algorithm versatility is also an aim of improvement. As Côté et al. 

(2011) pointed out, current TLS measurement still faces the problem of object occlusion, 

multi-scan oversampling, wind sway, and tree component identification. Solving these 

problems entirely is indeed a long run. 
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Chapter 3. Filtering Biomass Components from TLS Plot Scans 

3.1 Context 

Detailed stem form extraction from TLS improves inventory-based approach by 

quantifying stem volume in non-destructive and precise manners. Using empirical BEF at 

the plot level can convert stem volume to plot wood volume including other components 

like branch, root, understory, and saplings. Further evidence is found that reconstructing 

branch wood components of individual trees using QSM can attain high accuracy (Calders 

et al., 2015; Hackenberg et al., 2015). The QSM-based branch modeling can be a promising 

replacement of allometric-derived rules to convert plot-level biomass. One strong 

requirement of applying QSM at branch level is clear presence of branch points from TLS 

scans. Apparently, the requirement is hardly satisfied in leafy crown and understory. A 

reliable and versatile wood filtering algorithm is needed for handling all these complexities 

in 3D space. 

The complexity of scanning scenarios is a constraint to developing successful wood 

filtering algorithms. Fortunately, artificial intelligence, especially the revolutionary deep 

learning network, is tailored to handle complex recognition and filtering problems (LeCun 

et al., 2015). In general, deep learning networks comprise multiple layers with millions of 

parameters that explain complex data structures and achieve high intelligence. Initial 

parameter values need to be trained in a gradual optimization process where gradients 

between the predicted and the desired are backpropagated and minimized. The 

configuration of layers, however, has various forms and depends on application type. A 

close application to our wood filtering case is image classification, which is also termed 

image semantic segmentation, under the context of computer vision and machine learning. 
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Correspondingly, the most popular deep learning network is the Fully Convolutional 

Network (FCN). As the name implies, FCN typically has hierarchical convolutional layers 

that extract abstract image features in hyperspace, then fully-connected layers that define 

wall-to-wall mappings between the abstract features and classes, and finally transposed 

convolution layers that interpolate class predictions to fine resolution. The convolutional 

layers are also termed Convolutional Neural Network (CNN) layers. Such a layer 

configuration of FCN has had significant success in practice for the capability of automatic 

feature selection and high-degree nonlinearity. Different FCN realizations and variations 

are reviewed in Garcia-Garcia, et al. (Garcia-Garcia et al., 2017). 

Applying FCN to 3D wood filtering has several practical difficulties. First, training 

an FCN structure with 3D point clouds is time and storage challenging. So far, the 

convolution step of FCN from most deep learning programs does not support a discrete 

point format, and 3D point clouds need to be voxelized first. However, inputting the FCN 

structure with all voxels in fine resolution and entire scan range will easily lead to 

computation overflow. This tradeoff between computation load and 3D information 

abundance calls for additional transformation of 3D point data or FCN structure. Existing 

transformation methods involve projecting 3D points to multi-view or multi-feature 2D 

images (Boulch et al., 2017; Lawin et al., 2017; Yang et al., 2017), subdividing point clouds 

into blocks (Çiçek et al., 2016; Huang & You, 2016), or enabling sparse computation of 

CNN layers (Graham, 2015; Riegler et al., 2017). Second, a gradient vanishing problem 

arises. Interpreting point clouds as a uniform grid of voxels will lead to many empty voxels. 

This is mainly because only LiDAR point clouds only scans a target surface and will have 

empty gaps inside a target. A great number of empty voxels surrounding a non-empty voxel 

will usually depress or eliminate the contribution of non-empty voxel during the CNN 
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convolution process using a 3D moving window. The depressing effect will pass on to 

deeper layers of the CNN. Similarly, backpropagation of gradients to shallower layers 

hardly affects non-empty voxels. This phenomenon is a symptom of gradient vanishing 

(Hochreiter et al., 2001), which significantly slow the training process or even lead to 

training failure. The gradient vanishing problem for the point cloud data has no sound 

solution yet, albeit compromises can be replacing CNN with a multi-layer perceptron 

structure that weakens spatial relationships (Qi et al., 2016; Qi et al., 2017). Third, it is 

difficult to have either ground truth or manual reference of wood points. The training 

process of FCN requires a considerable number of samples with correct labels. Yet it is 

laborious to either obtain ground truth by repetitively scanning a plot with and without 

leaves or create a manual reference by picking and labeling individual points from dense 

and noisy scans at branch level. 

A 3D FCN structure was customized in this study, aiming to filter stems and 

branches from TLS point clouds in a robust and flexible manner. TLS scans were collected 

with varying scanning and geometric conditions from three sites dominated by three 

common species. An automatic region-growing method was developed in aid of manual 

reference generation. The filtering results from 3D FCN were finally input to a QSM model 

to test application possibility for plot-level wood delineation. From this experimental study, 

we hope to unveil the potential of applying deep learning methods in complicated 3D 

processing tasks, particularly in parsing forest plot scans, in pursuit of automatic and 

intelligent wood resource management. 
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3.2 Methodology 

3.2.1 Data and Analysis Framework 

In the summers of 2015 and 2016, plot scans were collected for three test 

monospecific sites dominated by three common species in Canada: sugar maple (Acer 

saccharum) from Vivian Forest (Ontario), trembling aspen (Populus tremuloides) from 

West Castle (Alberta), and lodgepole pine (Pinus contorta) from Cypress Hills 

(Saskatchewan). Maple, aspen, and pine plots have an approximate stem density of 400, 

200, and 700 ha−1, and average tree height of 17, 12, and 20 m, respectively. All sites were 

scanned with an Optech ILRIS HD (1535 nm) from plot center and three-to-five corners. 

The mean point spacing was between 10–20 mm and range accuracy was ±2 mm at a 

distance of 20 m from the scanner for all sites. Laser intensity values ranged from 0–255. 

For the sampling and evaluating purpose, all our scans were not trimmed in size. The 

maximum range of scans from the plot center is about 100-200 m. 

From corner scans, we manually clipped common areas to be our sample areas. Our 

training sample included six maple areas, six aspen areas, and two pine areas, whereas our 

testing sample includes three maple areas, two aspen areas, and two pine areas. We 

intentionally selected samples with varying tree numbers and scanning conditions, with a 

quantitative summary in Table 3.1. We also created a sample quality ranking between ‘1’ 

and ‘10’ based on observation, explained in Table 3.2, indicating how difficult it is to infer 

inventory details from human interpretation. Point sparsity and occlusion are important 

references to our subjective quality ranking, which can be partly reflected by the high 

Pearson’s correlation (r) of 0.72 between quality ranking and point spacing, and by the low 

p value of 0.0003. It is noteworthy that a quality ranking of ‘1’ does not mean perfect 
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quality. All of our samples encounter a certain degree of point occlusion, especially in 

upper crown. Such scan quality imperfection and inconsistency are notorious 

characteristics of natural forest scans and this is where the challenge is. Great quality 

variation can help develop a robust or universal filtering model to maximize plot data usage. 
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Table 3.1 Quantitative characteristics of each training and testing sample. DBH 

min-max means minimum and maximum DBH extracted from sample point 

clouds at a height of 1.3 m. A DBH with 0 value means unmeasurable. Height 

means vertical distance between lowest and highest points. Point spacing means 

median nearest neighbor distance. Quality ranking is described in Table 3.2. 

Dataset 

(Size) 

Sample 

ID 

Tree 

Count 

DBH Min-

Max (cm) 

Height 

(m) 

Point Spacing 

(cm) 

Quality 

Ranking 

Training 

sample 

(14) 

maple 1 2 9.8–33.3 24.4 0.9 2 

maple 2 3 7.5–11.7 17.5 0.6 7 

maple 3 4 0–39.4 25.3 1.1 3 

maple 4 3 36.8–42.8 28.8 2.0 4 

maple 5 2 0–0 20.1 3.1 4 

maple 6 1 0–0 25.0 2.2 6 

aspen 1 4 0–24.2 14.1 3.2 6 

aspen 2 1 0–0 12.5 4.7 10 

aspen 3 2 0–28.3 14.9 0.9 1 

aspen 4 6 9.9–22.0 33.6 1.7 3 

aspen 5 7 0–0 11.8 7.9 9 

aspen 6 3 10.1–22.4 13.2 2.7 4 

pine 1 4 17.9–29.9 23.6 1.0 1 

pine 2 1 0–0 23.3 1.0 5 

Testing 

sample 

(7) 

maple 7 4 10.7–11.9 27.3 2.1 8 

maple 8 2 5.9–34.9 18.5 0.6 2 

maple 9 2 0–54.0 26.0 1.8 3 

aspen 7 1 23.7–23.7 15.7 0.6 2 

aspen 8 1 34.6–.34.6 14.9 0.5 1 

pine 3 1 42.3–42.3 21.9 2.4 5 

pine 4 4 0–0 23.0 0.5 3 

Table 3.2 Criteria for sample quality ranking. 

Quality 

Ranking 
Rationale 

1 explicit branch and stem forms, very low occlusion degree 

2 
moderate branch and stem details, full stem form, very low occlusion 

degree 

3 full stem form, low occlusion degree, few branch details 

4 Fragmented stem form, moderate occlusion degree 

5 partial stem form, low occlusion degree 

6 partial stem form, moderate occlusion degree 

7 partial stem form, high occlusion degree 

8 partial stem form, sparse branch or stem points, high occlusion degree 

9 indiscernible stem points 

10 indiscernible stem points, surrounded with noisy points 
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All sample areas were labeled with three classes: ‘stem’, ‘branch’, and ‘other’ 

components. The labeling step was semi-automatic, to be described in Section 3.2.1. For 

completeness, stems and branches of understory saplings (height < 4 m) were also labeled 

in the sample areas. Finally, center scans and corner scans were manually co-registered in 

preparation for plot-level filtering visualization and tree reconstruction. 

Our experimental design of training, evaluating, and applying a 3D FCN filtering 

model in wood reconstruction is presented in Figure 3.1. Detailed explanations will be 

provided in the following sections, with the process of generating training and testing 

reference in Section 3.2.1, specification of the 3D FCN in Section 3.2.2, and schemes of 

plot-level QSM to retrieve tree structure and volume in Section 3.2.3. 
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Figure 3.1 A framework of wood filtering and reconstruction from TLS plot 

scans. IoU and OA are both accuracy evaluation metrics. IoU: intersection over 

union for a class. OA: overall accuracy.  

3.2.2 Labeling Reference Points 

Per-point labeling of subtle branches, especially in crown and understory areas, can 

be difficult. This study relied on an automatic segmentation algorithm to help locate tube-

shaped branches and filter out noise (Xi et al., 2016) (Chapter 2). Generally, the algorithm 

started from selecting a few core points from point clouds, which iteratively incorporated 
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neighboring points and eventually grew to be tube-shaped regions. Major requirements of 

the region-growing routine were to constrain growth direction and tube width changes. As 

a result, most points were segmented into tube-shaped regions, while other remaining 

points, especially from leaves and ground, had bulky shapes. The tube-shaped regions were 

extracted based on their three-dimensional features from principal components analysis 

PCA (Pfeifer & Winterhalder, 2004): any regions with linearity >0.4 and sphericity <0.3. 

The extracted regions were then exported to CloudCompare Open Source Software for 

further editing. Specifically, the tube-shaped regions were manually trimmed and refined 

to represent clean wood segments. Wood segments, with thick long shape, near-vertical 

direction, tight connection to base part, or high laser intensity, were preferably recognized 

as stems. The remaining wood segments were thus intended to be branches. We labeled 

stems as class 2, branches as class 3, and other points as class 1. 

The above-stated region-growing algorithm was an iterative process, meaning that 

later region-growing steps were affected by errors in earlier steps. It was therefore critical 

to ensure correctness of initial region-growing steps. For example, locating initial region-

growing points should avoid areas with ambiguous shapes, such as joints between branches. 

Our experiments suggested that region-growing initialized from branch tip points would 

yield most correct shapes and cause less conflict with following region-growing steps. We 

then proposed a simple method of locating branch tips, to improve the initialization step in 

Xi et al. (2016) (Chapter 2). First, for operational convenience, all points were converted 

to voxels at a resolution of 5 × 5 × 5 cm3 (xyz). A metric termed mean curvature was used 

to describe the spatial local sharpness (Figure 3.2). Specifically, for each voxel, we 

calculated its unit vectors directing to all neighboring voxels. The average of those unit 

vectors was a vector (red arrow in Figure 3.2), the direction and amplitude of which 
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represented surface normal and sharpness degree, respectively. This amplitude value was 

indeed a discrete expression of surface mean curvature (Sorkine, 2006). Using surface 

mean curvature, branch tips were coarsely located where a voxel’s mean curvature 

exceeded 0.75. These voxels representing branch tips were regarded as initial region-

growing points. Each branch tip was searched in turn to grow initial regions, until no tips 

were available. Then any arbitrary point was selected to continue region-growing until no 

points were selectable. Both region-growing and initialization algorithms were 

programmed in MATLAB. The region growing-based segmentation is based on local 

geometry and connectivity. The segmentation performance is directly affected by the scan 

occlusion and leaf noise, but is not sensitive to varying point densities and branch 

geometries among different trees and species. 

 

Figure 3.2 A sketch of surface normal and surface mean curvature (red arrow), 

calculated as average of unit vectors (yellow arrow) pointing from center point 

(green dot) to neighboring points (blue dots). 
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3.2.3 Configuring 3D FCN 

Our 3D FCN model and evaluation steps were programmed in Tensorflow (GPU 

edition). We adopted the point cloud subdivision approach (Çiçek et al., 2016; Huang & 

You, 2016) and limited the model input to be a block of 128 × 128 × 128 voxels, with a 

voxel size of 5 × 5 × 5 cm3. Larger block size and smaller voxel size were tested but could 

cause computing overflow problems of our graphic card memory. Based on our preliminary 

tests, wood classification accuracy would decline slightly with a smaller block size or a 

greater voxel size, but drastically with a block size smaller than 64 × 64 × 64 voxels or 

voxel size greater than 10 × 10 × 10 cm3. We cut raw point clouds evenly into blocks and 

then shuffled blocks randomly before the training process. Each voxel was assigned with 

three attributes, derived from summary statistics of all points within that voxel. The first 

attribute was binary, with 1 meaning point occupancy and 0 otherwise. The second attribute 

was the average of the laser intensity values, whereas the third attribute was the average of 

the point heights (z value). With three attributes, the final FCN input was a 128 × 128 × 

128 × 3 block. In addition, the class label of a voxel was calculated as the dominant label 

from all points within the voxel. If a voxel was empty, its class was set to be 0. Hence, the 

total class number was four. 

Our FCN structure (Figure 3.3) was customized based on the FCN-VGG-16 

structure described in Long et al. (2015), where VGG denotes Oxford's Visual Geometry 

Group. Our FCN structure expanded the 2D layers of the FCN-VGG-16 to a 3D version. It 

was basically a joint of five 3D CNN layers to subsample and extract important features, 

three fully connected layers to expand feature dimension and weight high-level features, 

and three transposed convolution (TC) layers to oversample and recover spatial resolution. 

Each CNN layer started with two or three convolution layers to filter a block and ended 
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with a max pooling layer to extract local extrema. The TC layers have the problem of losing 

spatial details and therefore they are fused with the low-level CNN layers for better 

recovering spatial resolution. We designed the fusion strategy between TC and low-level 

pooling, shown by the plus sign in Figure 3.3. Our strategy was fusing 1st TC directly with 

3rd pooling results, and 2nd TC with 2nd pooling. The omission of fusing 4th pooling results 

was intended to reduce blurring degree on final prediction, since the spatial resolution of 

4th pooling block is low (16x16x16) for fusion. The final prediction output a 128 × 128 × 

128 × 4 block, with last dimension denoting the probability of each class. The final class 

label was predicted as the maximum value in the last dimension of the probability block. 

 

Figure 3.3 Configuration of 3D FCN structure. Colored bars denote different 

types of network layers, black numbers outside bar denote input size in 3D 

domain, white numbers inside bar denote input size in feature domain, and gray 

plus sign denote addition of layer outputs. 

We trained our model from scratch because existing 2D pre-trained models were 

hardly adaptable to our scenes and data structure. Our convolution filter size was 3 × 3 × 3, 

and dropout ratio was 0.5, following the routines of CNN. The weights of convolution and 

fully-connected layers were initialized using default values in Tensorflow, and the weights 

of transposed convolution layer were based on trilinear interpolation. To train our 3D FCN 

model, errors (or disagreement) between probability block and reference, namely loss 

function, were measured using a mean softmax cross entropy metric (Bridle, 1990). 

Nevertheless, directly minimizing this loss function could encounter the gradient vanishing 
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issue. Our solution was to calculate loss function only based on non-empty voxels in the 

probability block. We used an Adam optimizer (Kingma & Ba, 2014) with an initial step 

of 10−4 to iteratively minimize the loss function. The setting of initial step was based on 

trial and error experiments. It was observed that loss function from only non-empty voxels 

could always descend to a minimum level, albeit the convergence process was slow and 

variable.  

Prediction accuracy (or filtering accuracy) was defined as an agreement between 

predicted and referenced labels for this study. Three accuracy metrics were adopted: 

Overall Accuracy (OA), Intersection over Union (IoU) per class, and its mean value (mIoU) 

(Garcia-Garcia et al., 2017). The OA divided the total number of matched labels between 

prediction and reference by the total number of points. It represented an overall matching 

degree. The IoU was class-specific, which divided the total number of matched labels by 

the total number of labels for one class. The mIoU was an average of IoUs among all classes. 

Compared to OA, mIoU weighed per-class accuracy equally, and therefore less influenced 

by the accuracy of dominant classes. The metrics of OA, IoU, or mIoU all ranged from 0–

1, with higher value indicating greater agreement. 

3.2.4 Reconstructing 3D Tree Geometries 

We designed a follow-up wood reconstruction model (or QSM) at plot-level to 

showcase a potential application value of our 3D FCN. The results of FCN filtering were 

labelled voxels. We extracted stem points from stem voxels, and branch points from branch 

voxels. The non-wood points were discarded, as well as the height and intensity attributes 

from wood points. Only 3D coordinates of wood points were reserved for the reconstruction 

model. The wood reconstruction modeling (or QSM) was a top-to-bottom and bottom-to-

top process: decomposing the plot to individual trees, extracting nodes from branch or stem 
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points, connecting nodes along separate branches or stems, and finally connecting branches 

to stems. Success of all reconstruction steps relied significantly on clean filtering of stems 

and branches from the 3D FCN. All wood points were assumed to be tube-shaped. 

At the plot level, we used a simple region-growing algorithm to decompose plots 

into individual trees. Region growing process started from an arbitrary point, kept 

incorporating its buffer points within 0.1 m, and terminated when no buffer points were 

found. Results were isolated components of branches and stems. We applied a simple rule 

to merge isolated stem components into complete individual stems. Any two stem 

components were identified as being from the same stem if one stem component was 

completely above the other, and the upper components fell within five times stem radius of 

the lower component. Then, with individual stems identified, branch components were 

assigned to their nearest stem, together to form an individual tree. We limited the nearest 

distance between branch components and stem to be no greater than 2 m, otherwise the 

branch components would be identified as isolated branches. We also identified any 

branches not higher than 4 m from the ground as understory wood. Those branches were 

not assigned to their nearest stem. Consequently, a plot of wood points was decomposed 

into individual trees, isolated branches, and understory wood. 

