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ABSTRACT 

Understanding variations in remote sensing data with illumination and sensor angle 

changes is important in agricultural crop monitoring. This research investigated field bidirectional 

reflectance factor (BRF) in crop differentiation and PROSAIL leaf area index (LAI) estimation. 

BRF and LAI data were collected for planophile and erectophile crops at three growth stages. In 

the solar principal plane, BRF differed optimally at 860 nm 60 days after planting (DAP) for 

canola and pea, at 860 nm 45 and 60 DAP for wheat and barley, and at 860 nm and 670 nm 45 

and 60 DAP for planophiles versus erectophiles. The field BRF data helped better understand 

PROSAIL LAI estimation. NDVI was preferred for estimating LAI, however the MTVI2 

vegetation index showed high sensitivity to view angles, particularly for erectophiles. The hotspot 

was important for crop differentiation and LAI. Availability of more along-track, off-nadir 

looking spaceborne sensors was recommended for agricultural crop monitoring. 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

ACKNOWLEDGEMENTS 

I would like to acknowledge the following persons for their highly appreciated support 

and guidance during the course of this research. Firstly, I am very grateful and thankful to my 

supervisor, Dr. Craig A. Coburn for providing me with this opportunity, research independence, 

freedom, true mentorship, and the necessary infrastructure and funding. I would also like to thank 

all the committee members, Dr. Philippe M. Teillet, Dr. Derek R. Peddle and Dr. Anne M. Smith 

for their timely help, expertise and encouragement, and for reviewing this research work. I thank 

Dr. H. Peter White for agreeing to be the external reviewer, and for providing valuable inputs. 

Many thanks go to Dr. Karl Staenz for guiding me through all times. A special thanks to Dr. 

Anne M. Smith for providing me with the opportunity to conduct the data collection campaigns at 

the Lethbridge AAFC facility. Also, a special thanks to Dr. Nadia Rochdi for her help and 

guidance with the modelling aspect, Dr. Zhijie Wang for his guidance and Xiaomeng Ren for all 

her help with the data analysis aspect. A very big thank you to Steve Myshak and Aaron Mullin 

for assisting me with the field campaigns. 

Finally, I would like to extend my gratitude to my family, my mother, Shibani for her 

support and blessings, and my brother, Roop and sister-in-law, Dipanwita for all their support and 

encouragement. 

 

 

 

 

 

 

 

 



v 
 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................................. iii 

ACKNOWLEDGEMENTS ........................................................................................................ iv 

TABLE OF CONTENTS ............................................................................................................. v 

LIST OF ACRONYMS ............................................................................................................. viii 

LIST OF FIGURES ...................................................................................................................... x 

LIST OF TABLES ...................................................................................................................... xii 

LIST OF EQUATIONS ............................................................................................................. xiii 

 

1. INTRODUCTION ................................................................................................................. 1 

1.1 Multiangular remote sensing .................................................................................................. 2 

1.2 Biophysical and biochemical parameters of vegetation ......................................................... 7 

1.3 Canopy reflectance modelling ............................................................................................... 9 

1.4 Objectives ............................................................................................................................ 10 

1.5 Summary .............................................................................................................................. 11 

2. LITERATURE REVIEW ................................................................................................... 12 

2.1 Introduction .......................................................................................................................... 12 

2.2 Significance of spectral signatures in vegetation ................................................................. 12 

2.3 Vegetation indices ................................................................................................................ 15 

2.4 Remote sensing for studies of vegetation condition ............................................................ 16 

2.4.1 Remote sensing of cropland agriculture ....................................................................... 16 

2.5 Bidirectional Reflectance Distribution Function ................................................................. 17 

2.5.1 BRDF sampling ............................................................................................................ 19 

2.5.2 Significance of field BRDF sampling ........................................................................... 20 

2.5.3 Field goniometer systems ............................................................................................. 21 

2.5.3.1 The G3D software (Version 1.0)............................................................................ 26 

2.5.4 Reflectance factors ........................................................................................................ 26 

2.5.5 Bidirectional reflectance factor ..................................................................................... 27 

2.5.6 Hotspot effects .............................................................................................................. 28 

2.5.7 Effects of FOV on the derived reflectance of the canopy hotspot ................................ 30 

2.6 Crop categories based on leaf inclination ............................................................................ 30 

2.6.1 Erectophile crops and their characteristics ................................................................... 33 

2.6.2 Planophile crops and their characteristics ..................................................................... 33 

2.7 Biophysical and biochemical properties of a vegetation canopy ......................................... 33 



vi 
 

2.7.1 Leaf Area Index ............................................................................................................ 34 

2.7.2 Effective Leaf Area Index ............................................................................................. 35 

2.7.3 Direct measurement of LAI .......................................................................................... 35 

2.7.4 Indirect estimations of LAI ........................................................................................... 36 

2.7.5 Estimation of LAI using VIs ......................................................................................... 39 

2.7.4 Other alternatives for LAI estimation ........................................................................... 43 

2.8 Crop phenology and its impact on vegetative spectral reflectance ...................................... 43 

2.9 Canopy architecture : microstructural and macrostructural properties ................................ 44 

2.10 Radiative transfer models to simulate plant canopy reflectance ........................................ 45 

2.10.1 The PROSPECT model .............................................................................................. 46 

2.10.2 The SAIL model ......................................................................................................... 47 

2.10.3 The PROSAIL model .................................................................................................. 49 

2.10.4 Canopy reflectance model inversion process .............................................................. 51 

2.11 Summary ............................................................................................................................ 52 

3. METHODS ........................................................................................................................... 54 

3.1 Introduction .......................................................................................................................... 54 

3.2 Study area and field site ....................................................................................................... 54 

3.3 Instruments and software ..................................................................................................... 55 

3.4 Field data collection ............................................................................................................. 56 

3.4.1 Measurement of crop structural properties ................................................................... 58 

3.4.2 BRDF sampling ............................................................................................................ 59 

3.4.3 Ground-based effective LAI estimates using Licor LAI 2000 ..................................... 63 

3.5 Data analysis ........................................................................................................................ 64 

3.5.1 Waveband selection ...................................................................................................... 65 

3.5.1.1 Principal component analysis ................................................................................ 65 

3.5.2 BRF plot generation ...................................................................................................... 67 

3.5.3 Crop differentiation using BRDF.................................................................................. 69 

3.5.4 LAI estimation using PROSAIL inversion ................................................................... 70 

3.5.5 Effect of VZA on VIs and modelled LAI estimates ..................................................... 75 

3.7 Summary .............................................................................................................................. 76 

4. RESULTS ............................................................................................................................. 78 

4.1 Introduction .......................................................................................................................... 78 

4.2 Data consistency .................................................................................................................. 79 



vii 
 

4.3 Waveband selection ............................................................................................................. 79 

4.3.1 Principal component analysis ....................................................................................... 80 

4.3.2 BRF normalization ........................................................................................................ 81 

4.4 Crop differentiation using selected portions of BRF(ф) ...................................................... 85 

4.4.1 View zenith BRF within same azimuthal plane and direction ...................................... 98 

4.5 Crop LAI estimations using BRF(ф) and PROSAIL model inversion ................................ 99 

4.5.1 Model LAI estimates as a function of VZA ................................................................ 100 

4.5.2 Field-measured vs. model estimated LAI ................................................................... 102 

4.6 Effect of VZA on VIs and modelled LAI estimates .......................................................... 106 

4.6.1 Modelled LAI-VIs relationship................................................................................... 108 

4.7 Summary ............................................................................................................................ 109 

5. DISCUSSION AND CONCLUSIONS ............................................................................. 112 

5.1 Introduction ........................................................................................................................ 112 

5.2 Crop differentiation using selected BRF data .................................................................... 113 

5.2.1 Phenology ................................................................................................................... 114 

5.2.2 Architecture ................................................................................................................ 114 

5.2.3 Effect of the view angle on crop reflectances ............................................................. 115 

5.3 Field-based empirical LAI measurements versus modelled estimates............................... 115 

5.3.1 LAI estimates as a function of the VZA ..................................................................... 116 

5.3.2 Field-measured vs. model estimated LAI ................................................................... 117 

5.5 Effect of view angle on VIs and modelled LAI estimates ................................................. 119 

5.6 Significance of research in agriculture ............................................................................... 120 

5.7 Conclusions ........................................................................................................................ 121 

5.8 Future research ................................................................................................................... 123 

 

REFERENCES .......................................................................................................................... 125 

 

APPENDIX A ............................................................................................................................ 146 

APPENDIX B ............................................................................................................................ 149 

APPENDIX C ............................................................................................................................ 153 

APPENDIX D ............................................................................................................................ 158 

APPENDIX E ............................................................................................................................ 159 

 

 



viii 
 

LIST OF ACRONYMS 

AAFC  - Agriculture and Agri-Food Canada 

ALA  - Average Leaf inclination Angle 

AVHRR - Advanced Very High Resolution Radiometer 

BRDF  - Bidirectional Reflectance Distribution Function 

BRF  - Bidirectional Reflectance Factor 

Casi  - Compact airborne spectrographic imager 

CCD  - Charge-Coupled Device/Detector 

CCRF  - Conical-Conical (Biconical) Reflectance Factor 

CHRIS  - Compact High Resolution Imaging Spectrometer 

CR  - Canopy Reflectance 

CRM  - Canopy Reflectance Model 

DAP  - Days After Planting 

DART  - Discrete Anisotropic Radiative Transfer 

DC  - Digital Count  

DW  - Downwelling 

eLAI  - Effective Leaf Area Index 

EMR  - Electromagnetic Radiation 

EMS  - Electromagnetic Spectrum 

ETM+  - Enhanced Thematic Mapper Plus 

EVI  - Enhanced Vegetation Index 

FIGOS  - Field Goniometer System 

FLAIR  - Four-scale Linear model for Anisotropic Reflectance  

FOV  - Field of View 

fAPAR  - Fraction of Absorbed Photosynthetically Active Radiation 

FR  - Full Range 

FWHM  - Full Width at Half Maximum 

GCS  - Goni-Control Software program 

GDVI  - Green Difference Vegetation Index 

GIS  - Geographical Information System 

HCRF  - Hemispherical-Conical Reflectance Factor 

HDRF  - Hemispherical-Directional Reflectance Factor 

HRV  - Haute Resolution Visible 

LAD  - Leaf Angle Distribution 

LAI  - Leaf Area Index 

LRC  - Lethbridge Research Centre 

LIBERTY - Leaf Incorporating Biochemistry Exhibiting Reflectance and  

   Transmittance Yields 

LUT  - Look-up Table 

MFM  - Multiple Forward Mode 

MISR  - Multi-angle Imaging Spectroradiometer 

MODIS  - Moderate-resolution Imaging Spectroradiometer 



ix 
 

MSR  - Modified Simple Ratio 

MTVI  - Modified Triangular Vegetation Index 

NASA  - National Aeronautics and Space Administration 

NDVI  - Normalized Difference Vegetation Index 

NIR  - Near-Infrared 

NOAA  - National Oceanic and Atmospheric Administration 

NPP  - Net Primary Productivity 

OSAVI  - Optimized Soil Adjusted Vegetation Index 

PAR  - Photosynthetically Active Radiation 

PARABOLA - Portable Apparatus for Rapid Acquisition of Bidirectional Observations  

  of Land and Atmosphere system   

PC  - Principal Component 

PCA  - Principal Component Analysis 

POLDER - Polarization and Directionality of the Earth's Reflectances 

PP  - Perpendicular Plane 

PTFE  - Polytetrafluoroethylene (Teflon) 

RAMI  - Radiative transfer Model Intercomparison 

RDVI  - Renormalized Difference Vegetation Index 

RGM  - Radisity-Graphics combined Method 

RMS  - Root Mean Square 

RMSE  - Root Mean Square Error 

RS  - Remote Sensing 

RSL  - Remote Sensing Laboratories 

RT  - Radiative Transfer 

SAA  - Solar Azimuth Angle 

SAIL  - Scattered by Arbitrary Inclined Leaves (model) 

SAVI  - Soil Adjusted Vegetation Index 

SPOT  - Système Pour l'Observation de la Terre 

SMA  - Spectral Mixture Analysis 

SNR  - Signal to Noise Ratio  

SPP  - Solar Principal Plane 

SR  - Simple Ratio 

SWIR  - Shortwave Infrared 

SZA  - Solar Zenith Angle 

TRAC  - Tracing Radiation and Architecture of Canopies (instrument) 

ULGS (1 / 2) - University of Lethbridge Goniometer System (1 / 2) 

UW  - Upwelling 

VAA  - View Azimuth Angle 

VI  - Vegetation Index 

VIS  - Visible 

VZA  - View Zenith Angle 

WBI  - Water Band Index 

 

 



x 
 

LIST OF FIGURES 

Figure 1.1 : Spectral reflectance signature for healthy vegetation and soil. .................................... 3 

Figure 1.2 : Concept of bidirectional reflectance. ............................................................................ 5 

Figure 2.1 : Typical spectral signatures for vegetation, soil, water and concrete. ......................... 13 

Figure 2.2 : The PARABOLA-3 dual-axis, up and down looking, three-band radiometer. .......... 22 

Figure 2.3 : The FIGOS field goniometer assembled with the GER-3700 spectrometer. ............. 23 

Figure 2.4 : The ULGS-2 goniometer system. ............................................................................... 25 

Figure 2.5 : Relation of downwelling and upwelling radiance used to describe BRF. .................. 28 

Figure 2.6 : Schematic concept of the hotspot effect. .................................................................... 29 

Figure 2.7 : Impact of viewing angle on canola reflectance in the SPP. ........................................ 30 

Figure 2.8 : Schematic diagram showing the concept of LAD. ..................................................... 31 

Figure 2.9 : Illustrations of a few typical LAD functions. ............................................................. 32 

Figure 2.10 : A typical erectophile and a planophile crop. ............................................................ 33 

Figure 2.11 : The Licor LAI-2000 Plant Canopy Analyzer. .......................................................... 37 

Figure 2.12 : Schematic representation of the LAI 2050 Optical Sensor. ..................................... 38 

Figure 2.13 : The TRAC instrument. ............................................................................................. 39 

Figure 2.14 : Schematic representation of the PROSAIL CRM. ................................................... 51 

Figure 3.1 : AAFC’s Fairfield study area location. ........................................................................ 55 

Figure 3.2 : The four crop types at 45, 60 and 75 days after planting. .......................................... 57 

Figure 3.3 : Ground sampling footprint of the UW USB-4000 mounted on the ULGS-2. ............ 59 

Figure 3.4 : Spectral reflectances computed from USB-4000 spectrometer DCs at nadir for the 

four crops and for bare soil. ........................................................................................................... 62 

Figure 3.5 : Fisheye photo as viewed by the LAI-2000 fixed with a 270° lens attachment. ......... 64 

Figure 3.6 : Schematic representation of a 2-D BRF plot. ............................................................. 68 

Figure 3.7 : BRF as a function of VAA for three different VZAs (schematic diagram). .............. 69 

Figure 3.8 : Flowchart describing the steps involved in estimating LAI using PROSAIL inversion.

 ....................................................................................................................................................... 75 



xi 
 

Figure 4.1: Histogram showing the frequency of occurrence of the waveband from the PCA 

analysis for the four crop types and the three growth stages. ........................................................ 81 

Figure 4.2 : BRF(θ) for canola and barley crops at 670 nm and on 60 DAP. ................................ 82 

Figure 4.3 : Canola BRF plots at 60 DAP. Original surfaces versus normalized surfaces. ........... 84 

Figure 4.4 : Comparison of canola BRF(θ,ф) plots and their respective frequency histograms 

using Natural Breaks (Jenks Classification Cluster analysis) and Equal Intervals. ....................... 85 

Figure 4.5 : Plots of canola and pea BRF(ф) at 860 nm waveband at 60 DAP showing how the 

reflectances change over all VAAs for the seven VZAs. ............................................................... 87 

Figure 4.6 : Plots of wheat and barley BRF(ф) at 860 nm waveband at 60 DAP showing how the 

reflectances changed over all VAAs for the seven VZAs.............................................................. 88 

Figure 4.7 : Plots showing BRF(ф) comparison between canola, pea, wheat and barley at 860 nm 

waveband at 45 DAP showing how reflectances changed over all VAAs for the seven VZAs. ... 90 

Figure 4.8 : Plots showing BRF(ф) comparison between canola, pea, wheat and barley at 670 nm 

waveband at 60 DAP showing how reflectances changed over all VAAs for the seven VZAs. ... 91 

Figure 4.9 : Plots showing BRF(ф) comparison between canola, pea, wheat and barley at 670 nm 

waveband at 75 DAP showing how reflectances changed over all VAAs for the seven VZAs. ... 92 

Figure 4.10 : Comparison of normalized BRF plots at 670 nm to differentiate the crops on the 

basis of phenology at 45, 60 and 75 DAP. ..................................................................................... 96 

Figure 4.11 : Pattern plots showing the BRF differences between 45 and 60 DAP, 60 and 75 

DAP, and 45 and 75 DAP at 670 nm for the four crops. ............................................................... 97 

Figure 4.12 : Reflectance as a function of VZA for all four crops at 560 nm and 670 nm in the 

backscatter direction in SPP at 60 DAP. ........................................................................................ 99 

Figure 4.13 : Variation in the model estimated LAI for canola and barley in SPP and PP. ........ 101 

Figure 4.14 : Field-measured vs. model estimated LAI at nadir, -20°, -40° and -60° VZAs for all 

four crop types in the SPP. ........................................................................................................... 105 

Figure 4.15 : Plots of NDVI and MTVI2 as a function of VZA for canola and barley in the SPP 

and the PP at 60 DAP, normalized to the respective nadir values. .............................................. 107 

Figure 4.16 : Relation between modelled LAI and VI at -60° in the SPP. .................................. 109 

 

 

 



xii 
 

LIST OF TABLES 

Table 2.1 : Technical specifications of Ocean Optics USB-4000 spectrometer. ........................... 26 

Table 2.2 : Devices deployed on ULGS-2. .................................................................................... 26 

Table 2.3 : Main input variables of PROSAIL. ............................................................................. 50 

Table 3.1 : List of instruments and software used. ........................................................................ 56 

Table 3.2 : Data collection dates in 2009 showing the seed dates and days after planting 

corresponding to vegetative, flowering and the heading/podding stages. ..................................... 57 

Table 3.3 : Number of stems per square meter (canopy density). .................................................. 59 

Table 3.4 : Mean canopy height at each growth stage. .................................................................. 59 

Table 3.5 : Solar zenith and azimuth angles for the three growth stages recorded at the start of the 

measurements. ................................................................................................................................ 67 

Table 3.6 : Input parameter ranges used in past PROSAIL model inversion studies. ................... 72 

Table 3.7 : Inputs for PROSAIL inversion. ................................................................................... 74 

Table 4.1 : PCA results on BRDF data for all four crop types in the three DAP. ......................... 80 

Table 4.2 : Differences in crop reflectances between the backscatter and forward-scatter 

directions in the SPP and PP at the three stages. ........................................................................... 86 

Table 4.3 : Summary of ANOVA statistics to differentiate crop reflectances in the SPP and PP at 

the three growth stages (selected cases). ........................................................................................ 93 

Table 4.4 : Percentage difference in reflectances with respect to nadir between VZAs within the 

SPP in backscatter direction at 60 DAP. ........................................................................................ 98 

Table 4.5 : Difference between field-measured and model estimated LAI in SPP and PP.......... 102 

Table 4.6 : Comparison of LAI estimates for all four crops at nadir, ±20°, ±40°and ±60° in the 

SPP. .............................................................................................................................................. 103 

Table 4.7 : r
2
 coefficients showing the exponential relation between modelled LAI-VI for the four 

crops at the three growth stages. .................................................................................................. 108 

 

 

 



xiii 
 

LIST OF EQUATIONS 

Equation 1.1 : Bidirectional Reflectance Distribution Function ..................................................... 4 

Equation 2.1 : Relation between reflectance, exitance and irradiance .......................................... 12 

Equation 2.2 : Bidirectional Reflectance Factor ........................................................................... 27 

Equation 2.3 : Relationship between BRDF and BRF .................................................................. 28 

Equation 2.4/2.5 : Geometric function to represent the mean projection of a unit foliage area ....31 

Equation 2.6 : Relation between eLAI and total LAI ................................................................... 35 

Equation 2.7 : Simple Ratio Vegetation Index ............................................................................. 42 

Equation 2.8 : Normalized Difference Vegetation Index ............................................................. 42 

Equation 2.9 : Renormalized Difference Vegetation Index .......................................................... 42 

Equation 2.10 : Modified Simple Ratio ........................................................................................ 42 

Equation 2.11 : Green Difference Vegetation Index ..................................................................... 42 

Equation 2.12 : Soil Adjusted Vegetation Index .......................................................................... 42 

Equation 2.13 : Optimized Soil Adjusted Vegetation Index ......................................................... 42 

Equation 2.14 : Modified Triangular Vegetation Index 2 ............................................................. 42 

Equation 2.15 : Enhanced Vegetation Index ................................................................................. 42 

Equation 3.1 : Conversion of USB digital counts to reflectance .................................................. 61 

Equation 3.2/3.3 : Cartesian coordinate calculation from spherical coordinates .......................... 67 

Equation 3.4 : BRF normalization with respect to nadir reflectance ......................................... 68 

Equation 3.5 : Concept of RT model inversion ............................................................................ 70 

Equation 3.6 : RMSE between field and modelled BRF using LUT approach ............................ 73 

Equation 3.7 : VI normalization with respect to nadir VI ............................................................. 76 

Equation 4.1 : Calculation of difference in reflectance ................................................................ 86 

Equation 4.2 : Percentage change calculation between reflectances for higher VZAs and 

nadir………………………………………………………………………...…………………… 98 

Equation 4.3 : Calculation of normalized difference (modelled vs. field-measured LAI).......... 100 

Equation 4.4 : Calculation of RMSE (model estimated vs. field-measured LAI) ...................... 102 

Equation 4.5 : Calculation of simulation bias (model estimated vs. field-measured LAI) ......... 102  

Equation 4.6 : Calculation of coefficient of determination (model estimated vs. field-measured 

LAI) ............................................................................................................................................. 103 



1 
 

1. INTRODUCTION 

Earth observation systems provide vital data about our changing planet. With the rapid 

development of Remote Sensing (RS) technology, RS observations can ensure timely and high-

quality information for the study of vegetation, climate change, geomorphology, mineral 

extraction and many other Earth sciences. This can be achieved by studying the variations in the 

radiometric signals received by a RS sensor in different wavebands. Amongst different targets, 

vegetation RS becomes an important subject of interest to help understand the factors that 

influence vegetation spectroradiometric (hereafter referred to as spectral) signals, and in turn, add 

value for ecological research, management and modelling (Asner, 1998). Knowledge about 

variation in vegetation spectral signals due to the alterations in its phenology, physiology and 

morphology can provide valuable information about the climate, geologic and physiographic 

characteristics of an area (Weiers et al., 2004; Jackson and Jensen, 2005).  

Vegetation RS encompasses a wide range of applications, including vegetation mapping 

and classification, land-cover change detection, disturbance monitoring and damage assessment, 

acreage monitoring, pest and disease control, and monitoring its biophysical and biochemical 

attributes (Asner et al., 1998). During the past several decades, the tools for optical and radar 

vegetation RS have evolved significantly, the former having expanded from panchromatic, 

multispectral and hyperspectral sensors to off-nadir looking instruments and imaging 

spectrometers (Asner et al., 1998). 

RS techniques are applied to monitor a variety of vegetated land use, including 

rangeland, forests and agriculture. Amongst these, agricultural crops are the preferred targets to 

understand newer issues in RS studies due to the simplicity in terms of their structural and 

spectral properties compared to rangelands and forests. In agriculture, RS can be used for crop 

mapping, which is a key factor for national and international food productivity and planning 

(Bauer, 1985; Brisco et al., 1998; Doraiswamy et al., 2003; Panda et al., 2010). RS data are used 
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to relate the canopy spectral reflectance to crop condition, to identify and separate component 

fractions like the soil and shadow from the crop, which contribute to the observed Canopy 

Reflectance (CR), and to estimate biophysical and biochemical parameters (Staenz et al., 1998).  

Spectral measurements are done directly in the field using in-situ sensing (distance 

between the object and the sensor is comparable to or smaller than any linear dimension of the 

sensor (Teillet et al., 2002a), at a close distance using proximal sensing (distance between the 

object and the sensor is within a few metres), or at a remote distance from the object, using RS. 

Most ground-based, airborne and spaceborne spectral measurements are categorized under RS, 

but the term in-situ sensing is widely used in the case of ground-based spectral measurements 

(Tucker, 1979; Rock et al., 1988). Airborne and spaceborne measuring systems provide 

unprecedented synoptic images of the Earth. However, the extent to which data acquired by these 

systems can provide reliable and quantitative information depends on validation using 

independent in-situ measurements and investigations carried out at the surface (Pettinger, 1971; 

Teillet et al., 2002b). The in-situ investigations make it possible to supplement and validate 

airborne and satellite sensor observations.  

1.1 Multiangular remote sensing 

The majority of Earth’s natural features reflect, absorb and transmit light differentially, 

not only with respect to wavelength, spatial and temporal considerations, but also with respect to 

the illumination and view angles (Deering et al., 1992; Sandmeier et al., 1998; Peddle et al., 

2001b). For healthy vegetation, variations due to wavelength, spatial and temporal conditions are 

noticeable in the Visible (VIS), Near-Infrared (NIR) and the Shortwave Infrared (SWIR) regions 

of the Electromagnetic Spectrum (EMS) (Figure 1.1). When a healthy green leaf intercepts light, 

these variations in the signal reaching the sensor are seen as low reflectance in both the blue and 

red regions of the EMS because of chlorophyll absorption by chloroplast for photosynthesis 

(Vogelmann, 1993). A peak in reflectance in the green region occurs due to higher reflectance in 
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this region of EMS from the leaf surface. The formation of the NIR plateau is due to the high 

spectral reflectance characteristics of the cellular structure in the leaves (by the cell walls). A 

relatively higher variance in reflectance in the SWIR region with respect to VIS and NIR regions 

is evident due to the plant water content. 

 

Figure 1.1 : Spectral reflectance signature for healthy vegetation and soil (collected on July 27, 

2009). The 400-700 nm range is influenced by leaf pigments (Hoffer, 1978), the 700-1200 nm 

range by the cell structure (Gates et al., 1965) and the 1300-2500 nm range by the plant water 

content (Gates et al., 1965). 

The illumination and view geometries also play an important role in RS science (Jackson 

et al., 1990; Barnsley et al., 1994). The continuous changes in the Sun and the sensor positions 

result in different illumination azimuth and zenith angles and viewing azimuth and zenith angles. 

As some RS platforms (airborne and spaceborne sensor systems) have off-nadir view capabilities 

(collecting data at view angles other than 0°), it is important to understand the added complexity 

that this angular component adds to the RS data (Coburn and Peddle, 2006). 

The RS data obtained from these sensors for vegetation studies are characterised by the 

anisotropic nature of the vegetation reflectance (Nicodemus, 1965). Vegetation canopies are non-

Lambertian reflectors, i.e., they do not reflect incident radiation such that the apparent brightness 

of the surface is the same regardless of the observer’s view angle (Smith et al., 1980). This non-
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Lambertian nature of vegetation reflectance, caused by varying solar and viewing geometries, can 

result in significant variations in the observed RS signal due to canopy architectural properties 

(White et al., 2002). In radiometric terms, this is because vegetated areas are complex 

assemblages of different components, including leaves, other plant structures like stems and 

branches, soil background and shadow (Colwell, 1974). These components at different locations 

in the target area, orientation and extent exhibit different optical properties (Barnsley, 1984). 

Therefore, the view angle of the sensor will determine the projected area of each component that 

lies within its Field of View (FOV) (Suits, 1972).  

Consequently, it is important to characterize and understand the radiometric effects of 

viewing vegetation canopies at various off-nadir angles, in order to make effective and 

meaningful use of the resulting data (Barnsley, 1984). When a target’s reflectance is recorded 

from all possible angles, a Bidirectional Reflectance Distribution Function (BRDF) is measured 

for the target (Nicodemus et al., 1977). A BRDF is a wavelength-dependent, four-dimensional 

function and is defined as the ratio of the radiance (L) scattered into the direction described by the 

view zenith (θo) and azimuth angles (фo), to the irradiance (E) from the illumination zenith (θi) 

and azimuth angles (фi) (Figure 1.2) (Nicodemus et al., 1977), and is defined as : 

                                      
          

          
                                                            1.1 

where ρBRDF is the BRDF of the target. Irradiance (E) is defined as the amount of Electromagnetic 

Radiation (EMR) that reaches a target and radiance (L) is defined as the radiometric measure that 

describes the amount of EMR that is reflected/returned from the target, and falls within a given 

solid angle (π) in a specific direction. Both E and L are functions of wavelength (λ). 

