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Abstract

Quantum mechanics can be done using classical phase space functions and a star product.

The state of the system is described by a quasi-probability distribution.

A classical system can be quantized in phase space in different ways with different

quasi-probability distributions and star products. A transition differential operator relates

different phase space quantizations.

The objective of this thesis is to introduce additional physical effects into the process

of quantization by using the transition operator. As prototypical examples, we first look at

the coarse-graining of the Wigner function and the damped simple harmonic oscillator. By

generalizing the transition operator and star product to also be functions of the position and

momentum, we show that additional physical features beyond damping and coarse-graining

can be introduced into a quantum system, including the generalized uncertainty principle

of quantum gravity phenomenology, driving forces, and decoherence.
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Chapter 1

Introduction

Quantum mechanics can be done with several different formulations. For instance, it can be

studied using operators and state vectors with wavefunctions in the position or momentum

representation [1,2], path integrals [3], or quasi-probability distributions in phase space [4–

7]. Studying the same system in different formulations allows for a variety of perspectives

and can yield insights on a problem (for example, see [8] or [9]).

One advantage of using phase space quantum mechanics is that phase space functions

are used, rather than operators. In this formulation, the probability densities for both the

momentum and position are encoded in the quasi-probability distributions. Further, this

formulation of quantum mechanics provides a straightforward method to study the relation

between different quantizations, which describes the association between the variables of a

classical system with those of a quantum system.

In this thesis, we attempt to generalize certain tools of phase space quantization to in-

corporate additional classical effects that were not present in the original system. We review

coarse-graining and the damped quantum harmonic oscillator as prototypical examples. We

then take a closer look at the damped harmonic oscillator and explore a method to introduce

damping into quantization. Afterwards, we attempt to incorporate further physical effects

into quantization.

Review of Quantum Mechanics in Phase Space

With the discovery of quantum mechanics, questions naturally arose over how to convert

a classical system into a quantum system that would reduce to the original classical one in

1



1. INTRODUCTION

the classical limit. One way to to quantize a classical system is to apply a quantization map

that turns classical positions and momenta into operators. This map also specifies the order

of operators.

Many operator orderings have been studied, including Born-Jordan ordering [10], Weyl

ordering [5,7], and symmetric ordering [11]. Refs. [12] and [13] demonstrated that different

operator orderings and quantizations can give rise to physically distinct predictions.

One method to study quantization and operator ordering is to use phase space quan-

tum mechanics (see for example, [14–16]). This formulation has emerged as a means to

understand quantum systems from a different viewpoint than the position and momentum

representation of operator quantum mechanics [17].

Phase space quantum mechanics was originally based on Weyl quantization. In this

quantization, the Wigner transform on phase space maps a density operator to a quasi-

probability distribution, known as the Wigner function. Quasi-probability distributions are

similar to probability distributions, but are able to have negative values. The negative values

of the Wigner function can be used to describe how nonclassical a system is. Further, a point

(q, p) in phase space quantum mechanics does not have the same meaning as in classical

phase space. In classical mechanics, it is possible to measure both the position and momen-

tum simultaneously with infinite precision while Heisenberg’s precludes this possibility.

Therefore, it is necessary to integrate the Wigner function over the position and momentum

to yield physical results; integration over the position yields a non-negative probability den-

sity for the momentum while integration over the momentum gives the probability density

for the position [6, 18].

The Wigner transform also converts any operator to its Weyl-quantized phase space

counterpart. It should be noted that the structure of the operator algebra is preserved in

the algebra of phase space functions (formally known as a homomorphism). However,

the trade-off for removing operators from this formulation of quantum mechanics is the

introduction of a non-commutative binary operation known as the Moyal product, which is

2



1. INTRODUCTION

the exponentiation of the Poisson bracket multiplied by i~
2 [6]. As a result of the presence

of the Poisson bracket within the Moyal product, the intrinsic connection between classical

mechanics and phase space quantum mechanics is demonstrated.

Application of the Wigner transform to the Liouville-von Neumann equation, which

governs the dynamics of the density operator, yields the equation of motion of the Wigner

function in phase space quantum mechanics. The time-derivative of the Wigner function is

proportional to the Moyal bracket of the Hamiltonian and Wigner function. It consists of,

in general, an infinite sum of derivatives of the Hamiltonian and the Wigner function with

respect to the position and momentum [6, 19].

For stationary states, the Moyal bracket of the Hamiltonian and Wigner function is

replaced with a similar equation, the stargenvalue equation. The stargenvalue equation is

the Wigner transformation of the time-independent Schrödinger equation, Ĥρ̂ = Eρ̂, where

Ĥ is the Hamiltonian, ρ̂ is the density operator, and E is the energy [6, 19].

To determine the time-independent quasi-probability distributions, the stargenvalue equa-

tions can be used. Time-dependency can then be introduced by propagators, which are the

Wigner transforms of the propagators in operator quantum mechanics. The time-dependent

Wigner function is the Wigner transform of the time-dependent density operator [6].

Just as in operator quantum mechanics, the simple harmonic oscillator has been thor-

oughly analyzed in phase space quantum mechanics. This Wigner function can be derived

both with the stargenvalue equation and with the Wigner transforms of creation and an-

nihilation operators [6]. Other systems that have been studied in phase space quantum

mechanics include the linear potential [19, 20], hydrogen atom [21–23], and the Morse

potential [9, 24, 25].

It is possible to describe other quantizations with phase space quantum mechanics. Each

quantization corresponds to a distinct quasi-probability distribution and binary operation

(more generally known as a star product). Quasi-probability distributions of different quan-

tizations can be related to the Wigner function by applying a transition operator (a differen-

3



1. INTRODUCTION

tial operator), which was investigated by Bayen et al. in [26,27]. In their seminal work, the

mathematical study of deformation theory was applied to phase space quantum mechan-

ics. Hence, sometimes phase space quantum mechanics is called deformation quantization.

This technique has been used to examine known problems, such as the hydrogen atom, from

a different perspective [28].

Further, [27] demonstrated that the transition operator can be used to transform a star

product from one quantization to another. For example, the transition operator of TS =

ei~∂q∂p/2 converts the Moyal product of Weyl quantization into the standard star product

?S = ei~
←
∂ q
→
∂ p corresponding to standard ordering. Hence, it is straightforward to analyze

quantization in phase space quantum mechanics; all that is necessary is to apply a transition

operator.

As mentioned, the transition operator applied to the Wigner function will yield the

quasi-probability distribution of a different quantization. However, these quasi-probability

distributions can be obtained with another method. The Wigner transform can be modified

such that it also includes a weight function that is determined by the quantization under

consideration. The resultant quasi-probability distributions can then be found [29]. Weight

functions have been used to study the resultant physical implications of different orderings

and quantizations [18, 29]. It should be mentioned that this method of using the weight

function is equivalent to applying a transition operator to the Wigner function [5].

Applications of Phase Space Quantum Mechanics

Phase space quantum mechanics has been used to introduce physical features into a quan-

tum system that were not part of the original system. For example, the Husimi distribution

studied by [30] and [31] is a Gaussian smoothed (coarse-grained) Wigner function. The

Husimi distribution can be found by applying a transition operator to the Wigner function.

This indicates that the transition operators can go beyond quantization and bring about ad-

ditional classical effects.

Usually, the star product and transition operator depend only on the derivatives of the

4



1. INTRODUCTION

position and the momentum. However, they have been generalized to also be functions of

the position and momentum coordinates themselves. Using weight functions, [13] showed

that there is then greater freedom in quantizing monomials. Ref. [32] tried to develop a

gauge theory with a position and momentum-dependent star product.

Ref. [33] suggested a method of quantizating dissipative systems by using the transition

operator to incorporate damping into an initially undamped system in phase space quantum

mechanics. Similar to the Husimi distribution, additional physics were brought into the sys-

tem by the transition operator. With [30] and [31], this was coarse-graining, but with [33],

it was damping because these features were not part of the original system. To differentiate

between mapping a classical system to a quantum system (quantization) and introducing

extra physics during the mapping that was not present in the original system, we refer to

the latter case as augmented quantization.

Using this terminology, [33] desired to augment the quantization of a classical harmonic

oscillator in such a way that it could be mapped to a linearly damped quantum harmonic

oscillator. The result was the introduction of the damping parameter within the transition

operator itself, which also gave a damped star product.

Phase space quantum mechanics and its methods have also been applied to many dif-

ferent subjects, such as condensed matter physics [34–36], quantum chaos [37, 38], the

classical and semiclassical limit of quantum mechanics [39–41], spin [42–44], quantum

dynamics [45,46] field theory [32,47,48], and M-theory [49–51]. In particular, in quantum

optics, quantum mechanics in phase space has been used to study quantum interference

as well as coherent and squeezed states [4, 52, 53]. In fact, there are techniques to exper-

imentally determine the Wigner function [54–57]. Further, the theory of environmental

decoherence (the emergence of classical mechanics from quantum mechanics) has been

investigated with phase space quantum mechanics and the Wigner function [58–61].

5



1. INTRODUCTION

Outline of the Thesis

In Chapter 2, we present the fundamentals of phase space quantization, first focusing on

generalities, then specifically considering Weyl quantization, the Wigner function, and the

Moyal product. Next, the existence of other star products and distribution functions are

demonstrated using the transition operator.

Then, in Chapter 3, we concentrate on the Husimi distribution and coarse graining. We

review this phase space distribution and its relationship to the minimum uncertainty wave

packet. We then briefly consider a generalization of the Husimi distribution. Smoothing in

the n→ ∞ limit of the Wigner function is also investigated, where n is the energy level.

In Chapter 4, we first review the results of [33], then consider an alternate method

of augmented quantization to introduce damping into a quantum system. Modifying the

technique in [33], we show that this requires the generalization of the transition operator

and star product so that they also depend upon the position and momentum. It is this

position and momentum dependence which forms the basis for many of our results.

We then demonstrate that augmented quantization is not limited to dissipation and

coarse-graining, but can also be used to incorporate other physical features into a system.

To illustrate this point, we suggest a transition operator and star product that incorporates

the generalized uncertainty principle of quantum gravity phenomenology.

In Chapter 5, time-dependent transition operators are considered. We propose an aug-

mented quantization mapping the simple harmonic oscillator to a quantum mechanical

driven harmonic oscillator. This requires a time-dependent version of the local transition

operator. It is then shown that decoherence can also be introduced into quantum systems

with a time-dependent transition operator.

A summary of our results and possible future directions of our work are provided in

Chapter 6, our Conclusion. We also comment upon the significance of our research in the

overall understanding of quantum mechanics.

6



Chapter 2

Phase Space Quantization

2.1 Motivation

Consider a classical system that uses the function qp, where q is the position and p is

the momentum. Mapping this function to a quantum mechanical system with operators is a

non-trivial problem. For example, qp can be mapped to, q̂p̂, p̂q̂, or 1
2 (q̂p̂+ p̂q̂). Throughout

this thesis, carets will refer to operators while phase space functions will not have a caret.1

For instance, the Hamiltonian operator is Ĥ(q̂, p̂) and its phase space counterpart is H(q, p).

As another example, q3 p can become q̂3 p̂, p̂q̂3, or 1
4

(
q̂3 p̂+ q̂2 p̂q̂+ q̂p̂q̂2 + p̂q̂3), among

many other possibilities. The procedure of associating a classical system to a quantum

mechanical one is known as quantization. In the case of operator quantum mechanics, this

association also specifies an operator ordering.

One reason quantization is difficult is that imposing seemingly realistic properties can

lead to contradictory results. LetQ be a map taking a function f to its operator counterpart,

f̂ . As discussed in [62–64], the conditions

1. Q(1) = Î, where I is the identity operator

2. Q({ f ,g}) = 1
i~ [Q( f ),Q(g)], where {·, ·} is the Poisson bracket and

[·, ·] is a commutator

3. Q( f (x)) = f (Q(x)), where x is q or p

(2.1)

1The terms symbol, classical function, and c-function can also refer to a phase space function [7].

7



2.2. PROPERTIES OF THE OPERATOR QUANTIZATION MAP

give rise to contractions. For instance, {q3, p3}+ 1
12{{p2,q3},{q3, p3}} = 0. However,

quantizing this expression using equation (2.1) gives a left-hand side that evaluates to a

non-zero result, which is incorrect because Q(0) = 0 [65].

Several methods of quantizing a classical system exist (see, for instance, [7, 10]). In

Sections 2.2-2.4, we consider operator quantization. The remainder of the thesis will be

devoted to phase space quantization.

2.2 Properties of the Operator Quantization Map

There are several variations of operator ordering, including:

• Weyl ordering [66]

qr ps→ 1
2r

r

∑
`=0

(
r
`

)
q̂r−` p̂sq̂` =

1
2s

s

∑
`=0

(
s
`

)
p̂s−`q̂r p̂` . (2.2)

Weyl ordering is found by permuting q̂r p̂s in all possible ways and averaging over

the (r+ s)! permutations.

• Born-Jordan ordering [10]

qr ps→ 1
s+1

s

∑
k=0

p̂s−kq̂r p̂k =
1

r+1

r

∑
k=0

q̂r−k p̂sq̂k . (2.3)

We show the ordering rules2 of Weyl and Born-Jordan in Appendix A.

It is possible to unify these orderings within a single scheme, such that [10, 67]

qr ps→
∫ 1

0
dτ f (τ)

s

∑
k=0

(
s
k

)
(1− τ)k

τ
s−k p̂s−kq̂r p̂k . (2.4)

For f (τ) = δ(τ− 1
2), Weyl ordering is recovered. In the case of Born-Jordan ordering,

2Sometimes, the terminology of correspondence rule is also used in place of ordering rule. Application of
a quantization map to a monomial gives the correspondence rule, which then defines the operator ordering [7].
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2.3. WEYL QUANTIZATION

f (τ) = 1, so that

∫ 1

0
dτ

s

∑
k=0

(
s
k

)
(1− τ)k

τ
s−k p̂s−kq̂r p̂k =

1
s+1

s

∑
k=0

p̂s−kq̂r p̂k . (2.5)

by using the fact that [10, 68]

∫ 1

0
dτ(1− τ)k

τ
s−k =

(s− k)!k!
(s+1)!

. (2.6)

Operator quantization, as discussed in [10] and [69], is defined as having several prop-

erties. Let z(q, p) be an arbitrary classical phase space function and Q be a quantization

map taking classical functions to operators, such that Q : z(q, p)→ ẑ(q̂, p̂). Then,

1. Q(1) = Î, where I is the identity operator

2. Q(q) = q̂

3. Q(p) = p̂

4. Q(z(q, p)) = ẑ†(q̂, p̂), where z denotes the complex conjugate of z

5. i~Q({q,z(q, p)}) = [q̂, ẑ(q̂, p̂)]

6. i~Q({p,z(q, p)}) = [p̂, ẑ(q̂, p̂)]

(2.7)

A proof that the quantization map obeys these six axioms is given in [69]. As an example,

in Section 2.3 we will show that Weyl quantization satisfies the above six properties.

2.3 Weyl Quantization

It is possible to show that Weyl quantization satisfies the six properties by using equa-

tion (2.2). However, it is easier to use the exponential form of Weyl quantization, which we

illustrate below. To convert a phase space function f to an operator f̂ under Weyl quantiza-

9



2.3. WEYL QUANTIZATION

tion, it is necessary to use the Weyl map, QW [6, 70]:

f̂ (q̂, p̂) =QW f (q, p) ,

=
1

(2π)2

∫
dbdadqdp f (q, p)eib(p̂−p)+ia(q̂−q) ,

(2.8)

where a,b ∈ R and we use the notation throughout the thesis that integrals without limits

implies integration between −∞ and +∞. With θ,τ ∈ R, we see

QW ei(θq+τp) =
1

(2π)2

∫
dbdadqdpei(θq+τp) eib(p̂−p)+ia(q̂−q) ,

=
∫

dbdaδ(θ−a)δ(τ−b)eibp̂+iaq̂ ,

= ei(θq̂+τ p̂) .

(2.9)

We also made use of the property [71],

δ(x− y) =
1

2π

∫
dweiw(x−y) . (2.10)

Hence, the Weyl quantization map isQW : eiθq+iτp→ eiθq̂+iτ p̂ (i.e. it is only necessary to let

q→ q̂ and p→ p̂ within the exponential). By expanding ei(θq+τp) and ei(θq̂+τ p̂) in powers

of the position and momentum, then relating like powers of θ and τ, it is possible to recover

equation (2.2), which we show in Appendix A.

Let z(q, p) = ei(θq+τp). Using the exponential form of Weyl quantization, the first four

properties of equation (2.7) are thus automatically satisfied. To demonstrate that the fifth

and sixth properties are also valid, we note that the Weyl map gives

i~QW ({q,z(q, p)}) = i~QW (τei(θq+τp)) ,

= i~τei(θq̂+τ p̂) ,

(2.11)

10



2.4. PHYSICAL IMPLICATIONS OF DIFFERENT QUANTIZATIONS

and

[q̂, ẑ(q̂, p̂)] = e−i~θτ/2[q̂,eθq̂eτ p̂] ,

= e−i~θτ/2eθq̂i~τ

∞

∑
n=0

τn

n!
p̂n ,

= i~τei(θq̂+τp̂) ,

(2.12)

where we have applied the Zassenhaus formula, eA+B = eAeBe−
1
2 [A,B]e

1
6 [A,[A,B]]+

1
3 [B,[A,B]] · · ·

and [q̂, p̂n] = inp̂n−1 [7]. Equations (2.11) and (2.12) are equal, hence verifying Property 5

of equation (2.7). A similar procedure could be done to demonstrate Property 6.