At the individual-tree level, stem and branch points were segmented respectively 

using the same region-growing algorithm as described in Section 3.2.2, except for filtering 

tubes based on linearity and sphericity criteria. The resulting grown regions were evenly 

sliced along their main axis at 1 cm intervals, to form a sequence of nodes representing the 

tube. The main axis direction was estimated from PCA (Xi et al., 2016), and each node 

location was at the center of the slice. At each node location, we applied a circle-fitting 

algorithm for its neighboring points (Gander et al., 1994). The search radius of neighboring 
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points was set to be three times the tube width retrieved from the region-growing process. 

The fitted circle center became the new node location, the circle radius became node radius, 

and the circle plane normal becomes the node direction.  

At the individual-stem or branch level, nodes were connected based on a weighted 

similarity score (Equation 3.1) utilizing distance 𝐷, angle 𝜃, and radius 𝑅: 

Score2,1 = (𝑤1|tan𝜃1| + 𝑤2|tan𝜃2| + 𝑤3𝐷 + 𝑤4|∆𝑅|)
−1, 

 𝑤ℎ𝑒𝑟𝑒 𝜃1, 𝜃2 < 90° 
(3.1) 

Figure 3.4 has intuitive illustration of these geometric terms, with 𝐷  meaning distance 

between two nodes, 𝜃 included angle between node direction and node connection, and ∆𝑅 

node radius difference. Any large 𝜃, ∆𝑅 or 𝐷 can lead to a low similarity score. The weight 

of each term was customizable, and this study empirically set 𝑤1 = 0.4, 𝑤2 = 0.4, 𝑤3 =

0.1 and 𝑤4 = 0.1. Using this set of weights can rapidly approximate consistent and smooth 

curves for varying branch geometries among all our scan datasets including the complex 

aspen trees. Connection results are not sensitive to the weight choice because in most 

situations the best potential node have the smallest 𝜃, ∆𝑅 or 𝐷 at the same time, with a 

similarity score much smaller than the second potential node. Ambiguity occurs only in 

highly occluded or noisy area. Our process of node connection started with an arbitrary 

node, searched its neighboring nodes within 0.1 m, connected nodes with highest similarity 

scores, and repeated search and connection, until no node is available. In rare situation, 

nodes have 𝜃 ≥ 90° which were discarded to avoid turn-around of connection lines. We 

then reversed the direction of the starting node and performed the same connection process, 

so that both sides of starting nodes could be searched and connected. The entire connection 

process produced individual stems and branches. 



Chapter 3. Filtering Biomass Components from TLS Plot Scans  
 

59 
 

  

 

Figure 3.4 An illustration of similarity score composition. Gray points are 

example of scanned branch points, green dots are connected nodes, blue dots 

are candidate nodes to a target node, D is distance between target node and 

one of the candidate nodes, and θ is included angle between their connection 

(dashed line) and node direction (red arrow). For clarity, fitted circles around 

each node are not shown here. 

At the individual-tree level, each branch, only represented by its starting and ending 

nodes, was connected to the stem or another branch based on the similarity score shown in 

Equation 3.2: 

Score2,1 = (𝑤2|tan𝜃2| + 𝑤3𝐷)
−1, 𝑤ℎ𝑒𝑟𝑒 𝜃2 < 90° (3.2) 

Compared to Equation 3.1, no penalty was required for radius difference or direction 

difference between target and connection line. The connection process was iterative. First, 

branches nearest to the stem were connected to a stem node with highest similarity score. 

This branch-to-stem connection shaped a general 3D tree form. Then, remaining branches 

nearest to the tree form were connected to it based on a similarity score, and so forth, until 

no branches were available. The resulting tree form was further refined by combining 
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similar branches (Figure 3.5). Any two branches with similar branch directions (<50° 

difference) would join at their shared node, if the joint branch were to be longer than both 

branches. 

 

Figure 3.5 Example of branch connection refinement. Gray dots are scanned 

branch points, yellow and blue lines are connection lines. The right panel 

shows a more natural way of connection than the left. 

Returning to the plot level, in addition to individual trees, isolated branches and 

understory wood were simply reconstructed following the steps of node connection. We 

did not apply branch-to-branch connection to avoid an excessive number of plausible 

connection lines. Wood volumes of individual trees, isolated branches and understory were 

all computed. All the QSM parameter settings were the same for different plots. 

3.3 Results and Discussion 

3.3.1 Reference Creation 

Results of branch tip extraction from ‘aspen 3’ are shown as white dots in Figure 

3.6a. Initialized with these branch tips, our region-growing algorithm can segment point 

clouds mostly into tube shapes. Those segments are assigned random colors in Figure 3.6b 

to visualize differences. After segment-wise PCA filtering, manual selection and minor 
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trimming, the resultant wood reference is displayed in Figure 3.6c. The stem and branch 

points after splitting are shown in green and red, respectively, whereas other points are in 

blue (Figure 3.6d). Two trees are covered in this sample area, with only one tree exposing 

its main stem. Both trees contain many ghost points, particularly near the crown area, due 

to the difficulty of interpretation and trimming. These are typical quality issues in preparing 

reference data which hinder deep learning algorithms from recognizing branches correctly. 

Yet eliminating reference errors simply from human interference is limited and costly. It is 

anticipated in the future that a benchmarking reference dataset, e.g. both leaf-on and leaf-

off scans or virtual forest simulation scans, could be developed for an algorithm optimizing 

purpose where scene complexity and data quality could be finely controlled. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.6 Example of preparing aspen reference sample (‘aspen 3’): (a) clipped 

point clouds colored by laser intensity, overlaid with branch tip extraction in 

white dots; (b) region-growing segments in random colors; (c) segments with 

only stem and branches; and (d) reference tree with stem, branch, and other 

components classified in green, red, and blue colors, respectively. This sample 

area covers two trees: one exhibiting detailed stem form and the other showing 

only partial upper stem due to occlusion. 
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3.3.2 3D FCN Filtering and Evaluation 

Figure 3.7a,b tracks accuracy changes during the training process for a training 

sample and a testing sample, corresponding to the ‘aspen 6’  and ‘maple 8’ in Table 3.1, 

respectively. A total of 60,000 training iterations are presented, corresponding to a running 

time of 30.19 h using a computer with Intel® Core™ i7-6700K 8 × 4.00GHz, 32GB RAM 

and NVIDIA GeForce GTX 1070 8GB RAM. As iteration increases, both training sample 

and testing sample show an increasing trend for mIoU and OA, with only one or two abrupt 

slumps, indicating our 3D FCN is a global optimization process. Note that an IoU or OA 

of 1.0 means perfect prediction. After 30,000 iterations, mIoU and OA of training sample 

converges to 0.98, indicating the strong fitting ability of the 3D FCN. On the other hand, 

mIoU and OA of testing sample levels off to a limit of 0.76 and 0.96, respectively, after 

10,000 iterations. This result indicates that the generalizability of FCN would saturate and 

that the later learning phase after 10,000 iterations may only focus on classifying marginal 

features. The progressive classification manner by feature complexity is also observed in 

Bilal et al. (2018). 

The testing sample has a high OA limit but relatively lower mIoU limit. This result 

indicates that the majority of wood points are filtered accurately, but some classes may be 

predicted incorrectly. Class-wise IoU changes for the training and testing samples are thus 

examined in Figure 3.7c,d. An increasing trend is shown for all classes of both training and 

testing samples. Apparently, branch points, due to geometric complexity, have slower and 

lower convergence values than stem and other points. Therefore, the FCN model can 

identify simple classes in the early phase, but learning difficult classes takes much longer 

and may not achieve the same high accuracy. The testing sample has a low branch IoU 

convergence of 0.4, which also explains the low mIoU in Figure 3.7a. The branch IoU issue 
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can be caused by imperfect branch reference and complex branch structure, which should 

be mitigated by adding training samples, or refining the deep learning model with higher 

spatial resolution and stronger feature extraction ability. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.7 Relationship between accuracy changes and training iterations, for 

‘aspen 6’ from training dataset and ‘maple 8’ from testing dataset: (a,b) 

fluctuation of mIoU and OA; (c,d) fluctuation of stem IoU, branch IoU, and 

other components’ IoU. 

Filtered wood points and reference can be visually contrasted using examples in 

Figure 3.8a–c. The main wood points are recognized and most difference occur in crown 

branches in Figure 3.8a,c, understory stems in Figure 3.8a and ghost points in Figure 3.8b,c. 

The classified wood appears slightly fatter than reference wood partly due to the setting of 

5 cm voxel resolution. 
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(a) 

 
(b) 

 
(c) 

Figure 3.8 Visualization of reference trees (left of each panel) and filtered trees 

(right of each panel) from testing dataset, including (a) ‘maple 7’, (b) ‘aspen 8’, 

and (c) ‘pine 4’. Per-class IoU is denoted on top of each panel. Stem, branch, and 

other points are in green, red, and blue colors, respectively. 

The final accuracies of all training and testing samples are provided in Table 3.3. 

An average of stem IoU, branch IoU, ‘other’ IoU, mIoU, and OA is 0.90, 0.72, 0.96, 0.86, 

and 0.97 for the training sample, respectively, and 0.89, 0.54, 0.93, 0.79, and 0.94 for the 

testing sample, respectively. The mIoU shows no significant difference (p = 0.15) between 

training and testing samples based on a two-sample t test, implying that deep learning 

model is generalizable. The mIoU difference between the three species is also insignificant 

(p = 0.16) based on an ANOVA test using all samples. This result presents a possibility of 

having a universal wood filtering solution without need for exhaustive sampling of species. 

Not all IoU results from Table 3.3 are satisfactory. Many factors could contribute 

to the low IoU situation, e.g. geometrical complexity and details. Results from a left-tailed 

t test show that branch IoU is significantly lower than stem IoU (p < 0.001), probably due 

to complex forms of branches. More details, denoted by a smaller point spacing, would 

lead to a lower mIoU. This statement can be indicated by a high Pearson’s r of 0.51 between 
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point spacing from Table 3.1 and mIoU from Table 3.3. Similarly, worse quality ranking 

(Table 3.1) tends to produce higher branch IoU (r = 0.39) and lower stem IoU (r = −0.21). 

As quality ranking descends, stem form becomes fragmentary or blank at a rising risk of 

misclassification, whereas branches become simplified and conducive to classification. 

However, a clear understanding of IoU variation requires systematic investigation of model 

configuration, reference uncertainty and sample sufficiency, which is beyond the scope of 

this study. 

Table 3.3 3D FCN filtering accuracies (IoU, mIoU, and OA) among training and 

testing samples. 

Dataset (size) Sample ID 
IoU 

(Stem) 

IoU 

(Branch) 

IoU 

(Other) 
mIoU OA 

Training 

sample 

(14) 

maple 1 0.974 0.501 0.950 0.808 0.960 

maple 2 0.278 0.361 0.973 0.537 0.968 

maple 3 0.979 0.764 0.955 0.899 0.973 

maple 4 0.943 0.835 0.935 0.904 0.956 

maple 5 0.860 0.489 0.995 0.781 0.975 

maple 6 0.980 0.933 0.996 0.970 0.996 

aspen 1 0.972 0.562 0.952 0.829 0.964 

aspen 2 0.970 0.988 0.998 0.985 0.998 

aspen 3 0.929 0.563 0.935 0.809 0.942 

aspen 4 0.921 0.728 0.950 0.866 0.953 

aspen 5 - 1.000 1.000 1.000 1.000 

aspen 6 0.933 0.863 0.968 0.921 0.967 

pine 1 0.984 0.792 0.942 0.906 0.975 

pine 2 0.940 0.742 0.907 0.863 0.933 

Testing 

sample 

(7) 

maple 7 0.779 0.658 0.985 0.808 0.981 

maple 8 0.936 0.308 0.954 0.733 0.955 

maple 9 0.704 0.323 0.888 0.638 0.873 

aspen 7 0.963 0.629 0.958 0.850 0.963 

aspen 8 0.943 0.774 0.945 0.887 0.961 

pine 3 0.980 0.782 0.930 0.898 0.955 

pine 4 0.920 0.303 0.843 0.689 0.889 

Attribution of input voxels plays a vital role in our 3D FCN filtering accuracy. As 

Table 3.4 shows, with only point occupancy, the 3D FCN model can still achieve an 

impressive accuracy, for example, a stem IoU of 0.922 for the ‘aspen 6’. It is clear that the 
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3D FCN filter mostly relies on local spatial pattern for classification. Adding the intensity 

attribute shows a slight accuracy improvement of 0.02 on average. By contrast, introducing 

the height attribute has greater accuracy increase of 0.07 on average, because branch 

availability is height-dependent. 

Table 3.4 Effect of voxel attribution on 3D FCN filtering accuracies (per-class 

IoU, mIoU, and OA) at the 25,000th iteration. 

Sample ID Attribute Combination 
IoU 

(Stem) 

IoU 

(Branch) 

IoU 

(Other) 
mIoU OA 

aspen 6 

occupancy 0.922 0.630 0.878 0.810 0.911 

occupancy + intensity 0.924 0.648 0.881 0.817 0.914 

occupancy + intensity + 

height 
0.958 0.854 0.938 0.909 0.958 

maple 8 

occupancy 0.789 0.284 0.951 0.674 0.923 

occupancy + intensity 0.847 0.355 0.960 0.721 0.942 

occupancy + intensity + 

height 
0.911 0.445 0.960 0.772 0.960 

Traditionally, simple metrics such as intensity threshold are used to filter wood 

points (branch + stem). The accuracy of applying an intensity threshold filter to our sample 

is examined in Figure 3.9. We represent wood filtering accuracy with the ‘other’ IoU metric. 

For each sample, ‘other’ IoU is plotted against a range of intensity thresholds, and the 

highest ‘other’ IoU is marked with a red triangle. It is obvious that no universal threshold 

exists that can promise the highest wood filtering accuracy for all the samples. The upper 

boundary of ‘other’ IoU from intensity filter also vary drastically between 0.5 and 0.9. In 

comparison, ‘other’ IoU from our FCN filter, denoted by the blue starred line, is drawn in 

Figure 3.9. An overwhelming advantage of using FCN filter is presented, considering the 

accuracy level and stability among all the samples. 
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Figure 3.9 IoU (other) of all the 21 training and testing samples from two filters. 

The area plot in lavender grey shows IoU (other) variation from an intensity 

filter based on ‘hard’ thresholds (10–250), with peak IoU (other) in red triangle. 

The blue starred line shows IoU (other) from a 3D FCN filter. 

After the training process, the 3D FCN model can be directly applied to filter stem 

and branch points from entire plots, based on a moving block of 128 × 128 × 128 voxels. 

Our plot scan has an average file size of about 1 GB. Filtering an aspen plot of about 500 

trees requires 3.12 hrs, a maple plot of 1000 trees 1.95 hrs, and a pine plot of 2000 trees 

2.23 hrs. 

3.3.3 Wood Reconstruction 

Individual wood reconstruction results are illustrated in Figure 3.10 with ‘aspen 7’ 

provided as an example. Branch and stem curves are reconstructed separately from FCN-

filtered branch and stem points, and branch curves are finally connected to the stem curve. 

Shown in Figure 3.10, our node connection can overcome a certain degree of stem 

occlusion in the crown area, and the slice-based circle fitting algorithm is tolerant to some 

branch noise in the top of the canopy. The extracted stem volume is 0.45 m3, and the branch 

volume 0.22 m3. Replacing FCN prediction with reference labels and using the same QSM 

settings produces a stem volume of 0.38 m3, and a branch volume of 0.23 m3. Based on a 

wood density of 0.35 g cm−3 (Chave et al., 2009), the resulting stem biomass and branch 
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biomass from FCN-QSM are 159 kg and 77 kg, respectively, and from reference-QSM are 

133 kg and 80 kg, respectively. The ground truth of biomass is not available in this study. 

A referable biomass can be allometric biomass (Lambert et al., 2005) based on inventory 

information of species, sites, DBH, and height. The allometric stem biomass (including 

bark) is 149 kg and allometric branch biomass 26 kg. In this case, the branch biomass from 

QSM is probably overestimated. The causes can be noise and ghost points (as indicated in 

Figure 3.10) occurring during scanning collection, reference preparation and voxelization. 

However, considering all 21 sample areas, the mean branch biomass from FCN-QSM is 

only 15% of allometric branch biomass, due to high degree of branch occlusion in most 

sample areas. For branch biomass, the relative root-mean-square-error (RMSE%) and r2 

between FCN-QSM and allometric approach are 130% and 0.05, respectively, compared 

to the RMSE% of 19.6% and r2 of 0.95 for stem biomass. 
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Figure 3.10 Illustration of individual-tree QSM process for ‘aspen 7’. From left 

to right are raw points, stem and branch points filtered from the 3D FCN model, 

stem and branch curve in random colors, tree curve connection in random colors, 

and tree curve overlaid with cross-section circles. 

An example of plot-level wood reconstruction results is visualized in Figure 3.11. 

It is the maple plot, with FCN-filtered components (stem, branch and other) in different 

colours in Figure 3.11 (a). Its wood reconstructed stem, branch, isolated, and understory 

are also assigned with different colours in Figure 3.11 (b). The plot scan comprises five 

corner scans and one center scan, stretching over 100 m distance from plot center. In our 

maple plot, the farthest reconstructed tree is 148 m away from the plot center. However, a 

problem is also apparent in that reconstructing farther woods is strongly affected by a lower 

signal-noise ratio. Availability of both stem and branch points descends rapidly with the 

distance from the plot center. The reconstructed maple plot has 80% of stem volumes within 

a distance of 44 m, and 80% of branch volumes within 26 m. The individual tree branch-



Chapter 3. Filtering Biomass Components from TLS Plot Scans  
 

70 
 

to-stem volume ratio also descends, from 0.15 within 10 m, to 0.13 within 25 m, to 0.05 

within the entire plot. To mitigate the weak wood signal problem, we consider 25 m as an 

effective plot size for evaluating plot-level wood reconstruction. The reconstructed wood 

volume of maple plot has a composition of 92.3% stem, 6.5% branch, 0.3% isolated, and 

0.9% understory. Correspondingly, the reconstructed aspen plot has 81.2% stem, 17.6% 

branch, 0.05% isolated, and 1.2% understory, and the pine plot has 91.5% stem, 8.4% 

branch, 0.03% isolated, and 0.1% understory. The average branch-to-stem ratio of 

individual tree with branch detected is 0.15 for maple, 0.24 for aspen, and 0.13 for pine. 

According to Ung and colleagues’ biomass database (Ung et al., 2017), the average branch-

to-stem ratio and its standard deviation should be 0.27 ± 0.24 for sugar maple, 0.14 ± 0.14 

for trembling aspen, and 0.15 ± 0.12 for lodgepole pine. Compared to maple and aspen in 

leaf-on conditions, lodgepole pine has better visibility of wood points, leading to less bias 

of branch-to-stem ratio. A future study should involve rigid evaluation and calibration of 

occlusion effect on QSM’s volume and branch-to-stem ratio calculation. 
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(a) 

 
(b) 

Figure 3.11 Example wood reconstruction from a maple plot (1 ha): (a) a 3D 

FCN filtered plot scan, with stem in green, branch in red, and other points in 

blue; (b) QSM reconstructed wood curves, with stem in green, branch in red, 

understory in cyan, and isolated wood in yellow. To balance the level of graphic 

details, blue points in (a) are assigned with transparency degree of 0.99, and 

stem curves are set four times thicker than all other curves. 
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Finally, it should be clarified that reconstruction results were not validated, due to 

lack of ground truth measurement of branch curve and volume. The parameters of 

reconstruction model are also not optimized, for the same reason of lacking accurate 

reference. The problem of lacking validation and reference should be mitigated in the future 

by using repeated scans of leaf-on and leaf-off deciduous trees or virtual forest simulation 

models. Yet one function of this QSM model can be exposing detailed wood components, 

and reflecting any issues of integrating filtering and QSM for natural forest scans. The 

delineated tree curves can also provide high-level geometric features, in terms of raw point 

metrics, to help develop more accurate allometric models of wood volume or biomass. 

