
DESIGN STRUCTURE AND ITERATIVE RELEASE ANALYSIS OF
SCIENTIFIC SOFTWARE

AHMED TAHSIN ZULKARNINE
Bachelor of Science in Computer Science and Information Technology,

Islamic University of Technology (Bangladesh), 2006

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Ahmed Tahsin Zulkarnine, 2012

I dedicate this thesis to my wife and parents.

iii

Abstract

One of the main objectives of software development in scientific computing is efficiency.

Being focused on highly specialized application domain, important software quality met-

rics, e.g., usability, extensibility ,etc may not be amongst the list of primary objectives.

In this research, we have studied the design structures and iterative releases of scientific

research software using Design Structure Matrix(DSM). We implemented a DSM parti-

tioning algorithm using sparse matrix data structure Compressed Row Storage(CRS), and

its timing was better than those obtained from the most widely used C++ library boost. Sec-

ondly, we computed several architectural complexity metrics, compared releases and total

release costs of a number of open source scientific research software. One of the important

finding is the absence of circular dependencies in studied software which attributes to the

strong emphasis on computational performance of the code. Iterative release analysis indi-

cates that there might be a correspondence between “clustering co-efficient” and “release

rework cost” of the software.

iv

Acknowledgments

I take much pleasure to express my profound graditude to my super Dr. Shahadat Hossain,

Associate Professor, University of Lethbridge for his inspiring guidance, close supervision

and helpful suggestions throughout the period of my Masters Degree.

I would also like to thank my M.Sc supervisory committee members Dr. Robert Benkoczi

and Dr. Saurya Das for their valuable suggestion and guidance.

It give me immense pleasure to cordially thank NSERC and University of Lethbridge

for the financial and travel support. I am also thankful to my fellow graduate students Shah

Mostafa Khaled, Tariqul Alam Sabbir, Mahmudul Hasan, Sangita Battacharjee and Ben

Burnett for their spontaneous cooperation and encouragement.

Finally I would like to thank my wife, Shabnam Sultana for her support.

v

Contents

Approval/Signature Page ii

Dedication iii

Abstract iv

Acknowledgments v

Table of Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1

2 Background 5
2.1 Basic Graph terminologies . 5
2.2 Performance Analysis . 7
2.3 Stacks and Queues . 8
2.4 Single Source Shortest Path Problem . 10
2.5 Strongly Connected Components . 14

3 Modelling Dependencies 16
3.1 Source Code Dependencies . 16
3.2 Dependency Extraction . 19

3.2.1 Unit of Analysis . 20
3.2.2 Tools used . 20

3.3 DSM . 22
3.3.1 Types of DSM . 24
3.3.2 Partitioning the DSM . 29

3.4 Sparse Matrix Data Structure . 34
3.5 The DSM Partitioning Performance . 36

4 Analyzing Design Structure 38
4.1 Characteristic Path Length . 38
4.2 Clustering Coefficient . 40
4.3 Propagation Cost . 42
4.4 Partitioned DSM Analysis . 43
4.5 Nodal Degree . 44
4.6 Centrality Measure . 45

vi

4.7 Degree Distribution Analysis . 46

5 Iterative Release Analysis 50

6 Experiments 55
6.1 Initial Database of Scientific Software . 55
6.2 Testing Enviroment . 55
6.3 Results . 56

6.3.1 ADOL-C . 56
6.3.2 Branch-Cut-Price (BCP) . 61
6.3.3 CppAD . 65
6.3.4 A DYnamic Linear Programming code (DyLP) 71

6.4 Discussion . 76

7 Conclusion and Future Work 79
7.1 Conclusion . 79
7.2 Future Work . 81

Bibliography 82

vii

List of Tables

3.1 Interaction Quantification scheme [13] . 26
3.2 Timing of boost and our implementation of Tarjan’s Algorithm 36

4.1 Basic parameters along with their power-law fits & corresponding p-value
[15] . 48

5.1 Structural Properties . 54
5.2 Release Cost Comparison . 54

6.1 Structural Properties of ADOL-C Versions 56
6.2 Structural Metrics of ADOL-C Versions 57
6.3 Centrality Measure of ADOL-C Version 58
6.4 Release Cost Comparison of ADOL-C Versions 58
6.5 Basic parameters along with their power-law fits - ADOL-C 58
6.6 Structural Properties of BCP Versions . 62
6.7 Structural Metrics of BCP Versions . 62
6.8 Centrality Measure of BCP Version . 63
6.9 Release Cost Comparison of BCP Versions 63
6.10 Basic parameters along with their power-law fits - BCP 63
6.11 Structural Properties of CppAD Versions 66
6.12 Structural Metrics of CppAD Versions . 67
6.13 Centrality Measure of CppAD Version . 68
6.14 Release Cost Comparison of CppAD Versions 68
6.15 Basic parameters along with their power-law fits - CppAD 69
6.16 Structural Properties of DyLP Versions 71
6.17 Structural Metrics of DyLP Versions . 72
6.18 Centrality Measure of DyLP Version . 72
6.19 Release Cost Comparison of DyLP Versions 73
6.20 Basic parameters along with their power-law fits - DyLP 73
6.21 Structural metrics - General purpose software Vs scientific software 76
6.22 Clustering Coefficient Vs Release Rework Cost 77

viii

List of Figures

2.1 Graphs . 6
2.2 Stacks . 9
2.3 Queues . 10
2.4 Single source shortest path . 12
2.5 Execution of the Dijksta‘s Algorithm on digraph in Figure 2.5 13
2.6 A digraph with strongly connected components 14

3.1 Sample static call graph . 18
3.2 A sample DSM . 23
3.3 The directed graph associated with the DSM in Figure 3.2 23
3.4 Architectural DSM - Automobile Climate Control System [50] 25
3.5 Organizational DSM - Automobile Engine Redesign [37] 27
3.6 Schedule DSM - Simplified automobile design process [31] 28
3.7 A Parameter-based DSM [49] . 29
3.8 Permuted DSM associated with the sample graph 34
3.9 Compressed Row Storage Data Structure 35

4.1 A shortest path tree . 39
4.2 Illustration of the clustering coefficient C1 for vertex 1. 41
4.3 Reachability matrix of associated digraph 42
4.4 Sample Partitioned DSM . 44
4.5 Centrality Measure . 46
4.6 Sample power law distribution . 48

5.1 New version static call graph . 53

6.1 Partitioned ADOL-C . 59
6.2 In-degree and Out-degree distribution of ADOL-C 59
6.3 Power Law Distribution for In Degree of ADOL-C 60
6.4 Power Law Distribution for Out Degree of ADOL-C 60
6.5 Partitioned DSM - Bcp . 64
6.6 In-degree and Out-degree distribution of BCP 64
6.7 Power Law Distribution for In Degree of BCP 65
6.8 Power Law Distribution for Out Degree of BCP 66
6.9 Partitioned DSM - CppAD . 69
6.10 In-degree and Out-degree distribution of CppAD 70
6.11 Power Law Distribution for In Degree of CppAD 70
6.12 Power Law Distribution for Out Degree of CppAD 71
6.13 Partitioned DSM - DyLP . 74
6.14 In-degree and Out-degree distribution of DyLP 74
6.15 Power Law Distribution for In Degree of DyLP 75

ix

6.16 Power Law Distribution for Out Degree of DyLP 75

x

Chapter 1

Introduction

“Whenever science makes a discovery, the devil grabs it while the angels are debating the

best way to use it!”

These are the verses of Alan Valentine, a player and coach of American 1924 Olympic

champion Rugby team. Scientific research software are the devils of such kind of scien-

tific discoveries in modern era. Though a number of scientific research software have been

developed as proof-of-concept tool, powerful hardware resources facilitated scientific soft-

ware to solve and simulate large problem. Sometimes these problems are as large as current

technology allows. Starting from scratch often is not a wise option as the scientific simula-

tion software are highly complex and large. Thus, scientific software development involves

a substantial amount of time and other essential resources. The concept of iterative release

helped them to have lifecycle measured in decades. Scientific research software are gen-

erally developed by people working in highly technical, knowledge rich professions who

have no formal background in modern scientific engineering principles [56]. Typically this

includes financial mathematicians, scientists and engineers who develop their own software

to achieve professional goals [56]. Production of new scientific knowledge is one of the

main objectives. Efficiency is core speciality of such software. At the origin of this thesis

stood a series of unanswered questions regarding the design structure of scientific software

such as modularity, sensitivity, etc. In order to answer those questions, we study the design

structure and iterative releases of scientific research software.

The design structure matrix (DSM) has been used in this thesis as a tool for ana-

lyzing and comparing design decisions and quantifying structural metrics [35] [32] [60]

[59]. DSM is a square matrix with identical number of rows and columns where each off-

diagonal mark represents dependency between two design elements. DSM partitioning is

1

considered as one of the first DSM computational problem [70] [39]. Tarjan [64] devel-

oped the first asymptotically optimal algorithm for partitioning the DSM. Many linear time

algorithms now exist for solving DSM partitioning problem that originated from three core

algorithms: Tarjan’s algorithm, Cheriyan-Mehlhorn-Gabow algorithm [14] and Kosaraju-

Sharir algorithm [57]. The DSM computed for majority of application areas contain large

proportion of zero entries. As a result, the computation is expensive in terms of time and

memory using traditional graph data structure. Hossain [29] proposed an efficient way for

partitioning the DSM using sparse matrix data structure with the help of Tarjan’s algorithm.

This thesis discusses an efficient implementation of DSM partitioning algorithm proposed

by Hossain. Hence, DSM partitioning using sparse matrix data structure leads to savings

in computational work and intermediate storage.

Managing architectural evolution of complex software systems requires the identifica-

tion of dominant subsystem and their dependency analysis [35] [32] [60] [59]. However,

as the design goal and development nature of scientific software are somewhat different

than general purpose commercial software, study of design structure for scientific software

has become an important domain of research. MacCormack et al.[35] applied the DSM

technique to study dependencies between system elements of two large scale software ap-

plications: Mozilla and Linux. Open source Linux was identified having more modular

architecture than Proprietary Mozilla reflecting geographically distributed nature of Linux

development team.

The main contribution of this thesis is an analysis of the design structure of open

source scientific computing software. We used a number of architectural complexity met-

rics and DSM technique to analyze the design structure. We have chosen automatic dif-

ferentiation (AD), linear programming (LP) and mixed integer programming (MIP). Au-

tomatic differentiation software are primarily responsible for automatic computation of

first and higher order derivatives for mathematical functions written using different com-

2

puter programming languages such as C/C++. Numerous algorithms for solving scientific

and engineering problems require the computation of derivatives of mathematical models.

Hence, software tools implementing AD represents a branch in major scientific computing

applications. On the other hand, for a given mathematical model with a list of requirements

or constraints, linear programming (LP) software tries to find out the best possible outcome.

LP has attracted entrepreneurs from different parts of business. It is now considered as a

key tool for making business decision [63]. This fact influenced us to include LP into our

analysis. When choosing the best possible outcome, in many situations fractional solutions

are not realistic. MIP deals with mathematical models where some variables are required to

be integer. Therefore, MIP software are taken into consideration. We choose four software

packages: ADOL-C [67] and CppAD [7] as representation of AD software, DyLP [26] and

BCP [36] as representation of LP and MIP software respectively.

One of the main goal for iterative release development in general purpose commercial

software is to meet customer requirement. Special emphasis is also placed on early delivery

of the product to reduce development cost. Brown [12] introduced a technique for making

decision between early product delivery and fulfilling customer requirements. Whereas,

the prime motivation of iterative release development in scientific software involves fea-

ture enhancement, computational performance improvement,etc. Hence, iterative release

analysis of scientific software is an interesting case study. In this thesis we perform an

iterative release analysis of the software from three above scientific computing domains.

We used a variation of Brown’s [12] technique to quantify total implementation cost of a

new release due to rework. Thirty seven releases from four above scientific software were

investigated. The outline of the remaining chapters proceed as follows:

In Chapter 2, we present background materials relevant to this thesis. We review pre-

liminary graph theory concepts, fundamental data structures and two graph algorithms for

finding shortest path and strongly connected components.

3

In Chapter 3, We first describe different kind of source code dependencies and ways to

extract them for scientific software. We then introduce DSM, different types of DSM and

partitioning of DSM. Later we describe DSM partitioning algorithm using sparse matrix

data structure Compressed Row Storage(CRS) proposed by Hossain [29]. Finally, we give

the computational results and timing along with implementation details.

In Chapter 4, we introduce architectural complexity metrics that we used to analyze the

design structure of scientific software. This includes characteristic path length, clustering

coefficient, propagation cost, nodal degree, partitioned DSM analysis, degree distribution

analysis and centrality measure.

In Chapter 5, we feature a variation of Brown’s [12] technique that we used to quan-

tify total implementation cost of iterative releases. We also described how we compute the

implementation cost of new element, release rework cost accommodating this new archi-

tectural elements and finally the total implementation cost.

In Chapter 6, we present experimental results from thirty seven releases of four scien-

tific software. We provide comparison of structural properties, structural metrics and total

implementation cost for these iterative releases.

Lastly, in Chapter 7, we provide concluding remarks and some proposed directions for

future research in this sector.

4

Chapter 2

Background

In this chapter we briefly discuss regarding background concepts for analyzing the design

structure of scientific software. We begin this chapter reviewing preliminarily graph theory

concepts. Section 2.2 and section 2.3 review running time performance analysis of a com-

putational algorithm and some fundamental data structure respectively. In section 2.4 and

2.5, we discuss two classical graph problems: finding shortest path and strongly connected

components.

2.1 Basic Graph terminologies

The classical Konigsberg Bridge Problem solved by Leonhard Euler in 1736 was the first

recorded evidence of the use of graph [28]. Seven bridges were used to interconnect four

land areas. The problem was to determine a path so that one could cross each of the seven

bridges only once and return to starting land area [3]. Graphs have been used in a wide

range of applications since then. In graph theory, a graph G = (V,E) consists of two sets

V and E. The set V is a finite set of vertices. The set E represents the pairwise relationship

between the vertices in V. This pairwise relationship is called edge. For each edge e= (u,v)

where the two endpoints u,v ∈ V are said to be neighbours or adjacents to each other. A

weighted graph is a graph where a number is associated with an edge. These numbers are

called weight or cost [33].

Graphs can be directed or undirected. In an undirected graph, the vertices u,v ∈ e are

unordered. Therefore, the pair (u,v) and (v,u) represents the same edge. Whereas an edge

e = (u,v) in directed graph, u is the tail and v is the head of the edge. So, the pairs (u,v)

and (v,u) represent two different edges in the graph. If the tail and head are the same

5

vertices for an edge, then its called a loop. Directed graphs are also called digraphs. Figure

3.1 displays an undirected graph and directed graph.