In general, quantization maps can be represented using exponentials, in a similar form

to the Weyl quantization map. This form is often easier to manipulate, which we will use

in Section 2.10.

2.4 Physical Implications of Different Quantizations

The order of operators does not necessarily imply that the physical system is different.

Consider qp→ q̂p̂. Using the fact that [q̂, p̂] = i~, we can rewrite q̂p̂ as p̂q̂+ i~. However,

if we let qp→ p̂q̂ instead, that change in quantization may yield different physics.

In this thesis, we will regard two quantizations to be physically distinct if they yield two

different values of measurable quantities. As an example, consider the classical Hamilto-

nian (m = ω = 1),

H =
p2

2
+

q2

2
+λ
(

p2 +q2)3
, (2.13)

where λ is a constant. As the first two terms each have only a single phase space coordinate,

quantization yields p2 → p̂2 and q2 → q̂2. It was shown in [13] that the most general

11
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quantization of (p2 +q2)3 is

(p2 +q2)3→ p̂6 + q̂6 +
3
2
(

p̂4q̂2 + q̂2 p̂4)+3~2
α p̂2 +

3
2
(

p̂2q̂4 + q̂4 p̂2)+3~2
βq̂2 , (2.14)

where α and β are parameters of the quantization scheme. If we impose that q→−p and

p→ q yield the same quantized Hamiltonian, we find that α = β. Ref. [13] demonstrated

that the general quantization of the classical Hamiltonian in equation (2.13) is

Ĥ =
1
2

p̂2 +
1
2

q̂2 +λ
(

p̂2 + q̂2)3
+λ
(
3~2

α−4
)(

p̂2 + q̂2) . (2.15)

To solve the time-independent Schrödinger equation, let H ′ = p̂2

2 + q̂2

2 , which is the Hamil-

tonian for the simple harmonic oscillator. Then,

H = H ′+8λH ′3 +2λ
(
3~2

α−4
)

H ′ . (2.16)

We see that the state vector for the simple harmonic oscillator satisfies the Schrödinger

equation for this Hamiltonian with the energy levels [13],

En =
1
2
~(2n+1)+λ~(2n+1)3 +λ~

(
3~2

α−4
)
(2n+1) . (2.17)

To summarize, the quantization rule used can affect observable results (in the example

above, it was the energy of a system). Hence, quantizations with different values of α may

be physically distinct. This result was based upon the fact that p2→ p̂2 and q2→ q̂2. In

Chapter 4, we generalize quantization such that p2 6→ p̂2 and q2 6→ q̂2.

2.5 Wigner Transform

Rather than doing quantum mechanics with operators, one alternative is to do quantum

mechanics in phase space. In this description of quantum mechanics, classical phase space

12



2.5. WIGNER TRANSFORM

functions are used. To convert an operator back to a phase space function, we apply the

inverse of the Weyl map of Section 2.3. This operation is called the Wigner transform (or

sometimes the Weyl transform as in [72]).

The Wigner transform is [72, 73]

f (q, p) =W
(

f̂
)
= ~

∫
dye−ipy

〈
q+

~y
2

∣∣∣ f̂ ∣∣∣q− ~y
2

〉
, (2.18)

where f̂ = f̂ (q̂, p̂) is an arbitrary operator. We label the corresponding phase space function

of f̂ as f (q, p). We can showW =Q−1
W by using Fourier transform of f (q, p), f̃ (a,b), such

that

f (q, p) =
∫

dadb f̃ (a,b)ei(aq+bp) . (2.19)

With equation (2.9), we have

QW f (q, p) =
∫

dadb f̃ (a,b)ei(aq̂+bp̂) . (2.20)

We now need to applyW . Note that

W
(

ei(aq̂+bp̂)
)
= ~

∫
dye−ipy

〈
q+

~y
2

∣∣∣ei(aq̂+bp̂)
∣∣∣q− ~y

2

〉
,

= ~ei~ab/2
∫

dye−ipy
〈

q+
~y
2

∣∣∣eiaq̂eibp̂
∣∣∣q− ~y

2

〉
.

With

q̂ |q〉= q |q〉 ,

eibp̂ |q〉= |q−b~〉 ,

13
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we find

W
(

ei(aq̂+bp̂)
)
= ~ei~ab/2

∫
dye−ipyeia

(
q−~y

2 −b~
)〈

q+
~y
2

∣∣∣q− ~y
2
−b~

〉
,

= ei(aq+bp) .

Therefore,

W
(
QW f (q, p)

)
=

∫
dadb f̃ (a,b)ei(aq+bp) = f (q, p) . (2.21)

Hence,W =Q−1
W .

2.6 Moyal Product

The tradeoff for using classical phase space functions rather than operators is that it is

necessary to introduce a noncommutative binary operation known as the Moyal star prod-

uct, which is denoted by ?M. The transform ofW preserves the structure of the algebra of

operators, such that the Moyal product algebra is homomorphic3 to the operator algebra.

Specifically, with f̂ and ĝ operators [72],

W
(

f̂ ĝ
)
=W

(
f̂
)
?MW (ĝ) = f ?M g . (2.22)

It is possible to transform any observable from Weyl-quantized operator quantum mechan-

ics to Weyl quantization in phase space by applying the Wigner transform.

To derive the Moyal product, consider f̂ and ĝ in terms of their Fourier components,

3Let φ be a map between two sets A, B and let a1,a2 ∈ A. We say that φ is homomorphic if and only if
φ(a1 ·a2) = φ(a1)∗φ(a2), where · is the operation in A and ∗ is the operation in B [74, 75].
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ei(θ1q̂+τ1 p̂) and ei(θ2q̂+τ2 p̂). Then,

W
(

ei(θ1q̂+τ1 p̂)ei(θ2q̂+τ2 p̂)
)
=W

(
ei(θ1+θ2)q̂+i(τ1+τ2)p̂

)
e−

i~
2 (θ1τ2−θ2τ1) , (2.23)

=W
(

ei(θ1q̂+τ1 p̂)
)
?MW

(
ei(θ2q̂+τ2 p̂)

)
. (2.24)

by using equation (2.22) and the Zassenhaus formula. Using the fact thatW
(

ei(θq̂+τp̂)
)
=

ei(θq+τp), equation (2.23) becomes

W
(

ei(θ1q̂+τ1 p̂)ei(θ2q̂+τ2 p̂)
)
=
(

ei(θ1+θ2)q+i(τ1+τ2)p
)

e−
i~
2 (θ1τ2−θ2τ1) , (2.25)

and equation (2.24) is

W
(

ei(θ1q̂+τ1 p̂)ei(θ2q̂+τ2 p̂)
)
=
(

ei(θ1q+τ1 p)
)
?M

(
ei(θ2q+τ2 p)

)
. (2.26)

Note that
I(1,2)e

i~
2 (∂q1∂p2−∂p1∂q2)ei(θ1q1+τ1 p1)ei(θ2q2+τ2 p2)

= ei(θ1+θ2)q+i(τ1+τ2)pe−
i~
2 (θ1τ2−θ2τ1) ,

(2.27)

where I(1,2) means to set q1 = q2 = q and p1 = p2 = p at the end of the calculation.

Let F = ei(θ1q1+τ1 p1) and G = ei(θ2q2+τ2 p2). We can rewrite the top line of equation

(2.27) as

e
i~
2 (∂q1∂p2−∂p1∂q2)FG =

∞

∑
n=0

(
i~
2

)n 1
n!

n

∑
m=0

(
n
m

)
(−1)m ∂nF

∂qn−m
1 ∂pm

1

∂nG
∂qm

2 ∂pn−m
2

. (2.28)

Applying I(1,2) to both sides, this equation can be written in a more concise form by

introducing the differential operators,
←
∂ (left derivative) and

→
∂ (right derivative), which are

defined as

f
←
∂ q g :=

∂ f
∂q

g ,

15
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and similarly for the right derivative. As an example, the Leibniz rule can be written as

∂

∂q
( f g) =

∂ f
∂q

g+ f
∂g
∂q

= f
(←

∂ q +
→
∂ q

)
g . (2.29)

By using left and right derivatives, equation (2.28) becomes

I(1,2)e
i~
2 (∂q1∂p2−∂p1 ∂q2)ei(θ1q1+τ1 p1)ei(θ2q2+τ2 p2)

= ei(θ1q+τ1 p)
∞

∑
n=0

(
i~
2

)n 1
n!

n

∑
m=0

(
n
m

)
(−1)m

(←
∂ q
→
∂ p

)n−m(←
∂ p
→
∂ q

)m
ei(θ2q+τ2 p) .

(2.30)

Therefore, with equations (2.25)-(2.27), we see that the Moyal product is

?M = e
i~
2

(←
∂ q
→
∂ p−

←
∂ p
→
∂ q

)
, (2.31)

=
∞

∑
n=0

(
i~
2

)n 1
n!

n

∑
m=0

(
n
m

)
(−1)m

(←
∂ q
→
∂ p

)n−m(←
∂ p
→
∂ q

)m
. (2.32)

We see that the Moyal product is the exponentiation of the Poisson bracket. Therefore,

the Moyal product is sometimes written as ?M = e
i~
2
←→
P , where

←→
P :=

←
∂ q
→
∂ p −

←
∂ p
→
∂ q. It is

also possible to write f (q, p)?M g(q, p) as

f (q, p)?M g(q, p) = f
(

q+
i~
2

∂p, p− i~
2

∂q

)
g(q, p) ,

= f (q, p)g
(

q− i~
2

←
∂ p, p+

i~
2

←
∂ q

)
,

= f
(

q+
i~
2

∂p, p
)

g
(

q− i~
2

←
∂ p, p

)
,

= f
(

q, p− i~
2

∂q

)
g
(

q, p+
i~
2

←
∂ q

)
,

(2.33)

where we have used the translation operator,

ea∂q f (q) = f (q+a) . (2.34)

In general, a star product ? is defined as a bilinear map acting on smooth functions f
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and g, with [26]

f ?g =
∞

∑
r=0

ν
rCr( f ,g) , (2.35)

where ν is a complex parameter and Cr is a bidifferential operator. The quantities Cr and ?

have the properties [12, 26],

1. C0( f ,g) = f g

2. C1( f ,g) = { f ,g}

3. Cr(g, f ) = (−1)rCr( f ,g)

4. For a ∈ R, Cr( f ,a) = 0.

5. ( f ?g)?h = f ? (g?h)

(2.36)

We will now demonstrate the associativity of the Moyal product. Let f , g, and h be

functions of the position and momentum. We have

( f ?M g)?M h =

(
I(1,2)e

i~
2 (∂q1∂p2−∂p1 ∂q2) f (q1, p1)g(q2, p2)

)
?M h .

To condense this notation, define

[?M(1,2)] := e
i~
2 (∂q1∂p2−∂p1∂q2) ,

[?M(1+2,3)] := e
i~
2 [(∂q1+∂q2)∂p3−(∂p1+∂p2)∂q3]

so that

( f ?M g)?M h = I(1,2,3) [?M(1+2,3)] [?M(1,2)] f (1)g(2)h(3)

where f (1) = f (q1, p1) and similarly for g(2) and h(3). The symbol of I(1,2,3) indicates
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that we set q1 = q2 = q3 = q and p1 = p2 = p3 = p at the end of the calculation.

By the same process,

f ?M (g?M h) = I(1,2,3) [?M(1,2+3)] [?M(2,3)] f (1)g(2)h(3) .

Therefore, to demonstrate associativity, it suffices to show that

[?M(1+2,3)] [?M(1,2)] = [?M(1,2+3)] [?M(2,3)] .

The left-hand side is equal to

[?M(1+2,3)] [?M(1,2)] = exp
{

i~
2

[
∂q3 (∂p1+∂p2)−∂p3

(
∂q1+∂q2

)
+∂p2∂q1−∂p1∂q2

]}
,

and the right-hand side is

[?M(1,2+3)] [?M(2,3)] = exp
{

i~
2

[
−∂q1 (∂p2+∂p3)+∂p1

(
∂q2 +∂q3

)
+∂p3∂q2−∂p2∂q3

]}
.

Rearranging, we find that [?M(1+2,3)] [?M(1,2)] = [?M(1,2+3)] [?M(2,3)] is indeed true,

thus verifying that the Moyal product is associative.

2.7 Wigner Functions

As quantum mechanics can be done in phase space, that means that there must be a

phase space counterpart to the Liouville-von Neumann equation for the density operator, ρ̂.

The Liouville-von Neumann equation is [76]

i~
∂ρ̂

∂t
= [Ĥ, ρ̂] , (2.37)
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where we take Ĥ as a time-independent Hamiltonian throughout Chapters 2-4. If we want

to work in phase space, then the Wigner transform of equation (2.37) gives

i~W
(

∂ρ̂

∂t

)
=W

(
Ĥρ̂− ρ̂Ĥ

)
, (2.38)

=⇒ i~
∂W (ρ̂)

∂t
=W

(
Ĥ
)
?MW (ρ̂)−W (ρ̂)?MW

(
Ĥ
)
=: [H,W(ρ̂)]?M , (2.39)

where we have applied equation (2.22).

With a Hamiltonian operator of the form, Ĥ =
p̂2

2m
+V (q̂), the phase space version is

H =
p2

2m
+V (q). Using equation (2.18), the analogue to the density operator is known as

the Wigner function [72],

W (q, p) =
W (ρ̂)

2π~
=

1
2π

∫
dye−ipy

〈
q+

~y
2

∣∣∣ρ̂∣∣∣q− ~y
2

〉
, (2.40)

where the 2π~ ensures that the Wigner function is normalized. If ρ̂ = |ψ〉〈ψ| is a pure state,

then the Wigner function reduces to

W (q, p) =
1

2π

∫
dye−ipy

ψ
∗
(

q− ~y
2

)
ψ

(
q+

~y
2

)
, (2.41)

where ψ(q) = 〈q|ψ〉 is the position space wavefunction.

It should be noted that the Wigner function is dependent on the position and the mo-

mentum, but the individual point (q, p) has no meaning in the sense of being able to assign

an exact position and momentum to a quantum system, as a result of Heisenberg’s uncer-

tainty principle. It is only when integrating over the position or momentum that physical

predictions are made.

The Wigner function has several properties [4, 6, 7]:

1. The marginal probabilities of the position and momentum are determined with

P(q) =
∫

dpW (q, p) = 〈q|ρ̂|q〉 (2.42)

19



2.7. WIGNER FUNCTIONS

and

P(p) =
∫

dqW (q, p) = 〈p|ρ̂|p〉 . (2.43)

If ρ̂ is a pure state, these marginal probabilities reduce to

P(q) = |ψ(q)|2 , (2.44)

P(p) = |φ(p)|2 , (2.45)

with φ(p) = 〈p|ψ〉 being the wavefunction in momentum space.

2. The Wigner function is normalized:

∫
dqdpW (q, p) = 1 (2.46)

3. The Wigner function is real.

4. The Wigner function is an example of a quasi-probability distribution. This means

that the Wigner function can take negative values. Physically, these negative values

can arise as a result of interference and can be interpreted as a measure of the non-

classicality present in a quantum system [18, 77, 78].

It is also possible to write the pure state Wigner function in terms of momentum space

wavefunctions, φ(p) [4]:

W (q, p) =
1

2π

∫
dye−ipy

φ
∗
(

p+
~y
2

)
φ

(
p− ~y

2

)
, (2.47)

where

φ(p) =
1√
2π~

∫
dqψ(q)e−ipq/~ (2.48)

is the Fourier transform of the position space wavefunction.
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To determine the expectation value of Â using phase space quantum mechanics, we first

note thatW(ÂB̂) = A ?M B from equation (2.22). Therefore, ÂB̂ =W−1(A ?M B). Taking

the trace, we have (~= 1)

Tr
(
ÂB̂
)
=

1
(2π)2 Tr

[∫
dqdpdadb(A?M B)eia(q̂−q)+ib(p̂−p)

]
,

where we have used the fact thatW−1 =QW . Summing over position eigenstates, we find

Tr
(
ÂB̂
)
=

1
(2π)2

∫
dqdpdadbdq′(A?M B)

〈
q′
∣∣∣eia(q̂−q)+ib(p̂−p)

∣∣∣q′〉 ,

=
1

(2π)2

∫
dqdpdadbdq′(A?M B)〈q′|q′−b〉eia(q′−b)eiab/2e−i(aq+bp) ,

=
1

2π

∫
dqdpA?M B .

If B̂ = ρ̂, then we need to replace B withW(ρ̂). AsW(ρ̂) = 2πW ,

Tr
(
Âρ̂
)
=

∫
dqdpA?M W . (2.49)

Similarly, by using the cyclic property of the trace,

Tr
(
ρ̂Â
)
=

∫
dqdpW ?M A . (2.50)

Note that equations (2.49) and (2.50) describe the expectation value of Â as 〈Â〉=Tr
(
Âρ̂
)
=

Tr
(
ρ̂Â
)
. Also note that we can integrate out the Moyal product as the boundary terms of

successive partial integrations vanish. Therefore, [6]

〈A(q, p)〉 := 〈Â〉=
∫

dqdpA(q, p)?M W (q, p) =
∫

dqdpW (q, p)?M A(q, p)

=
∫

dqdpA(q, p)W (q, p) ,
(2.51)

Using the Wigner function, we can write the Wigner transform of the Liouville-von
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Neumann equation of (2.37) as

i~
∂W
∂t

= [H,W ]?M
, (2.52)

where

[ f ,g]?M
:= f ?M g−g?M f (2.53)

and 1
i~ [ f ,g]?M

is known as the Moyal bracket of f (q, p) and g(q, p). In the case of a sta-

tionary state, H ?M W =W ?M H.

