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Abstract 

In the development of explosively formed projectiles (EFPs), researchers are faced 

with the problem of testing prospective metals at high strain rates. So far it has 

been assumed that, relative to the cooling time, the deformation time is practically 

instantaneous indicating that the test is adiabatc: none of the heat generated within 

the metal is lost to conduction. In this paper we construct a model that subtracts 

out the effects of kinetic energy and uses specific heat as a function of temperature. 

In this way we can focus on the energy change in the specimen that can be attributed 

to temperature and determine just how adiabatic the high strain rate test is. 

iv 



Acknowledgements 

I am now convinced that the only people who can really appreciate an Acknowl­

edgement page are those who have been through this process themselves, either in 

person or by proxy - my wife being the chief proxy. 

I have learned a great deal about mathematics, about writng and rewriting and 

about myself. In Dr. Kaminski's office I have watched him rough out calculations 

that I have seen in many math textbooks but never really understood how they could 

be applied in other settings. My appreciation for having a solid foundation of math 

fundamentals has been entrenched. I have turned work into Dr. Kaminski many times 

only to have my careful editing come back even more carefully edited. He demanded 

my best, even when I was too tired to give it. At the onset I had a very rudimentary 

understanding of metal and its properites. Pat Gallagher faithfully answered my 

questions, occasionally meeting with me in his home over a plate of pizza. I first met 

Dr. Cowan as the instructor of an undergraduate math class I was taking to help 

sharpen my skills for graduate work. It was his encouragement that started me on 

this journey. All of my advisors: Dr. Kaminski, Dr. Cowan and Pat Gallagher have 

been very supportive. 

To the University of Lethbridge, my advisors and those who volunteered to be on 

my examining committee I offer my thanks. It was a particularly challenging road 

for me but with their help I made it. 

v 



cross-sectional area of the bars 

As 
cross-sectional area of the specimen 

elastic wave velocity 

n radius of the bars 

rs 
radius of specimen 

E Young's modulus 
€ strain 

IE internal energy 

ke kinetic energy 
te elastic strain 
€p plastic strain 
«i incident strain 

reflected strain 
transmitted strain 

f force 

Ls 
length of the specimen 

Lb 
length of the bars 

m mass 

V volume 

P density 

Ps specimen density 
V velocity 

a stress 
Oi incident stress 
Or reflected stress 
Os 

specimen stress 
Ot transmitted stress 

T temperature 
t time 

heat capacity at constant pressure 
Cv heat capacity at constant volume 

k thermal diffusivity constant 
Ml displacement of the incident bar/specimen interface 

displacement of the specimen/transmitter bar interface 

V Poisson's ratio 
Poisson's ratio for specimen material 

vi 



C h a p t e r 1 

I n t r o d u c t i o n 

For the past several years the Defence Research Establishment Suffield has been 

studying explosively formed projectiles (EFPs). Upon detonation, the metal used in 

such a device undergoes tremendous deformation at a high strain rate, but despite 

these harsh conditions, the integrity of the metal cannot be compromised. In order 

to test metals at the appropriate strain rates for use as an EFP, an apparatus known 

as a Split Hopkinson Pressure Bar is used. In this test, a small sample of the test 

material is sandwiched between two bars and compressed at a high strain rate. Of 

particular interest during the test is the amount of heat dissipated by the specimen 

during deformation. One may think that at very high rates the deformation would 

be so rapid the process would be adiabatic—no heat gain or loss during the test. 

This is the area explored in this thesis. We treat our specimen as a material with a 

continuous density distribution and use the basic principles of physics to study the 

forces on the particles and their resulting motion.[12] 

To calculate the heat dissipated from the specimen into the adjoining bars we 

discretized the specimen and used first principles of motion and thermodynamics to 

build conservation equations. A simulation of the deformation was generated using 
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a computer program. The results could be validated using data obtained from heat 

sensors placed along the bars during an actual test. 

To follow the development of the equations and resulting computer algorithm, 

the reader needs to be familiar with partial differential equations and finite difference 

techniques. A brief review of each area is provided as required, but for those wishing a 

more extensive review we refer to Carrier and Pearson [5] and Lapidus and Pinder[15]. 

1.1 Stress a n d S t r a i n 

The strength of a metal is its ability to resist changing its size or shape when external 

forces are applied. When stress (a), defined as force/unit area, is applied to a metal 

it changes shape. This change in shape is known as strain (e) and is expressed as a 

ratio, e = A L / L 0 , where L0 is the original length and AL is the change in length. 

Thus, a standard uniaxial tensile test involves stretching a prepared sample over a 

certain time period and measuring the change in length as a ratio to the original 

length. For a cylindrically shaped specimen there will be a corresponding reduction 

in cross-sectional area or transverse strain which we record as a change in diameter. 

Poisson's ratio (V) is the ratio of this transverse strain to the axial longitudinal strain: 

_ change in transverse dimensions tr 
change in longitudinal dimensions ex 

If the stress is not too great, the strain induced by the stress is not permanent 

and the metal returns to its original shape after the load is removed. However, 

if the stress is too great—above the elastic limit of the metal—the deformation is 

permanent. A typical stress versus strain plot is shown in Figure 1.1. 
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inelastic range 
elastic range fracture 

0.2% offset strain 

Figure 1.1: Stress vs Strain Plot 

The elastic range corresponds to the linear portion of the graph. Within this 

elastic range, the ratio of stress to strain is known as Young's Modulus, or the modulus 

of elasticity, and is denoted E = a/e (also known as Hooke's Law). Hooke's Law states 

that stress (load) is directly proportional to strain (extension) up to a certain limit. 

This limit has been named the proportional limit. Often the proportional limit is 

extremely difficult to accurately determine so a small offset is used to calculate the 

yield strength. The yield strength shows the point at which the relationship between 

stress and strain is no longer constant. On continued straining, the applied stress 

will increase until the ultimate stress has been reached and then fall as fracture is 

approached. 

A very important factor in such a test is the rate at which the load is being 

applied and consequently the strain rate taking place. The strain rate (e) is the rate 

of change of strain with respect to time, e= de/dt, the units being inverse time ( s - 1 ) . 
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Since e = AL/L0 then 

de _ 1 dL _ v 

dt LQ dt LQ 

where L is the length of the specimen of original length L 0 , and v is the velocity at 

which the specimen is being deformed. To test materials at strain rates of the order 

of 10 4 s - 1 , experimental techniques that make use of impact dynamics and wave 

propagation phenomena are employed. One common apparatus used for high strain 

rate testing is the Split Hopkinson Pressure Bar (SHPB)[10]. 

1.2 T h e Spl i t H o p k i n s o n Pressure B a r 

The SHPB consists of a striker, an incident bar, a specimen and an output bar. To 

test the specimen, a pressure wave is induced in the incident bar by the striker bar, 

the size and duration of the pulse being controlled by the length and velocity of 

the striker bar. This wave causes a stress in the incident bar and an accompanying 

strain which is measured at strain gauge A, the midpoint of the incident bar (see 

Figure 1.2). At the incident bar/specimen interface the wave is partially reflected 

and the rest transmitted into the specimen. The wave moves through the specimen 

and is again partially reflected and partially transmitted at the specimen/output bar 

interface. The transmitted portion induces a stress and accompanying strain in the 

transmitter bar which is measured at strain gauge B—the midpoint of the transmitter 

bar. The reflected portion moves back along the incident bar and the resulting strain 

is again measured at strain gauge A. Knowing these strains, we are able to determine 

the strain history of the specimen which was not directly measurable. 

There are numerous articles detailing the operation and analysis of the SHPB, 
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striker jgar Incident bar output bar 

strain gouge A I strain gauge B specimen 

Figure 1.2: Split Hopkinson Pressure Bar, compression configuration 

and since it is not the focus of this research, it is not necessary to go through those 

in detail here; the interested reader can consult [2] and [11] for additional details. We 

do however need to provide a brief account to augment the reader's background. 

1.2.1 Overview and Analysis 

The most fundamental assumption made about the SHPB apparatus is that the 

incident and transmitter bars remain elastic throughout the test. This assumption, 

along with testing techniques that call for, among other things, accurate alignment of 

the bars, the use of a lubricant between the bars and the specimen, and appropriate 

sizing of the components, provide a uniaxial, uniform deformation compression test 

that is mathematically predictable. 

Upon impact by the striker bar, an elastic pressure wave begins to move along 

the incident bar. By considering the elastic rod as a coupled spring mass system, it 

can be shown that the velocity of this elastic wave (c e ) is c% = E/p where p is the 

density. Gallagher [13] has shown that if an element of the rod were initially at rest, 

this velocity (v) = ece. Since displacement is the integral of velocity, in terms of 

incident, transmitted, and reflected pulses we have 
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and 

u2 = ce [ et (t)dt, 
Jo 

where U\ is the displacement at the incident bar/specimen interface, and U2 is the 

displacement at the specimen/transmitter bar interface. The difference between u\ 

and U2 would be the specimen displacement and hence the specimen stain is 

e« = - r f\ei{t)-er(t)-et(t))dt 
Ls Jo 

where Ls is specimen length, and the strain rate for the specimen, des/dt, would be 

the time derivative of this. 

The stress on the specimen would be the average between the forces at each 

interface. Recall that 

a = f/A 

where / is force and A is the area over which the force is applied. For the elastic 

bars we can also apply Hooke's law, a = e E . Combining these shows the force at 

the incident bar/specimen interface to be 

h = (ei{t) + er{t)) E A, 

and at the specimen/transmitter bar interface, 

f2 = et(t)EA, 

so at the specimen, 

Ab [ei{t) + tT{t) + tt{t)] E 

°s = Ts 2 
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where A\,jAs is the ratio of the cross sectional area of the bar to the specimen. 

Furthermore, after a very short time, considered negligible when compared to the 

duration of the test, h — h\ the stress on the specimen will be in equilibrium. This 

is equivalent to 

ti{t) + tT{t) = et(t), 

which can be used to simplify the above formulas leaving 

es = / er(t) dt , 
Ls Jo 

and 

dt Ls 

Thus the stress-strain behavior of the specimen is determined by measurements made 

on the elastic bars. 

Figure 1.3 shows the strain history of a SHPB test. One can see how the three 

strains collectively induce a strain on the specimen. The incident strain is the initial 

strain induced in the incident bar. The reflected strain, working in the opposite 

direction, appears as a negative strain. Finally the transmitted strain is the amount 

of strain that passes through the specimen and reacts with the transmitter bar. Notice 

the slight recovery, the negative region on the specimen strain towards the end of the 

test, of the specimen after the load is dispersed. The specimen strain is depicted in 

Figure 1.4. 

It should be noted that in the case of the specimen deformation during the split 

Hopkinson test, strains as high as 30 to 100% are taking place. Initially the strain 
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Figure 1.3: The three strains, e r, et and e*. 

on the metal is elastic. In this range every bit of energy that goes into deforming the 

specimen is stored as recoverable internal strain energy. This limit has been named 

the proportional limit and it is that point where the stress strain curve deviates from 

a straight line. Since this point of divergence is not easy to determine, another value, 

the yield strength, is used. The yield strength has a built in correction factor that 

states: a permanent deformation of 0.2% in the material is allowed. Beyond this point 

we have unrecoverable deformation. This 0.2% offset has been chosen arbitrarily as 

the maximum allowable permanent deformation before the material is considered to 

pass its yield strength [18]. As we proceed in our paper and calculate the strain 

history of the specimen, we are assuming the specimen begins to deform as soon as 

14 
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Figure 1.4: The specimen strain 

the load is applied; see Figure 1.5. 

As mentioned previously, this is not meant to be a detailed account of wave 

propagation in the SHPB. The references cited give more complete presentations 

on how the model must be corrected to allow for such matters as wave dispersion, 

friction, timing and inertia. Each of these areas offers an opportunity for more detailed 

examination. This paper focuses on the computation of temperature. 

1.3 H e a t a n d T e m p e r a t u r e 

Certainly metals are good conductors of heat but the process of heat transfer by 

conduction takes time. In the case of high strain rate testing, it has always been 
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^ original speciman 

leformation complete 

Figure 1.5: Specimen profile during deformation 

assumed that since the deformation happens so quickly, on the order of 60/zs, there 

has not been time for the heat to dissipate from the localized area of deformation. If 

this internal heating then is not dissipated, the resulting rise in temperature softens 

the metal, which in turn allows for more deformation, which in turn increases the 

temperature, which further softens the metal and so on. A report prepared by the 

University of Waterloo [1] studied this self-feeding process and its end result, adiabatic 

shear banding. An adiabatic process is one in which no heat is dissipated outside the 

system. 

The first law of thermodynamics states the algebraic sum of all the energy 

transfers across a system boundary must be equal to the change in energy of the 

system. Heat and work are the only forms of energy that may cross a system boundary. 

Under the assumption of an adiabatic process, all the work of deformation is converted 

to heat energy and can be used to calculate a change in temperature. 

The work of deformation is 
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w = 

where / is the applied load during which the specimen deformed from its original 

length L0 to its final length Lj . Since o{e) = f/A and e = AL/L0 we can rewrite 

the above formula as 

where ej is final specimen strain. The change in internal energy for one-dimensional 

analysis is 

and if we attribute the total change in energy to the work done in deformation we 

end up with 

But as we do this we err on two counts: the process is not necessarily adi­

abatic, and the heat capacity of the specimen is not constant. The focus of this 

research is predicting how adiabatic the compression test is. 

Since the specimen is sandwiched between the incident and transmitter bars there 

will be diffusion in both directions. Due to this symmetry this paper only examines 

diffusion within the specimen and at the incident bar/specimen interface. 

see [10]. 
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Chapter 2 
Balancing Work 
As previously mentioned, the only forms of energy that may cross a system boundary 

are heat and work and by the first law of thermodynamics the algebraic sum of all 

the energy transfers across the system boundary must be equal to the total change in 

energy of the system. Our system is the SHPB apparatus. The measured load being 

applied to the striker sends a pressure wave down the incident bar to the incident 

bar/specimen interface. Here one of two events can take place. Either the entire 

specimen is merely pushed along (only kinetic energy) or there is a division of the 

energy applied with a portion going to crush the metal past its yield strength into 

a plastic state. We, of course, have the latter and will use the following equation to 

build our model 

•̂ supplied = •E'work ~t" KE. 

The energy applied to the specimen must equal the energy used to overcome the yield 

strength, which we will attribute to heat energy, plus the energy used to accelerate 

the specimen material. 
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2 .1 T h e G e o m e t r y of D e f o r m a t i o n 

The configuration of our specimen is that of a cylinder and, although not exactly 

correct, is assumed to maintain this shape throughout deformation. (A lubricant is 

applied at the specimen interfaces to reduce the effects of friction but even with these 

measures there is some distortion and the specimen radius is least constrained at the 

center leading to a characteristic barrel shape.) To study the interaction between 

elements of our specimen we will carve our sample up in the following way: we cut 

the cylinder into disks of uniform thickness, then take each disk and divide it into 

congruent pie shapes and finally take each pie shape and divide it into pieces of equal 

volume. See Figure 2.1. 

As previously mentioned, specimen movement is tracked by measuring the three 

strains, £i,£t, and eT. Thus 

Al = (£•,• -£t-£r) -ls 

and at each time step we can calculate a new specimen length, ls, in cm. We will use 

z axis 
0 Is 

Figure 2.1: Carving up the specimen 
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the array zp(i, t) for 0 < i < nz and t > 0 to keep track of these longitudinal changes. 

Initially the incident bar/specimen interface is at z = 0 so zp(0,0) = 0 cm and at 

the specimen/transmitter bar interface zp(nz,0) = / s cm. During compression the 

position of the specimen/transmitter bar interface remains fixed so zp(nz,t) = ls cm, 

while at the incident bar/specimen interface zp(0, t) is increasing. At each time step 

the position of zp(0, t) is calculated based on the strain data and the zp(i, t), i ^ nz, 

are updated to ensure each element has the same thickness. Therefore 

zp(n-,t) = ls for all t, 

Al{t) = (£{ -et- sT){t) • zp(nz, t - 1), 

zp(0,t) = zp{0,t- 1) + Al(t), 

and 

zp(i,t) = zp(i-l,t) + ^ ^ - . 
nz 

Clearly, as this compression is taking place the radius of the specimen is expanding. 

