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Abstract

A new automatic compression scheme that adapts to any image set is presented in this the-

sis. The proposed scheme requires no a priori knowledge on the properties of the image

set. This scheme is obtained using a unified graph-theoretical framework that allows for

compression strategies to be compared both theoretically and experimentally. This strat-

egy achieves optimal lossless compression by computing a minimum spanning tree of a

graph constructed from the image set. For lossy compression, this scheme is near-optimal

and a performance guarantee relative to the optimal one is provided. Experimental results

demonstrate that this compression strategy compares favorably to the previously proposed

strategies, with improvements up to 7% in the case of lossless compression and 72% in

the case of lossy compression. This thesis also shows that the choice of underlying com-

pression algorithm is important for compressing image sets using the proposed scheme.
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Chapter 1

Introduction

The efficient storage of digital images is vital to meeting the demands of modern com-

puting. The use and volume of digital images has seen explosive growth in the past two

decades as digital imaging equipment continues to improve and replace traditional imag-

ing methods. For example, Nagata and Tanaka in 2003 predicted that Japan alone would

generate three petabytes1 of digital medical images annually [36]. Unless these images

can be stored efficiently, it is impractical to retain such large volumes of image data.

There are many applications that involve the storage of a large number of images. A

personal photo-album is an example of a typical image database. Another example would

be large database systems containing medical or satellite images. Videos and webcam im-

ages can be interpreted as collections of images whose individual frames are time indexed.

Depending on the application, the images in a collection may or may not be similar to each

other, and the relationship among images may or may not be known. Algorithms for one

type of images may not work well for others.

1.1 Motivation

In this thesis, the problem of compressing sets of images is examined. The goal of data

compression is to represent data succinctly by removing redundancies found in data. Tra-

ditionally, image compression has focused on compressing images individually by taking

advantage of coding, inter-pixel, and psychovisual redundancies within the image [20]. In

the related area of video compression, algorithms take advantage of redundancies existing

among consecutive frames and those contained with each frame. In a large collection of

1A petabyte is 1015 bytes.
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images, there may be other similarities among the images in the collection. It is unclear

what types of redundancies are useful for compression, how to detect them, and how to

remove them. A compression algorithm that takes advantage of these inter-image sim-

ilarities can improve the overall compression performance of the image set. Strategies

to automatically discover these redundancies and improve image set compression have

received little attention.

A number of image compression strategies have been presented to take advantage of

different types of inter-image redundancies [2, 4, 5, 26, 27, 28, 32, 35, 38, 39, 53, 54, 55].

While these attempts perform well on image sets with certain types of inter-image relation-

ships, it is not clear which strategy is best for a particular image set a priori. In particular,

many of these strategies work well only when images in the image set are very similar

to one another. In other words, there is a high amount of redundancies among images.

Furthermore, many of these methods have only been studied experimentally. There is no

method to analyze if there exists an optimal compression strategy for image set compres-

sion. It is also not understood how close the performance of existing algorithms are to that

of the optimal strategy, if it exists. This thesis proposes an automatic compression scheme

that adapts to any image set, and analyzes its performance relative to the optimal strategy

both theoretically and experimentally.

1.2 Automatic Image Set Compression

The proposed scheme is based on a unified framework that allows the comparison of all

compression strategies that deal with inter-image redundancies between pairs of images.

Regardless of the properties of the image set, the scheme automatically selects the optimal

strategy for lossless compression or a near-optimal strategy for lossy compression. The

framework uses a graph to represent inter-image relationships within an image set. The

2



minimum spanning tree of this graph represents the optimal compression method in the

lossless case. In the lossy case, the errors introduced by lossy image compression perturb

the graph. Therefore, the compression strategy obtained by the framework may not be

optimal. However, theoretical analysis shows that the performance of the proposed scheme

is relatively close to the optimal scheme.

The performance of the scheme is analyzed theoretically and demonstrated through

experiments on several image sets. In the lossless case, the scheme shows an improvement

up to 7% better than coding images individually with JPEG2000 [1, 9]. For the lossy case,

a 72% improvement is obtained. Part of this thesis work has been published in [17, 18].

The thesis also demonstrates that the underlying image compression algorithm for the

coding of difference images has a significant effect. Wavelet packets [8, 33] are more

suitable for these types of compression strategies than JPEG2000. The framework is also

effective for analyzing and evaluating other set compression strategies as it allows for

quantitative comparison of a strategy to the optimal and near optimal scheme.

1.3 Thesis Outline

The thesis is organized as follows. In Chapter 2, the background concepts and terminol-

ogy common to image compression are defined. Then, Chapter 3 contains a summary

of related works by other researchers. The proposed automatic compression scheme for

image set compression is presented in Chapter 4. The experimental results for lossless

and lossy compression are covered in Chapter 5. Finally, the concluding remarks follow

in Chapter 6.
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Chapter 2

Background

This chapter contains a brief introduction to the concepts and terminology used throughout

this thesis. The basics of digital images are reviewed with attention given to the compu-

tation of difference images and a method to measure the similarity between a pair of im-

ages. A summary of the graph theory concepts utilized in this thesis follows. An overview

of image compression including wavelet and wavelet packet compression concludes the

chapter. More detailed information can be found in [10, 12, 20, 24, 51].

2.1 Digital Images

An image can be mathematically defined as a two-dimensional function f (x,y) where x

and y are spatial coordinates. Given an image of dimensions M×N, each pair of coor-

dinates (x,y) defines an element in the image called a pixel. The amplitude of f for any

pixel is the intensity of the image at that point. If the coordinate and amplitude values are

all finite and discrete, then the image is called a digital image. The term image will be

used to represent a digital image for the remainder of this thesis.

A common method to represent an image is to use an M×N matrix of the form

f =



f (0,0) f (0,1) . . . f (0,N−1)

f (1,0) f (1,1) . . . f (1,N−1)
...

...
...

f (M−1,0) f (M−1,1) . . . f (M−1,N−1)


(2.1)

where each element is a pixel. The intensity values for an image are in the range of
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[0,L−1] where L is a positive integer. Typically, L = 2k for some k ≥ 0 for gray scale (or

monotone) images and the intensity values are referred to as the gray levels of the image.

Such an image is called a k-bit image. Therefore, the number of bits required to store an

uncompressed k-bit image is

b = M×N× k (2.2)

where M is the number of rows and N is the number of columns. For example, an uncom-

pressed 640× 480 pixel 8-bit gray scale image would require 2,457,600 bits of storage

space.

2.1.1 Difference Image

Given two k-bit gray scale images f1(x,y) and f2(x,y), the difference between the two

images can be expressed as

d(x,y) = f1(x,y) − f2(x,y). (2.3)

The image d contains the difference between all pairs of corresponding pixels in f1 and

f2. The intensities of d have a range of [−(2k − 1),(2k − 1)] so that the uncompressed

difference image requires k + 1 bits for each pixel. Figure 2.1 displays an original image

and a difference image computed between two images from a collection of 8-bit gray scale

ultrasound images.1

A common method to measure the difference between pairs of images is the root-

1The values in the difference image are shifted by 256 which results in a range of [0,511] for the gray
levels because pixel values are stored as unsigned integers. Note that a value of zero is the color black and
a value of 511 is the color white.
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(a) Original image 1 (b) Original image 2

(c) Difference image

Figure 2.1: A comparison between a pair of original images and a computed difference
image from a collection of ultrasound images.
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mean-squared-error (RMSE) [20]

RMSE( f1, f2) =

[
1

MN

M−1

∑
x=0

N−1

∑
y=0

[ f1(x,y)− f2(x,y)]2
] 1

2

. (2.4)

A small RMSE indicates that the pair of images are very similar, while a large RMSE

indicates the images are significantly different from one another.

2.1.2 Image Similarity

The definition of similarity for images is very subjective because its meaning may change

depending on the requirements of an application. In this thesis, similarity between a pair

of images is defined by examining their difference image. Specifically, three methods

are used to examine difference images. They are RMSE, entropy (Section 2.3.1), and

the number of bits required to store the difference image using a particular compression

algorithm. These measures are chosen because they are related to the performance of

compression algorithms. Furthermore, the chosen measures do not depend on the order in

which the difference images is computed. That is, the measures are the same whether the

difference f1− f2 or f2− f1 is used. Intuitively, a small value for the difference measure

implies that the two images are very similar. Conversely, a large value suggests that the

images are quite different.

2.2 Graph Theory

A graph G is a pair of sets (V,E) such that V is a finite set and E ⊆ V ×V [12]. The

elements of V represent the vertex set, and the elements of E represent the edge set. Two

vertices u,v ∈ V are considered connected if the edge (u,v) ∈ E. A graph is undirected

7



when (u,v) ∈ E if and only if (v,u) ∈ E. The edges in a weighted graph have a weight

w(u,v) assigned to each edge (u,v) ∈ E. If all pairs of distinct vertices are connected with

edges, the graph is called a complete graph.

Let V ′ ⊆ V be a subset of vertices and E ′ ⊆ E be a subset of edges. Then, the graph

G′ = (V ′,E ′) is a subgraph of G such that (u,v) ∈ E ′ only if u,v ∈ V ′. A path from u to

v is a sequence of edges p1, p2, . . . , pk (for some k > 0) such that pi = (ui,ui+1) ∈ E (for

1 ≤ i < k) with u1 = u and uk = v. A cycle is a path where k ≥ 3 and uk = u. A spanning

tree is a subgraph (V,E ′) of G with the following properties:

1. there is a path between any vertices u,v ∈ V consisting only of edges in E ′;

2. no cycle can be formed from edges in E ′.