Consider a pure state described by Schrödinger’s equation, Ĥ |ψ〉= E |ψ〉. Multiplying

by 〈ψ| on the right and taking the Wigner transform, we get the stargenvalue equation [6],

H ?M W = E W , (2.54)

Using the Hermitian-conjugate of the Schrödinger equation and assuming Ĥ is Hermitian,

we similarly have the stargenvalue equation,

W ?M H = E W . (2.55)

2.8 Example: Simple Harmonic Oscillator

As an example of an application of the Wigner function and the stargenvalue equations,

consider the simple harmonic oscillator Hamiltonian, Ĥ =
1

2m
p̂2 +

1
2

mω
2q̂2, as discussed

in, for example, [4], [6], and [72]. Throughout this thesis, when considering the simple

harmonic oscillator, we set m = ω = 1 for the purposes of calculation.

In phase space, the stargenvalue equation is

(
1
2

p2 +
1
2

q2
)
?M W = E W . (2.56)
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Using equation (2.32), we have

(
p2

2
+

q2

2

)
W +

i~
2

(
q

∂W
∂p
− p

∂W
∂q

)
− ~2

8

(
∂2W
∂p2 +

∂2W
∂q2

)
= E W (2.57)

As the Wigner function is real, this implies that

q
∂W
∂p
− p

∂W
∂q

= 0 , (2.58)

so that W =W
(

p2

2
+

q2

2

)
. We note that we have used equation (2.54) to derive the differ-

ential equation for the simple harmonic oscillator. Equivalently, equation (2.55) could have

been used to obtain the same result.

Let u = 2q2 +2p2. Note that, for a function f (u(y)),

∂2 f
∂y2 =

∂

∂y

(
∂ f
∂u

∂u
∂y

)
=

∂2u
∂y2

∂ f
∂u

+

(
∂u
∂y

)2
∂2 f
∂u2 , (2.59)

we have

∂2W
∂q2 = 4

∂W
∂u

+16q2 ∂2W
∂u2 , (2.60)

∂2W
∂p2 = 4

∂W
∂u

+16p2 ∂2W
∂u2 . (2.61)

Upon substitution of equations (2.60) and (2.61) into equation (2.57), we obtain

uW
4
−~2 ∂W

∂u
−u~2 ∂2W

∂u2 = E W . (2.62)

As we want the solution to be normalizable, then we require W → 0 as u→ ∞. From

equation (2.62), the limit as u→ ∞ gives the partial differential equation,

1
4

W ∼ ~2 ∂2W
∂u2 , (2.63)
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which has a solution W ∼ e−u/2~. This indicates that we can solve equation (2.62) with an

ansatz of the form, W (u) = e−u/2~ g(u). Then,

~2u
d2g
du2 +~(~−u)

dg
du

+

(
E− ~

2

)
g = 0 (2.64)

Note that this is in the form of Kummer’s differential equation, which has a solution of

g(u) = c1M
(1

2 −
E
~ ,1,

u
~
)
+ c2U

(1
2 −

E
~ ,1,

u
~
)

where [79],

M(a,b,z) =
∞

∑
n=0

(a)n

(b)n

zn

n!
, (2.65)

U(a,b,z) =
π

sin(πb)

[
M(a,b,z)

Γ(1+a−b)Γ(b)
− z1−b M(1+a−b,2−b,z)

Γ(a)Γ(2−b)

]
, (2.66)

and

(a)n =

{
a(a+1) · · ·(a+n−1) n > 0
1 n = 0 (2.67)

is the Pochhammer symbol. For u→ ∞, U
(1

2 −
E
~ ,1,

u
~
)
→ ∞ as well. Therefore, c2 = 0.

From the Schrödinger equation, we know that E =
(
n+ 1

2

)
~. We can then write g(u) =

c1M
(
−n,1, u

~
)
= c1Ln

( u
~
)
, where Ln is the n-th Laguerre polynomial [71, 79],

Ln(x) =
1
n!

ex
(

d
dx

)n

[e−xxn] =
n

∑
m=0

(−1)m

m!

(
n
m

)
xm . (2.68)

Therefore, the Wigner function for the simple harmonic oscillator in the nth energy level is

Wn(q, p) =
(−1)n

π~
exp
[
−2H

~

]
Ln

(
4H
~

)
,

=
(−1)n

π~
exp

[
−

p2

m +mω2q2

~ω

]
Ln

(
2p2

m +2mω2q2

~ω

) (2.69)

where c1 =
(−1)n

π~
is the normalization constant.

Figure 2.1 illustrates the simple harmonic oscillator Wigner function for the first four
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Figure 2.1: The simple harmonic oscillator Wigner function for the first four energy levels.
Note that, for n > 0, the Wigner function has negative values.

energy levels. This simple system exemplifies the quasi-probabilistic nature of the Wigner

function.

2.9 Time-Dependence of the Wigner Function

We have demonstrated that the time-independent Wigner function can be found with

the stargenvalue equations of (2.54) and (2.55). However, as shown with equation (2.52),

the Wigner function is generally dependent on time. To determine its time-dependence, we
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first note that the solution to the Liouville von-Neumann equation of (2.37) is [76]

ρ̂(t) = e−iĤt/~
ρ̂(0)eiĤt/~ , (2.70)

where Û(t) = eiĤt/~ is the propagator. By applying the Wigner transform to ρ̂(t), we find

W (q, p, t) =W
(

e−iĤt/~
)
?M W (q, p,0)?MW

(
eiĤt/~

)
, (2.71)

and W (q, p,0) := W (q, p) satisfies equations (2.54) and (2.55). The application of the

Wigner transform to Û yields [6]

W(Û) =: U?M = Exp?M

(
− itH

~

)
, (2.72)

where [26, 27]

Exp?M
(a) =:

∞

∑
n=0

a?
n
M

n!
, (2.73)

is the star-exponential and a?
n
M := a?M · · ·?M a︸ ︷︷ ︸

n times

. Therefore, the solution to equation (2.52)

is [6]

W (q, p, t) =U?M ?M W (q, p,0)?M U−1
?M

. (2.74)

As ÛÛ† = 1, the Wigner transform yields U?M ?M U−1
?M

= 1 and U−1
?M

=U?M . Hence,

W (q, p, t) =U?M ?M W (q, p,0)?M U?M . (2.75)
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Substitution of equation (2.75) into Wigner transform of equation (2.37) gives

i~
∂U?M

∂t
= H ?M U?M , (2.76)

−i~
∂U?M

∂t
=U?M ?M H , (2.77)

where equation (2.77) was found by taking the complex conjugate of equation (2.76), as-

suming that the Hamiltonian H is real.

From [26, 27], we can write the star-exponential of the Hamiltonian as the series,

U?M = ∑
n

Wn(q, p)e−iEnt/~ . (2.78)

Therefore, in conjunction with equation (2.76),

∑
n

Wn(q, p)Ene−iEnt/~ = ∑
n

H ?M Wn(q, p)e−iEnt/~ . (2.79)

Hence, we recover equation (2.54). Similarly, we find equation (2.55) by using equation

(2.77).

2.10 Transition Operators and Weight Functions

As demonstrated at the beginning of this Chapter, there are different ways of quan-

tizing a system. Associated with those methods are different operator orderings, such as

standard ordering (all positions are to the left of the momentum) and normal ordering (all

creation operators are to the left of the annihilation operators). It is possible to determine

star products for these other quantizations.

In Weyl quantization, application of the Wigner transform on operators f̂ and ĝ gives

W( f̂ ĝ) =W( f̂ )?MW(ĝ) because of the homomorphism between the algebra of operator

multiplication and the Moyal product. The quantities ofW( f ) andW(g) are then classical

phase space functions as the Wigner transform is the inverse of the Weyl quantization map.
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It should be noted that this homomorphism is true for other phase space quantiza-

tions, though the transform and star product will be different. We can convert from Weyl-

ordered operator quantization to a different phase space quantization with TW , where

T = T (∂q,∂p) such that [26, 27]

T = 1+
∞

∑
r=1

ν
rTr , (2.80)

and Tr is a differential operator with ν being a parameter. Operation of TW on f̂ ĝ yields

TW( f̂ ĝ) = (TW f̂ )?T (TW ĝ) (2.81)

where ?T is the star product corresponding to the quantization of TW . Therefore,

T ( f ?M g) = (T f )?T (T g) . (2.82)

If equation (2.82) is true, we would then say that ?M and ?T are cohomologically equivalent

(c-equivalent). This refers to two quantizations (each with their own star product) as being

mathematically equivalent, but not necessarily physically equivalent [26, 27, 80].4

It is also possible to consider a transition operator, T , such that T ( f ?1 g) = (T f )?2 (T g),

where ?1 is not the Moyal product. We would then call ?1 and ?2 c-equivalent [82]. In this

thesis, when referring to c-equivalence, we will always be referring to an operator T taking

us from the Moyal product to ?T .

The operator T is sometimes termed the transition operator. The purpose of the transi-

tion operator is to convert between different quantizations. As shown later in this Section,

different quantizations also possess a different distribution function, which can be found by

using a transition operator.

Figure 2.2 illustrates the process of converting from one quantization to another with the

4There are many terms meaning c-equivalence, including gauge equivalence, g-equivalence, and occa-
sionally just equivalence [80, 81].
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2.10. TRANSITION OPERATORS AND WEIGHT FUNCTIONS

transition operator. Let ÂW be the operator algebra of observables in Weyl-ordered operator

quantization and AW be the star algebra of observables in phase space Weyl quantization.

The observables of phase space Weyl quantization are transformed to a different star algebra

(A) and operator algebra (Â) with the quantization map QT and transition operator T .

ÂW

W

��

Â

WT

��

AW

QW

OO

T
// A

T−1
oo

QT

OO

Figure 2.2: There are many quantization maps. This figure illustrates one map relating
Weyl operator quantization (ÂW ) to a different operator quantization (Â) by way of two
phase space quantizations (AW and A).

To determine the form of ?T , let us assume that T is invertible, so that

f ?M g = T−1 ( f̃ ?T g̃
)
, (2.83)

where f̃ = T f and g̃ = T g. Assume that the inverse of the transition operator can be written

as

T−1 = ∑
m,n

amn ∂
m
p ∂

n
q , (2.84)

where amn is constant, and note that

∂
n
q( f̃ ?T g̃) =

n

∑
k=0

(
n
k

)(
∂

k
q f̃
)
?T

(
∂

n−k
q g̃

)
= f̃

(←
∂ q +

→
∂ q

)n
?T g̃ , (2.85)

by using the Leibniz product rule in equation (2.29). Then, combining equations (2.84) and
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(2.85) with equation (2.83) gives

f ?M g = ∑
m,n

amn f̃
(←

∂ p +
→
∂ p

)m(←
∂ q +

→
∂ q

)n
?T g̃ (2.86)

= f T
[←

∂

]
T−1

[←
∂ +

→
∂

]
T
[→

∂

]
?T g (2.87)

where we define T
[←

∂

]
as replacing ∂p with

←
∂ p and ∂q with

←
∂ q in the transition operator.

Similar definitions follow for T
[←

∂ +
→
∂

]
and T

[→
∂

]
. We then have [83]

?T = ?MT−1
[←

∂

]
T
[←

∂ +
→
∂

]
T−1

[→
∂

]
. (2.88)

Application of the transition operator to the stargenvalue equations of (2.54) and (2.55)

yields

T H ?T TW = E TW , (2.89)

TW ?T T H = E TW . (2.90)

and the transition operator, which we assume to be independent of time, can be applied to

the Moyal bracket to give

i~
∂TW

∂t
= [T H,TW ]?T , (2.91)

where, similar to equation (2.53),

[T H,TW ]?T := T H ?T TW −TW ?T T H , (2.92)

and TW is the distribution function in the new ordering scheme. In the rest of this thesis

we will call !
i~ [·, ·]?T the ?T -bracket.

Given ei(ξq̂+ηp̂), we can can define a weight function (sometimes called a kernel) Φ(ξ,η),
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such that [5, 7]

ei(ξq̂+ηp̂)
Φ(ξ,η) =C(q̂, p̂) , (2.93)

where C(q̂, p̂) = Q
(

ei(ξq+ηp)
)

is the quantization of the exponential ei(ξq+ηp), found by

applying a quantization map,Q. For example, Φ(ξ,η) = e−i~ξη/2 yields C(q̂, p̂) = eiξq̂eiηp̂,

while Φ(ξ,η) = ei~ξη/2 gives C(q̂, p̂) = eiη p̂eiξq̂.

We can derive a general distribution function that incorporates weight functions. To do

this, we write the Wigner function as

W (q, p) =
1

4π2

∫
dξdηdq′ψ∗(q′−η~/2)ψ(q′+η~/2)eiξ(q′−q)e−iηp , (2.94)

and the transition operator in the form,

T
(
∂q,∂p

)
= ∑

mn
amn∂

m
q ∂

n
p , (2.95)

where amn is a constant. Applying the transition operator to W (q, p), we note that

∂
m
q ∂

n
pW =

1
4π2

∫
dξdηdq′ψ∗(q′−η~/2)ψ(q′+η~/2)(−iξ)m(−iη)neiξ(q′−q)−iηp . (2.96)

Therefore,

TW =
1

4π2

∫
dξdηdq′

(
ψ
∗(q′−η~/2)ψ(q′+η~/2)

×∑
mn

amn(−iξ)m(−iη)neiξ(q′−q)e−iηp

)
.

(2.97)
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Hence,

TW =
1

4π2

∫
dξdηdq′ψ∗(q′−η~/2)ψ(q′+η~/2)T (−iξ,−iη) eiξ(q′−q)e−iηp

=: FΦ(q, p)
(2.98)

is the distribution function written in terms of the weight function. Further, the weight

function can be related to the transition operator with [5, 7]

Φ(ξ,η) = T (−iξ,−iη) =⇒ Φ(∂p,∂q) = T
(
−i∂p,−i∂q

)
. (2.99)

Using the weight function, we can then write a general distribution function for a given

quantization. For an arbitrary density operator [5, 7, 29],

FΦ(q, p) =
1

4π2

∫
dξdηdq′ 〈q′+η~/2|ρ̂|q′+η~/2〉Φ(ξ,η)eiξ(q′−q)e−iηp . (2.100)

As an example of the relationship between the transition operator and the weight func-

tion, consider the ground state of the simple harmonic oscillator with Wigner function

W (q, p) =
1

π~
e−

2H
~ and wavefunction ψ(q) =

( 1
π~
)1/4

e−
q2
2~ . We will determine the distribu-

tion function for standard ordering with both the weight function and the transition operator.

In Table 2.1, we present the weight function for standard ordering as Φ(ξ,η) = e−i~ξη/2,

which is derived in Appendix A.

Using equation (2.98) with ~= 1,

FS(q, p) =
1

4π2
√

π

∫
dξdηdq′e−(q

′−η/2)2/2−(q′+η/2)2/2e−iξη/2eiξ(q′−q)e−iηp ,

=
1

2π
√

π

∫
dηe−q2/2−(q+η)2/2e−iηp ,

=
1√
2π

e−
1
2 q2− 1

2 p2+ipq .

(2.101)
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For standard ordering, T = ei∂p∂q/2 by equation (2.99), hence

Te−q2−p2
=

∞

∑
n=0

in

2nn!
∂

n
p ∂

n
q e−q2−p2

. (2.102)

Noting that

∂
n
pe−p2

= Hn (−p)e−p2
, (2.103)

we get

Te−q2−p2
=

∞

∑
n=0

in

2nn!
Hn(−q)Hn(−p)e−q2−p2

. (2.104)

We have the identity [84],

∞

∑
n=0

wnHn(z)Hn (z1)

n!
=

exp
(

2w(2w(z2+z2
1)−2zz1)

4w2−1

)
√

1−4w2
, (2.105)

for |w|< 1. Hence,

TW =
1√
2π

e−
1
2 q2− 1

2 p2+ipq , (2.106)

which is the same as equation (2.101)

Let us now determine the marginal probability distributions of the distribution function

FΦ(q, p), in the same manner as we did for the Wigner function. Integrating over the

momentum, we have

PΦ(q) =
∫

dpFΦ =
1

2π

∫
dξdq′ψ∗(q)ψ(q)Φ(ξ,0)eiξ(q′−q) , (2.107)

33



2.10. TRANSITION OPERATORS AND WEIGHT FUNCTIONS

We see that if Φ(ξ,0) = 1, then

PΦ(q) =
1

2π

∫
dξdq′ψ∗(q)ψ(q)δ(q′−q) = |ψ(q)|2 = P(q) , (2.108)

thus we recover the same probability distribution for the position as the Wigner function in

equation (2.44).

Integrating over the position,

PΦ(p) =
1

2π

∫
dηdqψ

∗(q−η~/2)ψ(q+η~/2)Φ(0,η)e−iηp . (2.109)

If Φ(0,η) = 1 and writing ψ(q) in terms of the Fourier transform of the momentum space

wave function, φ(p), then

PΦ(p) =
1

4π2~

∫
dηdqdzdz′φ∗(z′)φ(z)e−

iz′q
~ + izq

~ + iz′η
2 + izη

2 e−iηp . (2.110)

Letting q→ ~q, we have

PΦ(p) =
1

4π2

∫
dηdqdzdz′φ∗(z′)φ(z)eiq(z−z′) e

iη
2 (z+z′)e−iηp .