We will use rp(j, t) for 0 < j < nr and t > 0, to monitor the changing radial length of 

each element in centimeters. Making use of symmetry we will begin at the center of 

the specimen and assign rp(0,0) = 0 cm. Then rp(n r ,0 ) would denote the specimen 

radius, rs, in cm. In this case it is the center of the specimen that remains fixed, 

rp(0, t) = 0 cm for all t, and the rest of the array must be updated at each time step. 

To solve for this array we impose the restriction that each element have the same 

volume. The first element is a sector whose volume is equal to 

uvol = —-— 7r • rp(l , t)2 • Az 
Wares 
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where narcs denotes the number of sectors into which the disk has been divided and 

Az = (zp(nz,t) - zp(0,t)) /nz. Then, if equal volume is be maintained for each 

element, as we increment j 

^ • 7T • rp(j, t)2 • Az = ^ • 7T • rp(nr, t)2 • Az 
3 nr 

whence 

rp{j,t) = J—-rp(nr,t). V nr 
This is the formula we use to update rp{j,t). 

To compute kinetic energy we need to examine the forces on a typical element. In 

doing so we will treat each element as though it were a single particle, then calculate 

the velocity of the particle as deformation takes place. A natural representation point 

would be the centroid; see Figure 2.2. 

Since we have symmetry with respect to 6 and there is no twisting taking place 

during deformation, we can always orient an arc in the plane so that 6 is zero. Thus 

only the centroids in the r and z directions need to be calculated. Along the z axis 

the centroid is simply the average of zp(i, t) and zp(i + l,t). Using z(i, t) to store the 

z coordinate of the centroid, 

zp{i, t) + zp{i + l,t) z{i,t) = • 

To calculate the centroid in a radial direction we have, in Cartesian coordinates 

x = / / xdA. 
area of R J JR 

The area of our region R is 

n{rp{j + l,t)2 -rp(j,t)2) 
^arcs 
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specimen 
radius ^ » _ 

rp(nr,t) 

rpC-t) 

zpd+1.1) 

rp(lt) 

3V0=-pr *£(rp0.t) 2+ rpQ.t) rpO+1 ,t) 
-rpO+U)2) 

Figure 2.2: Calculating the centroid 

Denoting this area as C and, with x = rcosO and dA = rdrdd we have 

r(j,t) = J7 H rcos9 (rdrdO) 
C 

'1 
\3J' 7T 

arcs _jn 27T rp(j + 1, t)2 + rp(j + 1, t).rp(j, t) + rp{j, tf 
rp{j + l,t)+rp(j,t) 

with r(j, t) denoting the radial component of the centroid. 

Now that we have time dependent arrays to store the centroid of each element for 

all t, it is a simple matter to solve for kinetic energy using ke = | • m • v2. 

We will use the two second difference equations given below, 

vz(i, t) :(i,t + l) - z(i,t- 1) 
2-At 

and 

vr(j,t) = r{j,t + l)-r(j,t-l) 
2-At 
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respectively to approximate the velocity in the z and r directions for the ith and jth 

element for time 1 < t < nt . At t = 0 both vz(i, t) and vr(j, t) are set to zero. The 

resultant speed, denoted vres(i,j,t), is 

vres(i, j , t) = ^fvz(i,t)2 + vr(j, t)2. 

For t = nt we reduce our approximation to a first order backward difference equation. 

Recall that each element has volume equal to uvol so the mass of each element 

becomes 

umass = uvol • density 

and finally 

ke(i, j , i) = ̂  • umass • vres(i, j , t)2. 

To calculate the work going in we need to know the amount of movement that is 

generated as a result of the supplied force. Combining the equations defining Work 

and Stress (pressure) with Hooke's law we have 

Work = (strain • E) • area • distance. 

From [13] we know there is a stress being applied from both the incident and trans­

mitter bars, that is, 

oi = {ei + er)-E, Fi = Ab-au 

and 

a2 = (et) • E, F2 = Ab • a2, 

17 



where At is the crossectional area of the bar and o\ and F\ are the stress and force 

respectively at the incident bar, and cr2 and F 2 are the stress and force respectively at 

the transmitter bar. The force on the specimen is the average of these applied forces 

Since we have sectioned the specimen this applied force must be further reduced to 

obtain the force applied to each element 

F - F° 
WARES ' W>R 

What is required is the work going in to each element. Again, from [13], we have 

Using 

A, 
we can rewrite the above equation as 

FLARES ' * 

Fe (Ab\ ((e,- +eT + et) (t)\ 

As \ASJ y 2 J 
and after a final substitution we obtain 

W = • E • - — • 7T • T% • (SI - £ R - ST) • LS. 
\ ^ / NARCS ' NR 

where rb denotes the radius of the incident bar in cm. For work to done on the 

specimen it is necessary for E{ > (er -f-£t). 

Deformation throughout the specimen will be uniform and therefore symmetric 

with respect to the specimen center. The work going into deformation must be evenly 

18 



distributed along the Z axis so 

w = f (£J + ER + £t) (t)\ _ E _ 1 .JR.F.2. (gj - e r - £t) • Ls 

This is the equation we will use to calculate the work going into deforming each 

element. 

2.2 I n t e r n a l E n e r g y 

We wish to balance the equation given at the beginning of this chapter. We have 

calculated the amount of work going into the specimen and the amount of energy 

going into accelerating the specimen. What remains is the unrecoverable work or the 

work we attribute to the change in internal energy, A IE . Prom [23] we have 

A IE = p • V • fTf
 c (T) • dT 

JTI 

where CY (T) denotes the specific heat at constant volume as a function of temperature. 

From [20], hereafter referenced simply as TAPP, we obtain the specific heat of a solid 

at constant pressure in J/(mol-K) as 

Cp(T) = - c 3 - 2(c 4 • 1 0 - 3 ) T - 2(c 5 • 1 0 6 ) T - 2 - 6(c 6 • 1 0 " 6 ) T 2 + T -0.5 

Although there is a difference between CP{T) and CV (T) from [14] or [23] we know 

that, at least in the temperature regions in which we will be working, 

c ( T ) a ^ ( T ) . 

The exact relationship is given by 

CP-CV = 9A2BVT 

19 



where a, is the temperature coefficient of linear expansion, V is volume and B the 

bulk modulus. At room temperatures the difference is minimal. 

The TAPP database supplies the constants required in the Cp(T) equation for 

tantalum as 

c 3 = -47.6677, 

c 4 = 5.45091, 

c 5 = -0.21647, 

c 6 = -0.59727, 

c 8 = -1669.643, 

but these will need to be scaled to match our units. To reduce round-off errors 

we will use a modified cgs system of units: cm, g, fis and Mbars. The units for 

work (and internal energy) will be g-cm 2 / /j,s2 so we need the TAPP constants in 

g • c m 2 / ^ s 2 • K-mo\. To convert from mks to our system requires 

k g - m 2 10 3 g A O 2 c m \ 2 / l s \ 2 

s 2 • K • moles X 1 kg * \ l m / X ^lO 6 /zs/ ' 

a scaling factor of 10~ 5 . 

We also need a unit correction factor in the internal energy equation. Instead 

of merely p • V we need to add an additional constant in mol/g to complete the 

conversion. For tantalum the atomic weight is 180.9479 g/mol . Therefore the needed 

constant is 

1 m D l = 5.526453 x 10~ 3 mol / g, 
180.9479 g 
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so for us 

A IE = co-jj [ - c 3 - 2 ( c 4 - 1 0 - 3 ) r - 2 ( c 5 - 1 0 6 ) T - 2 

-6{c6-W-6)T2+(^jT-°-5jdT 

where c 0 = umass • (5.526453 x 10~ 3 m o l / g ) . After performing the integration, 

AIE c3T § - c 4 - 1 0 - 3 T 2 | ? f + 2 ( C 5 - I 0 6 ) ^ g 

- 2 ( C 6 . i o - 6 ) r 3 | J + (|)VT|?:fl 

Therefore at each time step t the temperature at t — 1 can be used to solve for the 

next temperature value beginning with the initial temperature of % = 293 K; see 

Figure 2.3 
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Chapter 3 
Diffusion and the Heat Equation 
Before impact the specimen and adjoining bars were in a state of thermal equilibrium— 

all elements of the system were at room temperature. Certainly after the test, and 

as we are trying to show, before deformation is complete, this will no longer be the 

case. The energy spent in deforming the specimen will, in part, manifest itself as 

heat and the resulting temperature differential will initiate heat conduction within 

the specimen and in both the incident and transmitter bars. 

3 .1 T h e H e a t E q u a t i o n 

We begin with the heat equation, one of the classical partial differential equations 

of mathematical physics used to describe the conduction of heat in a solid body. In 

three dimensions we have 

Tt = k AT. 

The temperature, T, is a function of x, y , z, and t, and k is the thermal diffusivity 

constant, one of the material properties of the solid. For our geometry we introduce 
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a change of variables from (x, y, z, t) to cylindrical coordinates (r, 9, z, t) so that 

dT , \d2T 1 dT 1 d2T d2T 
dr2 r dr r2 d92 dz2 

Making use of radial symmetry (dT/dO = 0) we can reduce our heat equation to 

dT 
dt = k 

d2T IdT &T_ 
dr2 + rdr + dz2 (3.1) 

The heat equation in cylindrical coordinates involves a singularity at r = 0 . 

Since our domain includes r > 0 and we know we have a bounded solution at r = 0, 

we need to determine how to represent a solution of our heat equation to avoid the 

singularity. As r —> 0 we reduce our cylinder to a one dimensional object which will 

only experience heat diffusion in the z axis. Therefore as r —¥ 0, dT/dr -> 0 and 

we have the indeterminate form 0/0 . We can apply l'Hopital's rule to the quotient 

leaving 

,. IdT d2T 
r-tOr dr dr2. 

Thus, for small r, we can express the heat equation as 

dT 
dt = k 

82T d2T 
2 1 dr2 dz2 

3.1.1 Numerical Solution of the Heat Equation 

Although there are many references that present schemes for the solution of the two-

dimensional heat equation with time dependence, few discuss the condition of both 

spatially and temporally dependent boundary conditions. One reference to present 

such a solution was Carslaw [6], using Duhamel's theorem, but the solution is not 

representable in terms of well-known special functions. Since the data being supplied 
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is discrete, and since a solution in closed form is not available, a numerical solution 

is required. 

F i n i t e Dif ference E q u a t i o n s 

To express the partial differential equations we are using in our model as finite dif­

ferences we turn to Taylor's theorem. Recall that when T and its derivatives are 

singled-valued, finite, continuous functions of x, then 

T(x + Ax) = T(x) + AxT'(x) + ^~T" (x) + ^-T"'(x) +••• 

and 

T(x - Ax) = T(x) - AxT'(x) + {-^f-T"(x) - ^T'"(x) + ••• . 

Solving the first expansion for T' (x) yields 

a forward difference expression involving ^f-T"(x) + ̂ ^~T"'(x) + ••• which we 

group together as O(Ax) . Addition of these Taylor expansions yields 

T{x + Ax) + T(x - Ax) = 2T(x) + (Ax)2 T"(x) + O (Ax)4 , 

where O (Ax)4 denotes other terms containing fourth and higher powers of Ax. Re­

arranging this equation to solve for the second derivative gives 

T"(x) = j^-z [T(x + Ax) - 2T(x) + T(x - Ax)} + O (Ax)2. 

Since we are dealing with approximations, if we assume the terms involving Aa: , or 

(Ax)2 in the case of the second derivative, are negligible in comparison to the other 

terms we have the well-known approximations 
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, ^ T(x + Ax)-T(x) 
[X) ~ Ax 

, . T{x + Ax) - 2T(x) + T(x - Ax) 
{X) = (Axf • 

Applying these to functions of several variables we have, for T(r, z, t), dT/dt and 

dT/dr, 
dT ̂  T (r 0 , z 0 , t + At)- r(rp, zQ, t) 
dt At 
dT ̂  T(r + Ar,z0,t0)-T(r,zQ,t0) 
dr Ar 

(3.2) 

and similarly for dT2/dr2
 and dT2/8z2-

d2T ^ T{r + Ar, z0, t0) - 2T{r, z 0 , ^ 0) + T{r - Ar, z0, t0) 
dr2 (Ar)2 

d2T . T(r0,z + Azo,tQ)-2T{r0,z,t0) + T{r0,z-Az0,to) 
dz2 (Az)2 

Note that the approximation scheme for dT/dr has an error O(Ar) whereas dT2/dr2 

has an error 0 (Ar)2 . Since our partial differential equation involves the addition of 

these two derivatives, it would be desirable to keep the error terms consistent so that 

we could simply lump the error terms together as 0 ( A r 2 ) . 

If we subtract the Taylor expansion for T(x — Ax) from T(x + Ax) we obtain 

a different approximation scheme for dT/dr, one whose error is now O ( A r ) 2 , that is, 

T(x + A z ) - T(x - Ax) = T" T T + T' • Ax + -— • (Ax)2 + 'A ~x3 

T -T' • Ax + — • (Ax) 

3! 
2_tL 

3! 

( A x ) J + • • 

t 

- • ( A x ) 3 + 

= 2 T ' - A x + 0 ( A x ) : 
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where T and its derivative appearing on the right are all evaluated at x . Upon solving 

for T', we find 

T , M = r ( l + A x ) - 7 > - A * ) + 0 ( A i ) 2 

To allow for combining of error terms on the right hand side of our heat equation, 

equation (3.1), we will rewrite (3.2) as, 

dT ̂  T{r + Ar, z 0 , tQ) - T(r - A r 0 , z 0 , t0) 
dr ~ 2Ar 

To complete our derivation of the finite difference equations, we introduce the 

following notation: 

T(jAr, mAz, nAt) = T f o , zm, tn) = T)% 

for j = 1 , . . . , nT, m = 1 , . . . , n 2 , and n = 1 , . . . , tn. We can therefore approximate 

our partial differential heat equation 

dT _ 
dt ~k 

d2T 1 dT d2T 

in the following form: 

n(n+l) _ rp(n) 

At 
71(1) 9 T W i m\n) 

dr2 r dr dz2 

= k 

+-

(Ar) 2 

1 J j+ l , ro 1 j-l,m , - tj,ro+l ^ j,m ' 1 j , m - l 
n(n) (n) ->(") , t ( « ) 

+ 
j A r 2Ar ' {Az)2 

For the case where r is near 0 we had the partial differential equation 

dT _ 2k&T hd2T 
dt dr2 dz2 

which, for j = 0, we can record as 

j , (n+l) _ j , (n) 

At 
rp{n) _ nrp(nj , rp\fl) 

( A r ) 2 

J j ,m+1 z , ± j,m f J j , m - l 
( A z ) 2 
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We can simplify this equation by making use of the restriction we imposed earlier, 

namely dT/dr —? 0 as r -» 0 so that, since 

ptrp rp{n) _ rp(n) 
u l j_ xj+l,m •Lj—l,m 

for j = 0 we have 

rp(ll) _ rp\Tl) •Lj+l,m ^ j - l . m _ n rp(n) _ T(n) 
— - U, 01 i i + l i T O - i j _ l i f l 

9r 

n(n) 

2Ar 

With this, our finite difference equation becomes 

r (n+ l ) l0,m -T, (») 
0,m 

A* 

T'( n) i t 1 

i l , m + •'f 
(»)' 
0,m 

(Ar) 2 

r(») 
' 0,m+l T J 0 , m - 1 

(A*) 2 

Since we have Dirichlet boundary conditions, that is the boundary temperatures are 

known, we will substitute the required ambient temperature value when dealing with 

calculations requiring T^m or T|"\ . 

In order to use these difference equations to "march ahead in time" as we numer­

ically solve the heat equation, we need to separate out terms involving n from those 

involving n +1 . That is, the points TJ% T${m, T^{m, T^+1, and T $ _ i are used 

to calculate TJ"+1]
 (see Figure 3.1). 