The recognition of BRDF data as a fundamental dimension in RS provides important 

information content in the same way that spectral, spatial and temporal considerations have been 

exploited, which can provide corrections for angular reflectance effects on commonly used 

products for RS studies like the vegetation indices and infer the values of basic physical 
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parameters that describe the condition of Earth surface materials (Barnsley et al., 1994). While 

measuring BRDF from all angles is not possible in practice, a sampling of the target’s reflectance 

from a set of pre-defined angles gives an approximation of the true nature of its anisotropic 

characteristics (Nicodemus, 1965; Barnsley et al., 1994). 

 

Figure 1.2 : Concept of bidirectional reflectance. Ratio of radiance (L) leaving the surface 

scattered in direction (θo, фo) to the irradiance (E) reaching the target from direction (θi, фi) 

(Schott, 2007). Both, L and E are functions of the wavelength (λ). 

 

Sampling the BRDF of vegetation surfaces using in-situ sensing has been the topic of 

many studies and significant research has been carried out in the field (Deering, 1989; Sandmeier 

et al., 1996; Painter et al., 2003; Peltoniemi et al., 2005; Leuning et al., 2006) as well as under 

controlled laboratory conditions (Breece and Holmes, 1971; Kriebel, 1978; Walter-Shea et al., 

1989; Serrot et al., 1998; Schaepman and Dangel, 2000; Bousquet et al., 2005; Biliouris et al., 

2007). These studies have demonstrated that BRDF estimation is an important component in 

support of studies that seek to characterize Earth surface features from RS data (Barnsley et al., 

1994). The amplitude of reflectance and absorption as a function of wavelength derived from 

BRDF can be used to identify vegetation canopy types and conditions (Goel, 1988). The changes 
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in BRDF samples obtained from different vegetation targets with respect to their canopy 

architectures (e.g., planophile, erectophile, etc.) and phenological stages are expected to be a 

useful tool for differentiating plant types. 

In case of spaceborne RS, the ability of a satellite sensor to characterize the BRDF of a 

target on the Earth’s surface is dependent on the range of view angles over which it is able to 

acquire data, the orbital characteristics of the satellite on which it is mounted and the time period 

over which the data are recorded (Barnsley et al., 1994). Spaceborne sensors either are capable of 

off-nadir viewing solely by virtue of having a wide FOV (e.g., National Oceanic and Atmosphere 

Administration’s Advanced Very High Resolution Radiometer (NOAA-AVHRR) and MODerate-

resolution Imaging Spectroradiometer (MODIS)), through across-track pointing (e.g., Système 

Pour l'Observation de la Terre – Haute Resolution Visible (SPOT-HRV)) or through along-track 

pointing (Multi-angle Imaging Spectroradiometer (MISR) instrument of National Aeronautics 

and Space Administration’s (NASA) Earth Observing System). While, the former two types 

provide a relatively sparse sample of the BRDF, the latter can provide a much more complete 

sample, and therefore is better able to characterize the surface BRDF (Barnsley et al., 1994). 

Sensors such as MISR are also better equipped to obtain data at and around the hotspot region, 

and therefore have the potential to extract detailed information on the biophysical properties of 

targets on the Earth’s surface (Diner et al., 1989). 

Biophysical parameters such as Leaf Area Index (LAI), biomass, Net Primary 

Productivity (NPP) and Fraction of Absorbed Photosynthetically Active Radiation (fAPAR), and 

biochemical parameters such as chlorophyll and water content can be estimated from RS data 

(Asrar et al., 1984; Fassnacht et al., 1994; Stenberg et al., 1994; Myneni et al., 1997). 

Quantitative estimation of these important parameters using RS data is important for assessing the 

total green mass of plants (leaves, stems, etc.), productivity, crop conditions (stress, disease, etc.), 

land-use (e.g., acreage), species mapping and also for semi-empirical canopy Radiative Transfer 

(RT) modelling (White et al., 2002). The derivation of biophysical and biochemical parameters of 
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a canopy would be improved if a true estimate of the canopy BRDF was known (Chen, 1996a; 

Sandmeier and Deering, 1999; Combal et al., 2002). 

Due to the anisotropic nature of vegetation reflectance, where the varying solar and 

viewing geometry can result in significant variations in the observed RS signal due to the canopy 

architectural properties, as the scattering angle between the Sun and the sensor decreases, the 

brightening of the observed signal increases (White et al., 2002). This phenomenon is commonly 

known as the hotspot effect. The hotspot is an important feature in BRDF related studies and it 

demonstrates a pronounced peak in reflectance in the backscatter direction, i.e., when the Sun and 

the sensor are at the same angular position relative to a given point on the Earth’s surface (Suits, 

1972). This definition is more theoretical because when the Sun and the sensor are in the same 

angular position, the sensor will cast a shadow on the target. Therefore, the hotspot is around this 

region. The hotspot occurs when all visible portions of the scene are sunlit and no (or minimal) 

shadows are visible (Qin and Goel, 1995). The amplitude and the angular width of this feature are 

thought to be closely related to specific biophysical and biochemical parameters (Gerstl and 

Simmer, 1986; Ross and Marshak, 1989; Jupp and Strahler, 1991). The hotspot will be further 

discussed in detail later in the thesis. 

1.2 Biophysical and biochemical parameters of vegetation 

Various processes such as photosynthesis and transpiration are influenced by the 

biophysical and biochemical parameters of vegetation (Vohland and Jarmer, 2008). These 

parameters play a vital role in assessing crop performance and ultimately determining crop yield 

(Gower et al., 1999). They are also used in studies of spatial and temporal changes in the 

photosynthetic biosphere (Behrenfeld et al., 2001) and in studies involving agriculture resource 

management (Prince, 1991; McVicar and Jupp, 1998).  

The biophysical parameters of particular interest to the agricultural community include 

LAI, biomass, NPP, and fAPAR. LAI is the ratio of the total upper leaf surface of vegetation to 
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the surface area of the land on which the vegetation grows (Chen and Black, 1992a); biomass is 

the mass of living biological matter in a given area or ecosystem at a given time; NPP is the 

measurement of plant growth obtained by calculating the quantity of carbon absorbed and stored 

by the vegetation; and fAPAR is the fraction of incoming solar radiation in the spectral range 

from 400 to 700 nm that plants are able to use in the process of photosynthesis. The biochemical 

parameters of interest include chlorophyll, water, lignin and cellulose (Murray and Williams, 

1987; Peterson et al., 1988; Curran, 1989; Kersten et al., 1990; Curran et al., 1991). 

Mapping of LAI at an appropriate spatial scale is of interest given that it is a key 

biophysical parameter in modelling terrestrial carbon and water flux exchanges (Fassnacht et al., 

1994). It can be estimated using spectral reflectance either in the green (around 550 nm) or at the 

red edge (near 700 nm) region of the EMS along with the NIR (750 nm to 1200 nm) (Gilabert et 

al., 1996; Gitelson et al., 2003). Retrieval of LAI based on RS depends upon the quality of 

radiometric information from the top of the canopy (Duthoit et al., 2008), which, in turn, is 

influenced by the illumination and view geometries. There are various methods to estimate and 

monitor LAI, directly in the laboratory or in the field, indirectly in the field using different LAI 

meters, or by using spectral indices. 

Various spectral indices have been developed in the past for vegetated surfaces that use 

the absorption and reflectance features of a spectrum to monitor temporal and spatial variation in 

plant health, density and biophysical parameters (Gitelson, 2004). The simplicity, ease of 

computation and minimal input requirements involved in computing Vegetation Indices (VI) have 

resulted in their sustained use for monitoring LAI, fAPAR, NPP and other important biophysical 

parameters (Asrar et al., 1984; Tucker et al., 1986; Chen and Cihlar, 1996). A few of the 

important VIs that use red and NIR reflectances to monitor these biophysical parameters are the 

Simple Ratio (SR) and the Normalized Difference VI (NDVI) (Rouse et al., 1974). 

Because of the anisotropic nature of vegetation surface reflectances, the difference in the 

energy reflected by them at different view angles leads to variations in the VI computed 
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(Wardley, 1984; Asrar et al., 1992; Coburn et al., 2010). This, in turn, can lead to error in 

monitoring of the biophysical parameters estimated using VIs. Therefore, it becomes important to 

investigate the influence of the reflectance anisotropy in computing VIs.  

1.3 Canopy reflectance modelling  

Canopy Reflectance Modelling (CRM) is a vital tool needed to establish quantitative 

interpretation of multispectral and hyperspectral RS data from vegetated areas (Liang, 2004a). RT 

models help in understanding light interception by plant canopies and the interception of 

vegetation reflectance in terms of biophysical characteristics (Reyna and Badhwar, 1985). CRMs 

are useful for designing VIs, performing sensitivity analyses and, through inversion procedures, 

accurately estimating vegetation properties from RS data (Jacquemoud et al., 2009). The 

development of canopy BRDF models also has contributed significantly to an improved 

understanding of the angular interaction of solar energy with surface vegetation targets and areas 

(Li and Strahler, 1985; White et al., 2002; Peddle et al., 2004; Coburn and Peddle, 2006). 

Various leaf-level as well as canopy-level models have been developed using RT theory 

to understand vegetation reflectance (Liang, 2004a). Leaf-level models include the Plate (Allen et 

al., 1969), PROSPECT (Jacquemoud and Baret, 1990), Leaf Incorporating Biochemistry 

Exhibiting Reflectance and Transmittance Yields (LIBERTY) (Dawson et al., 1998) and ray 

tracing models (Allen et al., 1973). Important canopy-level models include the Suits (1972), the 

Scattered by Arbitrary Inclined Leaves (SAIL) (Verhoef, 1984), the Discrete Anisotropic 

Radiative Transfer (DART) (Gastellu-Etchegorry et al., 1996), Four-Scale Linear Model for 

Anisotropic Reflectance (FLAIR) (White et al., 2001), 4-scale model (Chen and Leblanc, 1997), 

5-scale model (Leblanc and Chen, 2000) and a Hotspot model for leaf canopies (Jupp and 

Strahler, 1991). Most of the canopy-level models take into account the effect of BRDF. 

Linking leaf-level optical property models with canopy-level reflectance, e.g., the 

PROSPECT+SAIL (PROSAIL) models and their respective inversion processes (Jacquemoud et 
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al., 1995; Jacquemoud et al., 2009; Vohland et al., 2010), have allowed the description of both the 

spectral and directional variation of CR as a function of leaf biochemistry (chlorophyll and water 

contents, lignin and cellulose) and canopy architecture (LAI, leaf angle distribution and relative 

leaf size). In this thesis research, field BRDF data were used to invert the PROSAIL model to 

investigate the effect of view and sensor azimuth and zenith angles using BRDF on LAI 

estimation compared to the reflectance from a single sensor view angle. 

1.4 Objectives 

This thesis research investigated the BRDF of various agricultural crop canopies and 

assessed the role of multiangular RS in the differentiation of crops using RS data at a variety of 

phenological stages. The crop types were selected based on their respective architectures – 

planophile (canola and pea) and erectophile (wheat and barley). Typically, the planophile type 

displays horizontal leaf distribution, whereas the erectophile type displays vertical leaf 

distribution (Wang et al., 2007). Based on their respective architectures, these crop types were 

expected to show different BRDF characteristics.  

In addition, changes in LAI estimates as a function of the view angle were evaluated 

using inversion of the PROSAIL CRM to assess the role of BRDF on the modelled LAI 

estimation. The availability of the field BRDF data was used to investigate the change in the 

modelled LAI estimates due to varying View Zenith Angles (VZA) in comparison to ground LAI 

measurements. 

Research objectives were to : 

1. assess the influence of in-situ BRDF in crop differentiation with respect to canopy 

architecture and temporal characteristics; 

2. assess the influence of in-situ BRDF on crop LAI estimation and using PROSAIL CRM 

inversion and investigate modelled LAI-VI relationships. 
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1.5 Summary 

This chapter began with a discussion on the importance of RS technology in various 

applications related to the study of vegetation. A brief discussion on RS applications in 

agriculture has also been provided. The chapter also reviewed in-situ sensing and discussed its 

importance in RS studies in terms of referencing and validation using ground data. 

The concept of multiangular RS, its importance, and the role of in-situ BRDF 

measurements in RS studies of vegetation have been covered. A brief description of a few 

spaceborne sensor systems to study BRDF was also provided. This was followed by a description 

and role of the various biophysical and biochemical parameters in studying vegetation targets. 

The concept of VIs and the role they play in vegetation RS studies have also been introduced. The 

presence of BRDF in vegetation RS and how it can affect the biophysical and biochemical 

parameters and VI computed from RS data has been discussed. Various leaf-level and canopy-

level RT models and their importance in RS studies in both forward and inverse mode have been 

mentioned in brief. The importance of BRDF models to understand the angular interaction of 

solar energy with surface vegetation targets has also been introduced.  

The chapter concluded with the two important research objectives identified for this 

thesis. The research questions are to investigate the use of multiangular RS data in differentiating 

various crop types in terms of their architectural differences at different phenological stages and 

to investigate the influence of field BRDF in LAI estimation using CRM inversion techniques. 

Although these research questions have been studied extensively in the past using RT modelling 

techniques, this research is original in terms of the empirical multiangular RS data used in this 

study, which were acquired using a hyperspectral sensor mounted on a new goniometer system 

designed to record Digital Counts (DC) received from a target at angular intervals as low as 10° 

in the azimuth and the zenith planes. This arrangement also has better potential for exploring the 

importance of the hotspot region. 
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2. LITERATURE REVIEW 

2.1 Introduction 

This chapter reviews the use of RS to assess vegetation condition and agricultural crop 

BRDF and reviews the current state of research on the retrieval and estimation of vegetation 

biophysical and biochemical properties using RS data. The various methods currently used to 

acquire BRDF data and estimate LAI, and the procedures used to process the related radiometric, 

spectral and spatial characteristics are reviewed. This is followed by a review of different crop 

types on the basis of their structural properties (geometrical shapes and leaf positions). Finally, 

RT models used to simulate plant CR and their inversion are reviewed based on published 

literature. 

2.2 Significance of spectral signatures in vegetation 

Natural and synthetic objects on or near the Earth’s surface reflect, absorb, transmit or 

emit electromagnetic energy over a range of wavelengths in their own characteristic ways 

according to their chemical composition and physical state (Price, 1994). A particular 

object/feature or condition often exhibits a diagnostic spectral response pattern in specific 

wavelength regions that differs from that of other objects. To identify and map various Earth 

surface features, a basic underlying premise is that the cover types of interest are spectrally 

separable (Panchal et al., 2006).  

A measurement of energy commonly used in RS of the Earth is the reflected energy 

coming from land and water surfaces (Schott, 2007). The amount of energy reflected from these 

surfaces in relation to the Sun’s energy is usually expressed as a percentage (%) of the amount of 

energy striking it (irradiance) and is called reflectance (Equation 2.1).  

                                              
 

 
                                                    2.1 
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where   is the reflectance leaving the target, M is the exitance from the front of the target and E is 

the irradiance on to the target. 

Under ideal conditions, reflectance is 100% if the entire energy incident on the object is 

returned to the sensor. If none of the energy returns from the surface, the reflectance is 0%. In 

most cases, the reflectance of an object for each region in the EMS is somewhere between these 

two extremes. Across any range of wavelengths, the reflectance of landscape features such as 

water, sand, roads, vegetation, etc., can be plotted and compared. Such reflectance plots are called 

“spectral signatures” (Figure 2.1). The missing data in Figure 2.1 are “noisy” due to low 

sensitivities in the sensor response in those waveband regions leading to atmospheric effects 

(broad absorption features due to water vapour, resulting in minimal radiation reaching the 

Earth’s surface) (Clevers et al., 2006), and hence not shown.  

 

Figure 2.1 : Typical spectral signatures for vegetation, soil, water and concrete in relation to the 

Sun’s energy. 

 

One of the most widespread applications of RS is vegetation species differentiation 

(Bizzell et al., 1975). The variability in the interaction between the plant and incoming radiation 

for different vegetation species can be utilized to identify and differentiate plants from a distance. 

For example, chlorophyll and water content and dry matter structure vary from one plant species 
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to another as well as within the same plant species due to physiological differences (Hall et al., 

1974). The ability to detect these variations using spectral signatures can be exploited for crop 

differentiation using RS technology (Bizzell et al., 1975). 

Healthy vegetation has a spectral signature that enables it to be distinguished readily from 

other types of land cover (Liew, 2001). The spectral reflectance of vegetation in the VIS (400-700 

nm) part of the spectrum is heavily influenced by leaf pigmentation, specifically chlorophyll a 

and b. These pigments reflect in the green (550 nm) wavelengths and absorb in the blue (450 nm) 

and red (670 nm) wavelengths (Hoffer, 1978). Information on pigments, especially chlorophyll, 

has been used in applications ranging from agriculture to natural vegetation studies, for example, 

plant productivity and temporal patterns in pigment development (Gamon and Qiu, 1999).  

Vegetation is characterized by higher reflectance in the NIR (700-1200 nm), controlled 

primarily by leaf structure (Gates et al., 1965) compared to reflectance in the VIS. Reflectance in 

the NIR wavelengths occurs at cell walls and at the interfaces between air and water within the 

leaf (Slaton et al., 2001).  Three water absorption features are also noticeable in the NIR, around 

940, 985 and 1200 nm, the absorption at 940 nm being due to atmospheric water vapour and at 

985 and 1200 nm due to liquid water within the plant (Tucker, 1980). Between the highly 

absorbing VIS region and the highly reflective NIR is the “red-edge” at around 680-750 nm 

(Horler et al., 1983). Shifts in the red-edge and its slope are caused by stresses related to plant 

nutrient, water and chlorophyll concentration (Carter and Knapp, 2001).   

The reflectance in the SWIR region (1200 to 2500 nm) is more varied, depending on 

plant type and water content. Water has strong absorption features around 1450, 1950 and 2500 

nm. The moisture content within a leaf absorbs SWIR radiation, making this spectrum useful in 

estimating plant water content (Gates et al., 1965; Ustin et al., 2004). Vegetation water content is 

important for determining water deficiency in agricultural crops (Tian et al., 2001).  
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2.3 Vegetation indices  

Key biophysical parameters of vegetation can be estimated from the characteristic 

absorption maxima or minima at particular wavelengths, seen in their respective spectral 

signatures and through VIs (North, 2002; Maki et al., 2005; Fan et al., 2008; Panda et al., 2010). 

VIs are dimensionless measures and are used to integrate multiple wavelength ranges that provide 

information on vegetation characteristics of interest (Asner et al., 2003). The majority of VIs 

focus on reflectance in the red and NIR wavelengths, for example : the Difference Vegetation 

Index (ρNIR – ρRed), SR Vegetation Index (ρNIR/ρRed) and NDVI ((ρNIR – ρRed)/( ρNIR + ρRed)). 

Tucker et al. (1986) and  Myneni et al. (1997) demonstrated the importance of NDVI for long-

term monitoring of terrestrial vegetation systems by examining a longer vegetation growing 

season at northern high latitudes with implications for assessing the global carbon balance. 

Research has demonstrated that because of lower spectral resolution, the broadband 

sensors and the VIs derived using their data are limited in providing accurate estimates of 

biophysical characteristics of agricultural crops compared to narrow-band sensors (Wiengand and 

Richardson, 1990; Fassnacht et al., 1997). These limitations motivated the inclusion of 

hyperspectral sensors onboard the newer generation satellites (e.g., Hyperion sensor and Compact 

High Resolution Imaging Spectrometer (CHRIS) mounted on the Earth Observation-1 and 

PROBA-1 satellite systems, respectively). The narrow-band VIs derived using the data from these 

sensors may be crucial for providing additional information due to the availability of narrower 

bands, which do not dilute the signal of interest, with significant improvements over broadbands 

in quantifying biophysical characteristics of agricultural crops (Thenkabail et al., 2000). The 

information in the literature shows that hyperspectral VIs like the narrow-band NDVI better 

estimate biophysical characteristics like LAI (Elvidge and Chen, 1995; Thenkabail et al., 2000). 

VIs are affected by surface reflectance anisotropy as a function of the different view and 

illumination angles (Coburn et al., 2010). Several studies have investigated the effect of the view 

and illumination angle on different VIs using BRDF models showing negligible to small effects 



16 
 

in the results (Wardley, 1984; Asrar et al., 1992). Coburn et al. (2010) used BRDF data measured 

in a laboratory using a goniometer (University of Lethbridge Goniometer System-1 (ULGS-1)) to 

investigate the effect of anisotropic reflectance on Water Band Index (WBI) and NDVI, showing 

a dramatic change in the VIs (WBI : 13%; NDVI : 10%) as a function of the view angle.  

2.4 Remote sensing for studies of vegetation condition 

RS data are a proven source of information for detailed characterization of vegetation 

type (Gould, 2000; Luther et al., 2006), structure (Healey et al., 2006) and condition (Rossini et 

al., 2006). Vegetation is a complex target with a large amount of inherent radiometric, spectral, 

spatial and temporal variability. The amount of absorption or reflectance is a function of the 

vegetation type, amount, density, structure and vigour (Gould, 2000; Healey et al., 2006). At the 

leaf level, pigment concentration, water content and structure, all contribute to variations in 

absorption, transmittance and reflectance.  

Based on different information needs for differing management objectives, RS data can 

facilitate a wide range of applications in vegetation. A few examples are vegetation mapping 

(individual trees or small group of trees to covering large spatial areas), development of unique 

spectral signatures for tree or vegetation classification (Culvenor, 2003), forest disturbance 

monitoring (Stone et al., 2001), and monitoring leaf-on and leaf-off periods of seasonally variable 

vegetation (Dymond et al., 2002).  RS data can also be used to study different VIs to integrate 

multiple wavelength ranges and information on vegetation characteristics of interest like the leaf 

pigmentation (Blackburn, 1998; Asner et al., 2003). 

2.4.1 Remote sensing of cropland agriculture 

RS technology has long been used in monitoring and analyzing agricultural activities 

including crop status, water management, crop acreage and inventory management. This is 

achieved by providing timely spectral-reflectance information that is linked to biophysical 
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indicators of plant health. Quantitative techniques can be applied to the spectral data in order to 

estimate crop status/condition (Doraiswamy et al., 2003; Ferencz et al., 2004).  

RS data have played a significant role in crop classification (Bizzell et al., 1975), crop 

health and yield assessment (Doraiswamy et al., 2003; Ferencz et al., 2004; Prasad et al., 2006), 

and have provided indirect methods of observing the biophysical processes in plant canopies 

(Goel and Norman, 1990). This is done by monitoring the spectral variation of CR, which is 

mostly governed by the optical characteristics of elements such as the leaves (Baret et al., 1994). 

Thenkabail et al. (2004) performed an analysis of hyperspectral sensors, to determine the best 

hyperspectral wavebands to study vegetation and agricultural crops over the spectral range 400-

2500 nm, and assessed various combinations of the best wavebands for crop classification 

accuracy. To achieve this, 1nm-wide hyperspectral data gathered for shrubs, grasses, weeds and 

agricultural crops using a hand-held spectroradiometer were aggregated to 10 nm-wide 

bandwidths to match the Hyperion hyperspectral sensor bandwidths. From a total of 168 narrow 

bands used in the study (after accounting for atmospheric windows and areas of significant noise) 

in the 400-2500 nm spectral range, 22 optimal bands were established that best characterize and 

classify vegetation and agricultural crops. The 22 optimal bands were determined based on a 

comprehensive analysis using Principal Component Analysis (PCA), lambda-lambda R
2
 models, 

stepwise discriminant analysis and derivative greenness VIs. The results were then correlated to 

the vegetation amount, fAPAR, unstressed vegetation conductance and photosynthetic capacity, 

and seasonal atmospheric carbon dioxide variations (Nellis et al., 2009). 

2.5 Bidirectional Reflectance Distribution Function (BRDF)    

Over the past 40 years, there has been interest in the anisotropic reflectance properties of 

the Earth’s surface materials, i.e., how their reflectance varies according to the angle of both the 

Sun and the sensor (Salomonson and Marlatt, 1971; Suits, 1972; Kriebel, 1978; Kimes, 1983; 

Barnsley, 1984). These angular dependences are characterised by the BRDF.  
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In BRDF studies of vegetation canopies, past research has shown that, for simple, 

uniform vegetation canopies, such as cereal crops, the factors controlling angular reflectance are 

believed to be the inclination and orientation of plant elements (leaves, stems, etc.) and the 

density of plant material (Goel and Thompson, 1985; Goel and Grier, 1986; Otterman et al., 

1987; Goel, 1988; Ross and Marshak, 1988; Barnsley and Kay, 1990; Pinty et al., 1990; 

Verstraete et al., 1990).  

In vegetation canopies, the reflectance often exhibits a pronounced peak in the 

backscatter direction, i.e., where the Sun and the sensor are in the same angular direction 

(theoretically) relative to the target, resulting in strong EMR returns from the target back to the 

sensor, with no shadow present. This is known as the “hotspot” (Suits, 1972). The radiometric 

amplitude and the angular width of the hotspot are related to canopy cover and  specific 

biophysical and biochemical parameters such as the average leaf size, LAI (Broge and Leblanc, 

2001), leaf inclination angle, relative water content and canopy chlorophyll density (Broge and 

Leblanc, 2001), as well as to the crown size, shape and density (Gerstl and Simmer, 1986; Li and 

Strahler, 1986; Pinty et al., 1989; Ross and Marshak, 1989; Brakke and Otterman, 1990). 

Assuming that all other parameters and characteristics are equal, it is possible to extract detailed 

information about a surface such as its biophysical properties, through knowledge of its angular 

reflectance characteristics (Barnsley et al., 1994). 

Sandmeier and Itten (1999) suggested that, rather than correcting BRDF effects in RS 

data, the information be used to improve vegetation biophysical and biochemical characterization 

with RS imagery. Their research demonstrated that the BRDF showed strong spectral variability 

in the Solar Principal Plane (SPP) (relative azimuths of 0º and 180º), with the effects being more 

pronounced in the VIS blue and red bands than the VIS green and NIR bands. The spectral 

dependence of the BRDF effects was caused by the relationship between the optical properties 

and the multiple scattering effects of the vegetation canopy. Since multiple scattering effects are 

related to canopy structure, BRDF data showed potential for derivation of canopy architecture 
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parameters such as LAI and Leaf Angle Distribution (LAD). Sandmeier and Itten (1999) also 

demonstrated that the spectral variability of reflectance with respect to the Sun and view angles 

also has a major impact on indices like the NDVI since they are derived from two wavelengths 

with completely different BRDF characteristics, the red band exhibiting very high BRDF 

dynamics compared to the NIR band. NDVI data are strongly biased by the spectral variability of 

BRDF effects (Sandmeier and Itten, 1999).  

White et al. (2002) found that, rather than attempting to define a technique with little 

sensitivity to the solar and view geometries, the BRDF characteristics could be used to normalize 

RS data to one solar/view geometry by determining a BRDF coefficient by assuming mean leaf 

and background reflectance and using semi-empirical model inversion techniques. One such 

model, FLAIR (White et al., 2001), was successfully tested and used to investigate canopy 

characteristics from broadband spectral reflectance. The FLAIR model was then applied to the 

hyperspectral imagery of an agricultural area where it was found that BRDF normalization 

improved estimation of biophysical parameters (White et al., 2002). 

2.5.1 BRDF sampling 

BRDF, as a ratio of infinitesimals, is a derivative with instantaneous values that cannot be 

measured directly because infinitesimal elements of solid angle do not include measurable 

amounts of radiant flux (Nicodemus et al., 1977). Infinite number of angles is needed to fully 

characterize all possible combinations of source and sensor orientations, making it impractical to 

design an instrument that could fulfill these requirements without compromising the data quality. 

There have been attempts to estimate BRDF in the laboratory (Sandmeier et al., 1998) and in the 

field (Deering, 1988), which showed that bidirectional reflectance characteristics are not constant 

and change with changes in the Solar Zenith Angle (SZA) and vegetation condition.  

Field goniometers have been developed and used to sample the BRDF in the form of a 

Bidirectional Reflectance Factor (BRF) of natural and man-made surfaces under natural 
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illumination conditions (Shibayama et al., 1986; Jackson et al., 1990; Kuusk, 1991b) and under 

controlled lab conditions. BRF is the ratio of the reflected radiant flux from the surface area to the 

reflected radiant flux from an ideal or diffuse surface of the same area under identical view and 

illumination geometries, and is given by BRDF (sr
-1

) times π (Schaepman-Strub et al., 2006).  

Sandmeier (2000) suggested an angular sampling interval of 15° and 30° in the zenith 

and the azimuth directions, respectively, would be sufficient to capture the general BRDF 

characteristics of most natural and man-made surfaces. For vegetation targets, areas such as the 

hotspot region may require higher angular sampling resolutions to capture temporal changes in 

the reflectance (Qin and Goel, 1995; Sandmeier, 2000). 

2.5.2 Significance of field BRDF sampling 

In-situ BRDF data sampling is important for : (1) studying the relationship between 

biophysical parameters and BRDF effects for better estimations of the parameters; (2) calibrating 

large and small reflectance-reference panels; (3) validating satellite-inferred measurements of 

BRDF; (4) validating currently available BRDF models and (5) supporting the development of 

new, more accurate BRDF models (Sandmeier, 2000).  