(a) An undirected graph (b) Digraph

Figure 2.1: Vertices are shown in circles and edges are the lines connect-
ing the vertices. A graph G = (V,E) in (a), where V = {1,2,3,4,5,6}
and E = {(1,3),(1,4),(1,5),(2,4),(2,6),(3,5),(4,6)}. In (b) a graph
G = (V,E), G has the same set of vertices V as (a) but E =
{(1,3),(1,4),(2,6),(3,5),(3,5),(4,2),(5,1),(5,3),(6,2),(6,4)}

Subgraph G′ of G is a graph such that V (G′)⊆V (G) and E(G′)⊆ E(G) where E(G′) =

{(u,v) ∈ E(G)|u,v ∈ V (G′)}. A path from vertex u and v of a graph G is defined as the

sequence of adjacent vertices u, i1, i2, ..., ik,v such that (u, i1),(i1, i2), ...(ik,v) are edges in

E(G). If G is directed, the path consist of directed edges (u, i1),(i1, i2), ...(ik,v) in E(G).

The length of a path is the number of edges in the path. A path is simple, if all the vertices

in the path are distinct. For example, consider a path from vertex 1 to 6 in Figure 2.1(a), it

contain vertices 1,4 and 6 and edges (1,4),(4,6). Hence, the path is simple and length of

the path is two. Similarly a directed path from vetex 1 to 6 in Figure 2.1(b), contain vertices

1,4,2,6 and edges (1,4),(4,2),(2,6). This path is also simple and path length is three.

An induced subgraph is the graph defined on a subset of the vertices V (G′) ⊆ V (G) of a

6

graph G = (V,E) together with edge set E(G′)⊆ E(G) where E(G′) = {(u,v) ∈ E(G)|u ∈

V (G′),v ∈V (G′)} whose endpoints are both in this subset [68].

A cycle is path in which first and last vertices are same. For example, the path with

vertex sequence 4,2,6,4 is a cycle in Figure 2.1b. A graph without any circles is called

acyclic graph. A tree is a connected acyclic graph. The vertex at level 0 of a tree is called

root. If an edge (u,v) is in a path from some root vertex to vertex v, then u is said to be the

parent of v and v is called the child. A binary tree is a tree in which every vertex has no

more than two children and each child is designated as left child or right child. Directed

Acyclic Graph (DAG) is a directed graph which does not contain any cycles.

The degree of a vertex v is the number of edges incident to that vertex v in a graph

G = (V,E). For a directed graph G = (V,E), the in-degree of vertex v is the number of

edges in which v is the head. Similarly, the out-degree of vertex v is the number of edges

where v is the tail. Vertex 1 in Figure 2.1a has degree 3 and in Figure 2.1b, vertex 1 has

in-degree 2 and out-degree 2.

2.2 Performance Analysis

To measure the efficiency of an algorithm, computer scientists use three notations: O called

big oh, Ω called big omega and θ called big theta [33]. The running time of the algorithm is

denoted with a function t(n) for input size n and another function g(n) is used to compare

with it. A function t(n) is said to be in O(g(n)), denoted t(n) ∈ O(g(n)), if there exists

some positive constant c and some non-negative integer n0 such that

t(n)≤ cg(n), f or all n≥ n0 (2.1)

O(n) actually refers to an upper bound of the running time. A function t(n) is said

7

to be in Ω(g(n)), denoted t(n) ∈ Ω(g(n)) there exists some positive constant c and some

non-negative integer n0 such that

t(n)≥ cg(n), f or all n≥ n0 (2.2)

Ω(n) tells us about a lower bound of the running time. For example, so n3 ∈ Ω(n2)

where c = 1 and n0 = 0. A function t(n) is said to be in θ(g(n)), denoted t(n) ∈ θ(g(n))

there exists some positive constant c1 and c2 and some non-negative integer n0 such that

c1g(n)≤ t(n)≤ c2g(n), f or all n≥ n0 (2.3)

θ(n) tells us about a tight bound of the running time.

2.3 Stacks and Queues

Levitin [33] defined data structure as a ’particular scheme of organizing related data item’.

One way to improve algorithms is structuring the data in such a manner that the resulting

operation can be carried out efficiently [28]. In this section we will be familiar with stacks

and queues.

A linear list of elements is a sequence of n items of the same data type that are store

continuously in computer memory. Often written as a = (a0,a1,a2, ...an−1) where ai are

elements of the linear list for i = 0,1,n−1 and i is the index of the element in the linear

list. This is also called an one dimensional array. A stack is a linear list where all insertions

and deletions are made at one end called the top. An example of this can be a stack of dishes

where the top dish is taken out from the stack for serving and also if any new dish comes in,

it is placed in the top of the stack. For this reason, stack is called Last In First Out (LIFO)

list.

8

0 1 2 3 4 5

11 1 3 S

2][Stop

(a) Original Stack

0 1 2 3 4 5

11 1 3 2 17 S

4][StopInsertion

(b) Insertion

0 1 2 3 4 5

11 1 3 2 S

3][StopDeletion

(c) Deletion

Figure 2.2: An array implementation of stack S [17]

One of simplest way to represent stack is using one-dimensional array. Figure 2.2 de-

scribes such an implementation. Stack S is an array S[0,1, ..n−1] where n is the capacity

of stack. An attribute top[S] indexes to the top element of the stack. Whenever any element

is inserted, top[S] is incremented. Similarly when any element is deleted, top[S] is decre-

mented. When top[S] = −1, the stack contains no element and is empty. In Figure 2.2,

initially the stack contains 3 element. After inserting of two new element, top[S] points to

the 5th element. Analogous to insertion, upon deletion of an element top[S] is decremented

and now points to 4th element of the stack.

A queue is also an linear list where all insertions take place at one end called the rear

but all deletions take place on the other end called front. Single queue in-front of a cash

register at coffee shop can be an example. The customer at the front at the queue will be

served first . New customers will be at the back of the queue and will be served last. Hence,

queues are know as First In First Out (FIFO) lists.

Analogous to stack implementation, the simplest implementation of queue can be done

9

0 1 2 3 4 5

3 2 11 Q

4][Qrear2][Qfront

(a) Original Queue

0 1 2 3 4 5

3 2 11 12 Q

0][Qrear 2][Qfront

Insertion

(b) Insertion

0 1 2 3 4 5

3 2 11 12 Q

0][Qrear 3][Qfront

Deletion

(c) Deletion

Figure 2.3: An array implementation of queue Q [17]

using an one dimensional array. Queue Q is an array Q[0,1, ..n−1] where n is the capac-

ity of queue. The Queue Q is treated as if it is circular [28]. Two attribute f ront[Q] and

rear[Q] indexes to the front element of the queue and next free position in the queue respec-

tively. Whenever any element is inserted, rear[Q] is incremented. When rear[Q] = n− 1,

upon insertion of the new element, rear[Q] is set to 0. Similarly when any element is

deleted, f ront[Q] is incremented. When f ront[Q] = n− 1, with the deletion of any ele-

ment, f ront[Q] is set to 0. The queue is empty if and only if rear[Q] = f ront[Q]. Figure

2.3 displays the insertion and deletion operation of a queue.

2.4 Single Source Shortest Path Problem

Single source shortest path problem is one of the most interesting and widely used graph

problem. Highway structure of a country can be represented as a graph where vertices are

cities and edges represent the highways that connect the cities. [28]. Weight assigned to an

10

edge can be the distance between two cities. A motorist wishes to travel from Edmonton

to Vancouver and he has a road map of Canada. His prime quest will be to determine a

shortest route from the starting vertex, source to last vertex, the destination.

Given a weighted directed graph G = (V,E) with a weight function w : E→ R mapping

edges to real-valued weight, the weight of path p = (v0,v2, ...vk) is ∑
k
i=1 w(vi−1,vi) [28].

The single source shortest path problem is to determine the minimum weighted path from

a source vertex, v0 to all the remaining vertices in G.

Algorithm 1 Dijkstra’s algorithm [28]
Input: Directed graph G = (V,E) with non-negative weights and a source vertex, s. G is

represented by an adjacency matrix cost[1, ..n,1, ..n]
Output: distance from source array, dist[1,2, ...n]

Begin
initialize boolean array S of size n;
initialize array dist of size n;
for each vertex v in V do

S[v]← false;
if cost[s,v] = 0 then

dist[v]←+∞;
else

dist[v]← cost[s,v];
end if

end for
S[s]←true;
dist[s]← 0;
for i = 2→ n−1 do

Choose u from among the vertices not in S such that dist[u] is minimum;
S[u]← true;
for each vertex w adjacent to u with S[w] = f alse do

if dist[w]dist[u]+ cost[u,w] then
dist[w]← dist[u]+ cost[u,w];

end if
end for

end for
End

Various algorithm exists for finding the shortest path problem. However, the optimal

11

running time algorithms originated from two major algorithms: Bellman-Fold algorithm

and Dijkstra algorithm. Bellman-Ford algorithm solves the problem where edge weight

may be negative but for Dijkstra algorithm solution, all edges weight are required to be

non-negative. Nevertheless, with a good implementation Dijkstra algorithm runs faster

than Bellman-Ford algorithm [17]. Call graph have non-negative weight assigned to its

edges. Hence, in our research we used Dijkstra algorithm for finding the shortest paths.

Edmonton

Lethbridge

Calgary

Kelowna
Kamloops

Vancouver

7

15

4 3

3

2

3

3

4
4

Figure 2.4: A weighted digraph with source as vertex 5. The bold edges form a shortest
path tree from the source.

Algorithm 2.1 contains the pseudocode of Dijksta’s algorithm. The graph G = (V,E)

is represented using an adjacency matrix cost. The array dist captures the distance from

source for each vertex. Boolean array S detects whether a vertex resides in the current

shortest path. The algorithm proceeds by traversing from the source vertex to the closest

vertex u which is not in S. The vertex having the minimum value in array dist is the closest

vertex. On each iteration, the algorithm finds a closest vertex. Later, for each adjacent

vertices w of u which are not in S, the algorithm computes the path cost from source to w

12

Iteration S
Vertex

selected

Distance

Let Van Cal Kel Edm Kam

1 2 3 4 5 6

Initial -- -- 7 +∞ 5 +∞ 0 +∞

1 5 3 7 +∞ 5 +∞ 0 +∞

2 5,3 1 7 +∞ 5 22 0 +∞

3 5,3,1 4 7 24 5 22 0 +∞

4 5,3,1,4 2 7 24 5 22 0 27

5 5,3,1,4,2 6 7 24 5 22 0 27

6 5,3,1,4,2,6

Figure 2.5: Execution of the Dijksta‘s Algorithm on digraph in Figure 2.5

through u using dist[u]+cost[u,w]. If the path cost from source to w through u is less than

dist[w], dist[w] is updated with dist[u]+cost[u,w]. These process is named as “relaxation”

by Cormen et al.[17]. The algorithm terminates when all of the vertices that are reachable

from source are put in the shortest path. Figure 2.6 provides a complete execution of

Dijksta’s algorithm on Figure 2.5. With the help of a good data structure such as priority

queue, the time efficiency of this algorithm can be achieved in O(|E|log|V |) where |E| is

the number of edges and |V | is the number of vertices in a graph G = (V,E). A priority

queue [28] is like a queue with an additional feature where each element is associated with

a priority. With an advanced data structure such as fibonacci heap, the running time can be

lowered to O(|V |log|V |+ |E|). A fibonacci heap is a collection of trees where the value

associated with the child node is greater than or equal to the value associated with parent

node.

13

2.5 Strongly Connected Components

A connected component of a graph G = (V,E) is a maximal set of vertices C⊆V such that

every pair of vertices u and v, there is a path from u to v and also from v to u [17]. Analogous

to connected component, for directed graph we have strongly connected components. A

strongly connected component of a directed graph G = (V,E) is a maximal set of vertices

C ⊆V such that every pair of vertices u and v, there is a directed path from u to v and also

from v to u [17]. In other words, all vertices in strongly connected sub-graph are reachable

from each other. The term maximal set defines that a strongly connected component can

not be enlarged by introducing some other extra nodes. For a directed graph, each vertex

belong to a single strongly connected component.

Figure 2.6: A digraph with strongly connected components

Figure 2.7 has two strongly connected components labeled with light and dark colors.

The first component consist of vertices:{1,3,5} while the second one contains vertices:

14

{2,4,6}. All pair of vertices within each component is mutually reachable. None of the

strongly connected component can be extended by adding any more vertices. In addition,

each vertex resides to a single strongly connected component.

Many linear-time algorithm exist for finding strongly connected components due to the

help of three major algorithms: Tarjan’s algorithm, the Cheriyan-Mehlhorn-Gabow algo-

rithm , and the Kosaraju-Sharir algorithm [38]. All of them exploit a technique name Depth

First Search (DFS). DFS is one of the core algorithms for traversing vertices and edges of

a graph in a systematic manner [33]. As the name suggest, the DFS goes deeper in the

graph whenever possible for searching unexplored edges [17] . DFS initiates traversing

vertices of a graph at an arbitrary vertex and marking it as visited. The algorithm proceeds

to an unvisited vertex on each iteration with is adjacent with the currently visited vertex.

The algorithm backtracks when any dead end found . It backs up one edge to the vertex it

came from and proceed to continue to another unvisited vertex if possible. The algorithm

finally terminates when all of the edges are explored. In our research we used Tarjan’s algo-

rithm with a sparse matrix data structure. Chapter 3 contains a detail discussion regarding

strongly connected component and DFS.

15

Chapter 3

Modelling Dependencies

In this chapter we illustrate different kind of source code dependencies. In section 3.2 we

discuss how we extract the dependency from the source code. Section 3.3 and 3.4 review

Design Structure Matrix (DSM) and sparse matrix data structure. Finally we conclude this

chapter by describing the performance of our DSM partitioning implementation.

3.1 Source Code Dependencies

A large and complex set of dependencies exist between the modules of software systems

[65]. Software systems are composed of one of more independently developed modules

where each module is a segment of the software. Manytimes, developers require the un-

derstanding of a software system they are unfamiliar with [27]. Parnas [48] defined the

primary concept of software dependency as a “uses” relationship. A software module A

uses another software module B if there exist situations in which the correct functioning of

A depends upon availability of a correct implementation of B.

Software dependency can be static or dynamic. Static dependencies, generally known

as “compile time” dependency use the concept that one module is required to compile

another module [32]. In other words, a static software dependency is a dependency intended

to represent every possible run of the software. Software module A depends on B if the

source code of A makes an explicit reference to B.