For j 0, solving our finite difference equation for w ^ 1 ' yields 

= | t [(2i -H l)TJS,m - 4 i T ^ + (2j - l)T^\ ) 7 n] 
2j 

i2\1j,m+\ ~ ZJ j,m "•" J j,m-l) J j ,m ) ,(n) (n) -(«) (3.3) 

and for j = 0, 

T0

(,"m

+1) = 4 5 l ( T £ - 7JSJ) + 5 2 (T 0

( S + 1 - 2 7 $ + ZgL) + ^ (3.4) 
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time m, length 

Figure 3.1: Scheme for calculating the n+1 term 

where 

Si = ( A r ) 2 

kAt and S2 = 
kAt 

( A z ) 2 • 

These are the finite difference equations we use in the computer model to simulate 

heat diffusion. 

This is the heart of our problem. What happens to the heat being generated in 

the specimen as a result of deformation? If the rate of deformation is fast enough, 

in essence instantaneous, specimen temperature will rise since there will be no time 

for diffusion (adiabatic). The slower the deformation rate the more time allowed for 

diffusion and at the other extreme, if the deformation is slow enough, all the heat from 

the specimen will diffuse and the specimen temperature will be constant (isothermal). 

Heat being generated within the specimen will diffuse within the specimen and 

into the incident bar. Thus we need to model two diffusions with particular attention 

to the incident bar/specimen interface. 

The face of the incident bar was divided up in the same way as the specimen with 

3.2 M o d e l l i n g D i f fus ion a t t h e I n t e r f a c e 
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one difference; we do not require each sector to be divided into pieces of equal volume. 

Here we have a uniform mesh such that 

T b A 
— = A r 6 

nrb 

where n rj, denotes the number of divisions along the r axis. As a result there is a 

mismatch between the non-uniform mesh on the specimen and the point of contact 

with the incident bar. A cubic spline is used to provide a smooth interface between 

these two surfaces. (For some background on the use of cubic splines, see [21].) 

The problem is two-fold: the mismatch between specimen and incident bar, and 

the changing radius of the specimen as deformation proceeds. 

Incident 
Bar 

|b = rbnumpts 
jb = rbnumpts-1 
jb = rbnumprs-2 

2 
1 

jb=0 

rupper . 
r l o w e r . \ 

r s 
j = rnumpts 

i=0 

s p e c i m e n 
de fo rma t ion 
as t i nc reases 

• ti + n 

Figure 3.2: Specimen in contact with the incident bar 

From the section on internal energy we know we can calculate the temperature of 

the specimen as a function of both t and r. For temperatures in between the centroid 

positions on the specimen we make use of a spline profile. Each of these temperatures 
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is represented by a cubic polynomial of the form 

Mr) = (H + bi{r - n) + a{r - n)2
 + di(r - n)3 

for T{ < r < r,-+i and i = 0 ,1 , • • •, nt — 1. The four parameters Oi, bi, Ci, and 

di are solved in a subroutine. These polynomials supply data for the temperature 

calculations at the incident bar/specimen interface. 

At each stage of the deformation the specimen radius is increasing. In terms of a 

match up between the element centroids on the specimen and the lattice laid out on 

the incident bar several scenarios are possible: there could be an exact match between 

the specimen and the incident bar, or there could be one , none or several loci on the 

incident bar that fall between two adjoining centroids on the specimen; see Figure 

3.2. 

Beginning at the incident bar radius a check is made to see if there is contact with 

the specimen. Since the deforming specimen will eventually flatten out to cover the 

entire bar end, we begin at the outer surface of the incident bar, point d; see Figure 

3.2. We need to determine if contact is being made with the specimen and where. 

To do this we initially assign rupper to the centroid position corresponding to j — nr 

and rlower to the next centroid location j = n r — 1. Beginning at jb = nTb , the 

outside edge of the incident bar, the following check is made 

rlower < jb • Ar;, < rupper 

where jb is a counter to determine the position on the incident bar and j is the 

counter to determine the position on the specimen. If the test is true we have contact 

and the correct splined temperature is assigned to that point on the specimen. This 
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temperature will then be used in the calculation to determine the diffused temperature 

on the face of incident bar. If the test is false we do not have contact and the 

bar temperature remains unchanged. Once a temperature is assigned the counter 

is reduced by one, jb = jb — 1 and the check is made again. Eventually, as jb is 

decremented, jb • Ar&will be less than rlower. When this occurs we need to slide 

down the specimen and establish a new range of contact, that is 

rupper —> rlower 

rlower —> r(j — 1,0, t) . 

Then the initial check, rlower < jb • Ar*, < rupper, is made again and the process 

continues until rlower = r(0,0,2). Even though we have reached the last centroid 

position on the specimen there may be incident bar loci below this value. Any spec­

imen temperatures required below this point will be assigned the same value as the 

last point of contact. Once this loop has been negotiated we know where and how 

much heat is ready to be applied to the face of the incident bar. The final step is to 

calculate diffusion in both the specimen and the incident bar. 

We have two general equations (3.1) and (3.2), that must be applied to the nine 

conditions shown in Figure 3.3. 

In both metals we have basically three types of points: internal, boundary and 

contact. The software uses three temperature arrays to model the diffusion. Two are 

used to record temperatures in the incident bar, Tb(i,j,t), and specimen Ts(i,j,t). 

The third, Tsi(i,j,t) is used to record the extra splined temperatures required for 

diffusion at the interface. 
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Figure 3.3: Diffusion in the incident bar 

1. As explained above, beginning at the incident bar radial boundary, a check is 

made to see if a locus on the incident bar is in contact with the specimen. If 

there is contact a splined specimen temperature is calculated, Tsi(i,j,t), and 

used as the (j, m— 1, t) point in the incident bar diffusion calculation. Similarly, 

on the specimen side, incident bar temperatures are used in specimen diffusion 

calculations involving (j,m — l,t). Once temperatures have been assigned to 

the interface a flag is set so this condition is not checked again until t is incre­

mented. That is, this condition has a built in loop that calculates the diffusion 

temperature for the entire area as soon as it is determined that contact has 

been made. 

2. Along the central axis j = 0 so we need (3.2) to calculate the diffusion temper­

atures. 

3. In the annulus only four points are available to calculate the diffusion tempera­

ture. Equation (3.1) calls for (j, m — 1, t) - see Figure 3.1 - but at the annulus 
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this point is beyond the boundary. In general two types of boundary problems 

are discussed in such texts as [15] or [5]. Either the boundary temperature is 

known at all points, a Dirichlet problem, or the normal gradient of tempera­

ture is specified, a Neuman problem. At t = 0 we know the temperature of 

the boundary but as time progresses this ambient air temperature is not being 

held constant. Still, since the test is on the order of microseconds, there will 

be little time for the bar to lose heat to the outside air. For this reason we 

have assumed Dirichlet boundary conditions throughout the remainder of this 

discussion. Note also that once condition 1 has been met, there is no further 

need to check this condition. In the software implementation of this model the 

status of con l f l a g is used to check this possibility. This condition only exists 

on the incident bar. 

4. These are the points on the radial boundary at the incident bar/specimen inter­

face. For the incident bar the calculation uses ambient air temperatures for both 

(j + l,m,t), and (j, m — l,t). The specimen calculation only requires ambient 

air temperature for (j + 1, m, t). 

5. These are the internal points so equation (3.1) is used in both incident bar and 

specimen diffusion calculations. 

6. This is the single point at the middle of the bar opposite the specimen. The 

ambient air temperatue is used for (j,m + l,t) and, due to symmetry, the 

temperature at (j + l,m,t) is used to replace (j — l,m,t). 
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7. These are the points on the end of the bar opposite the specimen excluding 

the center and outside boundary point. Ambient air temperatures are used for 

(J,M + L,T). 

8. These are all the radial boundary points. Ambient air temperatures are used 

for (j + L,M,T). 

9. This is the single point on the end opposite the specimen. Ambient air temper­

atures are used for both (J + 1, M, T) and (J, M + 1, T). 

With these exceptional conditions in place we have constructed a complete nu­

merical model for diffusion in the incident bar, in the specimen and at the incident 

bar/specimen interface. 
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Chapter 4 
The Model 
4 . 1 I n t r o d u c t i o n 

The energy considerations and element decomposition of Chapter 2, together with 

the numerical diffusion scheme presented in the preceding section form the basis of 

a computer program, energy, which can be used to examine the adiabaticity of the 

SHPB text. 

The code is written in Fortran 77. Since accuracy is important, double precision 

was used at the expense of processing speed. Accuracy will also increase as the mesh 

size for both specimen and incident bar are reduced. All parameters and initialization 

data can be read in from a data file. 

The resulting temperature rise in K, in each of the specimen and incident bars, 

is calculated at each time step and the results are stored in individual files. 

4.2 C o m p u t a t i o n s 

Initialization data is read in and stored in arrays, parameters and names. Required 

initial data includes the: 

1) strain history data, £i,£r, and et in micro strain, as recorded from the strain 

35 



gauges on the SHPB apparatus; 

2) uniform time difference between reading in FXS; 

3) number of time steps (total test time divided by AT); 

4) physical dimensions, radius and length, of the specimen and incident bar in cm; 

5) modulus of elasticity of the incident and transmitter bars in Mbars; 

6) density of the specimen in g /cm 3 ; 

7) initial temperature of the specimen in K; 

8) mesh size of both the specimen and incident bar. Three values are required for 

the specimen: 1) the number of divisions in the circle, NARCS (same for both specimen 

and incident bar), 2) the number of divisions along the z-axis, NZ and NZO respectively 

and 3) the number of divisions along the radius, NR and NRB respectively; 

9) TAPP constants for the specific heat equation based on the specimen material. 

These constants must be scaled to match the units the code uses. 

After the initialization data is read in calculations are done as follows: 

1) Based on the strain history data, the position of each element in the specimen 

is solved for all T; 

2) Using the strain history data the amount of work supplied to the specimen is 

calculated. Using the specimen position data, velocity and kinetic energy calculations 

are done; 

3) The difference between work supplied and kinetic energy yields internal energy; 

4) Specimen temperature and the coefficients for the cubic spline polynomial are 

calculated; 

5) The splined temperature is used in diffusion calculations at the incident bar/specimen 
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interface; 

6) The diffusion calculations in both the incident bar and specimen; 

The resulting temperature arrays are stored in separate files, named TEM_BAR.DAT 

for the incident bar and TEM_SPEC.DAT for the specimen. Output is a ordered triple, 

(z, r ,T), showing temperature relative to position. A short listing of each data file is 

shown in appendices A and B respectively. 

By removing the comment designation on several lines of Fortran code a detailed 

output can be produced. A record of the deformation using the coordinates of the 

specimen centroid, z and r respectively, are stored in ZCENT.DAT and RCENT.DAT. 

Speed, work, kinetic energy and internal energy are stored in SPEED.DAT, WORKI.DAT, 

KINEN.DAT and INTEN.DAT respectively. 

4.3 Test R u n s 

The first test run was generated using amaco iron as the specimen material with: 

1. specimen mesh, n r = 5, NATCS = 100 and NZ = 5, 

2. incident bar, NTT = 10, NARCS — 100 and NZB = 10, 

3. NT — 399, corresponding to an actual test time of approximately 100/ /sec . 

4.4 S t a b i l i t y 

Recall our finite difference equations (3.1) and (3.2) involve S\ and S<I (SS\ and SS2 

for specimen diffusion) such that 

T{t + 1) = s l ( terms involving T(t)) + s2(terms involving T(t)). 
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Both si and 52 are calculated using the mesh sizes At, Ar and Az. If the speed at 

which we move along in time does not correspond with the "speed" we move along 

spatially there will instability. In our case since 

kAt kAt 
S l = ( A 7 p a n d S 2 = ( A ^ ' 

and At is in microseconds, Ar and Az must be in the order of 1 0 - 3 so that S\, s2 < 1. 

Larger values will cause temperature values to soar well above 2000 K. Such values 

are meaningless since they are above the melting point of the specimen material. 
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Chapter 5 
Conclusions 
This problem involves heat generated as a result of deformation and, time permitting, 

diffusion via conduction. Initially the entire system is at room temperature, 293 

K. We know the specimen is under compression and we know time for diffusion is 

short. Given these bench marks the model does not produce realistic temperatures. 

Output shows specimen temperature falling below 293 K in some elements even 

though specimen cooling is not possible. Furthermore, even if we only focus on those 

portions of the specimen that gain heat, by the end of the test these temperatures 

have dropped significantly. Such cooling is not possible in 60 - 80/zs. In our efforts 

to explain these results we examined both the strain data and the calculations. 

For the specimen to be undergoing compression we required 

£t - (£r +£T) > 0 

and 

SI > 0. 

Fewer than one quarter of the data satisfied these conditions. Furthermore the qual­

ifying data were irregularly spaced. Typically one would expect unreliable data at 
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the beginning and/or end of the test but in our case we would find several contiguous 

points, miss a few, find a few more, then miss some and so on. Occasionally there 

would be gaps of over 100 data representing a 25(is time interval-one quarter of the 

test. Such irregularities lead to timing problems in the calculations. 

During deformation the specimen gains heat through an increase in internal en­

ergy. However, when we checked these calculations we found A IE < 0-clearly an 

impossibility since this will lead to specimen cooling. 

Stepping aside for the moment we can illustrate the effect £t- — (e r + st) > 0 has 

on the specimen temperatures by presenting a listing of comparsion temperatures t 

between 100 and 103 for the following schemes: 

1. the status quo (which is to say, no effort to correct for A IE < 0 ) 

2. truncation (that is when A IE < 0 just throw away the negative A IE and 

replace it with A IE = 0) 

3. taking absolute value (that is when A IE < 0 set A IE =\ A IE | ) 

The arrays are in the form 

T(l,l) T(l,2) T(l,3) ... T ( l , nz) 

T(2,l) T(2,2) T(2,3) ... T(2, nz) 

T(n r , l ) T(n r ,2) T(n r ,3) ... T ( n r , nz). 