Given a weighted graph G, the cost of connecting all the vertices can be computed by

summing the weights of the edges in a spanning tree of G. A spanning tree of a weighted

graph with the smallest possible total weight is called a minimum spanning tree (MST).

Algorithms to find a minimum spanning tree of a graph have been extensively studied,

and the algorithms of Kruskal and Prim [10] are commonly used to compute an MST.

This thesis does not explore MST algorithms, as their computational complexity do not

significantly add to the complexity of the proposed framework (Section 4.3). For example,

the complexity of Kruskal’s algorithm is O(|E| log∗ |V |). 2

2.3 Image Compression

Image compression is the process of encoding an image to reduce the number of bytes re-

quired to store or transmit the image [20]. Decompression is the process of reconstructing

an image from the encoded representation. Both processes are summarized in Figure 2.2.
2log∗ n refers to an iterated logarithm function as defined in [10] as: log∗ n = min{i≥ 0 : log(i) n≤ 1}.

This is a very slow growing function.
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Mapper

Quantizer

Symbol
Encoder

Original
Image

Compressed
Image

(a) Encoding

Symbol
Decoder

Inverse
Mapper

Compressed
Image

Reconstructed
Image

(b) Decoding

Figure 2.2: Source encoder and decoder for image compression.

Compression is achieved by reducing redundancies contained within the image data.

The three basic types of redundancies that occur within an image are coding, inter-pixel,

and psychovisual redundancies. Coding redundancies occur when the number of coding

symbols required to represent the image data is not the minimum. That is, the number

of coding symbols used to code image data that has a high frequency is similar or equal

to the number of symbols used for data that has a low frequency. This type of redun-

dancy is reduced during the symbol encoder stage of compression using algorithms such

as Huffman coding or arithmetic coding [20] by assigning few coding symbols (or bits) to

represent data that has a high frequency. The coding symbols used to store an image may

not take into account the correlation that exists between pixels. This results in inter-pixel

redundancies between adjacent pixels. These redundancies can be minimized during the

mapper stage of compression where the data is transformed into a more efficient repre-

sentation. Lossless compression removes coding and inter-image redundancies, and the

reconstructed image is identical to the original image—there is no information loss.

Psychovisual redundancies occur in an image when there may be information in the
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image that cannot be perceived by human vision. For example, a 16-bit gray scale image

could be quantized to use only 8 bits for each pixel. Such information can be removed

from an image without significantly impacting the perceived image quality. This type of

redundancy is reduced during the quantization stage and results in lossy compression. To

improve compression ratios, lossy algorithms utilize quantization to remove psychovisual

redundancies. Because this process is irreversible, an image compressed using a lossy

algorithm is not exactly the same as the original image.

The file sizes generated by lossy algorithms are generally smaller than those produced

by lossless algorithms. Lossy algorithms allow for a trade off between the image quality

and the amount of compression achieved. By reducing image quality, a much higher

compression ratio can be achieved by lossy algorithms. A common method to compare

between multiple lossy compression algorithms is to examine the RMSE between the

original image and the reconstructed image at the same compression ratio.

Although these three stages minimize redundancies within an image, others may exist.

For example, video compression algorithms reduce temporal redundancies. Another type

of redundancy that occurs in image sets is inter-image redundancy. A group of images,

such as a set of medical images or a video stream, may share similar properties that can

be utilized in image set compression. In video, the temporal relationship implies an inter-

image relationship between successive image frames. A set of medical images, such as

a group of ultrasound images of a body part, would form a group of similar images that

contain inter-image redundancy.

2.3.1 Entropy

Entropy represents the average amount of information per symbol [43], and can be used as

a measure of the compressibility for an image. Let z = {P(a1), . . . ,P(aJ)} where P(a j)
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is the probability of a gray level a j in an image. The first-order entropy is defined as

H(z) =−
J

∑
j=1

P(a j)log2P(a j) (2.5)

and it is measured in bits per pixel. The first-order entropy shows how much coding

redundancy may be removed, but does not address inter-pixel redundancy. The higher-

order entropies consider blocks of symbols instead of individual symbols a1, . . . ,aJ , and

give an estimate to inter-pixel redundancy. The second-order entropy uses overlapping

horizontal pixel pairs as the symbols in the entropy calculation, while the fourth-order

uses overlapping 2× 2 blocks of pixels. In this thesis, the second-order and fourth-order

entropy are also considered.

2.3.2 Wavelet Compression

Wavelets provide a powerful tool to improve image compression, and they are a key com-

ponent of modern compression algorithms such as JPEG2000 [9]. The wavelet transform

is a change of basis linear transformation. The application of a wavelet transform changes

the standard basis functions of an input source to different basis functions corresponding

to the wavelets. These wavelet basis functions vary in both frequency and spatial support.

More specifically, each wavelet function has a different frequency range and support. The

differing support allows different spatial information to be captured by each wavelet func-

tion. The goal is to obtain the coefficients corresponding to the wavelet basis functions

because they capture both the frequency and the spatial information of the image. The

wavelet transform is applied in the mapping stage (Figure 2.2) of image compression to

separate the images into its spatial and frequency components.

Consider a one-dimensional input source f (x). The wavelet transform is the applica-
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tion of a pair of filters—a lowpass filter that yields the general trend of f , and a highpass

filter that gives the details of f . Application of the transform results in two output images

with different images with different spatial frequencies represented. The filtered output

can be subsampled by a factor of two because the frequency range of each of the output

streams is half of the input sequence. Recursively, the process is applied to the output

stream of the lowpass filter and the process stops after a set number of passes. This results

in coefficients corresponding to frequency and spatial information at different scales.

Figure 2.3 demonstrates the basics of this process. Note that the height of each box

in the figure represents the length of the stream it contains. Using the basis functions

resulting from the wavelet transform, an input stream can be exactly reconstructed because

the wavelet transform is an invertible change of basis linear transformation. Therefore, the

filters are invertible and using the inverse filters the process can be applied to the output

sequences in the reverse order to reconstruct the input stream [20].
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Figure 2.3: Visual representation of the decomposition of a one-dimensional input source
using a wavelet transformation using three passes.

Many different functions can be used in the generalized wavelet method. For example,

the Haar wavelet works on pairs of values from the input stream which are neighbors. The

12



highpass filter computes a scaled difference between two values and it is defined as

H(i) =
f (2i)− f (2i+1)

2
(2.6)

where 0 ≤ i < N/2. The lowpass filter computes an average between two values and it is

expressed as

L(i) =
f (2i)+ f (2i+1)

2
. (2.7)

The reconstruction filters can be derived from the forward transformation. Further exam-

ples of the wavelet techniques include the Morlet wavelet [21], the Daubechies wavelet [11],

and the Mexican hat wavelet [34]. JPEG2000 uses the Daubechies 9-tap/7-tap wavelet for

lossy compression and the LeGall 5/3 wavelet for lossless compression [46].

A two-dimensional wavelet transform is an extension of the one-dimensional trans-

formation described above. Given a two-dimensional input source, a one-dimensional

wavelet transform is first applied to the columns of the input source followed by its ap-

plication to the rows of the output. This results in four output bands (see Figure 2.4(a))

consisting of the combinations of highpass and lowpass filters. Each letter signifies the fre-

quency range, with the first letter identifying the results of the transform on the columns

followed by the rows. For example, the letters LH signify the low frequencies of the

column, or vertical, application of the transform and the H signifies the high frequencies

were chosen in the horizontal direction. The recursive application of this method results

in what is commonly known as the pyramid decomposition as shown in Figure 2.4(b).

The number of passes through the transformation is shown by the number of levels in the

pyramid, which for the example shown is four passes. The majority of the information

in most regular photographic images is contained within the low frequencies represent-

ing a low resolution representation of the image. Therefore, a large quantity of the high
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frequency basis coefficients can be quantized without having a detrimental impact on the

visual quality of the image. This results in lossy compression of the image.

HL HH

LHLL

(a) Output bands (b) Pyramid decomposition

Figure 2.4: Two-dimensional wavelet transformation decomposition structures.

2.3.3 Wavelet Packet Compression

It may be the case that important information within the wavelet coefficient domain is not

located in the low frequencies in certain types of images such as fingerprint images [33].

In the pyramid decomposition, each application of the wavelet transform to a sub-band is

a change of basis linear transformation. If decomposition is applied to other sub-bands,

the result is a different set of basis functions. The wavelet packet transform considers

all possible decompositions and the corresponding basis functions. Then, the set of basis

functions that best represents the input stream is chosen. Intuitively, the best basis com-

presses the information in an image into a small number of coefficients that have little

correlation among each other. The wavelet packet transform is completely specified by

the wavelet transform and decomposition scheme. Computing all the decompositions of
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an input stream increases the computational complexity for the wavelet packet transform

when compared to the wavelet transform. The wavelet transform has a computational

complexity of O(M2) while the wavelet packet transform is computed in O(M2 logM)

time for M×M input images [20].

2.4 Summary

A summary of the concepts and terminology used for this thesis were covered in this

chapter. The definitions of digital images and difference images were given, and methods

to measure the similarity between a pair of images were discussed. The basic concepts

of graph theory used in this thesis were then presented. Finally, an overview of image

compression was given.
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Chapter 3

Analysis of Related Works

In this Chapter, previous works are briefly described. Their advantages and disadvantages

are summarized.