3.4 Conclusions 

Delineating wood components in complex natural forest environments has attained 

wide research interest, represented by QSM development, due to its importance to modern 

wood management in pursuit of correct and complete biomass, carbon budget, and tree 

physiology. At the plot level, the wood amount in dense and noisy areas such as crown and 

understory are however, uncharted or gross in common QSM models. Recent QSMs 

incorporate simple wood filtering methods aimed to reduce noise. In contrast, this study 

introduces the use of a deep learning model FCN in 3D space to filter both stem and branch 

points from complex forest scans, with an average testing accuracy of 0.89 (stem IoU), 0.54 

(branch IoU), 0.79 (mIoU), and 0.94 (OA) over three plots. We further explored the 

potential application of wood filtering in constructing a plot-level QSM and extracting the 

wood volume component. From visual inspection, wood filtering generally produces tube 

shapes beneficial to QSM modeling. 
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Some challenges remain, however. Creating reference data, although assisted with 

a semi-automation algorithm, inevitably contains interpretation errors and further induces 

low branch filtering accuracy. Besides, point cloud is a discrete form of 3D data, but 

continuous voxel form is the only supported choice in deep learning tools. As a result, 

coarse voxel resolution was fixed to tradeoff deep learning accuracy with sufficient 

computation efficiency. Last but not least, wood filtering cannot address the most severe 

problem of wood delineation, which is occlusion. Improving TLS scan coverage and QSM 

modeling, although sophisticated, are still the most important solutions to overcome 

occlusion. 

Deep learning modeling offers significant potential to intellectualize processing and 

analysis in various data-driven applications. This study only intends to probe the feasibility 

of filtering 3D wood points of interest, without activating diverse options of refinement. 

Filtering low-quality scans, particularly from needle-leaf species (e.g., pine and spruce), 

remains a challenge. Tentative refinement may introduce more complex network structures 

such as ResNet (He et al., 2016), Inception (Szegedy et al., 2017; Szegedy et al., 2015), 

and CRF (Zheng et al., 2015), sparse point network such as PointNet (Qi et al., 2016; Qi et 

al., 2017), instance segmentation network such as R-CNN (Girshick et al., 2014; Ren et al., 

2015). However, refinement of the all-purpose deep networks are not optimal solutions to 

many practical 3D problems. It is strongly hoped that deep network mechanisms can be 

rationalized systematically in the future, in a similar manner to Vapnik–Chervonenkis (VC) 

learning theory (Vapnik, 1995) explaining the statistical nature of machine learning. For 

example, it is important to avoid computation overflow by previewing the complexity or 

dimension of 3D data structure before finding an optimal deep learning model with 

matching complexity. It is also critical to find the relationship between sample size, training 
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time, and generalizability for deep learning. There also need many research efforts to 

convert the enormous numeric features created by deep learning into analytic and 

explanatory features, before deep learning could be involved to help develop or calibrate 

existing models with mathematic forms. 
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Chapter 4. Classifying Plot Species from Wood Point Clouds 

4.1 Context 

Biomass is species-specific, considering that both wood density and expansion 

factors vary with species (Chave et al., 2009; Teobaldelli et al., 2009). Commercial TLS 

typically can detect targets up to and over hundreds of meters. There can be many species 

represented per plot. With TLS’s strong ability to sense tree 3D structural detail, species 

classification from TLS plot scans is a justifiable research goal. Sampling within a mixed 

plot with TLS can also provide detailed species mixture information useful for broader 

scale studies. 

Relevant studies are rare due to the shortage of multispecies scans and the 

complexity of dense scan processing. A pilot study from Othmani et al. (2013) employed 

the 3D geometric texture of bark to classify hornbeam, oak, spruce, beech and pine from 

TLS scans with an overall accuracy of 88%. This method is limited to several close-range 

trees and lacks universality. More reliable classification should take account of rich 

structural information from species. As Falster and Westoby (2003) point out, the variation 

of most architectural traits between species is systematically greater than the variation 

within a species. This is apparent because vegetative morphology is widely used as basic 

taxonomic knowledge to identify species. Lin and Herold (2016) are among the first to 

explore TLS’s explicit tree structure (ETS) features ranging from tree, stem, branch, crown 

to leaf level. A support vector machine (SVM) classifier is applied to differentiate four 

species among 40 trees. After performing cross-validation, their best overall accuracy is 

90.0% and they suggest 77.5% is a more generalizable accuracy. Fully automatic species 

classification based on QSM branch features and machine learning classifiers was first 
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demonstrated in Åkerblom et al. (2017). Their classification accuracy is above 93% among 

three species: silver birch, Scots pine and Norway spruce. Due to insufficient reference 

studies, it is still questionable whether the selected branch features can remain effective to 

a wider choice of species. Another constraint of Åkerblom et al. (2017)’s method is the 

dependency on complex computation processes, including QSM reconstruction and 

branch-level feature extraction. A more flexible and universal classification method needs 

to be investigated with an ultimate goal of replacing manual interpretation for the NFI’s 

tree species lists. 

As investigated in Chapter 3 and evaluated in many studies, the deep learning model 

the convolutional neural network (CNN), is considered a feature-free replacement of 

machine learning classifiers, since feature selection or feature engineering can be 

automated using CNN. The CNN typically comprises a long sequence of layers, with one 

layer a function of its previous layer. The long-sequence structure is vividly described as 

‘deep’. Recent progress further enables model optimization directly from sparse point-

cloud format. Calculation of 3D convolution in deep layers can be simplified and 

convergence of classification accuracy can be expedited, whereas the best accuracy is 

competitive with the CNN-based models. At present, representative point-based CNN 

models are PointNet (Qi et al., 2016), Kd-Net (Klokov & Lempitsky, 2017) and PointCNN 

(Li et al., 2018c), whereas other versions such as OctNet (Li et al., 2018a) and So-Net 

(Riegler et al., 2017) adopt analogous schemes. Basically, the PointNet assumes arbitrary 

3D math functions and transformations including the 3D convolution can be implicitly 

assembled by deep 2D layers under hyper feature space. Through the deep layers, signals 

(or point features) can be enhanced and filtered until features become easily classifiable. 

The authors further overcome the sparsity issue caused by enormous parameters by 



Chapter 4. Classifying Plot Species from Wood Point Clouds  
 

77 
 

penalizing model complexity with a regularization cost function. Indeed, the PointNet 

totally ignores local spatial connectivity and the equivalence between its 2D layer setup 

and 3D is built upon a strong assumption of spatial homogeneity. The PointNet model was 

later developed to be the PointNet++ (Qi et al., 2017) with additional point grouping 

attributes to utilize local contextual information. The Kd-Net, as its name suggests, 

decomposes point clouds into an organized Kd-tree structure (Bentley, 1975) and optimizes 

a small amount of affine transformation parameters at each tree level. An apparent 

advantage of Kd-Net is its short training time. The drawback is also notable that Kd-Net 

may fail where 3D geometries are improperly presented in a Kd-tree structure, such as what 

is occurring in a ‘real’ tree scan. The PointCNN provides a more flexible solution than Kd-

Net without a strong presumption of data structure. It basically replaces the 3D convolution 

layer with a sparse version called X convolution which assigns learnable parameters to local 

k nearest neighbors. Their final network structure simply includes two X convolution layers 

and a conventional fully-connected layer. All these point-based deep learning models are 

reasonable in theory, yet lacking practical assessment about classifying species from 

complex tree scans, since these models are customized for indoor datasets such as 

ModelNet40 (Wu et al., 2015) and S3DIS (Armeni et al., 2017) featuring small objects, 

smooth surfaces, explicit boundaries and numerous classes. 

This chapter will investigate whether the state-of-the-art deep learning models can 

be tailored to species classification scenario based on branch information and what are their 

accuracies. A number of wood segmentation algorithms based on machine learning are also 

involved in contrast against the 3D FCN model in Chapter 3, to exhibit more possibilities 

in wood biomass analysis. 
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4.2 Methodology 

4.2.1 Material and Framework 

We selected seven monospecific natural plot scans (about 30 × 30 m2) during the 

summers of 2014, 2015 and 2016, corresponding to seven species: sugar maple (Acer 

saccharum) (44.077°N,79.323°W), trembling aspen (Populus tremuloides) 

(49.349°N,114.411°W), lodgepole pine (Pinus contorta) (49.646°N,114.095°W), red pine 

(Pinus resinosa) (44.077°N,79.323°W), Scots pine (Pinus sylvestris) (61.205°N, 25.069°E), 

Norway spruce (Picea abies) (61.205°N, 25.069°E) and silver birch (Betula pendula) 

(61.205°N, 25.069°E). The first four species were scanned in Canada with an Optech ILRIS 

HD (1535 nm) and the remaining three species were scanned in Finland by the FGI with a 

Leica HDS6100 (650–690 nm). All the plot scans consisted of one center scan, and 3-5 

corner scans. The average alignment accuracy of the first four Canadian plot scans was 3 

cm and the alignment accuracy of the FGI scans were 2.1 mm. The accuracy difference was 

caused by different scan settings. An FGI plot scan encompasses only five single scans, 

each with a wide field of view of 360° × 310°, and the accuracy was calculated based on 

in-situ targets (Liang et al., 2018). In comparison, a Canadian plot scan was composed of 

more than 20 individual scans due to limited field of view, and the accuracy was based on 

the Iterative closest point (ICP) alignment algorithm. All the FGI and Canadian plot scans 

were trimmed to a fixed circular radius of 20 × 20 m2 and uniformly resampled with a point 

resolution of 2 cm using the CloudCompare for further analysis, with stem density and 

average and standard deviation of tree height shown in Table 4.1. It is clear that stem 

density and height vary among different plots, but each plot is homogeneous considering 

the within-plot tree height has small variation. It is also apparent that tree height alone 
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cannot differentiate species, since the same species such as sugar maple, red pine and 

Norway spruce have similar tree heights. 

Table 4.1 Characteristics of the seven monospecific plots for species 

classification. 

 Tree totals Tree density (ha-1) 
Tree height average 

(standard deviation) (m)  

sugar maple 54 430 24.77 (1.42) 

trembling aspen 80 637 13.96 (0.69) 

lodgepole pine 130 1035 20.96 (1.02) 

red pine 85 676 24.05 (0.87) 

Scots pine 69 549 20.38 (1.32) 

Norway spruce 63 501 24.18 (2.63) 

silver birch 101 804 17.25 (0.82) 

The processing framework included wood point segmentation, species 

classification and classification accuracy evaluation. We investigated multiple machine 

learning algorithms to filter wood points, decompose plots into separate trees including 

stems and branches, and evaluate five deep learning classifiers including VGGNet, 

PointNet, PointNet++, Kd-Net, and its variation contextual Kd-Net (Zeng & Gevers, 2018). 

4.2.2 Wood Segmentation based on Point-wise Machine Learning 

It is possible to classify species directly using deep learning model without wood 

point classification. Yet a deep learning model using entire crown is not generalizable to 

the same deciduous species in a leaf-off condition. It is therefore necessary to filter wood 

points before species classification. The design of wood segmentation classification is 

outlined in Figure 4.1. A total of 45 features were extracted for each point using the 

software CloudCompare (v2.11), with definitions listed in Table 4.2. Except for the three 

features, namely, Z, intensity and bilateral filtered intensity (Tomasi & Manduchi, 1998), 

the other 42 features are local geometrical features summarized from three search windows 
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(5, 10, and 20 cm in radius, respectively) centered on each point. The configuration of three 

search windows was intended to cover three typical scales corresponding to twigs, branch 

and stems.  Figure 4.1 lists the three features and 14 features per scale. Based on the 45 per-

point features, six supervised machine learning classifiers including K-Nearest Neighbors 

(KNN), Naive Bayes (NB), Adaboost (AB), Random Forest (RF), SVM and Discriminant 

Analysis (DA) were trained in the MATLAB (r2018b) to classify three classes: stem, 

branch and the other. Parameter K of the KNN was set to 20, the number of bagged trees 

for the RF were set to 200. Settings of other classifiers remained default values in 

MATLAB. In addition, point cloud features were also normalized for the KNN and SVM 

classifiers. Our purpose was not to maximize each classifier’s performance for wood 

classification, since the following species classification based on deep learning does not 

rely on perfect wood filtering results. Our point instead was to seek a convenient and 

practical way of reducing crown noise and exposing branch geometries. A small portion of 

leaf or twig points might not be classified correctly, but in general, it did not affect the 

species classification. The mathematic and statistical rationale of the machine learning 

classifiers are explained in Bishop (2006) and Kuhn and Johnson (2013). Accuracy metrics 

used to evaluate these methods were Overall Accuracy (OA), Intersection over Union (IoU), 

precision and recall with manual wood classification as reference. 
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Figure 4.1 Feature-based wood point classification and evaluation. 

Table 4.2 Definitions of geometric features from CloudCompare. 𝑳𝟏, 𝑳𝟐 and 𝑳𝟑 

denotes the first, second, and third eigenvalues calculated from neighborhood 

points, respectively. 

Feature Definition 

Z Coordinate along vertical axis 

Intensity Intensity of the laser return (0-255) 

Bilateral intensity Intensity enhanced with a bilateral filter 

Normal change rate Point orientation change rate 

Surface density Number of neighbors / neighborhood area 

Volume density Number of neighbors / neighborhood volume 

Eigenvalues sum 𝐿1 + 𝐿2 + 𝐿3 

Omnivariance √𝐿1𝐿2𝐿3
3

 

Eigenentropy −(𝐿1 ln 𝐿1 + 𝐿2 ln 𝐿2 + 𝐿3 ln 𝐿3) 
Anisotropy (𝐿1 − 𝐿3)/𝐿1 

Planarity (𝐿2 − 𝐿3)/𝐿1 

Linearity (𝐿1 − 𝐿2)/𝐿1 

PCA1 𝐿1/(𝐿1 + 𝐿2 + 𝐿3) 
PCA2 𝐿2/(𝐿1 + 𝐿2 + 𝐿3) 

Surface variation 𝐿3/(𝐿1 + 𝐿2 + 𝐿3) 
Sphericity 𝐿3/𝐿1 

Verticality 1- |orientation projection along vertical axis| 

Point clouds of five trembling aspens, five sugar maples, one birch and one 

lodgepole pine were selected and clipped from the corresponding plot scans in 

CloudCompare. The stem, branch and other component points were manually labelled with 

class 1, 2 and 3 to be our reference sample. Note that the reference dataset was slightly 

different from that in Chapter 3. Chapter 3 aimed to use arbitrary plot clips to evaluate deep 
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learning performance under complex situations, but the primary purpose of wood filtering 

in this chapter was shifted to species classification for individual trees. Trees with great 

occlusion of branch patterns could lead to great uncertainty of species classification, and 

were not included as reference data. Among the 12 tree clips, four aspen, four maple, and 

one lodgepole pine clips (nine in total) were used as our training sample and the remaining 

one aspen, one maple and one birch clips (three in total) were regarded as testing sample 

for accuracy assessment purposes. The other three species or larger sample size were not 

included because wood segmentation here does not need to be perfect, and wood 

segmentation is considered species-independent based on the finding in Chapter 3. Indeed, 

the sample size (>100,000 features per point cloud) was considered sufficient for the point-

based machine learning classifiers, and no improvement of classification accuracy was 

found with more species or point clouds. 

Entire plot scans with each point containing 45 features (a.k.a. predictors) could 

give rise to tremendous data volume hazardous to storage and computation. Features with 

marginal importance to classification accuracy should be discarded. Among various feature 

importance criteria and feature selection methods, random forest was a common choice 

which characterizes predictors’ influence by the change degree of out-of-bag errors 

gathered from repeated permutation tests (Loh, 2002). Influential features were selected for 

overall consideration and were calculated for each point of the plot scans. The random 

forest classifier was then trained again using the selected features and all the reference 

samples, to predict wood component classes for the entire seven plot scans. The stem and 

branch points were extracted based on the predicted classes, and then merged into 

individual tree point clouds using the method in Chapter 3. Each of the wood point clouds 

were inspected manually, and the highly occluded trees without few branch points were not 
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used for the following species classification process, since our objective is to inspect if a 

deep learning classifier can classify species based on branch points. 

4.2.3 Species Classification using Point-based Deep Learning Models 

Only the 3D coordinates of wood points (stem and branch as a whole) are needed 

for species classification using point-based deep learning models. More attributes such as 

laser intensity or height can be useful information for species classification. Yet intensity 

and height are not always available from any arbitrary laser scanning datasets, and it is also 

one of our objectives is to justify the feasibility of feature-free deep learning model against 

the feature-based machine learning models such as Lin and Herold (2016). That is why 

only 3D coordinates of individual trees are chosen to be the model input. After manual 

inspection and removal of occluded trees, a total number of 313 trees from the seven species 

were selected for species classification, where 80% of the total, namely, 250 trees were 

randomly picked for the training purpose and the remaining 63 trees for the testing purpose. 

Five point-based deep learning classifiers VGGNet, PointNet, PointNet++, Kd-Net and 

contextual Kd-Net were investigated briefly in terms of classification accuracy. All five 

classifiers only allowed a fixed choice of data size to match their layer templates. In our 

case, the number of points from each individual tree ranged between 5,000-40,000. The 

final point number for the deep learning models was 2048 after a balanced consideration of 

training speed and accuracy based on some exploratory tests. The huge loss of points could 

mean a great loss of information for the deep learning classification. The question is 

therefore how to choose a sampling strategy that best preserves important points from each 

tree point clouds. The sampling method adopted in this study was based on k-means 

algorithm, which initially assigned 2048 seeds within the point clouds and iteratively 

shifted each seed to the centroid of clusters around the seed. The results of the k-means 
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algorithm were meaningful clusters and the centroids of clusters were the input to the deep 

learning model. 

Deep learning models did not need heavy feature engineering or parameter tuning, 

since most parameters were turned during training process and other constant parameters 

had a marginal impact on classification accuracy. The main constant parameters for all five 

deep learning models were dropout ratio, batch size, and optimizer. The dropout ratio, 

designed to penalize overfitting risks, was fixed to be 0.5 for each dropout layer. The batch 

size, used to expedite learning process in parallel, was set to 32. The optimizer, controlling 

and scaling the search step size for minimal training error, was configured to be SMORMS3 

(Wichrowska et al., 2017) based on gradient noise. In addition, data augmentation functions, 

such as translating, rotating and mirroring the input point clouds during the training process, 

were also enabled on to enhance the robustness of deep learning. The total training 

iterations were set to be 400. At the end of each training iteration, the training and testing 

accuracies were tracked based on 20 training and 20 testing samples, as a coarse and rapid 

way of assessing accuracy convergence. Due to the tree data complexity, training accuracy 

would fluctuate throughout the training process and even after convergence. Our strategy 

was to store the classifier status with the minimal testing loss during the entire training 

process. After training was finished, the best classifier status was then recovered to classify 

testing datasets for evaluation purposes. The accuracy metrics for evaluation were OA and 

per-class IoU. 
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4.3 Results and Discussion 

4.3.1 Wood Segmentation 

The six classifiers, namely, KNN, NB, AB, RF, SVM and DA, were trained from 

nine training samples with 45 per-point features. For illustrative purposes, we choose one 

of the aspen training samples as shown in Figure 4.2, to assess visually their classification 

differences. Among the six machine learning classifiers, NB is the weakest, seen by its 

exaggerated classification of both stem and branch points in the ground and crown regions. 