With the possibility of measuring RS data at different view angles from various 

spaceborne sensors such as SPOT, MISR, MODIS (Justice et al., 1998), Polarization and 

Directionality of the Earth's Reflectances (POLDER) and CHRIS, the significance of sampling 

ground BRDF data has increased (Coburn and Peddle, 2006). For example, MODIS is a wide 

FOV (110º) sensor yielding a large swath width of 2330 km at an altitude of 705 km (Justice et 

al., 1998). MODIS uses the sequential multiangular concept (Li et al., 1996) to capture RS data 

and build up angular reflectance signatures over time (hours or days) (Wanner et al., 1997; Diner 

et al., 1999). These multi-temporal RS data require proper validation using ground BRDF data in 

order to avoid improper characterization of the targets on the Earth’s surface. Knowledge of 

BRDF is also critical for the accurate retrieval of Earth surface albedo (ratio of scattered flux to 
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the total incident flux) (Barnsley et al., 1994). Liang et al. (2002) suggested the methods and 

discussed some preliminary results of validating MODIS land surface BRDF and albedo using 

ground measurements and Enhanced Thematic Mapper Plus (ETM+) imagery showing 

reasonable accuracy (<5% error).   

2.5.3 Field goniometer systems 

The term goniometry is derived from two Greek words, gonia, meaning angle and 

metron, meaning measure. A goniometer is a device that either measures angles, or in the context 

of this research, allows a sensor to be rotated to a precise angular position. This device positions a 

sensor at different combinations of zenith (θv) and azimuth (фv) angles. Unfortunately, using such 

a device to densely sample the BRDF is very challenging because of : 1) the complications in 

designing a device with the ability to position the sensor over the target at different zenith-

azimuth view angle combinations, without causing any damage to the target; 2) the anisotropic 

nature of the target reflectance causing variability in the data being recorded; and 3) time needed 

to sample the BRDF in the field (continuous change in the illumination conditions will affect the 

data being recorded) (Nicodemus, 1965). One of the first improvements on the empirical and 

theoretical model techniques used a half-silvered mirror and a digital camera to take many BRDF 

samples of a planar target at once and was called the Imaging Gonioreflectometer (Ward, 1992). 

Since this work, many researchers have developed different devices for efficiently sampling 

BRDFs from real world targets and it remains an active research area. 

In the context of this research, a goniometer is a device used to position a sensor at a 

range of hemispherical positions / angles over a target to acquire data in terms of DCs, which can 

then be converted to reflectance (Coburn and Peddle, 2006). A goniometer has two main 

components : a sensor (usually a spectrometer) and some form of apparatus to position the sensor 

(Choong, 1997; Coburn and Peddle, 2006). Several devices have been built and used to capture 

multiangular data (e.g., Levoy and Hanrahan, 1996; Mcallister, 2002; Dana et al., 1999). 
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There are two designs that use different sensor-target geometries, making them suitable 

for different applications and measurement objectives. The first involves a sensor that rotates its 

view around a fixed pivot point, thus acquiring sensor data from a different target FOV for each 

measurement (e.g., PARABOLA-3) (Figure 2.2). The second involves a fixed target and movable 

sensor in which the same target area is viewed, but from a different zenith and azimuth angle for 

each measurement using a sensor that is moved over the hemisphere at a fixed distance from the 

target (e.g., FIGOS) (Figure 2.3) (Coburn and Peddle, 2006). 

One of the first systems developed and used for measuring BRDF in support of RS was 

the Portable Apparatus for Rapid Acquisition of Bidirectional Observations of Land and 

Atmosphere (PARABOLA) system (Deering and Leone, 1986; Deering et al., 1992). The 

PARABOLA consists of a dual-axis, up and down looking, three-band radiometer that is 

deployed on a collapsible support boom or rides on a cable suspended above the target. The 

instrument is positioned above the target of interest and then rotated with computer control to 

measure samples of BRDF. This approach assumes homogeneity of the surface encompassed in 

the different target FOV, and therefore requires great care in site selection and instrument set-up. 

As a result, the PARABOLA system is unsuitable for surfaces that possess heterogeneous 

characteristics and are complex in nature (Coburn and Peddle, 2006). 

 

Figure 2.2 : The PARABOLA-3 dual-axis, up and down looking, three-band radiometer, 

downloaded from http://www-misr.jpl.nasa.gov/mission/vinstrum.html, 20 May, 2010. 
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Sandmeier et al. (1996) designed and built the Field Goniometer System (FIGOS) at Fa. 

Lehner and Co. AG, Granichen, Switzerland, in a joint operation with the Remote Sensing 

Laboratories (RSL) at the University of Zurich, Switzerland. FIGOS (Figure 2.3) is a 

transportable field goniometer that is operated with a PC-controlled GER-3700 spectroradiometer 

covering the spectrum between 300 and 2450 nm in 704 bands with a resolution of 1.5 nm at 300-

1050 nm wavebands and 8.4 nm at1050-2450 nm wavebands (Sandmeier and Itten, 1999). The 

FIGOS consists of a zenith arc and an azimuth rail, each of 2 m radius, and a motorized sled, 

where the sensor is mounted. The GER-3700 spectroradiometric data recorded from the target 

were converted to BRF using reference data recorded by a second GER-3700 spectroradiometer 

from a Spectralon
TM

 reference panel, assuming that the radiometric responses were linear and 

stable between the two measurements (Sandmeier, 2000). The disadvantages of the FIGOS are in 

its design, which makes field operation difficult – the azimuth rail can cause substantial damage 

to the target, and the vertical positioning using the half-circle zenith arc causes shadow over the 

target. 

 

Figure 2.3 : The FIGOS field goniometer assembled with the GER-3700 spectrometer (1) 

(Sandmeier and Itten, 1999). Note damage to target by the azimuth rail. 

Coburn and Noble (2009) developed and built the University of Lethbridge Goniometer 

System-2 (ULGS-2) (Figure 2.4 A and B) at the University of Lethbridge. The ULGS-2 has a 

unique design that addresses the requirements of an effective goniometer design and incorporates 
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a number of technological advancements over the previous FIGOS style and other field 

goniometers. This design is a significant advance over the other traditional designs such that there 

is no base circle structure and half of the semi-circular arch is removed. Instead, the device uses a 

quarter circle positioning arc which is rotated by the central pivot at the top of the supporting 

structure. The arc is driven by a PC-controlled stepper motor using a gear-reduction transmission. 

This design ensures the positioning of the arc to very close tolerances (Coburn and Noble, 2009). 

The sensor sled, which carries the Upwelling (UW) sensor, is also driven by a PC-controlled 

stepper motor that drives the sled using a rack mounted to the arc. There are reference stops at the 

top and the bottom of the arc to calibrate the sled position along the arc. 

The development of ULGS-2 solves four important problems in a goniometer design 

(Coburn and Noble, 2009). Firstly, this design reduces the weight of the device, and hence, 

increases portability. Secondly, it allows the device to be positioned over a much wider variety of 

surfaces as it can be raised higher above the surface. The third advantage is the real-time 

reflectance calculation from the recorded DCs using real-time irradiance measurements using a 

Downwelling (DW) spectrometer. The final feature is the speed with which the device can 

acquire BRF data. This device is significantly faster than previous designs and also considerably 

lighter, which allows easier transportation (Coburn and Noble, 2009). 

A UW USB-4000 spectrometer records the radiance data in the form of DC received 

from the target, and a DW USB-4000 spectrometer equipped with a cosine receptor head, which 

looks vertically upwards at the sky, records irradiance in the form of DC with a 180º FOV (to 

enable the detectors to sense the intensity of light reaching it, regardless of the direction). Real-

time reflectance calculation is performed using these two recorded DCs. These are controlled by 

the Goni-Control Software (GCS). This feature allows for simplified field operation as a single 

initial instrument calibration is performed with a white reference panel (e.g., Spectralon
TM

) to 

cross-calibrate the two spectrometers prior to each BRF data collection. Any change in the 
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irradiance is then accounted for by measurements made by the DW spectrometer (Coburn and 

Noble, 2009). 

The USB-4000 has the advantage of smaller size and lighter weight than other 

conventional spectrometers. The USB-4000 also has variable integration times and can record 10 

spectral samples in under 0.5 s. At this rate, the total time required to acquire a full BRF set is 

primarily a function of the time required for the instrument to move to each position and not the 

integration time of the spectrometer itself. The speed of acquisition is an important consideration 

when acquiring BRDF data under natural (solar) illumination conditions to ensure negligible 

changes in the solar geometry during a data acquisition sequence (Coburn and Noble, 2009). One 

of the disadvantages of the USB-4000 over a conventional spectrometer (e.g., the ASD 

FieldSpec® 3 FR spectroradiometer) is that the USB-4000 records radiance data only in the VIS-

NIR bands (350-1000 nm). 

The USB-4000 can be equipped with a variety of foreoptics and barrels to constrain the 

sensor FOV (e.g. 1°, 5°, 8°, 10°, 18°; or 25° for the bare fibre-optic cable sensor) and control the 

target area diameter sensed from a given height at nadir. Technical specifications of the USB-

4000 and a summary of the devices on the ULGS-2 are given in Tables 2.1 and 2.2, respectively. 

(A)                                                                   (B) 

 

Figure 2.4 : The ULGS-2 goniometer system. (A) 1. Azimuth motor; 2. Sensor sled; 3. 2 m radius 

quarter arc; 4. Control computer; 5. Battery and inverter. (B) Close-up. 1. Azimuth motor and 

gear box; 2. Power distribution and downwelling spectrometer; 3. Sensor sled and motor drive 

carrying the upwelling spectrometer (Coburn and Noble, 2009). 

(A) (B)
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Table 2.1 : Technical specifications of Ocean Optics USB-4000 spectrometer (OceanOptics, 

2010). FWHM – Full Width Half Maximum; CCD – Charge-Coupled Device/Detector. 

Parameter Specification Parameter Specification

Spectral range 350 - 1000 nm Dark noise 50 RMS counts

Spectral resolution 0.3 - 10 nm FWHM 130 photons / count at 400 nm

Pixels* 3648 60 photons / count at 600 nm

Pixel size 8 μm x 200 μm SNR 300 : 1 (at full signal)

42 mm input Toshiba TCD1304AP

68 mm output Linear CCD array

Focal length 

(without foreoptics)

Sensitivity {

Detectors  {
 

*number of linear CCD-array detector elements. 

Table 2.2 : Devices deployed on ULGS-2. 

Device Application

Ocean Optics USB-4000 UW spectrometer To record the upwelling radiance from target

Ocean Optics USB-4000 DW spectrometer With cosine receptor head to record the DW radiance

Panasonic CF-30 Toughbook with software Goniometer operation

Field use Spectralon panel (#OC77C-3115) White referencing and spetrometer cross-calibration

Canon Power Shot A410 digital camera To photograph targets
 

2.5.3.1 The G3D software (Version 1.0) 

The G3D software (version 1.0) is a unique software package developed by the Remote 

Sensing Group at the University of Lethbridge. The software package provides a simplified 

procedure to compute reflectance data at a particular wavelength from the DC data acquired by 

the USB-4000 spectrometer. The G3D software can also extract reflectances for specific zenith 

and azimuth angles and create subset data for 2-D and 3-D graphical representation of BRF. 

2.5.4 Reflectance factors 

When reflectance properties of a surface are obtained, the measurement procedure 

usually follows the definition of a reflectance factor (Kimes, 1983; Teillet et al., 1990; Staenz et 

al., 1995; Peddle et al., 2001b). A reflectance factor is the ratio of the radiant flux reflected by a 

sample surface to the radiant flux reflected with identical beam geometry and wavelength range 

by an ideal (lossless) or diffuse (Lambertian) surface (e.g., Spectralon
TM

), irradiated under the 

same conditions as the sample surface (Schaepman-Strub et al., 2006). Reflectance factors can 

reach values beyond 1 in case where the radiant flux reflected by the sample surface in more than 
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the radiant flux reflected from the diffuse surface, especially in the case of strongly forward 

reflecting surfaces such as snow (Painter and Dozier, 2004).  

From a physical point of view, reflectance factors may be defined in terms of conceptual 

and measurable quantities (Schaepman-Strub et al., 2006). Conceptual quantities of reflectance 

assume that the size to distance ratio of the illumination source and the observing sensor is zero 

and is generally termed as directional. Nicodemus et al. (1977) showed that infinitesimal 

elements of solid angle do not include measurable amounts of radiant flux. Therefore, since 

unlimited small light sources and sensor instantenous FOVs do not exist, all measurable 

quantities of reflectance are performed in the conical and hemispherical domain of geometrical 

considerations. Thus, actual measurements always involve non-zero intervals of direction and the 

underlying basic quantity of all radiance measurements is the conical case (Schaepman-Strub et 

al., 2006). There are different reflectance factors, including the BRF, the Hemispherical-

Directional Reflectance Factor (HDRF), the Biconical or Conical-Conical Reflectance Factor 

(CCRF) and the Hemispherical-Conical Reflectance Factor (HCRF), among others (Schaepman-

Strub et al., 2006). 

2.5.5 Bidirectional reflectance factor (BRF) 

It is often more convenient to describe bidirectional reflectance in a unitless form. This 

can be accomplished by introducing the BRF (Figure 2.5). Unlike BRDF, BRF can be computed 

from DW and UW radiances directly measured in the field, and is not confined by the solid angle. 

It is given by the ratio of the radiance (L) in a particular direction (θo, φo) to the radiance reflected 

in the same direction by a Lambertian surface (LP) illuminated in an identical fashion (θi, φi) for 

irradiance (E) (Schaepman-Strub et al., 2006) and is a function of the wavelength (λ) (Equation 

2.2). 

                                            
                  

                   
                       2.2 
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An ideal Lambertian surface will have the same radiance in all directions and its BRDF is 

1/ π (Schott, 2007). Nicodemus et al. (1977) showed how the BRF is related to BRDF through a 

simple factor of the solid angle element, π (sr), i.e.,  

                                                           
   

 
                                                                      2.3 

 

Figure 2.5 : Relation of downwelling (left) and upwelling (right) radiance used to describe BRF 

(Schaepman-Strub et al., 2006). Note that the UW radiance received by the sensor is scattered 

over a solid angle in the hemisphere, which is caused by the sensor’s FOV. 

 

2.5.6 Hotspot effects                          

As noted in an earlier section, another important feature of the directional reflectance of 

land surfaces (e.g., vegetation, soil) is the hotspot, a peak in the reflected radiance from a target 

with constituents considerably larger in size than the wavelength of the incident radiation (Qin 

and Goel, 1995; Qin et al., 1996). This effect occurs when the Sun is exactly behind the sensor in 

the SPP, where all visible portions of the scene are sunlit and no (or minimal) shadows are visible 

(Qin and Goel, 1995) (Figure 2.6 and Figure 2.7).  

The canopy hotspot has attracted particular attention in past research as a potential 

diagnostic tool for canopy structure because its magnitude largely depends on the size, shape, 

density, orientation and spatial distribution of foliage elements (Qin and Xiang, 1994). Its effect 

significantly influences the angular distribution of CR over a large region around the 

retroreflection direction, which makes it very important in the study of BRF in vegetation (Qin 

and Xiang, 1994; Wu et al., 2002). 

Downwelling radiance Upwelling radiance
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Experimental investigations of the hotspot effect of vegetation canopies have been made 

by Bunnik (1978) and Myneni and Kanemasu (1988), among others. Several physical models that 

describe the canopy hotspot effect have also been proposed.  The Suits (1972) vegetative CRM 

first incorporated this effect by using an empirical function. Row models like the original SAIL 

model (Verhoef, 1984) originated from the classical RT theory in turbid media, and therefore 

could not represent the hotspot phenomenon (Zhao et al., 2010). The SAIL model was later 

modified by Kuusk (1991a) to introduce a hotspot size parameter. A versatile Monte Carlo 

method was developed by Ross and Marshak (1988) to model the hotspot for heterogeneous plant 

canopies, and the study concluded that the angular width of the hotspot is related to leaf 

dimensions. Qin and Xiang (1994) used both physical and practical approaches to seek the 

hotspot effect for crop canopies, and then applied them for realistic calculation of the canopy 

BRF. Canopy hotspot is significantly affected by the sensor FOV as well as changes in the view 

angles (in case of multi-angular RS observations), which is described in detail in a later section in 

the thesis. 

 

Figure 2.6 : Schematic concept of the hotspot effect, which occurs when the Sun is exactly behind 

the sensor. 

Sun
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Illumination

Digital counts    
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Figure 2.7 : Impact of viewing angle on canola reflectance in the SPP. The SZA in this case is 

27.56º. Reflectance is higher in the backscatter than in the forward-scatter direction, the highest 

magnitude being in the hotspot region. 

2.5.7 Effects of FOV on the derived reflectance of the canopy hotspot 

The canopy hotspot is a physical property related to the canopy architecture. The radiance 

measured (both shape and intensity) in the canopy hotspot region can be affected by the sensor 

FOV. When the observation is viewed along the illumination angle and considered as a 

proportion of viewed shadow versus sunlit surfaces, a sensor with a greater FOV (e.g., 8º) will 

see more shadowed surfaces compared to a sensor with a smaller FOV (e.g., 1º), for the same 

viewing angle. Therefore, the sensor with the greater FOV will observe less intense UW radiance 

(and thus, derive a lower reflectance) for the hotspot (White et al., 2001; White et al., 2002). 

Moreover, the hotspot is even less prominent (or, almost disappears) if the FWHM of the hotspot 

reflectance is smaller that the sensor FOV. 

2.6 Crop categories based on leaf inclination 

Vegetation structural properties are characterized to a significant extent by the LAD, i.e. 

leaf azimuth and zenith orientations (Liang, 2004a). The LAD is defined as the probability 

density of the distribution of the leaf normals with respect to the upper hemisphere of vegetation 

(Figure 2.8). It describes the frequency distribution of leaf area at different inclinations, i.e., the 

leaf zenith (angles between the normal to the leaf surface and the vertical) and azimuth (angle 

between a horizontal projection of the leaf perpendicular and North) (Casa and Jones, 2005). 

Backscatter direction Forward-scatter direction

Hotspot-40 +40 
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Figure 2.8 : Schematic diagram showing the concept of LAD. Note that the angles between the 

two leaf normals and the upper hemisphere (α° and β°) are different. Leaf A shows more 

planophile characteristics and leaf B shows more erectophile characteristics. 

 

The LAD of a plant canopy has a significant impact on the canopy’s reflectance, 

transmittance and absorption of EMR, and thus, also on its growth and development. It is 

important in controlling energy balance in the soil-vegetation-atmosphere energy transfer system 

(Thanisawanyangkura et al., 1997; Wang et al., 2007) and can also serve as a quantitative index 

to monitor the state of the plants. A geometric function G(Ω) is usually defined to represent the 

mean projection of a unit foliage area in the direction Ω characterized by the zenith (θ) and the 

azimuth ( ) angles, 

                   
 

  
∫ ∫   

 

 
   

  

 
 2.4                                                     ׀   ׀ 

with                               √     √    
                                    2.5 

where gl(Ωl)/2π is the probability density of the distribution of the leaf normals with respect to the 

upper hemisphere, directed away from the top surface, in a solid angle about Ωl, which is referred 

to as LAD (Shultis and Myneni, 1988; Liang, 2004a; Biswas, 2007). 

 Generally, it is assumed that most plants have azimuthal symmetry (Norman and 

Campbell, 1991) so that LAD effectively deals with leaf inclination distribution. Different 

Leaf normals

Leaf A

Leaf B

α 

β 
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theoretical and experimental models for this function have been published based on which crops 

can be classified as having planophile, erectophile, plagiophile, extremophile, uniform or 

spherical LAD functions (Liang, 2004a; Wang et al., 2009). Figure 2.9 illustrates these functions 

for theoretical cases. The planophile function corresponds to canopies with mainly horizontal 

leaves (e.g., canola, pea, etc.); the erectophile function for canopies with mainly vertical leaves 

(e.g., wheat, barley, etc.); and plagiophile function for leaves around 45° (e.g., maize) (Loomis 

and Williams, 1969; Lang et al., 1985; Liang, 2004a). Amongst these, the planophile and 

erectophile functions are the most common and the crop types used in this study. 

An exhaustive and detailed characterization of canopy structure is not easy due to the 

large amount of information required. Considerable effort is required to sample all the elements 

of a representative area of the canopy. Therefore, canopy structure is normally described with 

only a few variables such as the leaf area density (total one-sided leaf area of photosynthetic 

tissue per unit canopy volume) and the Average Leaf Angle (ALA) (Weiss et al., 2004). 

 

Figure 2.9 : Illustrations of a few typical LAD functions. The leaf angle is with respect to the leaf 

normal (Liang, 2004a). 
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2.6.1 Erectophile crops and their characteristics 

The erectophile architectural type tends to have mainly vertical leaf distribution (Wang et 

al., 2007) (Figure 2.10 (A)). This morphology is common to grasses. Erectophile means that the 

leaves grow upward from the stem at generally less than 30° to the stem (Lang et al., 1985; Wang 

et al., 2007). Common erectophile crops include wheat, barley and triticale. 

 2.6.2 Planophile crops and their characteristics  

The planophile architectural type tends to have mainly horizontal leaf distribution (Wang 

et al., 2007) (Figure 2.10 (B)). Planophile means that the leaves are held out from the stem at a 

60° to 90° angle and they may droop at the tips (Lang et al., 1985; Wang et al., 2007). Common 

planophile crops include canola, pea, faba beans and soybean. 

Erectophile canopies generally scatter more radiation into the lower leaf layers than the 

planophile canopies (Jacobsen et al., 1995). This results in higher reflectance for planophile than 

erectophile (Galvão et al., 2005). 

 

Figure 2.10 : (A) A typical erectophile crop (photo of barley taken on August 20, 2009) and (B) a 

planophile crop (photo of canola taken on July 09, 2009). 

2.7 Biophysical and biochemical properties of a vegetation canopy 

Biophysical and biochemical parameters of a vegetation crop are the variables that deal 

with the application of physics and chemistry to the crop’s biological process and phenomena 

(A) (B)
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(Asner, 1998). Some of the important biophysical parameters are LAI, biomass, NPP and fAPAR 

(Asner, 1998; Gower et al., 1999). The biochemical parameters include plant chlorophyll, water, 

lignin and nitrogen content (Thomas et al., 1971; Curran et al., 1992). Amongst the biophysical 

variables, LAI is indirectly related to fAPAR (Asrar et al., 1984), and is a key input required for 

various ecological and crop yield models (Asrar et al., 1984; Verhoef, 1984). 

Biophysical and biochemical parameters play an important role in influencing processes 

such as photosynthesis, transpiration, estimation of hydrologic and metabolic (e.g., carbon) 

balances (Vohland and Jarmer, 2008). These parameters can aid in quantitative as well as 

qualitative estimation of crop yields, and in indicating how the crop is performing in terms of its 

health/vigour (Doraiswamy et al., 2003). Various biochemical (e.g., lignin, nitrogen) and 

biophysical (e.g., LAI, biomass) factors influencing CR have been studied in previous research 

(Goward and Huemmrich, 1992; Baret et al., 1994; Kupiec and Curran, 1995).  

For agricultural RS applications, biophysical and biochemical parameters are measured 

either directly or indirectly from the field of interest during the growing season to evaluate how 

the crop is performing. The majority of studies that estimated these variables from RS data have 

used empirical techniques to related spectral data and the variables (Treitz and Howarth, 1999). 

Several narrow-spectral band leaf-level optical indices have been suggested for estimating 

biophysical and biochemical parameters from hyperspectral reflectance data at both leaf and 

canopy levels (Miller et al., 1990; Zarco-Tejada et al., 2001). RT models describing the 

relationship between canopy characteristics and reflectance are also used in inverse mode to 

estimate canopy biophysical and biochemical variables from RS data (Goel and Strebel, 1983). 

2.7.1 Leaf Area Index (LAI)  

LAI, or the total LAI, is a biophysical property of a vegetation crop, and is defined as the 

ratio of total upper leaf surface area of vegetation to the surface area of the land on which the 

vegetation grows (Kvet and Marshall, 1971). LAI is dimensionless, ranging from 0 for bare 
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ground to 6 or more for dense vegetation (Gitelson et al., 2003). LAI is determined directly by 

taking a statistically significant sample of foliage from a plant canopy, measuring the leaf area per 

sample plot, and dividing it by the plot land surface area from which the sample was taken. LAI 

can also be determined indirectly by measuring canopy geometry or radiated light. 

Long-term monitoring of LAI obtained from RS data can provide an understanding of 

changes in productivity of vegetation crops, and also, can serve as an indicator of stress in 

vegetation. Since LAI remains consistent while the spatial resolution changes, estimating LAI 

from RS data allows for a meaningful biophysical parameter, and a convenient and ecologically 

relevant variable for multi-scale and multi-temporal research that ranges from leaf-level to 

canopy-level scales (Wulder and Franklin, 2003).  

2.7.2 Effective Leaf Area Index (eLAI)  

Research has shown that the total LAI can vary considerably within a canopy, at a given 

time (Welles, 1990; Chen and Cihlar, 1996). Effective LAI (eLAI) (Equation 2.6) provides a 

measure of the effect of non-randomness of foliage spatial distribution on indirect LAI 

measurement, and is obtained from gap fraction measurements through multiangular radiation 

transmission (Chen and Black, 1992b; Chen and Cihlar, 1996). eLAI is found to be less variable 

and easier to measure than the total LAI. eLAI is also found to be better correlated to VIs such as 

NDVI, compared to total LAI (Chen and Cihlar, 1996). It is, therefore, preferable to use eLAI as 

an important parameter for radiation interception considerations instead of the total LAI. The 

disadvantage of eLAI is that, it is obtained from gap fraction theory (Norman and Campbell, 

1991), and therefore, does not provide the true LAI of the canopy (Chen and Black, 1992b). 

                                                                                      2.6       

2.7.3 Direct measurement of LAI 

Direct methods of measuring LAI may be divided into five groups : (a) leaf tracing; (b) 

matching of standard leaf shapes and sizes; (c) calculations based on linear measurements; (d) 
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leaf area and mass relationships and (e) optical planimetry (Daughtry, 1990). One of the earliest 

methods was the leaf tracing method (Kevt and Marshall, 1971), where the contour of a leaf is 

drawn on graph paper and its area is measured by counting the squares or dots within the leaf 

outline. The leaf outline may be cut out, weighed, and the area calculated based on an area to 

weight ratio for the paper. This method has been used extensively to calibrate all other methods 

and instruments because the measurement errors using this method are typically less than 1% 

(Daughtry, 1990). The advantages of this method lie in its simplicity, precision and accuracy, 

although the efficiency is low in terms of the time required to measure the area of each leaf (Kevt 

and Marshall, 1971).  

Other methods similar to leaf tracing, are where the leaf shapes and sizes are matched to 

standard sets of leaves by species, and calculations are based on linear measurements, where the 

leaf is modelled as a simple geometric shape and the area is determined by its linear dimensions, 

i.e., length and maximum width and a regression coefficient (Daughtry, 1990). The direct 

methods involve removal of leaves from the canopy, resulting in permanent changes in the 

canopy structure, which limit analyses involving canopy architecture (e.g., LAD). 

2.7.4 Indirect estimations of LAI 

There are several methods and instruments available to estimate LAI in the field. These 

include hemispherical photography (Welles, 1990), the LAI-2000 Plant Canopy Analyzer (Licor, 

2010), the Tracing Radiation and Architecture of Canopies (TRAC) instrument (Leblanc et al., 

2002), the AccuPAR ceptometer (Decagon, 2010) and the SunScan Canopy Analysis System 

(Delta-T Devices, 2010). 

The hemispherical or fisheye photography technique is used to obtain indirect 

information on structure and architecture of plant canopies (Bonhomme and Chartier, 1972). 

Hemispherical photographs have been used to estimate the LAI of plant canopies by capturing the 

light penetration patterns in the canopy, from which the canopy architecture and foliage area are 
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quantified (Chen et al., 1991). Images are acquired by looking up through the canopy, or from 

above, looking down. Gap fractions are computed from such images by determining the fraction 

of exposed background (sky or soil) (Welles, 1990). Predicted relationships between LAI and gap 

fraction using the Poisson, binomial or Markov theoretical models of canopy geometry are used 

to estimate LAI (Neumann et al., 1989). 

The LAI-2000 (Figure 2.11) calculates eLAI from radiation measurements made with a 

fish-eye optical sensor (148° FOV). It detects the penetrating diffuse light (between above-

canopy and below-canopy) at five angles simultaneously from which eLAI is computed using a 

vegetation canopy four-scale bidirectional reflectance RT model (Chen et al., 1991; Stenberg et 

al., 1994; Chen and Leblanc, 1997). This method avoids the need to know the foliage-angle 

distribution (Welles, 1990). The LAI-2000 comes with a set of view caps for the lens that mask 

the operator (described below). 