On the other hand, dynamic dependencies knowns as “run-time” dependency is a record

of an execution of the program [32]. In other words, it is generated based on actual call

pattern of the software during operation. Though it provides the run-time scenario, there

is a potential disadvantages attached to it when analyzing the design structure. Not all

16

subroutines are executed at run-time so complete code dependency in the software will be

missing to some extent. Suppose, subroutine S1 depends on subroutine S2, but at run-time

S1 is not executed. Consequently the dependency of S1 and S2 will be missing in dynamic

call graph.

In this research, we are interested in static graphs. This is because we need to extract

call relations corresponding to occurrence of subroutine calls in the source code instead of

call relations extracted from actually running the program. Also, we need to encapsulate

every dependency that exists in the software system in order to get actual scenario. For this

reason, we focused on analyzing static software dependencies.

A software system can be modeled as a call graph [9]. Bisselling [9] defined the call

graph as a directed graph, where vertices may be program, classes or functions and an

edge (u,v) means program v calls program u. Call graphs are well-known instruments for

understanding complex software systems and are of great help in maintaining a system

[27]. For example, consider the following small C/C++ program for calculating the area of

a circle:

void print(double area)

{

cout << "The area of circle is :"<< area << endl;

}

double get_area()

{

double k=get_radius();

double area= 3.142 * k * k;

}

17

double get_radius()

{

double radius;

cout << "Please provide the radius of the circle: " << endl;

cin >> radius;

return radius;

}

void main()

{

double area=get_area();

print(area);

}

Figure 2.8 displays a static call graph of the example C/C++ program. Nodes are the

user-defined functions and edges are the function call.

main()

print()

get_area()

get_radius()

Figure 3.1: A static call graph associated with C/C++ program to calculate area of a circle

18

3.2 Dependency Extraction

Examining program dependencies is challenging for large system[65]. In this thesis, the

focus is on C/C++ code base. In terms of complexity, C++ comes ahead of many other

programming languages as its standard has evolved over the years. Extraction and visu-

alization of call graphs for C/C++ programs is a well-known research area which focus

on two domain: Source code dependency extraction and extracted data visualization [65].

Numerous tools exist for extracting and visualizing call graphs for facilitating software

engineers to understand the program [41].

Telea et al.[65] identified the two main classes of call graph extractor: Lightweight

and Heavyweight extractors. Lightweight extraction provides a fraction of entire static in-

formation as it does partial parsing and type checking. XML based extractor SRCML [16],

GCCXML, etc are some examples of lightweight extractor. On the other hand, heavyweight

extractors provide nearly a complete call graph by performing full parsing and type check-

ing. Extractors like CPPX [34] and OINK [69] are heavyweight extractors. Moreover, the

heavyweight extraction can of two types: strict and tolerant . Strict heavyweight extractors

are based on compiler which stops when there is a lexical or syntax error [65]. However,

tolerant ones are based on Fuzzy or Generalized Left Reduce (GLR) parsing. GLR parsing

is one of the most efficient parsing for context free grammar [43]. The tool OINK is a tol-

erant one while CPPX is strict. Hence, tolerant heavyweight extractor are more probable

of providing complete static call graphs. OINK is one of the most complete, robust and

scalable open-source static analyzer for C/C++ programs [69].

Numerous tools exist for visualization of call graph but very few optimize layout and

graph data management for very large graphs [65]. One such system is Tulip graph vi-

sualization framework [4]. Tulip is an information visualization framework developed by

LaBRI, University of Bordeaux I, France and is dedicated to the analysis and visualization

19

of relational data [4]. This framework written in C++ has a development of over 10 years

and one of the most sophisticated graph visualization framework available in market[65].

3.2.1 Unit of Analysis

The dependencies between source code were captured by examining the ”function calls”.

A function call can be defined as an instruction that requests a specific task to be executed

by a program [9]. McCormack et al [35] used the source code file as the basic unit of

analysis using function calls. Though our research work is roughly, not exactly equivalent

to McCormack, the function calls were given preference as this type of dependency is at the

kernel of many analysis tool and also have been used in prior work that examines system

structure [35]. Hence in our research, functions are the basic unit of analysis. For example,

if Function i calls Function j , then this dependency is marked by an directed edge i→ j in

the associated directed call graph.

3.2.2 Tools used

Telea [65] described an entire tooling pipeline that covers static code analysis, extraction

of calls, hierarchy data and their attributes. His research team implemented a standalone

call graph extractor based on OINK framework. In order to extract the static call graph

we required an open-source tolerate heavyweight static analyzer for C/C++. Hence, we

used the OINK-based call-and-structure extractor developed by his research team from

University of Groningen, the Netherlands [65]. One of important enhancement the call

graph extractor did over OINK framework includes linking declaration to definition across

multiple translation unit. Translation units are the basic units of compilation in C++. They

consist of content of source files and header files but excludes code which are ignored in

20

conditional preprocessing statements. For each translation unit, the call graph extractor

scans each function declaration and links it to function definition in same translation unit

or another translation unit. Another feature enhancement is the detection of potential set of

called candidate for virtual function and function pointers.

The call graph extractor package is a complete call graph construction and exploration

tool chain, consisting of an information extractor (CCIE) and a call graph constructor(CCC)

[27]. The information extractor locates all function definition, function declaration and

program hierarchy (folders, files, classes, namespaces,etc) [65]. The call graph extractor

scans these elements and find out the links between these items. The linking provides us

with a call graph where nodes are functions, folders, namespaces and files. The edges are

function calls and relations in program hierarchy. The call graphs can be exported into a

number of format including tulip file format, *.tlp. Hoogendorp’s [27] article contains a

detailed discussion regarding the call graph extractor package.

In this research, we developed an Statical Toolkit for Software Code Base (STSCB).

Our developed toolkit take call graphs G= (V,E) as input in *.tlp format and is also open to

another graph format *.vcg. “Visualization of Compiler Graphs” (VCG) is a graph format

developed for the visualization of graphs from the area of compiler design [11]. The output

by the call graph extractor provides vertex list containing functions, files, directory, classes

and namespace. Moreover, functions can be of two types: system functions and user-

defined functions. Functions that are explicitly implemented in the software are called user

defined where as the functions that are part of the software libraries are system functions.

The first task of our toolkit STSCB is to segregate user-defined function from the vertex list

and build a induced subgraph G′ = (V,E) where V (G′) is the user-defined functions and

E(G′) contains the edges within the user-defined functions. The functions that are defined

in a file that resides in the source code directory are considered as user-defined functions

while the rest functions defined elsewhere are system functions. The induced sub-graph

21

is constructed using efficient data structure stated in Chapter 3.4. The output of toolkit

is a number of different structural metrics and version comparison of the softwares to be

analyzed. Chapter 4 and 5 contains detailed discussion regarding these topics.

3.3 DSM

Complexity of product design has been a critical topic for both researchers and managers

for many years. However, with the help of a reasonable model, it has become possible

to explore approaches to understand the complexity of the product. This model known as

“Design Structure Matrix (DSM)” was originated by Don Steward in 1981 [32] for un-

derstanding interactions between product design elements. Eppinger et al.[22] extended

this model to visualize more elaborately the relationship between design structure and task

structure in product development. Task structure is the method of breaking down larger

task(s) into small logically interrelated operations. Later on, DSM has become one of

the popular representation and analysis tool for system modeling, specifically in areas of

decomposition and integration [13]. Some of the prime domains where DSM has been suc-

cessfully applied are building construction, semiconductor design, automotive, aerospace,

telecommunication, small-scale manufacturing, factory equipment and electronics [13].

A DSM displays the relationship between components of a system in a compact , visual

and analytically advantageous format [13]. It is a square matrix having identical number

of rows and columns. The dependency between one element with other is indicated with

an off-diagonal mark. Figure 3.2 displays a simple DSM with 6 tasks represented with

6×6 square matrix. The diagonal elements are shaded. Scanning through a particular row

reveals the element associated with that row depends on what other elements. Similarly,

scanning the column indicates what other elements depend on the element associated with

that column. Thus, from Figure 3.2, task 1 depends on 3 and 4 with first row scan. Similarly

22

3 and 5 depends on 1 with first column scan.

1 2 3 4 5 6

Task 1 1 x x x

Task 2 2 x x X

Task 3 3 x x X

Task 4 4 X x

Task 5 5 x X X

Task 6 6 x X x

Figure 3.2: A sample DSM

Chapter 2 provided a detailed discussion regarding graph theory. Associated with the

DSM in Figure 3.2 is a directed graph G = (V,E) where V is a set of 6 vertices and and a

non-zero entry ai j 6= 0, i 6= j represents a directed edge from vertex vi to vertex v j denoted

(vi,v j ∈ E) in graph G. Figure 3.3 displays the graph associated with the DSM in Figure

3.2.

Figure 3.3: The directed graph associated with the DSM in Figure 3.2

Tasks listed in a DSM are placed in a chronological order, i.e early tasks in the upper

23

rows. Hence, the entries below the diagonal represents feed-forward information while en-

tries above diagonal provides feedback information. Rogers et al.[53] defined feed-forward

information as the data computed before it is used and feedback information as the data re-

quired as input before it is computed. The edges (v3,v1) and (v1,v3) in Figure 3.2 illustrates

the feed-forward and feedback marks for the associated DSM. Feedback marks are expen-

sive for product design because they imply that early tasks require information from later or

upcoming tasks [72]. Section 3.3.2 describes how we can minimize the number of feedback

marks.

3.3.1 Types of DSM

Browning [13] identified two categories of DSM: static and time based.

• Static DSM: It represents a system where all the elements exist simultaneously. Mod-

eled using a N ×N matrix where N is the number of design elements, it enables

system engineers to represent architectural components and interfaces, organization

designers to document communication network, economist to visualize the effect of

a change in one products on others and so on. This kind of DSMs are generally ana-

lyzed using clustering algorithms. Clustering is a process of finding subsets of DSM

elements that are interconnected among themselves to an important extent and also

minimally connected to the rest of the system [70]. The static DSM can be of two

types: Architectural and Organizational.

1. Architectural DSM: A DSM that documents interactions among elements in a

system architecture. Modular system architecture have advantages in simplicity

and reusability for a product family or platform [5]. Thus system engineers

decompose the system into subsystems using the following steps [13]:

24

(a) Decomposition of the system into basic elements.

(b) Documentation of the interaction between these basic elements

(c) Analysis of potential reintegration of the elements through clustering.

Figure 3.4 shows an automotive climate control system modeled by Pimmler

and Eppinger [50] for Ford motor company. The weighting of the interactions

with each other were facilitated by a quantification scheme (see Table 3.1).

The numerical entry of +2 in the DSM implies every element do not interact

with every other but all of the material that have interactions are essential for

desired functionality [13]. The interaction between radiator and engine fan can

be quantified with entry +2. The engine fan provides airflow to surroundings of

the radiation. Both of them, the radiator and engine fan are closely located for

design efficiency [50]. This is an example of architectural DSM.

Figure 3.4: Architectural DSM - Automobile Climate Control System [50]

2. Organizational DSM: Organizational DSM helps to model organization design.

Better understanding of organization enhances innovation and improvement in

25

Required +2 Physical adjacency is neccessary for functionality
Desired +1 Physical adjacency is beneficial, but not neccessary for functionality
Indifferent 0 Physical adjacency does not affect functionality
Undesired -1 Physical adjacency causes negative effect but does not prevent func-

tionality
Detrimental -2 Physical adjacency must be prevented to achieve functionality

Table 3.1: Interaction Quantification scheme [13]

organization design [13]. Similar to architectural DSM, the system can be de-

composed into subsystem using three steps:

(a) Decomposition of the organization into teams with specific function, roles

or assignments.

(b) Documentation of the interaction between these teams.

(c) Analysis of clustering of the teams.

McCord and Eppinger analysed an automobile engine development organiza-

tion using team-based DSM shown in Figure 3.5 [37]. In order to accomplish

the redesign of small block V-8 automotive engine at General Motors, 22 prod-

uct development team were established. The frequency of interaction between

the teams defined the level of dependence in the DSM. Several meeting in a

week defined high dependency while weekly meeting for average and infre-

quent meeting for low dependency.

• Time-based DSM: This DSM represents a system which involves a time flow. Time

based DSM is modeled using a precedence diagram which has been used for many

years to manage projects. In order to achieve accelerated successful completion of

product development process, concurrent design is used [71]. In addition, concur-

rent design facilitates improvement of product quality and development effort(time

and cost) reduction [31]. However, when performing concurrent (parallel) tasks, de-

26

Figure 3.5: Organizational DSM - Automobile Engine Redesign [37]

signers/engineers may find they are missing their requisite input information [21].

Whenever a design activity proceeds with missing input information, feedback oc-

curs. Meier et al.defined iteration as repeated design refinement due to information

feedback [39]. Ballard stated iteration as type of waste in product design which needs

to be avoided [6]. One way to manage iteration is to sequence the design activities

to streamline information flow [39]. Sequencing algorithms are concerned with se-

quencing the iterative design elements. Generally sequencing algorithms are used to

analyze time-based DSM. Similar to Static DSM, Time-based DSM can be of two

types: Schedule and Parameter-based.

1. Schedule DSM: It provides a concise, visual format for understanding and

analysing process design. The parallel activities which can be accomplished

without causing additional iterations can be determined using these kind of

27

DSM. For example, putting on shoes consist of 5 activities: get socks, get shoes,

inspect shoes, put on socks and put on shoes. The activities “get socks” and “get

shoes” can be done in parallel. Like other DSM, the modeling of schedule DSM

consists of three steps:

(a) Decomposition of the processes into activities.

(b) Documentation of the information flow among the activities.

(c) Analysis of the sequencing of activities.

A high-level description of a simplified automobile design process shown in

Figure 3.6 was demonstrated by Kusiak and Wang [31]. Fifteen major subsys-

tem of the automobile were identified where each subsystem corresponds to a

set of activities.

Figure 3.6: Schedule DSM - Simplified automobile design process [31]

2. Parameter-based DSM: In terms of system design, Pektas [49] defined ‘param-

eter’ as ‘a physical property whose value determines a characteristic of behav-

ior of a system component’. During a collaborative design, designers take de-

cision on parameter values. For example, automobile designers might agree

28

on maximum speed of the car or specific dimension of driver’s seat. Rouibah

and Castay identified that these parameter decisions are the basis of a process

[54]. A parameter-based DSM is a square matrix which captures the depen-

dency between parameters[49]. One such example of parameter-based DSM is

“suspended ceiling design” described by Pektas [49] shown in Figure 3.7. Six

design parameter were identified for designing a suspended ceiling. In order to

make decision of beam depth parameter, it requires information from parameter

floor area and Air D-beam Integration scheme.