The RF delivers the visually correct stem and branch classification appearance. The other 

four classifiers can identify the main stem without difficulties, yet tend to misclassify a 

number of crown and ground points as stem points. This is because the certain parts of stem, 

crown, and ground have similarities in size, shape, and surface curvature. The crown and 

ground are also the most erroneous areas for the four classifiers where many branch points 

are omitted. Comparably, KNN and DA detects relatively more branches than SVM and 

AB in this aspen case. The effects of stem overestimation and branch underestimation 

imply a weakness to differentiate irregular and fine data structure. It further means the 

complexity of the 3D wood classification problem exceeds the dimensionality of many 

machine learning models, with RF being an exception, owing to its tree number setting 

which adds model dimensionality. Another obvious problem is the salt and pepper effect 

among all the six classifiers. This is a typical problem for pointwise classification, which 

can be mitigated by increasing the unit of classification or adding a smoothing filter. 
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(e) 

 
(f) 

  
(g) 

 

Figure 4.2 Wood classification of an aspen sample using the classifier of (a) KNN: K-Nearest Neighbors, (b) NB: 

Naive Bayes, (c) AB: Adaboost, (d) RF: Random Forest, (e) SVM: Support Vector Machine, (f) DA: Discriminant 

Analysis, and benchmarked by reference (g). The stem, branch and other components are shown in blue, green and 

red, respectively.
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Quantitative accuracy assessment of wood segmentation using the entire training 

and testing samples is shown in Figure 4.3. Note that precision measures the agreement 

within the reference sample and recall measures agreement within prediction. Among the 

training accuracy results (bars in Figure 4.3), the NB has the lowest accuracies on the whole 

except for the branch precision where KNN performs worst. The RF has much higher 

accuracies than the other five classifiers. The five classifiers except NB have high OAs 

above 0.85, owing to successful stem classification with stem IoUs of around 0.80. The 

testing accuracies (crosses in Figure 4.3) are systematically lower than the training 

accuracies with a few exceptions from SVM and NB. Among the six classifiers, the RF 

contributes to the greatest difference between training and testing accuracies. Its branch 

IOU, for example, drops drastically from 0.70 to 0.36, indicating a strong overfitting effect. 

Causes of the universal overfitting effect are manifold, generally related to the sample size 

limitation, reference imperfection, and lack of global features. Unlike training accuracies, 

testing accuracies do not vary greatly among different classifiers, excluding the extreme 

bad results from the NB. For example, the stem IoU of the remaining five classifiers keeps 

tightly to the level of 0.8, and the difference of branch IoU is no greater than 0.2. The SVM, 

KNN, RF and DA classifiers, in particular, have comparable predictive power of both stem 

and branches, seen from the testing accuracies. The RF has only slightly higher testing 

accuracies than the other three except for the stem precision. The results of classifier 

similarity and the RF’s small advantage in accuracy are in line with the findings from Wang 

et al. (2017). For both training and testing accuracies, and among all classifiers except NB, 

stem precisions are systematically higher than stem recalls, and branch precisions lower 

than branch recalls. This coincides with the visual interpretation in Figure 4.2 that stem 

classification tends to be aggressive and branch more conservative. 
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Figure 4.3 Accuracies of the six classifiers trained with 45 per-point features. Each training accuracy is an average 

value from nine training samples shown as a colored bar, and each testing accuracy is an average from three testing 

samples in dotted lines. The horizontal axis lists the names of nine accuracy metrics, as well as a time ratio metric near 

the right edge. The time ratio measures the total training and testing time scaled to a range between 0-1.
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Specific classification accuracies for each sample is summarized in Table 4.3. 

Among the three species and averaging from the training samples, the sugar maple has the 

highest OA (0.98), stem IoU (0.97) and branch IoU (0.66), the lodgepole pine has the same 

highest stem IoU (0.97), whereas the trembling aspen has overall lowest accuracies. Among 

the three testing species, the sugar maple has the highest stem IoU (0.86) but lowest branch 

IoU (0.29) probably due to the confusion of stem and big branches. The trembling aspen’s 

OA (0.83) and stem IoU (0.76) are still the lowest among the three species, due to its wood 

complexity. 

Table 4.3 Classification accuracies of each sample based on the random forest 

model using 45 features, with TA short for trembling aspen, LP lodgepole pine, 

SB silver birch and SM sugar maple. 

 
OA 

IoU 

(stem) 

IoU 

(branch) 

Precision 

(stem) 

Precision 

(branch) 

Recall 

(stem) 

Recall 

(branch) 

TA 1 0.97 0.94 0.76 0.99 0.83 0.95 0.91 

TA 2 0.93 0.91 0.61 0.96 0.62 0.95 0.98 

TA 3 0.96 0.91 0.63 0.94 0.66 0.97 0.94 

TA 4 0.96 0.95 0.62 0.98 0.63 0.97 0.97 

TA 5* 0.83 0.76 0.40 0.90 0.51 0.83 0.64 

LP 0.94 0.97 0.67 0.98 0.68 0.99 0.97 

SB* 0.89 0.84 0.40 0.92 0.42 0.91 0.90 

SM 1 0.98 0.97 0.87 0.98 0.89 0.99 0.97 

SM 2 0.98 0.96 0.70 0.96 0.73 0.99 0.95 

SM 3 0.98 0.98 0.75 0.99 0.78 0.99 0.95 

SM 4* 0.91 0.86 0.29 0.93 0.32 0.92 0.71 

SM 5 0.98 0.97 0.72 0.98 0.74 0.99 0.97 

* denotes testing sample 
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Importance of the 45 features estimated from random forest is shown in Figure 4.4. 

The importance measure is unitless, and a relatively higher value means greater 

contribution to the variation of prediction errors. In general, most features have identical 

importance values varying around 1.7. The greatest gap exists between the top seven 

influential features and the remaining. Those seven features with a descending order of 

importance are Z value, verticality (𝑟 = 0.1 m, 0.3 m, 0.2 m, respectively), bilateral filtered 

intensity, intensity and omnivariance. Similar importance analyses with different choices 

of training samples indicate that the Z value, the two intensity features, and verticality are 

consistently most important features for wood classification. In particular, the Z value of a 

point is interpreted as most helpful to differentiate branch, stem or other classes. No other 

geometrical features including omnivariance were ranked high importance. The average 

level of importance is alike (1.73, 1.74 and 1.66, respectively) among the three predefined 

scales (0.1, 0.2 and 0.3 m). This scale likelihood effect indicates that a fixed scale may not 

be an appropriate unit to calculate representative branch-level features, due to the 

morphological uncertainties from different sites and species. After combined consideration 

of computation speed and feature representativeness, eight features are selected, namely, Z 

value, intensity, sum of eigenvalues (𝑟 = 0.3 m), first two PCA components (𝑟 = 0.2 m), 

and three PCA derivatives (planarity, linearity and verticality with 𝑟 = 0.1 m). 

Classification accuracies before and after feature selection are provided in Table 

4.4. Reducing feature numbers from 45 to 8 causes accuracy decreases, 0.08 (9%) for stem 

and 0.06 (11%) for branch on average. Yet testing accuracy drops by 0.10 (17%), greater 

than the training accuracy decrease of 0.04 (5%). This noticeable stability issue caused by 

feature selection is a known limitation of feature-based machine learning methods (Li et 

al., 2018b). 
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Figure 4.4 Feature importance estimation from random forest among the 45 candidate features. The 𝐫 refers to the 

radius of nearest neighbor search window for feature calculation. Eight representative features (denoted in the bottom 

boxes) were finalized to be the predictor variables of the random forest classifier.
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Table 4.4 Accuracy comparison before and after feature selection from random forest. 

 OA 
IoU 

(stem) 

IoU 

(branch) 

Precision 

(stem) 

Precision 

(branch) 

Recall 

(stem) 

Recall 

(branch) 

Training (45 features) 0.96 0.95 0.70 0.97 0.73 0.98 0.96 

Testing (45 features) 0.88 0.82 0.36 0.91 0.42 0.89 0.75 

Training (8 features) 0.95 0.91 0.65 0.96 0.69 0.95 0.92 

Testing (8 features) 0.80 0.69 0.29 0.78 0.36 0.87 0.61 

The point clouds of the seven species classified by the random forest model using 8 features 

are displayed in Figure 4.5 (clipped view) and Figure 4.6 (plot view, wood points only). Main stems 

are detected with some noise around the edge of stems (e.g. Figure 4.5f). Certain crown portions 

are misclassified as stems, and certain top crown portions as branches, clearly seen by the plot 

views in Figure 4.6. The redundancy in the crown area is not absolutely harmful in the context of 

species classification. Instead, additional crown information might enhance the species identity for 

the deep learning classifiers. Identifying the seven species at plot level is not difficult from manual 

interpretation, considering a variety of discernible traits including tree height, first branch height, 

branch density, branch angle, and stem verticality. However, identifying trees within a plot without 

reference can be challenged by incomplete or irregular tree forms. For example, the lodgepole pine 

tree in Figure 4.5a and the Scots pine in Figure 4.5c have visually similar crown shape and main 

branch angles. Wood classification effect of the sugar maple plot can be contrasted in Figure 4.7 

between the random forest and the deep learning classifiers in Chapter 3. More branches and also 

more noise points were classified by the random forest, but this comparison is just coarse because 

different data were used to train the two classifiers.
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(e) 

 
(f) 
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Figure 4.5 Random forest classification of an example (a) lodgepole pine, (b) red pine, (c) Scots pine, (d) silver birch 

(e) Norway spruce, (f) trembling aspen, and (g) sugar maple clip from plot scans, with stem, branch and other 

components in blue, green and red. 
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Figure 4.6 Plot-level wood filtering results using random forest: (a) lodgepole pine, (b) red pine, (c) Scots pine, (d) 

silver birch, (e) Norway spruce, (f) trembling aspen, and (g) sugar maple, where stem and branch points are shown in 

red and yellow. 
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Figure 4.7 A visual comparison of sugar maple wood classification between random forest (left) and 3D-FCN (right). 

Individual trees were assigned with contrasting colors to help visual differentiation. 
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4.3.2 Species Classification 

For each of the 250 manually selected trees, the 3D coordinates of wood points 

(stem + branch) classified by RF are used to train deep learning models. After training 

accuracy converges, the VGGNet, PointNet, PointNet++, Kd-Net and contextual Kd-Net 

attain an overall testing accuracy of 0.88, 0.75, 0.92, 0.63 and 0.70, respectively. 

PointNet++ outperforms all other models. The reported training and testing accuracy of 

PointNet++ during the training process is shown in Figure 4.8. The two accuracies are 

based on the subset 20 training and 20 testing samples, just for the accuracy tracking 

purpose. The accuracy changes follow a regular convergence pattern akin to that of wood 

filtering in Chapter 3. After the 100th iteration, the reported training accuracy tends to level 

off, but the testing accuracy continues fluctuating between 0.7-1.0 and below the training 

accuracy. An abnormal drop of both training and testing accuracies is noticeable at the 200th 

iteration step, due to a manual pause of training process to detect convergence. After the 

training process is restored, the training accuracy drops by almost 0.1 and undergoes more 

than 50 iterations to recover the previous status of highest accuracy. The entire 400 

iterations of the training process can be completed within 15 minutes. 
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Figure 4.8 Convergence of the PointNet++’s training and testing accuracy. 

The PointNet++ model with minimal testing loss based on the 20 testing samples is 

defined as the optimal classifier. The optimal classifier is applied to predict our entire 

testing dataset (63 samples) and the result OA is 0.92. The species-specific accuracy 

metrics are shown in Table 4.5. Among the seven species, except for the lodgepole pine, 

all IoUs have high values above 0.8. The red pine, silver birch and Norway spruce are 

classified perfectly. The precision and recall accuracies are also identical except the 

lodgepole pine, indicating strong prediction stability. The problem of lodgepole pine can 

be found based on the confusion matrix in Table 4.6. It is misclassified as aspen, scots pine 

or silver birch. Based on manual interpretation from Figure 4.6, lodgepole pine shows 

certain branch structural similarity with the misclassified species, yet its low first branch 

height can be a strong identifier for classification. Therefore, the PointNet++ uses its own 

interpretation mechanism, which differs from human approaches, and the features ‘seen’ 

from the PointNet++ may be less global or abstract compared to a human’s vision. 
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Table 4.5 Classification accuracy for each species of the testing dataset based on 

PointNet++. 

 
Trembling 

aspen 

Lodgepole 

pine 

Red 

pine 

Sugar 

maple 

Scots pine Silver 

birch 

Norway 

spruce 

IoU 0.86 0.55 1.00 1.00 0.83 0.95 1.00 

Precision 0.92 0.67 1.00 1.00 0.91 1.00 1.00 

Recall 0.92 0.75 1.00 1.00 0.91 0.95 1.00 

Table 4.6 Classification confusion matrix for each species of the testing dataset 

based on PointNet++, with TA short for trembling aspen, LP lodgepole pine, RP 

red pine, SM sugar maple, SP Scots pine, SB silver birch, and NS Norway 

spruce. The reference classes are in columns and predicted classes in rows. 

 TA LP RP SM SP SB NS 

TA 12 1 0 0 0 0 0 

LP 1 6 0 0 1 0 0 

RP 0 0 4 0 0 0 0 

SM 0 0 0 4 0 0 0 

SP 0 1 0 0 10 0 0 

SB 0 1 0 0 0 18 0 

NS 0 0 0 0 0 0 4 

The filtering results of the first two layers (a.k.a. sampling and grouping layers) 

from the PointNet++ are illustrated in Figure 4.9. Raw points become sparser after being 

filtered by each layer, but the distribution of filtered points basically retains the main 

structure of the raw point clouds (Figure 4.9a-c). It can be inferred that global position 

information can propagate through layers of the PointNet++ model for high-level 

interpretation. The filtering layers also extend the feature dimensionality of the raw 

coordinate data, in our case, from 3 to 64 by the first layer, and from 64 to128 by the second 

layer. The abundance in feature space can be helpful to high-level interpretation. To 

identify the most important feature dimensions among the 64 or 128 total dimensions, 
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feature amplitudes are averaged among all points in each feature dimension, which 

quantifies the overall importance of each feature dimension. Figure 4.9d-i show three most 

important feature dimensions filtered by the first two layers of the PointNet++. Warmer 

point color denotes higher feature amplitude. From Figure 4.9d-f, the feature dimensions 

filtered by the first layer are correlated and not distinct, probably due to low-level filtering 

effect. In contrast, the three feature dimensions filtered by the second layer show more 

representativeness in Figure 4.9g-i. Nevertheless, it is difficult to understand what the 

feature amplitude represents from a human perspective. Other suitable visualization and 

interpretation methods are needed to relate the human and deep learning classification 

processes. For example, using the class activation map method (Zhou et al., 2016), 

important image zones for each class can be visualized by averaging convolutional features 

with weights and interpolating the feature map into a hot zone map. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 
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(f) 

 
(g) 

 
(h) 

 
(i) 

 

Figure 4.9 Sugar maple point clouds filtered by the first two layers of the 

PointNet++: (a) example sugar maple point clouds, colored by laser intensity, 

(b) points filtered by the first layer, (c) points filtered by the second layer, (d,e,f) 

points filtered by the  first layer, colored by feature strength, and (g,h,i) points 

filtered by the second layer, colored by feature strength. 

4.4 Conclusions 

Generalizing biomass analysis from multisource scan data requires an automatic 

scheme of species classification. This chapter proposed a cutting-edge framework of 

species classification from complex TLS data. Seven machine-learning classifiers were 

evaluated to classify wood components from TLS point clouds with benchmarking values 

of contrasting the deep learning model in Chapter 3. The optimal classifier, namely, random 

forest was applied to filter wood points from seven plot scans with different species. Four 

point-based deep learning models were investigated to classify species from wood points 

of individual trees. The species classification from the best model PointNet++ reached a 
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high overall accuracy of 0.92, a competitive accuracy level compared to contemporary 

studies using dimension- or QSM-based classification methods. 

A few problems are also exposed in this chapter. During the wood filtering process, 

the best machine learning classifier only shows a branch classification accuracy of 0.36, 

compared to the branch IoU of 0.54 using a typical deep learning model with a more 

complex dataset. In addition, training the machine learning classifiers needs trials and 

errors of feature extraction, feature selection and parameter tuning, while a deep learning 

model does not. The deep learning models presented in Chapter 3 and this chapter only 

require point cloud input, instead of features. In our case, the prediction time of the best 

machine learning classifier, random forest, is about 20-30 minutes per plot, compared to 

the 3D FCN’s 30-60 minutes per plot with a same plot size. However, the random forest 

classifier needs additional feature generation time of about 15-20 minutes. The overall 

prediction time difference between random forest and 3D FCN is not large. Therefore, in 

terms of both accuracy and time efficiency, deep learning is recommended to be the most 

practical choice currently to solve wood segmentation problems. 

Imperfections are also encountered to adapt the point-based deep learning model 

originally developed for indoor datasets to the problem of species classification. First, the 

existing point-based classifiers require trimming point cloud data to a predefined size. This 

inevitably leads to a loss of useful details. Second, testing accuracy continues with great 

fluctuation after convergence. This model instability issue could induce a risk of missing 

optimal and generalizable parameters for classification. Third, the mechanism of deep 

learning is still a black box. Deep learning technology essentially relies on a stochastic 

search among an enormous dimensionality of parameters to minimize errors. How to 

converge to a global minimum instead of local minimum both accurately and effectively is 
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a bottleneck in current deep learning research. The learning process of deep learning 

models basically starts from scratch and expects a long duration before marginal features 

and data bias can be properly identified and discarded. It lacks interaction and guiding 

information from the user to reduce unnecessary ‘guess work’. The first obstacle of 

understanding and communicating with the deep learning black box is the enormous 

dimensionality of deep learning feature parameters and lack of effective tools to probe and 

visualize that feature structure. The success of point-based deep learning such as 

PointNet++ and Kd-net is actually a good example that conventional CNN network 

structure is modified based on the user’s a priori knowledge of point cloud structure (e.g. 

multi-scale structure or kd-tree structure). 

Deep learning technology is just emerging in many application areas. Yet owing to 

the rate of technical development, empirical methods are widely applied in practice where 

physical understanding is limited. For example, the best point cloud classifiers such as 

PointNet++ usually decompose point clouds into meaningful clusters or groups first and 

then classify clusters with high intelligence. A global classification question can be 

converted to pointwise segmentation question based on FCN strategies. Batch 

normalization operation can greatly improve learning convergence. Unlike traditional 

machine learning, such deep learning settings are not fully explained by a framework of 

statistical or optimization theories yet. They gradually become widely accepted by the deep 

learning community from a practical perspective. The statistical theorization of those rules 

and settings needs time and will eventually enhance our understanding of species 

differentiation processes and attributes. 
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Chapter 5. Developing a Lightweight Leddar Optical Fusion 

Scanning System (FSS) for Canopy Change Monitoring 

5.1 Context 

Monitoring in-situ canopy variables such as leaf area index (LAI) combined with 

meteorological and biochemical measurements are valuable for developing canopy light 

interception and biomass growth models (Sumida et al., 2018; van der Sande et al., 2015). 