3.1 The Centroid Methods

Karadimitriou and Tyler investigated a lossless strategy, called the Centroid method, of

compressing a set of medical images around an average image [27, 28]. In this strategy,

an average image of the set is computed. Then, a difference image for each image in the

set is computed using the difference between the original image and the average image.

Only the average and the difference images are encoded. The performance of this strategy

is reliant on the set of images forming a tight cluster of very similar images. Otherwise,

the difference images may not be easy to compress.

Karadimitriou and Tyler also showed that a clustering algorithm can be applied to par-

tition a set of images into clusters of similar images, and the Centroid method can be

applied to each cluster independently. This idea was examined experimentally by Nielsen

et al. [39], who used the global average approach and proposed a lossy compression algo-

rithm based on different clustering criteria. This work was mainly focused on parameter

selection and trade-off analysis. Their experiments showed up to 25% performance im-

provement over JPEG2000 on individual images. Note that an average image is introduced

for each cluster, so the computational overhead increases with the number of clusters. As a

result, this strategy is suitable when the image set contains few tight clusters. Furthermore,

redundancy among the clusters is not exploited as they are encoded independently.

El-Sonbaty et al. proposed an extension to the Centroid strategy [13]. Given a set of
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images, a median image is computed. Using this median image, a set of difference im-

ages is then computed. This is essentially the Centroid method defined above where the

only difference is how the central image is computed. Next, using the set of difference

images, a new median image is computed. A new set of difference images is computed

using the second median image and the initial set of difference images. Recursively, this

process can be completed to a predetermined number of steps. The objective is to min-

imize the differences contained in the difference image set to bring them closer to zero,

and therefore improve compression performance. Their results showed that this strategy

was only effective to two steps and provided only a slight improvement over the single

average image Centroid strategy.

3.2 The Template Method

For some applications, a set of images may have known similarities. For example, a set

of form document images may contain an underlying form that is common to all the im-

ages. Wang and Yan proposed a lossless compression strategy to take advantage of this

inter-image redundancy [55]. They used a predefined template image, such as an image of

a blank form, instead of a computed average image. As in the Centroid strategy, the tem-

plate is subtracted from each image. Then the template image and the difference images

are compressed. If a common part exists, the Centroid method should also discover the

underlying image as the average image. Using multiple template images, their algorithm

partitioned a set of images into multiple clusters by matching each image to a template

image, similar to the Centroid method with multiple clusters. This strategy is effective for

predefined image sets, but it is not feasible for image sets whose properties are unknown

prior to compression.
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3.3 The Min-Max Methods

Karadimitriou and Tyler proposed a compression strategy to reduce inter-image redun-

dancy by using a maximum value image and a minimum value image [27, 32]. Ait-

Aoudia and Gabis proposed an improvement for the strategy [2] by using the LOCO-I

algorithm [56] to compress the error images. The max and min images are computed

by comparing all images in the set. The max image contains the maximum value for each

pixel location and the min image contains the smallest pixel value for each location. Then,

an error image is computed for each image in the set. The pixels of an error image contain

the smallest difference between the original value and either the max or min value. The

goal is to reduce the range of pixel values contained in a difference image which should

improve compression.

Compressing an image using this method requires that the change between using the

min and the max images to be synchronized between the encoder and the decoder. To

achieve this, the encoder uses one of the images, either the min or max, until

e(i, j) >
m(i, j)+M(i, j)

2
(3.1)

where (i, j) specifies the current pixel location, m is the min image, and M is the max

image. To swap between the min and max images, the encoder records the current differ-

ence value and the next pixel evaluated will use the opposite image. The decoder follows

the same strategy to correctly reconstruct the image. Karadimitriou showed improved

compression using this method, but his results do not differentiate the contribution from

removing inter-pixel and inter-image redundancies separately. In image sets that do not

form tight clusters of similar images, this strategy performs poorly due to outlier images.
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3.4 The Minimum Spanning Tree Methods

Another way to exploit inter-image redundancy was proposed by Chen et al. [5] and by

Nielsen and Li [38]. In this strategy, an MST is computed from a complete graph. The

vertices of the graph represent the images, and the weight of each edge is a measure of the

cost of encoding one image given the other image of the edge. Chen et al. [5] used this

strategy to link different views of 3D objects to represent the prediction relationship among

the views. The edge weight used was based on motion estimation and compensation. On

the other hand, Nielsen and Li [38] used the root-mean-squared error between the two

images on the edge as the edge weight. Both of these methods were proposed for lossy

compression and only experimental results were presented. Furthermore, there was no

analysis of the optimality of this strategy.

An MST method is effective for compressing image sets that contain outlier images

as an MST algorithm will find a spanning tree of minimum total weight. These meth-

ods requires a complete graph to be computed, which was computationally expensive

(n(n−1)
2 = O(n2) edge weight computations for n images). This method is not the opti-

mal strategy for lossy compression because of the errors introduced to the images during

compression. The proposed graph theoretical framework presented in Section 4.1 is based

on the MST strategy of Nielsen and Li.

3.5 The Quadtree Method

A quadtree is a common hierarchical structure used to represent an image [14, 42]. There

are a number of image compression algorithms based on quadtrees [7, 31, 45, 47]. The

following outlines the basic process to generate a lossless quadtree representation of an

individual image. First, a root node is assigned to the image. If the image is homoge-
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neous, the algorithm stops as this node is made a leaf node that fully represents the image.

Otherwise, the image is partitioned into four equal quadrants and four corresponding chil-

dren nodes are added to the root node. Each quadrant is considered a sub-image and each

child node the root of a subtree. Now, the above process is recursively applied to each

quadrant until the image is fully defined in the tree by leaf nodes. The resulting tree is the

quadtree representation for the given image. Figure 3.1 demonstrates this process using a

small binary image. Note that the leaf nodes in the resulting quadtree decomposition are

the squares which are either white or black to represent the homogenous color in the leaf

node’s quadrant.

(a) Binary image

12

3 4

(b) Quadrant or-
dering

(c) Quadtree decomposition

Figure 3.1: A quadtree example for a small binary image.

The quadtree structure lends itself well to image set compression. Inter-image redun-
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dancies can be identified by comparing the subtree structures among the quadtrees for

an image set. For example, the comparison of the binary image and its corresponding

quadtree decomposition in Figure 3.1 and the image and quadtree in Figure 3.2 shows a

common subtree existing between the quadtrees of the two images. It is highlighted in Fig-

ure 3.2(b). These common parts represent inter-image redundancies that can be reduced

to improve set compression.

(a) Second binary image

(b) Second quadtree decomposition

Figure 3.2: A second binary image and its quadtree.

A number of algorithms have been proposed to improve image set compression using

quadtrees [4, 26, 53, 54]. Vassilakopoulos et al. proposed a quadtree set compression

strategy using an overlapping structure [54]. The images are stored in a sequential order

where image i is considered to overlap the previous image i−1 if parts of their quadtrees
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are the same. The quadtree for image i is modified to reference the commonly shared

parts in image i−1. The results in [54] showed an improvement of up to 90% for similar

binary images. Unfortunately, the performance of quadtree image compression is known

to be inferior to algorithms such as JPEG2000 for many types of non-binary images, such

as photographic images [6], because quadtree methods often require a higher bitrate to

achieve a particular distortion on these types of images.

3.6 The 3D Image Set Method

Advanced medical imaging tools, such as a magnetic resonance imaging (MRI) scan-

ner and a computed tomography (CT) scanner, generate large volumes of images annu-

ally [36]. A common application of these tools is to generate multiple images at different

cross sections of an object. The medical imaging of a body part is a common example.

These two-dimensional (2D) images, or slices, are taken at varying intervals and they can

be used to construct a three-dimensional (3D) representation of the imaged object. Qi et

al. have proposed an algorithm to compress such a group of images [40, 41]. The authors

refer to a group of these images as a 3D image data set. Intuitively, video compression

algorithms appear to be a good approach to compress such a set, but the imaging process

introduces too much noise for this type of compression strategy to work effectively. The

authors proposed a prediction algorithm which utilizes the previous image and the cur-

rent image to compute a prediction image. The resulting image is compressed using a

wavelet compression algorithm. Although their method is similar to video compression

algorithms, it does not use any time-based variables for the prediction. This is a special-

ized compression algorithm which assumes that the input will be a 3D image data set of

a single object. Therefore, this algorithm may not be good for compressing image sets

whose properties are very different from 3D image sets.
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3.7 The Wavelet Method

Tashakkori proposed an alternative approach to compressing sets of images which fo-

cused on reducing inter-image redundancies by working within the wavelet coefficient

domain [49]. First, the method applies the wavelet transform to each image in the set.

Then, linear regression is used to predict one image from another, and the resulting error

image is compressed. Tashakkori concluded that linear regression was much more effec-

tive in the wavelet domain compared to the linear regression technique on the original

images, because there is a higher correlation among images in the wavelet coefficient do-

main. However, prediction is a linear process. Therefore, it is equivalent to apply the same

prediction in the image domain and then apply the wavelet transform to the resulting error.

3.8 The Principal Components Method

Principal components analysis (PCA) is a linear transformation that provides the theoret-

ical optimal representation for a data set [23]. This transform is also commonly known

as the Hotelling transform or the Karhunen-Loeve transform. Given a set of images, the

transform computes a set of basis functions that decorrelates the information contained

within the set. These basis functions are ranked in descending order of importance. When

an image is written as a linear combination of these basis functions, the coefficients cor-

responding to the least important basis elements can be quantized because they contain

little information needed to represent the image. Therefore, the number of basis functions

required to approximate the image set is significantly reduced.