=
1

2π

∫
dηdz|φ(z)|2e−iη(z−p) .

= |ψ(p)|2 = P(p) ,

(2.111)

indicating that we have the same probability distribution for the momentum as described

by the Wigner function in equation (2.45).

Several quantizations have been extensively studied, some of which are listed in Table

2.1. The weight functions used to convert Weyl quantization to other quantizations are also
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Table 2.1: Different quantizations and their corresponding weight functions [5].

Quantization Quantization Map
Weight Function

Φ(θ,τ)

Weyl eiθq+iτp→ eiθq̂+iτ p̂ 1

Standard eiθq+iτp→ eiθq̂eiτp̂ e−i~θτ/2

Antistandard eiθq+iτp→ eiτ p̂eiθq̂ ei~θτ/2

Normal eiθq+iτp = ezα−zα→ ezâ†
e−zâ e~θ2/4mω+~mωτ2/4

Antinormal eiθq+iτp = ezα−zα→ e−zâezâ†
e−~θ2/4mω−~mωτ2/4

Born-Jordan qn pm→ 1
n+1 ∑

n
k=0 q̂n−k p̂mq̂k sinc

(1
2θτ~

)
Symmetric eiθq+iτp→ 1

2

(
eiθq̂eiτ p̂ + eiτp̂eiθq̂) cos

(1
2θτ~

)
indicated. We use the notation,

α =
1√

2~mω
(mωq+ ip) ,

â =
1√

2~mω
(mωq̂+ ip̂) ,

z = iθ

√
~

2mω
− τ

√
~mω

2
,

We will denote α, z as complex conjugates of α,z and â† as the Hermitian conjugate of â.

In Table 2.2, we show the transition operator necessary to convert from Weyl quantization

to another quantization.

To briefly summarize, in this Chapter we introduced phase space quantum mechanics

and used the transition operator to convert one phase space quantization to another. This

technique of using the transition operator to transform between quantizations will form the

basis for introducing extra physical features into a quantum system.
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Table 2.2: Mapping from Weyl quantization to another quantization in phase space. This
map takes the form ei(θq+τp)→ Tei(θq+τp), where T is the transition operator [5].

Quantization Transition Operator Tei(θq+τp)

Weyl 1 ei(θq+τp)

Standard TS = ei~∂p∂q/2 ei(θq+τp)−i~θτ/2

Antistandard TAS = e−i~∂p∂q/2 ei(θq+τp)+i~θτ/2

Normal TN = e−~∂2
q/4mω−~mω∂2

p/4 ei(θq+τp)+~θ2/4mω+~mωτ2/4

Antinormal TAN = e~∂2
q/4mω+~mω∂2

p/4 ei(θq+τp)−~θ2/4mω−~mωτ2/4

Born-Jordan TBJ = sinc
(1

2~∂p∂q
)

ei(θq+τp)sinc
(1

2~θτ
)

Symmetric Tsym = cos
(1

2~∂p∂q
)

ei(θq+τp) cos
(1

2~θτ
)

Table 2.3: Properties of star products. Each of these quantizations obey [q, p]?T = i~, which
is the phase space analogue of Heisenberg’s commutation relation. The bar over f ?T g sig-

nifies the complex conjugate. The transpose refers to
←
∂↔

→
∂ , while the Hermitian conjugate

is the complex conjugate of the transpose.

Quantization ?T Transpose f ?T g
Hermitian
Conjugate

Weyl ?M = e
i~
2
←→
P ?M g?M f ?M

Standard ?S = ei~
←
∂ q
→
∂ p ?AS g ?AS f ?AS

Antistandard ?AS = e−i~
←
∂ p
→
∂ q ?S g ?S f ?S

Normal ?N = e−
~

2mω

(←
∂ q+imω

←
∂ p

)(→
∂ q−imω

→
∂ p

)
?N g?N f ?N

Antinormal ?AN = e
~

2mω

(←
∂ q−imω

←
∂ p

)(→
∂ q+imω

→
∂ p

)
?AN g?AN f ?AN

Born-Jordan ?BJ = ?M
sinc

[
1
2

(←
∂ p+

→
∂ p

)(←
∂ q+

→
∂ q

)]
sinc

(
1
2

←
∂ p
←
∂ q

)
sinc

(
1
2

→
∂ p
→
∂ q

) ?BJ g ?BJ f ?BJ

Symmetric ?sym = ?M
cos
[

1
2

(←
∂ p+

→
∂ p

)(←
∂ q+

→
∂ q

)]
cos
(

1
2

←
∂ p
←
∂ q

)
cos
(

1
2

→
∂ p
→
∂ q

) ?sym g ?sym f ?sym
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Chapter 3

Coarse-Graining

3.1 Motivation

In Chapter 2, we introduced the concept of quantization and demonstrated that many

different quantizations and operator orderings exist. We then showed that quantum me-

chanics can be done in phase space, in which distribution functions and star products are

used, rather than density operators and operator multiplication.

One advantage of phase space quantum mechanics is that it is straightforward to study

quantization. For the same physical system, each possible distribution function and as-

sociated star product corresponds to a distinct quantization. To convert between different

quantizations, a transition operator is used.

One of the properties of the Wigner function is that it can take on negative values,

hence the Wigner function cannot be interpreted as a probability distribution. The question

regarding when the Wigner function is non-negative has been previously studied in, for

example, [85] and [86]. Ref. [85] showed that only wavefunctions exponentiating quadratic

polynomials correspond to a non-negative Wigner function. In [86], it was demonstrated

that only the Wigner distributions of Gaussian wavefunctions remain non-negative under

time-evolution.

In this Chapter, we will review the Husimi distribution, which is always non-negative.

It will be shown that this non-negativity is the result of Gaussian smoothing the Wigner

function. As an example of an application of Gaussian smoothing, we look at the n→ ∞

limit of the Wigner function.
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3.2. THE HUSIMI DISTRIBUTION

3.2 The Husimi Distribution

Consider the transition operator of TH = e~∂2
q/4mκ+~mκ∂2

p/4 (or weight function ΦH(ξ,η)=

e−~ξ2/4mκ−~mκη2/4), where m is the mass and κ is the smoothing parameter. By applying

the transition operator to the Wigner function or using equation (2.100), we find [5],

FH(q, p, t) =
1

π~

∫
dq′d p′e−mκ(q′−q)2/~−(p′−p)2/~mκW (q′, p′, t) , (3.1)

which is known as the Husimi distribution. This result is derived in Appendix B by way of

the transition operator.

We should note two important features of the Husimi distribution. First, FH includes

an integral over the product of the Wigner function and a Gaussian; thus, the Husimi dis-

tribution describes a Gaussian-smoothed (coarse-grained) Wigner function, in which the

smoothing parameter is ~. By writing W (q′, p′, t) in the form of equation (2.41), integrating

equation (3.1) over p′, then writing the result as a series in x = q− 1
2y~ and z = q+ 1

2y~, it

is possible to show that FH(q, p, t) must be non-negative [87].

Second, the antinormal distribution function, obtained from the Wigner function with

transition operator TAN = e~∂2
q/4mω+~mω∂2

p/4 (Table 2.2), is a special case of the Husimi

distribution with κ = ω. Here, ω is a frequency that is used to define the creation and

annihilation operators using the same procedure that one does for the simple harmonic

oscillator. Physically, ω may be the frequency of an external field.

One way to see why ω is required in the transition operator, rather than just ~ (in the

case of TS, for example) comes from a dimensional argument. If only ~n is present within

the transition operator, the argument of the transition operators needs to be ∂n
q∂n

p as the

dimensions of ~ are equal to the dimensions of the product of momentum and position.

If we want a transition operator that separates ∂q from ∂p, it is necessary to introduce an

additional parameter such that the argument in the transition operator is still dimensionless.

Hence, both m and ω are required to be part of the transition operator. A similar argument
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3.2. THE HUSIMI DISTRIBUTION

follows for why κ is required in TH .

To understand the relationship between TH and TAN , note that equation (2.100) can be

written as [88]

FΦ =
1

4π2

∫
dξdηTr

[
ρ̂ei(ξq̂+ηp̂)

Φ(ξ,η)
]

e−i(ξq+ηp) . (3.2)

With ΦH(ξ,η) = e−~ξ2/4mκ−~mκη2/4, we can then rewrite FH as [88]

FH =
1

4π2

∫
dξdηTr

[
ρ̂e−zb̂ezb̂†

]
e−i(ξq+ηp) , (3.3)

where

z = iξ

√
~

2mκ
−η

√
~mκ

2
, (3.4)

b̂ =
1√

2~mκ
(mκq̂+ ip̂) . (3.5)

It is possible to write b̂ in terms of the annihilation operator â and creation operator â†, such

that [88]

b̂ = µâ+νâ† , (3.6)

where

µ =
1
2

(√
κ

ω
+

√
ω

κ

)
, (3.7)

ν =
1
2

(√
κ

ω
−
√

ω

κ

)
. (3.8)

Using the property that [â, â†] = 1, we also have [b̂, b̂†] = 1. Therefore, as discussed in [89],

equation (3.6) corresponds to the annihlation operator of a squeezed state while b̂† is the

creation operator of a squeezed state. When ω= κ, we see that µ= 1 and ν= 0, so b̂= â and
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3.2. THE HUSIMI DISTRIBUTION

b̂† = â†. In this case, the distribution function is related to a coherent state wave packet [90],

|α〉= eαâ†−αâ |0〉 , (3.9)

where α is the eigenvalue for the equation â |α〉 = α |α〉. It is possible to consider the

coherent state as an example of a squeezed state without squeezing. Therefore, physically

the antinormal distribution function is the smoothing of the Wigner function by a coherent

state wave packet, while the Husimi distribution is the smoothing by a squeezed state wave

packet [88].

Even though the Husimi distribution is related to the antinormal distribution function, it

would be improper to say that the Husimi distribution is a quantization or ordering as an ad-

ditional physical effect (coarse-graining) is introduced with the transition operator. Rather,

we shall adopt the terminology of augmented quantization to describe the introduction of

extra physical features into the distribution function by means of the transition operator. In

other words, TH converts Weyl quantization to an augmented quantization.

Let us rewrite FH as [1, 5]

FH(q, p, t) =
1

π~

∫
dq′d p′e−

1
2 (q
′−q)2/(δq)2− 1

2 (p′−p)2/(δp)2
W (q′, p′, t) , (3.10)

where δq =

√
~
2

s, δp =

√
~
2

1
s

, and s = 1
mκ

. As δqδp =
~
2

, we might guess that the Husimi

distribution is related to the minimum uncertainty wave packet in the position representation

[1],

〈x|q, p〉= 1

(2πs2)
1/4 e−(x−q)2/4s2

eipx/~ , (3.11)

where the wave packet is centred at position q and momentum p.

To demonstrate how the minimum uncertainty wave packet is related to the Husimi dis-

tribution, define a phase space distribution, ρ(q, p), for a system described with the density
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3.2. THE HUSIMI DISTRIBUTION

operator, ρ̂ [1]:

ρ(q, p) :=
1

2π~
〈q, p|ρ̂|q, p〉= 1

2π~
Tr(|q, p〉〈q, p| ρ̂) , (3.12)

where we have used the cyclic property of the trace to write ρ(q, p) as the trace over

the product of ρ̂ and the pure state density operator, |q, p〉〈q, p|. We will now show that

ρ(q, p) = FH(q, p).

From equation (2.51),

Tr(ρ̂Â) =
∫

dq′d p′W (q′, p′)A(q′, p′) . (3.13)

Thus, the trace of two density operators, ρ̂1, ρ̂2, can be written as the integral over their

Wigner functions [1],

Tr(ρ̂1ρ̂2) = 2π~
∫

dq′d p′W1(q′, p′)W2(q′, p′) , (3.14)

where the 2π appears because W = 1
2π~W(ρ̂). Applying the Wigner transform of equation

(2.18) to the density operator of minimum uncertainty wave packet, the resultant Wigner

function is [1]

W1(q′, p′) =
1

π~
e−

1
s2 (q

′−q)2/~−s2(p′−p)/~
. (3.15)

If ρ̂2 corresponds to the Wigner function W2(q′, p′) = W (q′, p′) for an arbitrary system,

we then have ρ(q, p) = FH(q, p), illustrating the intrinsic relationship between the Husimi

distribution and the minimum uncertainty wave packet.

For a Wigner function describing a pure state |ψ〉, it is straightforward to use equation

(3.12) to demonstrate the non-negativity of the Husimi distribution [1]. With ρ̂ = |ψ〉〈ψ|

and with the fact that ρ(q, p) = FH(q, p), equation (3.12) gives

FH(q, p) =
1

2π~
〈q, p |ψ〉〈ψ|q, p〉= 1

2π~
| 〈q, p|ψ〉 |2 ≥ 0 . (3.16)
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3.2. THE HUSIMI DISTRIBUTION

From the weight function ΦH(ξ,η) = e−~ξ2/4mκ−~mκη2/4 of the Husimi distribution, we

see that Φ(ξ,0) 6= 1 and Φ(0,η) 6= 1. This implies that the Husimi distribution does not

yield the same marginal probability distributions as the Wigner function. Rather [1],

PH(q) =
∫

d pFH(q, p) ,

=
1

2π~

∫
d pdxdx′ 〈q, p|x〉〈x|ρ̂|x′〉〈x′|q, p〉 ,

=
1

2π~

∫
d pdxdx′

1√
2πs2

e−(x−q)2/4s2−(x′−q)2/4s2
eip(x′−x)/~ 〈x|ρ̂|x′〉 ,

=
∫

dx
1√

2πs2
e−(x−q)2/2s2

〈x|ρ̂|x〉 ,

(3.17)

where we have applied the resolution of the identity,

1 =
∫

dx |x〉〈x| . (3.18)

By a similar procedure in which the momentum representation of the minimum uncertainty

wave packet is used, we find [91],

PH(p) =
∫

dqFH(q, p) ,

=
∫

dk

√
2s2

π~2 e−2s2(k−p)2/~2
〈k|ρ̂|k〉 .

(3.19)

where we have used the momentum representation of the wave packet,

〈k|q, p〉=
(

2s2

π~2

)1/4

e−s2(k−p)2/~2
e−i(k−p)q/~ (3.20)

and the resolution of the identity,

1 =
∫

dk |k〉〈k| . (3.21)
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3.2. THE HUSIMI DISTRIBUTION

Therefore, from equations (3.17) and (3.19), we find

PH(q) =
∫

dx
1√

2πs2
e−(x−q)2/2s2

P(x) , (3.22)

PH(p) =
∫

dk

√
2s2

π~2 e−2s2(k−p)2/~2
P(k) , (3.23)

where P(x) and P(k) are the position and momentum marginal probability distributions

calculated from the Wigner function in equations (2.44) and (2.45). Equations (3.22) and

(3.23) represent the joint (simultaneous) measurements of the position and momentum of a

system [92, 93] (and references therein).

Using equation (2.88), the Husimi star product is

?H = ?Me
mκ~

2

←
∂ p
→
∂ p+

~
2mκ

←
∂ q
→
∂ q = exp

[
~

2mκ

(←
∂ q −imκ

←
∂ p

)(→
∂ q +imκ

→
∂ p

)]
. (3.24)

The antinormal star product in Table 2.3 can then be recovered by letting κ→ ω.

Let a= ~
4mκ

and b= 1
4mκ~. As an example of time-evolution of the Husimi distribution,

we will apply TH = ea∂2
q+b∂2

p to the Moyal bracket for the simple harmonic oscillator. This

yields

i~
∂THW

∂t
= THH ?H THW −THW ?H THH ,

= (H +a+b)?M e2b
←
∂ p
→
∂ p+2a

←
∂ q
→
∂ qTHW

−THW ?M e2b
←
∂ p
→
∂ p+2a

←
∂ q
→
∂ q (H +a+b) ,

= H ?M

(
1+2b

←
∂ p
→
∂ p +2a

←
∂ q
→
∂ q +2b2 ←

∂

2

p
→
∂

2

p +2a2 ←
∂

2

q
→
∂

2

q

)
THW

−THW ?M

(
1+2b

←
∂ p
→
∂ p +2a

←
∂ q
→
∂ q +2b2 ←

∂

2

p
→
∂

2

p +2a2 ←
∂

2

q
→
∂

2

q

)
H .
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Simplifying, we find

i~
∂THW

∂t
= [H,TH ]?M +2b p?M ∂pTHW +2aq?M ∂qTHW −2b∂pTHW ?M p

−2a∂qTHW ?M q ,

= [H,TH ]?M −2i~(b−a)∂p∂qTHW .

Therefore,

i~
∂THW

∂t
= [H,THW ]?M −

i~
2

(
mκ~− ~

mκ

)
∂p∂qTHW . (3.25)

This demonstrates that the equation of motion of the simple harmonic oscillator Husimi

distribution function is similar to the equation of motion of the simple harmonic oscillator

Wigner function. A difference is that an extra mixed partial derivative is also present. The

original equation of motion described is modified by O(~2) with the Husimi transition

operator.

The time-independent Husimi function for the simple harmonic oscillator can be calcu-

lated with either the transition operator or the weight function, such that, with s = 1 [31],

FH(q, p) =
1

2π~n!

(
q2 + p2

2~

)n

exp
[
−q2− p2

2~

]
, (3.26)

which is plotted in Figure 3.1. The energy levels for the simple harmonic oscillator Husimi

distribution are E =

(
n+

1
2

)
~ because the transition operator acting on the stargenvalue

equation, H ?M W = EW , does not affect the energy.