The leaf area variable, in particular, can be used to quantify leaf biomass, since leaf biomass 

is approximately a product of leaf density, leaf thickness and total leaf area (Das, 2014). 

Passive optical sensors such as digital cameras are cost-effective ground-based tools and 

have been applied to monitor canopy variables such as LAI and the fraction of absorbed 

photosynthetically active radiation (fPAR) (Kim et al., 2019). However, the passive optical 

approach provides limited accuracy due to lack of stem and crown level details. For 

example, the LAI estimated from the Beer Lambert geometric-optical model (de Wit, 1965; 

Ross, 1981), also termed effective LAI, is usually 55-65% of the true LAI (Zheng & Moskal, 

2009). The constraint of sensing tools inevitably leads to sophisticated tuning efforts for 

the geometric-optical model, such as the introduction of gap size distribution, clumping 

factor, and needle-to-shoot area ratio (Yan et al., 2019). 

The emerging terrestrial laser scanning (TLS) technology greatly mitigates the LAI 

modeling problems. The 3D datasets from TLS not only enables straightforward estimation 

of canopy model variables including leaf angle distribution (LAD) (Li et al., 2018d; Zhao 

et al., 2015), clumping index (Zhu et al., 2018), canopy foliage profile (Hopkinson et al., 

2013b), gap fraction (Hancock et al., 2014) and plant area volume density (PAVD) (Calders 

et al., 2014), but has also led to the development of more accurate canopy models. For 
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example, the non-randomness of leaf distribution, conventionally described using the 

clumping index or gap size distribution, can be explicitly modeled in path length 

distribution equations (Hu et al., 2018; Hu et al., 2014). Basically, the path length 

distribution (PATH) model relates the light extinction degree with the detailed optical paths 

extractable from 3D point clouds. The LAI variable can be estimated from the PATH with 

high accuracy and stability benchmarked by the true LAI (Hu et al., 2014; Yan et al., 2019). 

Therefore, capturing 3D information has great implications for modeling canopy variables. 

Conventional TLS sensors have shown impressive measurement precision and 

reliability of capturing 3D canopy information, yet lack portability and affordability for 

widespread use at landscape level. An alternative solution is to integrate low-cost LiDAR 

sensors into an existing ground sensor network for broad-scale monitoring purposes. 

Manufacturers such as Faro and Leica produce portable terrestrial or mobile LiDAR at a 

price range of 4,000 USD and 20,000 USD with moderate frequency (20k-300k) and 

centimeter-level resolution. Those sensors are not cost-effective, power-saving, compact 

and flexible enough for widespread 3D biomass monitoring. In recent years, tiny LiDAR 

scanners such as from Velodyne, Ouster, Hokuyo, SICK, Ibeo and Scanse have entered the 

market with a price level between 100 - 4,000 USD. Most tiny scanners have limited field 

of view (FOV) and low point detection frequency. Many low-cost tiny scanners scan in 

only 2D dimensions: recording laser distance returns with a spinning mirror or motor. 

Multiple scanlines are thus required to produce sufficient vertical points, while low 

frequencies can cause serious 3D distortions from fast-moving platforms or targets (Zhu & 

Liu, 2013). 

Using a multi-beam laser scanner can be a balanced choice of budget and frequency. 

Instead of repetitive scanning in vertical direction, multi-beam scanner relies on detection 
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arrays to record multiple distances instantly. Each beam from detection arrays usually has 

high detection frequency over 50 Hz. Among the multi-beam scanners, a LED-based 

LiDAR from LeddarTech, or termed as Leddar, stands out as an economical choice with 

16 beams, 100Hz frequency and a thousand-dollar cost. A Leddar sensor implements 

patented algorithms to estimate traveling distances of each pulse emitted from a LED light 

source and detected by an array of 16 PIN photodiodes (Olivier, 2015). Each beam 

corresponds to a solid angle of around 2.8° x 7.5° and the field of view for 16 beams is 

customizable to be between 9° and 95°. The sensor can record multiple distance returns 

from multiple objects at different distances. Leddar’s capability of rapid data acquisition 

and multiple object detection has enabled growing applications in canopy detection 

(Gangadharan et al., 2019), autonomous driving (Arnay et al., 2018; Mimeault & Cantin, 

2013), traffic analysis (Godejord, 2018; Thakur, 2016), parking assistance (Mimeault, 

2014), and drone altitude estimation (Elaksher et al., 2017; Hentschke et al., 2018). 

However, due to limited FOV and sparse beams, the Leddar sensor alone cannot compete 

with conventional static TLS for detailed 3D canopy modeling or geometric mensuration. 

Adding a rotational robot to the Leddar sensor can be a cost-effective solution to 

expand its FOV and enrich point clouds. The boresight of integrated system, however, 

needs to be calibrated in order to deliver precise and consistent 3D data or point clouds. 

One type of LiDAR calibration method can be statistical correction based on a known target. 

For example, Bohren et al. (2008) corrects 3D ground point clouds from SICK and 

Velodyne scanners based on the planarity constraint of ground. A more rigorous calibration 

method is to model the physical relationship between the LiDAR system and calibration 

targets. For example, Muhammad and Lacroix (2010) uses a planar target to calibrate five 

intrinsic parameters of Velodyne HDL-64E S2 system mounted on a static rotator, 
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including two beam angle and three origin parameters. Atanacio-Jiménez et al. (2011) 

expands the calibration target to be a room of five planes and calibrates intrinsic and 

extrinsic parameters of Velodye HDL-64E. Zhu and Liu (2013) estimate origin and 

orientation of the HDL64E S2 sensor by aligning point clouds based on pole-shaped 

features. Several other studies provide convenient physical calibration approaches without 

a requirement for measuring reference target coordinates. For example, Levinson and 

Thrun (2011) propose a global calibration method for 192 orientation or distance 

parameters generated from a moving trajectory of Velodyne HD-64E S2 sensor. Point 

clouds are self-calibrated by maximizing local planarity without a need for a deliberate 

reference target. Similarly, Sheehan et al. (2012) proposes an entropy-based self-calibration 

method maximizing the crispness of point clouds for three SICK LMS-151 laser scanning 

units. 

The above calibration methods inevitably require accurate position and orientation 

data from external sources such as wheel encoder, GPS or IMU, and also dense points to 

support point cloud alignment and registration. These requirements are usually not 

affordable in terms of a low-cost scanning system with Leddar and rotational motor. A 

possible solution is to integrate a camera sensor. The extrinsic parameters such as pose and 

origin can be estimated using photogrammetric methods. The predominant approach from 

existing studies is to re-project LiDAR point clouds to a 2D plane and co-register with an 

image based on corresponding features (Bodensteiner et al., 2011; Budge et al., 2014; 

Fremont & Bonnifait, 2008; Li et al., 2015; Park et al., 2014; Zhou & Deng, 2012). The 

calibration accuracy from these studies greatly depends on highly dense point clouds which 

a low-cost Leddar sensor is unable to produce. Among the few studies on calibrating sparse 

LiDAR data, Debattisti et al. (2013) places focus on edge points of artificial targets visible 
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from both an image and a  SICK LMS221 sensor. Debattisti et al. (2013) also points out 

that point clouds from low-cost LiDAR usually leads to laborious scanning in pursuit of 

sufficient corresponding points from both image and point cloud. Considering the 

characteristics of a low-cost scanning system, this study will utilize a planar calibration 

target to avoid the prerequisite for dense point clouds and also integrate a camera to provide 

extrinsic pose estimation. 

Adding a camera sensor to the scanning system not only satisfies the calibration and 

alignment need, but also provides useful texture details. A question of interest is how to 

integrate the texture information from camera with the sparse point clouds from a Leddar 

scanning system, to produce dense colored point clouds. Indeed, a variety of existing 

literature, Hartley and Zisserman (2003) in particular, already illustrate the feasibility of 

reconstructing dense 3D point clouds from stereo or multiple images directly without 

LiDAR distance. However, with regard to our small scanning system with one rotational 

camera, the short movement baseline will lead to poor 3D reconstruction quality. Assuming 

the target is far from the camera, the error of depth estimate (∆𝐷) is related to the error of 

stereo matching between two images (∆𝑥)  in Equation 5.1: 

∆𝑥 =
𝑓𝑑∆𝐷

𝜇𝐷2
  (5.1) 

Assuming the baseline 𝑑 of the small scanning system is about 3 cm, focal length 𝑓 3.6 

mm, pixel size 𝜇 2.8 μm and target distance 𝐷 is 20 m, then a small ∆𝑥 of 0.1 pixel will 

lead to a ∆𝐷 of 1 m. We can conclude that using the monocular camera alone without 

Leddar point clouds in this case cannot lead to any meaningful point clouds. Therefore, a 

camera cannot replace Leddar in recovering depth (Z) information, but can be useful to fill 

2D planar (XY) gaps between the beams from the interpolation point of view. The methods 
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for interpolating or filling point clouds are many, yet few studies consider this level of 

fusion. De Silva et al. (2018) is among the few studies which matches resolution between 

image and point clouds using a Gaussian process model. This study will combine both the 

classic structure from motion (SFM) method and posterior interpolation method for dense 

3D recovery. 

The objective of this chapter is to (1) configure a compact and low-cost fusion 

scanning system (FSS) including multi-beam Leddar, monocular camera and rotational 

robotics, and (2) propose an entire framework of calibration and fusion algorithms that 

produce dense colored point clouds covering a hemispherical view for 3D canopy 

monitoring. The dense point clouds can provide rapid canopy information such as gap 

fraction and LAI, useful for monitoring foliage biomass status and changes. Most parts of 

the framework are automatic and aimed to reduce potential manual cost. For example, only 

a few ground truth measurements and one horizontal scan is required to complete 

calibration, and only ten minutes of field scanning is necessary to reconstruct dense point 

clouds over a hemispherical view. We expect our work could promote more research into 

lightweight scanning systems for cost-effective 3D environmental mapping and monitoring. 

5.2 Methodology 

5.2.1 Hardware Customization and Data Processing Framework 

The Leddar optical FSS mainly consists of two sensors: a 16-beam Leddar sensor 

(Leddar M16) and a web camera sensor in a 3D printed enclosure (13.3 x 9.1 x 4.1 cm). 

The two lightweight sensors (< 300 gram) sit on top of a tilting arm (DDT560 Direct Drive 

Tilt) and a panning base shown in Figure 5.1. Beside and beneath the pan-tilt arms are 

rotational servos which drive the pan-tilt movement and determine the angular resolution 
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and span of the rotation. Specifically, the tilting servo (Hitec HS-5485HB) is a standard 

digital servo that rotates between 0-118° with highest resolution of 0.6°. The pan servo 

(Dynamixel MX-12W) can have 360° rotation with 0.08° resolution and can feedback 

rotation angles in real time. Specifications of Leddar, camera, and servos are provided in 

Table 5.1. Camera video and Leddar distance data are collected and stored by Raspberry Pi 

and servo rotations are manipulated by an Arduino Mega 2560 board. The detailed 

connections between sensors, pan-tilt robotics and electronic controllers are shown in 

Figure 5.2. 

 

Figure 5.1 A Fusion Scanning System (FSS) with Leddar and monocular camera 

sensors. 
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Figure 5.2 Hardware components and connections of the FSS. PWM: Pulse 

Width Modulation. UART: Universal Asynchronous Receiver/Transmitter. CSI:  

Camera Serial Interface. 

Table 5.1 Major hardware specifications. 

Camera Leddar Tilt servo Pan servo 

OmniVision 

OV5647 
M16 module Hitec HS-5485HB 

Dynamixel MX-

12W 

FOV: 54° x 41° Distance: 0 to 50 m Max angle: 118° Max angle: 360° 

Lens: f=3.6 mm, 

f/2.9 
Frequency: ≤100 Hz PWM: 750-2250 μs Steps: 4096 

Calibration: no IR 

filter 
Wavelength: 940 nm Deadband: 8µs 

Resolution: 

0.088° 

Application: IR filter Power: 12/24 V, 4 W Power: 4.8-6.0V Voltage: 12V 
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To scan a wide field of view (e.g. hemispherical view), the pan-tilt system rotation 

follows a common raster scanning scheme: fixing tilting angle for one horizontal scanline 

and changing tilting angle for the next. For each horizontal scanline, recordings from 

Leddar, camera and servo are stored asynchronously in separate files by Raspberry Pi. The 

Leddar sensor outputs timestamp, beam distance, echo amplitude and echo quality index 

with an updating frequency of 100 Hz. Raspberry Pi camera captures 720p video with a 

rate of 25 frames per second (FPS). The rotation angle from pan servo is saved every 4°. 

The Leddar and pan angle readings are synchronized based on their millisecond-level 

timestamps tagged by Raspberry Pi. The camera videos do not have timestamps and their 

timing is inferred from motion detection. 

Constructing the hardware of the FSS is technically straightforward. The system 

components are relatively inexpensive and uncomplicated compared to most commercial 

LiDAR scanning systems, yet fusion of different low-resolution data sources to generate 

dense point cloud is the challenge. The framework of our multi-source data fusion is 

illustrated in Figure 5.3, including: (1) mapping discrete Leddar distances onto individual 

video frames to create “3D pixels”, (2) aligning video frames globally to cover a panorama 

field of view, and (3) adjusting frame alignment and extrapolating 3D point clouds based 

on the “3D pixels”. 
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Figure 5.3 Framework of fusion point cloud recovery from monocular camera 

videos and sparse Leddar beams. 

5.2.2 Coordinate System Conversion for Calibration 

Image frames decomposed from camera video do not have timestamps directly 

linkable to Leddar timestamps. It is necessary to match the camera motion with the Leddar 

motion and assign timestamps to camera frames. The start and stop of camera motion are 
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detected by optical flows from neighboring frames: frames with average pixel velocity 

above a threshold of 0.6 pixel are considered moving. With start and stop timestamps, the 

entire timestamps of the moving frames can be recovered based on linear interpolation. 

The synchronization of camera and Leddar enables one-to-one mapping between 

Leddar distances and camera frames. We need to further locate Leddar footprints on the 

pixels of each video frame. This is a problem of calibrating the FSS, or specifically, 

determining unknown boresight parameters that convert Leddar coordinate system to the 

camera coordinate system. Calibrating the FSS is only needed once which enables the step 

of applying calibration transformation in the framework in Figure 5.3. 

Our reference coordinate system (RCS) is a right-handed Cartesian coordinate 

system. It has same units as world coordinate system (WCS), with its origin at the camera 

optical center, 𝑥 axis along the transverse direction of the image plane, 𝑦 axis up along 

longitudinal direction of the image plane, 𝑧  axis along camera optical direction facing 

viewer. The target 3D coordinates 𝑷̅t in RCS can be parametrized in Equation 5.2: 

𝑷̅t = (
𝑇
0
0
) + (𝐷𝑖𝑡 + 𝐷𝑏) (

cos(𝜃𝑖) sin(𝜓𝑖)

sin(𝜃𝑖) sin(𝜓𝑖)

cos(𝜓𝑖)
) 

where 𝜓𝑖 = 𝜓0 + (8.5 − 𝑖)𝜓∆ , 𝜃𝑖 = 𝜃0, 𝑖 = 1,2,3, … ,16 

(5.2) 

where 𝑡 means a specific time point, 𝑇 the horizontal location of Leddar optical center in 

RCS, polar angles 𝜃𝑖 and 𝜓𝑖 the orientation of 𝑖th beam segment in RCS, 𝐷𝑖𝑡 the distance 

measurement of 𝑖th beam segment, 𝐷𝑏 the bias of distance measurement, and 𝑷̅t the target 

3D coordinates in RCS. We consider 𝑇, 𝐷𝑏, 𝜃𝑖 and 𝜓𝑖 to be constant during pan-tilt rotation 

for no relative movement between Leddar and camera. Assuming all the beam segments 
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are equiangular, angle 𝜓𝑖 can be presented by an arithmetic sequence parametrized with 

𝜓0 and 𝜓∆ (Equation 5.2). 

The real-world coordinates of target 𝑷 can be converted from 𝑷̅t in RCS through 

camera extrinsic parameters in Equation 5.3: 

𝑷 = R𝑡𝑷̅t + 𝑻𝑡 (5.3) 

where R𝑡 is the rotation matrix, 𝑻𝑡 the translation vector. R𝑡 can be characterized by Euler 

angles (𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡) following 𝑧- 𝑦- 𝑥 rotation order. Assuming the initial rotation matrix 

is R0 or Euler angles (𝛼0, 𝛽0, 𝛾0), the temporal change of R𝑡 during a horizontal scan can 

be represented by rotation matrix R𝑤 in Equation 5.4: 

R𝑡 = R0R𝑤; 

R𝑤 = (

1 − 2(𝑢𝑦𝑢𝑦 + 𝑢𝑧𝑢𝑧) 2(𝑢𝑥𝑢𝑦 − 𝑢𝑤𝑢𝑧) 2(𝑢𝑤𝑢𝑦 + 𝑢𝑥𝑢𝑧)

2(𝑢𝑥𝑢𝑦 + 𝑢𝑤𝑢𝑧) 1 − 2(𝑢𝑥𝑢𝑥 + 𝑢𝑧𝑢𝑧) 2(𝑢𝑦𝑢𝑧 − 𝑢𝑤𝑢𝑥)

2(𝑢𝑥𝑢𝑧 − 𝑢𝑤𝑢𝑦) 2(𝑢𝑦𝑢𝑧 − 𝑢𝑤𝑢𝑥) 1 − 2(𝑢𝑥𝑢𝑥 + 𝑢𝑦𝑢𝑦)

) ; 

𝑻𝑡 = (
𝑋𝑐𝑡
𝑌𝑐𝑡
𝑍𝑐𝑡

) = (

𝑋𝑐0 + 𝑎1𝜙𝑥 + 𝑎3𝜙𝑧 − (𝑎01𝜙𝑥 + 𝑎03𝜙𝑧)
𝑌𝑐0 + 𝑏1𝜙𝑥 + 𝑏3𝜙𝑧 − (𝑏01𝜙𝑥 + 𝑏03𝜙𝑧)
𝑍𝑐0 + 𝑐1𝜙𝑥 + 𝑐3𝜙𝑧 − (𝑐01𝜙𝑥 + 𝑐03𝜙𝑧)

) ; 

where  

(

𝑢𝑥
𝑢𝑦
𝑢𝑧
𝑢𝑤

) = (

𝑠𝑖𝑛(𝜙𝛼)𝑐𝑜𝑠(𝜙𝛽)𝑠𝑖𝑛(𝜔𝑡/2)

𝑐𝑜𝑠(𝜙𝛼)𝑠𝑖𝑛(𝜔𝑡/2)
𝑠𝑖𝑛(𝜙𝛼)𝑠𝑖𝑛(𝜙𝛽)𝑠𝑖𝑛(𝜔𝑡/2)

) ; 

R𝑡 = (

𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3
𝑐1 𝑐2 𝑐3

) , R0 = (

𝑎01 𝑎02 𝑎03
𝑏01 𝑏02 𝑏03
𝑐01 𝑐02 𝑐03

). 

(5.4) 

where 𝜙𝛼 , 𝜙𝛽  define the horizontal rotation axis and 𝑤𝑡  is the horizontal rotation angle 

measured by the servo. The camera optical center 𝑻𝑡  also slightly moves during the 
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horizontal scan, whose temporal change can be parameterized by its initial position 

(𝑋𝑐0, 𝑌𝑐0, 𝑍𝑐0) and rotation origin (𝜙𝑥, 𝜙𝑧) in Equation 5.4. 