More formally, PCA can be described as follows. Consider a set of n images. Nor-

mally, an image is represented as a two-dimensional array (Section 2.1), but it can also

be considered as a column vector of dimension MN. Now, let Φi represent the ith image

23



with the average removed. The covariance matrix of the image set is C = AAT where

A = [Φ1,Φ2, . . . ,Φn]. The eigenvalues and eigenvectors of C are computed. The eigen-

vectors can be ranked by the magnitude of the associated eigenvalues. An eigenvector

corresponding to a larger eigenvalue is more important for representing the image set. On

the other hand, the coefficients of eigenvectors corresponding to small eigenvalues can be

quantized more coarsely without losing much information.

Although PCA has been used successfully for the facial recognition problem in large

sets of similar images [30, 52], it is not suitable for compression. Musatenko and Kurashov

proposed a lossy compression strategy for image sets using PCA [35]. Their algorithm

utilizes Gram-Schmidt orthogonalization to compute the basis functions for an image set.

Then, each basis function is encoded using the embedded zerotree wavelet (EZW) cod-

ing algorithm [44]. The compression ratio for each basis function is set based upon how

much it contributes to the representation of the image set. PCA is computationally expen-

sive [27], and the cost of their algorithm has a complexity of O(n3MN +n2) where n was

the number of images in the set and the dimensions of the images are M×N. Musatenko

and Kurashov concluded that their algorithm was only effective for sets with up to 10

images. Furthermore, this technique can only work for lossy compression on a set of

images that are very similar so that the set can be approximated by a subspace of small

dimensions.

3.9 Summary

A number of previously proposed strategies for image set compression were examined.

There is a group of strategies, such as the Centroid method, that are effective on im-

age sets with certain qualities, but are not effective on all image sets. Another group of

strategies, such as the PCA method, are theoretically elegant but are too computationally
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expensive for practical use. Furthermore, many of the previous strategies have only been

studied experimentally. Tashakkori’s wavelet method for predicting images is similar to

the method proposed in this thesis, but it does not examine which pairs of images should

be used in the prediction.
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Chapter 4

Graph Theoretical Framework for Image Set
Compression

Graphs play an important role in computer science as they are often used to model re-

lationships among objects. An image set can be modeled as a graph where each vertex

represents an image in the set and each edge represents a measure of the difference be-

tween a pair of images. Such a structure can be useful for analyzing the inter-image

relationships and useful for compressing image sets. Traditionally, image compression

has focused on compressing each image individually and ignores any similarity that may

be found among other images in a set. A compression algorithm could examine the graph

to remove inter-image redundancies by compressing the difference images corresponding

to the edges. Intuitively, the smaller the difference between a pair of images, the easier the

difference image will be to compress. Thus, choosing the edges with the smallest weights

will lower the cost to compress an image set. Using such a graph structure is central to the

proposed framework and it will be investigated in this chapter.

4.1 Graph Construction

Let Sn = {I1, I2, . . . , In} be a set of n images of the same dimensions. In order for the

proposed framework to model the existing strategies [5, 27, 28, 38, 39], two additional

images need to be defined:

• a zero image In+1 = Iz with Iz(i, j) = 0 for all (i, j);
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• an average image In+2 = Ia where

Ia(i, j) =
1
n

n

∑
k=1

Ik(i, j). (4.1)

These images are used to define two slightly larger image sets:

• Sz = Sn+1 = Sn∪{In+1};

• Sa = Sn+2 = Sn+1∪{In+2}.

Given an image set S∗ ∈ {Sz,Sa}, a complete undirected, weighted graph (Section 2.2)

is defined. The vertices of G are V = {Ii | Ii ∈ S∗}, and E = {(Ii, I j) | Ii, I j ∈V} defines the

graph edges. The weight for each edge (Ii, I j) is defined by the function w(Ii, I j), where

w : S∗× S∗ → R≥0 is a function that measures the cost to reconstruct I j assuming Ii is

known. In this thesis, w is assumed to be symmetric and that the weight of an edge is

the cost of encoding the difference image Ii− I j. For example, the function w can be an

entropy measure of the difference image, which represents the potential of compressing

the difference image. Another choice of w is the actual size of the compressed difference

image using compression algorithms such as JPEG-LS [56].

The proposed framework differs from that of Chen et al. [5] in two ways. By intro-

ducing an average image, all the previous strategies can be included in this framework.

Also, this framework assumes that the edge weights are symmetric which is necessary for

obtaining performance guarantees of the proposed lossy compression scheme.
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4.2 Compression and Decompression

4.2.1 Lossless Case

Decompressing an image in a set corresponds to following a path from some starting

image to the image itself. Thus, the first step in compressing an image set is to choose the

starting images that provide entry points into the underlying graph. Then, a set of edges is

chosen such that there is a path to any image in the set from a starting image. The starting

images and the difference images corresponding to the chosen edges are encoded using an

image compression algorithm.

In order to decompress an image in the set, a starting image and a path to the image

are required. Beginning with the starting image, each difference image in the path is

reconstructed incrementally using the previous image and the connecting difference image

in the path. Therefore, each image in the set is either a starting image or it is connected to

another image that can be reconstructed. The storage cost for Sn is the cost of storing the

starting images and the difference images corresponding to the chosen edges, as well as a

negligible amount to record which edges are chosen.

I3

I4
I2

I6

I1

I7
I5

Figure 4.1: Decompressing image I7.

For an example of decompressing an image, consider the set of images encoded by the

edges shown in Figure 4.1, with I1 being the starting image. In order to decompress image

I7, first I1 must be decompressed. Next, the difference image from the edge (I1, I2) is de-

28



compressed. With I1 and the difference image, I2 is reconstructed by adding the difference

image to I1. To reconstruct the next image I5, the difference image corresponding to the

edge (I2, I5) is decompressed and added to I2. Finally, the difference image for the edge

(I5, I7) is decompressed and combined with I5 to reconstruct I7.

The zero image Iz has a key role within the proposed framework. Including the “zero

edges” (Ii, Iz) in the graph allows the images to be represented as difference images corre-

sponding to the edges Ii− Iz. The importance of keeping the graph connected is achieved

through Iz, and the chosen edges now form a spanning tree (Section 2.2) of G. Because Iz

is known to the decoder, the need for storing any starting images is removed. The cost of

storing an original image in the set moves from a vertex to an edge in the spanning tree,

and this becomes important when working with image sets that have clusters of similar

images. In this case, coding the difference between clusters may be more expensive than

coding the original images. Choosing a “zero edge” to some image in each cluster may

reduce the encoding cost.

4.2.2 Errors Introduced by Lossy Compression

The errors introduced by lossy compression will affect the performance of the proposed

framework. Using the method described in Section 4.2.1, errors resulting from the lossy

compression process may propagate down the paths in the spanning tree because the re-

constructed difference images are added together. As each image along a path is recon-

structed, the errors from all the previous images accumulate and result in the reconstructed

image becoming unrecognizable. Care must be taken to prevent such errors from propa-

gating in the spanning tree.

To understand this process informally, consider the spanning tree shown in Figure 4.2.

Let e(I, I′) be the error between an original image I and its reconstructed image I′ in
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Iz

I2I1

Figure 4.2: A path representing how two images from a set may be compressed.

the framework, including both the error introduced by the underlying lossy compression

algorithm and the error introduced by the reconstruction process for the MST strategies.

It is assumed that e(d,d′) = ∆ if d is a difference image directly encoded by the lossy

compression algorithm. To compress the image I1, the difference image for the edge (I1, Iz)

is encoded. Moving down the path, the image I2 is compressed by encoding the difference

image for the edge (I2, I1). To decompress the set, the image I1 is reconstructed followed

by I2. Thus, decompressing the difference image for the edge (I1, Iz) results in the image

I′1 = (I1− Iz)′ which has an error of e(I′1, I1) = ∆. Next, reconstructing image I2 using

the image I′1 and the decompressed difference image for the edge (I2, I1) results in

I′2 = (I2− I1)′ + I′1

and has an error of

e(I′2, I2) = e((I2− I1)′ + I′1,(I2− I1)+ I1) (4.2)

≈ e((I2− I1)′,(I2− I1))+ e(I′1, I1) (4.3)

= 2∆. (4.4)

The approximation in Equation (4.3) is valid if the errors introduced by the lossy com-

pression on the two images do not cancel. This scenario is shown in Figure 4.3. The

reconstruction error for an image is proportional to its distance from Iz in the spanning

tree.
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Figure 4.3: Lossy compression error propagation in a spanning tree.

To reduce these errors when compressing the difference images, the difference be-

tween the original images is not taken. Since the “parent” of the edge (the vertex closer

to Iz) has already been compressed, the encoder compresses the difference image between

the child and the decompressed parent image. The decoder can perform the same process

since the parent can be decompressed. This ensures that errors in the lossy compression

process do not propagate. The process is similar to the method used in video compression

in which a frame is predicted based on the decompressed previous frame [20]. A more

detailed analysis of the errors introduced will be discussed in Section 4.4.