A B C D E F G

Floor Area A x

Floor to Ceiling height B X x x X

Beam Depth C X x X

Air Duct Depth D X x

Air D-Beam

Integration Scheme
E X X X

Lighting Fixture Depth F X x

Plenum Depth G X X X X x

Figure 3.7: A Parameter-based DSM [49]

3.3.2 Partitioning the DSM

One of the first DSM computational problem is partitioning the DSM. Yassine defined par-

titioning as the sequencing (e.g reordering) of the DSM rows and columns such that the

new DSM arrangement contains minimum number of feedback marks [70]. This enables

a faster development process as fewer system elements will be involved in the interdepen-

dency cycle. Partitioning and Sequencing are two closely related DSM terms which were

distinguished by Meier et al.[39]. Partitioning algorithm finds out a topological ordering if

29

no cycle present. Otherwise, when cycle is present, it finds out the design elements which

are present in the cycle but do not provide a sequence for them. On the other hand, se-

quencing algorithm finds an ordering of the design elements within the cycle. A matrix

can be decomposed into a number of blocks where each block is a sub-matrix. A block

lower triangular matrix is a special kind of square matrix where all blocks above the main

diagonal are zero. Block lower triangular matrix indicates no feedback marks which pro-

vides the ideal arrangement of jobs in a project design. Hossain [29] stated a matrix A with

non-zero diagonal entries is irreducible if and only if the graph associated with A, G(A) is

strongly connected. Hence, main goal of partitioning is to transform the DSM in a block

lower triangular form (bltf).

This DSM partitioning can be represented as a graph problem. With the background

knowledge from previous chapter, we can say a graph can be represented using an adja-

cency matrix. Subgraph G′ of G is a graph such that V (G′) ⊆ V (G) and E(G′) ⊆ E(G)

where E(G′) = {(u,v) ∈ E(G)|u,v ∈V (G′)} [28]. Recall from Chapter 2, a strong compo-

nent of a directed graph G = (V,E) is a maximal set of vertices C ⊆V such that every pair

of vertices u and v, there is a directed path from u to v and also from v to u [17]. In other

words, vertices u and v are reachable from each other. Thus, a sub-graph is strongly con-

nected component if it is strongly connected and can not be extended to another strongly

connected sub-graph by introducing extra nodes along with its edges. Hence, it can be

concluded that each node can belong to only one strong component. Therefore these strong

components partitions the graph. Let the strong components in a graph be C1,C2,C3,Ck.

If the strong components are identified and the nodes of C1 labeled before those of C2 and

so on, then the associated matrix is block lower triangular where the block represents the

strong components [20]. Hence it can be concluded that the DSM partitioning can be seen

as a graph problem.

Many algorithm exists for finding the strong components. Graph theory text books dis-

30

Algorithm 2 Tarjan’s algorithm [29]
Input: Directed graph G = (V,E)
Output: list of strongly connected components, cmpt[1,2, ...n]

Begin
initialize array root of size n;
initialize array d f sn of size n;
create an empty stack st of size n;
initialize list cmpt;
compNum← 1;
d f sNum← 1;
for each vertex v in V do

if v is not processed then
d f sn[v]← d f sNum; d f sNum = d f sNum+1;
DFS(v) ;

end if
end for
End

Algorithm 3 DFS [29]
Input: Vertex v

Begin
root[v]← v;
push v onto st;
for each edge (v,w) in E do

if w is not processed then
d f sn[v]← d f sNum; d f sNum = d f sNum+1;
DFS(w) ;

end if
if w is not assigned to any strongly connected component then

if ds f n[root[w]]< d f sn[root[v]] then
root[v]← root[w];

end if
end if

end for
if root[v] is v then

pop vertices z from st until v is popped;
for each z popped do

cmpt[z]← compNum;
end for
compNum← compNum+1 ;

end if
End

31

cuss ‘power method’ for finding the strong components. The advantage of ‘power method’

is simplicity but its not efficient [31]. DSM can be considered a binary matrix where de-

pendency between design element can be represented by 1 and other wise 0. This O(n3)

algorithm was introduced by Harary which relies on the principle of repeatedly multiply-

ing the binary matrix with itself. Sargent and Westerberg developed an O(n2) algorithm

for finding the strong components. The algorithm utilizes the fact that all of the nodes in

any cycle of a graph lies in the same strong component. Once a cycle is found, the graph

is modified where all the nodes in the cycle are combined together to form a composite

node [20]. Any node or composite node with no outgoing edge is considered as a strongly

connected component by Sargent and Westerberg. Tarjan [64] developed the first asymp-

totically optimal algorithm for identifying strong components in a way such that each arc

is visited exactly once and each vertex is visited but no more than a constant number of

times. In other words, it relies on depth-first-search(DFS) for finding the strong compo-

nents. This algorithm with a good data structure runs is O(|V |+ |E|) where |V | is the

number of vertices and |E| is the number of edges. Various linear time algorithms origi-

nated from three major algorithms, all based on depth-first search: Tarjan’s algorithm, the

Cheriyan-Mehlhorn-Gabow algorithm, and the Kosaraju-Sharir algorithm [38]. Cheriyan-

Mehlhorn-Gabow algorithm uses two stacks to keep track of unassignned vertices to any

component, and upon exploration of the final vertex of a new component, it moves un-

assigned vertices to that component [38]. On the other hand, Kosaraju-Sharir algorithm

performs two passes of DFS, one on original graph and one on the modified graph.

Algorithm 2 provides the pseudo-code of Tarjan’s algorithm. The arrays root and

dfsn of size n identifies the root and the ordering of dfs traversal for each vertex. The two

variables dfsNum and CompNum is used to identify the current ordering of dfs traversal and

component number. They are both initially assigned to 1. The stack st is used to identify

and incrementally build strongly connected components during the depth-first search of

32

the graph. The output of the algorithm is an array cmpt of size n which states in which

component each vertex resides. The algorithm starts with an arbitrary vertex v, i.e. vertex

v1 of the sample graph in Figure 3.3. Assigns its ordering dfsn[v] with dfsNum, dfsNum

is incremented and the recursive function DFS (presented at Algorithm 2) is invoked. The

DFS algorithm initially assigns vertex v’s root as itself and pushes v to the stack st. For

each of its outgoing edge (v,w) , if w is not processed it assigns dfsn[w] with dfsNum,

increments dfsNum and once again the DFS function is invoked with vertex w. Later if w

has been not assigned to any strong component, the dfs traversal ordering of root[v] and

root[w] is compared. If root[w]’s dfs traversal ordering is found less, the root of v is

assigned with root of w. Finally whenever a root vertex is discovered (i.e. root[v] is v) from

the recursive call of DFS, all of the vertices including the root are popped out of the stack

st. The array cmpt is updated with CompNum for each vertex popped out from the stack and

compNum is increment to identify the next component.

For our sample graph after the execution of Tarjan’s algorithm, dfsn = {1,5,2,4,3,6}

, root = {1,4,1,4,1,4} and cmpt = {2,1,2,1,2,1}. So vertex 1 and 4 are root vertices

corresponding to the two strong components found. The first strong component found

consist of vertices: {v6,v4,v2} with v4 as root vertex while the second one consisting of

vertices {v5,v3,v1}with v1 as root. The ordering of the dfs traversal defines the permutation

matrix that can be efficiently represented by a permutation vector. Using the array d f sn, we

can say vertex v6 has been popped up first from the stack (or traversed last in dfs) and vertex

v1 popped us last. Thus, the permutation vector P can be defined as P = {6,2,4,5,3,1}

with the help of dfsn.

In Figure 3.8 displays the original DSM permutation into a block lower triangular form

using the help of permutation vector P from Tarjan’s algorithm. The top-left diagonal

block represents the first strongly connected component while the bottom-right represents

the second one. The Tarjan’s algorithm was first implemented by Duff and Raid in 1978

33

[20]. Their Fortran implementation discussion includes the complexity analysis and timing.

1 2 3 4 5 6

Vertex 6 1 x x x

Vertex 2 2 x x

Vertex 4 3 x x

Vertex 5 4 x x X

Vertex 3 5 x X X

Vertex 1 6 x x x

11A

21A 22A

0

Figure 3.8: Permuted DSM associated with the sample graph

3.4 Sparse Matrix Data Structure

James Wilkinson provided an interesting definition of sparse matrix, he defined a matrix

as sparse “if it contains enough zero that it pays to take advantage of them” [18]. The

definition highlights that with proper use of data structure and algorithm, sparse matrix

enables a significant saving of memory and computational time. Sparse matrix data struc-

ture requires less memory by avoiding to store zero elements. On the other hand, sparse

matrix algorithm requires less computation time by not performing arithmetic operations

on zero elements. In this section, we will discuss an important sparse matrix data structure

Compressed Row Storage which appeared to be a suitable fit for our research work.

34

Compressed Row Storage (CRS)

One of the most widely used storage scheme Compressed Row Storage (CRS) stores the

matrix in a sequence of compressed rows [51]. Three arrays are used to implement this data

structure. The non-zero entries are in row-wise sequence into array value. Array colind

stores the column index of each non-zero element of the matrix. For example, colind[6]

indicates the column index of 6th non-zero element, value[6]. Finally, index of the first

non-zero entry of each row is stored in array rowptr.



























666462

555351

4442

353331

2622

141311

000

000

0000

000

0000

000

aaa

aaa

aa

aaa

aa

aaa

value 11a 13a
15a 22a

26a 31a 33a 35a
42a 44a 51a 53a 55a 62a 64a 66a

1 3 4 2 6 1 3 5 2 4 1 3 5 2 4 6 colind

rowptr 1 4 6 9 11 14

Figure 3.9: Compressed Row Storage Data Structure

Figure 3.9 displays the data structure to store our example matrix with the help of CRS

scheme. The array value store zero elements in a row-wise manner. For each element of

value, array colind stores its column index. Array rowptr stores the first non-zero element

of each row. For example, the first non-zero element of row 3 resides at 6th index of value

and column index of value[4] is 1. In order to traverse all the non-zero entries of row i, one

need to access value[rowptr[i]] to value[rowptr[i]− 1] [29]. Let nnz(A) be the number of

non-zero entries in Matrix A. Hence, CSR storage scheme requires 2×nnz(A)+n+1 unit

35

of computer memory for storing the matrix A.

3.5 The DSM Partitioning Performance

Hossain [29] proposed an efficient way for partitioning the DSM using sparse matrix data

structure with the help of Tarjan’s algorithm. The DSM computed for majority of appli-

cation areas contain large proportion of zero entries. Therefore block lower triangulariza-

tion of a sparse matrix leads to savings in computational work and intermediate storage

[52]. For a directed graph G = (V,E), the outgoing edge (vi,v j) of each vertex vi are

non-zero entries ai j in matrix A. Consequently, it can be expressed in a CSR representa-

tion. Hossain identified the dominating computation step is to access the out-going edge

at each vertex [29]. To access the adjacent vertices j of vertex vi, j = colind[k] where

k = rowptr[i]...rowptr[i + 1]− 1. Hence, the number of non-zero entries of matrix A,

nnz(A) = |E|, and therefore CRS storage provides and efficient implementation of Tarjan’s

algorithm.

Matrix Name No. of Ver-
tices (N)

No. of Strong
Components

Boost Timing
(s)

Our Timing
(s)

NotreDame 325729 231666 1.6812 0.318
amazon0601 403394 1588 11.08 2.418
StanfordBerkeley 683446 109238 22.568 3.80

Table 3.2: Timing of boost and our implementation of Tarjan’s Algorithm

In our research we used the Tarjan’s algorithm using Compresses Row Storage (CRS)

data structure for finding strongly connected components. Hence it enables us to parti-

tion the dsm for analyzing the design structure of scientific software. The implementation

is done in C++ programming language. Later on, the results has been compared with

boost implementation of Tarjan’s algorithm. Boost is an open-source and most widely used

36

portable C++ library [19]. A set of random large sparse matrices for input were collected

from University of Florida Sparse Matrix Collection [18]. In all cases, the timing were

better than those obtained from boost implementation, approximately 5 times faster than

that of boost one. Table 3.2 displays the timing comparison. The experimental results were

generated using a computer with Intel(R) Pentium(R) 4 CPU 3.00GHz processor and 1 GB

of RAM.

37

Chapter 4

Analyzing Design Structure

The interpretation of a real-world complex biological, technological or social phenomena

requires the understanding of structure and function of that complex network [10]. Sta-

tistical techniques revealed surprising structural properties when applied to the analysis

of these networks[10]. These statistical structural properties have major effect on the func-

tionality of the respective network. Newman [44] described a way to measure the statistical

properties that seem to be common to these networks. Meyer [42] identified software call

graphs as complex network and also found that these software graph reveal properties that

are identical to those found in other biological, technological, and social networks. The

first objective of this thesis is to quantify these statistical structural properties for scientific

software to analyze their design structure. In this chapter we review some basic structural

properties of real-world complex network and define metrics which will be later used to

compare the designs of a number of open source scientific software. These structural met-

rics indicates some software quality attributes such as modularity, sensitivity, efficiency,

etc of the respective software.

4.1 Characteristic Path Length

In most networks despite of their large size, every pair of vertices seem to be connected

by a relatively short path [44]. This fact has been referred as “small world effect” [1].

Social network is a classical example where small world effect is applicable. Whenever

someone far from our home surprisingly turns out to be a mutual acquaintance with us,

often we state “It’s a small world!” [40]. Recent study of information technology networks

suggest that these networks, for example internet [2] show small world effect. Small-

38

world networks tend to contain sub-networks which have connections between almost any

two nodes within them. In a small world, the average distance between two vertices are

called the characteristic path length. The characteristic path length between two vertices

i and j defined by Braha et al.[10] is the number of edges present along the shortest path

connecting them. For an undirected graph with N vertices, the characteristic path length l

is calculated using,

l =
∑i6= j di j

N(N−1)
(4.1)

where di j is the shortest path length (minimum number of edges) connecting the vertices i

and j if there exists a path between the two vertices.

Figure 4.1: A shortest path tree from vertex 5.

Scientific software is also an information carrying network. Characteristic path length

indicates the call sequence required from reaching one function to another. The smaller

the call sequence, faster information transfer throughout the network. Thus the processing

time will be smaller. Small characteristic path length also attributes to efficiency in terms

of memory as stack used in registers to store call sequence will be shorter.