Solving the calibration equations Equation 5.2, 5.3 and 5.4 requires measurement 

of  𝑷 and 𝐷𝑖𝑡 from the same target point. However, since the exact Leddar point is invisible 

from the web camera, it is impossible to measure the exact 3D coordinates for 𝑷 in the real 

world. Instead, we can reduce the requirement of the 3D 𝑷 by finding a planar target with 

constant 𝑍 values (𝑍0) and arbitrary 𝑋 and 𝑌 values. Therefore, combining Equation 5.3 

and 5.4, 𝑷̅t and in RCS should satisfy a planar constraint in Equation 5.5: 

(𝑐1 𝑐2 𝑐3)𝑷̅t + 𝑍𝑐𝑡 = 𝑍0 (5.5) 

where 𝑍𝑐𝑡  is the Z component of 𝑻𝑡 . With Equation 5.2 and 5.5, the only two required 

measurements are 𝐷𝑖𝑡 at multiple time points and 𝑍0 of the planar target. 

The above four equations form a set of nonlinear calibration equations with nine 

unknown intrinsic terms (𝑇, 𝐷𝑏, 𝜃0, 𝜓0, 𝜓∆, 𝜙𝛼, 𝜙𝛽, 𝜙𝑥, 𝜙𝑧) and six initial extrinsic terms 

(𝑋𝑐0, 𝑌𝑐0, 𝑍𝑐0, 𝛼0, 𝛽0, 𝛾0). Our solution is iterative. The initial extrinsic terms (𝑋𝑐0, 𝑌𝑐0, 𝑍𝑐0, 

𝛼0 ,  𝛽0 , 𝛾0 ) are solved using least-square regression of camera collinearity equations 

(Equation 5.6): 

given additional measurements of pixel coordinates 𝒙𝑡=0  and the corresponding world 

coordinates 𝑷′ (details in Section 5.2.3). The R𝑡
T in Equation 5.6 denotes transposed R𝑡 in 

Equation 5.3. For simplicity, the camera intrinsic parameters in Equation 5.6 are fixed, 

𝒙𝑡 = K𝑷̅′t = KR𝑡
T( 𝑷′ − 𝑻𝑡) 

K =

(

 
 

𝑓

𝜇
0 𝑥0

0
𝑓

𝜇
𝑦0

0 0 1 )

 
 

 

(5.6) 
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including camera focal length 𝑓, pixel size 𝜇, half image width 𝑥0 and half height 𝑦0 in 

pixels. Lens distortion is not considered in this study. Combining Equation 5.4 and 5.6, 

both extrinsic terms (𝑋𝑐0 , 𝑌𝑐0 , 𝑍𝑐0 , 𝛼0 ,  𝛽0 , 𝛾0) and intrinsic (𝜙𝛼 , 𝜙𝛽 , 𝜙𝑥 , 𝜙𝑧 ) can be 

inferred by non-linear least-square regression, and further substituted into Equation 5.2, 5.3 

and 5.5 to finally estimate Leddar intrinsic parameters (𝑇, 𝐷𝑏, 𝜃0, 𝜓0, 𝜓∆). 

After knowing all intrinsic and extrinsic parameters, locating Leddar points on 

camera images is feasible using Equation 5.2 and 5.6. It is also possible to roughly estimate 

a Leddar point 𝑷 given 𝐷𝑖𝑡 and 𝑤𝑡 from pan-tilt angles based on Equation 5.2, 5.3 and 5.4. 

Instead of using pan-tilt angles, we can also rely on camera global alignment in the 

following section for more precise inference of R𝑡  and 𝑻𝑡  and thus estimate 𝑷  from 

Equation 5.2. 

5.2.3 Calibration Experiment 

This section presents a case experiment of system calibration, with a flat wall (𝑍0 =

0) being our calibration target (Figure 5.4). The left bottom corner of the wall was defined 

as the WCS origin. The sensors scanned the wall with a fixed tilt angle of about 15° and 

continuous horizontal angle from 50° to 140° (2.4° per second). A total of 70 frames were 

subsampled from the video with equal interval for calibration. On the front wall was a 16 

x 9 grid from an optical projector, for the purpose of calibrating camera extrinsic parameters 

in Equation 5.6. As mentioned, the calibration equation (Equation 5.6) required measuring 

the WCS coordinates 𝑷′ of each projected circle center and extracting the corresponding 

pixel coordinates 𝒙𝑡 from camera frames. We used circle grid instead of chessboard pattern 

to be more robust to edge detection error during automatic extraction of 𝒙𝑡 from camera 

images. Since the camera had limited field of view of around 50°, not all circles appeared 
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in camera images. Therefore, an ID number was assigned to each circle to help link 𝒙𝑡 and 

𝑷′ automatically. 

 

Figure 5.4 Experiment setup for the FSS calibration. 

Assuming the projector lens had no distortion, we manually measured the 𝑷′s of 

four corner circle centers on the wall and then simply applied bilinear interpolation to get 

𝑷′s of all the 144 circle centers. The process of extracting 𝒙𝑡 was challenging, because 

circle projection on the wall from camera’s view would exhibit ellipse shapes. Extracting 

ellipses centers is obviously more difficult than extracting circle centers. We adopted Jia et 

al. (2017)’s Characteristic Number Ellipse Detector (CNED) to coarsely detect ellipse 



Chapter 5. Unfolding Biomass Monitoring Potentials with Lightweight FSS  
 

121 
 

parameters (centers and axis). All the settings of the CNED were default except that the 

CNL parameter of rejecting linearity was set to 10.0 instead of 3.0. Due to thickness of 

ellipses edges on the wall, redundant ellipses could be detected using the CNED. The next 

process simply averaged the center and axis parameters over all redundant ellipses, thinned 

the ellipse edges using morphological operator, and finely fit ellipse (Fitzgibbon et al., 1996) 

within each ellipse region outlined by its axis parameter. The ID number within each ellipse 

region was also identified by Optical Character Recognition (OCR) in MATLAB, with 

character set confined to number 0-9. Using ellipse IDs could greatly expedite the laborious 

search for correspondence between 𝒙𝑡  and 𝑷′ from 70 camera frames. The accuracy of 

OCR recognition using MATLAB was about 80%. Improper IDs were later corrected by 

voting from the nearest four IDs and our final recognition accuracy was 100% among the 

70 frames. Given the corresponding 𝒙𝑡 and 𝑷′, the least-square Newton-Raphson iterative 

method (Newton, 1711; Newton & Colson, 1736; Ypma, 1995) was applied to minimize 

residuals in the Equation 5.2-5.6 following the aforementioned steps in Section 5.2.2. At 

the end of each iteration, the robust Huber’s function (Huber, 1981) was applied to reduce 

the effect of residual outlier. Initial estimates of parameters were also required by the 

nonlinear Newton-Raphson method, in which (𝛼0, 𝛽0, 𝛾0) were roughly set as (0°, 40°, 0°), 

(𝑋𝑐0, 𝑌𝑐0, 𝑍𝑐0) manually measured as (1.80, 1.08, 1.09) in meters, and  (𝑇, 𝐷𝑏, 𝜃0, 𝜓0, 𝜓∆, 

𝜙𝛼, 𝜙𝛽, 𝜙𝑥, 𝜙𝑧) to be (0.03m, -0.44m, 180°, 90°, 2.5°, 0°, 0°, 0.06m, 0.00m). 

5.2.4 Fusion-based Dense Point Cloud Recovery from FSS 

Calibration is a preliminary requirement for fulfilling the framework in Figure 5.3. 

The framework focuses on generating and optimizing point clouds from multiple field 

scans. This section mainly describes a suit of visual odometry algorithms being used with 
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a following experiment in Section 5.2.5. Our field scans cover a hemispherical view with 

four scanlines spanning a vertical angle between 0° - 120°, albeit more scanlines can be 

added. To avoid data overhead, we choose systematic sampling of the moving frames. 

Hence, our full hemispherical scan contains 150x4 moving frames with horizontal overlap 

over 90% and vertical overlap about 80%. Aligning frames becomes a first problem since 

the extrinsic parameters in the lab calibration environment are not repeatable in a new 

location. The intrinsic parameters such as (𝑇, 𝐷𝑏 , 𝜃0 , 𝜓0 , 𝜓∆) from the Leddar sensor 

remain unchanged. To estimate extrinsic parameters, target-based calibration or ground 

control points would be tedious for the hemispherical view of 600 frames. Instead, we 

directly use rich photogrammetric information from the video to approximate camera poses 

R𝑡 and then incorporate Leddar distance into bundle adjustment for fine camera extrinsic 

parameters (R𝑡 and 𝑻𝑡). 

A common way of aligning multiple frames is to extract invariant features in each 

frame, match features between frames, and optimize camera colinear equation (Equation 

5.6). Frames with multiple scanlines also needs iterative correction of scanline skewness 

caused by uneven distribution of matching features. The set of global alignment has been 

supported by image stitching software such as PtGUI for this study. The only weakness of 

using existing stitching software is the limited number of matched pixels, insufficient for 

the bundle adjustment needed. Therefore, intensive extraction of SURF features (Bay et al., 

2006) is added to the workflow in Figure 5.3, with outlier features filtered out using 

homograph-based RANSAC algorithm (Hartley & Zisserman, 2003). The extracted SURF 

features are then matched between frames. Note that a 3D point can correspond to a set of 

matched pixels from multiple frames. The matched pixels from more than three frames are 
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called “key pixels” here, whose features can be considered stable and will be used for the 

bundle adjustment later. 

The global alignment using PtGUI exports Euler angles of each frame, which can 

be used to interpolate Euler angles (𝛼𝑡 , 𝛽𝑡, 𝛾𝑡) or R𝑡 at any timepoint when Leddar distances 

are measured. Then Leddar point clouds 𝑷𝑡 can be roughly recovered using Equation 5.2 

and 5.3, assuming 𝑻𝑡 is zero vector. Projecting the Leddar point clouds 𝑷𝑡 back to each 

image frame will add depth information to a few pixels (or “3D” pixels here). Then the 

sparse “3D” pixels can interpolate depth values of all the “key pixels” which will be input 

to the bundle adjustment later. Our method of interpolating depth value is region-based: (1) 

filtering foreground in each image using k-means clustering method (k=2), (2) segmenting 

images using Statistical Region Merging algorithm (level=8) (Nock & Nielsen, 2004), and 

(3) implementing Inverse distance weighting (IDW) interpolation for each key pixel within 

each region. Compared to global interpolation, using region-based interpolation better 

maintains sharp boundary lines between different image regions. 

Based on the 3D “key pixels”, both transformation matrix R𝑡  and 𝑻𝑡  and WCS 

coordinates 𝑷𝑡  can be finely estimated using iterative bundle adjustment. First, 𝑷𝑡 

estimated from 3D “key pixels” are averaged among different frames and reprojected to 

each image frame using Equation 5.7. The reprojected points are normalized by Z 

coordinate and compared to the 2D coordinates of “key pixels”. The least square error is 

minimized using nonlinear regression, with camera extrinsic parameters (αt, βt, γt, Xct, Yct, 

Zct)  as variable (Equation 5.8). New 𝑷𝑡
′  corresponding to “key pixels” is estimated using 

Equation 5.9 based on the optimized camera extrinsics. Note that 𝑷𝑡 is sensitive to small 

errors of “key pixels” and camera extrinsics due to the ill-posed mono-camera geometry. 
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A robust solution to the ill-posed optimization problem is to use ridge regression (Hoerl & 

Kennard, 1970) which partially minimizes the least square error between 𝑷𝑡  and 𝑷𝑡
′    in 

Equation 5.10. Its regularization parameter 𝜆 is set to be 0.01. The optimized 𝑷𝑡  from 

Equation 5.10 is again reprojected to each image frame in Equation 5.7, and repeat 

iterations from Equation 5.7 to Equation 5.10 until the error in Equation 5.8 is locally 

minimal. This iterative bundle adjustment for 3D recovery is similar to the Gold Standard 

Method from Hartley and Zisserman (2003), but with depth information provided from 

sparse Leddar distance instead of dense stereo geometry. The resulting point clouds will 

exhibit rich details in the 2D planar direction but limited variation in the depth direction. 

The 3D recovery from bundle adjustment produces point clouds for “key pixels”. 

The “key pixels” are essentially from SURF feature extraction and are mostly focused on 

corner pixels with sharp color gradient. Other “internal” foreground pixels should also be 

incorporated to produce completely dense point clouds. Our method is to extract dense 

foreground pixels and solve Equation 5.9 and 5.10 to create optimal dense 3D points. To 

satisfy Equation 5.10, one 3D point requires at least one pair of matching pixels from two 

frames. We already have matching pixels defined as “key pixels” in previous steps. We 

(

𝑥𝑡
𝑦𝑡
𝑧𝑡
) = KR𝑡

T [(
𝑋𝑡
𝑌𝑡
𝑍𝑡

) − 𝑻𝑡] (5.7) 

min
αt,βt,γt,Xct,Yct,Zct

‖(
𝑥𝑡
′

𝑦𝑡
′) − (

𝑥𝑡/𝑧𝑡
𝑦𝑡/𝑧𝑡

)‖, using nonlinear regression (5.8) 

(

𝑋𝑡
′

𝑌𝑡
′

𝑍𝑡
′
) = RtK

−1 (
𝑥𝑡
′

𝑦𝑡
′

1

) + 𝑻𝑡 (5.9) 

min
Xt,Yt,Zt

‖(

𝑋𝑡
𝑌𝑡
𝑍𝑡

) − (

𝑋𝑡
′

𝑌𝑡
′

𝑍𝑡
′
)‖  using ridge regression (𝜆 = 0.01) (5.10) 
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need to extrapolate the matching relationship for all foreground pixels. This is a pixel-level 

dense matching process. First, the foreground pixels need to be subsampled with certain 

interval (e.g. 10 pixels in this study) to avoid data overhead. Then the disparities of “key 

pixels” between current frame and one matched frame are calculated. The disparities are 

used to interpolate a disparity map for all foreground pixels in the current frame. Given a 

disparity map, the foreground pixel location in the matched frame can be estimated. This 

dense matching step between a pair of matched frames is repeated for all the matching 

frames. Each set of matched pixels from multiple frames is given one unique ID, 

corresponding to one unique 𝑷𝑡. Finally, using Equation 5.9 and 5.10, the densely matched 

sets of pixels can produce dense point clouds. The final RGB colors of dense point clouds 

are average RGBs from matched pixels. 

5.2.5 Application: Tracking Autumn Defoliation Processes with the FSS 

The FSS was used to track canopy changes during an autumn season in 2018. Our 

experiment site was located in an area of cottonwood stands in Lethbridge (49°41'45.2"N, 

112°51'54.0"W). The FSS was mounted on a triIpod surrounded by six poplar trees within 

20 m, including Populus angustifolia and Populus deltoides and their hybrids. The irregular 

shapes of poplar trees lead to difficulty of depth information recovery, but the rich texture 

of the scene would facilitate feature extraction in frame alignment. The camera lens filter 

was replaced to block near-infrared light and enable natural-colored images. Multiple 

scanlines were collected, each corresponding to 360° horizontal rotation at a speed of 2.4° 

per second. Four scanlines were selected to cover the upper hemispherical view of the scene 

for further processing. All scans were aligned, optimized, and densified to create colored 

point clouds using the methods in Section 5.2.4. The same scene was scanned with a 

Teledyne Optech ILRIS HD (1535 nm) TLS as a benchmark. The scanning angle is 
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360°x80°, with a small zenith angle between 0-10° uncovered. Only last returns were 

recorded and point spacing was 3.2 cm at a distance of 20 m from the TLS. A total of 30 

ILRIS TLS scans were collected in 30 minutes with three scanlines covering the entire 

upper hemispherical view. The TLS scans were co-registered by the Iterative Closest Point 

(ICP) algorithm into one hemispherical scan with an average accuracy below 1.3 cm. The 

same scanning and processing activities were repeated on September 9th (09/09), September 

17th (09/17), October 1st (10/01) and October 17th (10/17) during the autumn defoliation 

period in 2018, to evaluate the reusability of our static scanning system in a temporal 

monitoring context. Hemispherical photos based the Digital Hemispherical Photography 

(DHP) methods were also captured on 09/09, 09/17 and 10/17 for benchmarking purposes. 

Canopy vertical volume profile and Plant Area Index (PAI) were extracted from the 

FSS point clouds to evaluate the capabilities of 3D canopy detection and canopy attribution. 

The volume profile was defined as a total volume of voxels at each height, where a unit 

voxel was 0.1× 0.1 × 0.1m3 and a height slice was 0.1m. The PAI was calculated based on 

a path length distribution (PATH) model (Hu et al., 2014; Yan et al., 2019). Specifically, 

the PATH model consisted of two equations (Equation 5.11 and 5.12) with the gap fraction 

𝑃(𝜃)̅̅ ̅̅ ̅̅  and path distribution 𝑝𝑙 to be the only two inputs. To calculate angle-specific gap 

fractions, a hemispherical image from either FSS or TLS point clouds was first converted 

to a black and white binary image under a fisheye perspective. The fisheye binary image 

was equally sliced into 28 rings representing a zenith angle between 15-69° and a ring width 

of 4°. The overlap between two neighboring rings is 2°. The gap fraction 𝑃̅ was defined as 

the ratio of the “hole” pixel numbers to the “filled” pixel numbers within a ring slice. The 

“filled” pixels represented the overall canopy area and was generated based on image 
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morphological smoothing. The path distribution 𝑝𝑙 was defined as the probability density 

function (PDF) of the optical path length within the crown area, with 𝑙 representing the 

within-crown path length. The 𝑙 ranged between 0-1, scaled by the maximum value 𝑙𝑚𝑎𝑥. 

The 𝑝𝑙 was approximated by the histogram of the 𝑙, normalized by the total histogram area. 

With both the gap fraction 𝑃(𝜃)̅̅ ̅̅ ̅̅  and path distribution 𝑝𝑙 extracted from crown area, the 

integral equation (Equation 5.11) was solvable based on any root-finding algorithm and the 

𝐹𝐴𝑉𝐷 ∙ 𝑙𝑚𝑎𝑥 could be estimated, where 𝑃𝐴𝑉𝐷 stands for the plant area volume density and 

𝐺(𝜃) the leaf angle distribution. The 𝐺(𝜃) was set 0.5 in this study corresponding to a 

spherical leaf angle distribution (Chen et al., 2018). The 𝑃𝐴𝑉𝐷 ∙ 𝑙𝑚𝑎𝑥 was then input to the 

Equation 5.12 to determine the 𝑃𝐴𝐼𝑡𝑟𝑢𝑒(𝜃) at a specific zenith angle 𝜃. The final PAI value 

was a weighted sum of 𝑃𝐴𝐼𝑡𝑟𝑢𝑒(𝜃) over all zenith angles (Equation 5.13) (Hu et al., 2014).  

An important portion of canopy was foliage and the corresponding index was LAI. 

The LAI was directly related to photosynthetic processes and carbon productivity, and was 

a more sensitive index than PAI to reflect seasonal biomass changes. We estimated LAI 

values by contrasting leaf-on and leaf-off gap fraction values, as illustrated in Equation 

5.14, where 𝑁  was the number of pixels and 𝑃  was short for the gap fraction 𝑃(𝜃)̅̅ ̅̅ ̅̅ . 