Temperatures for schema one. 
specimen temperature array at time 100 

0.289939363256E+03 0.290011167677E+03 0.290064993144E+03 0.290100876919E+03 0.290118818845E+03 
0.289940158131E+03 0.290011931619E+03 0.290065757089E+03 0.290101640866E+03 0.290119582794E+03 
0.289940922862E+03 0.290012696387E+03 0.290066521861E+03 0.290102406640E+03 0.290120347568E+03 
0.289941690153E+03 0.290013463711E+03 0.290067289189E+03 0.290103172970E+03 0.290121114900E+03 
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0.289942484663E+03 0.290014268219E+03 
specimen temperature array at time 101 

0.291147538727E+03 0.291167826985E+03 
0.291147805027E+03 
0.291148020715E+03 
0.291148237130E+03 
0.291148461244E+03 

0.290068083700E+03 0.290103967484E+03 

0.291168042461E+03 
0.291168258236E+03 
0.291168474728E+03 
0.291168698847E+03 

specimen temperature array at time 102 
0.292313706598E+03 
0.292313759848E+03 
0.292313767265E+03 
0.292313774708E+03 
0.292313782423E+03 

0.292314439963E+03 
0.292314447386E+03 
0.2923144S4833E+03 
0.292314462304E+03 
0.292314470029E+03 

specimen temperature array at time 103 
0.293199074488E+03 
0.293199121526E+03 
0.293199220517E+03 
0.293199319839E+03 
0.293199422680E+03 

0.293208340782E+03 
0.293208439653E+03 
0.293208538632E+03 
0.293208637942E+03 
0.293208740770E+03 

0.291183O18543E+03 
0.291183234020E+03 
0.291183449794E+03 
0.291183666284E+03 
0.291183890402E+03 

0.292314964402E+03 
0.292314971824E+03 
0.292314979272E+03 
0.292314986742E+03 
0.292314994467E+03 

0.29321B309793E+03 
0.293215408665E+03 
0.293215507644E+03 
0.293215606953E+03 
0.29321S709781E+03 

0.291193146181E+03 
0.291193361658E+03 
0.291193577431E+03 
0.291193793920E+03 
0.291194018039E+03 

0.292315314018E+03 
0.29231S321441E+03 
0.292315328888E+03 
0.292315336358E+03 
0.292315344083E+03 

0.293219955801E+03 
0.293220054672E+03 
0.29322O153651E+03 
0.293220252961E+03 
0.293220355789E+03 

0.290121909415E+03 

0.291198212638E+03 
0.291198425219E+03 
0.291198640992E+03 
0.291198857480E+03 
0.291199081599E+03 

0.292315491523E+03 
0.292315496182E+03 
0.292315503629E+03 
0.292315511099E+03 
0.292315518824E+03 

0.293222280831E+03 
0.293222377676E+03 
0.293222476654E+03 
0.293222575963E+03 
0.293222678791E+03 

Temperatures for scheme two. 
specimen temperature array at time 100 

0.292999999544E+03 
0.292999999542E+03 
0.292999999541E+03 
0.292999999541E+03 
0.292999999S40E+03 

0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 

specimen temperature array at time 101 
0.293000000000E+03 0.292999999549E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 

0.292999999548E+03 
0.292999999547E+03 
0.292999999546E+03 
0.292999999546E+03 

0.292999999554E+03 
0.2929999995B3E+03 
0.292999999552E+03 
0.292999999551E+03 
0.292999999S51E+03 

specimen temperature array at time 102 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 

specimen temperature array at time 103 
0.293199074488E+03 0.29320836S629E+03 
0.293199173366E+03 0.293208464505E+03 
0.2931992723S0E+03 0.293208563488E+03 
0.293199371665E+03 0.293208662802E+03 
0.293199474499E+03 0.293208765634E+03 

0.292999999423E+03 
0.292999999422E+03 
0.292999999422E+03 
0.292999999421E+03 
0.292999999421E+03 

0.29299999942SE+03 
0.292999999425E+03 
0.292999999424E+03 
0.292999999424E+03 
0.292999999423E+03 

0.292999999428E+03 
0.292999999427E+03 
0.292999999427E+03 
0.292999999426E+03 
0.292999999426E+03 

0.293215334921E+03 
0.29321B433797E+03 
0.29321BB32780E+03 
0.293215632094E+03 
0.29321S734926E+03 

0.292999999463E+03 
0.292999999462E+03 
0.2929999994B8E+03 
0.292999999453E+03 
0.292999999451E+03 

0.292999999468E+03 
0.292999999467E+03 
0.292999999463E+03 
0.292999999468E+03 
0.292999999457E+03 

0.292999999474E+03 
0.292999999472E+03 
0.292999999468E+03 
0.292999999464E+03 
0.292999999462E+03 

0.29321998111SE+03 
0.293220079991E+03 
0.293220178974E+03 
0.293220278288E+03 
0.293220381120E+03 

0.292999999964E+03 
0.292999999880E+03 
0.292999999811E+03 
0.292999999766E+03 
0.292999999751E+03 

0.292999999964E+03 
0.292999999884E+03 
O.292999999820E+O3 
0.292999999778E+03 
0.292999999764E+03 

0.292999999964E+03 
0.292999999889E+03 
0.292999999828E+03 
0.292999999789E+03 
0.292999999776E+03 

0.293222304651E+03 
0.293222403088E+03 
0.293222502071E+03 
0.29322260138BE+03 
0.293222704217E+03 

Temperatures for scheme three, 
specimen temperature array at time 100 

0.296061193791E+03 0.29B989334640E+03 
0.296060429SS7E+03 
0.296059664496E+03 
0.296058896877E+03 
0.296058102065E+03 

0.29S988B703B6E+03 
0.29S987805361E+03 
0.295987037800E+03 
0.29B986242973E+03 

specimen temperature array at time 101 
0.294852588498E+03 
0.29485237295SE+03 
0.2948521B7178E+03 
0.294851940681E+03 
0.2948B1716514E+03 

specimen temperature array at time 102 
0.293686240257E+03 0.293685606346E+03 
0.293686232834E+03 0.29368B498922E+03 
0.293686225403E+03 0.29368B491B03E+03 
0.293686217947E+03 0.293685484069E+03 

0.294832300680E+03 
0.294832085026E+03 
0.294831869277E+03 
0.2948316B280BE+03 
0.294831428639E+03 

0.295935493681E+03 
0.295934729400E+03 
0.29B933964406E+03 
0.295933196846E+03 
0.295932402022E+03 

0.294817111126E+03 
0.294816896S72E+03 
0.294816679822E+03 
0.294816463349E+03 
0.294816239183E+03 

0.29368498398BE+03 
0.293684976562E+03 
0.293684969143E+03 
0.293684961699E+03 

0.295899599726E+03 
0.295898835447E+03 
0.29S8980704B4E+03 
0.295897302894E+03 
0.29S896B08072E+03 

0.294806984798E+03 
0.294806769246E+03 
0.2948065B3496E+03 
0.294806337022E+03 
0.294806112857E+03 

0.293684635740E+03 
0.293684628317E+03 
0.293684620898E+03 
0.293684613453E+03 

0.29B881650147E+03 
0.295880888048E+03 
0.29S88012305SE+O3 
0.29B87935B496E+03 
0.29B878560674E+03 

0.294801919740E+03 
0.294801705936E+03 
0.294801490186E+03 
0.294801273712E+03 
0.294801049547E+03 

0.293684459&48E+03 
0.293684454147E+03 
0.293684446727E+03 
0.293684439283E+03 

41 



0.293686210227E+03 0.293685476343E+03 0.293684953982E+03 0.293684605737E+03 0.293684431566E+03 
specimen temperature array at time 103 

0.293199074488E+03 0.293208360126E+03 0.293215329726E+03 0.293219976125E+03 0.293222298367E+03 
0.293199173366E+03 0.293208459006E+03 0.293215428606E+03 0.293220075005E+03 0.293222398204E+03 
0.293199272350E+03 0.293208557994E+03 0.293215527593E+03 0.293220173993E+03 0.293222497192E+03 
0.293199371665E+03 0.293208657312E+03 0.29321S626911E+03 0.293220273311E+03 0.293222596510E+03 
0.293199474499E+03 0.293208760148E+03 0.293215729748E+03 0.293220376147E+03 0.293222699346E+03 

Returning to our discussion of A IE, if we go back one step further, the change 

in internal energy is the difference between work going in to deform the specimen, 

and kinetic energy. Since kinetic energy is a straightforward calculation we turned 

to how work going into deformation could be calculated to keep A IE > 0. Three 

approaches were tried but none were successful. 

One approach is uniform distribution by volume. In this case 

\ 2 J Wares ' TlT Tlz 

so that each equal volume element is acted upon by the an equal quantity of work. 

The second approach called for a change in the constitutive equations given by [13]. 

In our first calculation work was independent of the changing cross sectional area of 

the specimen. Using 

We = ^ + er + e«)(*)j . E . AREQ_S . (EI-ER-EJ-Ls 

where 

„„„ c _ *-[rp{j + l,t)2-rp{j,t)2} 
'LI o tx —o — 2 

1" ' rs ' Wares 

we distributed the work proportional to the element's annular area. Our third and 

last approach followed the reasoning that those elements of the specimen undergoing 

the greatest movement were having the greatest amount of work being done on them. 
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We used 

workin~e(i,j,t) = workin(t) • 
tke 

where 

workin(t) = 
(Sj + g r + et) [t) 

2 
• E-

Wares 

1 
• 7T • r\ • {si - eT - et) • LS 

to distribute work proportional to the kinetic energy. The workin(t) term is the 

total work done on one wedge, workin-e(i,j,t) denotes the work being done on one 

element, and tke = Yli=i J2]=i ke(i, j , t), the total kinetic energy of one wedge. As 

previously mentioned, none of these schemes kept AIE > 0 for all t. It would seem 

better conditioned data is needed to validate the model. 
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A p p e n d i x A 

T h e o r d e r e d t r i p l e ( z , r , T ) s h o w i n g 
t h e t e m p e r a t u r e o f t h e i n c i d e n t b a r 

0.100000000000E+01 0 
0.100000000000E+01 
0.100000000000E+01 
0.100000000000E+01 
0.100000000000E+01 
0.100000000000E+01 
0.100000000000E+01 
0.100000000000E+01 
0.100000000000E+01 
0.100000000000E+01 
0.300000000000E+01 
0.300000000000E+01 
0.300000000000E+01 
0.300000000000E+01 
0.300000000000E+01 
0.300000000000E+01 
0.300000000000E+01 
0.300000000000E+01 
0.300000000000E+01 
0.300000000000E+01 
O.SOO0O0000OOOE+01 
0.600000000000E+01 
0.500000000000E+01 
0.5000000O0CO0E+01 
0.500000000000E+01 
0.500000000000E+01 
0.500000000000E+01 
0.500000000000E+01 
0.500000000000E+01 
O.S0O000OO00O0E+01 
0.700000000000E+01 
0.700000000000E+01 
0.700000000000E+01 
0.700000000000E+01 
0.700000000000E+01 
0.700000000000E+01 
0.700000000000E+01 
0.700000000000E+01 
0.700000000000E+01 
0.700000000000E+01 
0.900000000000E+01 
0.900000000000E+01 
0.900000000000E+01 
0.900000000000E+01 
0.900000000000E+01 

.635000000000E-01 0 
0.190SOOOOOOOOE+00 
0.317500000000E+00 
0.444500000000E+00 
0.571500000000E+00 
0.698500000000E+00 
0.825SO0000000E+00 
0.952500000000E+00 
0.107950000000E+01 
0.120650000000E+01 
0.635000000000E-01 
0.190500000000E+00 
0.317500000000E+00 
0.4445O0000000E+00 
0.571500000000E+00 
0.698500000000E+00 
0.825500000000E+00 
0.9S26O0000000E+00 
0.107950000000E+01 
0.120650000000E+01 
0.635000000000E-01 
0.190SO0000000E+00 
0.317600000000E+00 
0.444600000000E+00 
0.571500000000E+00 
0.698SO0000000E+00 
0.825500000000E+00 
0.952500000000E+00 
0.107950000000E+01 
0.120650000000E+01 
0.636000000000E-01 
0.190500000000E+00 
0.317500000000E+00 
0.444600000000E+00 
0.571600000000E+00 
0.698500000000E+00 
0.825500000000E+00 
0.952500000000E+00 
0.107960000000E+01 
0.120650000000E+01 
0.635000000000E-01 
0.190500000000E+00 
0.317600000000E+00 
O.4445OO00000OE+00 
O.B7160O000000E+00 

.293070296004E+03 
0.293066576606E+03 
0.293055628076E+03 
0.293038808985E+03 
0.293026102078E+03 
0.293016801554E+03 
0.293010212106E+03 
0.293005780688E+03 
0.293002998003E+03 
0.293001426420E+03 
0.2930010S6315E+03 
0.293001006884E+03 
0.293000869173E+03 
0.293000677757E+03 
0.293000484827E+03 
0.293000317382E+03 
0.293000187028E+03 
0.293000094759E+03 
0.293000036420E+03 
0.293000001668E+03 
0.293000008989E+03 
0.293000008B43E+03 
0.293000007306E+03 
0.293000005585E+03 
0.293000003762E+03 
0.293000002133E+03 
0.293000000861E+03 
0.292999999980E+03 
0.292999999440E+03 
0.2929999991&2E+03 
0.293000000026E+03 
0.293000000023E+03 
0.293000000016E+03 
0.293000000006E+03 
0.292999999996E+03 
0.292999999988E+03 
0.292999999982E+03 
0.292999999980E+03 
0.292999999979E+03 
0.292999999979E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
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0.900000000000E+01 
0.900000000000E+01 
0.900000000000E+01 
0.900000000000E+01 
0.900000000000E+01 
0.110000000000E+02 
0.110000000000E+02 
0.110000000000E+02 
0.110000000000E+02 
0.110000000000E+02 
0.110000000000E+02 
0.110000000000E+02 
0.110000000000E+02 
0.110000000000E+02 
0.110000000000E+02 
0.130000000000E+02 
0.130000000000E+02 
0.130000000000E+02 
0.130000000000E+02 
0.130000000000E+02 
0.130000000000E+02 
0.130000000000E+02 
0.130000000000E+02 
0.130000000000E+02 
0.130000000000E+02 

. 0.150000000000E+02 
0.150000000000E+02 
0.150000000000E+02 
0.150000000000E+02 
0.150000000000E+02 
0.150000000000E+02 
0.150000000000E+02 
0.150000000000E+02 
0.150000000000E+02 
0.150000000000E+02 
0.170000000000E+02 
0.170000000000E+02 
0.170000000000E+02 
0.170000000000E+02 
0.170000000000E+02 
0.170000000000E+02 
O.1700O00OO000E+02 
0.170000000000E+02 
0.170000000000E+02 
0.170000000000E+02 
0.190000000000E+02 
0.190000000000E+02 
0.190000000000E+02 
0.190000000000E+02 
0.190000000000E+02 
0.190000000000E+02 
0.190000000000E+02 
0.190000000000E+02 
0.190000000000E+02 
0.190000000000E+02 
O.2100O000O000E+02 
0.210000000000E+02 
0.210000000000E+02 
0.210000000000E+02 
0.210000000000E+02 
0.210000000000E+02 
0.210000000000E+02 
0.21000000O000E+02 
0.210000000000E+02 
0.21000000O000E+02 
0.230000000000E+02 
0.230000000000E+02 
0.230000000000E+02 

0.698500000000E+00 
0.825500000000E+00 
0.952500000000E+00 
0.107950000000E+01 
0.120650000000E+01 
0.635000000000E-01 
0.190500000000E+00 
0.317500000000E+00 
0.444600000000E+00 
0.571500000000E+00 
0.698500000000E+00 
0.825500000000E+00 
0.952500000000E+00 
0.107950000000E+01 
0.120650000000E+01 
0.635000000000E-01 
0.190500000000E+00 
0.317500000000E+00 
0.444500000000E+00 
O.B71500000000E+00 
0.698500000000E+00 
0.825500000000E+00 
0.952500000000E+00 
0.107950000000E+01 
0.120650000000E+01 
0.635000000000E-01 
0.190500000000E+00 
0.317500000000E+00 
0.444500000000E+00 
0.571500000000E+00 
0.698500000000E+00 
0.825600000000E+00 
0.952500000000E+00 
0.107950000000E+01 
0.120650000000E+01 
0.635000000000E-01 
0.190500000000E+00 
0.317600000000E+00 
0.444500000000E+00 
0.571500000000E+00 
0.698500000000E+00 
0.825500000000E+00 
0.952500000000E+00 
0.107950000000E+01 
0.120650000000E+01 
0.635000000000E-01 
0.190500000000E+00 
0.317500000000E+00 
0.444800000000E+00 
0.571500000000E+00 
0.698500000000E+00 
0.82BB00000000E+00 
0.952500000000E+00 
0.107950000000E+01 
0.120660000000E+01 
0.635000000000E-01 
0.190600000000E+00 
0.317B00000000E+00 
0.444500000000E+00 
O.S71600000000E+00 
0.698600000000E+00 
0.825500000000E+00 
0.952500000000E+00 
0.107950000000E+01 
0.120650000000E+01 
0.635000000000E-01 
0.190500000000E+00 
0.317600000000E+00 

0.293000000000E+03 
0.293000000000E+03 
O.293000OOOO00E+O3 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
O.293000000O00E+03 
0.293000000000E+03 
0.293000000000E+03 
0.29300000OO00E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293O000000O0E+O3 
0.2930000000O0E+O3 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.2930000000O0E+O3 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.2930O00000OOE+O3 
0.293000000000E+03 
O.2930O0000O0OE+O3 
0.293000000000E+03 
0.293000000000E+03 
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0.230000000000E+02 
0.230000000000E+02 
0.230000000000E+02 
0.230000000000E+02 
0.230000000000E+02 
0.230000000000E+02 
0.230000000000E+02 
0.250000000000E+02 
0.250000000000E+02 
0.250000000000E+02 
0.250000000000E+02 
0.2B0000000000E+02 
0.250000000000E+02 
0.250000000000E+02 
0.260000000000E+02 
0.250000000000E+02 
0.260000000000E+02 
0.270000000000E+02 
0.270000000000E+02 
0.270000000000E+02 
0.270000000000E+02 
0.270000000000E+02 
0.270000000000E+02 
0.270000000000E+02 
0.270000000000E+02 
0.270000000000E+02 
0.270000000000E+02 
0.290000000000E+02 
0.290000000000E+02 
0.290000000000E+02 
0.290000000000E+02 
0.290000000000E+02 
0.290000000000E+02 
0.290000000000E+02 
0.290000000000E+02 
0.290000000000E+02 
0.290000000000E+02 