 

Figure 2.11 : The Licor LAI-2000 Plant Canopy Analyzer. (1) The data recorder; (2) Optical 

sensor; (3) Opaque lens covers with different open wedge angles (Licor, 2010). 

 

The LAI-2050 optical sensor (Figure 2.12), which is inside the LAI-2000, operates at 

wavelengths ranging from 320 to 490 nm. The fish-eye lens has an almost hemispheric FOV 

(zenith cut-off angle = 74°) to project radiation onto the detector. The use of a lens with a fish-eye 

FOV and multiple below-canopy readings ensure that LAI calculations are based on a large 

sample of the foliage canopy. The LAI-2050 is made of five silicon detectors arranged in 

concentric rings. When radiation is projected onto the detectors, each detector sees a different 
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range of angles. The output of each detector ring is proportional to the fraction of the ring 

illuminated by the sky (Licor, 2010). 

During the measurement, the output of each of the five detectors is measured 

simultaneously for both the above and below canopy readings. The radiation intercepted by the 

canopy is then computed by dividing the above-canopy detector outputs by the below-canopy 

detector outputs (Licor, 2010). 

 

Figure 2.12 : Schematic representation of the LAI 2050 Optical Sensor. 1 Lenses; 2 Mirror; 3 

Lenses; 4 Filter; 5 Detector (Licor, 2010). 

 

The LAI-2050 optical sensor comes with a set of view attachments for the lens, which are 

snap-on opaque covers with an open wedge of 45
o
, 90

o
, 180

o
 and 270

o
 (Figure 2.12). The 270

o
 

view attachment is often used to mask the operator, reducing the instrument FOV by 90°. The 

optical sensor is filtered to reject radiation above 490 nm, which minimizes the influence of 

radiation scattered by the foliage. If scattered radiation is present, the below-canopy intensity of 

readings is increased, resulting in underestimates of LAI (Licor, 2010). 

The TRAC (Figure 2.13) accounts for not only the canopy gap fraction but also the 

canopy gap size distribution, thereby providing the leaf distribution or clumping index, which 

determines the spatial distribution of the leaves in a canopy (Chen and Cihlar, 1995). Thus, the 

TRAC can be used to quantify the effect of foliage clumping on indirect (i.e., non-destructive) 

measurements of LAI (Leblanc et al., 2002). Compared to the LAI-2000, the TRAC estimates the 

total LAI of the canopy. The instrument consists of three quantum sensors, two of which are 
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oriented upwards to measure the DW total diffuse Photosynthetically Active Radiation (PAR) 

through the canopy. The third one is oriented downwards to measure the PAR reflected from the 

ground. The instrument measures the sunfleck width (width of the light penetrating through the 

canopy to the ground below) and relates this to the gap size distribution, which is further related 

to information on canopy architecture (tree crown, branches and shoots) (Leblanc et al., 2002). 

  

Figure 2.13 : The TRAC instrument (Leblanc et al., 2002). Sensors 1 and 2 measure the DW total 

diffuse PAR through the canopy and Sensor 3 measures the PAR reflected from the ground. 

2.7.5 Estimation of LAI using VIs 

The relationship between spectral reflectance and ecophysiological characteristics such as 

LAI is often modelled, mainly through the use of spectral indices (Chen and Cihlar, 1996; 

Fassnacht et al., 1997; Haboudane et al., 2004). Spectral indices are ratios (e.g., the SR (Jordan, 

1969); Equation 2.7) of EMR intensities at two or more wavelengths in the EMS. The common 

and widely used approach has been to develop relationships between ground-based LAI and RS-

based VIs (Spanner et al., 1990; Chen and Cihlar, 1996). Consequently, a large number of 

relationships have been established, and a wide range of determination coefficients (0.05< 

r
2
<0.66) between satellite-derived spectral indices and LAI found (Baret and Guyot, 1991; Chen, 

1996b; Brown et al., 2000). Estimating LAI directly over large areas is problematic and can be 

extremely labour-intensive (Fassnacht et al., 1997). Therefore, inspite of having r
2
 values less 

than 0.66, VIs are widely used to estimate ecophysiological parameters, particularly with 

spaceborne RS data involving large spatial scale.The wavebands involved in computing common 

VIs are also available with most satellite sensors and are easy to compute.  

Control button
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In practice, LAI prediction from RS data faces three major difficulties : (1) the LAI-VI 

relationship approaches a saturation level asymptotically when LAI exceeds 2 to 5, depending on 

the VI; (2) there is no unique relationship between LAI and a VI of choice, but rather a family of 

relationships, each a function of the chlorophyll content and/or other canopy characteristics; (3) 

many VIs are limited by only two bands (Haboudane et al., 2004). Studies have been carried out 

to address these issues and to assess and compare various VIs in terms of their stability and their 

LAI prediction power (Baret and Guyot, 1991; Broge and Leblanc, 2001), while others have dealt 

with modifying some VIs to improve their linearity, and increase their sensitivity to LAI (Chen, 

1996b; Brown et al., 2000). 

The NDVI (Rouse et al., 1974) is the most popularly used spectral index, and has been 

widely used to relate to LAI. It is based on the contrast between the maximum absorption in the 

red due to chlorophyll pigments and the maximum reflection in the NIR caused by leaf cellular 

structure (Equation 2.8). Despite its intensive use, the LAI-NDVI relationship saturates or reaches 

an asymptotic limit in cases of dense and multi-layered canopy and shows a non-linear 

relationship (Carlson and Ripley, 1997). This is because, with increases in LAI, reflectance in the 

red region of the EMS decreases due to increased absorption by leaf pigments while reflectance 

in the NIR increases as more leaf layers are present to scatter the radiation (Knipling, 1970). 

Therefore, various improved indices have been developed to linearize these relationships. A few 

examples include Renormalized Difference Vegetation Index (RDVI) (Roujean and Breon, 1995) 

(Equation 2.9) and the Modified Simple Ratio (MSR) (Chen, 1996b) (Equation 2.10). A common 

variation of NDVI used in agricultural studies is the Green Difference Vegetation Index (GDVI), 

which uses reflectance in a green band instead of a red band (Gitelson et al., 1996) (Equation 

2.11), which delays the LAI-VI saturation to higher LAI. 

All spectral indices are influenced by the optical properties of the soil background. Huete 

(1988) reported that darker soil substrates resulted in higher VI for a given amount of vegetation. 

Many VIs have been developed to minimize the effect of soil substrates. One of them is the Soil 
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Adjusted Vegetation Index (SAVI) (Huete, 1988) (Equation 2.12), which is a derivation of the 

NDVI in which a constant L is introduced to minimize the soil-brightness influences. L can vary 

from 0 to infinity, and for vegetation with intermediate density, the best adjustment is obtained 

for L=0.5. One of the drawbacks of SAVI is that a soil line must be established for each RS 

acquisition. Rondeaux (1996) modified the SAVI and created the Optimized SAVI (OSAVI) that 

took care of this drawback (Equation 2.13). 

Apart from the strucural parameters, CR also is strongly dependent on the biochemical 

properties (e.g., chlorophyll) of the plant canopy (Zarco-Tejada et al., 2001). Low chlorophyll 

contents tend to saturate absorption in the 660-680 nm waveband region, thus reducing the 

sensitivity to high chlorophyll contents on the VIs which are based on these wavebands (Sims and 

Gamon, 2002). This suggests that, LAI-NDVI relationships may suffer significantly from strong 

chlorophyll variations (Zarco-Tejada et al., 2001). Other VIs like SAVI and OSAVI, exhibit 

better performance but are still affected by changes at moderate chlorophyll levels, which lead to 

noticeable saturation at high LAI levels (Haboudane et al., 2004). It is important to retrieve LAI 

considering the interference of chlorophyll effects. Broge and Leblanc (2001) developed a 

spectral index, the Modified Triangular VI (MTVI1), to characterize the radiant energy absorbed 

by leaf pigments in terms of the relative difference between red and NIR reflectance in conjuction 

with the magnitude of reflectance in the green. The general idea behind the MTVI1 is based on 

the fact that the total area of the triangle (green, red and NIR) will increase as a result of 

chlorophyll absorption (decrease of red reflectance) and leaf tissue abundance (increase of NIR 

reflectance). To reduce the soil contamination effects, Haboudane et al. (2004) incorporated a soil 

adjustment factor to MTVI1 and developed MTVI2 (Equation 2.14). The availability of a NIR 

wavelength in MTVI1 and MTVI2 makes it responsive to canopy structural variations, including 

LAI. Compared to other VIs, past research has shown that the MTVI2 has the best relationship 

with NIR CR (high resistance to chlorophyll changes) and therefore the best linearity with LAI 

(Haboudane et al., 2004). 
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Other than the VIs described above, the Enhanced Vegetation Index (EVI), which is a 

MODIS VI, is also available to provide precise seasonal and temporal monitoring of global 

vegetation conditions and can be used to monitor photosynthetic activity (Justice et al., 1998). 

EVI (Equation 2.15) was developed to extend sensitivity into dense vegetation (forests and 

agricultural areas) by optimizing the vegetation signal, while reducing canopy background and 

aerosol noise sources. EVI is responsive to canopy structural variations, including LAI, canopy 

type and canopy architecture (Gao et al., 2000).  

                           
              

                       
                                                   2.15 

where L is the canopy background correction that addresses differential NIR and red radiant 

transfer (transmittance) through the canopy, and C1 and C2 are the coefficients of the aerosol 

term, which uses the blue waveband to correct for aerosol effects in the red waveband (Kaufman 
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and Tanré, 1992). The values of L=1, C1=6 and C2=7.5 are fairly robust and have been efficiently 

applied to Landsat TM, ground observation data and simulated canopy model data (Justice et al., 

1998). One disadvantage of the EVI is its disability to detect vegetation through an opaque 

atmosphere (e.g., presence of high aerosol or smoke in the atmosphere) (Ben-Ze’ev et al., 2006). 

2.7.4 Other alternatives for LAI estimation  

 Past research has shown that the spectral properties of agricultural crops are significantly 

affected by sub-pixel scale spectral contributions of background soil and shadows as viewed by a 

RS sensor. This means that the potential of RS imagery is not fully explored for estimating 

biophysical properties using methods such as VIs (Elvidge and Lyon, 1985; Huete, 1989; Jasinski 

and Eagleson, 1989; Staenz et al., 1998).  

Peddle and Smith (2005) addressed this issue explicitly using Spectral Mixture Analysis 

(SMA) (Adams et al., 1993) to quantify the area abundance of plants, soil and shadows at a sub-

pixel scale and improved plant biophysical estimation from RS data. This was achieved by 

acquiring reference endmember spectra of crop vegetation, soil and shadows in the field using an 

ASD spectroradiometer, and analysing all possible combinations of crop, soil and shadow 

endmember spectra using SMA to derive sets of sub-pixel scale component fractions from the 

spectroradiometric data. These sub-pixel scale fractions were then used to estimate LAI using 

regression analysis (Peddle and Smith, 2005). Another method commonly used to estimate 

vegetation biophysical parameters is by using CRMs and is reviewed in detail in section 2.10.4. 

2.8 Crop phenology and its impact on vegetative spectral reflectance 

Phenology is the study of recurring events and, in the biological context, the study of the 

causes of temporal change due to biotic and abiotic forces (Leith, 1975). Phenological studies in 

vegetation provide an understanding of the timing of the main seasonal events, such as bud-burst, 

flowering, leaf colouring and leaf drop (Chen et al., 2000; Busetto et al., 2010). As the plant 
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grows, its physiological properties, and therefore, its spectral reflectance characteristics change. 

Research into vegetative spectral reflectance over different growth stages can better help to 

understand the physiological, chemical and physical processes in plants, which, in turn, can be 

useful to differentiate crops from one another (Delalieux et al., 2009). 

An understanding of crop phenology is fundamental to crop management where timing 

and management practices are increasingly based on the stage of crop development (McMaster, 

2004). Being able to track crop phenology is also critical for crop growth models, whether it is to 

determine carbon assimilation and transpiration, partitioning of carbohydrate and nutrients, or 

determine critical life cycle events such as anthesis (flowering) and maturity (Richards, 1991; 

Loss and Siddique, 1994; Loss et al., 1997). 

Monitoring of crop phenology using RS is often based on the analysis of a time series of 

spectral VIs (e.g. NDVI), which can be derived from multispectral and hyperspectral images 

(Chen et al., 2000; Duchemin et al., 2006). This, in turn, can provide indirect estimates of 

vegetation biophysical and biochemical parameters like LAI and chlorophyll content (Duchemin 

et al., 2006; Delalieux et al., 2009) and how they change over different phenological stages. 

2.9 Canopy architecture : microstructural and macrostructural properties  

Canopy architecture and the radiation environment are closely related to each other (Chen 

et al., 1997). Architecture at all levels in a plant canopy affects not only the transmission of the 

photons through the canopy, but also the multiple scattering processes contributing to the 

observed radiances (Chen et al., 1997; Chen and Leblanc, 1997). As a result, the radiometric 

signals received by a RS sensor from plants with different architectures may show different 

spectral characteristics.  

Microstructure properties of a plant describe the number of stems (canopy density) and 

inclination of leaves. These data play an important role in RS as they affect the plant radiometric 

characteristics for a given phenological stage. Macrostructure properties describe the relative 
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distribution of each species at the canopy level. The different macrostructural parameters include 

the mean canopy height, distance between rows and individual plants and width of the rows. As 

the plant matures, a number of these parameters change, resulting in variation in the biophysical 

and biochemical parameters as well as the canopy radiative interaction. 

2.10 Radiative transfer models to simulate plant canopy reflectance 

CRM is a vital tool needed to assist in quantitative interpretation of RS data from 

vegetated areas (Reyna and Badhwar, 1985). It is used to improve understanding of the 

relationship between the reflectance and the viewing and illumination geometry, the canopy 

structure and the optical properties of the canopy components, in particular the plant leaves 

(Bunnik, 1984). CRMs are also required for the development of data interpretation methods and 

for the optimization of measurement requirements for a sensor system and its associated data 

processing (Bunnik, 1984).  

From the early stages of optical RS, RT models have helped to understand the EMR 

interception of vegetation in terms of biophysical characteristics (Jacquemoud et al., 2009). Since 

the models attempt to describe absorption and scattering, the two main physical processes 

involved in plant canopies, they are useful for designing VIs, performing sensitivity analyses, and 

through inversion procedures, accurately retrieving vegetation properties from RS data 

(Jacquemoud et al., 2009). 

Modelling work was started by considering the radiation interaction within individual 

leaves. One of the first attempts, later applied in a similar way on CR modelling, was the ray 

tracing method (Willstätter and Stoll, 1915). Allen et al. (1969) developed the Plate model, which 

represented a leaf as a uniform plate with rough surfaces. A well known leaf reflectance model is 

the PROSPECT model, which is based on the Plate model. This model simulates leaf reflectance 

and transmittance from the VIS to the middle infrared spectrum as a function of the leaf structure 

and biochemical parameters (Jacquemoud and Baret, 1990).  
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The earliest practical plant CRM was that of Suits (1972), which added direct irradiation 

and directional exitance to a two-stream Kubelka and Monk (1931) model. Suits (1972) assumed 

that leaves were Lambertian and either vertical or horizontal. The Suits model was further 

extended by Verhoef (1984) to the case of variable leaf-angle distribution (the SAIL model), and 

by Reyna and Bhadwar (1985) to include a specular reflectance component. Jupp and Strahler 

(1991) added a proper geometric-optical kernel to the Suits model that was driven by leaf shape, 

arrangement and spacing. 

The development of canopy BRDF models has contributed to an improved understanding 

of the anisotropic nature of the solar radiance reflected from the Earth’s surface (Chen and 

Leblanc, 1997). Such bidirectional reflectance behaviour has been extensively investigated for 

various surfaces using numerical models (Myneni and Ross, 1991), geometric-optical models (Li 

and Strahler, 1988; Li and Strahler, 1992) and hybrid-models (Li et al., 1995; Nilson and 

Peterson, 1991). Some of the canopy BRDF models available include the Four-scale bidirectional 

reflectance model (Chen and Sylvain, 1997) and the FLAIR model (White et al., 2001). The 

PROSPECT and the SAIL models have been used in this thesis research to investigate the effect 

of view and sensor azimuth and zenith angles on LAI estimation using empirical BRF data and 

are described in the following sections in detail. 

2.10.1 The PROSPECT model 

The PROSPECT model is a RT model describing the optical properties (reflectance, 

absorption and transmittance) of a plant leaf from 400 to 2500 nm (Jacquemoud and Baret, 1990). 

It is based on the representation of the leaf as one or several absorbing plates with rough surfaces 

giving rise to isotropic scattering (Jacquemoud et al., 2009). The model uses two classes of input 

variables : the leaf structure parameter, which is the number of compact layers specifying the 

average number of air / cell wall interfaces within the mesophyll, and the leaf biochemical 

content (chlorophyll a+b concentration, water and dry matter content). 
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2.10.2 The SAIL model 

The SAIL model is one of the earliest CRMs (Verhoef, 1984, 1985). It is an improved 

version of the Suits (1972) CRM that addresses the case of variable LAD in a canopy. The SAIL 

model was shown to closely approximate canopy bidirectional reflectance properties, with the 

exception of the canopy hotspot (Goward and Huemmrich, 1992). The extinction and scattering 

coefficients are calculated on the basis of a given LAI and a LAD, in addition to the usual 

parameters describing the optical properties of single leaves and those associated with 

measurement conditions (Verhoef, 1984).  

The main parameters used as input variables to run the SAIL model are LAI, soil 

reflectance (ρs), diffuse skylight (skyl) and the illumination and view angles. Although skyl is 

dependent on wavelength and atmospheric conditions, it is assumed to be constant. Its influence 

on simulated reflectances has been studied and found to be a minor constituent, and hence 

unlikely to affect the results (Clevers, 1991). In the SAIL model, the canopy is considered to be a 

horizontal, homogeneous and infinitely extended vegetation layer made up of Lambertian 

scatterers (leaves), which are randomly distributed (Jacquemoud et al., 1995). The azimuth angle 

of the scatterers is assumed to be randomly distributed, while their zenith angle follows an 

ellipsoidal distribution characterized by a mean leaf inclination angle, also called the ALA. 

Amongst many models published during the past four decades (e.g, Suits, 1972; Li and 

Strahler, 1992; Li et al., 1995; Chen et al., 2000; Pinty et al., 2001, 2004; Liang, 2004a), the SAIL 

canopy bidirectional reflectance model (Verhoef, 1984) and the PROSPECT leaf properties 

model (Fourty et al., 1996; Jacquemoud and Baret, 1990) have been widely used to study 

different row crop types with planophile and erectophile architectures. Goel and Thompson 

(1984) validated the SAIL model using CR measured from soybean crop canopies and suggested 

that, given the expected accuracy of CR measurements and the accuracy of the SAIL model in 

representing CR in the infrared region, realistic estimation of canopy parameters like the LAI of a 

vegetation canopy is possible by inverting the SAIL model using ancillary spectral parameter 
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(e.g, the leaf reflectance and transmittance, soil reflectance, and diffuse solar radiation) data. 

Linking the SAIL and PROSPECT models to become the PROSAIL model (Jacquemoud et al., 

2009) allows the description of both the spectral and the directional variation of CR as a function 

of leaf biochemistry – mainly chlorophyll, water and dry matter contents, and canopy architecture 

– primarily LAI, LAD and relative leaf size.  

Bacour et al. (2002) and Tripathi et al. (2009) used PROSAIL model inversion to 

correctly estimate LAI for various planophile and erectophile crops including wheat, maize, 

sunflower and alfalfa crops from airborne (POLDER) and spaceborne (MODIS) RS data, 

respectively. Multiangular hyperspectral RS data obtained from planophile row crop canopies 

also have been used by Casa and Jones (2004) and D’Usro et al. (2005) to invert the PROSAIL 

model and retrieve realistic LAI values. Koetz et al. (2005) used multi-temporal airborne 

(compact airborne spectrographic imager; casi) RS data obtained from planophile row crop 

canopies and correctly estimated LAI using PROSAIL model inversion. 

Contradictory to the above results, Botha et al. (2007) used field-measured hyperspectral 

RS data from a planophile canopy (potato) and showed that the PROSAIL model was unable to 

explain the variability in its LAI estimation for values higher than four, with a significant amount 

of underestimation. The study suggested that the model did not consider the canopy row structure. 

Both, D’Usro et al. (2005) and Koetz et al. (2005) proposed that a priori knowledge of the crop to 

better define the model input parameters (limiting their ranges, and hence, restricting their 

variability to increase the accuracy of the inversion process), may improve LAI estimation.  

Pinty et al. (2001) and Pinty et al. (2004), through the Radiative transfer Model 

Intercomparison (RAMI) exercises, have suggested that, for planophile and erectophile canopies, 

PROSAIL produces a prominent reflectance pattern in the backward direction (high magnitude of 

reflectance caused by high energy radiated from the target due to direct illumination by the Sun) 

and simulates an larger hotspot compared to other CRMs like the ½ Discrete (Gobron et al., 

1997), DART (Gastellu-Etchegorry et al., 1996), Raytran (Govaerts and Vertraete, 1998), Sprint 
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(Thompson and Goel, 1998) and Radisity-Graphics combined Method (RGM) (Qin and Gerstl, 

1999), amongst others. The RAMI exercises also suggested that the multiple-scattering 

contributions delivered by the SAIL model are also lower than the other models (Pinty et al., 

2004).  

The above-mentioned findings and the fact that the model considers variations in leaf 

angles (Verhoef, 1984) and also, accounts for the anisotropic behaviour of the soil background 

(Liang, 2007) (not tested in this study), makes the PROSAIL model widely popular for studies 

related to row crops, and an appropriate choice for this study. As per the crop types used in this 

study, the LAI estimation of only wheat has been investigated in the past, using PROSAIL model 

inversion. There is no past research work related to crop multi-angle studies that used PROSAIL. 

2.10.3 The PROSAIL model 

The PROSAIL model has been used to study plant canopy spectral and directional 

reflectance in the solar reflective domain (Jacquemoud et al., 2009). The PROSAIL model has 

also been used extensively to develop new methods to retrieve vegetation biophysical properties. 

It links the spectral variation of CR, which is mainly related to leaf biochemical contents, with its 

directional variation, which is related to canopy architecture (Jacquemoud et al., 2009).  

Hyperspectral data cannot be inverted by the SAIL model alone because the increase in 

the number of wavebands rapidly leads to an under-determined system (Jacquemoud et al., 2009). 

Since leaf reflectance, leaf transmittance and soil reflectance are the three wavelength-dependent 

input variables of SAIL, the implementation of this model to retrieve biophysical variables from 

CR spectra at given solar and view angles in a defined relative azimuthal plane requires at least 

three times as many variables as wavelengths. This makes the inversion generally impracticable 

unless several viewing angles are available (Jacquemoud et al., 2009). 

The coupling of the SAIL and PROSPECT models (Baret et al., 1992) helped reduce the 

dimensionality of the inversion problem and enabled the assessment of canopy biochemistry. The 



50 
 

output leaf reflectance and transmittance of the PROSPECT model are used in the SAIL model to 

simulate the whole spectro-directional CR field (Jacquemoud et al., 2009). The improvement in 

this model is that the leaf, and thus, the canopy optical properties can be described in terms of 

biological characteristics (chlorophyll and water content). The main input variables of the 

integrated model are shown in Table 2.3. Figure 2.14 shows a schematic representation of the 

PROSAIL model.  

One disadvantage of using the PROSAIL CRM is that it assumes homogeneous medium, 

Lambertian reflecting leaves, leaf optical properties identical for the bottom and top surfaces of 

the canopy, and a random distribution of the leaf azimuth (Verhoef, 1984). Therefore, the model 

inversion shows large estimation errors of biophysical parameters like LAI for canopies where 

vegetation does not completely cover the soil background (LAI<2) due to the model’s higher 

sensitivity to background reflectance (Jacquemoud, 1993). Inclusion of a parameter 

characterizing the soil optical properties (soil brightness parameter), as one of the model inputs, 

can help limit these errors.  

Table 2.3 : Main input variables of PROSAIL. 

Model Variable Symbol Unit

PROSPECT Leaf mesophyll structure parameter N -

Chlorophyll a+b concentration C ab  μg cm
−2

 leaf area

Leaf equivalent water thickness C w  g cm
−2

 leaf area

Leaf dry matter content C m  g cm
−2

 leaf area

SAIL Leaf Area Index LAI m
2
 m

−2

Average Leaf Angle ALA deg

Hotspot parameter s -

Reflectance of soil ρ s -

Fraction of diffuse illumination skyl -

Soil coefficient brightness factor β s  -

Zenith viewing angle θ v deg

Relative azimuth angle Ф v deg

Solar zenith angle θ s deg
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Figure 2.14 : Schematic representation of the PROSAIL CRM (Jacquemoud et al., 1995). 

2.10.4 Canopy reflectance model inversion process 

Inversion of physics-based RT models is an area of rapid development in RS of terrestrial 

environments (Liang, 2007). In an inversion approach, a parameterized forward model for 

reflectance, such as PROSAIL, takes a series of parameters describing the optical properties of 

the participating media (canopy structure in this study) and defines a mapping from parameter 

space to radiometric space (Hedley et al., 2009). Two distinctive approaches that can be used to 

invert a CRM are : 1) pre-calculation of reflectance Look-up Tables (LUTs) by repeated runs of 

the forward model such as running the model using the Multiple Forward Mode (MFM) approach 

with differing parameter values (Peddle, 1999; Peddle et al., 2004); and 2) running the model in 

the inversion mode to produce canopy physical descriptors as output, based on the inputs of 

satellite image pixel values, endmember spectra, and view and illumination geometry (Peddle et 

al., 2007).  
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A major issue with the inversion approach is that some models, particularly the ones with 

greater complexity, cannot be inverted (current-day applications show high levels of complexity 

and sophistication and/or complex landscapes (Peddle et al., 2007)). Therefore, the LUT approach 

is used to overcome some of the issues faced by traditional inversion methods (Kimes et al., 

2000; Weiss et al., 2000; Combal et al., 2002). The CRM uses the LUT approach to compute a set 

of reflectances for a pre-defined range of parameter values. This modelled reflectance set can 

then be compared with the measured reflectance to find the best match. Model inversion has been 

successfully used to map landcover over large regions using moderate to high spatial resolution 

satellite imagery (Cihlar, 2000) as well as to estimate vegetation biophysical structural 

information (LAI, biomass, etc.) and, subsequently, productivity (Cihlar et al., 2002).  

Although the LUT approach reduces the huge computational demand compared to other 

methods like the traditional optimization approach (Kimes et al., 2000), for proper representation, 

it relies on having a large database of simulated CR spectra in order to achieve a high degree of 

accuracy (Darvishzadeh et al., 2008). This increases the computational time for identifying the 

most appropriate LUT entry. Yet, this approach is preferred over the traditional inversion, which 

uses the Monte Carlo or the ray tracing approaches, because the latter methods are 

computationally intensive and are not appropriate for application on a per pixel basis for regional 

or global studies. In contrast, the LUT approach can be applied to most sophisticated models 

without any simplifications and is designed to handle any arbitrary set of Sun-view angles (Kimes 

et al., 2000). The PROSAIL CRM inversion process used the LUT approach.  

2.11 Summary 

Estimations of biophysical properties (LAI, biomass, NPP, etc.) and biochemical 

properties (chlorophyll and water content) can be improved if an agricultural canopy can be 

characterized with respect to bidirectional reflectance. While it is not possible to completely 
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resolve BRDF, a sampling from the target’s reflectance at a set of predefined zenith and azimuth 

angles can be used to give a close approximation to the real nature of the anisotropic effect.  

This chapter began with reviewing the vegetation spectral signature and its significance 

in vegetation RS studies. Past studies that used the different portions of the reflectance spectrum 

and their role in assessing the biophysical and biochemical parameters, and in computing 

different VIs were outlined. Previous research conducted to monitor and analyze agricultural 

activities such as crop status, acreage, inventory management, classification, health and yield 

assessment were also reviewed. 

Past research conducted on BRDF, techniques to sample BRDF in the laboratory and in 

field and using RT models, and the importance of this information to improve vegetation 

biophysical and biochemical property characterization were reviewed. Various field and 

laboratory goniometer systems designed to perform BRF sampling were also discussed. 

LAI, being one of the most important biophysical parameters in vegetation RS studies, 

was reviewed in some detail. Various direct and indirect methods used in the past and being used 

presently to estimate LAI and their advantages and disadvantages were reviewed. The role and 

importance of VIs to assess LAI and past research related to it were also discussed. 