Specifically, 𝑁𝑤𝑜𝑜𝑑 , 𝑁𝑙𝑒𝑎𝑓  and 𝑁ℎ𝑢𝑙𝑙  are the numbers of wood, leaf and canopy pixels, 

respectively, and 𝑃𝑜𝑓𝑓, 𝑃𝑜𝑛, and 𝑃𝑙𝑒𝑎𝑓 were the gap fractions of leaf-off, leaf-on, leaf-only 

𝑃(𝜃)̅̅ ̅̅ ̅̅ = ∫ 𝑒-𝐺(𝜃)∙(𝐹𝐴𝑉𝐷∙𝑙𝑚𝑎𝑥)∙𝑙𝑝𝑙𝑑𝑙
1

0

, where ∫ 𝑝𝑙𝑑𝑙
1

0

= 1 (5.11) 

𝑃𝐴𝐼𝑡𝑟𝑢𝑒(𝜃) = ∫ cos (𝜃) ∙ (𝐹𝐴𝑉𝐷 ∙ 𝑙𝑚𝑎𝑥) ∙ 𝑙 ∙ 𝑝𝑙𝑑𝑙
1

0

 (5.12) 

𝑃𝐴𝐼𝑡𝑟𝑢𝑒 =
∑ 𝑃𝐴𝐼𝑡𝑟𝑢𝑒(𝜃) ∙ sin (𝜃)𝜃

∑ sin (𝜃)𝜃
 (5.13) 
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canopy, respectively. Based on Equation 5.14, 𝑃𝑙𝑒𝑎𝑓  was a simple ratio of 𝑃𝑜𝑓𝑓  to 𝑃𝑜𝑛 

(Equation 5.15). With known 𝑃𝑙𝑒𝑎𝑓, LAI was estimated in a similar manner with PAI using 

Equation 5.11-5.13, except for replacing 𝑃(𝜃)̅̅ ̅̅ ̅̅  (namely 𝑃𝑜𝑛) with 𝑃𝑙𝑒𝑎𝑓. 

5.3 Results and Discussion 

5.3.1 Calibration 

An example frame among the 70 frames from the camera video is shown in Figure 

5.5a. The original 720p frame is cropped to 1280x500 to be compact. Only part of the 16x9 

circle grid is within the field of view. The frame shows no blurry effect, implying that an 

FPS of 25 is sufficient to match a rotation speed of 2.4° per second. The purple band in the 

frame is the near-infrared LED light from Leddar, since the camera lens has no IR filter. 

The visibility of the LED light provides an intuitive way of validating calibration accuracy: 

the footprints of all the 16 Leddar beams after calibration should fall within the purple area. 

The ellipses on the wall are detected with the CNED method, shown in green in Figure 

5.5b. It is clear that a few incomplete ellipses are skipped and many redundant ellipses are 

created. This is a preliminary step of approximating ellipses ranges and locations. Fine 

ellipses after edge thinning and geometrical fitting are shown in random colors in Figure 

5.5c overlaid by the edge image. Edge noises are inevitable but have limited effect on the 

ellipse fitting results. Each ellipse center is marked as green cross. The integer number 

inside each ellipse is the circle ID predicted with the OCR and posterior voting method. 

𝑃𝑜𝑓𝑓 = 1 −
𝑁𝑤𝑜𝑜𝑑
𝑁ℎ𝑢𝑙𝑙

, 𝑃𝑜𝑛 = 1 −
𝑁𝑤𝑜𝑜𝑑 + 𝑁𝑙𝑒𝑎𝑓

𝑁ℎ𝑢𝑙𝑙
, 𝑃𝑙𝑒𝑎𝑓 = 1 −

𝑁𝑙𝑒𝑎𝑓

𝑁ℎ𝑢𝑙𝑙 − 𝑁𝑤𝑜𝑜𝑑
 (5.14) 

𝑃𝑙𝑒𝑎𝑓 =
𝑃𝑜𝑛
𝑃𝑜𝑓𝑓

 (5.15) 
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The OCR recognition confidence is also placed under each ellipse ID as a decimal number. 

Ellipses with low OCR confidence are removed, such as the No.142 and No.80. The 

remaining 33 ellipses still satisfy the minimal requirement of having four control points for 

the camera collinearity equation. Note that all the 70 frames have been inspected to have 

four or more ellipses at the beginning. After calibration, point-based footprints of the 

Leddar beams are projected on the example frame. The Leddar points basically fall within 

the LED light zone, except for the first beam on less illuminated area. 

    
(a) (b) (c) (d) 

Figure 5.5 Calibration processing of an example frame: (a) circle grid (yellow) 

and LED light (purple) from camera view, (b) ellipse detection (green) by 

CNED method, (c) fine ellipse fitting (random color), ellipse ID from OCR 

(cyan) and OCR confidence (yellow), and (d) calibrated beam points reprojected 

to the frame image (green). 

The point clouds after calibration of Leddar distances and poses are displayed in 

Figure 5.6a, with the X-Y projection approximating a planar shape and the X-Z projection 

linear shape. The entire point clouds contain 16 beams, each creating 70 points along the 
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sweeping direction. Several points overlap when Leddar is still static at the beginning or 

ending. The sweeping pattern of each beam on the X-Y plane is not a straight line. This is 

because Leddar has a fixed tilt angle of about 15° upwards. Yet a few lines are not smooth 

and their noises are not systematic for all lines, probably not due to the servo movement 

but Leddar’s instability of distance measurement instead. The standard error is 1.03 pixel 

for optimizing the camera collinearity equation (Equation 5.6), 3.84 pixel for optimizing 

the temporal rotation equation (Equation 5.4 and 5.6), and finally 9.7 mm in WCS for 

solving Leddar distance equation (Equation 5.2, 5.3 and 5.5). Equation 5.4 is about 

constraining the rotation matrix to a fixed rotation axis. Without Equation 5.4, solving 

Equation 5.6 for each frame separately is also feasible and can reduce the standard error to 

2.34 pixel. However, the retrieved camera extrinsic parameters, such as the camera center 

locations 𝑻𝑡 shown as the green dots in Figure 5.6b, will lose physical meaning and present 

irregular movement. Instead, applying Equation 5.4 can reflect real camera movement 

shown as the white arc points in Figure 5.6b and thus retrieve more reliable calibration 

parameters. The final estimate of intrinsic parameters (𝑇, 𝐷𝑏, 𝜃0, 𝜓0, 𝜓∆, 𝜙𝛼, 𝜙𝛽, 𝜙𝑥, 𝜙𝑧) 

are 0.070 m, -0.428 m, 180.84°, 89.39°, 3.32°, -0.69°, 12.19°, 0.027 m and -0.0006 m. 
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(a) (b) 

Figure 5.6 Calibrated Leddar points and camera trajectory: (a) calibrated Leddar 

points of a flat wall on X-Y plane (above) and on X-Z plane (below), and (b) 

camera trajectory with rotation constraints (above) and without constraints 

(green below). 

5.3.2 Fusion-based Dense 3D Recovery 

The success of point cloud recovery hinges greatly on the quality of aligning video 

frames, because camera poses determine the general form and structure of point clouds. 

Our video scans of poplar trees on four different dates are aligned based on automatic 

solutions provided from PtGUI, including image matching, feature extraction, feature 

matching, horizon correction, bundle adjustment and image mosaicking. Example 

alignment results for the 10/01 and 10/17 videos are visualized as 360° x 120° spherical 

panoramas under Equirectangular projection in Figure 5.7a,b. The trees display leaf-on 

condition on 10/01 and are defoliated completely on 10/17. Both scenes are centered on a 

railway viaduct and lower part of the panorama is discarded. No obvious alignment gap or 

inconsistency are found from the two images. The processing results of the leaf-on scene 

are visualized in Figure 5.7c-h. Figure 5.7c shows alignment of separate images and their 

seamlines in PtGUI without mosaicking and color blending. The colors of individual tiles 
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in Figure 5.7c differ from each other due to sunlight variation during scan. Yet based on 

visual inspection, the alignment of tiles is seldom affected by the color difference, 

indicating strong robustness of PtGUI’s feature extraction algorithms. The alignment errors 

estimated from bundle adjustment in PtGUI are 4.5, 3.0, 2.5, 2.5 and 2.2 pixels for the 

scenes of 09/09, 09/17,10/01 and 10/17, respectively. The relatively large error of the 09/09 

is due to various factors such as windy conditions, thick canopy and cloudy sky. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

 
(f) 

 
(g) 
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(h) 

Figure 5.7 Hemispherical view of processing results: (a) image global alignment 

for the 10/01 scan, (b) image global alignment for the 10/17 scan, (c) global 

alignment layout in PtGUI software with image IDs and seamlines for the 10/01 

scan, (d) Leddar-only point clouds (red cross) reprojected to the hemispherical 

image, (e) RGB colors from fusion-based point clouds, (f) depth image from 

fusion-based RGB point clouds, (g) depth image from Leddar-only point clouds 

(point size enlarged for clearer visualization), and (h) depth image from TLS 

scans. (e), (f), (g) and (h) are all using hemispherical projection. 

Leddar points are reprojected as the red crosses in Figure 5.7d and overlaid with the 

panorama view of the 10/01 scene, after applying Leddar intrinsic parameters from 

calibration and camera extrinsic parameters from PtGUI alignment. The Leddar points 

capture the basic scene structure nearby except for upper canopy, distant ground and thin 

branches. The minimum, average and maximum detection range of Leddar in this scene is 

1.64, 6.45 and 14.17m, respectively. The Leddar point clouds have obvious gaps between 

the beams and on the ground due to missing signals. This problem of Leddar data sparsity 

limits potential applications such as tree surveying and object detection, unless 

photographic information is integrated. Therefore, the iterative bundle adjustment is 

applied at the point cloud level to minimize the disagreement between Leddar reprojected 

pixels, camera pixels, and camera extrinsic. Iterations of the bundle adjustment error, 

measured in pixels, is plotted for the four scanning dates in Figure 5.8. The initial error of 

bundle adjustment can be greater than 8 pixels but will converge to a level comparable to 
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PtGUI alignment error. The final error from bundle adjustment is 2.8, 1.9, 2.0 and 1.8 pixels 

for 09/09, 09/17, 10/01, and 10/17, respectively. 

 

Figure 5.8 Fusion error convergence with iterations (in pixels) on four 

defoliating dates in 2018. 

The fusion-based point clouds after image background removal, iterative bundle 

adjustment, and dense matching recovery are reprojected into two panorama images shown 

as Figure 5.7e-f. Figure 5.7e displays reprojected pixels with RGB colors, and Figure 5.7f 

is the corresponding depth image with nearer objects showing brighter colors. The 

reprojection from point clouds to a hemispherical-view image is not simply one point per 

pixel, considering the previous dense recovery process has a subsampling rate of 10 pixels 

per point. Therefore, each point has a buffer of 10 pixels in a hemispherical image. 

Similarly, reprojecting TLS point clouds into a hemispherical depth image in Figure 5.7h 

also needs to consider the footprint of each TLS laser beam. The scanning spacing of each 

Ilris HD beam (1600 μrad) is set to be the footprint size according to the suggestions in 

Hancock et al. (2014). The scanning spacing corresponds to a constant pixel size of 1.6 and 

thus each preprojected pixel of the hemispherical images is dilated by a factor of 1.6. 
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In contrast to the Leddar reprojection image in Figure 5.7d, the image in Figure 5.7e 

not only captures rich 2D details but also covers a reasonable extent due to the region-based 

interpolation. The main problem of the fusion-based point clouds is false interpolation. The 

problem can be illustrated when comparing specific tree point clouds extracted from TLS, 

fusion-based point clouds, and Leddar point clouds in Figure 5.9a-c. The TLS point clouds 

clearly exhibit branch-level details with warmer colors representing higher laser intensity. 

The fusion-based point clouds have distinguishable stem colors and noisy branches, still 

highly detailed compared to the obscure Leddar point clouds. Yet the fusion-based point 

clouds overfill the gaps between branches and also falsely incorporate pixels from remote 

shrubs. This is inevitable since region-based interpolation and bundle adjustment can 

mitigate but not eradicate the problem of coarse and sparse depth measurement from Leddar. 

The depth image in Figure 5.7f displays a strong smoothing effect compared to the depth 

image reprojected from TLS in Figure 5.7h, but are much more detailed than the Leddar-

only point clouds in Figure 5.7g with indiscernible sparse points. 
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(a) (b) (c) 

Figure 5.9 Example tree point clouds from (a) TLS scans, (b) fusion-based 

dense point clouds, and (c) Leddar-only point clouds. 

5.3.3 Tracking changes of canopy vertical volume profile, PAI and LAI 

Vertical volume profiles from TLS, fusion-based point clouds, and Leddar point 

clouds can be contrasted with Figure 5.10a-d. Both profiles from the fusion-based point 

clouds and the Leddar point clouds are correlated with the TLS profiles, regardless of 

scanning date. The r2 of profiles over the maximum tree height range between Leddar and 

TLS stays around 0.3 from the first three leaf-on scenes and jumps to 0.48 from the last 

leaf-off scene. In contrast, the r2 of profiles between the fusion-based and TLS are around 

0.65 from the leaf-on scenes, constantly higher than 0.52 from the leaf-off scene. This is 

because thick crowns and leafy understory lead to Leddar signal loss but do not affect 

photography-based interpolation. With defoliated trees in the last scene, photography-

based interpolation tends to incorporate more false pixels from a remote area and lead to 

lower accuracy. It is also noteworthy that the fusion-based point clouds demonstrate higher 

frequency than TLS point clouds in the middle crown area due to the overfilling effect, but 
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also thinner near upper crown due to the loss of Leddar points. Note that the TLS has a 

slightly narrower scanning view than the FSS, with part of upper crown and ground not 

sampled by scans. The profile difference around upper crown and ground can be greater 

than observed in Figure 5.10. This problem of profile distortion might be due to the 

imperfect hemispherical stitching process. 

  
(a) (b) 

  
(c) (d) 

Figure 5.10 Vertical volume profiles from TLS, fusion-based and Leddar-only 

point clouds on (a) 09/09, (b) 09/17, (c) 10/01, and (d) 10/17, 2018, where 

horizontal axis denotes volume of voxels with a unit voxel of 0.1×0.1×0.1 m3, 

and vertical axis denotes height in meters. 

The advantage of synthesizing both 3D and color information can make FSS a 

valuable complement to conventional LAI or PAI surveying tools, for example, the DHP. 

Figure 5.11 compares the fisheye image from FSS with the DHP photo from the same site. 
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The canopy shapes between the two images are visually identical, seen from Figure 5.11a 

and Figure 5.11b. The FSS, in addition, captures depth information such as the image in 

Figure 5.11c, with a benchmarking TLS depth image provided in Figure 5.11d. Note that 

the upper crown area was not scanned with the TLS due to the field of view constraint. The 

availability of depth images enables FSS to calculate true PAI and LAI based on the PATH 

model. Different PAI and LAI estimates based on FSS, TLS and DHP methods, and based 

on PATH and non-PATH methods are contrasted in Figure 5.12, with bars denoting PAI 

and crosses denoting LAI. The non-PATH method relies on the LAI models from the 

Hemisfer software (Schleppi et al., 2007; Thimonier et al., 2010) which combines Lang 

(1987)’s LAD function, Lang and Xiang (1986)’s clumping correction, and Schleppi et al. 

(2007) non-linearity correction model. The non-PATH method focuses on the RGB images 

from DHP or FSS, or the depth images from TLS, whereas the PATH method additionally 

needs point cloud input from FSS or TLS. 
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(a) (b) 

  
(c) (d) 

Figure 5.11 Fisheye-view images compiled from the 09/09 datasets based on (a) 

DHP, (b) FSS, (c) FSS depth, and (d) TLS depth. 

For the non-PATH methods in Figure 5.12, PAI and LAI values generally decline 

with the defoliation dates, with all the LAI values reaching zero level on the leaf-off date 

10/10, except that the PAI and LAI value from non-PATH FSS increases on 10/01. The 

incorrect increase implies the instability of using image-only methods. The possible cause 

of the incorrect increase is FSS’s underestimation of PAI and LAI from the 09/09 and 10/01 
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FSS images, in contrast to the PAI and LAI values from DHP and TLS. Strong spectral 

reflectance from the sunlight are observed in the 09/09 and 10/01 FSS images and a small 

portion of canopy pixels in the FSS image displays a similar color as the sky background. 

These bright canopy pixels were not successfully identified as leaf area, causing the 

underestimation effect. The DHP method does not have the underestimation issue since the 

DHP images were captured near dusk. The TLS method does not have the stability issue as 

FSS, since depth images are used instead of color images. The TLS method, however, has 

an issue of overestimating PAI. The leaf-off PAI from TLS is 32% higher than from DHP, 

compared to the average 3% overestimation of leaf-on PAI from TLS. The overestimation 

issue of TLS has two typical causes. The depth images, especially the leaf-off ones, contain 

ghost points or misaligned points around thin branches and twigs. Gaps smaller than the 

beam width of TLS are also not differentiable from the depth images (Hancock et al., 2014). 

The TLS’s overestimation of twig PAI leads to an underestimation of LAI by 26% in terms 

of DHP. 
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Figure 5.12 Comparing different methods of LAI estimation on four scanning 

dates. The colored bars stand for PAI, and crosses stand for LAI. The 10/01 DHP 

dataset is not available. The DHP and the FSS methods are based on RGB 

images and the TLS based on depth images. 

With the PATH model applied to TLS and FSS, the PAI estimates are about 30-45% 

greater than the non-PATH PAIs. The PATH PAI estimation from FSS does not have the 

problem of PAI increase on 10/01, indicating the importance of incorporating depth 

correction. The PATH LAI estimates are also greater than the non-PATH by 14% on 

average, except for the 10/01 FSS LAI anomaly. Considering the optical image methods 

usually underestimate true PAI or LAI (Yan et al., 2019) by 20%-60%, it is assumed that 

the PATH model is a closer approximation of the true PAI or LAI values. 

It is important to understand why the PATH model usually outputs higher PAI (or 

LAI) values than the classic geometrical-optical model. Indeed, the 𝑃𝐴𝐼𝑡𝑟𝑢𝑒(𝜃) solved 

from the PATH model does not have a simple analytic form, due to various forms of 𝑝𝑙. 
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However, if we simply assume 𝑝𝑙 is constantly 1, or equivalently, the within-crown path 

length distribution is uniform, the PATH model then has an analytic solution of PAI, which 

is basically a Lambert W function of gap fraction 𝑃(𝜃)̅̅ ̅̅ ̅̅  (Figure 5.13). The traditional LAI 

model (effective LAI) using Beer’s law is also contrasted in the Figure 5.13. It clearly 

shows that the PATH PAI is consistently greater than non-PATH PAI, especially when gap 

fraction is small. It is also noteworthy that the PATH model might be overly sensitive to 

near-zero gap fraction changes. The upper bound of PAI based on the PATH model is 

−
cos(𝜃)

𝐺(𝜃)

𝑙𝑚𝑎𝑥

𝑙𝑚𝑖𝑛
𝑙𝑛𝑃(𝜃)̅̅ ̅̅ ̅̅   and lower bound is −

cos(𝜃)

𝐺(𝜃)

𝑙𝑚𝑖𝑛

𝑙𝑚𝑎𝑥
𝑙𝑛𝑃(𝜃)̅̅ ̅̅ ̅̅ . The wide ranges of PAI 

indicates strong flexibility of the PATH model, but it is also important for future studies to 

examine what are the rigorous PAI bounds based on different forms of the  𝑝𝑙 functions, 

and what can be a suitable analytical form of 𝑝𝑙 functions or PAI functions with smoother 

gap fraction sensitivity. 
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Figure 5.13 Relationship between gap fraction (x) and PAI (or LAI). The red 

curve shows PAI values from the path length distribution model, compared to 

the blue curve from the simple Beer’s law model. 