0.444600000000E+00 
0.571500000000E+00 
0.698500000000E+00 
0.826600000000E+00 
0.952500000000E+00 
0.107950000000E+01 
0.120650000000E+01 
0.635000000000E-01 
0.190500000000E+00 
0.317500000000E+00 
0.444500000000E+00 
O.5715000O0000E+O0 
0.698500000000E+00 
0.82S500000000E+00 
0.952800000000E+00 
0.107950000000E+01 
0.120650000000E+01 
0.635000000000E-01 
0.190500000000E+00 
0.317500000000E+00 
0.444500000000E+00 
0.571500000000E+00 
0.698500000000E+00 
0.825500000000E+00 
0.952600000000E+00 
0.1O79500O0000E+O1 
0.120650000000E+01 
0.635000000000E-01 
0.190500000000E+00 
0.317600000000E+00 
0.444600000000E+00 
0.571500000000E+00 
0.698B00000000E+00 
0.825B00000000E+00 
0.9S2600000000E+00 
0.1O79B0000000E+O1 
0.120650000000E+01 

0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
0.293000000000E+03 
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A p p e n d i x B 

T h e o r d e r e d t r i p l e (2, r , T ) s h o w i n g 
t h e t e m p e r a t u r e o f t h e s p e c i m e n 

0.1500O0000O00E+00 
0.160000000000E+00 
0.150000000000E+00 
0.150000000000E+00 
0.150000000000E+00 
0.450000000000E+00 
0.450000000000E+00 
0.450000000000E+00 
0.450000000000E+00 
0.450000000000E+00 
0.750000000000E+00 
0.750000000000E+00 
0.750000000000E+00 
0.750000000000E+00 
0.750000000000E+00 
O.1O5000000000E+01 
0.105000000000E+01 
O.1O500O00000OE+01 
0.105000000000E+01 
0.105000000000E+01 
0.135000000000E+01 
0.135000000000E+01 
0.135000000000E+01 
0.135000000000E+C1 
0.135000000000E+01 
0.149905633063E+00 
0.149905633063E+00 
0.149905633063E+00 
0.149905633063E+00 
0.149905633063E+00 
0.449926603494E+00 
0.449926603494E+00 
0.449926603494E+00 
0.449926603494E+00 
0.449926603494E+00 
0.749947B73924E+00 
0.749947573924E+00 
0.749947S73924E+00 
0.749947573924E+00 
0.749947673924E+00 
0.104996854435E+01 
0.104996854436E+01 
0.104996854435E+01 
0.10499686443BE+01 
0.1049968B4435E+01 

0.111729853032E+00 
0.204289893928E+00 
0.264S45599562E+00 
0.313273477736E+00 
0.355338908223E+00 
0.111729853032E+00 
0.204289893928E+00 
0.264545599B62E+00 
0.313273477736E+00 
0.355338908223E+00 
0.111729853032E+00 
0.204289893928E+00 
0.264545B99562E+00 
0.313273477736E+00 
0.3B5338908223E+00 
0.111729853032E+00 
0.204289893928E+00 
0.264545S99562E+00 
0.313273477736E+00 
0.35B338908223E+00 
0.111729853032E+00 
0.204289893928E+00 
0.264545B99562E+00 
0.313273477736E+00 
0.355338908223E+00 
0.11172B948199E+00 
0.204282754224E+00 
0.264536353988E+00 
0.313262529177E+00 
0.355326489525E+00 
0.11172B948199E+00 
0.204282754224E+00 
0.264536353988E+00 
0.313262B29177E+00 
0.355326489525E+00 
0.111726948199E+00 
0.204282754224E+00 
0.264636353988E+00 
0.313262529177E+00 
0.355326489525E+00 
0.111725948199E+00 
0.204282754224E+00 
0.264636353988E+00 
0.313262B29177E+00 
0.355326489B25E+00 

0.293066691365E+03 
0.293066918118E+03 
0.293067137112E+03 
0.29306735B377E+03 
0.293067573406E+03 
0.293044360472E+03 
0.293044S8722SE+03 
0.293044806219E+03 
0.293045024484E+03 
0.293045242613E+03 
0.293027612303E+03 
0.293027839055E+03 
0.2930280S8049E+03 
0.293028276314E+03 
0.293028494343E+03 
0.293016446856E+03 
0.293016673609E+03 
0.293016892603E+03 
0.293017110868E+03 
0.293017328897E+03 
0.293010864133E+03 
0.293011090885E+03 
0.293011309880E+03 
0.29301152814BE+03 
0.293011746173E+03 
0.293049313670E+03 
0.293049439559E+03 
0.293049561141E+03 
0.293049682317E+03 
0.293049803363E+03 
0.293036914091E+03 
0.293037039980E+03 
0.293037161B61E+03 
0.293037282738E+03 
0.293037403783E+03 
0.293027614416E+03 
0.293027740305E+03 
0.293027861886E+03 
0.293027983063E+03 
0.293028104108E+03 
0.293021414634E+03 
0.293021B40522E+03 
0.293021662104E+03 
0.293021783280E+03 
O.293021904326E+03 
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A p p e n d i x C 

P r o g r a m l i s t i n g 

program energy 
******************* Declaration of Variables ************************ 
c 
c units vill be cm, g, microsec, and Hbars. 
c 
double precision conOlconl,con2,con3lcon4,con5,con6 

integer znumpts, mumpts, arcs, i, j , flag.def 
integer rbnumpts, zbnumpts.t ,tnumpts, timestep 

integer conlflag, strnumpts 

character fileenergy*16 

parameter (rnumpts=5, znumpts=6, tnumpts=399, arcs=100) 
parameter (rbnumpts = 10, zbnumpts =15) 

double precision deltaz, deltal, deltat 
double precision rpos(0:raumpts,O:tnumpts) 
double precision zpos(0:znumpts,0:tnumpts) 

double precision length_s, zold, zneu, radius.s, rold, met? 
c 
c gh, gt and gu are used by the ripapart subroutine to 
c construct filenames for the various arrays that a 
c saved during a program execution 
c 
integer ch(0:9), gh, gt, gu 
c 
c fileenergy is the filename used for files created by the 
c energy program 
c 
c 
c Note, in the spline subroutine, n = mumpts - 2. This must be set 
c before the program will work properly 
c 
c Since the radius and length arrays begin at 0, 
c their dimension is numpts - 1. These arrays keep 
c track of the centroid position. 
c 

double precision r(0:rnumpts-l,0:tnumpts) 
double precision z(0:znumpts-l,0:tnumpts) 
double precision rb(0:rbnumpts-l) 
double precision zb(0:zbnumpts-l) 

c 
c velocity in both radial and longitudinal directions 
c 
double precision uvol, density, mass, to 
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c double precision tke 
c double precision area.s 

double precision vz(0:znumpts-l,0:tnumpts) 
double precision vr(0:rnumpts-l,0:tnumpts) 

double precision vres(0:znumpts-l,O:rnumpts-l,0:tnumpts) 
double precision ke(0:znumpts-l,O:rnumpts-l,0:tnumpts) 
double precision radius.bar, length.bar, E 
double precisian vorkin(l:tnumpts) 
double precision inteng(O:znumpts-l,0:rnumpts-l,O:tnumpts) 

c double precision workin_e(0:znumpts-l,0:rnumpts-l,0:tnumpts} 

double precision deltie(0:znumpts-l,0:rnumpts-l,0:tnumpts) 

c Temperature buildup in the specimen at the specimen/incident bar 
c interface. 

double precision us(O:znumpts-l,O:rnumpts-l,0:tnumpts) 

c Temperature profile in the incident bar as a result of the heat 
c transfer from the specimen. 

double precision ub(0:zbnumpts,0:rbnumpts,0:tnumpts) 
double precision usi(0:rbnumpts,O:tnumpts) 

double precision r_spline(0:rnumpts-l), u_spline(0:rnumpts-l) 
c 
c ac, be, cc, dc, are the cubic polynomial coefficients is 
c f.i(x) = ac_i + bc_i*(x-x_i) + cc_i*(x-x_i)**2 + dc_i*(x-x_i)*»3 
c and act,bet, etc. are two dim arrays keeping track of the 
c coefficients of the cubic splines as time changes 
c 

double precision act(0:raumpts-2, l:tnumpts) 
double precision bct(0:rnumpts-2, l:tnumpts) 
double precision cct(0:raumpts-2, l:tnumpts) 
double precision dct(0:rnumpts-2, l:tnumpts) 
double precision ac(0:rnumpts-2), bc(0:rnumpts-2) 
double precision cc(0:rnumpts-2), dc(0:rnumpts-2) 
double precision strdiff (l:tnumpts) , strsumO:tnumpts) 

c 
double precision xj , xi, xt, pi 

c 
c floating point values of mumpts, znumpts and arcs, 
c 

double precision xrnumpts, xznumpts, xarcs 

common gh,gt,gu 

integer i i , j j , jb, ib, jbfix, rb.counter 

double precision diffcons, deltarb, deltazb, diffconb 
double precision deltar.s, deltaz.s, avg.ub, sum 
c 

double precision s i , s2, s .sl , s_s2, root, f, dfdx 
double precision rupper, rlower, Tinitial 

double precision tapp3, tapp4, tapp5, tapp6, tapp8 

common/coef/conl,con2,con3,con4,conS,con6 
external f, dfdx 

pi = acos(-l.) 
************************ read in the strain data ******************** 

straumpts = 0 
j - 1 

open (unit=22, file='strain.txt ' ,status='old') 
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read(22,*)k 

do 3 i = 1, k 
read(22,*)straini, strainr, straint 

c print*, straini, strainr, straint 
c 
c the counter strnumpts records the number of time steps that 
c specimen strain is positive. 
c strain values that do not reflect vork being done on the specimen 
c that is strain_i>(strain_e+strain_t) are filtered out 
c 

if(strai nr.It.0)then 
strainr=-l.*strainr 

endif 

if(straint.It.0)then 
straint=-l.*straint 

endif 

c print*, straini, strainr, straint 

if ( 
c 1 straini.gt.(strainr+straint).and. 

1 straini.gt.O )then 
c print *, i 

strdiff(j)=(straini-strainr-straint)/le6 
strsum(j) =(straini+strainr+straint)/le6 

c print*, 's trdiff( ' , j ,*)=' ,s trdiff( j) 
c print*, 'strsumO ,j , ')=' ,strsum(j) 
c read* 
c strdiff(j)=1800.99*float(j)**10.04723 / 
c 1 ( (l+float(j))**9.77690*le6 ) 

strnumpts - strnumpts + 1 
j = j+1 

endif 

3 continue 
close(22) 
print*,'strnumpts =', strnumpts 
c read* 
c 
*********** Head in dimensions and materaial properties ************ 

open (unit=22, file='dimen.txt',status='old') 
c 
c al l measurements are given in centimeters 
c 
read(22,*)radius_bar, length.bar, radius.s, length.s 
c 
c Modulus of elasticity is measured in Hbars 
c density of tantalum in gm/cm~3 
c time is in microseconds 
c 
read(22,*)E, density, deltat 
c 
c thermal diffusion constants for both bar and specimen 
c 
read(22,*)diffconb, diffcons 
close(22) 
*********** Intialization of parameters and arrays ****************** 

rold = radius.s 
c 
c Since ue ore using the full strain data we need to work with the 
c entire length of the specimen. 
c 
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zold = length.s 
xrnumpts = float (mumpts) 
xznumpts = float(znumpts) 
deltaz = (length_s)/(xznumpts) 
xarcs = float(arcs) 

c 
c calculation of one 'unit ' of volume 
c 

uvol = ( (pi*rold**2*deltaz)/xarcs )/xrnumpts 
mass = uvol*density 
c 
c This character table is used in the construction of the files names 
c for the various arrays at each time step. This keeps each file 
c down to a workable size and helps to identify just what i t is 
c you're looking at 
c 

ch(0) = ichar('O') 
ch(l) = ichar( ' l ' ) 
ch(2) = ichar('2') 
ch(3) = ichar('3') 
ch(4) = ichar(*4') 
ch(5) = ichar('5') 
ch(6) = ichar('6') 
ch(7) = ichar(*7*) 
ch(8) = ichar('8*) 
ch(9) = ichar(*9*) 

c 
**************** Initiallizing the zpos array *********************** 
c 
c Since there is equal spacing along z, zpos can be determined 
c by simply multiplying the z counter, i , by the spacing deltaz 
c 

do 5 i = 0,znumpts 
xi=float(i) 
zpos(i,0)=deltaz*xi 

5 continue 
c 
**************** Initiallizing the rpos array ********************** 
c 
c the volume of each element = uvol, therefore since ve are 
c dealing with disks 
c 2*uvol = pi * rpos**2 * deltaz, 
c we can solve for rpos by simplifying this calculation 
c 

do 6 j = 0, mumpts 
xj = float(j) 
rpos(j,0) = ((xj/(xrnumpts))**.5)*rold 

6 continue 
c 

deltarb ~ radius.bar / float(rbnumpts) 
deltazb = length.bar / float(zbnumpts) 

*•**•*•*••**••** Initiallizing the zb array *********************** 
c 
c Since there is equal spacing along z, zb can be determined 
c by simply multiplying the z counter, i, by the spacing deltazb 
c 

do 13 i = 0,zbnumpts-l 
xi=float(i) 
zb(i)=(deltazb*xi+deltazb*(xi+1.0))/2. 

13 continue 
c 
**************** Initiallizing the rb array ********************** 
c 
c Since there is equal spacing along the bar radius, rb can be determined 
c by simply multiplying the rb counter, i , by the spacing deltarb 
c 
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do 14 j = 0,rbnumpts-l 
xj=float(j) 
rb(j)=( deltarb*xj+deltarb*(xj+l) )/2. 