The chapter ended with a review of the different RT models developed to study 

vegetation and its properties. The PROSAIL CRM and past research to study the BRDF 

properties of a crop canopy using the PROSAIL model were reviewed. The different techniques 

used to invert the PROSAIL model to derive various biophysical and biochemical parameters 

from field BRF data were also presented. 
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3. METHODS 

3.1 Introduction 

This chapter describes the field site, targets of interest, equipment and procedures used in 

the sampling of field BRF and eLAI data (henceforth referred to as LAI for simplicity). A hybrid 

method for selecting a subset of wavelengths from PCA results to capture important information 

related to the thesis objectives is presented. The BRF data from this subset of wavelengths were 

used to investigate crop differentiation. Procedures to generate two-dimensional BRF plots and 

execute the PROSAIL inversion are also discussed. The chapter concludes with a description of 

the method and assumptions adopted to differentiate the crops using the field BRF data on the 

basis of phenology and architecture. The methods adopted to compare the PROSAIL modelled 

and measured LAI estimations to evaluate the changes in LAI as a function of the modelled 

BRDF data and VZA are also presented. 

3.2 Study area and field site 

The field data acquisition was carried out at the Fairfield Farm of Agriculture and Agri-

Food Canada (AAFC) Lethbridge Research Centre, which is located at 49°40´57.64´´N and 

112°42´38.21´´W near Lethbridge, Alberta, Canada (Figure 3.1). The average elevation of the site 

is 929 m above sea level.  The study area has a moderate continental climate with an average 

maximum temperature of 12.3°C and an average minimum temperature of -1.1°C. With an 

average precipitation of 386 mm and 264 dry days, the area falls within the second driest region 

of Canada (Environment Canada, 2010). The soil type at the site is Dark-Brown Chernozem 

(Agriculture Canada, 1974) with a clay-loamy texture. The terrain in the region is broadly 

classified as flat, which is suitable for research work related to agriculture (no effect of slope). 

Based on their significance to the Canadian economy, canopies of four crops, canola 

(Brassica napus Lart. and B. campestris Lart), pea (Pisum sativum), wheat (Triticum aestivum) 

and barley (Hordeum vulgare subsp. vulgare) were used for this study. Canola and pea are 
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classified as planophile crops, whereas wheat and barley are classified as erectophile crops. 

Amongst the four, the wheat crop was not healthy (partially chlorotic and with poor emergence).  

 

Figure 3.1 : AAFC’s Fairfield study area location. The study area is shown in relation to the city 

of Lethbridge and other major cities in the Province of Alberta. Crops grown in the study area are 

usually used for various studies by AAFC, e.g., yield. 

 

3.3 Instruments and software 

The ULGS-2, equipped with the UW and DW Ocean Optics USB-4000 spectrometers, 

was used for multiangular DC measurements of the crop targets at three phenological stages. The 

DC data recorded by the UW spectrometer were converted to reflectance in real time using the 

DC recorded by the DW spectrometer (details provided in a later section), for further analysis. 

The LAI-2000 field canopy analyzer was used for LAI measurements and the data used to 

compare with the PROSAIL model LAI outputs. The software used for the different analyses 

included the G3D, ArcGIS and PROSAIL simulation model coded in MATLAB. Table 3.1 

provides the summary of the instruments and software used. 

0 1.00.5
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Table 3.1 : List of instruments and software used. 

Instrument / software Parameter measured / application

Ocean Optics USB-4000 UW spectrometer Canopy spectral radiance

Ocean Optics USB-4000 DW spectrometer Cosine receptor head to record DW irradiance

Spectralon Panel #OC77C-3115 Inter-spectrometer cross-calibration

Licor LAI 2000 Leaf area index (e LAI)

SPSS statistics software 17.0 Principal component analysis, ANOVA, T-Test

G3D Software 1.0 Waveband extraction

ArcGIS 9.3 BRF plot generation

MATLAB 7.1 PROSAIL inversion

 

3.4 Field data collection 

Field BRF and plant biophysical measurements were performed on four different crops 

with two architectural types – erectophile (wheat and barley) and planophile (canola and peas). 

The canopy biophysical measurements included canopy density, mean canopy height at all 

growth stages, row spacing and LAI (using LAI-2000). Multiangular spectroradiometric 

measurements were performed using the USB-4000 mounted on the ULGS-2 device from which 

BRF for the four crops were estimated. The canopy structural (density, height and row spacing) 

measurements were taken relative to the spectroradiometric measurements, on the same day. The 

LAI measurements were taken in the evenings or during overcast sky conditions, to reduce the 

effect of scattered blue light in the canopy and have diffuse radiation from all directions in the 

hemisphere. Data were collected at three different phenological (growth) stages – 45, 60 and 75
 

Days after Planting (DAP). The three stages coincided with vegetative growth, flowering and 

heading/podding. The DAPs were kept same for all four crop types for a valid crop differentiation 

(satellite sensors collect information from different targets around the same time, in order to 

compare them). Since the crops grown in the study area were owned by AAFC and were used for 
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a yield study, data for the final stage (100 DAP; senescent stage) could not be acquired as the 

crops were harvested to obtain yield prior to 100 DAP. 

Figure 3.2 shows the four crops at the three growth stages and Table 3.2 shows the 

respective data collection dates. The number of BRF acquisition repeats per growth stage was two 

for each crop. 

 

Figure 3.2 : The four crop types at (A) 45, (B) 60 and (C) 75 days after planting. Photos taken at 

different angles / camera positions. 

 

Table 3.2 : Data collection dates in 2009 showing the seed dates and days after planting (DAP) 

corresponding to vegetative (45 DAP), flowering (60 DAP) and the heading/podding (75 DAP) 

stages. 

Crop Seeding date

45 60 75

Canola May 25 July 09 July 24 August 08

Pea May 25 July 09 July 24 August 08

Wheat May 25 July 09 July 24 August 08

Barley June 12 July 26 August 10 August 25

Days after planting

 

Canola

Pea

(A) (B) (C)

Wheat

Barley
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3.4.1 Measurement of crop structural properties 

Each structural parameter was estimated using the average of three samples taken at 

different locations in the canopy. The number of stems was counted using a 1x1 m quadrat and 

the mean canopy height and distance between rows were measured by using a metric tape 

measure. These parameters were used to characterize each canopy at the three phenological 

stages. 

In this study, the FOV of the UW USB-4000 was set to 8° and the sensor was placed at a 

height of 2 m above the canopy surface and centered over the row. The reason for selecting 8° 

FOV is explained in section 3.4.2. The 2 m distance was maintained by adjusting the arc height at 

the three growth stages, ensuring that the spatial variance of the sensor FOV, due to change in 

crop height over time, was understood and that the instrument was always in focus. This resulted 

in a footprint of 0.28 m in diameter at nadir and an elliptical footprint with a 0.56 m length of the 

major axis at 60° VZA (Figure 3.3).  

In row-structured crop canopies, CR may be affected by canopy row effects caused by 

row orientation and Sun geometry, which affect the proportions of EMR received from shadows, 

sunlit and background soil (Zarco-Tejada et, al., 2005). The canopy density and row spacing in 

Table 3.3 suggest that the number of plants covered for canola, pea, wheat and barley at nadir 

were averaged at 4, 5, 6 and 6, respectively (8% of the per-meter-squared stem count). At 60° 

VZA, the number of plants covered were averaged at 9, 10, 11 and 11, respectively (along the 

length of major axis of the elliptical footprint (0.56 m)), spread across two or more canopy rows. 

This suggests that the proportion of viewed vegetation to viewed background may vary as a 

function of the view angle, causing a row effect. Row effects were not investigated in this study. 

The error ranges for the mean canopy heights (Table 3.4) for canola and wheat (30%), 

and for pea and barley (15%) show that the four crop canopies were heterogeneous. This suggests 

that the EMR recorded by the UW USB-4000 might be affected by canopy height. 
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Table 3.3 : Number of stems per square meter (canopy density). 

Canola 55 ± 4%

Pea 60 ± 2%

Wheat 70 ± 1%

Barley 70 ± 3%

Canopy density*                       

(stems mˉ²)

  

* Row spacing was 0.3 m for all crops. 

Table 3.4 : Mean canopy height at each growth stage. 

Days after 

planting
45 60 75

Canola 0.33 ± 30%* 1.1 ± 30%* 1.1 ± 30%*

Pea 0.30 ± 15%* 0.66 ± 15%* 0.71 ± 15%*

Wheat 0.25 ± 30%* 0.61 ± 30%* 0.71 ± 30%*

Barley 0.41 ± 15%* 0.56 ± 15%* 0.71 ± 15%*

Canopy height (m)

 

* standard deviation from the mean. 

 

Figure 3.3 : Ground sampling footprint of the UW USB-4000 mounted on the ULGS-2. With a 

FOV of 8° and the distance between UW spectrometer and canopy surface maintained at 2 m, the 

footprint at nadir is 0.28 m in diameter and at 60° VZA, the diameter is 0.56 m (elliptical, along 

the length of major axis). 

3.4.2 BRDF sampling 

To provide the necessary data for the approximation of BRDF, the sensor mounted on a 

goniometer system must be capable of acquiring DC at maximum possible hemispherical 
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positions over a target (Coburn and Peddle, 2006). As it is not possible to measure BRDF, it must 

be assumed that the reflectance derived from a limited number of angular radiance measurements, 

made over close intervals of solid angles and wavelengths, may give a reasonable approximation 

of the target’s BRDF characteristics (Barnsley et al., 1994). Sandmeier et al. (1996) and 

Sandmeier (2000) conducted BRF measurements at 15º-30º increments in the zenith-azimuth 

directions using hyperspectral data (spectral range of 300 – 2500 nm in 704 bands, with a 

resolution of 1.5 nm (300-1050 nm), 6.2 nm (1050-1840 nm) and 8.6 nm (1950-2500 nm)). 

Coburn and Nobel (2009) suggested an angular resolution of 10º-10º in the zenith-azimuth 

directions, to better sample important regions like the hotspot, and used hyperspectral data 

(spectral range of 350-1000 nm, with a resolution of 1 nm). The sensor sled and the quarter circle 

arc arrangement of the ULGS-2 (sled mounted on the arc and driven by a PC-controlled stepper 

motor) allows BRF sampling at various combinations of zenith and azimuth angles over a target 

(Coburn and Noble, 2009). 

In this research, BRF sampling was conducted for the plant canopies using the UW USB-

4000 mounted on the zenith arc of the ULGS-2 system. The ULGS-2 was programmed to acquire 

BRF data every 10
o
 in View Azimuth Angle (VAA) (0

o
 to 350

o
) and 10

o
 in VZA (0

o
 to 60

o
) 

resulting in 220 different angles (36 azimuths, six zeniths per azimuth and four nadir 

measurements (every 90
o 

azimuth)). The density of this scan pattern helped represent a relatively 

complete sampling effort (in angular terms) for the given time constraint, due to the motion of the 

Sun.  

With the ULGS-2 10º-10º angular sampling sequence, it was desirable to select a FOV 

(8º) smaller than the angular sampling intervals, which helped represent the points completely 

and minimize confusion in the sample due to over-sampling. Moreover, selecting the 8º FOV 

over a smaller FOV (e.g., 1º) helped trade off the largest spot size (with independent 

measurements for each angle) to try to avoid row effects and other known spot size problems. 

The VAA with the shadow of the arc was recorded for each scan and later used to identify the 
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angle corresponding to the SPP. The BRF sampling was repeated once for each crop type, 

keeping the target area same. 

Before and after every scan sequence, the UW USB-4000 was cross-calibrated with the 

DW USB-4000 (mounted with a cosine receptor head – uniform irradiance, irrespective of 

direction) using a white reference (Spectralon
TM

 panel) and a dark current measurement. The 

radiance received by the UW spectrometer from a white Spectralon
TM

 (Labsphere, 1998) 

polytetrafluoroethylene (PTFE) panel was compared with the irradiance recorded by the DW 

spectrometer. The differences, if any, were corrected by adjusting the light entering the sensors 

and matching their intensities. The dark current was acquired by covering the lenses with a black 

cover made of rubber and preventing all light sources from entering the two spectrometers. The 

DCs recorded by the UW USB-4000 sensor from the target were converted to reflectance with the 

help of the GCS using equation 3.1. The computed reflectances were stored in pre-designated 

folders. The above steps were repeated a second time in a total time frame of 20 mins for each 

crop at each phenological stage. 

                                                     [
           

           
]                                             3.1 

where, ρUW(λ) is the target reflectance computed, DCUW and  DCDW  are the DCs recorded by the 

upwelling and downwelling spectrometers, respectively, and DCD is the dark current measured by 

the two spectrometers. Figure 3.4 shows examples of the spectral signatures of reflectances for 

the various targets computed from the DCs measured at nadir using the USB-4000 spectrometer 

mounted on the ULGS-2. The BRF data for all crop types were acquired at 45, 60 and 75 DAP. 

These spectra show similarities over the four crop types in the VIS and for wheat and barley in 

the NIR. 
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Figure 3.4 : Spectral reflectances computed from USB-4000 spectrometer DCs at nadir for the 

four crops and for bare soil (DC recorded at a different location close to the canopies) at 60 DAP. 

Figure 3.3 demonstrates how the footprint changes with changing view angle due to the 

selected FOV (8º). The radiance measured by the UW spectrometer was integrated over a solid 

angle with a FOV of 8º, covering a footprint ranging between 0.28 m and 0.56 m (elliptical; 

length of major axis) between nadir and 60º VZA, respectively. Given the USB-4000 design, the 

spectrometer measured radiance at 1 nm bandwidths (FWHM) and the GCS averaged the output 

at small spectral bandwidths (10 nm). Therefore, this small spectral averaging may not have 

significantly influenced the canopy BRF in the hotspot region (not investigated in this thesis 

study). 

The data consistency was assessed by comparing the computed nadir reflectances for the 

same target for consecutive scan sequences. The reflectances were compared to each other by 

calculating the percentage differences between them. The procedure was done for all four crops, 

at all three growth stages. The soil reflectance was used as one of the input parameters to run the 

PROSAIL model. 
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3.4.3 Ground-based effective LAI (eLAI) estimates using Licor LAI 2000 

As part of the thesis objectives, the field BRF data were used to examine the effect of 

VZA on LAI estimation derived using inversion of the PROSAIL CRM and investigate what 

combination of VZA/VAA provides the best relationship. Ground-based LAI measurements were 

conducted to compare with the PROSAIL model LAI outputs. A Licor LAI-2000 plant canopy 

analyzer was used to measure ground-based eLAI for each crop at the three phenological stages. 

This instrument only estimates eLAI, i.e., LAI retrieved assuming random foliage distribution, 

and not total LAI (Licor, 2010) because it does not take into account the clumping characteristics 

within the crop canopy (Leblanc and Chen, 2001; Pacheco et al., 2001). 

The position of the sensor of LAI-2000 relative to the overstory canopy components 

(leaves) may affect LAI estimation for short crop canopies. The LAI measured using this 

instrument does not encompass the LAI value which is less than the sensor height. The closeness 

of the foliage element of the sensor also affects the LAI estimation from LAI-2000 (Gosa et al., 

2007). This is because the sensor’s full azimuthal range is linearly averaged by its detector ring. 

This can be taken care by using the view-restricting lens attachments at the time of data collection 

and taking multiple readings with the view aimed at various directions (Welles and Cohen, 1996). 

In this research, the LAI-2000 was used with a 270
o
 lens attachment, restricting the 

instrument FOV to 90° and eliminating potential effects caused by the presence of the operator 

(Figure 3.5). When the instrument was placed below the crops, it viewed upward through the 

canopy to sense the radiation getting through the canopy from which LAI was computed.  

LAI estimates were acquired under overcast sky conditions (Sun was behind a cloud; 

LAI-2000 underestimates LAI under partial or direct sunlight conditions), with the LAI-2000 

transect oriented perpendicular to the solar azimuth. This was done to avoid high levels of light 

scattering off of leaf surfaces and reaching the LAI-2000 sensor, which could bias the LAI 

retrieval (Miller and Norman, 1971; Leblanc and Chen, 2001). The sensor was levelled before 

taking the measurements using the bubble level on the sensor arm. The targets being crop 
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canopies, the orientation of the transect adopted to acquire the field LAI data was important in 

order to address the row effect of the canopies. Ten different measurements were acquired at 

different locations close to the BRF sampling area within each canopy, at the three growth stages. 

The measurements were grouped in diagonal transects involving LAI acquisitions within the row 

and between two adjacent rows. Each measurement consisted of a reference measurement taken 

above the canopy, followed by four measurements below the canopy. The LAI-2000 then 

computed the final eLAI. 

 

Figure 3.5 : Fisheye photo as viewed by the LAI-2000 fixed with a 270° lens attachment (Licor, 

2010). The 270° lens attachment allows light to enter the lens at 270° and blocks light into the 

remaining 90° (dark region). Figure taken from Licor (2010), and does not correspond to any crop 

type, DAP or wavelength related to this study. 

3.5 Data analysis 

The various steps involved in analysing the hyperspectral BRF data included PCA, 

waveband selection, BRF surface plot generation and plotting the BRF as a function of the VAA 

(BRF(ф)). Selected portions of the BRF(ф) results for the selected wavebands were used to 

perform crop differentiation by investigating the percentage difference and conducting Analysis 

of Variance (ANOVAs) involving the reflectances in the backscatter and forward-scatter 

directions in the SPP and the Principal Plane (PP). Crop differentiation was analyzed based on the 

three phenological stages and the two crop architecture types. 

The PROSAIL CRM inversion procedure was conducted by running the model 

repeatedly in the forward mode to compute modelled BRF data and comparing it with the field 

BRF data to find the best fit (minimum Root Mean Square Error (RMSE) in the comparison). The 
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modelled LAI estimations related to the best BRF fit were then compared with the field-measured 

LAI data to examine the effect of VZA on LAI estimation.  

Two VIs, the NDVI and the MTVI2 were computed using the field BRF data at 25 VZAs 

in the SPP and PP to examine the effect of VZA. The VIs were also compared with the modelled 

LAI estimates using regression analysis. NDVI was chosen for its popularity in RS studies and 

MTVI2 was chosen due to the inclusion of the green band (to improve LAI-VI relationship).  

3.5.1 Waveband selection 

The selection of wavebands involved a two-step process. Firstly, a PCA was performed 

on the complete BRF dataset for all crops to select the wavebands containing most information 

(Asner, 1998). A hybrid technique was then applied on the PCA results for all four crops to 

identify the wavebands based on the Principal Components (PC) with maximum frequencies of 

occurrence. A simple graphical comparison (BRF(θ)) and a paired T-test were applied on the 

reflectances of the selected wavebands in the SPP and the PP at the three growth stages to 

identify the waveband with the maximum difference in BRF at each growth stage. The paired T-

test was suitable to compare differences because the reflectance mean changed over time at the 

three wavelengths and were normally distributed. The waveband showing the maximum variation 

in reflectance at each growth stage was selected for the crop differentiation analysis.  

3.5.1.1 Principal component analysis 

  Principal Component Analysis (PCA) is a mathematical procedure that transforms a 

multivariate dataset consisting of inter-correlated variables into a dataset consisting of variables 

that are uncorrelated linear combinations of the original variables (Ingebritsen and Lyon, 1985). 

PCA has proven to be of value in the analysis of RS data (Ingebritsen and Lyon, 1985; Press et 

al., 1992). In hyperspectral RS, reduction of the dimensionality can be a key point for data 

analysis and PCA is often used to acheive this (Hughes, 1968). It is a mathematical 

transformation in the spectral domain used to produce uncorrelated output bands, segregate signal 
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noise, and create more interpretable data. It is also used to compress the information content of a 

number of bands of an image into just two or three transformed PCs. 

The components are linear combinations of the original data, created by transformation 

coefficients derived from the covariance matrix of the original data. These coefficients include 

eigenvalues that represent the half-lengths of the principal axes and eigenvectors that represent 

the orientation of the principal axes. Eigenvalues of the transformation represent the amount of 

the total variance contained within the component. The components with the highest eigenvalue, 

account for the most variance in the data and contain the most information. Each component 

receives some contribution from all of the original wavebands. This contribution can be assessed 

through the examination of the eigenvectors, as the magnitude of each element of the vector is 

directly proportional to the input waveband’s contribution. By calculating the percentage 

contribution of the original bands to each component with the highest eigenvalues, bands from 

the original dataset containing redundant information with respect to spectral discrimination can 

be defined (Fung and LeDrew, 1987). 

In this study, PCA was run using the SPSS Statistics (version 17.0) software. Reduction 

in data volume for ease of analysis was applied to the processed BRF data, for wavebands from 

400 to 900 nm, by selecting the univariate descriptive and covariance matrix extraction methods. 

The maximum number of iterations was set to 25 and the rotation method applied was Varimax 

with Kaiser normalization to simplify the interpretation of the factors and minimize the number of 

variables that have high loadings on each factor. The procedure was applied on the processed 

BRF datasets of the four crops at the three phenological stages. Once a waveband was identified, 

G3D was used to extract the corresponding reflectance from the original data. 

Paired T-test analyses were performed on the BRF data for the wavebands selected using 

PCA for the three growth stages to identify the waveband that showed maximum differences in 

reflectance for each crop. This helped identify the most suitable waveband to conduct crop 
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differentiation analysis. The waveband and growth stage with maximum difference in reflectance 

was selected for further analysis. 

3.5.2 BRF plot generation 

Two-dimensional BRF plots help to visually represent the reflectances calculated from 

DCs recorded using the USB-4000 spectrometer, mounted on the ULGS-2. All the points 

corresponding to the different angle combinations were converted into Cartesian coordinates from 

the initial spherical coordinates using equations 3.2 and 3.3. 

                                                                                                                                 3.2 

                                                                                                                                  3.3 

where r is the arc radius (2 m), θ is the VZA and ф is the VAA. The reflectance data were 

reorganized with the calculated Cartesian coordinates into a table formatted as BRF, X and Y as 

required by the ArcGIS (version 9.3) software for surface interpolation. The geographic 

orientation of the canopy plots were such that the goniometer system could not be positioned to 

ideally match the SPP. Therefore, the data were rotated to match the SPP using the goniometer 

arc shadow azimuth angle to provide the angle corresponding to the SPP (Table 3.5). 

Table 3.5 : Solar Zenith (SZA) and Azimuth Angles (SAA) for the three growth stages recorded 

at the start of the measurements. 

45 60 75

SZA 27.6° 37.9° 34.4°

SAA 177° 134° 191°

SZA 31.0° 35.3° 35.2°

SAA 146° 143° 161°

SZA 28.9° 43.0° 50.1°

SAA 159° 123° 117°

SZA 43.6° 53.9° 47.5°

SAA 120° 111° 134°

Canola

Pea

Wheat

Barley

Days after planting

 

The reflectances were divided into four classes using the Natural Breaks option in the 

Jenks Classification Cluster analysis technique (Jenks and Coulson, 1963) available in ArcGIS. 

This technique was chosen over the Equal Breaks on the basis of the respective histogram 

comparison of the data. The Jenks Classification Cluster analysis technique of selecting the class 
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intervals helps generalize the data to give the best aerial distribution and retain most of their 

significant characteristics (Jenks and Coulson, 1963). 

Each BRF plot was normalized with respect to nadir reflectance using equation 3.4.  

                                         
               

      
 x 100 %                                              3.4 

where Dnorm is the normalized percent difference, ρ(θv, фv) is the reflectance at VZA and VAA, θv 

and фv, respectively, and ρnadir is the reflectance at nadir, at a given wavelength. The normalized 

plots were used to visually compare the normalized reflectance distribution on the basis of the 

differences in their patterns, hotspot regions and asymmetrical and symmetrical spread along the 

SPP and PP, respectively. Figure 3.6 is a schematic representation of a 2-D BRF plot. The 0°-

180° and the 90°-270° planes represent the SPP and the PP, respectively. The points correspond 

to the different angle combinations where the reflectances are recorded. The reflectance data have 

been divided into four classes, grey being the lowest and red being the highest. As expected, 

asymmetry and symmetry in the data distribution can be seen along the SPP and the PP, 

respectively. Also, as expected, the hotspot region is prominently visible in the backscatter region 

in the SPP.  

 

Figure 3.6 : Schematic representation of a 2-D BRF plot (barley at 670 nm; 75 DAP). The black 

points correspond to the different angle combinations where reflectances were recorded. Note the 

asymmetry and the symmetry in reflectances along the SPP and the PP. The hotspot region is 

focused around the backscatter region in the SPP. 
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3.5.3 Crop differentiation using BRDF 

Two-dimensional graphs showing BRF as a function of VAA (BRF(ф)) were plotted for 

all four crop types, for all selected wavebands, at each growth stage (Figure 3.7). Graphs were 

plotted for nadir and all six VZAs. These graphs showed the general feature of BRF as a function 

of SAA, SZA, VAA and VZA. Figure 3.7 shows a schematic diagram of a typical BRF(ф) for a 

crop target. The significant difference in the reflectances between the backscatter (0° VAA) and 

the forward-scatter (180° VAA) directions demonstrates the asymmetry in the SPP. Similarly, the 

negligible difference in reflectances between the 90° and 270° VAA demonstrates symmetry in 

the PP. It is also seen that, as the VZA increases from 10° to 60°, the magnitude of reflectance 

increases in the SPP and decreases in the PP.  

Differences between reflectances in the backscatter and forward-scattering directions in 

the SPP and the PP were computed for the four crops at all three wavebands for all the VZAs. 

The differences between reflectances were then compared in terms of differentiating one crop 

from another. 

 

Figure 3.7 : BRF as a function of VAA for three different VZAs (schematic diagram). Note the 

significant difference in the reflectances between the backscatter (0° VAA) and the forward-

scatter directions (180° VAA) demonstrating asymmetry in the SPP, and the negligible difference 

in the reflectances between 90° and 270° VAA demonstrating symmetry in the PP. 
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Considering the type of data involved in the crop differentiation analysis (four data sets, 

each consisting of 7 variables), a one-way ANOVA statistical technique was appropriate to 

analyze the degree of difference in reflectances between the backscatter and forward-scatter 

directions in the SPP and the PP. One-way ANOVA was performed on the BRF of each crop for 

the three growth stages to investigate whether the four sets of reflectances (backscatter and 

forward-scatter in the SPP, and in the PP) were significantly different from each other in terms of 

the mean reflectance. Post-Hoc multiple comparisons were done to identify the set with 

maximum variability, by assuming equal variances and selecting the Bonferroni test type to keep 

the overall error rate positives to less than the user-specific p-value cut-off. 

3.5.4 LAI estimation using PROSAIL inversion 

Optical RT modelling seeks to formulate the relationships between RS measurements and 

the biophysical properties of the target (Kallel et al., 2008). The successful inversion of RT 

models using field BRF data can yield an estimate of the biophysical properties (Jacquemoud et 

al., 2000). Hence, it is important to investigate the role of the available multi-angle BRF data on 

biophysical parameter estimations using a CRM and comparing the modelled outputs with field 

data. 

A RT model inversion process consists of adjusting the values of the input canopy 

biophysical variables V={V1,V2,....,Vn} so that the modelled BRF (M) provides the best match 

with those obtained by the sensor (R) in the field in a range of directions and wavebands (Combal 

et al., 2002). The model M requires a set of input variables (n) and the corresponding 

measurement configuration (C) (the solar angles, the observation angles and the wavelengths). 

The model M fits the measured BRFs (R) with an error (ɛ) (Equation 3.5). The uncertainity ɛ 

accounts for both measurement and model uncertainities and represents the adequacy between the 

modelled and the measured values (Combal et al., 2002). 

                                                                                                    3.5 
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Estimation of LAI was accomplished by inverting the PROSAIL model using the LUT 

approach (Weiss et al., 2000). A LUT of input variables (an array of 50,000 values of each 

variable) was built in advance of the actual inversion by setting the minimum and maximum 

limits of the input variables, which were based on field knowledge and past studies (explained 

later, in this section) and through forward calculations from the input variables by running the 

model using the MFM approach (Peddle et al., 2004; 2007). No pre-defined increment steps were 

used in the LUT generation, and the set of input variable combinations were randomly generated 

by drawing each variable using a uniform distribution function. The random generation ensured 

better sampling of domains where the reflectance was more sensitive to the considered variables 

(Weiss et al., 2000) (sensitivity not tested in this study). The uniform sampling was applied to the 

input variables after transformation as suggested by Weiss et al. (2000) (Table 3.8). In their study, 

the transformation consisted in applying a function (F) to each variable (x) such as the sensitivity 

of the reflectance (ρ) to the transformed variable did not change (dρ/dF(x) ≈ constant). The 

authors identified these transformations based on a trial and error process in the case of red and 

NIR nadir observations. For example, in the case of LAI, the canopy fractional cover is first 

sampled using a uniform distribution. LAI values are then derived from the sampled values by 

inverting the gap fraction model.  

The minimum and maximum limits of LAI were selected based in the prior knowledge 

from the field LAI data collection (Combal et al., 2002). The ranges of the parameters that were 

not measured (e.g., Cab and ALA) or were difficult to measure (e.g., N, Cm and Cw) in the field, 

were fixed to nominal values retrieved from past studies conducted on various row crop canopies 

with erectophile and planophile architectures like corn, soybean, wheat and barley (e.g, 

Jacquemoud et al., 2000; Haboudane et al., 2004; Houborg et al., 2007). These studies showed 

fair levels of accuracy (RMSE : 0.28-0.46; r² : 0.98-0.74) in LAI estimation for row crop 

canopies, and therefore, the parameter ranges used by them were relevant for this study. Table 3.6 

summarised the parameter ranges used in the past studies. 
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Table 3.6 : Input parameter ranges used in past PROSAIL model inversion studies. These studies 

showed fair levels of accuracy (RMSE : 0.28-0.46; r² : 0.98-0.74) in LAI estimation for various 

row crop canopies, making these ranges relevant for this study. For the cases where the “Incr” 

column is N/A, the parameter values were drawn randomly within the specified ranges using 

uniform distribution functions. 