The quantity l computed with the help of Dijkstra’s algorithm for a graph G = (V,E)

with N vertices and |E| edges. Dijkstra’s algorithm has been run N times to find the all

39

pair shortest paths. This provides a better running time performance when compared to all

pair shortest path algorithm using dynamic programming. The complexity for finding the

characteristic path length is therefore O(|V ||E||log|V ||) where |V | is the number of vertices

and |E| is the number of edges in the graph G. Whereas, the complexity of all pair shortest

path algorithm using dynamic programming is O(|V |3). The distance from each vertex

to itself is zero. When there exists no path between a pair of vertices, the path between

such two vertices are excluded from l calculation. Figure 4.1 displays a shortest path tree

from source as vertex 5 to all other vertices of the original graph in Figure 2.1(b). The

sum of the shortest paths from vertex 5 is 10 (1+ 3+ 1+ 2+ 0+ 3). Similarly the sum

of the shortest paths from each vertex v ∈ V to other vertices is calculated. Finally after

computing the summation of all shortest path lengths, the sum divided by N(N−1) to get

the characteristic path length, l. For the graph in figure 2.1(b), l comes out 54/30 = 1.8.

4.2 Clustering Coefficient

Another common property of complex network is the inherent tendency of vertices to clus-

ter in modules [10]. In terms of social network it can be represented as a circle of friends

where every member know each other [1]. There is a likeliness that a friend of your friend

might be your friend [44]. Clustering coefficient is a measure of degree to which vertices

in a graph tend to cluster together in an undirected graph. Let vertex i ∈ V in a graph

G = (V,E) is connected to ki neighbours. The maximum number of edges between these ki

vertices can be ki(ki− 1)/2. If ni is the number of actual edges between these ki vertices,

then the clustering coefficient of vertex is is calculated by:

Ci =
2×ni

ki(ki−1)
(4.2)

40

The network’s potential modularity is measured by the clustering coefficient of the

graph [10]. User defined functions in same cluster have higher communication and the

interaction between separate cluster is minimized [44]. Higher the clustering coefficient,

more modular the product is. The modular the product is, it is easy to maintain and modify.

In this research, we are interested to find out the potential modularity of the scientific

software. The clustering coefficient of the graph G, C is the average of all the vertices:

C =
1
N

N

∑
i=1

Ci (4.3)

Figure 4.2: Illustration of the clustering coefficient C1 for vertex 1.

In order to find out Ci for a vertex i∈V of an undirected graph G = (V,E), we first need

to identify the vertex list V ′⊂V where every vertex j ∈V ′ is adjacent to vertex i. Secondly,

an induced subgraph is built which contains the vertex set {V ′− i} ∈V and their associated

edges. Figure 4.2 displays an illustration of finding the clustering coefficient for vertex 1.

Vertex 1 has 3 neighbouring vertices and there is only one edge between that 3 vertices.

Thus the induced graph contains {3,4,5} vertices and edge (3,5). Hence, the clustering

coefficient of vertex 1, C1 = 2× 1/6 = 1
3 . Similarly the clustering coefficient Ci for all

vertices i can the calculated to find the clustering coefficient of the graph, C. Therefore, C

comes to be 7 / 9 {(1
3 +1+1+ 1

3 +1+1)/6}.

41

4.3 Propagation Cost

A design architect might have been asked ”What would be the consequences to a network

connectivity if a vertex was removed?” This type of question has real meaning in complex

network. Suppose in software development, programmers tend to group functions of a

related nature into classes or namespaces. A change in a single function effects a number of

other functions directly or indirectly. MacCormack et al.[35] proposed a method to answer

such question. They defined a metric “propagation cost” which is a measure of proportion

of element that will be affected when an specific element is changed in the network. If pi

is the number of vertices reachable from vertex i ∈V in a directed graph G = (V,E) using

a directed shortest path, then the propagation cost of the directed graph is calculated using

P =
∑

N
i=1 pi

N2 (4.4)



























101010

111111

101010

111111

101010

111111

1 2 3 4 5 6

1

2

3

4

5

6

Figure 4.3: Reachability matrix of associated digraph

42

Figure 4.3 displays a reachability matrix of associated digraph. Each entry ai j of the

reachability matrix A is 1 if there exists a directed path from vertex i to j and otherwise 0.

Hence the summation of the entries of reachability matrix enables us to compute the prop-

agation cost of the associated digraph. The propagation cost of the digraph in Figure 4.3 is

75% ([6+3+6+3+6+3]/62). In other words, this enables us to state that a change in

single element will affect 75% of the other element in the network. The reachability matrix

can be generated for a graph G = (V,E) in time O(|V ||E|) using a simple depth first search

where |V | is the number of vertices and |E| is the number of edges in the graph G.

4.4 Partitioned DSM Analysis

DSM partitioning manipulates the DSM in such a order that it reduces or eliminates the

feedback marks. In addition, a transparent structure of the network begins to emerge which

enables a better planning of project and also efficiently study the architectural elements

[70]. Yassine et al.[70] identified partitioned DSM displays “an improvement in the flow

of design decisions and a faster, less iterative, process”. Partitioned DSM facilitates us to

view the sequential task, the tasks which can be done in parallel and most importantly the

ones which are involved in iteration or having circular dependencies.

Figure 4.4 displays an partitioned DSM which has been generated by applying parti-

tioning algorithm on the original dsm. Task B and C are sequential because C requires

the output of B. On the other hand, A and K can be done in parallel as none of them are

mutually dependent. However, the tasks E,D and H are coupled as they are involved in

a circular dependency. Sequencing the iterative tasks is difficult to solve and classified

as NP-complete problem. NP-complete problems are such problem whose solution can

be verified in polynomial time. However, no efficient algorithm to compute the optimal

solution in polynomial time in the problem size has been discoverted yet.

43

(a) Original DSM (b) Partitioned DSM

Figure 4.4: Partitioned DSM displaying sequential, parallel and iterative task. [70]

4.5 Nodal Degree

One of the important properties to characterize the real world complex network is the dis-

tribution of degrees of vertices [10]. In software, nodal degree states how many functions

are connected a function in average. Hence, its an indication of style of dependencies be-

tween the functions. Lower the nodal degree, lower the dependencies. Lower nodal degree

is a good sign of design structure as an impact on a single function affects lower number of

functions. Recall from Chapter 2, degree of vertex i denoted by ki is the number of vertices

adjacent to vertex i in an undirected graph with N vertices. Nodal Degree is the average

degree of the vertices in the undirected graph,

< k >=
∑

N
i=1 ki

N
(4.5)

For directed graphs , in-degree of vertex i denoted by kin(i) is the number of directed

edges pointing to node i and out-degree kout(i) is the number of directed edges pointing

away from node i to other nodes. Hence, degree of node i denoted by ki is the sum of its

in-degree kin(i) and out-degree kout(i). The nodal degree of the undirected graph in Figure

44

2.1(a) is 2.33 [(3+2+2+4+2+2)/6] whereas the nodal degree of the directed graph in

Figure 2.1(b) is 3.33 [{(2+2)+(2+1)+(2+2)+(2+1)+(1+2)+(1+2)}/6].

4.6 Centrality Measure

The degree distribution analysis provides a local information only. To obtain the global

information on how function exert their influence on other functions we need to use an

index that measures the centrality of a node. This has been a well-known research area

and researchers have introduced a number of centrality indices. In social network these

indices plays an important role in understanding the role of actors. A measure named

“betweenness” introduced by Freeman [23] has been the most widely used and simplest

centrality index. Newman [45] defined betweenness as a centrality index that is calculated

based on the fraction of shortest paths between vertex pairs that pass through the node of

interest. Hence in the network on n elements, the betweenness of vertex i is the fraction

of shortest paths between two vertices in the network that passes through i. In software

engineering, the most central function helps us to identify certain attributes of the software,

such as how much object-oriented the system is, what are kernel functions of the software.

In our research, we identified the user defined function as most central function which

resides in maximum number shortest path in the associated call graph.

With the help of Dijkstra’s algorithm we can find out the shortest path {vs,v1,v2, ...,v j,vt}

from vertex vs to vertex vt . Let an array count tracks the number of shortest path in which

each vertex v ∈V resides in graph G = (V,E). Whenever a shortest path is found between

two vertices vs and vt , count[i] for all the intermediate vertices i ∈ {v1,v2, ...,v j} in the

shortest path are incremented. Finally when we have explored all the shortest paths, the

vertex having the highest count is the most central vertex of our graph G.

Figure 4.5 displays an iteration for the process of finding most central vertex. Tak-

45

Count[3]=0

Count[5]=0

Count[1]=0

Count[4]=2

Count[2]=0

Count[6]=0

Figure 4.5: Shortest path tree a digraph in Figure 2.1(a) with source as vertex 1 where count
array tracks how many times each vertex resides in the shortest paths. The vertex with the
maximum count is the most central vertex

ing vertex 1 as source and all other vertices as destination, shortest paths from source to

destination are computed using Dijkstra’s algorithm. Vertex 4 lies in two shortest paths

and therefore count[4] is updated with value 2. Similarly, all other shortest paths are com-

puted taking each vertex i ∈ V as source in graph G = (V,E) and consequently the count

container is updated. Finally , the vertex having the highest count is our most central

vertex. For our sample graph in Figure 4.8 after the computation of all shortest paths,

count = {6,0,0,12,0,0}. Hence, vertex 4 is the most frequent vertex and lies in 12 short-

est paths.

4.7 Degree Distribution Analysis

Power Law

A quantity x is said to obey power law if

p(x) ∝ x−α (4.6)

46

where p(x) is the probability distribution of x, α is a constant parameter of the distribu-

tion called exponent or scaling. Although there are some exceptions, the scaling parameter

lies between 2 < α < 3 [15]. Not all values of x obey power law. In practice, xmin is the

lower bound of power law distribution, where power law applies to x for values greater than

xmin. The degree of vertices are integer valued and greater than 1. So quantity x is integer

and value of x is greater than 1.

Scale Free Networks

The degree distribution of numerous real world complex network have been documented

to obey power law distribution [10]. Scale-free Networks are networks with power-law

degree distribution [44]. Many real word complex network has been identified as scale

free networks which includes World Wide Web, biological networks, social networks, etc.

Scale free networks are not like random networks and have certain characteristics. One of

the important characteristics of scale free network is having some vertices with a degree that

greatly exceeds the average. These high connectivity vertices are called hubs. In software,

user defined functions with high degree are the hubs. Scale free networks have a fault

tolerance behavior. If a function with low degree fails, it will have negligible impact on the

system. If a hub fails, there are some other hubs connected to it which will provide service

to the other low degree nodes. Finally scale free networks are small world network with

smaller characteristic path length. A recent study by Sosa et al.[61] indicates the presence

of hubs minimizes the number of defects in the system.

47

Power Law Analysis for Degree Distribution

In this research, we are interested to identify whether power law is obeyed by the degree dis-

tribution of the user defined functions. This enables us to find whether the network formed

by user defined functions are scale free networks. Various methods exist for analyzing data,

but majority of them can produce inaccurate estimate of parameters in power-law distribu-

tion [15]. Some of the reliable techniques are based on maximum likelihood. Maximum

likehood estimator provides an estimate of model’s paramter when a data set is applied on

a given model. Clauset et al.[15] presented such a method that combined maximum like-

lihood and goodness-of-fit. Goodness of fit measures the discrepancy between observed

values and the values expected under the model [66]. Clauset et al.also developed a soft-

ware for estimating the power law in empirical data. In this thesis, we used their software

for identifying the power law behavior for degree distribution of user-defined function.

x

)(xP

Figure 4.6: Power law distribution of species of mammal. Solid line represent the best fit
of the data

Data Set n < x > σ xmax xmin α p
Species per genus 509 5.59 6.94 56 4±2 2.4 0.1

Table 4.1: Basic parameters along with their power-law fits & corresponding p-value [15]

48

Figure 4.6 displays the power law distribution for a data set containing the number

of species per genus of mammals. The data set is generated by Smith et al.[58] which

consists of species alive today and also includes some extinct species. Table 4.1 show

results from the fitting of the power law form to this data set evaluated using the method

described by Clauset et al.[15]. The first three columns provide generic statistics of the data

which includes mean, standard deviation and maximum value. The last column provides

a measure p− value which quantifies whether power law is a plausible fit to the data. If

p≤ 0.05, power law is ruled out by many researchers [15].

49

Chapter 5

Iterative Release Analysis

An increasing tendency to develop software in an iterative manner is to achieve better flex-

ibility and higher customer satisfaction [24]. Iterative approaches encompass various ways

for production of system components, testing it and finally aggregating user experience

feedback for the production of next release [8]. Feature enhancements force large-scale sys-

tem to change constantly and this results in developing iterative releases of such systems.

The design goals of scientific research software systems and the organization in which they

are developed are somewhat different from that of commercial or general-purpose software

systems [35]. In the chapter, we will review a technique which is useful to analyze the

iterative releases of scientific software.

Brown et al. [12] described an approach for calculating the total release cost with

the help of propagation cost. Each incremental release is characterized by two attributes:

1) new architectural elements implemented and 2) number of dependencies between the

new architectural elements and previously implemented architectural elements [12]. They

calculated the total cost of release n, T cn as the combination of the cost to implement the

architectural element selected to be added in this release, Icn plus the cost of rework of

pre-existing element, Rcn.

T cn = Icn +Rcn (5.1)

In this thesis, we assumed implementation cost of each architectural element to be 1. In

our research, user defined functions are the architectural elements. Icn is the summation

of all new elements of release n. Let m be the number of new architectural elements to

be implemented in the new release. Whenever any new elements are added to the system,

50

there might be modification in one or more pre-existing elements in order to accommodate

the new ones [12]. Suppose that for a new release element j, I[j] old release elements have

to be modified. Pn−1 is the propagation cost of previous release (release n− 1). As the

implementation cost for each new element is considered 1, the rework cost of release n is

defined by

Rcn =
m

∑
j=1

I[j]∗Pn−1 (5.2)

where m is the number of new release element. Our developed toolkit computes the total

release cost of the incremental releases. Given two releases as input in tulip [4] format

or vcg(visualization of compiler graph) [55] format, it computes the structural metrics of

both releases. Later it segregates the new user-defined functions and extracts old release

dependencies. Finally, the toolkit computes the total release cost for the later version.