14 continue 
c 

***************** Initiallizing the rest of the arrays ************** 
c 
c Init ial temperature is 293 K 
c Temperature is measured in Kelvin 
c 

do 10 i = 0, znumpts-1 
do 11 j = 0, rnumpts-1 

vz(i,0) = 0 
vr(j,0) = 0 
vres(i, j ,0) = 0 

inteng(i,j,0) = 0 
ke(i,j,0) = 0 

11 continue 
10 continue 

c 
************* Begin Calculations *********************************** 
c 
c Solve for the position arrays f i rs t , since these are used 
c to solve for a l l other arrays 
c 
*** The zpos array is determined for al l t ****** 
c 

do 7 t = 1, strnumpts 
c 
c using the strain data ve solve for the change in specimen length 
c 

deltal = strdiff(t)*zold 

c 
c The new zpos at the interface (i = 0) will be zpos at t-1 plus 
c the change in specimen length brought about by specimen strain 
c 

zpos(O.t) = zpos(O.t-l) + deltal 
c print*.'zpos(0,*,t, ')=',zpos(0,t) 

znew = zold - deltal 
deltaz = znew/(xznumpts) 

c print*,'deltaz .deltaz 
c 
c the other end of the specimen doesn't move 
c 

zpos(znumpts.t) ~ length.s 

do 15 i = 1, znumpts - 1 

c 
c once a new deltaz has been calculated, zpos is completed 
c 

zpos(i.t) = zpos(0,t) + dfloat(i)*deltaz 
c pr int*, 'zposC 1 , i , ' , ' , t , ' )= ' ,zpos(i , t ) 

15 continue 
c 
c reset zold to i t s new value before going through the loop again 
c 

zold = znew 
7 continue 

c 
**** The rpos array is determined for al l t ***** 
c 

do 12 t = 1, strnumpts 
do 16 j = 0, rnumpts 

xj = float(j) 
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c 
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c Since ve have conservation of volume, knowing the change in 
c length we can determine the change in radius 
c 

zold = zpos(znumpts,t-l) - zpos(O.t-l) 
znew = zpos(znumpts,t) - zpos(O.t) 
mew = (((rold**2)*zold)/znew)**.5 
rpos(j.t) = ((xj/(xrnumpts))**.5)*rnew 

c print*,'rposC',j,',*,t,')=',rpos(j,t) 
16 continue 

rold = rnew 
c 
c If the specimen radius exceeds the incident bar radius the 
c program prints out a warning 
c 

if(flag_def.ne.l .and. rold.ge.(radius_bar))then 
print*,'Specimen deformation exceeds incident bar radius' 

print*,'at t = ',t 
flag.def = 1 

endif 
12 continue 

c 
**************** The z and r arrays ************* 
c 
c He can solve for the z and r arrays using rpos and zpos 
c z and r are the coordinates of the centroid of an element 
c 

do 22 t = 0,strnumpts 
do 25 i = 0,znumpts - 1 

z(i,t) = (zpos(i,t) + zpos(i + l,t))/2.0 
c print*,'z( ,,i,*,*,t,')=',z(i,t) 

do 26 j = 0,mumpts - 1 
r(j,t) = (l./3.)*(xarcs/pi)*SIN(2.*pi/xarcs)* 

1 (( rpos(j,t)**2 + rpos(j,t)*rpos(j+l,t) + rpos(j+l,t)**2 )/ 
2 (rpos(j.t) + rpos(j + l,t)) ) 

c print*,'r(',j,',*,t,*)=*,r(j.t) 
26 continue 
25 continue 
22 continue 

c 
*•*•**•*•*** Velocity, Kinetic and Internal Energy ******** 
c 

do 32 t = 1, strnumpts - 1 

c here we calculate work.in as outlined in the thesis 
c based on Pat's paper, uniformly distributed. If the 
c term xznumpts does not appear in the denominator 
c we are solving for the total work.in 

workin(t)=E*strsum(t)/2*pi*radius_bar**2*strdiff(t)* 
1 ( zpos(znumpts,t)-zpos(0,t) ) / 
2 ( xarcs*xrnumpts*xznumpts ) 

c here we calculate work.in as it relates to KE 
c this is the total work to one sector of the specimen 
c 

c workin(t)=E*strsum(t)/2*pi*radius.bar*«2*strdiff(t)* 
c 1 ( zpos(znumpts,t)-zpos(0,t) ) / 
c 2 ( xarcs ) 

c tke = 0 

do 40 i = 0, znumpts - 1 
vz(i,t) = (z(i,t+l)-z(i,t-l))/(2.0*deltat) 

do 41 j = 0,mumpts - 1 
vr(j.t) = (r(j,t+l)-r(j,t-l))/(2.0*deltat) 



c 

c 
vresCi,j,t) = ( vr(j,t)*»2 + vz(i,t)«*2 )*»0.5 

print*, ' v r e s C ' . i . ' . ' . j . ' . ' . t . ' ) =',vresCi,j,t) 
ke( i , j , t ) = 0.5*mass*vras(i,j,t)**2 

tke = tke + ke(i , j , t ) 

c 
c 

c 
c 

if( tke.It .0 )then 
print*, ' total ke is zero' 
read* 

endif 

c here ue calculate work.in as also being dependent 
c on the specimen radius but s t i l l uniformly distributed 

c rnev = rpos(rnumpts,t)-rpos(0,t) 
c area_s=( rpos(j+l,t)**2-rpos(j,t)**2 )/C rnew**2*xares ) 

c workinCt)=E*strsumCt)/2*area_s*strdiffCt)* 
c 1 ( zpos(znumpts,t)-zpos(0,t) ) / 
c 2 (xrnumpts*xarcs*xznumpts) 

intengCi,j,t) = workin(t) - ke( i , j , t ) 

c the max function, returns a 0 is inteng is less than 
c workinCt) - ke ( i , j , t ) . 

if ( intengCi,j,t).It.0)then 
inteng(i,j , t)=-inteng(i,j , t) 
c intengCi,j,t)=0 

40 continue 

c here we calculate work as i t relates to KE, that is those 
c elements of the specimen undergoing the greatest KE 
c should be having the greatest amount of work done on them, 
c In this case ve total up the KE for al l i and j and designate 
c this total as tke. The proportion of work assigned to each 
c element then is a proportion ke(i , j , t ) / tke 

c do 42 i - 0, znumpts - 1 
c do 43 j = O.rnumpts - 1 
c workin_e(i,j,t) = workin(t)*ke(i,j,t)/tke 
c intengCi,j,t) = workin_e(i,j,t) - ke( i , j , t ) 

c if( inteng(i , j , t) . l t .O ) then 
c print*,'Delta.IE is negative at t= ' , t 
c endif 

c the max function, returns a 0 is inteng is less than 
c workin(t) - k e ( i , j , t ) . 

c if ( intengCi,j,t).It.0)then 
c intengCi,j,t)=0 
c endif 

c 43 continue 
c 42 continue 

32 continue 

c Since we are using a second order approximation for velocity, 
c the last element in the array must be calculated separately 
c as a f irs t order approximation. 

endif 

41 continue 

c 

c 
c tke = 0 
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t ~ strnumpts 

workinCt)=E*strsum(t)/2*pi*radius.bar**2*strdiff(t)* 
1 ( zposCznumpts,t)-zposCO,t) )/ 
2 ( xarcs*xrnumpts*xznumpts ) 

e workin(t)=E*strsumCt)/2*pi*radius_bar**2*strdiffCt)* 
c 1 ( zpos(znumpts,t)-zpos(0,t) )/ 
c 2 ( xarcs ) 

do 45 i = 0, znumpts - 1 
vz(i,t) = (z(i,t)-z(i,t-l))/(deltat) 

do 56 j = 0,mumpts - 1 
vr(j.t) = (rCj,t)-rCj,t-l))/(deltat) 

vres(i,j,t) = ( vr(j,t)**2 + vz(i,t)**2 )**0.5 
c print*,*vres(*,i,',',j,',',t,') =',vres(i,j,t) 

ke(i,j,t) = 0.5*mass*vres(i,j,t)**2 
c tka = tke + ke(i,j,t) 

c if( tke.It.0 )then 
c print*,'total ke is zero' 
c read* 
c endif 

c here we calculate work.in as also being dependent 
c on the specimen radius 

c mew = rpos(rnumpts,t)-rpos(0,t) 
c area_s=( rpos(j+l,t)**2-rpos(j,t)**2 )/( rnew**2*xarcs ) 
c workin(t)=E*strsum(t)/2*area_s*strdiff(t)* 
c 1 ( zpos(znumpts,t)-zposCO,t) ) / 
c 2 (xrnumpts*xarcs*xznumpts) 

intengCi,j,t) = workin(t) - ke(i,j,t) 

c the max function, returns a 0 is inteng is less than 
c workin(t) - ke(i,j,t). 

if ( inteng(i,j,t).lt.0)then 
intengCi,j,t)=-inteng(i,j,t) 
c inteng(i,j,t)=0 

endif 
56 continue 
45 continue 

c here we calculate work as it relates to KE, that is those 
c elements of the specimen undergoing the greatest KE 
c should be having the greatest amount of work done on them, 
c In this case we total up the KE for all i and j and designate 
c this total as tke. The proportion of work assigned to each 
c element then is a proportion ke(i,j,t)/tke 

c do 46 i = 0, znumpts - 1 
e do 47 j = 0,rnumpts - 1 
c workin.e(i,j,t) = workin(t)*ke(i,j,t)/tke 
c inteng(i,j,t) = workin_e(i,j,t) - ke(i,j,t) 

c if( inteng(i,j,t).lt.O ) then 
c print*,'Delta.IE is negative at t=',t 
c endif 

c the max function, returns a 0 is inteng is less than 
e workinCt) - ke(i,j,t). 
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c if ( inteng(i,j ,t).It.0)then 
c inteng(i,j,t)=0 
c endif 

c 47 continue 
c 46 continue 

tO = 293 
do 115 t = 0,strnumpts 

do 116 i = 0, znumpts -1 
do 117 j = O.rnumpts -1 

us(i , j ,t) = tO 
117 continue 
116 continue 
do 118 ib = 0, zbnumpts 

do 119 jb = 0,rbnumpts 
ub(ib,jb,t) = tO 

119 continue 
118 continue 
115 continue 

c 
«**«»*» Calculating the temperature rise in the specimen ************ 
c 
c Using specific volume to solve for temperature 
c we are given 180.9479 grams/mole as the atomic weight of Tantalum 
c From TAPP the specific heat of solids are expressed as a function 
c of temperature vith the equation: 
c C_v(T)=-C_3 - 2(C_4E-3)*T - 2(C_5E6)T--2 - 6(C_6E-6)*T"2 
c + .25(C_8)*T"-0.5 + C.p.mag 
c where 
tapp3 = -47.6677*le-5 

tapp4 = 5.45091*le-6 
tapp5 = -0.21647*le-5 
tapp6 = -0.59727*le-5 
tapp8 = -1669.643*le-5 

c 
c As a check we will also solve for Temperature based on a 
c constant C_v. Further more, if we shut diffusion off we should 
c be able to sit back and watch the temperature rise in the 
c specimen. In this way we can compare the temperature rise in 
c the specimen with and without diffusion. 
c We can then determine how much bleeds out as a temperature 
c loss due to diffusion. 
c 
conO = density*uvol«5.526453e-3 
c print*,'con0=',conO 
c coeff of T term 
conl = -1.0*con0*tapp3 
c print*,'conl=*,conl 
c coeff of T"2 term 
con2 = -1.0*con0*tapp4*le-3 
c print*,'con2=',con2 
c coeff of T*-l 
con3 = 2.0*con0*tapp5*le6 
c print*,*con3=',con3 
c coeff of T*3 
con4 = -2.0*con0*tapp6*le-6 
c print*,'con4=',con4 
c coeff of T*.5 
conS - .5*con0*tapp8 
c print*,'con5=',conB 

do 700 t = 1, strnumpts 
c print*,'beginning of t loop t= ' , t 
do 701 i = 0, znumpts-1 
do 702 j = 0, rnumpts-1 
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Tinitial = conl*us(i,j,t-l)+con2*us(i,j,t-l)**2 + 
1 con4*us(i,j,t-l)**3+con3*1.0/us(i,j,t-l) + 
2 con5*us(i,j,t-l)**.5 

Tinitial = conl*tO+con2*tO**2 + 
1 con4*t0**3+con3*1.0/t0 + 
2 con5*t0**.5 

deltIE(i,j , t) = intengCi,j,t) 

************* Constant C_v calculations ********************** 

The integral to solve for T_f is easily done leaving us with 
us( i , j , t ) = deltIE(i,j,t)/(conO*l.)+us(i,j,t-l) 

************************************************************** 

con6 = deltIE(i,j,t)+Tinitial 
print*,'con6=',con6 

print*, ' ini t ial u s ( ' , i , ' , ' , j , ' , ' , t - l , ' ) = ' ,us( i , j , t - l ) 
call newton( us ( i , j , t - l ) ,0.0001,10,215.0,1,root,f,dfdx,n) 

print*, 'root is ',R00T,' in ' ,N, ' iterations' 
us( i , j , t ) = root 

p r i n t * , ' u s ( ' , i , ' , ' , j , ' , * , t , ' ) = ' ,us( i , j , t ) 
702 continue 

**• Calculating the arguements for the spline routine **** 

nspline = rnumpts 
if(i.eq.O) then 

do 148 j = 0, rnumpts - 1 

Rspline and qspline are used so that only a one-dimensional 
array needs to be passed to the spline routine. 

r.splineCj) = r ( j , t ) 
u_spline(j) = us(0,j,t) 

148 continue 

The spline routine returns the coefficients of the cubic spline 
polynomials needed to interface between the specimen and the 
incident bar. 

call spline(nspline,r_spline,u_spline,ac,be,cc,dc) 
do 51 j = 0, rnumpts - 2 

act(j ,t) = ac(j) 
bct(j.t) = bc(j) 
cct(j.t) = cc(j) 
dct(j.t) = dc(j) 
print*,'act(*, j , ' , ' , t , ' ) =' ,act(j , t) 
print*,*bct(', j , * , ' , t , ' ) =' ,bct(j,t) 
print*,*cct(*, j , ' , ' , t , ' ) =' ,cct(j , t) 
print*, 'dctC, j . ' . ' . t , ' ) =*.dct(j,t) 
read* 

51 continue 
endif 

701 continue 

**************** incident bar diffusion *•******«**«••«****«* 

sl=diffconb*deltat/deltarb**2 
s2sdiffconb*deltat/deltazb**2 
print * , ' s l = ' ,s l 
print «,'s2 =*,s2 

j = rnumpts - 1 
print*,*j = ' , j 
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counter - 1 
sum = 0 
conlflag = 0 

rupper = r ( j , t ) 
c print*, 'ruppar=',r(j,t) 

rlower = r ( j - l , t ) 
do 86 ib = 0, zbnumpts 

do 65 jb = rbnumpts, 0 ,-1 
xj = float(jb) 
xi = float(ib) 
xt = float(t) 

c 
c Condition 1 
if (xj*deltarb.le.rupper .and. ib.eq.O .and. conlflag.ne.1)then 
rb.counter = jb 
c print*,'rb_counter =',rb_counter 
do 48 jj=jb, 0, -1 

xj=float(jj) 
if (xj*deltarb.le.rupper .and. xj'deltarb.gt.rlower)then 

usi( j j , t ) = act(j-counter,t) + 
1 bct(j-counter.t)*(deltarb*xj - rlower)+ 
2 cct(j-counter,t)*(deltarb*xj - rlower)**2 + 
3 dct(j-counter,t)*(deltarb*xj - rlower)**3 

c print*,'usilK* , j j , ' , ' , t , *)=' ,usi(j j , t) 
c these conditions allow for a value in the specimen array to 
c be used in calculating a corresponding value in the incident 
c bar. 
if( jj.ne.rbnumpts .and. jj.ne.O ) then 

ub(ib,jj,t)=sl/(2.*xj)*( 
1 (2.*xj+l.)*ub(ib,jj+l,t-l)-4.*xj*ub(ib,jj,t-l) 
2 +(2.*xj-l.)*ub(ib,jj-l,t-l) ) 
3 +s2«( ub(ib+l, j j , t- l)-2.«ub(ib,j j , t- l)+usi(j j , t- l) ) 
4 +ub(ib,jj,t-l) 

endif 

if( jj.eq.rbnumpts ) then 
ub(ib,jj,t)=sl/(2.*xj)*( 

1 (2.*xj+l.)*ub(ib,jj,t-l)-4.«xj*ub(ib,jj,t-l) 
2 +(2.*xj-l.)*ub(ib,jj-l,t-l) ) 
3 +s2*( ub(ib+l, j j , t- l)-2.*ub(ib,j j , t- l)+usi(j j , t- l) ) 
4 +ub(ib,jj,t-l) 

endif 

if(jj.eq.0)then 
ub(ib,jj,t)=(4.«sl)*( ub(ib, j j+l . t- l)-ub(ib, j j , t - l) ) 

1 +s2*( ub(ib+l,jj , t - l)-2.*ub(ib, j j , t - l)+usi( j j , t - l) ) 
2 +ub(ib,jj,t-l) 

endif 

c print*, 'usil2C , j j , ' , ' , t , ')=' ,usi( j j , t ) 

sum = ub(ib,jj,t)+sum 
else 
j j = j j + 1 
rupper = rlower 
counter = counter + 1 

c print*,'counter is now'.counter,'at t= ' , t 
rlower = r(j-counter.t) 

if(counter.eq.rnumpts)then 

jbfix = j j 
do 320 i i = jbfix - 1,0,-1 

us i ( i i . t ) = usi(jbfix.t) 

c these conditions allow for a value in the specimen array to 
c be used in calculating a corresponding value in the incident 
c bar. 
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if( ii.no.rbnumpts .and. ii.ne.O ) then 
ub(ib,ii,t)=sl/(2.*xj)*( 