An advantage with using the Husimi distribution is that it is easier than the Wigner func-

tion to associate with coarse-grained classical mechanics. Consider the time-evolution of

the Husimi distribution and a corresponding classical coarse-grained distribution. Initially,

they evolve in a similar manner, but as time development continues, differences between

the evolutions arise. The classical-course grained solutions tends to approach a smooth dis-
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3.2. THE HUSIMI DISTRIBUTION

Figure 3.1: The simple harmonic oscillator Husimi distribution for the first four energy
levels. Notice that the distribution is nonnegative, in contrast to Figure 2.1

tribution whereas the Husimi distribution breaks up into localized sections in phase space,

which is the result of an interference process. Ref. [31] numerically quantified these effects

by comparing the entropies of the Husimi and classical coarse-grained distributions during

their time-evolution. This indicated that using the Husimi distribution to analyze the cor-

respondence between quantum mechanics and classical mechanics became invalid after a

certain period of time.

To conclude, the Husimi distribution is an example of augmented quantization as it

incorporates additional physics (coarse-graining) into a distribution function, for coarse-

graining was not present in the original system. In the next Section, we will consider a
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3.3. A GENERALIZATION OF THE HUSIMI DISTRIBUTION

generalization of the Husimi distribution in which the Wigner function is smoothed by a

different quantity, which is another example of augmented quantization.

3.3 A Generalization of the Husimi Distribution

The Husimi distribution smooths the features of the Wigner function by O(~). If we

wish to smooth by a different quantity, η, then the distribution function is,

Fη(q, p, t) =
1

πη

∫
dq′d p′e−

1
2 (q
′−q)2/(δq)2− 1

2 (p′−p)2/(δp)2
W (q′, p′, t) , (3.27)

where now

δq =

√
η

2
s , (3.28)

δp =

√
η

2
1
s
. (3.29)

It is seen that δqδp = η

2 , which no longer describes a minimum uncertainty wavepacket.

For η < ~, Fη can still have negative values. Non-negativity only holds for η≥ ~ [87].

We see that Fη→ FH in the limit of η→ ~. When smoothing by η rather than ~, the

Wigner function can be converted to Fη with the transition operator of

Tη = eη( s
4 ∂2

q+
1
4s ∂2

p) , (3.30)

giving the star product of

?η = ?M exp
[

η

2

(
1
s

←
∂ p
→
∂ p +s

←
∂ q
→
∂ q

)]
, (3.31)

which we calculated with equation (2.88). In Appendix B, we show that FH and Fη are

Weierstrass transforms of the Wigner function.

To compare with the time-evolution in equation (3.25) for the simple harmonic oscilla-
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tor Husimi distribution, the equation of motion for the generalized Husimi distribution of

the simple harmonic oscillator is

∂TηW
∂t

=
1
i~
[H,TηW ]?M −

1
2

(
η

s
− sη

)
∂p∂qTηW . (3.32)

We see that the right-hand side of equation (3.32) is the Moyal bracket between H and TηW

plus an additional term of O(~η), rather than O(~2). The time-independent generalized

Husimi distribution for the simple harmonic oscillator are plotted in Figure 3.2 and 3.3.

Figure 3.2: The generalized Husimi distribution for the first four energy levels of the simple
harmonic oscillator. We have set ~= 1 and η= 0.5. Notice the distribution still has negative
values even though smoothing was done.

3.4 Smoothing in the n→ ∞ Limit of the Wigner Function

As an example of coarse-graining, let us smooth the Wigner function for large n. We

will focus on the simple harmonic oscillator and demonstrate that the result of this smooth-

ing is a delta function-like distribution that describes a classical system. As argued in [58],

coarse-graining may be required to recover classical mechanics from quantum mechanics.

To investigate the emergence of classical mechanics from quantum mechanics, fix the

classical energy level, Ec = r2
c/2. For the purposes of this calculation, we set m=ω= 1 and
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Figure 3.3: The generalized Husimi distribution for the first four energy levels of the simple
harmonic oscillator. We have set ~ = 1 and η = 2. Unlike Figure 3.2, the distribution is
non-negative because η > ~.

q2+ p2 = r2. With En =
(
n+ 1

2

)
~ and Ec = En, we find that r2

c ∼ 2n~ for large n. Hence, as

rc is constant, so must n~. From Figure 3.4, we see that the Wigner function features rapid

oscillations at large n. Therefore, coarse-graining is needed to convert the Wigner function

into a distribution for a classical system.

We want to focus on the height and radial width of the resultant distribution in phase

space. However, if n increases, so does En. As a result, rc also increases. We will therefore

focus on the constant energy of En =Ec = 1. The effect of this is to scale rc during Gaussian

smoothing, because otherwise rc → ∞. From equation (2.69), the Wigner function of the

simple harmonic oscillator at large n then behaves as

Wn(r)∼ (−1)nne−nr2
Ln(2nr2) . (3.33)

In Figure 3.4, we plot, as an illustrative example, equation (3.33) for n= 50 and n= 200.

At r = 0, the Wigner function is maximized, then rapidly decreases after the first oscilla-

tion. The inter-node distances of the oscillations slowly increase as the radial distance, r,

increases. Furthermore, the amplitude of the oscillations first decreases before increasing
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Figure 3.4: The Wigner function for n = 50 (left) and n = 200 (right). The inset plot depicts
n = 200 for 0≤ r ≤ 0.1

again.

We will smooth equation (3.33) with the Gaussian,

f (r) = exp
[
−r2

σ

]
, (3.34)

where σ is related to the inter-node separation of the oscillations and describes the coarse-

graining width of the Gaussian. For simplicity, we will consider σ equal to the distance

between the first two nodes of the Wigner function and the distance between the final two

nodes of the Wigner function.

Combining equations (3.33) and (3.34),

gn(r) =N
∫

∞

0
dyWn(y) f (r− y)y2 (3.35)

is then numerically evaluated, where N is the normalization constant. We note that inte-

gration is done over the interval [0,∞) as r ≥ 0 by definition and the y2 appears because

we are using spherical coordinates. In addition, we are not claiming that the two chosen

values of σ are the physically correct ones that should be used to Gaussian-smooth the

Wigner function. Rather, the σ’s that we use are merely a demonstration of applying Gaus-

sian smoothing to recover the classical phase space distribution of the simple harmonic

oscillator with a constant energy.
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Figure 3.5: Normalized convolutions of Wigner functions smoothed with the maximum
(red) and minimum (green) inter-nodal distances. We see that larger n corresponds to a
decrease in width and increase in height. This seems to indicates that n→ ∞ implies that a
delta function-like distribution will be found.

In Figure 3.5, we consider four Wigner functions convolved with equation (3.34), For

n = 50, 100, 200, 1000, we look at the cases in which σ is the minimum and maximum

inter-nodal distances. As n increases, σ becomes smaller because the inter-nodal distances

decrease. Furthermore, with an increase in n, the resultant Gaussian becomes narrower and

shifts towards rc =
√

2. Therefore, as n→∞, we would expect the width of the Gaussian to

go to zero, thereby becoming a delta function-like distribution. Physically, this corresponds

to a distribution in a classical phase space that describes a simple harmonic oscillator of

energy Ec = 1.

In this Chapter, we have introduced the Husimi function and demonstrated that it de-

scribes the Gaussian smoothing of the Wigner function. As this Gaussian smoothing is in-

troduced using the transition operator, the Husimi distribution is an example of augmented

quantization. A generalization of the Husimi distribution was also briefly examined so that
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the Wigner function is smoothed by a different parameter. We then used the technique of

coarse-graining to Gaussian smooth the n→ ∞ limit of the Wigner function.

Coarse-graining is only one possible physical effect that can be introduced to a quantum

system with the transition operator. In the next Chapter, we shall consider further physical

effects in our exploration of augmented quantization.
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Chapter 4

Local Transition Operators

4.1 Motivation

Dissipative forces appear in many situations, such as when investigating the interaction

between multiple systems or a system and its environment [94]. One of the simplest exam-

ples of a dissipative system is the damped harmonic oscillator. Classically, the damped har-

monic oscillator is well-understood. However, quantization of the damped harmonic oscil-

lator is much more difficult than the quantization of the simple harmonic oscillator [95–97].

Our goal in this Chapter is to explore augmented quantization. Using the damped har-

monic oscillator as motivation, we show that a transition operator with position and momen-

tum dependence gives the correct equations of motion in the ~→ 0 limit of the ?T -bracket.

Hence, such a generalized transition operator can convert a Weyl quantized system to a

system with augmented quantization. We then derive and discuss the resultant star prod-

uct. We believe these results are original and of interest to the larger field of phase space

quantum mechanics.

To conclude this Chapter, we apply our results to the generalized uncertainty princi-

ple of quantum gravity phenomenology and show that augmented quantization can yield

the correct modification of Heisenberg’s commutation relation. This will demonstrate that

augmented quantization is applicable beyond damping.
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4.2 The Damped Harmonic Oscillator

4.2.1 Quantization of Dissipative Systems

Consider a classical system that includes a dissipative force. This dissipative force can

be introduced to a quantum system using canonical quantization, Heisenberg’s equations of

motion, or path integrals. However, problems arise in each of these methods, such as the

lack of existence of a stable ground state [95].

To illustrate this difficulty, we will look at the Schrödinger equation for damping, sum-

marizing the calculations of [95, 98]. Consider the classical equation of motion

mq̈+
dV (q)

dq
+2γq̇ν = 0 , (4.1)

where γ is the damping constant. Multiplying this equation by q̇, we have

q̇
(

mq̈+
dV (q)

dq
+2γq̇ν

)
= 0 , (4.2)

The dissipative force is equal to Fd =−2γq̇ν. Hence, the amount of energy dissipation is

∆E = 2γ

∫
dq

dt
dt

q̇ν = 2γ

∫
dtq̇ν+1 .

From equation (4.2), we then have

d
dt

(m
2

q̇2 +∆E +V (q)
)
= 0 , (4.3)

because
d∆E
dt

= 2γq̇ν+1. Equation (4.3) shows that the sum of the kinetic energy, potential

energy, and energy dissipated from the system is conserved.

We can take the canonical momentum of p = mq̇, so the Hamiltonian is

H =
p2

2m
+V (q)+

2γ

mν

∫
dq pν . (4.4)
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This Hamiltonian can be quantized by using q→ q̂ and p→ p̂. In the position representa-

tion, the time-independent Schroödinger equation is

i~
∂ψ(q, t)

∂t
=

[
− ~2

2m
∂2

∂q2 +V (q)+2γ

(
−i~
m

)ν
∂ν−1

∂qν−1

]
ψ(q, t) . (4.5)

With ν = 1, the frictional force is proportional to velocity and describes linear damping.

The equations for the wavefunction and its complex conjugate are

i~
∂ψ(q, t)

∂t
=

[
− ~2

2m
∂2

∂q2 +V (q)+2γ

(
−i~
m

)]
ψ(q, t) , (4.6)

−i~
∂ψ(q, t)

∂t
=

[
− ~2

2m
∂2

∂q2 +V (q)+2γ

(
i~
m

)]
ψ(q, t) . (4.7)

Thus, the continuity-like equation is

∂|ψ(q, t)|2

∂t
+

∂

∂q
j(q, t) =−4γ

m
|ψ(q, t)|2 , (4.8)

where

j(q, t) =− i~
2m

(
ψ

∂ψ

∂q
−ψ

∂ψ

∂q

)
(4.9)

is the current density. With the assumption that the current density goes to zero at the

boundaries,

∂

∂t

∫
dq|ψ(q, t)|2 =−4γ

m

∫
dq|ψ(q, t)|2 . (4.10)

Therefore,

∫
dq|ψ(q, t)|2 = e−4γt/m

∫
dq|ψ(q,0)|2 . (4.11)

Some systems dissipate until they reach a ground state, but as no stable ground state is
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present, the above method of quantizing a damped classical system is not general and should

be modified.

4.2.2 Augmented quantization of the Simple Harmonic Oscillator

By focussing on the linearly damped harmonic oscillator, let us now look at the quanti-

zation of dissipative systems from a different perspective. This will be done by using phase

space quantum mechanics, the classical equations of motion for the damped harmonic os-

cillator, and the simple harmonic oscillator Hamiltonian.

The Poisson bracket is intimately connected to Hamilton’s equations of motion [99]:

q̇ = {q,H}= ∂H
∂p

, (4.12)

ṗ = {p,H}=−∂H
∂q

, (4.13)

where H = H(q, p) is the Hamiltonian and { f ,g} = f
(←

∂ q
→
∂ p −

←
∂ p
→
∂ q

)
g is the Poisson

bracket. By exponentiating the Poisson bracket (multiplied by i~/2), the Moyal product is

then formed, as was discussed in Section 2.6.

Consider the linearly damped simple harmonic oscillator, described by q̈ = −2γ q̇− q,

where γ > 0 is a damping constant. Its equations of motion are [33]

q̇ = p , (4.14)

ṗ =−q−2γ p . (4.15)

We will now summarize the proposal of [33], in which augmented quantization is ap-

plied to the classical simple harmonic oscillator to describe the damped quantum harmonic

oscillator. Using the equations of motion of the classical damped harmonic oscillator,5 and

5Note that that the equations of motion,

q̇ = p−2γq ,

ṗ =−q ,
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4.2. THE DAMPED HARMONIC OSCILLATOR

the Hamiltonian of the undamped simple harmonic oscillator, we will derive a modified

Poisson bracket, M( f ,g), that will include damping. From this new bracket, we will then

find the star product and the transition operator.

Consider the new bracket M, such that

q̇ = M(q,H0) , (4.16)

ṗ = M(p,H0) , (4.17)

where H0 =
p2

2
+

q2

2
is the undamped simple harmonic oscillator. Thus,

M(q,H0) = p , (4.18)

M(p,H0) =−q−2γp . (4.19)

Take M( f ,g) = { f ,g}+A( f ,g) for arbitrary functions f and g. Then

q̇ = p+A(q,H0) , (4.20)

ṗ =−q+A(p,H0) . (4.21)

Therefore, comparing with equations (4.14) and (4.15),

A(q,H0) = 0 , (4.22)

A(p,H0) = 2γp . (4.23)

One possible form of A is A( f ,g) =−2γ
∂ f
∂p

∂g
∂p

, yielding the modified Poisson bracket, [33]

M( f ,g) = { f ,g}−2γ
∂ f
∂p

∂g
∂p

. (4.24)

also describe a damped harmonic oscillator. The analysis in the subsequent sections would be slightly modi-
fied if these equations were used, but the general conclusions are similar.
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4.2. THE DAMPED HARMONIC OSCILLATOR

Consider f = f
(
q(t), p(t)

)
. Differentiating with respect to time, we find

d f
dt

= M( f ,H).

(Here we relabel H0 as H in order to avoid confusion with the Hermite polynomials which

we use later.) Therefore, Ḣ =−2γp2, implying that M describes energy dissipation as γ> 0.

To compute the new star product, we exponentiate M, such that [33]

?γ = e
i~
2 M = exp

[
i~
2

(←
∂ q
→
∂ p −

←
∂ p
→
∂ q −2γm

←
∂ p
→
∂ p

)]
. (4.25)

Using equation (2.88), the transition operator is [33]

Tγ = exp
(
− i~mγ

2
∂

2
p

)
. (4.26)

We have summarized the results of [33] in which they mapped an undamped simple

harmonic oscillator to a damped quantum harmonic oscillator. The transition operator to

convert between Weyl quantization and this damped quantization was also shown. This is

an example of augmented quantization because the physical feature of damping was not

present in the original system.

Consider Tγ applied to the ground state simple harmonic oscillator Wigner function.

From Section 2.8, the ground state Wigner function is W0(q, p) =
1

π~
e−

1
~(q2+p2). Note that

∂2n
p e−p2

= H2n(p) and [33]

∞

∑
n=0

tn

n!
H2n(p) =

1√
1+4t

e−
4t

1+4t p2
, (4.27)

for small t. Therefore, the augmented quantization of the simple harmonic oscillator ground

state is [33]

TγW0 =
1

π~
1√

1−2iγ/ω
e
− 1

~ω

(
mω2q2+ p2

m(1−2iγ/ω)

)
, (4.28)

which we plot in Figure 4.1. As a result of the non-Hermitian Hamiltonian, we see that

TγW0(q, p) is complex. Integration over the position will yield complex probabilities for the

momentum, which is difficult to interpret.

57



4.3. EFFECTS OF THE COMPLEX TRANSITION OPERATOR, Tγ

Figure 4.1: The transition operator Tγ operating upon the simple harmonic oscillator Wigner
function for the first energy level. We have set γ = 0.2. Note that there is both a real and
imaginary part to the distribution function. Integration over the position would then give a
complex marginal probability distribution for the momentum, which is undesirable.

4.2.3 Eigenvalue Spectrum

Consider the stargenvalue equation of (2.89). We have

TγH ?γ Wγ = E Wγ , (4.29)

where E =
(
n+ 1

2

)
~ω and Wγ = TγW . Thus, with TγH = H− i~mγ

2
, we can write

H ?γ Wγ = EγWγ , (4.30)

where Eγ = E +
im~γ

2
. Therefore, Eγ is the eigenvalue of the Hamiltonian H when using

the star product, ?γ.