5.4 Conclusions 

Timely monitoring of canopy characteristics is needed to understand the 

spatiotemporal variation of biomass in a forest ecosystem, and to evaluate carbon budgets 

as part of forest stand reporting. The advent of low-cost multi-beam LiDAR sensors, Leddar 

in particular, has presented many successful object tracking applications. Yet the Leddar 

sensor is still not comparable to TLS in sampling 3D details due to its limited FOV and 

point resolution. This limitation was mitigated in this study by constructing a low-cost 3D 

scanning system, FSS, integrating Leddar, camera and pan-tilt robotics. A framework of 

integration was developed, generally including (1) plane-based physical calibration 

converting Leddar distance into 3D point and locating Leddar point from images, (2) global 

image alignment obtaining panorama and coarse camera poses, (3) iterative bundle 
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adjustment optimizing camera poses using both Leddar distance and correspondent pixels 

at point cloud level, and (4) dense point cloud recovery based on dense matching and 

interpolation. The calibration error of Leddar points was 9.7 mm at a distance of about 1 

m. The set of fusion-based methods was applied to recover hemispherical colored point 

clouds from multi-temporal poplar tree scans during the autumn defoliation period. The 

bundle adjustment error was 1-3 pixels, indicating strong agreement between image and 

Leddar projection on the X-Y plane. Yet great uncertainty exists on the depth (Z) direction 

due to coarse resolution of Leddar distance. Final fusion-based point clouds were compared 

to the TLS scans collected on the same spot and date. The volume vertical profiles between 

TLS and FSS point clouds had an r2 of 0.5-0.7 over a maximum tree height range, which 

vary with leaf cover conditions and are higher than the r2 of 0.3-0.5 between TLS and pure 

Leddar point clouds. The PAI and LAI metrics were also extracted from FSS, TLS and 

DHP for leaf-on and leaf-off dates. Using only image data, the PAI and LAI tended to be 

underestimated with FSS and overestimated with TLS. With point cloud PATH model, 

both PAI and LAI from FSS or TLS were corrected to approach their true values. In 

conclusion, by combining both color and depth information, the FSS has demonstrated 

great versatility and advantages in the application of canopy change monitoring. 

The FSS system was mainly developed for a static scanning of environment. For 

environmental applications such as crown measurement and biomass delineation, low-cost 

sensor systems such as the FSS cannot parallel TLS and DHP’s resolution and precision at 

present, yet the demand for gross mensuration should not be overlooked and sensor 

hardware upgrading is always possible. The core contribution of this study is a holistic 

calibrating and fusing scheme for a lower resolution multi-sensor platform. The advantage 

of FSS is obvious. It is more portable and low-cost compared to a conventional TLS, and 
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also has a higher frequency, greater detection range and FOV compared to the indoor-

oriented LED or flash LiDAR. It is therefore suitable to be deployed in great quantities into 

sensor networks for broad-scale environmental monitoring. Adapting the FSS to other 

mobile system such as UAV is also feasible, following a similar framework of calibration, 

pose approximation, bundle adjustment and densification, except the need for external pose 

information from GPS and IMU and a dedicated image alignment method. A better viewing 

geometry such as stereoscopy from a mobile system could greatly improve the precision of 

3D recovery especially in the depth direction. A bright future for cost-effective 3D canopy 

scanning systems is anticipated. 
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Chapter 6. Portraying the Future of Biomass Analysis and 

Monitoring 

6.1 Thesis Summary 

Ground-based LiDAR sensors have been a game changer for biomass research at 

fine scales and have demonstrated a strong potential for improving the way forests can be 

inventoried, monitored and evaluated for better forest management. The chapters of this 

thesis are developed in a progressive order covering a collection of analyses from stem, 

tree, plot, species, to scalable sites. 

Chapter 1 introduced the concepts and challenges of modern forest management 

and reporting. Biomass delineation plays an important role in filling the gap between forest 

inventory and forest valuation. Tree biomass measurement accuracy is dependent on 

volume measurement accuracy. Conventional allometric volume modeling is criticized for 

its coarseness, whereas promising QSM methods from TLS still calls for validation, 

automation, generalization and rapidness. 

Chapter 2 proposed an automatic stem reconstruction method to provide accurate 

stem structural metrics for biomass modeling. This includes customized convolution 

filtering to extract tree locations, constrained region growing and merging to detect stem 

points, and QSM to quantify stem curves and diameters. The set of automation scripts is 

not aimed to optimize volume modeling accuracy but to generate descriptive statistics (e.g. 

DBH and height) integratable within existing biomass modeling frameworks. An early 

version of the automation scripts, referred to as the UoL method, has been tested in an 

international benchmarking project (Liang et al., 2018) and a more recent version has been 

developed into a technical paper (Xi et al., 2016). The core step, constrained region growing, 
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has been developed as an open source program downloadable from 

https://github.com/truebelief/cylsegment. 

Chapter 3 analyzed individual-tree and plot-level wood biomass. The key step is a 

novel 3D wood point filtering process using emerging deep learning technology, namely 

FCN, which classifies each point into stem, branch, or non-wood category with a high 

overall accuracy. Filtered branch points from FCN are further identified to be either part of 

individual trees, understory, or isolated wood points, based on their nearest distance to stem. 

Finally, a QSM model is applied to reconstruct both stem and branch forms of individual 

trees, as well as isolated branches, and understory branches. Stem volume and branch 

volume are calculated and converted to biomass at plot level. The entire procedure, as 

published in Xi et al. (2018), depicts a flow of cleaning, parsing, and modeling wood points 

from complicated plot scans at fine scales, with practical values in systematic biomass 

resource management. 

Chapter 4 probes the possibility of automatic species classification from ground 

scans to facilitate multi-source biomass analysis. Six different machine learning classifiers 

are evaluated for wood filtering performance, in contrast with the deep learning method in 

Chapter 3. The filtered wood points of each tree are input to a point-based deep learning 

model PointNet++ to classify species. High accuracy is achieved again using the deep 

learning model, in line with the finding in Chapter 3. 

Chapter 5 introduces a prototype of biomass monitoring from ground, a fusion 

scanning system (FSS) based on a multi-beam Leddar sensor, a webcam and two rotational 

servos. Methods are designed to calibrate FSS using minimal labor and extended 

hemispherical scanning field of view. The prototype FSS has been tested to scan poplar 

trees. Point clouds with both spectral and 3D spatial detail are successfully produced. The 

https://github.com/truebelief/cylsegment
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advent of compact scanning systems provides new insights into biomass analysis in time-

demanding or remote monitoring missions. 

6.2 A Future Scalable Biomass Analysis Framework 

Ground-based LiDAR and other scanning methods have shown promise for 

providing accurate tree inventory and biomass estimates. A remaining challenge, however, 

is the range limitation of ground-based methods. At the scale of landscape, biomass is 

mostly estimated through other sensing technologies including photography, optical 

imagery, synthetic aperture radar (SAR) and airborne or spaceborne LiDAR (Koch, 2010). 

Over decades, landscape-scale biomass has been modeled based on metrics from remote 

sensors, including spectral bands, vegetation indices, meteorological records, laser return 

metrics, and radar backscatter coefficients. For example, Boyd (1999) observes that the 

vegetation reflectance in the middle infrared spectral range (3-5 μm) from satellite imagery 

is highly sensitive to biomass, probably due to strong spectral absorbance from lignin 

(wood) and cellulosic concentration (Chen et al., 2010; Xu et al., 2013). Mutanga and 

Skidmore (2004) further show that narrow spectral bands can overcome the saturation 

problem of vegetation index (Huete et al., 2002), and are suitable for biomass estimation. 

Wang et al. (2011) designed the Normalized Dry Matter Index (NDMI), a promising tool 

to extract biomass from hyperspectral imagery. The L-band of SAR image is found to be 

predictive of tree age, tree height, diameter at breast height (DBH), and thus biomass (Sun 

et al., 2002). Airborne laser scanning (ALS), alone or when fused with other sensor data, 

could provide direct measurement of canopy attributes and outperform optical imaging 

solutions in high-biomass zones like temperate and tropical forests (Houghton, 2005). 
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The problem of inferring biomass from remote sensing is obvious: great uncertainty 

occurs at this broad scale. Among limited studies with accuracy assessments, global 

biomass estimates can vary by ±25% (Houghton et al., 2009). In the U.S.A, biomass 

estimation based on MODIS, Landsat imagery and inventory data encounters an average 

relative error of 74% (Blackard et al., 2008). ALS is considered the most powerful tool to 

estimate biomass, because rich point cloud metrics can be used to develop allometric 

models. Gonzalez et al. (2010) compares the uncertainty of biomass calculation using ALS, 

Quickbird, and field measurements, and reveals that ALS is most consistent and stable with 

below 1% uncertainty. Yet the relative error between ALS and field mean biomass stays 

between -18% and -35%. Popescu (2007) displays an RMSE% of 33% in pine biomass 

estimation from ALS. The RMSE% of ALS biomass based on Hauglin et al. (2013) is 35%, 

with harvested biomass from 50 Norway spruce trees as reference. Another study by 

Kankare et al. (2013b) using a similar ALS dataset shows an RMSE% of 36.8% for Norway 

spruce and 26.3% for Scots pine. 

In contrast, a typical RMSE% from TLS studies using QSM models is 10% (Calders 

et al., 2015; Momo Takoudjou et al., 2018), significantly lower than the typical ALS RMSE% 

of 30%. The considerable gap between the two scales of biomass accuracies is a limitation 

for a universal biomass analysis framework. Biomass-related studies integrating TLS and 

ALS are not rare (Hopkinson et al., 2013a), where role of TLS is basically a proxy of 

conventional inventory, with most popular integrable metrics being DBH, and height, and 

crown shape (Chasmer et al., 2006; Hilker et al., 2010; Lovell et al., 2003). Hauglin et al. 

(2014) points out that replacing simple crown metrics from ALS with the same metrics 

from TLS leads to a small accuracy increase of 3% in retrieving landscape biomass. 

Therefore, the success of integrating TLS and ALS for biomass retrieval depends on how 
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to choose useful scalable metrics. The problem of ALS biomass inference can be related to 

the limited wood-volume metrics at landscape scale. Therefore, a potential solution to 

maximize integration accuracy is to transfer wood volume information from fine scale (tree 

or plot) across to landscape scales. Stem and wood volumes are suitable choices for 

upscaling ALS biomass inference. 

An upscaling solution based on fine wood volume metrics is anticipated in the 

future work. The ground-based approaches presented in this thesis provide a basis for a 

scalable biomass analysis framework to help forest management. Fulfilling healthy and 

systematic forest management has particular implications for resource-oriented developing 

countries to design optimal and united policies on wood trade, employment, carbon 

reduction and environmental harmony. In near future, it is anticipated that the emerging 

voxel- or QSM-based virtual forest simulation models (Calders et al., 2018; Côté et al., 

2018) become a more popular reference to guide and optimize fine-scale data sampling and 

spatiospectral reconstruction, which in return would promote the development of 

simulation models. Point occlusion, currently a major challenge for fine-scale structural 

modeling, could be successfully overcome by adding scanning views with UAV or other 

robotic tools (Morsdorf et al., 2018). New ground-based LiDAR sensors and sensor 

networks would eventually assist fulfillment of long-term and broad-scale biomass 

sampling and monitoring missions, whereas artificial intelligence and computer vision 

methods can provide strong support for aligning, extracting, and integrating multi-scale 

biomass datasets. With the impressive progress of forest sensing tools and analysis 

methodology, a new quantitative level of systematic forest management and stewardship is 

on the horizon. 
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Appendix 1. A Constrained Region Growing Method for 

Cylindrical Segmentation 

 Input: 𝑃𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑢𝑑 
 Output: 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 
 Parameters: 𝑅𝑠, 𝐺𝑡, 𝑊𝑖𝑟, 𝐷𝑐 
1 𝑅𝑒𝑠𝑡𝑃𝑜𝑖𝑛𝑡𝑠 ← 𝑃𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑢𝑑; 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 ← ∅; 
2 𝐰𝐡𝐢𝐥𝐞 (𝑅𝑒𝑠𝑡𝑃𝑜𝑖𝑛𝑡𝑠 ≠ ∅) 𝐝𝐨 
3  𝑝0 ← ArbitaryPointFrom(𝑅𝑒𝑠𝑡𝑃𝑜𝑖𝑛𝑡𝑠); 
4  𝑒𝑛𝑑1 ← 𝑝0; 𝑒𝑛𝑑2 ← 𝑝0; 𝐺𝑟𝑜𝑤𝑛𝑅𝑒𝑔𝑖𝑜𝑛 ← 𝑝0; 

5  𝑅𝑒𝑠𝑡𝑃𝑜𝑖𝑛𝑡𝑠 ← {𝑅𝑒𝑠𝑡𝑃𝑜𝑖𝑛𝑡𝑠 − 𝒑0}; 
6  𝑆𝑡𝑜𝑝𝐺𝑟𝑜𝑤. 𝑒𝑛𝑑1 ← 𝑓𝑎𝑙𝑠𝑒; 𝑆𝑡𝑜𝑝𝐺𝑟𝑜𝑤. 𝑒𝑛𝑑2 ← 𝑡𝑟𝑢𝑒; 

7  𝑁𝑁1 ← ∅; 𝑁𝑁2 ← ∅; 𝐺𝑟𝑜𝑤𝑛𝑅𝑒𝑔𝑖𝑜𝑛 ← ∅; 
8  𝐰𝐡𝐢𝐥𝐞 (𝑡𝑟𝑢𝑒) 𝐝𝐨 
9   𝐢𝐟 (𝑆𝑡𝑜𝑝𝐺𝑟𝑜𝑤. 𝑒𝑛𝑑1 = 𝑓𝑎𝑙𝑠𝑒), {𝑁𝑁1} ←

CubicNeighbors(𝑒𝑛𝑑1, 𝑅𝑒𝑠𝑡𝑃𝑜𝑖𝑛𝑡𝑠, 𝑅𝑠); 
10   𝑅𝑒𝑠𝑡𝑃𝑜𝑖𝑛𝑡𝑠 ← {𝑅𝑒𝑠𝑡𝑃𝑜𝑖𝑛𝑡𝑠 − 𝑁𝑁1}; 
11   𝐢𝐟 (𝑆𝑡𝑜𝑝𝐺𝑟𝑜𝑤. 𝑒𝑛𝑑2 = 𝑓𝑎𝑙𝑠𝑒), {𝑁𝑁2} ←

CubicNeighbors(𝑒𝑛𝑑2, 𝑅𝑒𝑠𝑡𝑃𝑜𝑖𝑛𝑡𝑠, 𝑅𝑠); 
12   𝑅𝑒𝑠𝑡𝑃𝑜𝑖𝑛𝑡𝑠 ← {𝑅𝑒𝑠𝑡𝑃𝑜𝑖𝑛𝑡𝑠 − 𝑁𝑁2}; 
13   𝐢𝐟 (𝑁𝑁1 = ∅), 𝑆𝑡𝑜𝑝𝐺𝑟𝑜𝑤. 𝑒𝑛𝑑1 ← 𝑡𝑟𝑢𝑒; 

14   𝐢𝐟 (𝑁𝑁2 = ∅), 𝑆𝑡𝑜𝑝𝐺𝑟𝑜𝑤. 𝑒𝑛𝑑2 ← 𝑡𝑟𝑢𝑒; 

15   𝐢𝐟 (𝑆𝑡𝑜𝑝𝐺𝑟𝑜𝑤. 𝑒𝑛𝑑1 & 𝑆𝑡𝑜𝑝𝐺𝑟𝑜𝑤. 𝑒𝑛𝑑2 = 𝑓𝑎𝑙𝑠𝑒), 𝐛𝐫𝐞𝐚𝐤; 
16   {𝑒𝑛𝑑1_𝑛𝑒𝑥𝑡, 𝑒𝑛𝑑2_𝑛𝑒𝑥𝑡} ←  PartitionToLargestTwoClusters(𝑁𝑁1, 𝑁𝑁2, 𝐺𝑡); 
17   𝐢𝐟 (Width(𝑒𝑛𝑑1) < Width(𝑒𝑛𝑑1_𝑛𝑒𝑥𝑡)),𝐻𝑖𝑡 ← 𝑡𝑟𝑢𝑒; 

18   𝐢𝐟 (𝐻𝑖𝑡), 
19    𝑆𝑡𝑜𝑝𝐺𝑟𝑜𝑤. 𝑒𝑛𝑑2 ← 𝑓𝑎𝑙𝑠𝑒; 

20    𝐢𝐟 (Width(𝑒𝑛𝑑1_𝑛𝑒𝑥𝑡) −Width(𝑒𝑛𝑑1))/Width(𝑒𝑛𝑑1)) >  𝑊𝑖𝑟 

𝐨𝐫 Angle(Direction(𝑒𝑛𝑑1_𝑛𝑒𝑥𝑡, 𝑒𝑛𝑑1), Direction(𝑒𝑛𝑑1, 𝑒𝑛𝑑1_𝑝𝑟𝑒𝑣)) > 𝐷𝑐, 
21     𝑆𝑡𝑜𝑝𝐺𝑟𝑜𝑤. 𝑒𝑛𝑑1 ← 𝑡𝑟𝑢𝑒; 

22    𝐢𝐟 (Width(𝑒𝑛𝑑2_𝑛𝑒𝑥𝑡) −Width(𝑒𝑛𝑑2))/Width(𝑒𝑛𝑑2)) >  𝑊𝑖𝑟 

𝐨𝐫 Angle(Direction(𝑒𝑛𝑑2_𝑛𝑒𝑥𝑡, 𝑒𝑛𝑑2), Direction(𝑒𝑛𝑑2, 𝑒𝑛𝑑2_𝑝𝑟𝑒𝑣)) > 𝐷𝑐, 
23     𝑆𝑡𝑜𝑝𝐺𝑟𝑜𝑤. 𝑒𝑛𝑑2 ← 𝑡𝑟𝑢𝑒; 

24    𝑒𝑛𝑑1_𝑝𝑟𝑒𝑣 ← 𝑒𝑛𝑑1; 𝑒𝑛𝑑1 ← 𝑒𝑛𝑑1_𝑛𝑒𝑥𝑡; 
25    𝐢𝐟 Angle(Direction(𝑒𝑛𝑑2_𝑛𝑒𝑥𝑡, 𝑝0), Direction(𝑒𝑛𝑑1_𝑛𝑒𝑥𝑡, 𝑝0)) > 90°, 
26     𝑒𝑛𝑑2_𝑝𝑟𝑒𝑣 ← 𝑒𝑛𝑑2; 

𝑒𝑛𝑑2 ← 𝑒𝑛𝑑2_𝑛𝑒𝑥𝑡; 
27    𝐺𝑟𝑜𝑤𝑛𝑅𝑒𝑔𝑖𝑜𝑛 ← {𝐺𝑟𝑜𝑤𝑛𝑅𝑒𝑔𝑖𝑜𝑛 ∪ 𝑒𝑛𝑑1 ∪ 𝑒𝑛𝑑2}𝑠; 
28   𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 ← {𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 ∪ 𝐺𝑟𝑜𝑤𝑛𝑅𝑒𝑔𝑖𝑜𝑛}; 

 

Detailed implementation using C++ and MATLAB can be found in 

https://github.com/truebelief/cylsegment. 
 

 

https://github.com/truebelief/cylsegment
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