4.3 The Cost of a Compression Strategy

Any compression strategy that takes advantage of inter-image redundancy between pairs

of images can be represented as a spanning tree within the proposed framework. A com-

pression strategy is represented by a subset of edges E ′ ⊆ E. Intuitively, the chosen edges

correspond to the difference images that are coded. For each compression strategy, the

total weight

w(E ′) = ∑
(Ii,I j)∈E ′

w(Ii, I j) (4.5)

of the spanning tree represents the storage cost for the strategy. Note that the spanning

tree for each strategy has to be encoded either implicitly in the algorithm or explicitly, but

the cost is negligible.
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Given the graph G, a minimum spanning tree is an acyclic subgraph that connects all

the vertices and that has a total weight (in Equation (4.5)) that is the minimum. Intuitively,

the motivation for using the minimum spanning tree in this framework is to find the small-

est cost to compress an image set. Since the cost of a compression strategy is the sum of

the edge weights in a spanning tree, the minimum spanning tree gives the optimal lossless

compression strategy for an image set. Kruskal’s algorithm (Section 2.2) was used for the

experiments in this thesis. It has a computational complexity of O(|V |2 log∗ |V |) because

|E| = O(|V |2).

4.4 Optimality of Performance

Since the MST computation is performed on the graph constructed from the original im-

ages, errors introduced by lossy compression may change the actual graph. As a result, it is

not necessarily true that the MST computed is the optimal strategy for lossy compression.

Furthermore, it is difficult to compute the MST of the “optimal perturbed graph”—how

each image is perturbed in the final graph depends on its path from Iz in the spanning tree,

and the path in turn depends on the tree edges chosen from the original graph.

This section gives a bound on the difference between the weight of the optimal MST

compared to that of the computed MST. The bound depends on the maximum distortion

introduced by the lossy compression process, and this result is valid for an MST of any

graph that results from perturbing each vertex in the original graph by at most the maxi-

mum distortion. Therefore, the bound gives a performance guarantee of the MST strategy

based on the original graph compared to the optimal MST strategy, without explicitly

computing the optimally perturbed graph. The optimally perturbed graph is difficult to

compute because of the cyclic dependency between the choice of tree edges and the per-

turbation of edge weights between vertices.
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The following outlines how the performance bound is obtained. The derivation of

these results assumes that the edge weight function is a metric [3]. The root-mean-square-

error (RMSE), which is a commonly used metric to measure the difference between im-

ages, can be used for the edge weights in these results. First, the original MST is com-

puted. Then, a spanning tree of the perturbed graph is computed using the edges chosen in

the original MST. The goal is to understand the difference in weight between the original

MST and the spanning tree of the perturbed graph.

In the following, let N be the number of vertices in the graph G. Let I′i (1 ≤ i ≤ N)

be an image such that the RMSE between Ii and I′i is bounded by ∆, and G′ be the graph

constructed from {I′i}. ∆ is thought of as a “quality” parameter in the underlying lossy

compression algorithm, and I′i as the reconstructed images. TG and TG′ are used to denote

an MST of G and G′, respectively. In addition, w(T ) is the cost (the sum of edge weights)

for any spanning tree T .

Suppose ei j is the edge between Ii and I j in G and it is included in TG. Let e′i j be the

edge connecting I′i and I′j in G′ (Figure 4.4). The edge e′i j is the result of decompress-

ing the difference image Ii− I j when taking into account the errors introduced by lossy

compression.

Ii'Ii

Ij Ij'

eij eij'δ

Δ

Δ

Figure 4.4: Using an edge in TG as an edge of a spanning tree in G′.
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Since the edge weight function is a metric, the triangle inequality implies that

δ−∆≤ w(e′i j)≤ δ+∆,

w(ei j)−∆≤ δ≤ w(ei j)+∆,

so that

w(ei j)−2∆≤ w(e′i j)≤ w(ei j)+2∆. (4.6)

Now, if Ii = Iz, there is no reconstruction error so Iz = I′z. In that case, the bound is refined

to

w(ei j)−∆≤ w(e′i j)≤ w(ei j)+∆. (4.7)

Since there are N − 1 edges in a spanning tree, the following performance guarantee is

obtained on using the MST computed from G in G′.

Theorem 1 Let TG be an MST of G, and D be the degree of Iz in TG. If T is the spanning

tree of G′ obtained by using the same edges as TG, then

|w(T )−w(TG)| ≤ (2N−2−D)∆.

This gives a bound on the performance of the compression strategy compared to that pre-

dicted by the MST algorithm on the original graph G. However, it does not relate to the

optimal strategy given by an MST of G′.

Now, since T in Theorem 1 is a spanning tree of G′, it follows that

w(TG′)≤ w(T )≤ w(TG)+(2N−2−D)∆. (4.8)
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In the derivation of Theorem 1, the only assumptions on G and G′ are that Iz = I′z and the

RMSE between Ii and I′i is bounded by ∆. It does not matter whether G or G′ is the graph

constructed from the original images. Therefore, the roles of G and G′ can be interchanged

to also obtain

w(TG)≤ w(T )≤ w(TG′)+(2N−2−D′)∆. (4.9)

Since D,D′ ≥ 1, it follows from (4.8) and (4.9) that

|w(TG)−w(TG′)| ≤ (2N−3)∆. (4.10)

Combining with Theorem 1 gives the following performance guarantee of the MST com-

pression strategy relative to the optimal strategy.

Theorem 2 Let T be a spanning tree of G′ obtained by using the same edges as TG, and

D as the degree of Iz in TG. Then

|w(T )−w(TG′)| ≤ (4N−5−D)∆.

It is important to note that there is no assumption on the actual perturbations made on the

images for the graph G′, so that the performance bound above applies to any graph with the

same quality bound ∆. Thus, the performance bound indeed gives a relationship between

the quality of compression ∆ and the coding performance relative to the optimal strategy.

As ∆ becomes smaller, the quality of compression increases and the difference between G

and G′ decreases. Thus, TG′ is closer to the optimal MST. Although the analysis was done

for the proposed framework, it also applies to [5, 38]. Thus, it also gives a performance

guarantee for [5] and [38] assuming edge weights are symmetric.
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4.5 Compression Strategies

This section examines four compression strategies and models them within the proposed

framework. Although only four strategies are mentioned, any compression strategy that

utilizes inter-image redundancy between two images can be represented within the frame-

work.

4.5.1 Traditional Strategy

I1

I5

I3IzI7

I4

I8 I2

I6

Figure 4.5: Traditional strategy.

The traditional scheme results in a star graph created from the set Sz with Iz as the

center as shown in Figure 4.5. The graph represents encoding each image individually

as the only edges in the graph are (Ii, Iz). This strategy requires n = O(n) calls to the

compression algorithm to encode the image set.

4.5.2 Centroid Strategy

In the proposed framework, the Centroid strategy with a single cluster is represented by

a star graph created from Sa. The center for this spanning tree is the average image Ia,
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Iz

I4

I6

Ia

I2
I5I3

I1 I7

Figure 4.6: Centroid strategy with a single cluster.

and each edge (Ii, Ia) is the difference of the image Ii from the average Ia (Figure 4.6).

Similarly, the Centroid strategy with multiple clusters can be represented by a spanning

tree with an extra vertex for each cluster average. Figure 4.7 shows an example where

images I1 to I4 form a cluster with the average image Ia1, and images I5 to I7 form another

cluster with the average image Ia2. In addition, template extraction strategies [55] can also

be represented by using the template image in place of the average image in the spanning

tree. As in the traditional strategy, the Centroid strategy with a single cluster requires

n = O(n) calls to the compression algorithm to encode the image set.

Iz

I4

Ia1
I2

I3

I1

I6

Ia2
I5

I7

Figure 4.7: Centroid strategy with multiple clusters.
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4.5.3 Minimum Spanning Tree Strategy (MST)

Since all compression schemes considered in the proposed framework must be a spanning

tree, the optimal compression scheme is provided by the minimum spanning tree. The

MST strategies by Chen et al. [5] and Nielsen and Li [38] can also be adapted for lossless

compression and represented in the framework. This strategy requires a complete graph

of Sz to be constructed, and this requires n(n−1)
2 = O(n2) calls to the compression algo-

rithm to construct the graph. Then a minimum spanning tree algorithm is applied to the

graph, and the resulting MST is guaranteed to be the optimal compression strategy for Sz

(Section 4.1) for lossless compression.

4.5.4 MST with Average Image Strategy (MSTa)

There are situations when the Centroid strategy is better than the MST strategy, and vice

versa. The MSTa method automatically chooses the best strategy locally for a subset

of the images in the complete graph constructed from Sa (Section 4.1). For example,

if Sn contains a group of similar images and a few outliers, it may be more efficient to

encode the outliers using inter-image differences instead of the differences to the aver-

age. Figure 4.8 demonstrates how this may occur in the graph. The length of an edge

is used to represent its weight in the figure, where a longer edge implies a higher edge

weight. From the figure, it is clear that w(I3, I2) < min(w(I3, Iz),w(I3, Ia),w(I3, I1)),

and in this case an MST would contain the edge (I3, I2). Yet for image I7, it is clear

that w(I7, Ia) < min(w(I7, Iz),w(I7, I6)), and the edge connecting with the average image

would be selected.

The graph is similar to the one used in the MST strategy above except that Sa is used.

As in the Centroid strategy, additional average images can be introduced if there are mul-
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tiple clusters. Notice that the MST does not have to be computed from scratch, and can

be computed incrementally from the MST computed in the previous strategy [22] as ad-

ditional average images are added to the graph. The resulting MST is guaranteed to be

the optimal lossless compression strategy for Sa, and in some cases is better than the MST

strategy without an average image.

Iz

I6

Ia

I2

I3

I1
I7

Figure 4.8: Example of local edge choice in the MSTa strategy.