Parameter Symbol Units Reference Min Max Incr

Cab  μg/cm² Jacquemoud et al. (2000) 35 35 N/A

Weiss et al. (2000) 20 100 N/A

Combal et al. (2002) 20 100 N/A

le Marie et al. (2004) 10 90 1

Houborg et al. (2007) 10 110

Darvishzadeh et al. (2008) 15 55

Cw  g/cm² Weiss et al. (2000) 0.005 0.025

Combal et al. (2002) 0.005 0.025

Haboudane et al. (2004) 0.0015 0.0015 N/A

le Marie et al. (2004) 0.02 0.02 N/A

Houborg et al. (2007) 0.001 0.07

Darvishzadeh et al. (2008) 0.01 0.02

Cm  g/cm² Haboudane et al. (2004) 0.0035 0.0035 N/A

le Marie et al. (2004) 0.0020 0.014 0.001

Houborg et al. (2007) 0.0010 0.025

Darvishzadeh et al. (2008) 0.005 0.01

Jacquemoud et al. (2000) 1.51 1.51 N/A

N Weiss et al. (2000) 1 2.5 N/A

Combal et al. (2002) 1 2.5 N/A

Haboudane et al. (2004) 1.55 1.55 N/A

le Marie et al. (2004) 1.25 2.25 0.1

Houborg et al. (2007) 1.55 1.55 N/A

Darvishzadeh et al. (2008) 1.5 1.9

s Weiss et al. (2000) 0.05 1

Combal et al. (2002) 0.05 1

Houborg et al. (2007) 0.5 0.5 N/A

Darvishzadeh et al. (2008) 0.05 1

βs Weiss et al. (2000) 0.5 1.5

Combal et al. (2002) 0.5 1.5

Houborg et al. (2007) 0.5 1.5

Darvishzadeh et al. (2008) 0.5 1.5

Chlorophyll a+b 

concentration

Leaf equivalent 

water thickness

Leaf dry matter 

content

Leaf mesophyll 

structure 

parameter

Hotspot size 

parameter

Soil coefficient 

brightness factor

 

Weiss et al., (2000) conducted a sensitivity study to achieve a reasonable balance 

between model range, increment precision, multiple matches, and investigated the resulting 

redundancy for some output structural variables introduced from the multiple matches. They 

suggested that the absolute RMSE between estimated and actual LAI values was high for LUT 

size smaller than 50,000, which was specific to their study. Similar RMSEs are observed for 

LUTs with sizes ranging from 50,000 to 280,000 (Weiss et al., 2000). In this study, although the 

other LUT sizes were not tested for parameter retrieval accuracy, a LUT size of 50,000 provided 
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a reasonable compromise between quality of parameter retrieval and available computer 

resources, to estimate canopy variables.  

 Reflectances were computed for each of the 50,000 sets of input variables in the LUT 

using the MFM approach (Peddle et al., 2004; 2007). A reflectance LUT was built for every SZA 

(corresponding to each crop type at three growth stages), by running the inversion for each of the 

13 VZAs separately in the SPP and in the PP. The reflectances in the LUT closest to the 

corresponding field reflectance measurements were determined using the RMSE (Equation 3.6) 

that was calculated for all the VZAs (SPP or PP) and the three wavebands. 

                      √
 

 
∑         

      
   

                                       3.6   

where ρField,λ and ρLUT,λ are the field-measured and the modelled reflectances at wavelength λ, 

respectively, and n is the number of wavebands (=3).  

The LAI value from the set of input variables corresponding to the least RMSE between 

the simulated and the field reflectances is taken as the solution of the model inversion. However, 

this is not always the optimal solution, because it is not unique (similar match between the 

simulated and the measured reflectances generated for multiple sets of solutions). In such cases 

producing similar reflectances, differences in the other input variables of PROSAIL (due to the 

random selection process), create a compensation effect (Dorigo et. al., 2007).  

Dervishzadeh et al. (2008) investigated the use of statistical indicators, such as mean and 

median from the best 10, 20, 40 and 100 solutions to indicate the importance of considering 

multiple solutions rather than the single LUT solution with the minimum RMSE value. An 

important consideration is also the structural overlap. For example, if the structure is the same for 

two sets of matches, it need not be considered as a multiple match, the inverted solution being 

identical for both the sets. Their results, based on one-way ANOVA, showed no significant 

differences between the statistical parameters (mean and median) used for any number of 

solutions. They considered the first 100 solutions as the best measures for estimating canopy 
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biophysical variables. Based on their findings, the first 100 solutions were selected as the best 

measures for estimating LAI in this study (the statistical indicators on multiple solutions were not 

tested in this study). The LAI value corresponding to the median of the 100 solutions was 

selected as the model estimated LAI. Median was used to avoid the influence of any extreme 

values in the output, which may affect the mean (distribution being skewed towards a direction 

away from the centre), and also, avoid multiple LAI values, possibly arising from multiple 

modes, within the output. The median LAI estimate value was also closest to the corresponding 

field-measured LAI value.             

Table 3.7 : Inputs for PROSAIL inversion. Note that the model sampled the variables in multiple 

step sizes in order to ensure that maximum possible combinations of the input variables were 

made available, which, in turn, increased the probability of the best possible solutions (minimum 

possible RMSE). To sample the variables, 50,000 values of each variable were randomly drawn 

within particular distribution functions (Combal et al., 2002).  

Min. Max. Min. Max.

Chlorophyll a+b 

concentration

C ab (μg cm
-2

 leaf 

area)
20 80 0.033x10

-7 0.016

Leaf equivalent water 

thickness
C w (g cm

-2
 leaf area) 0.001 0.01 0.57x10

-11
2.07x10

-6

Leaf dry matter content C m (g cm
-2

 leaf area) 0.003 0.02 C m 0.15x10
-11

4.7x10
-6

Leaf mesophyll structure 

parameter
N 1 2.5 N 0.0037x10

-7 0.00035

Leaf area index LAI  (m
2
m

-2
) 0 7 7.2x10

-11 0.0059

Mean leaf inclination angle 

(average leaf angle)
θ l (°) (ALA) 5 85 cos (θ l) 0.19x10

-7 0.045

View zenith angle θ v (°) 0° 60° θ v (°) 10° 10°

Relative azimuth angle Фv (°) Фv (°) 10° 10°

Solar zenith angle θ s (°) θ s (°)

Reflectance of the 

underlying soil
ρ s ρ s

Fraction of diffuse 

illumination
skyl 0 0 0

Hotspot size parameter s 0.0001 1 1.9x10
-11 0.0011

Soil coefficient brightness 

factor
β s 0.3 2 β s 0.0032x10

-7 0.00043

0

Model input variable Symbol (units)

SPP and PP

Field data

Available

Available

Difference in variable output*Range Transformed 

variable

Table 3.6

100/abC
e


wC
e

50

2/LAIe

se 3

 
* Minimum and maximum differences between the 50,000 simulated input variables after 

arranging in ascending order. 
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Figure 3.8 : Flowchart describing the steps involved in estimating LAI using PROSAIL inversion. 

3.5.5 Effect of VZA on VIs and modelled LAI estimates 

VIs play an important role as indicators of the conditions of vegetated surfaces (Jordan, 

1969). They use the absorption and reflectance features of a vegetation spectrum and can be used 

to monitor plant health and biophysical parameters like LAI (Gitelson, 2004). The anisotropic 

nature of reflectance from vegetation surfaces affects VIs (Syren, 1994; Peddle et al., 2001a) and 

leads to error in monitoring biophysical parameters. Therefore, it becomes important to compute 

VIs and establish their relationship with the biophysical parameters, which in turn, help quantify 

the photosynthetic capacity of the plant canopies appropriately. In this research, the SR, NDVI, 

GDVI, SAVI, OSAVI and MTVI2 were computed from the field reflectance data in the SPP and 

the PP and normalized to the respective nadir values (for ease in comparison) using equation 3.7. 

The six VIs were computed using equations 2.7, 2.8, 2.11, 2.12, 2.13 and 2.14, respectively. Both 

EVI and MTVI2 are responsive to canopy structural variations, including LAI. In this study, since 

MTVI2 was considered, EVI could be omitted from further investigations. The differences in the 

normalized percent VIs were then investigated as a function of the VZA.  

Retrieving the 

corresponding 

input parameters
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 x 100 %                                       3.7 

where VINorm is the normalized percent VI, VI(θv, фv) is the VI at VZA and VAA, θv and фv, 

respectively, and VINadir is the VI at nadir. 

Finally, the VIs were compared with the modelled LAI estimates at different view angles 

using regression analyses and comparing their respective r
2
 coefficients to identify the cases 

showing best relationship. The LAI-VI relationships for the four crop types were obtained for all 

phenological stages and in both the SPP and PP. The regression curves at all off-nadir VZAs were 

compared with the regression curve at nadir to determine the role of BRF on the PROSAIL model 

LAI estimations. 

3.7 Summary 

This chapter described the study area in terms of its topographic description and climatic 

conditions and explained the importance of the site to conducting research in agricultural RS. A 

brief description of the types of crops selected was provided and their importance in addressing 

the research objectives. The different instruments and software used to measure and process the 

BRF, radiance and LAI data, and why and how they were used were explained in detail.  

The different procedures adopted to accomplish the field data collection were explained, 

including the BRF sampling process using the ULGS-2 platform equipped with the Ocean Optics 

USB-4000 and the eLAI sampling using the LAI-2000. Procedures adapted for the UW and DW 

USB-4000 spectrometer cross-calibration (using a Spectralon
TM

 panel), and the conversion of DC 

recorded by the USB-4000 to reflectance were also explained.  

The methods developed and used to analyse the field BRF data to differentiate the four 

crop types were explained in detail. These included the waveband selection and extraction, and 

the BRDF plot generation and analysis techniques. The method used to estimate LAI using the 

PROSAIL model inversion process and the procedure to compare the modelled and field-

measured LAI measurements to analyse the role of BRDF on LAI estimation were explained. The 
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chapter concluded with the explanation of the method used to compute SR, NDVI, GDVI, SAVI, 

OSAVI and MTVI2, and the procedures used to assess the role of BRDF on the VIs and establish 

their relationships with modelled LAI estimates based on PROSAIL model inversion. 
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4. RESULTS 

4.1 Introduction 

The goal of this research was to assess the role of bidirectional reflectance in vegetation 

RS. The unique contribution of this research lies in the empirical RS data collected using a 

spectrometer mounted on a new goniometer system (ULGS-2) at an interval of 10° view azimuth 

and zenith angles. Agricultural crops were selected for this study because of their structural 

simplicity and spectral properties that are less complicated than those of other vegetation types 

such as rangelands and forests. The role of field BRF in differentiating crop types, estimating LAI 

using model inversion techniques and computing various spectral indices was assessed.  

The BRF data derived from the four crops were investigated with respect to their 

biophysical parameters, temporal characteristics and angular dependencies. The results of the 

investigation were then assessed to evaluate discrimination power of these multiangular 

reflectance data for crop separation. 

Empirical methods to sample the BRDF for vegetation are difficult as they require 

specialized instruments (goniometers) and ideal field measurement conditions. Canopy RT 

models are useful for deriving BRF of a surface, which, in turn, can be used to retrieve vegetation 

biophysical and biochemical properties from RS data (Goel, 1988). In this research, the available 

empirical BRF data were used to estimate LAI by inverting PROSAIL and the results were 

compared with field-measured LAI data to evaluate how BRF affects the modelled LAI 

estimation. 

It is known that the reflectance anisotropy of vegetation surfaces affect VIs (Wardley, 

1984; Asrar et al., 1992; Coburn et al., 2010). This leads to error in monitoring the biophysical 

parameters using VIs. In this research, six VIs, SR, NDVI, GDVI, SAVI, OSAVI and MTVI2, 

were computed from reflectances in the SPP and the PP. The changes in the six VIs as a function 

of the respective VZAs were analyzed to evaluate how BRDF affects the indices. 
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4.2 Data consistency 

Data consistency plays important roles in strengthening the various links in the RS chain 

(Teillet et al., 2004). Without assuring adequate data consistency, RS technology will not deliver 

the desired value. Field BRF measurements suffer from variations in irradiance due to changing 

atmospheric conditions and Sun positions (Sandmeier et al., 1998). Therefore, it is important to 

ensure that the BRF measured in the field for a target is consistent for a given growth stage. The 

consistency of BRF data was investigated by comparing consecutive nadir reflectances for each 

crop at each growth stage. 

Two BRF scans of the same area in the canopy (a repeated sample) were performed for 

the four crop types at each growth stage, to create a back-up for each field measurement dataset. 

Each sequence recorded four different nadir DCs (every 90°). The consistency of the data 

acquired was assessed by comparing the eight nadir reflectances (four from each scan) using a 

one-sample T-test to examine the mean difference between the samples. The results of the one-

sample T-test showed that the nadir reflectances at every 90° and for the consecutive scans were 

not significantly different (p<0.05), thus indicating good consistency of BRF data acquired using 

the USB-4000.  

4.3 Waveband selection 

Since the type of data used in this research was hyperspectral, it was important to reduce 

the dimensionality of the field BRF data by identifying the PCs to get the wavebands containing 

most information by running a PCA. The most frequently occurring bands in PC1 and PC2 were 

identified for the four crop types at the three growth stages. The identified wavebands were 

compared to each other quantitatively at the three growth stages to select the ones which showed 

maximum differences in reflectances. These bands were used for further investigations. 
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4.3.1 Principal component analysis 

Table 4.1 shows the results of the PCA performed on the BRF data obtained for all four 

crops at each growth stage. The analyses showed approximately 98.7% (average) of variance in 

the original datasets was explained by the first two components. PC 1 accounted for 80-98% of 

the total variance in the data and was loaded heavily in the NIR region, ranging between 

wavebands centered at 740-860 nm. PC 2 accounted for 0.06-18.3% of the variance and was 

loaded in the red region of VIS, ranging between wavebands centered at 620-670 nm. The nature 

of the target (vegetation), which shows high reflectance in the NIR region of the spectrum 

(reflectance from the cell walls) and high absorption in the red region (chlorophyll absorption), 

may have influenced the locations of PC 1 and PC 2 in the 740-860 nm and 620-670 nm 

waveband regions, respectively. A third waveband, centered at 560 nm was also selected, 

consistent with the green peak of vegetation reflectance (Gates et al., 1965; Knipling, 1970). 

Table 4.1 : PCA results on BRDF data for all four crop types in the three DAP. 

Waveband 

center (nm)

Variance 

explained (%)

Waveband 

center (nm) 

Variance 

explained (%)

Waveband 

center (nm)

Variance 

explained (%)

PC 1 740 97.5 860 92.0 860 98.0

PC 2 770 0.0600 670 6.87 670 1.44

PC 3 560 0.00100 560 0.00150 560 0.00100

Total accum. variance 97.6 98.9 99.4

PC 1 800 95.9 860 90.6 860 96.4

PC 2 640 3.49 670 8.65 670 3.04

PC 3 560 0.00100 560 0 560 0.00100

Total accum. variance 99.4 99.3 99.4

PC 1 800 79.9 820 85.3 780 88.2

PC 2 620 18.3 660 8.65 650 11.6

PC 3 560 0.00300 560 0.00100 560 0

Total accum. variance 98.2 94.0 99.8

PC 1 800 93.2 840 95.0 820 96.3

PC 2 660 6.07 670 4.69 670 3.61

PC 3 560 0 560 0 560 0

Total accum. variance 99.3 99.7 99.9

Day 45 Day 60 Day 75

Barley

Canola

Pea

Wheat

 

Figure 4.1 shows a frequency histogram of the number of times each waveband got 

repeated in the histogram for the four crops and the three growth stages. The most frequent 
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waveband was centered at 860 nm, followed by 800, 820, 740, 780 and 840 nm for PC 1, and at 

670 nm, followed by 660, 620, 640 and 650 nm for PC 2. The two most frequent wavebands, one 

centered at 860 nm in the NIR and the second centered at 670 nm in the VIS, were selected for 

crop differentiation from the original 51 on the basis of their frequency of occurrence being the 

highest. 

 

Figure 4.1: Histogram showing the frequency of occurrence of the waveband from the PCA 

analysis for the four crop types and the three growth stages. 

 

4.3.2 BRF normalization 

Normalization is the process of dividing multiple sets of data by a common variable to 

negate the variable’s effect on the data (Codd, 1970). Normalizing data with respect to a 

reference value helps produce well-structured relations and simplifies data comparison. In this 

study, the field BRF data were normalized with respect to the nadir reflectance to standardize the 

scales for analysis, which in turn, allowed BRF data comparison between different growth stages 

and wavebands for a crop type, and also, between different crop types. The normalization was 

carried out using equation 3.2. The normalized BRF plots had a common data range for all cases 

(-34% to 100%), which allowed visual comparison between the plots and better understanding of 

the target BRF. 
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Figure 4.2 shows how the BRF(θ) in the SPP differed amongst 45, 60 and 75 DAP at 670 

nm for canola and barley. The BRF was normalized to nadir reflectance using equation 4.1. 

Reflectances at the three growth stages were significantly different from each other based on the 

paired T-test (p<0.05). Figure 4.2 also shows how the BRF(θ) in the SPP differed between 560, 

670 and 860 nm wavebands at 60 DAP for canola and barley. Reflectances in the three 

wavebands were significantly different from each other based on a paired T-test (p<0.05) 

performed. Significant differences were seen at 60 DAP in the 670 nm waveband for canola (63% 

and 54% at -60º and -40º VZAs, respectively) and in the 560 nm waveband for barley (83%, 54% 

and 44% at -60º, -50º and -40º VZAs, respectively). Similar results were seen for pea (57%) and 

wheat (79%) crops. These results showed that the variability in available BRF data at different 

growth stages and different wavebands, at off-nadir VZAs in the SPP, could play an important 

role in crop differentiation. The high variability seen in the off-nadir reflectances also made it 

important to investigate their potential to differentiate crops compared to reflectance at nadir.   

 

Figure 4.2 : BRF(θ) for canola and barley crops at 670 nm and on 60 DAP. The graphs show how 

the reflectances differ with growth stages at 670 nm and with wavebands at 60 DAP. Maximum 

differences with respect to the nadir reflectances are at 60 DAP in the 670 nm waveband (63% for 

canola and 83% for barley). All reflectances were normalized to nadir reflectance. 
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Often, data placed over a pre-set scale for display can show or hide important 

relationships related to the study. Selection of the proper data distribution technique and class 

intervals helps generalize the data to give the best distribution but retain most of the significant 

characteristics. Figure 4.3 compares the original and normalized BRF surfaces for canola for the 

wavebands centred at 560, 670 and 860 nm at 60 DAP. The normalized plots show that the 

pattern at all three wavebands centred at 560, 670 and 860 nm were different from each other in 

terms of its angular reflectance distribution. The distribution in the case of the normalized BRF 

plot for the 860 nm waveband (Figure 4.3 (B)) was limited to two classes, ranging from -34% to 

+10%. This difference in the reflectance distribution pattern at different angles in the 860 nm 

waveband, which is due to differences in the nature of EMR interaction in vegetation targets in 

the NIR region, could be an important tool to differentiate crop types. 
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Figure 4.3 : Canola BRF plots at 60 DAP. Original surfaces (A) versus normalized surfaces (B). 

The BRFs at different angles for the three original surfaces do not show much difference, 

whereas, the reflectance distribution for the normalized surfaces is different at 860 nm. 

 

Figure 4.4 compares the BRF plots with their respective frequency histograms generated 

for canola at 670 nm and 60 DAP using Natural Breaks (Jenks Classification) and Equal Interval 

techniques. The blue vertical lines in the histograms show the breakpoints. As expected, the plots 

show different patterns. The Jenks Classification technique provided a more faithful breakdown 

of the data distribution into classes, with the region around the backscatter direction in the SPP 

showing higher reflectances and, therefore, was used for data analysis in this thesis. The other 

three crops showed similar results (not shown). 
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Figure 4.4 : Comparison of canola BRF(θ,ф) plots at 670 nm on 60 DAP and their respective 

frequency histograms using (A) Natural Breaks (Jenks Classification Cluster analysis) and (B) 

Equal Intervals. Figures were extracted directly from ArcGIS 9.3. The blue vertical lines indicate 

the breakpoints. Differences between both patterns are clearly noticeable, especially around the 

hotspot area in the backscatter direction, SPP. 

4.4 Crop differentiation using selected portions of BRF(ф) 

The general feature of changes in BRF as a function of view and illumination angles is 

differences in reflectances between the backscatter and forward-scatter directions. These 

differences demonstrate asymmetrical and symmetrical natures in reflectance patterns in the SPP 

and the PP, respectively. These differences in anisotropic reflectance can potentially help 

differentiate various crop types (Breece and Holmes, 1971). 

In this research, crop differentiation was accomplished by comparing the variability in 

the BRF(ф) data between the backscatter and forward-scatter directions in the SPP and PP for the 

four crops at three phenological stages. The differences were quantified by comparing the 

variability at 560, 670 and 860 nm, through nadir and the six VZAs. ANOVA was used to test for 

!

!!!!
!
!
!
!
!
!
!
!
!
!

!
!!

!!!!!
!

!
!
!
!
!
!
!
!
!
!
!!!

! ! !
!

!

!

!

!

!

!

!

!

!

!

!
!

!!!!!
!

!

!

!

!

!

!

!

!

!

!

!
!

! !

! !
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

! !
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

! !
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

! !
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!!!!
!
!
!
!
!
!
!
!
!
!

!
!!

!!!!!
!

!
!
!
!
!
!
!
!
!
!
!!!

! ! !
!

!

!

!

!

!

!

!

!

!

!

!
!

!!!!!
!

!

!

!

!

!

!

!

!

!

!

!
!

! !

! !
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

! !
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

! !
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

! !
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

(A) (B)

F
re

q
u

en
cy

Reflectance Reflectance

F
re

q
u

en
cy

Breaks points Breaks points

180 

90 270 

0 

90 270 

180 

0 

8.7% - 12%

7.1% - 8.6%

5.6% - 7%

3.1% - 5.5%

10.1% - 12%

7.9% - 10%

5.6% - 7.8%

3.1% - 5.5%



86 
 

significant differences in reflectances between SPP (backscatter and forward-scatter directions) 

and PP (both directions) for each crop. Table 4.2 shows the difference (D) in reflectances, 

calculated using equation 4.1. 

                                      
∑          
    
    

 
                                                                  4.1  

where, ρB and ρF are the reflectances in the backscatter and forward-scatter directions, 

respectively, and n is the number of VZAs (= 7). The shaded cells in the table were of interest as 

the differences in the reflectance between the backscatter and forward-scatter directions in the 

SPP were the highest. Thus, they were investigated with respect to differentiating the crops. 

Table 4.2 : Differences in crop reflectances between the backscatter and forward-scatter 

directions in the SPP and PP at the three stages. Shaded cells represent the cases used for the 

differentiation. 

SPP PP SPP PP SPP PP

Canola 560 0.033 0.0050 0.040 0.017 0.035 0.012

670 0.015 0.0030 0.029 0.017 0.014 0.0040

860 0.10 0.023 0.045 0.029 0.057 0.059

Pea 560 0.037 0.0040 0.043 0.0060 0.045 0.012

670 0.017 0.0030 0.017 0.0020 0.017 0.0040

860 0.16 0.029 0.23 0.024 0.23 0.035

Wheat 560 0.021 0.0080 0.048 0.0080 0.058 0.0050

670 0.021 0.0070 0.046 0.020 0.051 0.0090

860 0.019 0.016 0.069 0.029 0.077 0.026

Barley 560 0.036 0.016 0.071 0.0040 0.061 0.0070

670 0.027 0.016 0.056 0.0090 0.061 0.0060

860 0.077 0.060 0.11 0.043 0.11 0.043

Day 45 Day 60 Day 75
Crop

Wavelength 

(nm)

 

For the two planophiles, canola can be separated from pea on the basis of the differences 

in their respective reflectances in the 860 nm waveband in the SPP at 60 DAP (Table 4.2; Figure 

4.5). Canola reflectance showed a lower variance of 0.045 compared to 0.23 in pea indicating that 

the differences in canola reflectances were much less than in the case of pea. This suggests that 

the NIR region in SPP at 60 DAP is important in differentiating these two planophile crops. The 

canola BRF(ф) plot also demonstrated asymmetry in the reflectances between the backscatter and 

forward-scatter directions in both the SPP and the PP at 860 nm compared to pea, which were 
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relatively symmetrical. This may be due to the differences in the nature of the two crop canopies, 

pea being more structurally random in nature compared to canola.    

 

Figure 4.5 : Plots of canola (A) and pea (B) BRF(ф) at 860 nm waveband at 60 DAP showing 

how the reflectances change over all VAAs for the seven VZAs. The legend refers to the VZAs. 

Note the asymmetry between the backscatter and forward-scatter directions in the SPP for both 

crop types. As expected, pea showed symmetry in the PP, which is not the case in canola (high 

levels of multiple scattering within the canopy may explain this). 

For the two erectophiles, wheat can be separated from barley on the basis of the 

differences in their respective reflectances in the 860 nm waveband in the SPP at 60 DAP (Table 

4.2; Figure 4.6). The wheat reflectance showed a lower variance of 0.069 compared to 0.11 for 

barley. This suggests the NIR region in SPP at 60 DAP is important in differentiating these 

erectophile crops. The differences in head structure between the two crops at this stage, the barley 

head drooping downwards compared to the wheat head, may explain these differences. Similar 

observations were also seen in the 860 nm waveband at 45 and 75 DAP with the wheat 
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reflectance showing lower variance than barley (45 DAP : 0.019 compared to 0.077; 75 DAP : 

0.077 compared to 0.11). This suggested that 45 and 75 DAPs could also be used to differentiate 

these crop types.  

 

Figure 4.6 : Plots of wheat (A) and barley (B) BRF(ф) at 860 nm waveband at 60 DAP showing 

how the reflectances changed over all VAAs for the seven VZAs. As expected, asymmetry and 

symmetry are seen between the backscatter and the forward-scatter directions in the SPP and the 

PP, respectively for both crop types. 

The planophile crops can be separated from the erectophile crops on the basis of their 

reflectance characteristics in the 860 nm waveband in the SPP at 45 DAP (Table 4.2; Figure 4.7). 

The differences in reflectances between the backscatter and the forward-scatter directions in the 

SPP for the planophile crops showed higher variability (0.10 and 0.16 for canola and pea, 

respectively) compared to the erectophile crops (0.019 and 0.077 for wheat and barley, 

respectively). The NIR waveband region of the spectrum in SPP at an early-growth stage is 

important in separating planophiles from erectophiles crops.  
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The planophile crops can also be separated from the erectophile crops on the basis of 

their reflectance characteristics in the 670 nm waveband in the SPP at 60 DAP (Table 4.2; Figure 

4.8) with the reflectances of the planophiles showing lower variability than the erectophiles 

(0.029 and 0.017 for canola and pea compared to 0.046 and 0.056 for wheat and barley, 

respectively). Similar observations were also seen at 75 DAP (Table 42.; Figure 4.9). The 

reflectances of the planophile crops showed lower variability than the erectophile crops (0.014 

and 0.017 for canola and pea compared to 0.051 and 0.061 for wheat and barley, respectively) in 

this waveband, at this stage. 

These results suggest that, although the reflectances between the planophiles and the 

erectophiles differed optimally at 45 DAP, making it the preferred growth stage for crop 

differentiation, 60 and 75 DAPs also played a role in differentiating these crop types on the basis 

of their architecture. This observation may be helpful in a case where, due to some reason, RS 

observation at an early growth was not possible, or the data recorded was erroneous.   
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Figure 4.7 : Plots showing BRF(ф) comparison between (A) canola, (B) pea, (C) wheat and (D) 

barley at 860 nm waveband at 45 DAP showing how reflectances changed over all VAAs for the 

seven VZAs. The planophile crops showed higher variability in reflectances compared to the 

erectophile crops in this waveband, at this growth stage. 
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Figure 4.8 : Plots showing BRF(ф) comparison between (A) canola, (B) pea, (C) wheat and (D) 

barley at 670 nm waveband at 60 DAP showing how reflectances changed over all VAAs for the 

seven VZAs. The planophile crops showed lower variability in reflectances compared to the 

erectophile crops at this growth stage. 
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Figure 4.9 : Plots showing BRF(ф) comparison between (A) canola, (B) pea, (C) wheat and (D) 

barley at 670 nm waveband at 75 DAP showing how reflectances changed over all VAAs for the 

seven VZAs. The legend refers to the VZAs. Note the asymmetry between the two planes in the 

SPP and symmetry between the two planes in the PP. As seen at 60 DAP, the planophile crops 

also showed lower variability in reflectances compared to the erectophile crops. 
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Table 4.3 provides a summary of the ANOVA results used to analyse the differences the 

backscatter and forward-scatter BRF of the four crops in the SPP and PP. The results showed 

significant differences between the respective reflectance means. For all four crops, the results of 

the ANOVAs showed that the BRF in the backscatter and forward-scatter in the SPP and PP were 

significantly different from each other (F = 14.2, df = 27, p < 0.05). In most cases, maximum 

differences were observed in the backscatter direction in the SPP (Table 4.3). Canola and wheat 

showed maximum difference in the forward-scatter direction in SPP at 45 DAP. For canola, 

wheat and barley, no significant differences were observed at 860 nm (0.050 < p < 0.10). Pea 

showed maximum difference in the backscatter direction in SPP for all combinations, which may 

be due to its more random structural characteristics. 