Even though E was the eigenvalue of TγH, it is not clear if Eγ can be interpreted as an

energy due to its complex nature. For this reason, we hesitate to call Eγ an energy, though

complex energies have been examined in non-Hermitian quantum mechanics [100].

4.3 Effects of the Complex Transition Operator, Tγ

The work of Ref. [33] was a step towards using transition operators and star products

to describe augmented quantization. In this Section, we will note the implications of their
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4.3. EFFECTS OF THE COMPLEX TRANSITION OPERATOR, Tγ

formulation, summarized from [83].

As Tγ is complex, this automatically implies that ?γ is non-Hermitian:

f ?γ g = f e−
i~
2

(←
∂ q
→
∂ p−

←
∂ p
→
∂ q−2γm

←
∂ p
→
∂ p

)
g = ge

i~
2

(←
∂ q
→
∂ p−

←
∂ p
→
∂ q+2γm

←
∂ p
→
∂ p

)
f

= g?−γ f 6= g?γ f .
(4.31)

Therefore, ?†
γ 6= ?γ. Further, if it is assumed that i~∂TγW

∂t = [TγH,TγW ]?γ
is the correct equa-

tion of motion for TγW, then

0 =
∂Wγ

∂t
+

1
i~
[H,Wγ]?γ

+ iγ~m
∂2Wγ

∂p∂q
. (4.32)

Hence, the evolution of TγW is complex, rather than real. This means that initially real

distribution functions become complex during time evolution. However, such evolution is

required to be real. Therefore, the star bracket method may be invalid for non-Hermitian

transition operators.

Consider now the ~→ 0 limit of the ?γ-bracket, lim
~→0

[ f ,g]?γ

i~
. If this were the correct

method of determining the equations of motion involving a complex transition operator, we

should recover the equations of motion for the classical linear damped harmonic oscillator,

with f = q, p and g = H. Instead,

ṗ = lim
~→0

1
i~
[p,H]?γ

= {p,H}=−q , (4.33)

q̇ = lim
~→0

1
i~
[q,H]?γ

= {q,H}= p . (4.34)

This demonstrates that we recover the equations of motion of the simple harmonic os-

cillator, rather than the damped harmonic oscillator. Even though [33] used the classical

equations of motion for the damped harmonic oscillator as a starting point, the ~→ 0 limit

of the ?γ-bracket does not incorporate any dependence on the damping constant.

In Section 4.4, the ~→ 0 limit of the ?T -bracket is determined for any ?T found using
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equation (2.88). We will show that the result is always equal to the Poisson bracket, just as

in equations (4.33) and (4.34).

4.4 Calculating the ~→ 0 Limit with Star Products

Let H =
p2

2m
+V (q). We will demonstrate that

ṗ = lim
~→0

[p,H]?T

i~
→−∂V

∂q
,

q̇ = lim
~→0

[q,H]?T

i~
→ p ,

(4.35)

holds for any star product ?T calculated with equation (2.88), regardless of the form of the

(global) transition operator, T = T (∂q,∂p), assuming T is real. From equation (2.88),

?T = ?MT−1
(←

∂ q,
←
∂ p

)
T
(←

∂ q +
→
∂ q,
←
∂ p +

→
∂ p

)
T−1

(→
∂ q,
→
∂ p

)
. (4.36)

Let

�T := T−1
(←

∂ q,
←
∂ p

)
T
(←

∂ q +
→
∂ q,
←
∂ p +

→
∂ p

)
T−1

(→
∂ q,
→
∂ p

)
. (4.37)

For arbitrary functions f and g,

lim
~→0

[ f ,g]?T

i~
= lim

~→0

f ?M�T g−g?M�T f
i~

,

= lim
~→0

f ?M�T g− f ?t�t
T
g

i~
,

where we are using t to represent the transpose. As ?t
M = ?M and �t

T
=�T ,

lim
~→0

[ f ,g]?T

i~
= lim

~→0

f (?M−?M)�T g
i~

,

= lim
~→0

2 f sin
(
~
2
←→
P
)
�T g

~
.
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If T is also a function of ~, such that T = 1+∑
∞
r=1~rTr from equation (2.80), then

lim
~→0

[ f ,g]?T

i~
→{ f ,g} . (4.38)

With g = H and f as q or p, then we find equation (4.35).

If T does not depend on ~, however,

lim
~→0

[ f ,g]?T

i~
→ f
←→
P �T g . (4.39)

Let f = q and g = H. Therefore,

q̇ = lim
~→0

[q,H]?T

i~
→ q

(
←
∂ q
→
∂ p �T−

←
∂ p
→
∂ q �T

)
H (4.40)

=�T p , (4.41)

as the derivatives in the Poisson bracket commute with �T . When expanding the transition

operator, all terms will be of the form ∂m
p ∂n

q, for positive integers m and n. However, the

expansion of �T as a series will not contain the terms of
←
∂

m

p ,
→
∂

m

p ,
←
∂

n

q ,
→
∂

n

q . Hence,

q̇ = lim
~→0

[q,H]?T

i~
→ p = {q,H} . (4.42)

Similarly, with f = p,

ṗ = lim
~→0

[p,H]?T

i~
→−∂V

∂q
= {p,H} . (4.43)

4.5 Transition Operators Involving Position and Momentum

4.5.1 Motivation for Generalizing the Transition Operator

We desire a ?T such that lim
~→0

[q,H]?T

i~
and lim

~→0

[p,H]?T

i~
gives the classical equations of

motion for the damped harmonic oscillator. Hence, we want a transition operator and star
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product such that the ~→ 0 limit of the ?T -bracket yields something of the form,

lim
~→0

[ f ,g]?T

i~
→ f

(←→
P +physics

)
g , (4.44)

or

lim
~→0

[ f ,g]?T

i~
→ f

(←→
P ×physics

)
g , (4.45)

where physics represents any extra physical term that should be present in the classical

equations of motion for a given system.

In Section 4.4, we showed that the usual transition operator, T = T
(
∂q,∂p

)
, and star

product of equation (2.88) always give the classical equations of motion for the classical

system mq̈+V (q) = 0 in the ~→ 0 limit. Thus, with T = T
(
∂q,∂p

)
, extra physical features

such as damping cannot be described. This motivates generalizing the transition operator

in order to recover the classical equations of motion for a damped system in the ~→ 0 limit

of the ?T -bracket.

4.5.2 Transition Operator for Damping

Ref. [33] attempted to augment the quantization of the simple harmonic oscillator such

that damping was incorporated into the quantum system. They did this by deriving a modi-

fied Poisson bracket from the classical equations of motion of the damped harmonic oscil-

lator. By exponentiating this modified Poisson bracket, the star product was found, which

immediately implied the transition operator. However, as [83] demonstrated, the star prod-

uct and transition operator suggested by [33] does not yield the classical damped harmonic

oscillator equations of motion in the ~→ 0 limit of 1
i~ [q,H]?γ

and 1
i~ [p,H]?γ

.

Our objective is to find a star bracket that gives the damped harmonic oscillator equa-

tions of motion in the ~→ 0 limit. To do this, we will generalize the transition operator to

include position and momentum dependence, T = T (q, p,∂q,∂p). We will show that such
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a transition operator can convert Weyl quantization into an augmented quantization that

includes damping.

When considering transition operators of the form, T = T (q, p,∂q,∂p), the resultant

distribution function will incorporate a quantization that is related to the values of q and

p. Hence, by incorporating explicit dependence on q and p, it is possible to interpret the

transition operator as describing a form of “local” operator ordering.

When using local transition operators, we still enforce the defining relation of ?T :

T ( f ?M g) = T f ?T T g, implying that T
(
T−1 f ?M T−1g

)
= f ?T g. However, it is important

to note that the star product can no longer be written in the same manner as equation (2.88).

As a simple example, consider Tp = ep∂p giving rise the star product, ?p. Expanding Tp,

we get

Tp = 1+ p∂p +
1
2
(

p2
∂

2
p + p∂p

)
+

1
6
(

p3
∂

3
p +3p2

∂
2
p + p∂p

)
+ · · · , (4.46)

so that

Tp( f ?M g) = ep∂p( f ?M g) = f ?M g+ p( f ?M (
←
∂ p +

→
∂ p)g)

+
1
2

[
p2( f ?M (

←
∂ p +

→
∂ p)

2g)+ p( f ?M (
←
∂ p +

→
∂ p)g)

]
+ · · · ,

6= f ?M ep(
←
∂ p+

→
∂ p)g = T f ?p T g .

Hence, we find

?p 6= ?Me−p
←
∂ pep(

←
∂ p+

→
∂ p)e−p

→
∂ p = ?M , (4.47)

in conflict with equation (2.88).

Using T = T (q, p,∂q,∂p) and T
(
T−1 f ?M T−1g

)
= f ?T g, the goal is to recover Hamil-

ton’s equations of motion for the damped harmonic oscillator with the undamped simple
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harmonic oscillator Hamiltonian, H =
p2

2
+

q2

2
so that

ṗ =−q−2γp ,

q̇ = p ,
(4.48)

where γ > 0 is a damping constant.

As shown in Section 4.4, the ~→ 0 limit of the ?T -bracket of two phase space functions,

f and g, is

lim
~→0

[ f ,g]?T

i~
= lim

~→0

T [T−1 f ,T−1g]?M

i~
, (4.49)

so that

lim
~→0

[p,H]?T

i~
= lim

~→0

T [T−1 p,T−1H]?M

i~
. (4.50)

Motivated by the simple form H = p2

2 + q2

2 , consider the transition operator

Tγ = exp
[
γ

(
a∂q +b∂p + c∂

2
q +d∂

2
p

)]
, (4.51)

where a, b, c, d are functions of q and p.

If a = c = d = 0 and b = p, then Tγ = eγp∂p . As shown in equation (4.46), the exponen-

tiation of p∂p results in a non-terminating series when acting on the Hamiltonian. To avoid

this, we will focus upon small damping, such that

Tγ ≈ 1+ γ

(
a∂q +b∂p + c∂

2
q +d∂

2
p

)
, (4.52)

and

T−1
γ ≈ 1− γ

(
a∂q +b∂p + v∂

2
q +d∂

2
p

)
. (4.53)
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Calculations yield

Tγ(T−1
γ p?M T−1

γ H) = p?M H− γb?M H− γp?M

[
aq+bp+ c+d

]
+ γ

(
a∂q +b∂p + c∂

2
q +d∂

2
p

)(
p?M H

)
+O(γ2) .

(4.54)

Hence,

ṗ = lim
~→0

[p,H]?T

i~
≈ {p,H}+ γ

(
∂q

[
aq+bp+ c+d

])
− γ{b,H}− γa . (4.55)

Similarly, we find

q̇ = lim
~→0

[q,H]?T

i~
≈ {q,H}− γ

(
∂p

[
aq+bp+ c+d

])
− γ{a,H}+ γb . (4.56)

We therefore need to solve

∂q

[
aq+bp+ c+d

]
−{b,H}−a =−2p , (4.57)

−∂p

[
aq+bp+ c+d

]
−{a,H}+b = 0 , (4.58)

to determine the functions a, b, c, and d; the solutions are shown in Appendix C.

Therefore, the transition operator in equation (4.52) gives the damped harmonic oscil-

lator equations of motion in the ~→ 0 limit of the ?T -brackets. Hence, with this transition

operator, we have mapped the Weyl-quantized simple harmonic oscillator to a system that

also includes damping.

This method of incorporating additional physical effects into a quantum system with a

transition operator of the form T = T (q, p,∂q,∂p) can be extended to other potentials and

systems. For instance, with an arbitrary potential of V (q), Hamilton’s equations are

ṗ =−dV
dq
−2γp ,

q̇ = p .
(4.59)
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The differential equations that result (for small damping) are:

∂q

[
a

dV
dq

+bp+ c
d2V
dq2 +d

]
−{b,H}−

(
a

d2V
dq2 + c

d3V
dq3

)
=−2p , (4.60)

−∂p

[
a

dV
dq

+bp+ c
d2V
dq2 +d

]
−{a,H}+b = 0 . (4.61)

This indicates that the general form of Tγ in equation (4.52) is valid beyond harmonic os-

cillators, but the coefficients of a, b, c, and d are dependent on the potential.

With a non-linearly damped equation of motion of the form,

q̈+2γ f (q̇)+q = 0 , (4.62)

the Hamiltonian equations of motion are

ṗ =−q−2γ f (p) ,

q̇ = p .
(4.63)

By the same process used for linear damping, the functions of a, b, c, and d in equation

(4.52) can be found. The coupled partial differential equations are

∂q
[
aq+bp+ c+d

]
−{b,H}−a =−2 f (p) , (4.64)

−∂p
[
aq+bp+ c+d

]
−{a,H}+b = 0 . (4.65)

In Appendix C, we show the solutions to equations (4.64) and (4.65) for quadratic damping.

To summarize, we have generalized the transition operator so that it is now also a func-

tion of the position and momentum coordinates. To illustrate its usefulness, we showed

that such a transition operator can yield the the damped harmonic oscillator equations of

motion in the ~→ 0 limit of the ?T -bracket for weak damping. We say that this transition

operator was able to convert a Weyl-quantized simple harmonic oscillator to an augmented
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quantized simple harmonic oscillator.

It was also shown that this method of using T = T (q, p,∂q,∂p) to convert to an aug-

mented quantized system has applications beyond the harmonic oscillators. We illustrated

this by briefly considering linear damping for a classical system described by an arbitrary

potential and by also examining the non-linearly damped harmonic oscillator.

We note that we have only considered small damping, hence we were able to expand

the transition operator as a series. It would be difficult to treat equation (4.51) otherwise, as

no closed form may exist for arbitrary a, b, c, d. By considering forms besides exponential

for the transition operator, it may be possible to describe the augmented quantization of an

even larger class of systems.

In Section 4.8, we will use a local transition operator to realize the commutation rela-

tion of the generalized uncertainty principle of quantum gravity phenomenology. Then, in

Chapter 5, we will consider a time-dependent local transition operator.

4.5.3 Eigenvalue Spectrum

In this Section, we will illustrate the difficulty of determining the eigenvalue of H when

using the star product, ?T . The following argument holds for both global and local transition

operators.

In equation (2.89), we presented the stargenvalue equation, T H ?T TW = E TW . Thus,

the eigenvalue of T H in the ?T formulation is E. If H = p2

2m +V (q) and T = eε∂2
p , where

ε ∈ C, then T H = H + ε. Thus,

H ?T TW = (E− ε)TW , (4.66)

so the eigenvalue of H in the ?T formulation is E− ε. This is similar to what was shown in

Section 4.2.3, in which the eigenvalue of H = p2

2 + q2

2 was found for the damped augmented

quantization in [33].

Consider the application of an arbitrary transition operator to the stargenvalue equation,
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then rearranging so that we have an equation of the form H ?T TW = ET (q, p)TW . If

we want to convert phase space quantum mechanics to operator quantum mechanics, then

operation of a quantization map Q̃T yields

Q̃T (H)Q̃T (TW ) = Q̃T (ET (q, p)TW ) . (4.67)

We can write Q̃T (H ?T TW ) = Q̃T (H)Q̃T (TW ) because the operator algebra and ?T alge-

bra are homomorphic. However, as ET (q, p) is not necessarily constant, we are unable to

determine Q̃T (ET (q, p)TW ). Hence, it is not possible to treat equation (4.67) as an eigen-

value equation. It might only make sense to find the eigenvalues of H in the ?T formulation

in some situations.

4.5.4 Relation of the Local Transition Operator to the Weight Function

In Section (2.10), it was demonstrated that a transition operator, T (∂q,∂p), yielded the

weight function Φ(∂p,∂q) = T
(
−i∂p,−i∂q

)
. Let us now determine the weight function cor-

responding to a transition operator of the form, T = T (q, p,∂q,∂p). As a revealing example,

consider T = ep∂p . If we apply this to a Wigner function, W , we have

TW =
1

4π2

∫
dξdηdq′ψ∗(q′−η~/2)ψ(q′+η~/2)eiξ(q′−q)ep∂pe−iηp . (4.68)

However, unlike in the previous case in which the transition operator was only dependent

on differential operators, it is not possible to let ∂p→−iη because ∂p also acts upon the p

in the exponential, such that

ep∂p = 1+ p∂p +
1
2
(

p2
∂

2
p + p∂p

)
+

1
6
(

p3
∂

3
p +3p2

∂
2
p + p∂p

)
+ · · · . (4.69)
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Instead, to determine the relationship between T (q, p,∂q,∂p) and the weight function, the

transition operator should be written in a similar form as equation (2.95),

T (q, p,∂q,∂p) = ∑
mn

tmn(q, p)∂
m
q ∂

n
p , (4.70)

by using the commutation relations of [∂q,q] = 1 and [∂p, p] = 1. This will separate the

differential operators from any functions of q and p also present in the transition operator.

Thus,

T (q, p,∂q,∂p)W =
1

4π2

∫
dξdηdq′

(
ψ
∗(q′−η~/2)ψ(q′+η~/2)

×∑
mn

tmn(q, p)∂
m
q ∂

n
p eiξ(q′−q)e−iηp

)
,

(4.71)

giving

T (q, p,∂q,∂p)W =
1

4π2

∫
dξdηdq′

(
ψ
∗(q′−η~/2)ψ(q′+η~/2)

×∑
mn

tmn(q, p)(−iξ)m(−iη)n eiξ(q′−q)e−iηp

)
.