We introduce a metric in this thesis that quantify the percentage change (PC) in struc-

tural properties between release n− 1 and release n. For release n, suppose NUDF is the

number of new user-defined function introduced and DUDF is the number of user-defined

function dropped from release n−1. Then PCn is calculated as

PCn =
(NUDF +DUDF)×100

Nn−1
(5.3)

where Ni−1 is the total number of user defined functions in release n− 1. Section 3.1

displays the source code and call graph of small C/C++ program which computes area of a

circle. Suppose the next version V2 of the software computes the area of circle and as well

as square. Provided below is the modified source code for the new version:

void print(double area)

{

cout << "The area is :"<< area << endl;

51

}

double compute_area(int type)

{

double k,area;

if(type == 1)

{

k=get_radius();

// calculating area for circle

area= 3.142 * k * k;

}

else if(type == 2)

{

k=get_length();

// calculating area for square

area= k * k;

}

return area;

}

double get_radius()

{

double radius;

cout << "Please provide the radius of the circle : " << endl;

cin >> radius;

return radius;

}

52

double get_length()

{

double length;

cout << "Please provide the length of the square : " << endl;

cin >> length;

return length;

}

void main()

{

int type;

cout << "Input 1 for circle , 2 for square: ";

cin >> type;

double area=compute_area(type);

print(area);

}

main()

print()

compute_area()

get_radius()

get_length()

Figure 5.1: Static call graph associated with new version V2 of C/C++ program to calculate
area of a circle and square

53

Figure 5.1 displays a static call graph of the new version. Two new functions get length()

and compute area() has been introduced while get area() from previous version has been

dropped. Release V1 contains 4 user-defined functions. Hence, PC of new release V2 in

terms of structural elements is 75% {[(2+1)∗100]/4}. Table 5.2 displays the percentage

change (PC) between the two releases in terms of structural elements and links.

Release
Files User Defined Functions

Nodes Edges Nodes Edges PC
V1 1 1 4 3
V2 1 1 5 4 75

Table 5.1: Structural Properties

The propagation cost of old release V1 in Figure 2.7 is 50% ([4+2+1+1]/42) (see

Section 4.3). Function compute area() of new version V2 depends on function get radius()

of previous V1. So the release rework cost is 0.5(1×0.5). Hence, the total new release cost

is 2.5. Table 5.2 displays the total release cost for the two versions.

Old Version New Version New elements Pn−1 Icn Rcn T cn
V1 V2 2 0.5 2 0.5 2.5

Table 5.2: Release Cost Comparison

54

Chapter 6

Experiments

6.1 Initial Database of Scientific Software

Computational Infrastructure for Operations Research (COIN-OR) is one of the largest and

most widely studied open source communities for scientific research software. We studied

open source software projects from COIN-OR. Initially, we identified 10 scientific comput-

ing C/C++ projects. They provided our initial database. After an effective examination, we

selected those for which we could obtain data for successive major releases. This filter left

us with a set of eight coin-or projects for our experiments. Out of these eight, four projects

align with our scientific research software category discussed above.

First, we downloaded the original source codes for each releases using their version

control tool SVN repositories. Later compiled using the static call graph extractor to a get

a tulip file (*.tlp) for each release. Finally, we used the tulip file as input to our developed

toolkit STSCB.

6.2 Testing Enviroment

The details of the experimentation environment are as follows: Machine: HP P6510F, Pro-

cessor: AMD Athlon II X4 630 quad core precessors, Operating System: Ubuntu Release

10.04 and Physical Memory: 8GB.

55

6.3 Results

We measured the structural properties, structural metrics and the cost of alternative release

using dependency analysis with the help of propagation cost. As stated earlier, we tested

four scientific research software and present the preliminary results below. DSM analysis

have been conducted on several releases but we present results of a single version. The

results of the other versions were found in this section similar in nature.

6.3.1 ADOL-C

ADOL-C is an open-source package for the automatic differentiation of C and C++ pro-

grams [25]. The first and higher derivatives of vector functions are evaluated using operator

overloading method by ADOL-C [67]. It is developed by a team of researchers from Ar-

gonne National Lab, Dresden University of Technology, and Humboldt University over a

period of 20+ years.

Release
Files User Defined Functions

Nodes Edges Nodes Edges Percentage Change, PC (see Chapter 5)
V 1.9 60 78 315 1033

V 1.10.0 60 77 320 1037 2.2222
V 1.10.1 60 77 320 1037 0
V 1.10.2 60 77 220 1037 0
V 2.1.0 60 66 271 703 87.813
V 2.1.1 60 66 271 703 0
V 2.1.2 60 66 271 703 0
V 2.1.4 60 66 272 699 0.369
V 2.1.12 61 67 263 692 4.0441
V 2.2.1 62 68 265 691 4.5627

Table 6.1: Structural Properties of ADOL-C Versions

56

ADOL-C
Versions

Characteristic
Path length, l

Clustering
coefficient, C

Nodal
Degree Components Propagation

Cost (%)
V 1.9 3.36142 0.107767 6.55873 315 3.53238

V 1.10.0 3.25725 0.106083 6.48125 320 3.43262
V 1.10.1 3.25725 0.106083 6.48125 320 3.43262
V 1.10.2 3.25725 0.106083 6.48125 320 3.43262
V 2.1.0 2.05005 0.080382 5.18819 271 3.41635
V 2.1.1 2.04977 0.0803177 5.19557 271 3.42316
V 2.1.2 2.04977 0.0803177 5.19557 271 3.42316
V 2.1.4 2.0611 0.0777237 5.13971 272 3.38452

V 2.1.12 2.20408 0.0803834 5.26236 263 3.58831
V 2.1.12 2.16312 0.0799071 5.21509 295 3.50303

Table 6.2: Structural Metrics of ADOL-C Versions

Table 6.1 presents the structural properties and Table 6.2 provides us the structural ma-

trices of 10 different releases of ADOL-C. Out of these 10 release, 4 releases are identical

with their previous releases in terms of structural properties and metrics. A major change is

observed between release V1.10.2 and V2.1.0. V2.1.0 contains 155 functions from V1.10.2

and 116 new functions has been introduced. Table 6.4 represents the summary of the cost of

each release. Table 6.3 provides the information of most central function (most frequently

called function) of the version. The major change has also changed the most central func-

tion of the new release. Function “putof” is the central function (resides in 32523 shortest

path) in V 1.10.2 whereas “fail” is the central function (resides in 16398 shortest paths) in

V 2.1.0.

No significant change in propagation cost of release indicates the stability of the soft-

ware. The decreasing trend of nodal degree is a good sign of design as it decreases the

dependencies of each function. Decreasing trend of characteristic path length indicates

shorter call sequence. So later releases are faster and takes less memory. Decreasing trend

of clustering indicates less modular design of later release.

57

Version User-defined functions
Version

User-defined functions
Function
Name

Number of
shortest path

Function
Name

Number
shortest path

V 1.9 putof 31958 V 2.1.1 fail 16396
V 1.10.0 putof 32523 V 2.1.2 fail 16396
V 1.10.1 putof 32523 V 2.1.4 fail 16561
V 1.10.2 putof 32523 V 2.1.12 fail 16561
V 2.10 fail 16398 V 2.2.1 fail 16561

Table 6.3: Centrality Measure of ADOL-C Version

Old Version New Version New elements Pn−1 Icn Rcn T cn
V1.9 V1.10.0 6 0.0353238 6 0.52986 6.52986

V1.10.0 V1.10.1 0 0.0343262 0 0 0
V1.10.1 V1.10.2 0 0.0343262 0 0 0
V1.10.2 V2.1.0 116 0.0343262 116 13.696 129.696
V2.1.0 V2.1.1 0 0.0341635 0 0 0
V2.1.1 V2.1.2 0 0.0342316 6 0 0
V2.1.2 V2.1.4 1 0.0342316 1 0.0342316 1.0342316
V2.1.4 V2.1.12 1 0.0338452 1 0.0338452 1.0338452

V2.1.12 V2.2.1 7 0.0353238 7 0.28707 7.28707

Table 6.4: Release Cost Comparison of ADOL-C Versions

Data Set n < x > σ xmax xmin α p
ADOL-C In

degree 271 1 8.718 131 1 1.6 0.267

ADOL-C Out
degree 271 1 7.277 91 2 1.56 0.286

Table 6.5: Basic parameters along with their power-law fits - ADOL-C

58

Figure 6.1: Partitioned ADOL-C

0

50

100

150

200

250

300

C
u

m
u

la
ti

ve
 F

re
q

u
e

n
cy

Degree

In and Out Degree Frequency Distribution - ADOLC

Indegree

Outdegree

Figure 6.2: In-degree and Out-degree distribution of ADOL-C

59

Figure 6.3: Power Law Distribution for In Degree of ADOL-C

Figure 6.4: Power Law Distribution for Out Degree of ADOL-C

60

The DSM analysis in Figure 6.1 indicates the absence of any feedback mark or no cycle

present in dependency for user-defined functions. Figures 6.2 present cumulative (in, out)

degree distributions of call graph nodes. We note that the total nodal degree varies from 1

to 62 for ADOL-C with approximately 80% of the nodes having degree less than or equal

to 8. In other words, only a small fraction of the functions are most relevant with regard to

the functioning of the software. In table 6.5 we show results from the fitting of a power-law

form to each of these data. The degree distribution found from toolkit ADOL-C has been

conjectured to follow power law. As we see, the results indicate that all of the datasets

are indeed consistent with a power-law hypothesis as the p value is greater than 0.05. The

variable p is the probability whether a distribution obeys power law or not. The figures 6.3

and 6.4 show these data graphically, along with the estimated power-law distribution. The

solid line represents the best fit to the data. The power law confirmity indicates the network

formed by the user defined functions is a scale free network.

6.3.2 Branch-Cut-Price (BCP)

A parallel framework , BCP is used for implementing branch, cut, and price algorithms

which are required to solve mixed integer programs (MIPs)[30]. BCP was developed by

IBM, and later contributed to the COIN-OR library [46]. It has been used successfully in a

number of IBM consulting engagements.

Table 6.6 presents the structural properties and Table 6.7 provides us the structural matri-

ces of 7 different releases of BCP. Table 6.9 represents the summary of the cost of each

release. Interestingly, all of the versions are identical to the first version in terms of struc-

tural properties and metrics. Hence there seems to be virtually no effort for the incremental

releases. Table 6.8 provides the information of most central function (most frequent called

61

Release
Files User Defined Functions

Nodes Edges Nodes Edges Percentage Change, PC (see Chapter 5)
V 1.2.0 45 29 60 118
V 1.2.1 45 29 60 118 0
V 1.2.2 45 29 60 118 0
V 1.2.3 45 29 60 118 0
V 1.3.0 45 29 60 118 0
V 1.3.1 45 29 60 118 0
V 1.3.2 45 29 60 118 0

Table 6.6: Structural Properties of BCP Versions

BCP
Versions

Characteristic
Path length, l

Clustering
coefficient, C

Nodal
Degree Components Propagation

Cost (%)
V 1.2.0 0.264972 0 3.93333 60 4.94444
V 1.2.1 0.264972 0 3.93333 60 4.94444
V 1.2.2 0.264972 0 3.93333 60 4.94444
V 1.2.3 0.264972 0 3.93333 60 4.94444
V 1.2.0 0.264972 0 3.93333 60 4.94444
V 1.3.1 0.264972 0 3.93333 60 4.94444
V 1.3.2 0.264972 0 3.93333 60 4.94444

Table 6.7: Structural Metrics of BCP Versions

62

function) of the version. Consequently, there is no change in the central function. Cluster-

ing coefficient of zero implies that BCP has tree like design structure where vertices are the

user-defined functions.

Version
User-defined functions

Version
User-defined functions

Function
Name

Number of
shortest path

Function
Name

Number of
shortest path

V 1.2.0 ”size” 25 v 1.3.0 size 25
V 1.2.1 ”size” 25 v 1.3.1 size 25
V 1.2.2 ”size” 25 v 1.3.2 size 25
V 1.2.3 ”size” 25

Table 6.8: Centrality Measure of BCP Version

Old Version New Version New elements Pn−1 Icn Rcn T cn

V1.2.0 V1.2.1 0 00.0494444 0 0 0
V1.2.1 V1.2.2 0 00.0494444 0 0 0
V1.2.2 V1.2.3 0 00.0494444 0 0 0
V1.2.3 V1.3.0 0 00.0494444 0 0 0
V1.3.0 V1.3.1 0 00.0494444 0 0 0
V1.3.1 V1.3.2 0 00.0494444 0 0 0

Table 6.9: Release Cost Comparison of BCP Versions

In Figures 6.5, the DSM for BCP is displayed after the partitioning algorithm is applied to

the user function call graph. Absence of feedback mark is also visible indicating no cycle

present.

Data Set n < x > σ xmax xmin α p
BCP In degree 60 1 4.988137 3 1.9 0.54

BCP Out degree 60 1 4.679 26 10 2.5 0.26

Table 6.10: Basic parameters along with their power-law fits - BCP

63

Figure 6.5: Partitioned DSM - Bcp

0

10

20

30

40

50

60

70

C
u

m
u

la
ti

ve
 F

re
q

u
e

n
cy

Degree

In and Out Degree Frequency Distribution - BCP

Indegree

Outdegree

Figure 6.6: In-degree and Out-degree distribution of BCP

64

Figures 6.6 present cumulative (in, out) degree distributions of call graph nodes. We note

that the total nodal degree varies from 1 to 8 for BCP with approximately 80% of the nodes

having degree less than or equal to 4. In table 6.10 we show results from the fitting of a

power-law form to each of these data sets along with a variety of generic statistics. Figure

6.7 and 6.8 contains the power law graphs for in-degree and out-degree of BCP. The results

indicate that all of the datasets are indeed consistent with a power-law hypothesis as the p

value is greater than 0.05. The power law confirmity indicates the network formed by the

user defined functions is a scale free network.

Figure 6.7: Power Law Distribution for In Degree of BCP

6.3.3 CppAD

CppAD is another Automatic differentiation software that generates an algorithm that com-

putes corresponding derivative values [7]. Similar to other AD software, it computes first

and higher derivatives using either forward or reverse mode. It is developed as a one-person

effort at the University of Washington, Seattle.

65

Figure 6.8: Power Law Distribution for Out Degree of BCP

Release
Files User Defined Functions

Nodes Edges Nodes Edges Percentage Change, PC (see Chapter 5)
V 110101.0 65 65 76 164
V 110101.1 65 65 76 164 0
V 110101.2 65 65 76 164 0
V 110101.3 65 65 76 164 0
V 110101.4 65 65 76 164 0
V 110101.5 65 65 76 164 0
V 110308 66 67 80 175 5.2632
V 111103 68 67 103 196 53.75
V 111104 68 67 103 196 0
V 111105 68 67 103 196 0

Table 6.11: Structural Properties of CppAD Versions

66

Table 6.11 presents the structural properties and Table 6.12 provides us the structural ma-

trices of 10 different releases of CppAD. Out of these 10 releases, 7 releases are identical

to previous release in terms of structural properties and metrics. In a major change between

release V110308 and V111103, V111103 contains 70 functions from V110308 and 33 new

functions has been introduced. Table 6.14 represents the summary of the cost of each re-

lease. Table 6.13 provides the information of most central function (most frequent called

function) of the version. This major change increased maximum shortest path count of the

most central function, however “constructor-special” remained as the central function.