Table 4.3 : Summary of ANOVA statistics to differentiate crop reflectances in the SPP and PP at 

the three growth stages (selected cases). The mean indicates the average reflectance for the 

specific case. F is the F-distribution, p is the p-value and B* and F* are the backscatter and the 

forward-scatter directions. Shaded cells denote cases with the maximum degree of differences. 

SPP / B* SPP / F* PP / B* PP / F*

Canola / 45 / 860 10.9 0.493² 0.412¹ 0.470³ 0.457³

Canola / 60 / 560 7.19 0.130¹ 0.100² 0.105² 0.0968²

Canola / 60 / 670 8.14 0.0793¹ 0.0568² 0.0627³ 0.0515²

Pea / 60 / 560 32.1 0.0501¹ 0.0869² 0.0964² 0.0984²

Pea / 60 / 670 18.6 0.0203¹ 0.0345² 0.0414² 0.0406²

Pea / 60 / 860 31.0 0.251¹ 0.444² 0.462² 0.451²

Wheat / 45 / 670 6.68 0.0696² 0.0525¹ 0.0632⁴ 0.0688³

Wheat / 60 / 670 16.6 0.0949¹ 0.0568² 0.0563² 0.0732²

Wheat / 75 / 670 15.0 0.118¹ 0.0702² 0.0802² 0.0877²

Barley / 45 / 670 15.9 0.0860¹ 0.0662² 0.0507² 0.0641³

Barley / 60 / 670 29.6 0.0827¹ 0.0370² 0.0435² 0.0506²

Barley / 75 / 670 21.6 0.0863¹ 0.0446² 0.0567² 0.0597²

MeanCrop / DAP / 

Waveband
F

 

p<0.05 in all cases shown above; 

*superscript in each row denotes degree of difference amongst reflectance means between the 

four directions.  

Figure 4.10 shows the angular distribution of reflectances for the four crops at 670 nm at 

the set of VZAs and VAAs measured at the three different phenological stages. The data in the 

plots are normalized to their respective nadir values using equation 3.2. Based on Table 4.2, the 

670 nm waveband was chosen for this part of the analysis because it showed maximum difference 
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in reflectance (p<0.05) with highest variance (0.24). The distribution of data in the plots shows 

how the crop reflectance patterns vary.  

The hotspot was more focused over a smaller region at 45 DAP compared to 60 and 75 

DAP. This may be due to higher canopy gaps at 45 DAP, which lead to higher levels of EMR 

penetration through the canopy and significant row effects at this growth stage. The lower hotspot 

prominence in the case of wheat at all three growth stages may be explained due to higher 

contribution of reflectance from the background compared to the crop, the canopy being sparse. 

Higher reflectances at 60 and 75 DAPs in case of canola and pea and barley in the backscatter 

direction, around the hotspot region, indicate that the row effect reduced significantly at these 

growth stages for these crop types. The wheat canopy being sparse, continued to show high row 

effects at the later growth stages.  

All four crops show asymmetric patterns along the SPP. In the PP, symmetric patterns 

were seen for canola at 45 and 75 DAPs, pea at 60 and 75 DAPs, and barley at 75 DAP. 

Asymmetry in the PP was seen for canola at 60 DAP, pea at 45 DAP, barley at 45 and 60 DAP, 

and wheat at all DAPs. This may be due to the presence of non-uniformities in the canopy 

architecture, caused by non-uniform clumping and variations in background reflectance in the 

case of pea (early growth stage), barley and wheat (all growth stages). The asymmetry along the 

PP also may be due to the contribution of row effects between BRF observations at nadir and off-

nadir view angles. The BRF plots demonstrate that the Jenks Classification Cluster analysis 

technique (Jenks and Coulson, 1963) emphasized the appearance of minor asymmetry in the PP. 

The canopy structure played an important role in the BRF of the four crops at the three 

growth stages. For canola, strong BRDF effects were seen at 45 and 75 DAP, whereas the effects 

were low at 60 DAP, which may be explained due to the canopy’s higher Lambertian spectral 

characteristics at this growth stage caused by yellow flowering. For pea, the BRDF effects were 

strong at all three growth stages, which may be explained by the canopy’s random nature and the 

complex canopy structure playing a prominent role in the BRF. Both barley and wheat showed 
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strong BRDF effects at all three growth stages, indicating that the change in the canopy structure 

for these crops from 45 to 75 DAP contributed significantly to the canopy BRF. A shift in the 

pattern along the SPP in the forward-scatter direction for all crops except wheat, from 180° VAA 

towards 145° VAA was also seen at 75 DAP. The pattern plots in Figure 4.11 show the 

differences in BRF for the four crops between the three growth stages at 670 nm. Significant 

differences in BRF can be seen between the three growth stages for all four crops that can be used 

to differentiate the four crops from each other on the basis of phenology. The difference plots also 

suggest the preferred angles to consider while differentiating the four crop types through the three 

growth stages. 
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Figure 4.10 : Comparison of normalized BRF plots at 670 nm to differentiate the crops on the 

basis of phenology at (A) 45, (B) 60 and (C) 75 DAP. Most of the plots show asymmetry along 

SPP and symmetry along PP, with a distinctive hotspot region in the backscatter direction. SPP is 

the plane along 0°-180° and PP is the plane along 90°-270°. 
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Figure 4.11 : Pattern plots showing the BRF differences between (A) 45 and 60 DAP, (B) 60 and 

75 DAP, and (C) 45 and 75 DAP at 670 nm for the four crops. The maximum and the minimum 

differences are shown in red and grey, respectively. Note the high differences in BRF between the 

three DAP in the cases of canola, barley and wheat, and the low differences in the pea BRF.  
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4.4.1 View zenith BRF within same azimuthal plane and direction 

While conducting a BRDF study, it is important to investigate how the BRF changes as a 

function of the VZA and also analyze the effects of SZA on the target’s BRF. This was 

accomplished by computing the change in reflectance at each VZA as a percent of the nadir 

reflectance for each crop type in the backscatter direction in the SPP (Equation 4.2). Table 4.4 

shows a summary of the changes computed for the four crops at 560 and 670 nm in the 

backscatter direction SPP at 60 DAP.  

                                              
           

      
 x100                                       4.2 

where  VZA are the reflectances at VZAs from -10° to -60° (in 10° increments) and  nadir is the 

reflectance at nadir. 

Table 4.4 : Percentage difference in reflectances with respect to nadir between VZAs within the 

SPP in backscatter direction at 60 DAP. The shaded values indicate cases with maximum 

difference. 

% change SZA % change SZA % change SZA % change SZA

0° 0 0 0 0

-10° 0.89 9.1 15 28

-20° 16 24 18 60

-30° 36 45 27 89

-40° 51 51 43 119

-50° 62 46 40 124

-60° 60 43 37 148

0° 0 0 0 0

-10° -3.6 6.2 18 34

-20° 10 23 20 55

-30° 34 49 24 69

-40° 55 51 37 90

-50° 63 41 20 86

-60° 51 32 14 81

Waveband

560 nm

670 nm

37.89° 35.25°

37.89° 35.25°

VZA
Canola Pea Wheat Barley

43.03° 53.93°

43.03° 53.93°

 

For half the cases, the maximum differences in reflectance with respect to nadir were 

seen at VZAs close to the respective SZA (within 5°) for both, 560 and 670 nm wavebands 

(Figure 4.12). The VZAs with maximum differences for canola (560 nm and 670 nm) and barley 

(670 nm) were very different from the respective SZAs, which may be due to presence of 
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multiple scattering in the empirical BRF measurements within the canopy and the contribution of 

reflectance from the background. Figure 4.12 shows how reflectance changes as a function of 

VZA at 560 and 670 nm. Similar results were seen at 860 nm. 

 

Figure 4.12 : Reflectance as a function of VZA for all four crops at (A) 560 nm and (B) 670 nm 

in the backscatter direction in SPP at 60 DAP. 

 

4.5 Crop LAI estimations using BRF(ф) and PROSAIL model inversion 

Optical RT models help in understanding and formulating the relationships between RS 

data and the biophysical characteristics of a plant canopy (Kallel et al., 2008). The models allow 

the description of both spectral and directional variation of CR as a function of these 

characteristics (Jacquemoud et al., 2009). The BRDF estimated using RT models can be used to 

understand the observations acquired in various acquisition configurations (e.g., multi-date and 

multi-channel) (Kallel et al., 2008). Inversion of these models using empirical BRF data can help 

improve estimates of biophysical parameters and also relate simple VIs derived from the BRF 

data with these parameters (Jacquemoud et al., 2000). 

Presentation of the results for PROSAIL inversion is broken into two sections and limited 

to data only in the SPP and PP because most airborne and spaceborne sensors use these planes for 

RS data acquisition. The first section shows how the modelled LAI estimates vary over all the 

VZAs. The second section compares the field-measured and modelled LAI, taking each VZA 
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separately. Comparisons were made between nadir, mid-range (20° and 40°) VZA and larger 

(60°) VZA to show how the estimates changed with respect to the view zenith. 

4.5.1 Model LAI estimates as a function of VZA 

The field BRF data measured using the Ocean Optics USB-4000 were used for the 

PROSAIL model inversion to investigate LAI estimations at different VZAs. Figure 4.13 shows 

how the LAI estimated by the model inversion varied as a function of the 13 VZA for canola and 

barley, in the SPP and PP. The estimates were compared with the field-measured LAI to 

investigate differences. The variations in the field LAI measurements (Table 4.5) were likely due 

to row effects (multiple scattering within the canopy) and contribution of reflectance from the 

background or bare soil, which are common for agricultural canopies with low variability in LAI 

values (Suits, 1983), and so averaged field LAI were used in this study.  

Table 4.5 shows the difference between the averaged modelled estimated and field-

measured LAI for all four crops at 45, 60 and 75 DAP. Ideally, LAI being a biophysical 

parameter, the model LAI estimates should not change with change in VZA. Therefore, an 

average of the model LAI for the 13 VZAs for each DAP was compared with the respective field 

LAI to investigate any deviations in the model estimated LAI from the field LAI. The normalized 

differences (Dnorm) were calculated using equation 4.3. 

                                           
                             

              
                                          4.3 

For canola, the model values closely approximated the measured LAI at 45 and 75 DAP. 

At 60 DAP (flowering stage), LAI was underestimated in both the SPP (-0.343) and the PP (-

0.307). Wheat LAI showed high levels of underestimation in both the SPP as well as the PP for 

all DAP but especially for 45 and 75 DAP (-0.505 and 0.532, and 0.549 and 0.509, respectively). 

For barley, the model did not perform well in predicting LAI and showed underestimation in both 

the SPP (-0.394 and -0.238) and the PP (-0.161 and -0.235) at 45 and 75 DAP, respectively. At 60 
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DAP, the barley modelled LAI closely approximated the measured LAI for the SPP, less so for 

the PP. This suggested that the model may not perform well for some row-crops (barley in this 

study) with erectophile architectures, particularly at earlier growth stages. 

The biophysical properties of a target remain constant irrespective of the change in 

observation view angle. The modelled LAI estimates at different VZAs in the SPP and the PP for 

canola and barley were compared to the respective field-measured LAI to investigate the 

variability in the model and field LAI. A linear regression test performed between the two LAI 

with respect to the means confirmed that there were significant differences between the two in 

both SPP (p<0.0001) and PP (p<0.0001). The modelled LAI estimates and the field-measured 

LAI estimates were considered as the dependent and the independent inputs, respectively, to 

conduct the linear regression test. 

 

Figure 4.13 : Variation in the model estimated LAI for (A) canola and (B) barley in SPP (top) and 

PP (below). The field-measured LAI are shown with the recorded variation ranges. Note the 

asymmetry and symmetry in the modelled estimates in the SPP and the PP, respectively. 
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Table 4.5 : Difference between field-measured and model estimated LAI in SPP and PP. 

Avg. model est. Diff. Avg. model est. Diff.

Canola 45 3.0 ± 25% 2.83 -0.0439 2.83 -0.0439

60 2.8 ± 25% 1.84 -0.343 1.94 -0.307

75 3.3 ± 20% 3.25 -0.00612 3.09 -0.0551

Pea 45 1.1 ± 25% 1.12 -0.00885 0.967 -0.144

60 2.4 ± 20% 2.16 -0.0848 2.07 -0.123

75 2.6 ± 25% 2.25 -0.121 1.96 -0.234

Wheat 45 0.73 ± 35% 0.361 -0.505 0.329 -0.549

60 0.93 ± 30% 0.757 -0.186 0.838 -0.0989

75 1.0 ± 30% 0.477 -0.532 0.501 -0.509

Barley 45 0.97 ± 30% 0.588 -0.394 0.814 -0.161

60 1.3 ± 20% 1.34 0.0151 1.60 0.212

75 1.2 ± 20% 0.937 -0.238 0.941 -0.235

SPP PPField measured 

(Avg of 10)
Day

 

For canola, the model LAI estimates were similar to the field LAI for most VZAs at 45 

and 75 DAP, with an exception at 60° in both backscatter and forward-scatter directions. The 

estimates were lower at 60 DAP (flowering stage). For barley, the model LAI estimates were 

slightly lower than the field LAI for most of the VZAs at all three growth stages except for the 

higher VZAs in the backscatter direction, where the estimates were high at 45 and 60 DAP. 

4.5.2 Field-measured vs. model estimated LAI  

LAI estimated by the PROSAIL model at nadir and the 13 VZAs in the SPP and the PP 

were compared with the field-measured LAI for all four crop types at the three phenological 

stages. The RMSE (Equation 4.4), bias (Equation 4.5) and r
2
 (Equation 4.6) for each comparison 

are shown in Table 4.6 for SPP and PP. The RMSE measured the error in absolute fit between the 

means of the field-measured and the modelled LAI data, the bias quantified the error and the r
2
 

showed how the field-measured and modelled LAI estimates fitted with each other and how well 

the model estimated LAI.  

                             √
∑         
   

 
                                           4.4 

                               
∑        
   

 
                                                 4.5 
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 ∑       ∑  ∑  

√  ∑       ∑       ∑       ∑     
                      4.6 

where X is the LAI measured in the field, Y is the LAI estimated from the PROSAIL model, and 

n is the number of readings (all crops at all the three growth stages in a single VZA). A 

comparison between RMSE, bias and r
2
 indicated how the empirical BRF data helped improve 

the modelled LAI estimation and suggested the VZA, azimuth, plane and direction that may be 

most appropriate to estimate LAI using remote sensing. 

Since there was a single field-measured LAI value per crop at a given growth stage, this 

value remained the same for all VZAs when the comparison was done. These field LAI 

measurements were the average of 10 readings taken at different locations close to the BRF 

sampling area within the canopy and encompassed both within and between row effects. Each 

reading consisted of one above-canopy reference measurement followed by four below-canopy 

measurements. This arrangement made the single (averaged) field LAI measurements reasonable 

for this study. The investigations were conducted for backscatter and forward-scatter directions in 

both the SPP and the PP. The results shown in Table 4.6 are limited to a comparison between 

nadir, ±20°, ±40°and ±60° VZA outputs. 

Table 4.6 : Comparison of LAI estimates for all four crops at nadir, ±20°, ±40°and ±60° in the 

SPP. The shaded cells represent the best results. The PROSAIL performed best to estimate LAI at 

-40° (RMSE : 0.288; r
2
 : 0.901). 

VZA Plane RMSE Bias R²

Nadir 0.660 0.493 0.819

-20° SPP 0.401 0.274 0.907

+20° SPP 0.484 0.331 0.914

-40° SPP 0.288 0.0460 0.901

+40° SPP 0.534 0.449 0.915

-60° SPP 0.611 0.142 0.612

+60° SPP 0.586 -0.465 0.842
 

 



104 
 

In the SPP, -40° VZA showed the minimum RMSE (0.288) with a bias of 0.046, 

indicating that the modelled LAI estimations were closest to the field-measured values at this 

VZA. A high r
2
 (0.901) also showed a good fit between the two LAIs, suggesting that the model 

performed well in estimating LAI at -40°. Although, the r
2
 at -20° was high at 0.907, suggesting a 

good fit, the RMSE (0.401) suggested that the model performance in estimating LAI was not as 

good at -20° compared to -40°. The high RMSE (0.611) and low r
2
 (0.612) at -60°, when 

compared to the values at -40°, suggested that the model performed better at -40° VZA. Similar 

observations were seen when the nadir RMSE (0.660) and r
2
 (0.819) were compared with the -40° 

values. 

The nadir results showed that the PROSAIL doesn’t work well for pea, wheat and barley 

at all three growth stages and for canola at 60 DAP. At -20° VZA, the model performed well for 

all four crops except for canola at 60 DAP. LAI was better estimated by the PROSAIL model in 

the backscatter direction in the SPP at VZAs close to the hotspot region, suggesting the 

importance of this region for canopy parameter estimation. Figure 4.14 shows the modelled and 

field-measured LAI comparisons at nadir, -20°, -40° and -60° in the SPP. The error bars indicate 

the uncertainties in the field-measured LAI estimates (Table 4.5). This comparison helped 

investigate which angle, plane and direction was best suited for estimating LAI. The PROSAIL 

model performed well in estimating LAI at -30° and -50° VZAs, similar to -40° (around the 

hotspot region), with the exception of canola and barley at 60 DAP. The model did not perform 

well at -10° for all four crops, similar to nadir. 
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Figure 4.14 : Field-measured vs. model estimated LAI at nadir, -20°, -40° and -60° VZAs for all 

four crop types in the SPP. The 1:1 line fits suggest that LAI was best estimated at -40°. 
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4.6 Effect of VZA on VIs and modelled LAI estimates 

In this thesis research, the results of PCA and the hybrid method for waveband selection 

in section 4.3.1 showed how the VIS (670 nm) and NIR (860 nm) portions of the EMS are 

important to study the role of BRDF in crop differentiation and LAI estimations. These are the 

primary wavebands used in VIs, which play a key role as indicators of the conditions of vegetated 

surfaces (Jordan, 1969). It is known that VIs are affected by the anisotropic nature of the 

vegetation canopy (Syren, 1994; Peddle et al., 2001a). Hence it is important to assess the role 

BRDF plays in VI computation, and in turn, on crop differentiation and modelled LAI 

estimations. In this research, SR, NDVI, GDVI, SAVI, OSAVI, and MTVI2 were computed from 

the field BRF data. The changes in the computed VIs were then investigated as a function of the 

VZA and also compared with the modelled (PROSAIL) LAI estimates at different VZAs. The 

results discussed in this section are limited to NDVI and MTVI2. The results for SR, GDVI and 

OSAVI agreed with those of the NDVI and the results of SAVI agreed with that of MTVI2. 

Similar results were seen in the forward-scatter direction in the SPP and in both the directions in 

the PP. The LAI-VI relationships for pea and wheat showed similar results to those of canola and 

barley. 

Figure 4.15 shows how the NDVI and MTVI2 of canola and barley, computed using the 

field BRF data and normalized to their respective nadir values (Equation 3.7), vary as a function 

of the VZA in the SPP and PP at 60 DAP. The increases in the values of both VIs were generally 

directly proportional to the VZAs in both backscatter and forward-scatter directions, except for 

canola in the PP. The investigations at 45 and 75 DAP showed similar results. 
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Figure 4.15 : Plots of NDVI and MTVI2 as a function of VZA for canola (CAN) and barley 

(BLY) in the SPP and the PP at 60 DAP, normalized to the respective nadir values. Note that both 

the VIs increase with the VZAs in both directions, except for canola in the PP. 

  

NDVI is the most widely used VI to relate to LAI. But, NDVI is strongly influenced by 

chlorophyll variations resulting in saturation at higher LAI (Rouse et al., 1974; Carlson and 

Ripley, 1997). Past research has also shown that the MTVI2 has a better relationship with NIR 

CR and, therefore, shows better linearity with LAI, by considering the chlorophyll and soil 

contamination effects (Haboudane et al., 2004). For canola, the differences between the NDVI for 

nadir and off-nadir VZAs were low, with the maximum differences seen at +40° VZA in the SPP 

(8.4%) and at +60° VZA in the PP (9.2%). For canola, the differences between MTVI2 values 

were larger compared to the NDVI differences, and the maximum differences were found at -20° 

VZA (23%) in the SPP and at +20° VZA (14%) in the PP. 

Barley NDVI showed high differences between the nadir and off-nadir VZAs and the 

maximum difference was seen at +60° (24%) in the SPP and at -50° (19%) in the PP. The 

differences in the barley MTVI2 were very high, with maximum differences found at +60° 

(111%) in the SPP and at -60° (114%) in the PP. 
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A paired sample T-test was used to test if there was a significant difference between the 

canola and barley NDVI and MTVI2. The results showed that the differences between the NDVI 

were not significant in both the SPP (p = 0.168) and PP (p = 0.855), whereas, the MTVI2 were 

significantly different for both crops in both SPP and PP (p<0.05). The differences in MTVI2 

(low MTVI2 for canola and high MTVI2 for barley) could be used to differentiate these crops 

from each other.  

4.6.1 Modelled LAI-VIs relationship 

Table 4.7 shows the results of the regression analysis performed to investigate the 

modelled LAI-VI relationships. The r
2
 coefficients suggested how well the two VIs computed 

using field BRF data matched the PROSAIL modelled LAIs. Results for three VZAs : nadir, 40° 

and 60° in both directions in the SPP and PP are presented. The dimensionality of the available 

data being small, all four crops were considered together to investigate the relationships. When 

the four crops were considered separately, there were negligible changes in the r
2
 coefficients, 

suggesting that the four crops could be considered together for this purpose.  

 

Table 4.7 : r
2
 coefficients showing the exponential relation between modelled LAI-VI for the four 

crops at the three growth stages. The shaded cells indicate the cases with the best fit (r
2
) of LAI-

VI amongst SPP and PP. 

SPP PP SPP PP

 -60° 0.92 0.61 0.75 0.89

 -40° 0.99 0.96 0.89 0.89

 0° (nadir) 0.98 0.93

 +40° 0.95 0.95 0.94 0.94

 +60° 0.95 0.97 0.92 0.93

NDVI (R²) MTVI 2 (R²)
VZA

 

The r
2
 coefficients showed that the modelled LAI was better related to NDVI compared 

to MTVI2 for all three VZAs in either direction in the SPP and PP, except at -60° in the PP. The 

low values of the model estimated LAI (< 3) may be the reason for NDVI not saturating, resulting 

in a good LAI-NDVI relation (Smith et al., 2008). The LAI-VI relationships for all the other 
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VZAs showed similar results, suggesting that the modelled LAI-NDVI relationship has a better fit 

compared to the modelled LAI-MTVI2 relationship for the four crops (except -50° and +50° in 

PP and +60° in SPP) for range of LAI values in this study. As an example, Figure 4.16 shows the 

LAI-VI relationships at -60°, where the LAI-NDVI r
2
 (0.92) shows a better fit compared to the 

LAI-MTVI2 r
2
 (0.75). 

 

Figure 4.16 : Relation between modelled LAI and VI at -60° in the SPP. The r
2
 coefficients 

suggest that the coefficient of determination between LAI model estimates and NDVI were better 

than between LAI model estimates and MTVI2. Note that the LAI-NDVI relationship did not 

saturate in this study, which may be due to low LAI values (< 3) (Smith et al., 2008). 

 

4.7 Summary 
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stages) and angular dependencies were investigated in the context of crop differentiation and 

biophysical parameter estimation (LAI).  

Differences between backscatter and forward-scatter BRFs of the four crops in the SPP 

and the PP were investigated to separate one crop from the other. Optimal differences between 

BRFs in the backscatter and forward-scatter directions in the 860 nm waveband in the SPP 

compared to 560 and 670 nm, played an important role in differentiating the four crops. Canola 

and pea were differentiated on the basis of the differences in their reflectances at 60 DAP, 

whereas wheat and barley were differentiated on the basis of the differences in their reflectances 

at 45, 60 and 75 DAP. Pea displayed unique reflectance characteristics at 860 nm in the SPP at all 

three phenological stages, which may be explained by differences in multiple scattering within 

the canopy because of its complex structure. The planophiles could be separated from the 

erectophiles on the basis of the optimal differences in their reflectances in the 860 nm at 45 DAP, 

and on the basis of the differences in their reflectances in the 670 nm waveband at 60 and 75 

DAP. All three growth stages are important to differentiate the crops in cases where BRF 

measurements could not be made at an earlier growth stage due to some unforeseen reason, or, 

situations with improper data quality or data unavailability. The results of the ANOVA confirmed 

significant differences between the reflectances. An investigation into the differences in 

reflectance with respect to angle also suggested that the reflectances in VZAs close to the hotspot 

region in the SPP were best suited to perform crop differentiation.  

A comparison between the field-based empirical LAI measurements and PROSAIL 

model LAI estimates showed that LAI was best estimated at VZAs close to the hotspot region in 

the SPP. The modelled – measured LAI relationship showed the best 1:1 fit at -40° VZA. The 

results indicated that the available BRF data helped improve LAI estimation by suggesting the 

preferred view angle. 

The variations in SR, NDVI, GDVI, SAVI, OSAVI and MTVI2 with respect to VZA 

were tested for canola and barley to investigate whether the VIs computed using field BRF data 
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differed at different VZAs in the SPP and the PP. Results of NDVI and MTVI2 were presented. 

The differences in NDVI were low for canola and high for barley at all three growth stages. The 

differences in MTVI2 were high for both canola and barley at all three growth stages. A paired 

sample T-test also showed that out of the two VIs, only canola MTVI2 differed significantly from 

the barley MTVI2. The results of SR, GDVI and OSAVI agreed with the NDVI results and the 

SAVI results agreed with the MTVI2 results.  

For the available LAI range, the modelled LAI-NDVI relationship showed better fit 

compared to the modelled LAI-MTVI2 relationship. The LAI-VI relationships at different VZAs 

also suggested the hotspot region as the preferred region to estimate LAI.    
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5. DISCUSSION AND CONCLUSIONS 

5.1 Introduction 

BRDF is a spectral reflectance characteristic of Earth surface features (Barnsley et al., 

1994). The anisotropic reflectance behaviour of crop canopies can serve as an useful tool for 

various RS applications (Goel and Thompson, 1985; Goel and Grier, 1986; Otterman et al., 1987; 

Goel, 1988; Ross and Marshak, 1988; Barnsley and Kay, 1990; Pinty et al., 1990; Verstraete et 

al., 1990; Coburn et al., 2010). The changes in reflectances as a function of wavelength at 

different view and the illumination angles obtained from different vegetation targets with respect 

to their canopy architectures and phenological stages can be a useful tool in differentiating plant 

types (Goel, 1988) and estimating biophysical and biochemical properties of vegetation (Chen, 

1996a; Sandmeier and Deering, 1999). 

This thesis research focused on separating crops with two different architecture types – 

planophile (canola and pea) and erectophile (wheat and barley), on the basis of their BRDF 

characteristics at three growth stages. Since instantaneous BRDF values cannot be measured 

directly in the laboratory or in the field (Nicodemus et al., 1977), an Ocean Optics USB-4000 

spectrometer mounted on the ULGS-2 was used in this study to sample the BRDF in the form of 

BRF for the four crop types at 45, 60 and 75 DAP. Comparisons between the spectral reflectances 

at individual view angles in the SPP and PP planes were performed to investigate the region in 

the BRDF space that contributed most to differentiating one crop type from the other. 

Vegetation biophysical and biochemical properties are estimated from RS data (Asrar et 

al., 1984). Variations in the RS data due to changes in the view and illumination angles can lead 

to incorrect estimation of these parameters. A true estimate of the canopy BRDF can lead to an 

improvement in the derivation of its biophysical and biochemical properties (Chen, 1996; Combal 

et al., 2002). In this study, the measured BRF data were used to estimate LAI using the PROSAIL 

vegetation canopy model inversion process. A comparison between the model estimated and 
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field-measured LAI helped investigate the BRDF-LAI relationship and showed whether the 

available BRF data helped improve the LAI estimation. 