4.6 Summary

The inter-image relationships between pairs of images can be modeled within the proposed

graph theoretical framework. This framework allows for the comparison of all strategies

that work to reduce inter-image redundancies between pairs of images. For lossless com-

pression, the optimal strategy can be obtained using an MST algorithm on the complete

graph. On the other hand, the errors introduced by lossy compression perturb the graph

and make the computation of the optimal strategy difficult. In this case, a performance

guarantee is given for the a strategy that is near optimal.
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Chapter 5

Experimental Results

The experimental results are contained in this chapter. The experiments were conducted to

test the proposed framework using both lossless and lossy image compression algorithms.

5.1 Test Image Sets

Five sets of images were used to test the proposed framework. All the images were 8-bit

gray scale images, and typical images from each set are shown in Figures 5.1 through 5.4.

The fifth image set was composed of images from the Galway and Pig image sets. Many

fields, such as medicine and satellite imaging, accumulate large collections of images, and

the test sets represent a sampling of these diverse areas. Although currently there are no

standardized sets of images for testing image set compression, these experiments used the

same sets as the ones used by Nielsen et al. [38, 39] for their MST and clustering results.

For each image set, a spanning tree was generated for each of the four compression

strategies presented in Section 4.5. The resulting spanning tree was then used to compress

the image set. Since clustering algorithms are not a focus in this thesis, the results for the

Centroid strategy only used a single cluster. However, the Centroid strategy with multiple

clusters can be modeled with the proposed framework (Figure 4.5.2).

5.1.1 Galway

The first image set contained 28 images from a webcam [16] from Galway City, Ireland.

Focused on High Street, the images from Galway.Net Camera 1 are 800× 600 pixels in

size. The images were taken intermittently between 7 P.M. and 11 P.M. on November
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Figure 5.1: Typical images from the Galway set.
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7, 2004. Although taken sequentially, the images were shot sporadically with up to 15

minutes between images. While the intensity values and most of the scene remained static

throughout the set, the images contain moving people (Figure 5.1).

5.1.2 Pig

The second test set consisted of 304 Ultrasound images of pig rib cages provided by Dr.

Alan tong of Agriculture Canada. The 800×600 pixel Ultrasound images were recorded

with an Aloka Flexus Model SSD-110 equipped with a 3.5 Mhz/127mm transducer Ul-

trasound system, from between the 3rd and 4th ribs from the last rib and 7 cm off the

mid-line of hog carcass. For every image in the set, only the diagnostic region and some

text changed while the remaining areas were unchanged. Thus, most of the images in the

set were very similar (Figure 5.2).

5.1.3 Joe

The third image set contained 162 webcam images from Joe Tourist Weather [25]. The

webcam was located in Victoria, British Columbia, Canada. The images are 320× 240

pixels in size and were taken at intervals throughout the day. The set contained images

taken between November 23, 2004 and December 28, 2004. Changing weather and the

location of the sun resulted in a wide range of intensities in the images within the set. This

resulted in inter-pixel redundancy in the difference images as large portions of each image

change in a similar manner due to the lighting conditions (Figure 5.3).
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Figure 5.2: Typical images from the Pig set.
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Figure 5.3: Typical images from the Joe set.
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Figure 5.4: Typical images from the GOES set.
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5.1.4 GOES

Geosynchronous satellite images of earth from the GOES Project were used for the fourth

image set [19]. This set contained 128 thermal infrared images that are 1200×1000 pixels

in size. The images were from two satellites, and each satellite produced a pair of images

from its left and right sensors. Although the exact date for the images is unknown, the set

was the same used in [38, 39]. The GOES 8 satellite provided the GOES-EAST images,

which focused on eastern North America. The GOES 9 satellite focused on western North

America and provided the GOES-WEST images.

5.1.5 Combination

The final set of test images was composed of the Galway image set combined with the

first 29 images from the Pig set. The images from these two sets were chosen because

they have the same dimensions. The goal was to test the framework with two clusters of

images that have no relation to one another.

5.2 Implementation Details

Software was implemented to test the graph-theoretical framework proposed in the previ-

ous chapter. The software was written in the C and C++ programming languages [29, 48]

and tested on a Dell server equipped with dual 2.7 GHz Intel Xeon processors running on

the Fedora Core 6 distribution of the Linux operating system. The software allowed for the

testing of each of the strategies presented in Section 4.5. The software also performs the

graph construction and the MST computation required in the MST strategies. The Netpbm

and libtiff image libraries [37, 50] were used by the software to read and write images.
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The software also allowed various compression algorithms, such as JPEG2000 [1, 9], to

be used with in the framework to compress the difference images.

5.3 Lossless Compression Results

For lossless compression, the actual compression results of the difference images were

used as the edge weights in the graph. The total number of bytes required to store the

image set was reported. A smaller total indicates a better compression strategy. In these

results, the difference images were encoded as 9-bit images. The experiments compared

the four strategies using JPEG2000 [1, 9] and JPEG-LS [56] compression algorithms to

compress the difference images.

The performance of the framework can be measured by comparing the results of each

of the compression strategies for each image set. The JPEG2000 results are given in Ta-

ble 5.1 and the JPEG-LS results are shown in Table 5.2. The best results are highlighted for

each set. Note that the minimum was always achieved by one of the two MST strategies.

The experimental results show the effectiveness of the proposed framework in adapting

to any given image set. Although JPEG-LS slightly outperformed JPEG2000, both tools

reflected the same trend in the results. Table 5.3 shows the number of each type of tree

edge chosen by the MSTa strategy. In this table zero refers to a tree edge with the zero

image Iz as one of the vertices, average refers to a tree edge connecting the average image

Ia and an image in the image set Sn, and inter-image represents a tree edge whose vertices

are both images in Sn. Some remarks on the lossless compression results for each image

set are given below.
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Table 5.1: Lossless compression results (in bytes) using JPEG2000.
Strategy Galway Pig Joe GOES Combination

Traditional 3,793,591 31,311,189 4,673,678 56,244,059 6,863,327
Centroid 3,710,070 29,109,705 4,562,428 60,049,815 7,818,852

MST 3,793,591 31,131,843 4,434,391 56,244,059 6,863,327
MSTa 3,710,070 29,019,727 4,451,691 56,511,969 6,960,466

Table 5.2: Lossless compression results (in bytes) using JPEG-LS.
Strategy Galway Pig Joe GOES Combination

Traditional 3,604,582 29,689,794 4,285,473 54,500,444 6,528,427
Centroid 3,550,729 28,686,186 4,200,547 58,415,933 7,478,822

MST 3,604,582 29,600,067 4,127,463 54,500,444 6,528,427
MSTa 3,550,729 28,574,336 4,132,007 54,747,216 6,613,346

Table 5.3: Types of tree edges chosen by MSTa using JPEG2000 for edge weights.
Type Galway Pig Joe GOES Combination
Zero 1 1 5 129 58

Average 28 303 24 0 0
Inter-Image 0 1 135 0 0
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5.3.1 Galway

Because of the large amount of redundancy among the images, the results showed that the

Centroid strategy performed the best with this set. Of course, the MSTa strategy cannot

perform worse than the Centroid strategy. In the MSTa case, all the images were joined

through the average image as the set forms a tight cluster.

5.3.2 Pig

Here the MSTa strategy provided the best performance. Using JPEG2000 resulted in

a 7% improvement by the MSTa strategy over the traditional strategy. The majority of

images in the set were connected through the average image in the MST computed, thus

indicating a clustering of the images within the set. The proposed framework allows the

best compression strategy to be chosen locally in an image set. This is an improvement

over using either strategy independently.

5.3.3 Joe

The MST strategy provided the best result for this image set. For sets of images that do

not form a tight cluster but have small inter-image differences, MST without an average

image provides the best encoding method. This set has a wide range of lighting conditions

due to the movement of the sun and changing weather conditions, and this resulted in

many small clusters of images grouped around various intensity levels. Since the image

set contained many small clusters, the cost of storing an extra average image outweighs

the redundancy removed from the few images in the cluster. Even if multiple clusters were

used, the Centroid strategy would not perform as well as the MST method without average
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images. Figure 5.5 shows a portion of the MST from this image set.

I1

Iz

I2
I3 I4

I5

I8
I9

I6I7

Figure 5.5: A portion of the computed MST for the Joe image set.

5.3.4 GOES

Here, the traditional strategy provided the best performance because the difference images

required more storage than the original images using both JPEG2000 and JPEG-LS. Thus,

it is not always better to compress difference images instead of the original ones. In this

case, the fact that no average edges were used means the average image can be removed

from the set.

5.3.5 Combination

As expected, the Centroid strategy with a single cluster did not perform well on this set.