CppAD
Versions

Characteristic
Path length, l

Clustering
coefficient, C

Nodal
Degree Number

of Compo-
nents

Propagation
Cost (%)

V 110101.0 2.35228 0.0363174 4.31579 76 6.95983
V 110101.1 2.35228 0.0363174 4.31579 76 6.95983
V 110101.2 2.35228 0.0363174 4.31579 76 6.95983
V 110101.3 2.35228 0.0363174 4.31579 76 6.95983
V 110101.4 2.35228 0.0363174 4.31579 76 6.95983
V 110101.5 2.35228 0.0363174 4.31579 76 6.95983
V 110308 2.37373 0.0342364 4.375 80 6.64062
V 111103 2.44108 0.0265913 3.80583 103 9.6239
V 111104 2.44108 0.0265913 3.80583 103 9.6239
V 111105 2.44108 0.0265913 3.80583 103 9.6239

Table 6.12: Structural Metrics of CppAD Versions

A significant change in propagation cost observed between V110308 and V111103

which indicates the increase of sensitivity in the new release. The decreasing trend of

nodal degree is a good sign of design as it decreases the dependencies of each function.

The increasing trend of characteristic path length indicates longer call sequence. So earlier

releases are faster and takes less memory. Decreasing trend of clustering indicates less

modular design of later release.

67

Version
User-defined functions

Version
User-defined functions

Function
Name

Number of
shortest path

Function
Name

Number of
shortest path

V110101.0 ”constructor-
special”

1884 V110101.5 ”constructor-
special”

1884

V110101.1 ”constructor-
special”

1884 V110308 ”constructor-
special”

2296

V110101.2 ”constructor-
special”

1884 V111103 ”constructor-
special”

2788

V110101.3 ”constructor-
special”

1884 V111104 ”constructor-
special”

2788

V110101.4 ”constructor-
special”

1884 V111105 ”constructor-
special”

2788

Table 6.13: Centrality Measure of CppAD Version

Old Version New Version New elements Pn−1 Icn Rcn T cn
V110101.0 V110101.1 0 0.0695983 0 0 0
V110101.1 V110101.2 0 0.0695983 0 0 0
V110101.2 V110101.3 0 0.0695983 0 0 0
V110101.3 V110101.4 0 0.0695983 0 0 0
V110101.4 V110101.5 0 0.0695983 0 0 0
V110101.5 V110308 4 0.0695983 4 0.34799 4.34799
V110308 V111103 33 0.0664062 33 3.5859 36.58599
V111103 V111104 0 0.096239 0 0 0
V111104 V111105 0 0.096239 0 0 0

Table 6.14: Release Cost Comparison of CppAD Versions

68

Figure 6.9: Partitioned DSM - CppAD

In Figures 6.9, the DSM for CppAD is displayed after the partitioning algorithm is applied

to the user function call graph. Absence of feedback mark is also visible indicating no

cycle present.

Data Set n < x > σ xmax xmin α p
CppAD In degree 81 1 4.3341 30 1 1.6 0.388

CppAD Out degree 81 1 4.2097 31 1 1.57 0.493

Table 6.15: Basic parameters along with their power-law fits - CppAD

Figures 6.10 present cumulative (in, out) degree distributions of call graph nodes. We note

that the total nodal degree varies from 1 to 29 for CppAD with approximately 80% of the

nodes having degree less than or equal to 6. In table 6.15 we show results from the fitting of

a power-law form to each of these data sets along with a variety of generic statistics. Figure

6.11 and 6.12 contains the power law graphs for in-degree and out-degree of CppAD. The

69

0

10

20

30

40

50

60

70

80

90

C
u

m
u

la
ti

ve
 F

re
q

u
en

cy

Degree

In and Out Degree Frequency Distribution - CppAD

Indegree

Outdegree

Figure 6.10: In-degree and Out-degree distribution of CppAD

results indicate that all of the datasets are indeed consistent with a power-law hypothesis

as the p value is greater than 0.05. The power law confirmity indicates the network formed

by the user defined functions is a scale free network.

Figure 6.11: Power Law Distribution for In Degree of CppAD

70

Figure 6.12: Power Law Distribution for Out Degree of CppAD

6.3.4 A DYnamic Linear Programming code (DyLP)

Padberg [47] described a dynamic simplex algorithm for solving LP problems. Dynamic

simplex attempts to maintain a reduced active constraint system. DyLP implements the

dynamic simplex algorithm. It alternates between primal and dual simplex phases [26].

It is developed by a research team from Computing Science department of Simon Fraser

University, BC, Canada.

Release
Files User Defined Functions

Nodes Edges Nodes Edges Percentage Change, PC (see Chapter 5)
V 1.3.0 48 304 299 1224
V 1.4.0 48 304 299 1229 43.478
V 1.4.4 48 304 299 1229 0
V 1.5.0 51 333 315 1321 8.6957
V 1.6.0 51 333 315 1321 0
V 1.7.0 51 334 320 1327 2.2222
V 1.7.2 51 334 320 1327 0
V 1.8.0 51 334 320 1327 0
V 1.8.1 51 334 320 1327 0
V 1.8.2 51 334 320 1327 0

Table 6.16: Structural Properties of DyLP Versions

71

DyLP
Versions

Characteristic
Path length, l

Clustering
coefficient, C Nodal

Degree
Number
of Compo-
nents

Propagation
Cost (%)

V 1.3.0 2.67341 0.261488 8.18729 299 5.51112
V 1.4.0 2.6719 0.258967 8.22074 299 5.51784
V 1.4.4 2.6719 0.258967 8.22074 299 5.51784
V 1.5.0 2.67967 0.245807 8.3873 315 5.17208
V 1.6.0 2.67967 0.245807 8.3873 315 5.17208
V 1.7.0 2.63341 0.24186 8.29375 320 5.04883
V 1.7.2 2.63341 0.24186 8.29375 320 5.04883
V 1.8.0 2.63341 0.24186 8.29375 320 5.04883
V 1.8.1 2.63341 0.24186 8.29375 320 5.04883
V 1.8.2 2.63341 0.24186 8.29375 320 5.04883

Table 6.17: Structural Metrics of DyLP Versions

Table 6.16 presents the structural properties and Table 6.17 provides us the structural matri-

ces of 10 different releases of DyLP. Out of these 10, 6 releases were identical to previous

release in terms of structural properties and metrics. A major change is observed between

first two releases though the number of user-defined functions are same. 65 functions has

been introduced and dropped in the later release. Table 6.19 represents the summary of the

cost of each release. Table 6.18 provides the information of most central function (most fre-

quent called function) of the version. However, these major changes increased the shortest

path count of the most central function but no change in observed for most central function.

Version
User-defined functions

Version
User-defined functions

Function
Name

Number
of short-
est path

Function
Name

Number
of short-
est path

V1.3.0 errmsg 32301 V1.7.0 errmsg 36817
V1.4.0 errmsg 32918 V1.7.2 errmsg 36817
V1.4.4 errmsg 32918 V1.8.0 errmsg 36817
V1.5.0 errmsg 36372 V1.8.2 errmsg 36817
V1.6.0 errmsg 36372 V1.8.2 errmsg 36817

Table 6.18: Centrality Measure of DyLP Version

72

No significant change in propagation cost of release indicates the stability of the soft-

ware. The increasing trend of nodal degree is not a good sign of design as it increases

the dependencies of each function. Decreasing trend of characteristic path length indicates

shorter call sequence. So later releases are faster and takes less memory. Decreasing trend

of clustering indicates less modular design of later release.

Old Version New Version New elements Pn−1 Icn Rcn T cn
V1.3.0 V1.4.0 65 0.0551112 65 12.896 77.896
V1.4.0 V1.4.4 0 0.0551784 0 0 0
V1.4.4 V1.5.0 21 0.0551784 21 4.2487 25.2487
V1.5.0 V1.6.0 0 0.0517208 0 0 0
V1.6.0 V1.7.0 6 0.0517208 6 1.08614 7.08614
V1.7.0 V1.7.2 0 0.0504883 0 0 0
V1.7.2 V1.8.1 0 0.0504883 0 0 0
V1.8.0 V1.8.2 0 0.0504883 0 0 0
V1.8.2 V1.8.3 0 0.0504883 0 0 0

Table 6.19: Release Cost Comparison of DyLP Versions

In Figures 6.13, the DSM for DyLP is displayed after the partitioning algorithm is applied

to the user function call graph. Absence of feedback mark is also visible indicating no

cycle present.

Data Set n < x > σ xmax xmin α p
DyLP In degree 299 1 8.8937142 1 1.62 0.1
DyLP Out degree 299 1 5.941267 17 2.9 0.12

Table 6.20: Basic parameters along with their power-law fits - DyLP

Figures 6.14 present cumulative (in, out) degree distributions of call graph nodes. We note

that the total nodal degree varies from 1 to 153 for DyLP with approximately 80% of the

nodes having degree less than or equal to 8. In table 6.20 we show results from the fitting of

a power-law form to each of these data sets along with a variety of generic statistics. Figure

73

Figure 6.13: Partitioned DSM - DyLP

0

50

100

150

200

250

300

350

C
u

m
u

la
ti

ve
 F

re
q

u
e

n
cy

Degree

In and Out Degree Frequency Distribution - DyLP

Indegree

Outdegree

Figure 6.14: In-degree and Out-degree distribution of DyLP

74

6.15 and 6.16 contains the power law graphs for in-degree and out-degree of DyLP. The

results indicate that all of the datasets are indeed consistent with a power-law hypothesis

as the p value is greater than 0.05. The power law confirmity indicates the network formed

by the user defined functions is a scale free network.

Figure 6.15: Power Law Distribution for In Degree of DyLP

Figure 6.16: Power Law Distribution for Out Degree of DyLP

75

6.4 Discussion

Braha et al.[10] measured the clustering coefficient of four systems: vehicle design, operat-

ing system software, pharmaceutical facility design and hospital facility design to be 0.205,

0.327, 0.449 and 0.274 respectively. Our studied scientific software: ADOL-C, BCP, Cp-

pAD and DyLP displayed clustering co-efficent of 0.08, 0.03, 0 and 0.2489 respectively.

Hence, AD tools have one magnitude lower clustering coefficient than general purpose

software where is DyLP has similar clustering coefficient. This indicates three of the four

software (except DyLP) has less modular structure than general purpose commercial soft-

ware.

Structural Properties General Purpose Commercial Software Scientific Software
Characteristic Path Length 2.8-3.7 2.2-2.7

Clustering coefficient 0.2-0.45 0-0.25
Average Nodal Degree 7-20 3-8

Propagation Cost 5-17 3-7
Feedback Marks Present Absent

Table 6.21: Structural metrics - General purpose software Vs scientific software

The characteristic path length found by Braha et al.[10] for vehicle design network is

2.878, operating system software is 3.7, pharmaceutical facility is 2.628 and hospital facil-

ity is 3.118. Our studied scientific software displayed a characteristic path length from 2.2

to 2.7. Hence, the call graphs of studied software tools displayed shorter characteristic path

lengths when compared with general-purpose software. This indicates the computation

performance of scientific software is better than general purpose commercial software.

The average nodal degree for the four systems: vehicle design, operating system soft-

ware, pharmaceutical facility design and hospital facility design measured by Braha et

al.are approximately 7, 10, 15 and 20 respectively. Whereas our studied scientific soft-

ware displayed nodal degree between 3 and 8. Hence, the call graphs of studied software

76

tools displayed small average nodal degree than general-purpose software. This indicates

scientific software has less number of dependencies between system elements.

MacCormack et al.[35] studied Mozilla Firefox and Linux operating system. They

found the propagation cost of 5.82% and 17.85% for Mozilla and Linux respectively. Our

studied software displayed propagation cost within range 3-7. This indicates the scientific

research software is less sensitive to structural changes than the general purpose commer-

cial software.

MacCormack et al.also found the presence of feedback mark in the associated par-

titioned DSM of the two softwares. Our studied partitioned DSM of the studied software

displays the absence of feedback marks or circular dependencies. Hence, this also indicates

the optimized computation performance of scientific software compared to the general pur-

pose commercial software. A recent study by Sosa et al.[62] indicates the presence of

circular dependencies exhibit higher level of defects in the system. This provides us with

an intuition that scientific software exhibit lower level of defects.

Braha et al.[10] found that the four systems: vehicle design, operating system soft-

ware, pharmaceutical facility design and hospital facility design are scale free networks.

Our results indicate that four studied software: ADOL-C, BCP, CppAD and DyLP exhibit

scale free properties. So scientific software has similar fault tolerance behavior as general

purpose commercial softwares.

Software Old Release New Release m C Rcn

ADOLC V1.10.0 V2.1.0 116 0.106083 13.696
DyLP V1.3.0 V1.4.0 65 0.258967 12.896

CppAD V110308 V111103 33 0.0363174 3.5859
DyLP V 1.4.0 V 1.5.0 21 0.258967 4.2487

Table 6.22: Clustering Coefficient Vs Release Rework Cost

77

Iterative release analysis provided an important observation. Table 6.22 displays a re-

lationship established between clustering coefficient and release rework cost from our test

results. For one major change, ADOL-C introduced double the new architectural elements

compared to DyLP but the release rework cost is similar. Another major change displays

higher release rework cost for DyLP, although it introduced 1.5 times less new elements

than CppAD. Thus, higher clustering coefficient implies that there might be higher rework

cost for the later release though the propagation cost may be similar.

78

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we perform design structure and iterative release analysis for scientific soft-

ware from multiple application domain. As a first step, we implemented an efficient DSM

partitioning algorithm. Later on, we compute a number of architectural complexity metrics

of four open source scientific research software: ADOL-C, BCP, CppAD and DyLP from

three application domain. Finally, we compare and compute total release cost for thirty

seven releases of above four software tools. To the best of our knowledge this is the first

attempt to analyze the design structure and iterative release of scientific research software.

Efficient DSM partitioning has been achieved by implementing Tarjan’s algorithm us-

ing sparse matrix data structure CRS. In order to analyze the design structure, we extracted

the source code dependency from four scientific software. Using the source code depen-

dency, we constructed DSM and computed characteristic path length, clustering coeffi-

cient, nodal degree, propagation cost and centrality measure. Moreover, we analyzed the

partitioned DSM and power law behavior of degree distribution from the software tools.

Iterative release analysis involved segregation of new user-defined function from previous

releases. We then extracted the dependency between newly implemented functions and

functions implemented on previous releases to calculate the release rework cost. Lastly,

the total implementation cost is computed for all releases and compared.