Various spectral indices have been developed in the past, which use the absorption and 

reflectance features of a vegetation reflectance spectrum to monitor plant health and biophysical 

parameters (Gitelson, 2004). But, the reflectance anisotropy of vegetation surfaces results in 

variations in the VI computed at different view angles. Two spectral indices, NDVI and MTVI2 

were computed using the field BRF data for different VZAs in the SPP and the PP. The results 

were investigated to assess if the available BRF data affected the VI computations. The two VIs 

were also compared with the modelled LAI estimations at different VZAs in the SPP and the PP 

using regression analysis to investigate the role of VIs in LAI estimations using the PROSAIL 

model inversion technique. 

 The following sections interpret the observations and results of the crop differentiation, 

LAI estimation and VI computation performed using the field BRF data and the PROSAIL 

inversion. The chapter ends with conclusions drawn on the basis of the results and discussions. 

5.2 Crop differentiation using selected BRF data 

Goel (1988) used the amplitude of reflectance and absorption as a function of wavelength 

derived from BRDF to identify vegetation canopy types with different architectures. In this thesis 

research, crop differentiation was carried out by comparing the differences in BRFs as a function 

of the VAA between the backscatter and forward-scatter directions in the SPP and PP, for the 

four crops at the three growth stages. Investigations were carried out to evaluate differences in 

reflectances with respect to temporal characteristics, crop architecture and angular dependencies. 

The different spectral regions used in this thesis research agreed with the findings of Cox (1983). 

The results of crop differentiation and the importance of the backscatter region to accomplish this 

agreed with the findings of Breece and Holmes (1971) and Goel (1988). 
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5.2.1 Phenology 

The results showed that canola and pea differed from each other in terms of the 

differences in spectral reflectances between the backscatter and forward-scatter directions 

optimally in the SPP at 860 nm on 60 DAP, the differences being lower for canola than pea. This 

suggested that the behaviour of spectral reflectances in the NIR region at the flowering stage is 

important for differentiating these crops. The yellow canola flowers reflect EMR less than the 

white pea flowers do. Investigations also showed that the NIR reflectances of canola were lower 

than pea through all the three phenological stages. 

   At 45, 60 and 75 DAP, wheat and barley showed large differences in spectral 

reflectances between the backscatter and forward-scatter directions in the SPP at 860 nm, the 

differences being lower for wheat than barley. The results showed that the behaviour of spectral 

reflectances in the NIR region at vegetative growth, flowering and maturity are important to 

differentiate these crops. The differences in the reflectance characteristics may be due to the 

differences in their respective head structures at these stages. The barley head has a tendency to 

droop downwards, showing planophile-type characteristics compared to the wheat head, which 

remains erect. 

5.2.2 Architecture 

The planophile crops were separated from the erectophile crops on the basis of the 

differences in spectral reflectances between the backscatter and forward-scatter directions in the 

SPP at 860 nm on 45 DAP and at 670 nm on 60 and 75 DAP. The differences in the case of the 

planophiles were more compared to the erectophiles (according to the canola-barley comparison) 

at 45 DAP and less at 60 and 75 DAPs. The results showed that reflectances in the NIR and the 

red regions of the spectrum and all three growth stages are important to differentiate these two 

crops on the basis of their architecture types. The greater contribution of reflectance from the 

background (soil) in the case of the erectophiles compared to the planophiles may explain these 
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differences (reflectances from the crop and the soil were not compared in this study). The 

erectophiles and planophiles being more open and more closed canopies, respectively, explains 

the background contribution being greater in the former than the latter.  

5.2.3 Effect of the view angle on crop reflectances 

An analysis of the crop reflectance dependencies on the view angles was accomplished 

by investigating which VZA showed maximum nadir normalized reflectance difference within 

the same plane between the backscatter and forward-scatter directions. All four crops showed 

maximum difference in reflectance at VZAs close to the respective SZAs in all the three 

wavebands namely green, red and the NIR. In most cases, a distinct peak in reflectance was seen 

when the VZA neared the SZA. The study confirmed that the investigations in the hotspot region 

could yield characteristic canopy attributes that can express the relationships between the 

directions of the incoming irradiance and outgoing radiance, which in turn, can be useful for 

identifying and separating different crop types on the basis of BRDF information (Suits, 1972). 

The results of the ANOVA and Post-Hoc multiple comparison tests showed that the 

backscatter direction in the SPP displayed significant and maximum difference between BRFs 

and the respective means, making this region important for crop differentiation, which matched 

the findings of Breece and Holmes (1971). For canola and wheat, maximum differences between 

the BRFs and the respective means were seen in the forward-scatter direction in the SPP. No 

significant differences were seen for canola, wheat and barley at 860 nm (NIR). A consistency in 

the pea results for all wavelengths (maximum difference between the BRFs and the respective 

means in backscatter direction in SPP) may be explained by the random structural characteristics 

of the canopy.  

5.3 Field-based empirical LAI measurements versus modelled estimates 

The PROSAIL CRM uses a variety of biophysical and biochemical factors to derive 

reflectance. This model and its inversion allow for an improved understanding of the anisotropic 
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nature of the solar irradiance reflected from the Earth’s surface (Chen and Leblanc, 1997), which, 

in turn, helps improve the vegetation biophysical and biochemical parameter estimations. In this 

study, the PROSAIL model was run in inverse mode by defining a range of the inputs on the 

basis of past research and generating a LUT to describe a variety of canopy conditions. The 

PROSAIL model BRDF outputs at the 13 VZAs in each of the SPP and the PP were then 

compared with the available empirical BRF data to retrieve LAI corresponding to the best match. 

LAI, being a biophysical parameter, should not vary with view angle. The model LAI outputs 

were then investigated as a function of VZA. The effect of BRF data on LAI estimation was also 

examined by comparing the model outputs for each VZA in both the azimuthal planes with the 

respective field-measured estimates to investigate the role of BRDF on the LAI estimates. 

5.3.1 LAI estimates as a function of the VZA 

 The results in section 4.5.1 showed how the LAI estimated by PROSAIL inversion 

varied as a function of the 13 VZAs in the SPP and PP. The estimates were compared with the 

field-measured eLAI data. Trends for all four crop types indicated that the estimated modelled 

LAI outputs were not constant but instead were driven by the canopy BRDF effects, showing 

asymmetrical and symmetrical LAI patterns in the SPP and PP, respectively. Higher LAI 

estimates were seen in the backscatter direction in the SPP (near the hotspot region). The results 

suggested that the modelled LAI outputs varied with the VZA because the PROSAIL inversion at 

different VZAs followed the pattern expected from the corresponding spectral reflectance 

characteristics of the target.   

The LAI results for canola showed good estimation for all the VZAs at 45 and 75 DAP. 

The estimates were low at 60 DAP in both the SPP and PP. This suggested that the PROSAIL 

model did not estimate the parameter well when the canopy was flowering (yellow). The 

estimations for pea LAI compared to the respective field LAI were within the uncertainty range 

(±25% for 45 and 75 DAPs; ±20% for 60 DAP) of the field-measured values across all VZAs at 
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all three growth stages. This may be because pea canopies are relatively random in nature causing 

specularity in reflectance, and, therefore, pea BRF is less affected by its canopy structure. 

For wheat, LAI was underestimated for all VZAs in the SPP and PP at 45 and 75 DAP. 

This may be due to sparse crop conditions. The crop being sparse, may have resulted in a higher 

contribution of reflectance from the background (reflectances from the crop and the background 

were not compared in this study). At 60 DAP, the estimates in the backscatter direction in the 

SPP and around the 270º VAA region in the PP were within the field-measured LAI range. The 

estimations for barley were within range of field-measured values at 45 and 75 DAP, with minor 

underestimates in both SPP and PP at 75 DAP. Over-estimates were observed at higher zeniths in 

the PP in both directions at 60 DAP. 

5.3.2 Field-measured vs. model estimated LAI 

The results in section 4.5.2 showed a variety of comparisons between the field-measured 

and model estimated LAIs that helped identify the VZAs and azimuthal planes that provided the 

best results, and for which crop types the PROSAIL model worked best. All LAI estimate 

comparisons were using their respective RMSEs, r
2
 coefficients and biases, which were indicators 

of how well the model estimated LAI. When the LAI estimates were compared individually to the 

field-measured LAI, the minimum RMSE was found in the backscatter direction of 40° VZA in 

the SPP, around the hotspot region. This showed that the PROSAIL model estimated LAI best at 

an off-nadir VZA close to the hotspot region rather than nadir (most airborne and satellite-borne 

sensors use nadir as the view angle). The results suggested that BRDF did play an important role 

to understand the effect of view angle in modelled LAI estimations, as would be expected for 

model inversions. 

The comparison between LAI estimates with different BRF inputs and the field-measured 

LAI in the SPP and PP at 60° VZA (backscatter as well as forward-scatter directions) showed 

similar RMSEs, with a better r
2
 in the SPP. The high RMSEs in the SPP were because of the poor 
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canola LAI estimates at 60 DAP (flowering stage). This suggested that the performance of the 

PROSAIL model, which is linked to the variability of the BRF inputs, was not satisfactory at 

±60° when canola flowered. When this value was omitted, the RMSE reduced considerably with 

an improvement in the r
2
 in both backscatter and forward-scatter directions. The LAI comparison 

in the SPP showed better results compared to the PP. The above comparisons suggested that LAI 

was better estimated in the backscatter direction of the SPP. Similar comparisons at 40° VZA 

(backscatter as well as forward-scatter directions) showed that LAI was better estimated in the 

SPP compared to the PP, in both backscatter and forward-scatter directions. This useful angular 

information can be used as a resource to determine anisotropic factors using BRDF normalization 

techniques, to better exploit multiangular data provided by sensors such as MODIS and MISR, in 

order to determine better biophysical estimation around the hotspot region in the backscatter 

direction, in the SPP (Weiss et al., 2000; Csiszar et al., 2001; White et al., 2002). 

The comparison of RMSE and r
2
 coefficients of LAI estimates between nadir, -20°, -40° 

and -60° showed that LAI was best estimated at -40° in the SPP, showing the least RMSE (0.288) 

and a high r
2
 (0.90). This suggested that the modelled LAI estimates at VZAs around the hotspot 

region showed the best match with the respective field-measured LAI and, therefore, were best 

suited to estimate LAI.  

The above comparisons of LAI model estimates with respect to the field-measured LAI 

for different view geometries indicated that the sampling of BRF at VZAs along the SPP seemed 

to be particularly important, because it exploited the maximum variation of CRs as a function of 

angle. It also showed that only one direction, the hotspot, was required to obtain the lowest 

RMSE, indicating the importance of that direction for LAI estimation. These results matched 

those of Weiss et al. (2000) and Casa et al. (2010). The results confirmed that the available field 

BRF data improved LAI model estimates for the four crop types by suggesting view angles 

around the hotspot region as the preferred view angles to estimate LAI. 
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5.5 Effect of view angle on VIs and modelled LAI estimates 

VIs are affected by the anisotropic nature of the vegetation CR, which, in turn, affects 

investigations of crop differentiation and LAI estimation. The results in section 4.6 showed how 

the two VIs, NDVI and MTVI2 computed using the field BRF data changed at different VZAs in 

the SPP and the PP. The two VIs were then compared with the modelled LAI estimates at 

different VZAs using regression analysis to investigate their relation and assess the role of BRF 

on modelled LAI estimation. The investigations were repeated using SR, GDVI, SAVI and 

OSAVI. 

For canola, the results demonstrated minor differences in NDVI across the 13 VZAs in 

both SPP and in PP at all three growth stages. The maximum differences were noticed at 60 DAP 

due to contributions in the reflectances from yellow (flowering) in the VIS spectral region at this 

growth stage. Pea showed low NDVI differences at the three stages, the maximum differences 

being at 45 DAP, which may be due to higher contribution from background reflectances. The 

differences in MTVI 2 as a function of VZA for both canola and pea were large at all three 

growth stages, the highest being at 45 DAP. Variation in the reflectances from green leaves for 

canola and pea due to structural heterogeneity at an early growth stage may explain this. Both 

wheat and barley demonstrated large differences in NDVI and MTVI2 as functions of VZA at all 

three growth stages, the largest differences being at 75 DAP. Higher contribution of reflectances 

from the background at maturity may explain this. 

Both the VIs for barley changed significantly with the view angles in the PP. This is 

unexpected, considering that reflectances for a target in the PP should be the same or similar for a 

VZA in either direction (symmetrical) and, hence, the ratios between reflectances from different 

parts of the spectrum should remain constant. This showed that BRDF played a role with spectral 

indices. Both NDVI and MTVI2 for all four crops increased with an increase in VZA in the 

backscatter as well as forward-scatter directions at all three growth stages.  
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Results of the LAI-VI regression analyses at different view angles showed a good fit 

between the modelled LAI and both NDVI and MTVI2. Comparison of r
2
 values for LAI-NDVI 

and LAI-MTVI2 when compared with each other suggested that NDVI performed better than 

MTVI2 for the four crop types at the three growth stages. This result did not agree with the 

conclusions of Haboudane (2004). The reason for the LAI-NDVI relation not saturating may be 

due to low model estimated LAI values (< 3) (Smith et al., 2008).  

Paired T-tests showed that the mean NDVI for the planophile and erectophile crops did 

not differ much from each other, whereas the mean MTVI2 differed significantly (p<0.5). The 

results suggested that the large variability in MTVI2 with respect to angle can be used to perform 

crop differentiation, whereas good LAI-NDVI relationships can be used to estimate LAI using 

PROSAIL model inversion technique. The SR, GDVI and OSAVI results were similar to the 

NDVI results, whereas the SAVI results were similar to the MTVI2 results. 

5.6 Significance of research in agriculture 

Crop differentiation and plant biophysical estimation for monitoring plant health and 

yield assessment are two important applications of vegetation RS (Asner et al., 1988). Canola, 

pea, wheat and barley are four widely grown crop types in Western Canada. It becomes necessary 

to develop new methods to correctly differentiate them from each other, which in turn, can help 

better acreage monitoring and health and damage assessment. The outcomes of this research 

helped better understand the effect of multiangular reflectance to differentiate these crops from 

each other and also its impact on their biophysical parameter estimation (LAI). 

Significant contributions were seen in the ability of field BRF data to differentiate crop 

types with similar as well as different architectures. Erectophile crops, wheat and barley, could be 

differentiated from each other using field BRF data at off-nadir view angles through different 

growth stages, which has been a challenge in the past. 
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CRMs like the PROSAIL have been extensively used by modellers and researchers to 

estimate biophysical parameters and understand various vegetation attributes (e.g., health and 

stress). The results of this study showed that view angle has a significant effect on crop 

biophysical parameter estimation. When field BRF data was used to estimate LAI using 

PROSAIL inversion, the model underestimated LAI at all view angles compared to the respective 

field-measured values for certain planophile crop types (canola) during its flowering stage. The 

model also didn’t perform well in estimating LAI for crops with erectophile architecture, with an 

exception near the hotspot region. This study also showed that the field BRF data had a 

significant effect on VIs. 

As an outcome of these results, it can be suggested that there is a need of more along-

track, off-nadir looking spaceborne sensors, with capabilities of recording important information 

from vegetation targets on the Earth in the backscatter direction, near the hotspot region. This 

would help differentiate crop types accurately and better estimate the biophysical parameters. It is 

also suggested that multiangular effect be considered while studying VIs.  

5.7 Conclusions 

 This thesis research, which investigated the BRDF properties of various canopy types, 

shows the potential for the anisotropic nature of selected portions of hyperspectral RS data to 

differentiate crop types and extract information related to their biophysical characteristics. The 

additional information on the reflectance variability provided by the recorded BRF samples of the 

BRDF may demonstrate a high potential to better understand RS studies using airborne and 

space-borne sensors with multiangular viewing capabilities.  

Bidirectional reflectance computed from the radiance recorded using a spectrometer 

mounted on a field goniometer enabled the differentiation of various crop types with similar 

architectural properties as well as with different architectural and structural properties such as 

canopy density, inclination of leaves and mean canopy height using selected portions of the 
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spectrum and by analyzing the variability in their respective reflectances at different growth 

stages. The hotspot region of the recorded BRF was identified as a potential attribute for crop 

differentiation. 

Canola displayed planophile characteristics at early growth stages and more erectophile 

characteristics at the later stage (heading). At the mid-growth stage, canola displayed the least 

variability in reflectances, which may be due to its unique flowering characteristics. Barley and 

wheat showed similar row effects in their reflectances throughout their respective growth stages, 

the former demonstrating lower variability in reflectances, which may be because of the tendency 

of its head to droop downwards at this stage, which is not the case for wheat. These structural 

differences in the four crops at different phenological stages, which result in differences in their 

reflectance properties, help to differentiate them from each other. 

 An investigation of the LAI model estimates for the four crop types as a function of the 

VZA using selected portions of the field BRF measurements and PROSAIL vegetation canopy 

model inversion showed a strong relationship between the model LAI estimates and the field BRF 

data, with the estimates showing asymmetrical and symmetrical patterns (similar to reflectance) 

at different view angles in the SPP and the PP, respectively. A comparison between the model 

estimated LAI and the field-measured LAI indicated the recorded multi-angle field BRF data to 

be a rich RS data source to improve understanding of the plant physiological characteristics. 

Larger view zenith angles in the hotspot region of the recorded BRF were identified as the 

preferred angles to better estimate these properties. 

Further investigations showed that the change in view angle had a proportional effect on 

the vegetation indices computed for agricultural crops. It was evident that bidirectional effects 

should be considered when computing reflectance from repeatable radiance measurements of 

vegetation canopies (Coburn et al., 2010). The high variability in MTVI2 with respect to the view 

zenith angle for the four crops suggests that this index may be an important source for crop 

differentiation. The results of the LAI-VI regression analyses suggested that NDVI has a better 
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correlation than MTVI2 for all four crops. A better fit and a low variability in NDVI with respect 

to the view zenith angle suggest that this index is important for estimating LAI using the 

PROSAIL model inversion technique. 

5.8 Future research 

An understanding of BRDF is necessary for various applications in studying vegetation 

(Barnsley et al., 1994). Some of these applications are crop classification and biophysical and 

biochemical parameter estimation (Chen, 1996a; Sandmeier and Deering, 1999). Significant 

research has been carried out in the field (Deering, 1989; Sandmeier et al., 1996; Peltoniemi et 

al., 2005; Leuning et al., 2006) and under controlled laboratory conditions (Breece and Holmes, 

1971; Kriebel, 1978; Walter-Shea et al., 1989; Serrot et al., 1998; Schaepman and Dangel, 2000; 

Bousquet et al., 2005; Biliouris et al., 2007) to sample BRDF of different targets using in-situ 

sensing.  

As more airborne and spaceborne RS sensors like MODIS (Justice et al., 1998) and 

MISR (Diner et al., 1991) now have off-nadir viewing capabilties, and since there is an added 

complexity to the RS data due to this angular component, it becomes necessary to strengthen the 

understanding of BRDF using ground-based in-situ sensing to support the RS data. In recent 

research, there are more models being developed, for e.g., FLAIR (White et al., 2001), to study 

BRDF. In-situ sensing of BRF would also help develop these models in a better and more 

accurate way, which in turn, can be helpful to develop anisotropic factors to exploit rich 

multiangular data provided by the current generation sensor such as MODIS and MISR.  

The BRF dataset collected in this thesis research, can be used as a potential source of 

ground referencing for airborne and spaceborne RS data, and also, develop CR BRDF models. 

Given that, the LAI estimation using PROSAIL model inversion in this study was limited to 

select view angles in the SPP and the PP, the available BRF dataset, futher can be used to 
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investigate modelled LAI estimation at all VZA/VAA combinations, to better understand the 

impact of BRF on the functioning of CRMs. 

There is scope to further develop the ULGS-2 to accomodate imaging spectroradiometers 

that will open additional research opportunities for imaging BRDF. Improvement in procedures to 

obtain BRF in the field, for e.g., maintaining SZA and SAA same for all targets to eliminate 

variations in illumination effects, can improve the quality of data acquired. The capability of the 

ULGS-2 system to position a sensor at high angular resolutions (e.g., 10º increments) opens 

numerous avenues of research opportunities, which includes exploring vegetation spectral 

characteristics in the hotspot region in detail.  

Improvement in the understanding reflectance anisotropy will allow improved accuracy 

in crop classification / differentiation and their biophysical parameter estimation using various RS 

tools such as VIs and canopy reflectace modelling. Further research scope lies in applying 

airborne and spaceborne multiangular RS to more complex vegetation targets such as rangelands 

and forests with respect to temporal characeteristics, for improved landcover classification and 

biophysical parameter characterization by improving CR modelling techniques and VI 

relationships with the biophysical parameters (e.g., LAI).  
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APPENDIX A 

Scan pattern investigations 

The ULGS-2 can sample BRF at angular resolutions as high as 10°-10° zenith-azimuth 

combinations, with minimum compromise in the speed of data acquisition (less than 15 min). A 

variety of scan-sampling patterns were tried to investigate the importance of higher angular 

resolution patterns compared to lower ones. 

Table A-1shows the percent difference with respect to the full reflectance range when 

data with different angular scan densities are compared. The comparison between three zenith-

azimuth scan-sampling patterns, 30°-30°, 30°-15° and 20°-20° to that of the 10°-10° scan pattern 

showed percentage differences varying between 20-24% for pea and 14-27% for barley at 670 nm 

at 60 DAP. This showed that the data became detailed with smaller sampling intervals. The 

percentage difference was calculated using the following equation. 

                                      
                  

            
  

where, ρmax and ρmin are the maximum and minimum reflectances, respectively. 

Table A-1 : Percentage differences between different angular sampling resolutions with respect to 

the 10°-10° scan pattern for pea and barley at 670 nm at 60 DAP. 

Scan patterns Min diff. Max diff.
Standard 

deviation

% diff. with respect to 

(ρmax- ρmin)

Pea 10°-10° vs. 30°-30° -0.0070 0.010 0.0030 24%

10°-10° vs. 30°-15° -0.0080 0.0080 0.0030 20%

10°-10° vs. 20°-20° -0.0080 0.0090 0.0020 22%

ρmax ρmin

Actual reflectance (10°-10°) 0.027 0.068

Actual reflectance (20°-20°) 0.027 0.068

Actual reflectance (30°-15°) 0.027 0.068

Actual reflectance (30°-30°) 0.027 0.068

Barley 10°-10° vs. 30°-30° -0.010 0.010 0.0030 14%

10°-10° vs. 30°-15° -0.010 0.020 0.0040 27%

10°-10° vs. 20°-20° -0.0050 0.010 0.0020 14%

ρmax ρmin

Actual reflectance (10°-10°) 0.027 0.10

Actual reflectance (20°-20°) 0.027 0.10

Actual reflectance (30°-15°) 0.027 0.10

Actual reflectance (30°-30°) 0.027 0.10
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APPENDIX A (cont…) 

Figure A-1shows the BRF plots of the 10°-10° and 30°-15° scans for the two crops. The 

individual black dots in the plots represent every angle where the BRF data were obtained. The 

cut in the lower portions of BRF plots for the 30°-10° are due to removal of arc shadow data in 

the backscatter direction in the SPP.  

 

Figure A-1 : BRFs at 670 nm at 60 DAP using two different scan patterns. (A) Pea 10°-10° scan; 

(B) Pea 30°-15° scan; (C) Barley 10°-10° scan; and (D) Barley 30°-15° scan. 
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APPENDIX A (cont…) 

Figure A-2 shows a percentage difference (in reflectances) surface plotted between 10°-

10° and 30°-15° scans for pea at 670 nm at 60 DAP. The range varied from a minimum of -0.8% 

to a maximum of +0.8%. 

 

Figure A-2 : Example of a percentage difference surface. Pea 10°-10° vs. 30°-15°. 

 

The prominent differences in reflectances between the patterns with lower angular 

resolutions (30°-30°, 30°-15° and 20°-20°) and those with finer angular resolutions (10°-10°) 

suggested that that the 10°-10° zenith-azimuth scan pattern was important to capture detailed 

BRF information of the target, especially in around the hotspot region. Similar results were seen 

at the other two wavebands and growth stages. 
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APPENDIX B 

Field-measured BRF plots of canola at 560, 670 and 860 nm at 45 (A), 60 (B) and 75 (C) DAP 

showing how the reflectance changed every 10º zenith and azimuth. 
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APPENDIX B (cont…) 

Field-measured BRF plots of pea at 560, 670 and 860 nm at 45 (A), 60 (B) and 75 (C) DAP 

showing how the reflectance changed every 10º zenith and azimuth. 
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APPENDIX B (cont…) 

Field-measured BRF plots of wheat at 560, 670 and 860 nm at 45 (A), 60 (B) and 75 (C) DAP 

showing how the reflectance changed every 10º zenith and azimuth. 
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APPENDIX B (cont…) 

Field-measured BRF plots of barley at 560, 670 and 860 nm at 45 (A), 60 (B) and 75 (C) DAP 

showing how the reflectance changed every 10º zenith and azimuth. 
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APPENDIX C 

Field-measured BRF(ф) for all four crops at 560, 670 and 860 nm at the three growth stages. 
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APPENDIX C (cont…) 

Field-measured BRF(ф) for all four crops at 560, 670 and 860 nm at the three growth stages. 
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APPENDIX C (cont…) 

Field-measured BRF(ф) for all four crops at 560, 670 and 860 nm at the three growth stages. 
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APPENDIX C (cont…) 

Field-measured BRF(ф) for all four crops at 560, 670 and 860 nm at the three growth stages. 

 

 

 

 

0.10

0.15

0.20

0.25

0.30

0.35

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

0 10 20 30 40 50 60 

Wheat BRF(ф) @ 860 nm - Day 45

B
R

F
 (
ф
ₒ)

View Azimuth angles (degrees)

PP SPP PPSPP

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

0 10 20 30 40 50 60 

Wheat BRF(ф) @ 860 nm - Day 60

B
R

F
 (
ф
ₒ)

View Azimuth angles (degrees)

PP SPP PPSPP

0.20

0.30

0.40

0.50

0.60

0.70

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

0 10 20 30 40 50 60 

Wheat BRF(ф) @ 860 nm - Day 75

B
R

F
 (
ф
ₒ)

View Azimuth angles (degrees)

PP SPP PPSPP

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

0 10 20 30 40 50 60 

Barley BRF(ф) @ 560 nm - Day 45

B
R

F
 (
ф
ₒ)

View Azimuth angles (degrees)

PP SPP PPSPP

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

0 10 20 30 40 50 60 

Barley BRF(ф) @ 560 nm - Day 60

B
R

F
 (
ф
ₒ)

View Azimuth angles (degrees)

PP SPP PPSPP

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

0 10 20 30 40 50 60 

Barley BRF(ф) @ 560 nm - Day 75

B
R

F
 (
ф
ₒ)

View Azimuth angles (degrees)

PP SPP PPSPP

0.02

0.04

0.06

0.08

0.10

0.12

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

0 10 20 30 40 50 60 

Barley BRF(ф) @ 670 nm - Day 45

B
R

F
 (
ф
ₒ)

View Azimuth angles (degrees)

PP SPP PPSPP

0.02

0.04

0.06

0.08

0.10

0.12

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

0 10 20 30 40 50 60 

Barley BRF(ф) @ 670 nm - Day 60

B
R

F
 (
ф
ₒ)

View Azimuth angles (degrees)

PP SPP PPSPP



157 
 

APPENDIX C (cont…) 

Field-measured BRF(ф) for all four crops at 560, 670 and 860 nm at the three growth stages. 

 

 

   

  

 

 

 

 

 

 

 

 

 

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

0 10 20 30 40 50 60 

Barley BRF(ф) @ 670 nm - Day 75

B
R

F
 (
ф
ₒ)

View Azimuth angles (degrees)

PP SPP PPSPP

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

0 10 20 30 40 50 60 

Barley BRF(ф) @ 860 nm - Day 45

B
R

F
 (
ф
ₒ)

View Azimuth angles (degrees)

PP SPP PPSPP

0.25

0.35

0.45

0.55

0.65

0.75

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

0 10 20 30 40 50 60 

Barley BRF(ф) @ 860 nm - Day 60

B
R

F
 (
ф
ₒ)

View Azimuth angles (degrees)

PP SPP PPSPP

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

0 10 20 30 40 50 60 

Barley BRF(ф) @ 860 nm - Day 75

B
R

F
 (
ф
ₒ)

View Azimuth angles (degrees)

PP SPP PPSPP



158 
 

APPENDIX D  

Variation on PROSAIL LAI estimation as a function of θ for all the crop types (in SPP and PP). 
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APPENDIX E 

Field-measured versus model estimated LAI values at VZA ±60° (top 2) and ±50° (bottom 2) for 

all the four crop types in the SPP (A) and PP (B). 
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APPENDIX E (cont…) 

Field-measured versus model estimated LAI values at VZA ±40° (top 2) and ±30° (bottom 2) for 

all the four crop types in the SPP (A) and PP (B). 
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APPENDIX E (cont…) 

Field-measured versus model estimated LAI values at VZA ±20° (top 2) and ±10° (bottom 2) for 

all the four crop types in the SPP (A) and PP (B). 
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