On the other hand, the MSTa strategy provided significant improvement over the Centroid

strategy since it is the optimal strategy when the average image is included. Again, the

MST strategy automatically recognized that the traditional strategy is best for this set of

images.
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Table 5.4: Galway entropy results.
Bits per Pixel

Strategy 1st Order 2nd Order 4th Order
Traditional 6.857 5.437 3.821

Centroid 5.064 4.481 3.641
MST 4.898 4.462 3.615
MSTa 5.000 4.476 3.640

Table 5.5: Pig entropy results.
Bits per Pixel

Strategy 1st Order 2nd Order 4th Order
Traditional 5.434 3.959 2.986

Centroid 4.707 3.589 2.913
MST 4.664 3.666 2.907
MSTa 4.639 3.575 2.891

5.4 Estimating Lossless Performance with Entropy

Computing the edge weights of the graph using the actual byte totals of the difference im-

ages is computationally intensive. The difference images must be computed, compressed,

and stored. This requires the compression algorithm to be run which incurs a significant

cost. In the case of the MST and MSTa strategies, this results in O(n2) calls to the com-

pression algorithm. Using entropy measures for the edge weights can reduce the time

required to construct the graph by requiring only O(n) calls to the compression algorithm

to compress the chosen difference images. To further reinforce the higher cost of com-

pressing a difference image over finding its entropy, the actual computation time required

to complete each action for 50 difference images from the GOES set was measured. Using

JPEG2000 to compress 50 difference images required 29 seconds, while the entropy com-

putations only required 3 seconds. The entropy represents the potential of compression for

each difference image, but it is not clear how well entropy would predict the performance
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Table 5.6: Joe entropy results.
Bits per Pixel

Strategy 1st Order 2nd Order 4th Order
Traditional 6.436 4.598 2.986

Centroid 5.854 4.414 3.021
MST 5.208 4.093 2.882
MSTa 5.235 4.113 2.896

Table 5.7: GOES entropy results.
Bits per Pixel

Strategy 1st Order 2nd Order 4th Order
Traditional 5.826 4.460 3.285

Centroid 5.923 4.672 3.476
MST 4.934 4.221 3.283
MSTa 4.977 4.249 3.302

of compression algorithms such as JPEG-LS and JPEG2000.

To explore how well the entropy measure could predict the performance of the com-

pression algorithms, experiments were completed using entropy instead of the actual byte

totals for the edge weights of the graph. For each image set, a spanning tree was generated

for each of the four compression schemes presented in Section 4.5. Using first-, second-,

and fourth-order entropy as a measure, the bit per pixel cost of encoding each image set

is reported in Tables 5.4 to 5.8. The best results in each table are highlighted. The bit per

pixel (bpp) value has been calculated based on the total number of images in the original

set Sn. For schemes that employ an average image, the cost of the average image was

added to the cost for the entire set. Similar to the results in Section 5.3, the Centroid

strategy used only a single average image to form a single cluster.

In all cases, the results demonstrated that either the MST or MSTa strategy predicts

the best compression for each image set. Interestingly, the results from the Galway set

(Table 5.4) predicted the MST strategy as the best yet the actual results in Table 5.2 show
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Table 5.8: Combination entropy results.
Bits per Pixel

Strategy 1st Order 2nd Order 4th Order
Traditional 6.131 4.662 3.379

Centroid 7.315 5.662 4.040
MST 4.838 4.089 3.280
MSTa 4.957 4.173 3.338

Table 5.9: Types of tree edges chosen by the MSTa strategy using entropy as edge weights.
Edges Galway Pig Joe GOES Combo
Zero 1 1 4 6 3

Average 24 280 8 0 0
Inter-Image 4 24 151 123 56

that the MSTa strategy gives the optimal results. For the remaining image sets the entropy

results predicted the same strategy as shown in the results in Section 5.3. This indicates

that the entropy measures are reasonably accurate in predicting the performance of JPEG-

LS and JPEG2000 for the entire set in most cases.

On the other hand, these results indicate that entropy measures do not always accu-

rately predict which edges will be chosen in the MST. Using the MSTa strategy, the types

of tree edges chosen (Section 5.3) in the JPEG2000 results are shown in Table 5.3, while

the entropy results are in Table 5.9. Note that the entropy results do not closely match the

actual results. Specifically, the entropy results for the GOES and combination sets indi-

cate that their minimum spanning trees would contain mostly inter-image edges. Yet in

the actual results, the minimum spanning trees for both sets are predominately composed

of zero edges. The results show that the MST predicted by entropy was not good enough

when using either JPEG2000 or JPEG-LS for difference image compression. Also, these

results indicated that the JPEG-LS and JPEG2000 algorithms may not be the best com-

pression algorithms for difference images. This is also an issue in lossy compression, and
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Table 5.10: Bitrate achieved by the traditional and MSTa strategies using JPEG2000 com-
pression at various average RMSE values.

RMSE Galway Pig Joe GOES Combination
Trad MSTa Trad MSTa Trad MSTa Trad MSTa Trad MSTa

4.0 0.566 0.363 0.342 0.250 0.561 0.782 0.369 0.646 0.434 0.527
5.0 0.397 0.191 0.256 0.166 0.448 0.562 0.251 0.413 0.313 0.348
6.0 0.284 0.088 0.193 0.109 0.379 0.416 0.190 0.254 0.235 0.232

it will be explored further in the next section.

5.5 Lossy Compression Results

For lossy compression, the experiments used RMSE for the edge weight function as

in [38, 39]. First, a spanning tree was computed for each of the four strategies (Sec-

tion 4.5). Then, the difference images associated with the edges chosen in the spanning

tree were compressed using an algorithm such as JPEG2000. The difference images were

quantized to 8-bit images since not all the software packages chosen handled 9-bit images.

A quantized difference image has pixel values in the range of [−127,127], but the image

compression software used unsigned integer to store the pixel values for a gray scale im-

age. Therefore, all the pixel values were shifted by 128 to create a range of [0,255]. The

results are given in graphs showing the bitrate and the average distortion (RMSE) in the

reconstructed images for each image set. A curve in the graph that is lower and to the left

of another curve indicates a better compression strategy.
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Table 5.11: Bitrate achieved by the traditional and MST strategies using JPEG2000 com-
pression at various average RMSE values.

RMSE Galway Pig Joe GOES Combination
Trad MST Trad MST Trad MST Trad MST Trad MST

4.0 0.566 0.709 0.342 0.587 0.561 0.877 0.369 0.715 0.434 0.625
5.0 0.397 0.434 0.256 0.437 0.448 0.639 0.251 0.480 0.313 0.438
6.0 0.284 0.272 0.193 0.332 0.379 0.510 0.190 0.301 0.235 0.317
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Figure 5.6: Lossy compression performance using JPEG2000 on the Galway set.
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Figure 5.7: Lossy compression performance using JPEG2000 on the Pig set.
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Figure 5.8: Lossy compression performance using JPEG2000 on the Joe set.
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Figure 5.9: Lossy compression performance using JPEG2000 on the GOES set.
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Figure 5.10: Lossy compression performance using JPEG2000 on the Combination set.
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5.5.1 JPEG2000 Results

The initial lossy compression experiments used JPEG2000 as the underlying compression

algorithm, and the results are summarized in Table 5.10. The table compares the bitrate

between the traditional and MSTa strategies at various RMSE values. For the Galway

and Pig sets, the MSTa strategy outperformed the traditional strategy and these results

mirrored those predicted by the analysis. On the other hand, the results for the remaining

three image sets did not reflect the predicted results. The complete results using JPEG2000

are shown in Figures 5.6 to 5.10.

Figures 5.6 and 5.7 show that the MSTa algorithm outperformed the traditional strat-

egy on Galway and Pig sets, as these two sets are known to form a tight cluster. On the

other hand, the MST and MSTa strategies performed very poorly on the remaining three

image sets compared to the other strategies. From the prediction results in Section 5.4,

the MST strategy is best for these image sets as none of them form one tight cluster, but

rather form multiple smaller clusters. From the MST strategy results in Table 5.11, it can

be seen that the MST strategy actually performed worse than the traditional and MSTa

strategies. The only exception occurred in the Galway set at an RMSE value of 6.0, where

the MST strategy performed slightly better than the traditional strategy but not better than

the MSTa strategy.

5.5.2 Wavelet Packets

To understand the discrepancy between the results predicted by RMSE and the actual

compression results, the properties of the difference images were examined. Examining

the histograms of a regular image and a difference image (Figure 5.11) shows that the

data contained within each type of image is very different. The difference image contains
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Figure 5.11: Histograms of a regular image and a difference image from the Pig set.
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a large number of pixels with values close to 127, which corresponds to a difference of

zero. Most of the information contained in a regular photographic image is found in the

low pass coefficients (the LL quadrant in Figure 2.4), and JPEG2000 is tuned to compress

this type of image. However, this is not necessarily true for a difference image, whose

important data can be contained within the details. Using a wavelet packet algorithm, the

basis chosen for a difference image can be very different (Figure 5.12) from the “pyramid

basis” chosen by a wavelet compression algorithm (Figure 2.4). Therefore, a compres-

sion algorithm using wavelet packets should be more effective in compressing difference

images than traditional wavelet algorithms such as JPEG2000.

Figure 5.12: The best basis chosen for a difference image from the GOES set.

These results show that as the average distortion (RMSE) increased, the MSTa strategy

performed better than the traditional strategy in Table 5.12. For example, in the Galway set

the traditional strategy achieved a bitrate of 0.336 bpp while the MSTa strategy achieved a

bitrate of 0.094 bpp at an average RMSE value of approximately 6.00 (a 72% reduction).

The complete results are presented in Figures 5.13 to 5.17.
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Table 5.12: Bitrate achieved by the traditional and MSTa strategies using wavelet packet
compression at various average RMSE values.

RMSE Galway Pig Joe GOES Combination
Trad MSTa Trad MSTa Trad MSTa Trad MSTa Trad MSTa

4.0 0.619 0.351 0.351 0.230 0.598 0.529 0.435 0.449 0.462 0.413
5.0 0.450 0.180 0.266 0.163 0.468 0.385 0.316 0.297 0.343 0.282
6.0 0.336 0.094 0.203 0.116 0.387 0.296 0.236 0.205 0.263 0.204
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Figure 5.13: Lossy compression performance using wavelet packets on the Galway set.
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Figure 5.14: Lossy compression performance using wavelet packets on the Pig set.
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Figure 5.15: Lossy compression performance using wavelet packets on the Joe set.
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Figure 5.16: Lossy compression performance using wavelet packets on the GOES set.
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Figure 5.17: Lossy compression performance using wavelet packets on the Combination
set.
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From the results for both JPEG2000 and wavelet packets compression algorithms,

three observations were made. First, the choice of the underlying compression algorithm

affected the performance of the proposed scheme. The results showed that a wavelet

packet algorithm compressed difference images much better than JPEG2000. The actual

compression results using a wavelet packet algorithm reflect those predicted by the analy-

sis. On the other hand, the JPEG2000 results (Section 5.5.1) did not perform as the RMSE

edge weights predicted, and in many cases performed worse than the traditional strategy.