(4.72)

Therefore, the weight function can be related to the transition operator with

Φ(ξ,η) = ∑
mn

tmn(q, p)(−iξ)m(−iη)n . (4.73)

To illustrate this method of finding the weight function, consider T = ep∂p and note that

it can be written as

T =
∞

∑
n=0

1
n!

n

∑
m=0

{
n
m

}
pm

∂
m
p , (4.74)
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where
{

n
m

}
is a Stirling number of the second kind, defined as [79]

{
n
m

}
=

1
m!

m

∑
k=0

(−1)m−k
(

m
k

)
kn . (4.75)

Therefore, the weight function for T = ep∂p is

Φ(ξ,η) =
∞

∑
n=0

1
n!

n

∑
m=0

{
n
m

}
pm(−iη)m . (4.76)

4.6 Star Product with Position and Momentum Dependence

4.6.1 Derivation of the Star Product

When deriving the star product for the transition operator, T = T (q, p∂q,∂p), one starts

with T ( f ?M g) = T f ?T T g, then letting F = T f and G = T g, we get T (T−1F ?M T−1G) =

F ?T G. Note that

[
T−1 (q, p,∂q,∂p

)
F(q, p)

]
?M

[
T−1 (q, p,∂q,∂p

)
G(q, p)

]
= I(1,2) [?M(1,2)]T−1 (q1, p1,∂q1,∂p1

)
T−1 (q2, p2,∂q2 ,∂p2

)
F(1)G(2)

(4.77)

where [?M(1,2)] := e
i~
2 (∂q1∂p2−∂p1∂q2), F(1) := F(q1, p1), G(2) := G(q2, p2), and I(1,2)

sets q1 = q2 = q and p1 = p2 = p at the end of the calculation.

We then have

T
([

T−1 (q, p,∂q,∂p
)

F(q, p)
]
?M

[
T−1 (q, p,∂q,∂p

)
G(q, p)

])
= I(1,2)T (1,2) [?M(1,2)]T−1 (q1, p1,∂q1,∂p1

)
T−1 (q2, p2,∂q2,∂p2

)
F(1)G(2) ,

(4.78)

where T (1,2) represents the transition operator written in terms of q1, p1, q2, p2, such that

it satisfies equation (4.78). Therefore,

?T = I(1,2)T (1,2) [?M(1,2)]T−1 (q1, p1,∂q1,∂p1

)
T−1 (q2, p2,∂q2 ,∂p2

)
. (4.79)
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The goal is now to determine T (1,2). We conjecture that

T (1,2) = T
(

q1 +q2

2
,

p1 + p2

2
,∂q1 +∂q2,∂p1 +∂p2

)
, (4.80)

so equation (4.78) becomes

F ?T G =I(1,2)T
(

q1 +q2

2
,

p1 + p2

2
,∂q1 +∂q2,∂p1 +∂p2

)
[?M(1,2)]

×T−1 (q1, p1,∂q1,∂p1

)
T−1 (q2, p2,∂q2,∂p2

)
F(1)G(2) ,

(4.81)

hence the star product is

?T =I(1,2)T
(

q1 +q2

2
,

p1 + p2

2
,∂q1 +∂q2,∂p1 +∂p2

)
[?M(1,2)]

×T−1 (q1, p1,∂q1 ,∂p1

)
T−1 (q2, p2,∂q2,∂p2

)
.

(4.82)

When T = T (∂p,∂q), equation (4.82) reduces to

?T = I(1,2)T
(
∂q1 +∂q2,∂p1 +∂p2

)
[?M(1,2)]T−1 (

∂q1,∂p1

)
T−1 (

∂q2,∂p2

)
,

= I(1,2) [?M(1,2)]T−1 (
∂q1,∂p1

)
T
(
∂q1 +∂q2,∂p1 +∂p2

)
T−1 (

∂q2,∂p2

)
,

= ?MT−1
[←

∂

]
T
[←

∂ +
→
∂

]
T−1

[→
∂

]
,

which is precisely equation (2.88), as desired.

As a first step towards confirmation of the conjecture, note that equation (4.82) can be

expanded in a series so that each term in T
(q1+q2

2 , p1+p2
2 ,∂q1 +∂q2,∂p1 +∂p2

)
will have the

form,

· · ·×A
(

q1 +q2

2
,

p1 + p2

2

)
(∂p1 +∂p2)

n′ (
∂q1 +∂q2

)m′

×B
(

q1 +q2

2
,

p1 + p2

2

)
(∂p1 +∂p2)

n (
∂q1 +∂q2

)m×·· · ,
(4.83)

where n, m, n′, m′ are non-negative integers and are not necessarily equal. We need only

consider equation (4.83) acting on the term, pa
1 pb

2 qa′
1 bb′

2 where a+b≥ n and a′+b′≥m be-

71



4.6. STAR PRODUCT WITH POSITION AND MOMENTUM DEPENDENCE

cause it is possible to expand [?M(1,2)]T−1 (q1, p1,∂q1 ,∂p1

)
T−1 (q2, p2,∂q2,∂p2

)
F(1)G(2)

as a series in terms of the position and momentum coordinates.

To verify the conjecture, it is only necessary to show

I(1,2)B
(

q1 +q2

2
,

p1 + p2

2

)
(∂p1 +∂p2)

n (
∂q1 +∂q2

)m pa
1 pb

2 qa′
1 qb′

2

= B(q, p)∂
n
p ∂

n
q pa+b qa′+b′ ,

(4.84)

from the second line of equation (4.83). We can then expand the right-hand side of equation

(4.84) as a series so that it will be in the form of pa
1 pb

2 qa′
1 bb′

2 . Therefore, the argument that

we will use to validate equation (4.84) can then be applied to the next term in equation

(4.83), containing A
(q1+q2

2 , p1+p2
2

)
(∂p1 +∂p2)

n′ (
∂q1 +∂q2

)m′ . We will use Mathematica to

evaluate the resultant series.

Assume a, b, a′, and b′ are non-negative integers. We have,

(∂p1 +∂p2)
n (

∂q1 +∂q2

)m pa
1 pb

2qa′
1 qb′

2 =
n

∑
`=0

m

∑
`′=0

{(
n
`

)(
a
`

)
`!
(

b
n− `

)
(n− `)!

(
m
`′

)

×
(

a′

`′

)
`′!
(

b′

m− `′

)
(m− `′)!pa−`

1 pb+`−n
2 qa′−`′

1 qb′+`′−m
2

}
,

=

(
b
n

)
n!
(

b′

m

)
m!2F1

[
−a,−n,1+b−n;

p2

p1

]
2F1

[
−a′,−m,1+b′−m;

q2

q1

]
× pa

1 pb−n
2 qa′

1 qb′−m
2 ,

where we have expanded (∂p1 +∂p2)
n (

∂q1 +∂q2

)m with the binomial theorem and then

applied the Leibniz identity

dn

dxn

[
y(x)z(x)

]
=

n

∑
k=0

(
n
k

)
dky(x)

dxk
dn−kz(x)

dxn−k
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for any functions y(x) and z(x). We also used

n

∑
`=0

(
n
`

)(
a
`

)
`!
(

b
n− `

)
(n− `)!pa−`

1 pb+`−n
2 = pa

1 pb−n
2

(
b
n

)
n!2F1

[
−a,−n,1+b−n;

p2

p1

]

By expanding the Gauss hypergeometric functions as a series and letting p1 = p2 = p

and q1 = q2 = q,

I(1,2)(∂p1 +∂p2)
n (

∂q1 +∂q2

)m pa
1 pb

2qa′
1 qb′

2

=

(
b
n

)
n!
(

b′

m

)
m!

a

∑
α=0

(−a)α(−n)α

α!(1+b−n)α

a′

∑
α′=0

(−a′)α′(−m)α′

(α′)!(1+b′−m)α′
pa+b−nqa′+b′−m

(4.85)

as [79]

2F1(w,x,y;z) =
x

∑
α=0

(w)α(x)α

(y)α

zα

α!
(4.86)

if x is a negative integer. Using

a

∑
α=0

(−a)α(−n)α

(α)!(1+b−n)α

=
(a+b)!(b−n)!
b!(a+b−n)!

, (4.87)

we find,

I(1,2)(∂p1 +∂p2)
n =

(
a+b

n

)(
a′+b′

m

)
n!m!pa+b−nqa′+b′−m . (4.88)

From the right-hand side of equation (4.84)

∂
n
p∂

m
q pa+bqa′+b′ =

(
a+b

n

)(
a′+b′

m

)
n!m!pa+b−nqa′+b′−m . (4.89)

Hence, the conjecture is verified if a, b, a′, and b′ are non-negative integers. We have

therefore shown that equation (4.82) is the generalization of the star product resulting from

a local transition operator for the conditions on a, b, a′, and b′.
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If a, b, a′, and b′ are not non-negative integers, we expect a similar procedure as outlined

above to hold, but the factorials will be replaced by the Γ function. It is important to note,

though, that the sums in equation (4.85) should then range from 0 to m and 0 to n, rather

than to a′ and a.

4.6.2 Properties of the Generalized Star Product

The properties of equation (4.82) will now be analyzed. Note that the transpose (using

the definition in Table 2.3) of ?T is itself because, instead of letting
←
∂↔

→
∂ , we now let

1↔ 2. Therefore, if T (q, p,∂q,∂p) is also real, then ?T is Hermitian because ?M is also

Hermitian.

Let us now consider [q, p]?T . We can write this as

[q, p]?T = I(1,2)
{

T
(

q1 +q2

2
,

p1 + p2

2
,∂q1 +∂q2,∂p1 +∂p2

)
[?M(1,2)]T−1 (q1, p1,∂q1 ,∂p1

)
×T−1 (q2, p2,∂q2,∂p2

)}
q1 p2

−I(1,2)
{

T
(

q1 +q2

2
,

p1 + p2

2
,∂q1 +∂q2,∂p1 +∂p2

)
[?M(1,2)]T−1 (q1, p1,∂q1,∂p1

)
×T−1 (q2, p2,∂q2,∂p2

)}
q2 p1 .

Expanding T−1 (q, p,∂q,∂p
)

in a similar manner as equation (4.83), the only relevant deriva-

tive with respect to p is the first derivative (all other derivatives will give zero when acting

on p). Similarly, only the first derivative of the position will give a non-zero result in the

expansion of T−1 (q, p,∂q,∂p
)
. Therefore, the transition operator can be expanded as

T = 1+ f1(q, p)∂q + f2(q, p)∂p + · · · , (4.90)

As will be shown in Section 4.6.3, the first term must be 1 rather than a function of q and

p because the transition operator acting on the identity must always give back the identity.
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This holds for both global and local transition operators.

Letting

T−1 = 1+g1(q, p)∂q +g2(q, p)∂p , (4.91)

we find
I(1,2) [?M(1,2)]T−1 (q1, p1,∂q1,∂p1

)
T−1 (q2, p2,∂q2 ,∂p2

)
q2 p1

=
(

p+g2(q, p)
)
?M

(
q+g1(q, p)

)
.

(4.92)

As a result,

[q, p]?T =
(

1+ f1(q, p)∂q

)
[q+g1(q, p), p+g2(q, p)]?M

+ f2(q, p)∂p [q+g1(q, p), p+g2(q, p)]?M
.

(4.93)

We see that in general, [q, p]?T 6= i~, in contrast to the global transition operators presented

in Table 2.3.

Let f , g, h be functions of q and p. We can show that ?T is associative because,

( f ?T g)?T h = T (T−1 f ?M T−1g)?T h ,

= T ((T−1 f ?M T−1g)?M T−1h) ,

= T (T−1 f ?M (T−1g?M T−1h)) ,

by using the associativity of the Moyal product demonstrated in Section 2.6. Then

( f ?T g)?T h = T (T−1 f ?M T−1(T (T−1g?M T−1h))) ,

= T (T−1 f ?M T−1(g?T h)) ,

= f ?T (g?T h) ,

demonstrating the associativity of ?T , We note that this derivation holds true regardless of

whether T = T (∂q,∂p) or T = T (q, p,∂q,∂p).

With T = T (q, p,∂q,∂p), we have generalized the star product so it includes local tran-
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sition operators and is able to help describe augmented quantization. It is still possible to

write f ?T g in a similar form as equation (2.35), such that

f ?T g =
∞

∑
r=0

ν
rCr(q, p, f ,g) , (4.94)

where ν is a complex parameter and Cr now includes explicit dependence on q and p,

regardless of f and g. We can write Cr as

Cr = br(q, p) [Dr f (q, p)]
[
D̃rg(q, p)

]
,

where br(q, p) is a function determined by the form of f ?T g, Dr and D̃r are functions of

∂q, ∂p and the coordinates of q ,p.

Comparing with equation (2.36), similar properties of Cr are:

1. C0(q, p, f ,g) = f g

2. For a ∈ R, Cr(q, p, f ,a) =Cr(q, p,a, f ) = 0
(4.95)

where, unlike in Section 2.6, C1( f ,g) is not necessarily the Poisson bracket nor is Cr( f ,g)

antisymmetric in f and g. We note that equation (4.95) is a non-exhaustive list; additional

properties of Cr(q, p, f ,g) could be determined.

4.6.3 Converting to Quantizations with Global and Local Transition Operators

To convert from Weyl quantization to a different quantization in phase space, the tran-

sition operator is applied, such that

(
ei(θq+τp)

)
W
→ Tei(θq+τp) , (4.96)

where the subscript W indicates that Weyl quantization is our reference quantization. In

Table 2.2, we showed how to convert between different operator quantizations and phase
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space quantizations.

With T = 1, equation (4.96) gives Weyl quantization, so ei(θq+τp) is unaffected. For T =

T (∂q,∂p), ei(θq+τp) will pick up additional terms dependent on θ and τ. As an example, TS =

ei~∂p∂q/2 of Table 2.2 gives standard ordering. In this case, TSei(θq+τp) = ei(θq+τp−~θτ/2). To

then relate the function of ei(θq+τp) in classical mechanics to Tei(θq+τp) in phase space

quantum mechanics, it is necessary to expand both quantities in terms of θ and τ and relate

like powers.

For T = T (q, p,∂q,∂p), equation (4.96) also describes augmented quantization induced

by local transition operators, so a similar procedure to associate the classical function of

ei(θq+τp) with Tei(θq+τp) could be done. Thus, the mapping from the classical position and

momentum to their augmented quantized counterparts would look like:

q→ q+ c(q, p) ,

p→ q+d (q, p) ,
(4.97)

where c(q, p) and d(q, p) are functions determined by the transition operator. In contrast,

with the transition operators of Table 2.2, we have c(q, p) = d(q, p) = 0.

In general, augmented quantization of a classical function z(q, p) obeys

1. 1→ 1

2. q→ T q

3. p→ T p

4. z∗(q, p)→ T z∗(q, p)

(4.98)

These rules are similar to the first four properties of quantization from Section 2.2.

To conclude this Section, we recall that with T = T (∂q,∂p), the star products of ?M and

?T are c-equivalent, as discussed in Section 2.10. This form of mathematical equivalence

holds because T ( f ?M g) = T f ?T T g. With T = T (q, p,∂q,∂p), we still have T ( f ?M g) =
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T f ?T T g, hence ?M and the resultant ?T are also mathematically equivalent. However, as

the ?T will also depend on position and momentum, rather than just derivatives, ?T may not

have the same form of mathematical equivalence as for global star products.

4.7 Star Product for the Damped Harmonic Oscillator

In Section 4.5, we generalized the transition operator to investigate its ability to aug-

ment the quantization of a system. We did this by using T = T (q, p,∂q,∂p) and showing

that the ~→ 0 limit of [q,H]?γ
and [p,H]?γ

recovered the classical equations of motion

for the damped harmonic oscillator. It was then demonstrated that the star product was

also generalized. As a result, additional physical features were incorporated into both

T = T (q, p,∂q,∂p) and the associated star product, which is the hallmark of augmented

quantization.

For the damped harmonic oscillator transition operator of equation (4.51), using equa-

tion (4.82), the star product is

?γ =exp
{

γ

[
a
(

q1 +q2

2
,

p1 + p2

2

)(
∂q1 +∂q2

)
+b
(

q1 +q2

2
,

p1 + p2

2

)
(∂p1 +∂p2)

+c
(

q1 +q2

2
,

p1 + p2

2

)(
∂q1 +∂q2

)2
+d
(

q1 +q2

2
,

p1 + p2

2

)
(∂p1 +∂p2)

2
]}

× [?M(1,2)]exp
{
− γ

[
a(1)∂q1 +b(1)∂p1 +dc(1)∂2

q1
+d(1)∂2

p1

]}
× exp

{
− γ

[
a(2)∂q2 +b(2)∂p2 + c(2)∂2

q2
+d(2)∂2

p2

]}

where we have adopted the notation that a(1) := a(q1, p1), a(2) := a(q2, p2), and similarly

for b, c, and d. Letting T̃γ(q, p,∂q,∂p) = a∂q + b∂p + c∂2
q + d∂2

p, up to O(γ), the damped

harmonic oscillator star product is

?γ ≈I(1,2)
{
[?M(1,2)]+ γ

[
T̃γ

(
q1 +q2

2
,

p1 + p2

2
,∂q1 +∂q2,∂p1 +∂p2

)
[?M(1,2)]

− [?M(1,2)] T̃γ

(
q1, p1,∂q1,∂p1

)
− [?M(1,2)] T̃γ

(
q2, p2,∂q2 ,∂p2

)]}
.