Our implemented DSM partitioning provided better timing than those obtained from

C/C++ Boost library implementation of Tarjan’s algorithm, approximately 5 times faster

than that of boost one. This results indicates DSM partitioning using sparse matrix data

structure leads to savings in computational work and intermediate storage. The call graphs

79

for the ADOL-C and CppAD software tools displayed shorter characteristic path lengths,

small nodal degrees, and small propagation costs, similar to general-purpose software such

as operating systems [35] [10]. However, variation is observed in clustering coefficient and

characteristic path length for DyLP and BCP. DyLP has clustering coefficient similar to

operating systems while on the other hand, BCP has clustering coefficient of zero. Clus-

tering coefficient of zero implies that BCP has tree like design structure where vertices are

the user-defined functions. In addition, Bcp has one magnitude shorter characteristic path

length compared with others. A relatively small clustering coefficient in ADOL-C and Cp-

pAD points to a less modular design structure than DyLP. Absence of circular dependencies

in the studied tools can be attributed to the strong emphasis placed on the computational

performance of the code. This also indicates the design structure of all studied software is

typically a directed acyclic graph(DAG). While studying the centrality measure, we note

CppAD heavily uses object-oriented features compared with others as a constructor func-

tion is one of the most frequently called member function.

Iterative release analysis provided a good insight regarding the development cost of

the software releases. Across all the version of any particular software except BCP, we

have observed the clustering coefficient decreased across versions. This provides us with

an intuition that upgraded releases enhance the functionality but reduces the modularity

of scientific software. Our test results also indicates that release rework cost might have

some correspondence with the clustering coefficient of the scientific software. The release

rework cost might be higher for later releases if modularity of previous release is higher.

In addition, except for a major change in ADOL-C, the most central function remained

the same in all the releases. This indicates the kernel components of scientific software

undergo very minor change in iterative releases to ensure the stability of the product.

80

7.2 Future Work

There can be a number of extensions for future research in addition to more detailed anal-

ysis of structural metrics and iterative releases. First, a development of domain-specific

centrality metrics will enable us to have better understanding of scientific software from

multiple domains. These scientific software tools are often integrated into larger system

to achieve better efficiency and performance. Secondly, it will be interesting to know how

much integration effort is required when these scientific software are integrated into larger

systems. We envision to perform these research in future.

81

Bibliography

[1] ALBERT, R., AND BARABÁSI, A. Statistical mechanics of complex networks. Re-
views of modern physics 74, 1 (2002), 47.

[2] ALBERT, R., JEONG, H., AND BARABÁSI, A. The diameter of the world wide web.
Arxiv preprint cond-mat/9907038 (1999).

[3] ALEXANDERSON, G. About the cover: Euler and konigsberg’s bridges: A historical
view. Bulletin of the American Mathematical Society 43, 4 (2006), 567.

[4] AUBER, D. Tulip-a huge graph visualization framework. Graph Drawing Software
(2003), 105–126.

[5] BALDWIN, C., AND CLARK, K. Design rules: The power of modularity, vol. 1. The
MIT Press, 2000.

[6] BALLARD, G. Positive vs negative iteration in design. In Proceedings Eighth Annual
Conference of the International Group for Lean Construction, IGLC-6, Brighton, UK
(2000).

[7] BELL, B. Cppad: a package for differentiation of c++ algorithms. 2008 06-01].
http://www. coin-or. org/CppAD, 2011.

[8] BENEDIKTSSON, O., DALCHER, D., REED, K., AND WOODMAN, M. Cocomo-
based effort estimation for iterative and incremental software development. Software
Quality Journal 11, 4 (2003), 265–281.

[9] BISSELING, R., BYRKA, J., CERAV-ERBAS, S., GVOZDENOVIC, N., LORENZ, M.,
PENDAVINGH, R., REEVES, C., RÖGER, M., AND VERHOEVEN, A. Partitioning a
call graph. In Proceedings of the 52nd European Study Group with Industry (2005),
pp. 95–108.

[10] BRAHA, D., AND BAR-YAM, Y. The statistical mechanics of complex product devel-
opment: Empirical and analytical results. Management Science 53, 7 (2007), 1127–
1145.

[11] BRAUNE, B., DIEHL, S., KERREN, A., AND WILHELM, R. Animation of the gen-
eration and computation of finite automata for learning software. Automata Imple-
mentation (2001), 39–47.

[12] BROWN, N., NORD, R., OZKAYA, I., AND PAIS, M. Analysis and management
of architectural dependencies in iterative release planning. In 2011 Ninth Working
IEEE/IFIP Conference on Software Architecture (2011), IEEE, pp. 103–112.

82

[13] BROWNING, T. Applying the design structure matrix to system decomposition and
integration problems: a review and new directions. Engineering Management, IEEE
Transactions on 48, 3 (2001), 292–306.

[14] CHERIYAN, J., AND MEHLHORN, K. Algorithms for dense graphs and networks on
the random access computer. Algorithmica 15, 6 (1996), 521–549.

[15] CLAUSET, A., SHALIZI, C., AND NEWMAN, M. Power-law distributions in empiri-
cal data. Arxiv preprint arxiv:0706.1062 (2007).

[16] COLLARD, M., KAGDI, H., AND MALETIC, J. An xml-based lightweight c++ fact
extractor. In Program Comprehension, 2003. 11th IEEE International Workshop on
(2003), IEEE, pp. 134–143.

[17] CORMEN, T. Introduction to algorithms. The MIT press, 2001.

[18] DAVIS, T., ET AL. University of florida sparse matrix collection. NA digest 97, 23
(1997), 7.

[19] DAWES, B., ABRAHAMS, D., AND RIVERA, R. Boost c++ libraries. URL
http://www. boost. org (2009).

[20] DUFF, I., AND REID, J. An implementation of tarjan’s algorithm for the block trian-
gularization of a matrix. ACM Transactions on Mathematical Software (TOMS) 4, 2
(1978), 137–147.

[21] EPPINGER, S. Model-based approaches to managing concurrent engineering. Journal
of Engineering Design 2, 4 (1991), 283–290.

[22] EPPINGER, S., WHITNEY, D., SMITH, R., AND GEBALA, D. A model-based
method for organizing tasks in product development. Research in Engineering Design
6, 1 (1994), 1–13.

[23] FREEMAN, L. A set of measures of centrality based on betweenness. Sociometry
(1977), 35–41.

[24] GREER, D., AND RUHE, G. Software release planning: an evolutionary and iterative
approach. Information and Software Technology 46, 4 (2004), 243–253.

[25] GRIEWANK, A., JUEDES, D., AND UTKE, J. Algorithm 755: Adol-c: a package for
the automatic differentiation of algorithms written in c/c++. ACM Transactions on
Mathematical Software (TOMS) 22, 2 (1996), 131–167.

[26] HAFER, L. Dylp: a dynamic lp code. Tech. rep., Technical Report SFU-CMPT TR
1998-23, School of Computing Science, Simon Fraser University, Burnaby, BC, V5A
1S6, 1998.

83

[27] HOOGENDORP, H. Extraction and visual exploration of call graphs for large software
systems. Order 501, 3063.

[28] HOROWITZ, E., AND SAHNI, S. Fundamentals of data structures. Computer science
press, 1983.

[29] HOSSAIN, S. Efficiently computing with design structure matrices. In Proceedings
of the 12th International DSM Conference–Managing Complexity by Modelling De-
pendencies (2010), pp. 345–358.

[30] HUNSAKER, B. Coin-or bcp(accessed nov 2011). http://www.coin-or.org/
projects/Bcp.xml.

[31] KUSIAK, A., AND WANG, J. Efficient organizing of design activities. The Interna-
tional Journal Of Production Research 31, 4 (1993), 753–769.

[32] LAMANTIA, M. Dependency Models as a Basis for Analyzing Software Product
Platform Modularity: A Case Study in Strategic Software Design Rationalization.
PhD thesis, Massachusetts Institute of Technology, System Design and Management
Program, 2006.

[33] LEVITIN, A. Introduction to the design & analysis of algorithms. Addison-Wesley
Reading, MA, 2003.

[34] LIN, Y., HOLT, R., AND MALTON, A. Completeness of a fact extractor. In Pro-
ceedings of the 10th Working Conference on Reverse Engineering (WCRE03) (2003),
vol. 1095, pp. 17–00.

[35] MACCORMACK, A., RUSNAK, J., BALDWIN, C., AND OF RESEARCH, H. B. S. D.
Exploring the structure of complex software designs: An empirical study of open
source and proprietary code. Management Science 52, 7 (2006), 1015.

[36] MARGOT, F. Bac: A bcp based branch-and-cut example. Tepper School of Business.
Paper 263 (2010).

[37] MCCORD, K., EPPINGER, S., AND OF MANAGEMENT, S. S. Managing the inte-
gration problem in concurrent engineering. Master’s thesis, Massachusetts Institute
of Technology, Dept. of Mechanical Engineering, 1993.

[38] MEHLHORN, K., NÄHER, S., AND SANDERS, P. Engineering dfs-based graph algo-
rithms, 2007.

[39] MEIER, C., YASSINE, A., AND BROWNING, T. Design process sequencing with
competent genetic algorithms. Journal of Mechanical Design 129 (2007), 566.

[40] MILGRAM, S. The small world problem. Psychology today 2, 1 (1967), 60–67.

84

[41] MURPHY, G., NOTKIN, D., GRISWOLD, W., AND LAN, E. An empirical study of
static call graph extractors. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 7, 2 (1998), 158–191.

[42] MYERS, C. Software systems as complex networks: Structure, function, and evolv-
ability of software collaboration graphs. Physical Review E 68, 4 (2003), 046116.

[43] NEDERHOF, M. Generalized left-corner parsing. In Proceedings of the sixth confer-
ence on European chapter of the Association for Computational Linguistics (1993),
Association for Computational Linguistics, pp. 305–314.

[44] NEWMAN, M. The structure and function of complex networks. SIAM review (2003),
167–256.

[45] NEWMAN, M. A measure of betweenness centrality based on random walks. Social
networks 27, 1 (2005), 39–54.

[46] NIELSEN, S. S. Programming languages and systems in computational economics
and finance, vol. 18. Springer, 2002.

[47] PADBERG, M. Linear optimization and extensions, vol. 12. Springer Verlag, 1999.

[48] PARNAS, D. Designing software for ease of extension and contraction. Software
Engineering, IEEE Transactions on, 2 (1979), 128–138.

[49] PEKTAS, S., AND PULTAR, M. Modelling detailed information flows in building
design with the parameter-based design structure matrix. Design Studies 27, 1 (2006),
99–122.

[50] PIMMLER, T., AND EPPINGER, S. Integration analysis of product decompositions.
Alfred P. Sloan School of Management, Massachusetts Institute of Technology, 1994.

[51] PINAR, A., AND HEATH, M. Improving performance of sparse matrix-vector mul-
tiplication. In Proceedings of the 1999 ACM/IEEE conference on Supercomputing
(CDROM) (1999), ACM, p. 30.

[52] POTHEN, A., AND FAN, C. Computing the block triangular form of a sparse matrix.
ACM Transactions on Mathematical Software (TOMS) 16, 4 (1990), 303–324.

[53] ROGERS, J., MCCULLEY, C., AND BLOEBAUM, C. Optimizing the process flow for
complex design projects. Optimization 1 (1999), 3.

[54] ROUIBAH, K., AND CASKEY, K. Change management in concurrent engineering
from a parameter perspective. Computers in Industry 50, 1 (2003), 15–34.

[55] SANDER, G. Vcg visualization of compiler graphs, 1995.

85

[56] SEGAL, J. Models of scientific software development. In First International Work-
shop on Software Engineering in Computational Science and Engineering, SECSE 08
(2008).

[57] SHARIR, M. A strong-connectivity algorithm and its applications in data flow analy-
sis. Computers & Mathematics with Applications 7, 1 (1981), 67–72.

[58] SMITH, F., LYONS, S., ERNEST, S., JONES, K., KAUFMAN, D., DAYAN, T., MAR-
QUET, P., BROWN, J., AND HASKELL, J. Body mass of late quaternary mammals.
Ecology 84, 12 (2003), 3403–3403.

[59] SOSA, M. A structured approach to predicting and managing technical interactions
in software development. Research in Engineering Design 19, 1 (2008), 47–70.

[60] SOSA, M., BROWNING, T., AND MIHM, J. Studying the dynamics of the architec-
ture of software products. In Proceedings of the ASME 2007 International Design
Engineering Technical Conferences & Computers and Information in Engineering
Conference (IDETC/CIE 2007) (2007), pp. 4–7.

[61] SOSA, M., MIHM, J., AND BROWNING, T. Degree distribution and quality in com-
plex engineered systems. 2011.

[62] SOSA, M., MIHM, J., AND BROWNING, T. Product architecture and quality: A study
of open-source software development. 2011.

[63] STAPEL, E. Linear programming: Introduction (accessed apr 2012). http://www.
purplemath.com/modules/linprog.htm.

[64] TARJAN, R. Depth-first search and linear graph algorithms. In Switching and Au-
tomata Theory, 1971., 12th Annual Symposium on (1971), IEEE, pp. 114–121.

[65] TELEA, A., HOOGENDORP, H., ERSOY, O., AND RENIERS, D. Extraction and
visualization of call dependencies for large c/c++ code bases: A comparative study.
In Visualizing Software for Understanding and Analysis, 2009. VISSOFT 2009. 5th
IEEE International Workshop on (2009), IEEE, pp. 81–88.

[66] VOSE, D. Fitting distributions to data. http://www.vosesoftware.com/, 2010.

[67] WALTHER, A., GRIEWANK, A., AND VOGEL, O. Adol-c: Automatic differentiation
using operator overloading in c++. PAMM 2, 1 (2003), 41–44.

[68] WEISSTEIN, E. W. Vertex-induced subgraph. MathWorld–A Wolfram Web Resource
http://mathworld.wolfram.com/Vertex-InducedSubgraph.html (2012).

[69] WILKERSON, D., CHEN, K., AND MCPEAK, S. Oink: a collaboration of c++ static
analysis tools (accessed 2007). http://www.cubewano.org/oink/, 2007.

86

[70] YASSINE, A. An introduction to modeling and analyzing complex product develop-
ment processes using the design structure matrix (dsm) method. Urbana 51, 9 (2004),
1–17.

[71] YASSINE, A., AND BRAHA, D. Complex concurrent engineering and the design
structure matrix method. Concurrent Engineering 11, 3 (2003), 165–176.

[72] YASSINE, A., AND FALKENBURG, D. A framework for design process specifications
management. Journal of Engineering Design 10, 3 (1999), 223–234.

87