1 (2.*xj+l.)*ub(ib,ii+l,t-l)-4.*xj*ub(ib,ii,t-l) 
2 +(2.*xj-l.)*ub(ib,ii-l,t-l) ) 
3 +s2*( ub(ib+l, i i , t - l)-2.*ub(ib.i i , t - l)+usi(i i , t - l) ) 
4 +ub(ib,ii,t-l) 

endif 

if( ii.eq.rbnumpts ) then 
ub(ib,ii,t)=sl/(2.*xj)*( 

1 (2.*xj+l.)*ub(ib,ii,t-l)-4.*xj*ub(ib,ii,t-l) 
2 +(2.*xj-l.)*ub(ib,ii-l,t-l) ) 
3 +s2*( ub(ib+l,ii , t-l)-2.*ubCib,ii , t-l)+usi(ii , t-l) ) 
4 +ub(ib,ii,t-l) 

endif 

if(ii.eq.0)then 
ub(ib,ii,t)=(4.*sl)*( ub(ib, i i+l , t - l )-ub(ib, i i . t - l ) ) 

1 +s2*( ub(ib+l, i i , t - l)-2.*ub(ib,i i , t - l)+usi(i i , t - l) ) 
2 +ub(ib,ii,t-l) 

endif 
sum = ub(ib,ii , t) + sum 

320 continue 
j j = -1 

conlflag = 1 
endif 

endif 
48 continue 

endif 
c 
c Condition 2 

if(jb.eq.O .and. ib.ne.O .and. ib.ne.zbnumpts)then 
ub(ib,jb,t)=(4.*sl)*( ub(ib,jb+l,t-l)-ub(ib,jb,t-l) ) 

1 +s2*( ub(ib+l,jb,t-l)-2.*ub(ib,jb,t-l)+ub(ib-l,jb,t-l) ) 
2 +ub(ib,jb,t-l) 

c If the heat in the specimen is currently less than that of the bar 
c there will be no heat conduction. 
c if( ub(ib, jb, t) . l t .ub(ib, jb, t- l) )then 
c ub(ib,jb,t)=ub(ib,jb,t-l) 
c endif 
c print*, 'ub2( ' , ib,*,*,jb, ' ,*, t , ' )=*.ub(ib,jb,t) 
c read* 

endif 
c 
c Condition 3 

if((xj*deltarb).gt.r(rnumpts-l,t) .and. ib.eq.O 
1 .and. conlflag.ne.l .and. jb.ne.rbnumpts)then 

c print*,'loop 3 calculations' 
c print*,'xj*deltarb=',xj*deltarb,'r max at ' , t , ' is ' , r(rnumpts-l , t) 
ub(ib,jb,t)=sl/(2.*xj)*( 

1 (2.*xj+l.)*ub(ib,jb+l,t-l)-4.*xj*ub(ib,jb,t-l) 
2 +(2.»xj-l.)*ub(ib,jb-l,t-l) ) 
3 +s2*( ub(ib+l,jb,t-l)-2.*ub(ib,jb,t-l)+ub(ib,jb,t-l) ) 
4 +ub(ib,jb,t-l) 

c If the heat in the specimen is currently less than that of the bar 
c there will be no heat conduction. 
c if( ub(ib,jb,t) .It.ubUb, jb , t - l ) )then 
c ub(ib,jb,t)=ub(ib,jb,t-l) 
c endif 
c print*, 'ub3(*,ib, ' ,*,jb, ' , ' , t ,*)=*,ub(ib,jb,t) 
c read* 

endif 
c --• 

63 

http://ii.no


c Condition 4 
if(ib.eq.O .and. jb,eq.rbnumpts)then 

ub(ib,jb,t)=sl/(2.*xj)*( 
1 (2.*xj+l.)*ub(ib,jb,t-l)-4.*xj*ub(ib,jb,t-l) 
2 +(2.*xj-l.)»ub(ib,jb-l,t-l) ) 
3 +s2*( ub(ib+l,jb,t-l)-2.*ub(ib,jb,t-l)+ub(ib,jb,t-l) ) 
4 +ub(ib,jb,t-l) 

c If the heat in the specimen is currently less than that of the bar 
c there vill be no heat conduction. 
c if( ub(ib,jb,t).lt.ub(ib,jb,t-l) )then 
c ub(ib,jb,t)=ub(ib,jb,t-l) 
c endif 
c print*, •ub4(',ib,', ,,jb,',',t,0=*,ub(ib,jb,t) 
c read* 

endif 
c 
c Condition 5 

ifCjb.ge.l .and. ib.ge.l .and. ib.ne.zbnumpts 
1 .and. jb.ne.rbnumpts)then 

ubab,jb,t)=sl/(2.*xj)*( 
1 (2.*xj+l.)*ub(ib,jb+l,t-l)-4.*xj*ub(ib,jb,t-l) 
2 +(2.*xj-l.)*ub(ib,jb-l,t-l) ) 
3 +s2*( ub(ib+l,jb,t-l)-2.*ub(ib,jb,t-l)+ub(ib-l,jb,t-l) ) 
4 +ub(ib,jb,t-l) 

If the heat in the specimen is currently less than that of the bar 
there vill be no heat conduction. 

if( ub(ib,jb,t).lt.ub(ib,jb,t-l) )then 
ub(ib,jb,t)=ub(ib,jb,t-l) 

endif 
print*. 'ub5(\ib,*,\jb,\',t,*) = \ub(ib,jb,t) 
read* 

endif 

Condition 6 
ifCjb.eq.O .and. ib.eq.zbnumptsjthen 

ub(ib,jb,t)=(4.*sl)«( ub(ib,jb+l,t-l)-ub(ib,jb,t-l) ) 
1 +s2*( ub(ib,jb,t-l)-2.*ub(ib,jb,t-l)+ub(ib-l,jb,t-l) ) 
2 +ub(ib,jb,t-l) 

If the heat in the specimen is currently less than that of the bar 
there vill be no heat conduction. 

if( ub<ib,jb,t).lt.ub(ib,jb,t-l) )then 
ub(ib,jb,t)=ub(ib,jb,t-l) 

endif 
print*,'ub6( ,,ib,*,*,jb,',',t,')=',ub(ib)jb,t) 
read* 

endif 

Condition 7 
if(jb.ne.O .and. ib.eq.zbnumpts .and. jb.ne.rbnumpts)then 

ub(ib,jb,t)=sl/(2.0*xj)*( 
1 (2.*xj+l.)*ub(ib,jb+l,t-l)-4.*xj*ub(ib,jb,t-l) 
2 +(2.*xj-l.)*ub(ib,jb-l,t-l) ) 
3 +s2«( ub(ib,jb,t-i)-2.*ub(ib,jb,t-l)+ub(ib-l,jb,t-l) ) 
4 +ub(ib,jb,t-l) 

If the heat in the specimen is currently less than that of the bar 
there vill be no heat conduction. 

if( ub(ib,jb,t).lt.ub(ib,jb,t-l) )then 
ub(ib,jb,t)=ub(ib.jb,t-l) 

endif 
print*,'ub7(*,ib,',*,jb,',*,t,*)=',ub(ib,jb,t) 
read* 

endif 

64 



c — 
c Condition 8 

if(jb.eq.rbnumpts .and. ib.ne.zbnumpts .and. ib.ns.O)thsn 
ub(ib,jb,t)=sl/(2.*xj)*( 

1 (2.*xj+l.)*ub(ib,jb,t-l)-4.*xj*ub(ib,jb,t-l) 
2 +(2.*xj-l.)*ub(ib,jb-l,t-l) ) 
3 +s2*( ub(ib+l,jb,t-l)-2.*ub(ib,jb,t-l)+ub(ib-l,jb,t-l) ) 
4 +ub(ib,jb,t-l) 

c If the heat in the specimen is currently less than that of the bar 
c there will be no heat conduction. 
c if( ub(ib,jb,t).lt.ub(ib,jb,t-l) )then 
c ub(ib,jb,t)=ub(ib,jb,t-l) 
c endif 
c print*,*ub8(',ib,', ,,jb,',',t, ,)=',ub(ib,jb,t) 
c read* 

endif 
c — 
c Condition 9 

if(jb.eq.rbnumpts .and. ib.eq.zbnumpts)then 
ub(ib,jb,t)=sl/(2.*xj)*( 

1 {2.*xj+l.)«ub(ib,jb,t-l)-4.*xj*ub{ib,jb,t-l) 
2 +(2.*xj-l.)*ub(ib,jb-l,t-l) ) 
3 +s2*( ub(ib,jb,t-l)-2.*ub(ib,jb,t-l)+ub(ib-l,jb,t-l) ) 
4 +ub(ib,jb.t-l) 

c If the heat in the specimen is currently less than that of the bar 
c there will be no heat conduction. 
c if( ub(ib,jb,t).lt.ub(ib,jb,t-l) )then 
c ub(ib,jb,t)=ub(ib,jb,t-l) 
c endif 
c print*,'ub9(',ib,*1*,jb, ,,*,t(')= ,,ub(ib,jb,t) 
c read* 

endif 
65 continue 

avg_ub = sum / rb_counter 
86 continue 

********************************************************************* 
* • 
* Calculating diffusion within the specimen * 
* * 
********************************************************************* 
c 
c The specimen is always changing size thus we need a new 
c deltar and deltaz each at each t. 

deltar.s - rpos(rnumpts,t) / float(rnumpts) 
deltaz.s = ( length.s - zpos(O.t) )/float(znumpts) 
s_sl=diffcons*deltat/deltar_s**2 
s_s2=diffcons*deltat/deltaz.s**2 

c print *,'s_sl =',s.sl 
c print «,'s.s2 =',s_s2 
c read* 

do 52 i = 0, znumpts-1 
do S3 j = 0, rnumpts-1 

xj = float (j) 
xi = float(i) 
xt = float(t) 

c 
c Condition 1 

if(i.eq.O .and. j.eq.O )than 
us(i,j,t)=(4.*s_slM us(i,j+l,t-l)-us(i,j,t-l) ) 
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1 +s_s2*( us(i+l,j,t-l)-2.*us(i,j,t-l)+avg_ub ) 
2 +us(i,j,t-l) 

endif 

c Condition 2 

if(j.eq.O .and. i.ne.O .and. i.ne.znumpts)then 

us(i,j,t)=(4.*s_sl)*( us(i,j+l,t-l)-us(i,j,t-l) ) 
1 +s.s2*( us(i+l,j,t-l)-2.*us(i,j,t-l)+us(i-l,j,t-l) ) 
2 +us(i,j,t-l) 

endif 

c Condition 3 
if( i.eq.O .and. j.ne.rnumpts .and. j.ne.O )then 

us(i,j,t)=s_sl/(2.*xj)*( 
1 (2.«xj+l.)*us(i,j+l.t-l)-4.*xj»us(i, j,t-l) 
2 +(2.*xj-l.)*us(i,j-l,t-l) ) 
3 +s_s2*( us(i+l,j,t-l)-2.*us(i,j,t-l)+avg_ub ) 
4 +us(i,j,t-l) 

endif 

c Condition 4 

if(i.eq.O .and. j.eq.rnumpts)then 

us(i,j,t)=s_sl/(2.»xj)»( 
1 (2.*xj+l.)*us(i,j.t-l)-4.*xj*us(i,j ,t-l) 
2 +(2.*xj-l.)*us(i,j-l,t-l) ) 
3 +s_s2*( us(i+l,j,t-l)-2.*us(i,j,t-l)+avg_ub ) 
4 +us(i,j,t-l) 

endif 

c Condition 5 
if(j.ge.l .and. i.ge.l .and. i.ne.znumpts 

1 .and. j.ne.rnumpts)then 
us(i,j,t)=s_sl/(2.*xj)«( 

1 (2.»xj+l.)*us(i,j+l,t-l)-4.*xj*us(i,j,t-l) 
2 +(2.*xj-l.)*us(i,j-l,t-l) ) 
3 +s.s2*( us(i+l,j,t-l)-2.»us(i,j,t-l)+us(i-l,j,t-l) ) 
4 +us(i,jit-l) 

endif 

c Condition 6 
if(j.eq.O .and. i.aq.znumpts)then 

us(i,j,t)=(4.*s.sl)»( us(i,j+l,t-l)-us(i,j,t-l) ) 
1 +s.s2«( us(i,j.t-l)-2.*us(i,j,t-l)+us(i-l,j,t-l) ) 
2 +us(i,j,t-l) 

endif 

e Condition 7 

if(j.ne.O .and. i.eq.znumpts .and. j.ne.rnumpts)then 

us(i,j ,t)=s.sl/(2.0*xj)»( 1 (2.»xj+l.)*us(i,j+l,t-l)-4.*xj»us(i,j,t-l) 
2 +(2.*xj-l.)*us(i,j-l.t-l) ) 
3 +s_s2*( us(i,j,t-l)-2.*us(i,j.t-D+us(i-l,j,t-l) ) 
4 +us(i,j,t-l) 
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endif 

Condition 8 
if (j .eq.rnumpts .and. i.ne.znumpts .and. i.ne.COthen 

1 
2 
3 
4 

us(i,j,t)=s_sl/(2.*xj)*( 
(2.*xj+l.)*us(i,j ,t-l)-4.*xj*us(i,j , t - l ) 
+(2.*xj-l.)*us(i,j-l , t-l) ) 

+s_s2*( us( i+l , j , t - l ) -2 .*us( i , j , t - l )+us( i - l , j , t - l ) ) 
+us(i , j , t - l) 

endif 

Condition 9 
if(j.eq.rnumpts .and. i.eq.znumpts)then 

1 
2 
3 
4 

us(i,j,t)=s_sl/(2.*xj)*( 
(2.*xj+l.)*us(i,j,t-l)-4.*xj*us(i,j,t-l) 
+(2.*xj-l.)*us(i,j-l , t-l) ) 

+s_s2*( us( i , j , t - l ) -2 .*us( i , j , t - l )+us( i - l , j , t - l ) ) 
+us(i , j , t- l) 

endif 

print*,'diffusion usO , i , ' , ' , j , ' , ' , t , ' ) = ' ,us( i , j , t ) 

53 
52 

continue 
continue 

700 continue 

Print the temperatures at each time step in a separate fi le 
These files take on names in the form T00CO.dat vhere ### is 
the value of t for 0<=t<=399 . 

filetb = *TB .dat' 
888 do 43 t = 2 , strnumpts 

call ripapart(t) 
filetb(3:3) = char(ch(gh)) 
filetb(4:4) = char(ch(gt)) 
filetb(5:5) = char(ch(gu)) 
print*,'ripapart loop for t= ' , t 
openCunit = 22,file=filetb,status='new') 
write(22,*)zbnumpts,rbnumpts 

do 91 jj=rbnumpts,0,-l 
vrite(22,99) (ub( i i , j j , t ) , ii=0,zbnumpts) 

91 continue 
close(22) 

43 continue 

filets = 'TS dat* 
do 44 t = 2, strnumpts 

call ripapart(t) 
filets(3:3) = char(ch(gh)) 
filets(4:4) = char(ch(gt)) 
filets(5:5) = char(ch(gu)) 
print*,'ripapart loop for t= ' , t 
open(unit = 22,file=filets,status='nev') 
write(22,*)znumpts.rnumpts 

do 92 jj=rnumpts,0,-l 
write(22,99) (us ( i i , j j , t ) , ii=0,znumpts) 