Second, the results show that an MST strategy was better than the traditional strat-

egy when using a wavelet packet algorithm to compress the difference images. At lower

bitrates, MSTa was better than all other compression strategies. This is clear in the Gal-

way (Figure 5.13) and Pig (Figure 5.14) image sets, but it can also be seen in the Joe (Fig-

ure 5.15), GOES (Figure 5.16), and combination (Figure 5.17) image sets. The analysis

indicated that there should be improvement as the average distortion decreases, but in-

stead the results showed that the MST strategies got worse. This result was caused by the

quantization of the difference images to 8-bit. Also, as the average RMSE decreased, the

bitrate approached lossless compression (see Tables 5.1 and 5.2). In cases where the op-

timal lossless strategy was also achieved by a non-MST strategy, the quantization caused

the MST strategies to perform worse.

Finally, the results comparing JPEG2000 and wavelet packet algorithms were not con-

clusive as other parts of the compression algorithms, such as the symbol encoder, were not

considered. For example, the JPEG2000 results for the traditional strategy (Table 5.10)

performed better than the wavelet packet algorithm for the traditional strategy (Table 5.12).

Furthermore, in some cases the traditional strategy using JPEG2000 outperformed the

MST and MSTa strategies using wavelet packets (Figure 5.21), while the analysis indi-

cated that the MST or MSTa strategies should be no worse than the traditional or the

Centroid strategies. Figure 5.18 to 5.22 show the complete results comparing the use of
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the JPEG2000 algorithm for the traditional strategy and the wavelet packet algorithm for

the MST and MSTa strategies.
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Figure 5.18: Lossy compression performance comparing JPEG2000 and wavelet packets
on the Galway set.

5.5.3 9-bit Lossy Compression

Most of the information contained within a difference image is contained within the range

of [−127,127]. To avoid the quantization problem shown above, experiments were per-

formed using an approach similar to the one used by Nielsen et al. [38, 39]. This method

involved dividing the difference image into two images. One image contained the core in-

formation, which was pixels with a gray level value within the range of [−127,127]. The

second image contained the outlier values for those pixels that contained values outside of

the core range.
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Figure 5.19: Lossy compression performance comparing JPEG2000 and wavelet packets
on the Pig set.
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Figure 5.20: Lossy compression performance comparing JPEG2000 and wavelet packets
on the Joe set.
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Figure 5.21: Lossy compression performance comparing JPEG2000 and wavelet packets
on the GOES set.
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Figure 5.22: Lossy compression performance comparing JPEG2000 and wavelet packets
on the combination set.
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The results showed this method was not good for compressing the difference images

as 9-bit images. Because the two images are correlated, the average distortion at particular

bitrates was too high. To make this method of image splitting work properly, an analysis

needs to be performed to allocate the appropriate bitrate for each image. Therefore, the

best option is to use software that appropriately deals with 9-bit difference images. For

these experiments, this option was not available in the software packages found, and the

software chosen [33] was a closed project where no source code was available.

5.6 Summary

The theoretical framework proposed in Chapter 4 was implemented and tested. The soft-

ware facilitated testing of lossless and lossy compression, and its interface allowed mul-

tiple underlying compression algorithms to be interchanged. The experiments were com-

pleted using five different image sets.

The lossless experiments were completed using the actual byte cost values of the dif-

ference images as the edge weight values in the graph. The JPEG2000 and JPEG-LS

algorithms were each tested as the underlying compression algorithm. In all cases, the re-

sults showed that either the MST or MSTa strategies always provided the best compression

strategy for an image set.

The computation of edge weights using the actual byte values for lossless compres-

sion is expensive. In order to improve performance speed, experiments were completed

using entropy for the edge weight value in the graph as it was faster to compute. The

results showed that entropy was a good predictor for overall lossless performance of the

framework but not as good for predicting which edges were chosen in the resulting MST.

The lossy experiments were completed using the RMSE value of the difference images

as the edge weight values and the MST was computed for this graph. Then, the chosen
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edges were compressed using the underlying compression algorithm. JPEG2000 and a

wavelet packet algorithm were used as the underlying compression algorithms for these

experiments. The initial lossy tests were done using JPEG2000 and the results did not

reflect the predicted results. Further experiments were completed using a wavelet packet

algorithm as the underlying compression algorithm, and the results followed the predicted

results. Therefore, the choice of underlying compression algorithm for the framework

was critical to the lossy compression performance of the proposed framework. Difference

images have different properties than the original photographic images, and algorithms

such as JPEG2000 may not be the best choice to compress difference images.
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Chapter 6

Conclusion

In this thesis, an automatic compression scheme that adapts to any image set was investi-

gated. Using a unified graph theoretical framework that allows comparison of all compres-

sion strategies that take advantage of inter-image redundancies between pairs of images,

the performance of the proposed compression scheme was analyzed both theoretically and

experimentally. Regardless of the properties of the image set, the framework automatically

selects the optimal strategy for lossless compression or a near-optimal strategy for lossy

compression.

Using this compression scheme, the optimal lossless compression strategy was com-

puted and it is guaranteed to be no worse than any previously proposed strategy. In the

lossy case, it was shown that computing the optimal strategy is difficult because of errors

introduced by lossy compression. However, a strategy that is near optimal can be obtained

and a performance guarantee was given. In some cases an improvement of up to 72% over

traditional compression strategies was observed. The experimental results also showed

that the choice of the underlying compression algorithm used to compress difference im-

ages is important. The results demonstrated that using a wavelet packet algorithm is more

suitable than JPEG2000 for lossy compression of these types of images.

Since the proposed framework provides the optimal or a near optimal compression

strategy for an image set, it is also useful for evaluating other image set compression

strategies. The framework allows for a quantitative evaluation of other strategies in rela-

tion to the optimal or near optimal scheme. Furthermore, it allows for the study of the

trade-off between compression performance and compression speed for an image set.
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6.1 Limitations

The proposed framework focuses on improving the storage requirements for a set of im-

ages, but it is not effective for the transmission of an individual image over a network. For

example, an image may be located far away from the root in the spanning tree. In order to

transmit this image over a network, all the difference images along the path from the root

to the desired image must be transmitted to correctly reconstruct the desired image.

To compress an image set, the proposed framework uses a complete graph when com-

puting an MST. This is computationally expensive (O(n2) edge weight calculations), and

it is not practical for very large image sets. But the proposed framework is still faster than

using PCA to compress sets of images [35]. Furthermore, the framework assumes that

image sets are static, and therefore it does not allow for dynamic updates of a compressed

image set. The framework is not easily scalable to large dynamic image sets.

6.2 Future Directions

Image set compression offers many directions to explore for future research and a few

potential ideas are presented below:

Compression algorithms for difference images.

Results in this thesis showed that a wavelet packet compression algorithm performed

better than a wavelet compression algorithm for lossy compression. However, the wavelet

packet algorithm used in the experiments for this thesis may not be the optimal algorithm

for compressing difference images. More work is needed to understand the properties of

difference images in order to further improve the performance of both lossless and lossy

image set compression. Furthermore, an extensive study of suitable lossless compression
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algorithms for difference images was not done in this thesis. Frajka and Zeger proposed a

method to improve the compression of pairs of stereo images [15], and their method may

be a good starting point to the more general difference images discussed in this thesis.

Multiple cluster set compression.

Previous works by other researchers suggest that compression performance may be

improved further through the use of multiple clusters [27, 28, 39]. Using such a strat-

egy, improved compression performance may be obtained on the Combination set and the

GOES set presented in this thesis. A disadvantage to using multiple clusters is an increase

in computational complexity added to the algorithm to classify images into clusters. On

the other hand, using a multiple cluster strategy may allow for the optimal scheme to be

approximated without constructing the complete graph. This could be achieved by ignor-

ing certain edges between images in different clusters.

Automatic updating of an image set.

The proposed framework assumes that image sets are static, but many applications

require dynamic updates to an image set. It is not clear how dynamic updates can be

handled within the framework, but using dynamic data structures such as those proposed

in [22] may allow this capability to be integrated into the framework.

Integration into a database system.

The storage and retrieval of digital images is an important problem, and this thesis

is only concerned with reducing the storage requirements of image sets. One possible

direction would be to explore how the inter-image relations discovered by the proposed

framework can be used for image database systems that use content-based retrieval. For

example, Nielsen and Li suggested that the MST structure is a good structure to be used
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with content-based image retrieval [38].

Compression of color image sets.

Traditionally, image compression algorithms are presented using gray scale images. It

is common to extend such algorithms to color images by treating each color component

as a separate gray scale image and compressing them accordingly. In the case of set com-

pression, color images may contain redundancy within their color components and any

compression strategy would have to consider the relationship between color redundancy

and inter-image redundancy.

Inter-image relationships between groups of images.

This thesis discusses the relationship between pairs of images. However, inter-image

relationships among groups of more than two images may facilitate further improvements

to set compression. To utilize such relationships, methods to discover and reduce the

appropriate redundancies must be explored.
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