92 continue 
close(22) 
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c 

99 format(ll(2x, f7.2)) 

c The print loop 

c To print every XX number of steps use the timestep variable 

timestep = 1 
fileenergy = ' art000.dat* 

c call ripapart(t) 
c fileenergy(10:10) = char(ch(gh)) 
c fileenergy(ll:ll) = char(ch(gt)) 
c fileenergy(12:12) = char(ch(gu)) 

c fileenergy(l:l) = ' r ' 
c fileenergy(2:2) = '_' 
c fileenergy(3:3) = '_' 
c fileenergy(4:4) = '_' 
c fileenergy(5.-5) = '_' 
c fileenergy(6:6) = '_' 

open(22, file='tem_spec.dat',status='new') 
do 55 t =0,strnumpts,timestep 

do 96 i=0,znumpts-l 
do 57 j=0,rnumpts-l 

write(22,90) z ( i , t ) , r ( j , t ) , u s ( i , j , t ) 
57 continue 
96 continue 
55 continue 

close(22) 

open(22, file='tem_bar.dat',status='neu') 
do 62 t =0,strnumpts,timestep 

do 68 i=0,zbnumpts-l 
do 72 j=0,rbnumpts-l 

c write(22,») ( i , j , t ) 
write(22,90) zb(i) ,rb(j) ,ub(i , j , t) 

72 continue 
68 continue 
62 continue 

close(22) 

c fileenergy(1:1) = 'z ' 
c fileenergy(2:2) = '_' 
c fileenergy(3:3) = '_' 
c fileenergy(4:4) = '_' 
c fileenergy(5:5) = '_' 
c fileenergy(6:6) = *_' 
c open(22, file=fileenergy,status*'new') 
c do 57 t = 0, strnumpts, timestep 
c vrite(22,*)'z array at time',t 
c write(22,90) (z( i , t ) , i=0,znumpts-l) 
c 57 continue 
c close(22) 

c fileenergy(1:1) = *w' 
c fileenergy(2:2) = 'o ' 
c fileenergy(3:3) = ' r ' 
e fileenergy(4:4) = 'k' 
c fileenergy(5:5) = '_' 
c fileenergy(6:6) = 'e* 

68 

c 44 continue 



open(22, file=fileenergy, status='nev') 
do 162 t = 1, strnumpts, timestep 

write(22,*)'vork.in for each element at t = ' , t 
do 106 j=rnumpts-l,0,-l 

vrite(22,90) (workin_e(i,j,t), i=0,znumpts-l) 
106 continue 
162 continue 

close(22) 

fileenergy(l:l) = 'r* 
fileenergy(2:2) = 'p ' 
fileenergy(3:3) = '_* 
fileenergy(4:4) = '_' 
fileenergy(5:B) = '_' 

fileenergy(6:6) = '_' 
open(22, file=fileenergy,status='new') 
do 68 t = 0, strnumpts, timestep 

write(22,*)'rp array at time'.t 
do 111 j=rnumpts,0,-l 

vrite(22,90)(rpos(j,t)) 
111 continue 
68 continue 

close(22) 

fileenergy(l:l) = 'z ' 
fileenergy(2:2) = *p' 
fileenergy(3:3) = '_' 
fileenergy(4:4) = '_' 
fileenergy(5:5) = '_' 

f ileenergy(6:6) = *_' 
open(22, file=fileenergy,status='new') 
do 72 t = 0, strnumpts, timestep 

write(22,*)'zp array at time'.t 
vrite(22,90)(zpos(i,t), i = 0,znumpts) 

72 continue 
close (22) 

fileenergy(1:1) = 'v' 
fileenergy(2:2) = 'z ' 
fileenergy(3:3) = '_' 
fileenergy(4:4) = '_' 
fileenergy(5:5) = '_' 

fileenergy(6:6) = '_ ' 
open(22, file=fileenergy,status='nev') 
do 77 t = 0, strnumpts, timestep 

vrite(22,*)'vz array at time'.t 
write(22,90) (vz(i , t ) , i=0,znumpts-l) 

77 continue 
close(22) 

fileenergy(1:1) = 'v* 
fileenergy(2:2) = *r* 
fileenergy(3:3) = '_' 
fileenergy(4:4) = '_' 
fileenergy(5:5) = '_' 

fileenergy(6:6) = '_* 
open(22, file=fileenergy,status='new') 
do 82 t = 0, strnumpts, timestep 

write(22,«)'vr array at time'.t 
do 121 j=rnumpts-1.0,-l 

write(22,90) (vr(j . t)) 
121 continue 
82 continue 

close(22) 

fileenergy(l:l) = »i» 
fileenergy(2:2) = 'n ' 
fileenergy(3:3) = ' t ' 
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fileenergy(4:4) = 'e' 
fileenergy(B:5) = 'n* 

fileenergy(6:6) = *g' 
open(22, file=fileenergy,status='new') 
do 97 t = 0, strnumpts, timestep 

write(22,*)'inteng array at time'.t 
do 136 j=rnumpts-1.0,-l 

write(22,90) (intengCi,j,t), i=0,znumpts-l) 
136 continue 
97 continue 

close(22) 

fileenergy(1:1) = 't* 
fileenergy(2:2) = 'e' 
fileenergy(3:3) = 's' 
fileenergy(4:4) = 'p' 
fileenergy(5:5) = *e' 

fileenergy(6:6) = 'c* 
open(22, file=f ileenergy,status='new') 
do 102 t = 0, strnumpts, timestep 

write(22,*)'spec temp array at time'.t 
do 141 j=rnumpts-l,0,-l 

write(22,90) (us(i,j,t), i=0,znumpts-l) 
141 continue 
102 continue 

close(22) 
c 
c fileenergy(l:l) = 'u' 
c fileenergy(2:2) = 's' 
c fileenergy(3:3) = '.' 
c fileenergy(4:4) = '.' 
c fileenergy(5:5) = '_' 
c fileenergy(6:6) = '_' 
c open(22, file=fileenergy,status='new') 
c do 202 t = 0, strnumpts, timestep 
c write(22,«)'Specimen temperature array at time'.t 
c do 241 j=rnumpts-1.0,-l 
c vrite(22,90) (us(i,j,t), i=0,znumpts-l) 
c 241 continue 
c 202 continue 
c close(22) 
c 
c fileenergy(l:l) = 'u' 
c fileenergy (2:2) = 'b' 
c fileenergy(3:3) = '_' 
c fileenergy(4:4) = '_' 
c fileenergy (5:5) = '_' 
c fileenergy(6:6) = '_' 
c open(22, file=fileenergy,status='new') 
c do 93 t : 0, strnumpts, timestep 
c write(22,*)'Incident bar temperature array at time'.t 
c do 131 jb=rbnumpts,0,-l 
c write(22,90) (ub(ib,jb.t), ib=0.zbnumpts) 
c 131 continue 
c 93 continue 
c close(22) 
c 
c 

fileenergy(l:l) = 'w' 
fileenergy(2:2) = 'o' 
fileenergy(3:3) = 'r' 
fileenergy (4:4) = 'k* 
fileenergy(5:5) = 'i' 

fileenergy(6:6) = *n' 
open(22, file=fileenergy,status='new') 
do 107 t = 0, strnumpts, timestep 

write(22,*)'workin array at time'.t 
write(22,90) (workin(t)) 
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107 continue 
close(22) 

subroutine ripapart(m) 
c BIG ASSUMPTION: m is an integer in the range 0..999 

integer m 
common ih, it, iu 

c 
c CAUTION: INTEGER mode arithmetic 
c 

ih = m / 100 
it = (m - ih * 100) / 10 
iu = m - ih * 100 - it * 10 
return 
end 

subroutine spline(k,x,y,ac,be,cc.de) 

integer k 
parameter(n = 3) 

double precision x(0:n+l), y(0:n+l) 
double precision deltax(0:n), deltay(0:n) 
double precision s(0:n+l), a(2:n), b(l:n), c(l:n-l) 
double precision u(l:n), gam(2:n) 
double precisian ac(0:n), bc(0:n), cc(0:n), dc(0:n) 
double precision bet 

c data (x(i), i=0, n+1) / 1.0,2.25,3.5,4.0,5.25,6.75,8.0 / 
c data (y(i), i=0, n+1) / 1.0,2.75,4.25,6.0,4.5,1.75,2.0 / 

do 70 i = 0,n 
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113 stop 
95 format(10(2x,f6.3)) 
90 format(5(2x, e20.12)) 
999 format(5(2x,f7.i)) 

end 
» functions and subroutines follow -

FUNCTION f(x) 
double precision conl,con2,con3,con4,can5,con6 
double precision f, x 

COMMON/coef/conl,con2,con3,con4,con5,con6 
c print*,'in the f function routine x=',x 

f = conl*x+con2*x**2+con3*(l/x)+eon4*x**3 
1 +con5*x**.5-con6 

c print*,'at x=',x,'the value of f is'.f 
RETURN 

END 

function dfdx(x) 
double precision conl,con2,con3,con4,con5 
double precision x, dfdx 
common/coef/conl,con2,con3,con4,conS 

e print*,'in dfdx function routine x=',x 
dfdx = conl+2*con2*x-con3*(l/x**2)+ 

1 3*con4*x**2+.S*con5*(l/x**.5) 
c print*,'conl =',conl 
c print*,'con2 =',con2 
c print*,'con3 =',con3 
c print*,'con4 =',con4 
c print*,'con5 =',con5 
c print*,'at x=',x,'the value of dfdx is',dfdx 

return 
end 

c 
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deltax(i) = x(i+l)-x(i) 
deltay(i) = y(i+l)-y(i) 

c print*, 'deltaxC ,i,*) =' ,deltax(i) 
c print*, 'deltayC , i , ' ) =',deltay(i) 

70 continue 

do 75 i = l ,o 
b(i)=2.0*( deltax(i-l)+deltax(i) ) 

c p r in t* . ' b ( ' , i , ' ) =',b(i) 
u(i) = 6.0*( deltay(i)/deltax(i) - deltay(i-i)/deltax(i-l) ) 

c p r in t* , ' u ( ' , i , ' ) =',u(i) 
75 continue 

do 80 i = 2, n 
a(i) = deltax(i-l) 

c p r in t* , ' a ( ' , i , ' ) =' ,a(i) 
80 continue 

do 85 i = 1, n-1 
c(i) = deltax(i) 

c pr int* , 'c(* , i , ' ) =' ,c(i) 
85 continue 

if (b(l).eq.O) pause 
bet = b(l) 
s(l) = u(l)/bet 

do 95 i = 2, n 
gam(i) = c(i-l)/bet 

c print*,'gam(*,i,*) =',gam(i) 
bet = b(i) - a(i)*gam(i) 
if (b(i) .eq. 0) pause 
s(i) = ( u(i) - a(i)*s(i-l) )/bat 

c pr in t* , ' s (* , i , ' ) = ' ,s( i ) 
95 continue 

do 100 i = n - 1, 1, -1 
s(i) = s(i) - gam(i+l)*s(i+l) 

c print*, s(i) 
100 continue 

s(0) = 0.0 
sCn+1) =0.0 

do 105 i = 0, n 
ac(i) = y(i) 

bc(i) = ( y(i+l) - y(i) )/deltax(i) 
1 - (1.0/6.0)*( s(i+l) + 2.0*s(i) )*deltax(i) 

cc(i) = s(i)/2.0 
dc(i) = ( s(i+l) - s(i) )/(6.0*deltax(i)) 

105 continue 

do 110 i = 0, n 
c print*, ' a c ( ' , i , ' ) =', ac(i) 
c print*, ' b c ( ' , i , ' ) =', bc(i) 
c print*, ' c c C . i , ' ) =', cc(i) 
c print*, ' d c C . i , ' ) =*, dc(i) 

110 continue 
return 
end 

SUBROUTINE NEWTON(X,EPS,IHAX,DXHAX,MULT,ROOT,F,DFDX,N) 
* 
• Newton's algorithm , Xnew = Xold + dx, where 
* 
* dx = -f(Xold)/dfdx(Xold) 
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* is used to f i n d a r o o t of t h e f u n c t i o n f ( x ) . A d d i t i o n a l l y , 
* the d e r i v a t i v e of the f u n c t i o n , called d f d x O is r e q u i r e d 
* as a used coded f u n c t i o n . T h e i n i t i a l g u e s s f o r t h e root 
* is X and convergence is a t t a i n e d when IdxI < e p s . 
*— 
* V a r i a b l e s 
* 
d o u b l e p r e c i s i o n X, ROOT, F, DFDX, D F , DX 
r e a l e p s , dxmax 

INTEGER N , IHAX, M U L T 
c p r i n t * , ' I am h e r e in t h e n e v t o n s u b r o u t i n e ' 
c print*,'x=* ,x 
c p r i n t * , ' e p s = ' , e p s 
c p r i n t * , ' d x m a x = ' , d x m a x 
c p r i n t * , ' i m a x = ' , i m a x 
c p r i n t * , ' m u l t = ' , m u l t 

IMAX — T h e m a x i m u m n o . of i t e r a t i o n s . 
DXMAX — A limit on the size of computed dx's 
N — The actual n u m b e r of iterations 
M U L T — The assumed m u l t i p l i c i t y o f t h e r o o t . 

(Usually mult = 1) 
R O O T — T h e v a l u e computed f o r the root of f ( x ) 

Iterations 

DO 15, I = l.IMAX 
c p r i n t * , ' i = ' , i , ' x = ' , x 

DF = D F D X ( X ) 
c print*,'at i=',i,'the value of d f d x at x=',x,'is',df 

IF(DF .EQ. 0.)THEN 
W R I T E ( * , 1 2 ) I , X , F ( X ) 
P A U S E 'Fatal E r r o r in N E W T O N ' 
RETURN 

ENDIF 
DX = - M U L T * F ( X ) / D F D X ( X ) 

c print*,'at x = ' , x , ' d x = ',dx 
IF(ABS(DX) .LT. E P S ) T H E N 

R O O T = X + D X 
N = 1 
RETURN 

E L S E I F ( A B S C D X ) .GT. DXMAX)THEN 
W R I T E ( * , 1 0 ) I , D X 
P A U S E 'Fatal E r r o r in N E W T O N , m e t h o d d i v e r g i n g ' 
RETURN 

ENDIF 
X = X + DX 

c print*,'the n e w x + d x b e c o m e s ',x 
15 C O N T I N U E 

W R I T E ( * , 1 1 ) X , F ( X ) , D X 
P A U S E 'ERROR in N E W T O N , m e t h o d not c o n v e r g i n g ' 

t 
* F o r m a t s 
* 
10 F O R M A T ( / / , 

+ T 5 , ' = = = = = = = = = = = = = = = = = E R R 0 R IN N E W T 0 N = = = = = = = = = — = ' , / , 
+ T 5 , * | In ite r a t i o n No.-*,13, ' I ' , / , 
+ T5,'l The current v a l u e o f d x = \ E 8 . 1 , ' I ' , / , 

+ T 5 , ' l is larger t h a n t h e p r e s c r i b e d limit I ' , / , 

+ T 5 , ' = = = = = = = = = = — ~ = P r o g r a m T e r m i n a t e d = = = = = = = = = ' , / ) 
* 
11 F 0 R M A T ( / / , 

+ T 5 , ' = — = = = = = = = — = = — E R R O R IN N E W T 0 N = = = = = = = = = = = = = = ' , / , 
+ T 5 , ' l N e w t o n f a i l s due to excessive i t e r a t i o n s I ' , / , 

+ T 5 , ' l A f t e r e x e c u t i n g t h e m a x i m u m n u m b e r of steps I ' , / , 

+ T 5 , ' | f ( ' , E 1 2 . 5 , *) = \ E 8 . 1 , ' I ' , / , 

+ T 5 , ' l and the latest dx = \ E 8 . 1 , ' I ' , / , 
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+ T 5 , * = = — = — = = = = P r o g r a m T e r m i n a t e d = — = = = = = ' , / ) 

1 2 F O R M A T ( / / , 
+ T 5 , ' = = = = = = = = = = E R R O R IN N E W T O N = = = = — = = = = * , / , 
+ T5 .M I n i t e r a t i o n N o . - ' , 1 3 , 1 I*,/, 

+ T5 ,M T h e current value of dF is E X A C T L Y zero I ' , / , 

+ T5,'l T h e p r o b l e m is l i k e l y in the code f o r D F D X I ' , / , 

+ T 5 , ' = = = = = = = = = = = = P r o g r a m T e r m i n a t e d * — = = = = = = ' , / ) 
E N D 
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