(4.99)
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In Section 4.5, we calculated the ~→ 0 limit of the ?γ−product between position/mo-

mentum and the Hamiltonian by using the transition operator and the Moyal product. We

can find the ~→ 0 limit of [p,H]?γ
directly using equation (4.99) by noting that

I(1,2)Tγ(1,2) [?M(1,2)] p1H(q2, p2) = I(1,2)
{
[?M(1,2)] p1H(q2, p2)

− γ

(
[?M(1,2)] [b(1)H(q2, p2)+a(2)p1q2 +b(2)p1 p2 + c(2)p1 +d(2)p1]

)
+ γ

[
a
(

q1 +q2

2
,

p1 + p2

2

)(
∂q1 +∂q2

)
+b
(

q1 +q2

2
,

p1 + p2

2

)
(∂p1 +∂p2)

+c
(

q1 +q2

2
,

p1 + p2

2

)(
∂q1 +∂q2

)2
+d
(

q1 +q2

2
,

p1 + p2

2

)
(∂p1 +∂p2)

2
]

× [?M(1,2)]
(

p1H(q2, p2)
)}

,

= p?M H− γb?M H− γp?M
[
aq+bp+ c+d

]
+ γ

(
a∂q +b∂p + c∂

2
q +d∂

2
p

)(
p?M H

)
,

which is equation (4.54). Evaluating I(1,2)Tγ(1,2)γ [?M(1,2)] p2H(q1, p1), we see that

I(1,2) lim
~→0

1
i~

(
Tγ(1,2) [?M(1,2)] p1H(q2, p2)−Tγ(1,2) [?M(1,2)] p2 H(q1, p1)

)
=−2p

if

∂q

[
aq+bp+ c+d

]
−{b,H}−a =−2p

holds. This corresponds to equation (4.57). Similarly, by using equation (4.99), the ~→ 0

limit of [p,H]?γ
gives

I(1,2) lim
~→0

1
i~

(
Tγ(1,2) [?M(1,2)] q1H(q2, p2)−Tγ(1,2) [?M(1,2)]q2 H(q1, p1)

)
= 0

if equation (4.58) is satisfied. We have therefore shown that we recover the same classical

equations of motion for the damped harmonic oscillator if we write the ?T -bracket using the
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damped star product, ?γ, or using both the Moyal product and damped transition operator,

Tγ, of Section 4.5.

In Section 4.5, we also considered linear damping for an arbitrary potential and the non-

linearly damped harmonic oscillator. Similar calculations as those shown in this Section

recover the differential equations in (4.60), (4.61) and (4.64), (4.65).

4.8 Generalized Uncertainty Principle

In Chapter 3, we showed that the Gaussian smoothing of the Wigner function was an

example of augmented quantization as additional physics were introduced by the transition

operator. Earlier in this Chapter, we also used augmented quantization to map the classical

simple harmonic oscillator to its quantum mechanical damped counterpart.

We will now show that augmented quantization and the transition operator have ap-

plications beyond incorporating coarse graining or damping into a quantum system. Our

objective is to apply augmented quantization to a classical system such that its quantum

mechanical counterpart includes perturbations resulting from quantum gravity effects. We

will derive a transition operator that will introduce these effects into a system. This tran-

sition operator will then be applied to the Wigner function of the simple harmonic oscil-

lator. Ref. [101] has studied the quantum gravity-modified simple harmonic oscillator by

determining its wavefunction in momentum space, then finding the resultant phase space

distribution function.

The largest particle accelerator in present use is the Large Hadron Collider with energies

of ∼10 TeV. A new particle accelerator is currently under consideration with energies of ∼

100 TeV [102]. However, this collider energy is many, many orders of magnitude below

the natural energy scale of quantum gravity, ∼ 1016 TeV (Planck energy). Consequently, to

study the effects of quantum gravity, it is necessary to consider low-energy corrections.

Several theories of quantum gravity, including loop quantum gravity and string theory,

predict the existence of a minimum length scale that is believed to be similar to a minimum

80



4.8. GENERALIZED UNCERTAINTY PRINCIPLE

uncertainty in the position (on the order of the Planck length). This leads to a modifica-

tion of Heisenberg’s uncertainty principle, in which the quantum gravity corrections are

truncated to be either quadratic (no linear term) or linear + quadratic in a small parameter

dependent upon the Planck length [103, 104].

This modification of Heisenberg’s uncertainty principle is known as the generalized

uncertainty principle (GUP), which is valid at very low energies. The commutation relation

of GUP is [104],

[q̂i, p̂ j] = i~
(

δi j−α

(
p̂δi j +

p̂i p̂ j

p̂

)
+α

2(p̂2
δi j +3p̂i p̂ j)

)
, (4.100)

where α∼ α0`Pl/~ is a small parameter, α0 is a constant, p̂2 =
3

∑
j=1

p̂2
j and `Pl is the Planck

length. As shown in [104], one method to find equation (4.100) from [q̂i, p̂ j] = i~δi j is

to make the transformation, p̂i → p̂i
(
1−α p̂+2α2 p̂2). In one dimension, this mapping

modifies the Hamiltonian of H = p̂2

2m +V (q̂), such that the GUP-modified Hamiltonian is,

H→ p̂2

2m
+V (q̂)− α

m
p̂3 +

5α2

2m
p̂4 . (4.101)

As a proof of concept of using a transition operator to introduce quantum gravity effects,

we will consider only the quadratic form of GUP, such that [q̂, p̂] = i~(1 + 4α2 p̂2). It

is possible to obtain this modified commutation relationship from [q̂, p̂] = i~ with p̂→

p̂
(
1+ 4

3α2 p̂2) [103], so that the Hamiltonian of H = p̂2

2m +V (q̂) becomes

H→ p̂2

2m
+V (q̂)+

4α2

3m
p̂4 +O(α4) . (4.102)

Therefore our goal is to find the transition operator and star product incorporating GUP,

such that

[q, p]?α
= i~(1+4α

2 p2) . (4.103)
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As an ansatz, take Tα = eb∂q+c∂p , where b = b(q, p), c = c(q, p) so that

T−1
α q = q−b , (4.104)

T−1
α p = p− c . (4.105)

Recalling that T (T−1 f ?M T−1g) = f ?T g for any transition operator, we have

T−1
α q?M T−1

α p = q?M p−q?M c−b?M p+b?M c , (4.106)

T−1
α p?M T−1

α q = p?M q− p?M b− c?M q+ c?M b , (4.107)

The generalized uncertainty principle is a perturbative concept, so we need only keep terms

up to O(α2). As Tα→ 1 in the limit of α→ 0, this implies that b and c are both of O(α2).

Hence,

Tα[T−1
α q,T−1

α p]?M = [q, p]?M +(b∂q + c∂p)[q, p]?M − [q,c]?M − [b, p]?M

= i~
(
1−∂pc−∂qb

)
,

(4.108)

implying that

∂pc+∂qb =−4α
2 p2 , (4.109)

from equation (4.103).

We want the transition operator to operate on the Hamiltonian so that the GUP-modified

Hamiltonian is TαH = H +
4α2

3m
p4. Let us expand the potential as the series, V (q) = a1 +

a2q+a3q2 +V3(q), where V3(q) contains powers of q greater than or equal to 3. Applying

Tα to H = p2

2m +V (q) gives

TαH =
p2

2m
+V (q)+b

[
a2 +2a3q+

∂V3(q)
∂q

]
+

c
m

p . (4.110)
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Therefore, b = 0 as the GUP-modified Hamiltonian does not contain extra position depen-

dence beyond V (q). Hence, equation (4.109) indicates that c =−4α2

3
p3. As a result,

TαH =
p2

2m
+V (q)− 4α2

3m
p4 , (4.111)

but this is not equal to p2

2m +V (q)+ 4α2

3m p4.

To circumvent this difficulty, note that the ansatz of Tα = eb∂q+c∂p only included deriva-

tives of ∂q and ∂p because q and p are both linear functions; it was not necessary to include

higher order derivatives in Tα. As H is quadratic in p, consider the revised ansatz of

Tα = e−
4
3 α2 p3∂p+d∂2

p , (4.112)

where d = d(q, p). We now have

TαH =
p2

2m
+V (q)− 4α2

3m
p4 +

d
m
, (4.113)

implying that d = 8
3α2 p4. Therefore, the transition operator introducing GUP into a system

is

Tα = e−
4
3 α2 p3∂p+

8
3 α2 p4∂2

p , (4.114)

Using equation (4.82), the star product, ?α, is

?α =I(1,2)
[

e−
4α2

3

(
p1+p2

2

)3
(∂p1+∂p2)+

8α2
3

(
p1+p2

2

)4
(∂p1+∂p2)

2

e
i~
2 (∂q1∂p2−∂p1∂q2)

× e
4α2

3 p3
1∂p1−

8α2
3 p4

1∂2
p1 e

4α2
3 p3

2∂p2−
8α2

3 p4
2∂2

p2

]
.

(4.115)

We note that we have only considered quadratic effects in GUP to find the transition op-

erator and star product. However, a similar procedure could be done to determine the

transition operator and star product if the linear+quadratic form of GUP is used or if higher
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order quantum gravity corrections are desired.

One advantage in knowing the transition operator for GUP is that it is straightforward

to then determine the equation of motion for the distribution function TαW ,

i~
∂TαW

∂t
= [TαH,TαW ]?α

= [H,W ]?M −
(

4
3

α
2 p3

∂p−
8
3

α
2 p4

∂
2
p

)
[H,W ]?M

As an example, consider the simple harmonic oscillator with W = (−1)n

π~ exp
[
−2H

~
]

Ln
(4H

~
)
.

We have

TαW =
(−1)ne−

q2+p2
~

3π~3

{
16α

2 p4

[
8p2L2

n−2

(
2
(
q2 + p2)
~

)

+
(
8p2−~

)
L1

n−1

(
2
(
q2 + p2)
~

)]
(

3~2−8α
2 p4~+32α

2 p6
)

Ln

(
2
(
q2 + p2)
~

)} (4.116)

where Lm
n (x) = (−1)m dm

dxm Ln+m(x) is an associated (generalized) Laguerre polynomial [71].

We illustrate the GUP transition operator applied to the simple harmonic oscillator Wigner

function in Figure 4.2. In Figure 4.3, we plot the difference between TαW and W , setting

α = 0.02.

We also consider in Figures 4.4 and 4.5 the effect of GUP by plotting the probability in

position, Pn(q) =
∫

d pTαW , and the probability for the momentum, Pn(p) =
∫

dqTαW , for

the nth energy level with α = 0.05. We see that the greatest effects appear at the locations of

maximum probability for the simple harmonic oscillator (α= 0). The perturbations become

more noticeable as n increases.

In this Chapter, we have investigated local transition operators as a means to understand

augmented quantization. Focussing on the damped harmonic oscillator and the general-

ized uncertainty principle of quantum gravity phenomenology, our results show that local

transition operators are able to incorporate more physical features than a global transition
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Figure 4.2: Comparing the contour plot of the simple harmonic oscillator Wigner function
(left) with the contour plot of TαW (right) for the n = 1 and n = 3 energy levels. GUP does
not have a large effect on the n = 1 energy level, but the perturbations from GUP are more
prominent at n = 3.

operator. In the next Chapter, we will consider augmented quantization from the perspective

of time-dependent local and global transition operators.
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Figure 4.3: The difference TαW −W for the first four energy levels of the simple harmonic
oscillator. As n increases, so does the effect of the quantum gravity corrections.
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Figure 4.4: The marginal probability distribution of the position for the first four energy
levels of the GUP-modified simple harmonic oscillator. The marginal probability density
of the position for n = 0 is the same for both the simple harmonic oscillator and the GUP-
modified simple harmonic oscillator.

Figure 4.5: The marginal probability distribution of the momentum for the first four energy
levels of the GUP-modified simple harmonic oscillator.
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Chapter 5

Time Dependent Transition Operators

5.1 Motivation

In the previous chapters, we have considered time-independent Hamiltonians. For a

time-dependent Hamiltonian, the density operator is [76]

ρ̂(t) = Û(t)ρ̂(0)Û†(t) , (5.1)

where (for t ≥ t0).

Û(t) =
∞

∑
n=0

Un; Un =
(−i)n

~nn!

∫ t

t0
dτ1

∫ t

t0
dτ2 · · ·

∫ t

t0
dτnT

{
Ĥ(τ1)Ĥ(τ2) · · · Ĥ(τn)

}
,

=
∞

∑
n=0

(−i)n

~nn!

∫ t

t0
· · ·

∫ t

t0
T
{

Ĥ(τ1) · · · Ĥ(τn)
}

dτ1 · · ·dτn ,

= T exp
[
− i
~

∫ t

t0
Ĥ(τ)dτ

]
,

(5.2)

is the propagator and T is the time-ordering operator defined as [105]

T
{

Ĥ(τ1)Ĥ(τ2)
}
=

{
Ĥ(τ1)Ĥ(τ2) if τ1 ≥ τ2 ,
Ĥ(τ2)Ĥ(τ1) if τ2 ≥ τ1 ,

(5.3)

and

T
{

Ĥ(τ1)Ĥ(τ2) · · · Ĥ(τn)
}
= Ĥ(τ′1)Ĥ(τ′2) · · · Ĥ(τ′n) . (5.4)
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Here, τ′1,τ
′
2, . . . ,τ

′
n is a permutation of τ1,τ2, . . . ,τn with τ1 ≥ τ2 ≥ ·· · ≥ τn. The purpose

of the time-ordering operator is to guarantee that the correct Hamiltonian is applied at the

correct time.

By differentiating equations (5.1) and (5.2) and making use of the Leibniz integral rule

(differentiation under the integral sign), the resultant equation is still the Liouville-von Neu-

mann equation,

i~
∂ρ̂

∂t
= [Ĥ(t), ρ̂] , (5.5)

so that the application of the Wigner transform from equation (2.18) yields

i~
∂W
∂t

= [H(t),W ]?M . (5.6)

In this Chapter, we will assume the Hamiltonian to be time-independent, but the transition

operator to be time-dependent. As a result, T H will be a function of time.

The properties of time-dependent transition operators and star products will be briefly

analyzed. Such time-dependent products have recently been used to investigate dissipation

in quantum systems (for example, see [106] and [107]). We will then propose a transition

operator for a driven harmonic oscillator quantum system. To conclude this Chapter, we

investigate the potential of the transition operator to describe decoherence.

5.2 Time-dependent Transition Operators and Star Products

Let us first consider the transition operator as a function of time, position and momen-

tum, which we denote as T = T (t,q, p,∂q,∂p). Applying the transition operator to the
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Moyal bracket,

i~T
(

∂W
∂t

)
= [T H,TW ]?T , (5.7)

=⇒ i~
∂TW

∂t
= [T H,TW ]?T − i~

∂T
∂t

W , (5.8)

by applying the product rule. We see that there is an additional term present in the equation

of motion, unlike the case of equation (2.91), in which the transition operator is time-

independent. This new term can be interpreted as being responsible for incorporating addi-

tional physical effects. For instance, if T = e f (t,q,p,∂q,∂p), then
∂T
∂t

W = ḟ (t,q, p,∂q,∂p)TW ,

where ḟ is the partial derivative of f with respect to time. In general, ḟ (t,q, p,∂q,∂p) seeks

to scale derivatives of TW both as a function of time and its location, similar to the case of

a coupling a harmonic oscillator to a thermal reservoir of non-interacting harmonic oscilla-

tors, as discussed in [108, 109].

Further, the star product itself will depend on time. It was demonstrated in [110] and

[111] that the Moyal product can be related to the area of a triangle in phase space by using

the representation of the star product,

f ?M g =
1

π2~2

∫
d p′d p′′dq′dq′′ f (q′, p′)g(q′′, p′′)e−

2i
~ [p(q

′−q′′)+p′(q′′−q)+p′′(q−q′′)] . (5.9)

The exponent is proportional to the area of a triangle whose vertices have the coordinates

of (q, p), (q′, p′), (q′′, p′′). In general a polygon of coordinates (q1, p1), . . . ,(qn, pn) has an

area of [112]

A =
1
2

(∣∣∣q1 q2
p1 p2

∣∣∣+ ∣∣∣q2 q3
p2 p3

∣∣∣+ · · ·+ ∣∣∣qn q1
pn p1

∣∣∣) , (5.10)

where we use vertical lines to represent the determinant. This equation is sometimes called

the shoelace formula.

Different star products correspond to different areas and geometries (right, isosceles,
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etc). of triangles. Therefore, a time-dependent star product can be interpreted as giving rise

to a time-dependent area and geometry of a triangle.

As no derivatives of time are present in T H ?T TW = E TW , all properties of the transi-

tion operator and star product will be the same as when T = T (∂q,∂p) or T = T (q, p,∂q,∂p).

It is only when applying the transition operator to the Moyal bracket that the presence of t

will introduce additional features, as illustrated in equation (5.8).

We will now briefly consider the time-dependent transition operator, T = T (∂t), such

that the transition operator does not dependent on t, p, q, ∂p, or ∂q. Such a transition

operator will not have an effect upon stargenvalue equations of (2.54) and (2.55). Further,

we still have i~∂TW
∂t = [T H,TW ]?T , without the additional term of (5.8). The star product,

however, will now include left and right derivatives of time, so that, by the same argument

of Section 2.10, ?T = ?MT−1
[←−

∂ t

]
T
[←−

∂ t +
−→
∂ t

]
T−1

[−→
∂ t

]
. Mathematically, T = T (∂t)

acts to incorporate higher-order time derivatives into the equation of motion.

With T = T (∂t), it is not possible to define a weight function as Φ(ξ,η) is defined

for only derivatives of p and q. For T = T (t,∂q,∂p), however, the weight function of

equation (2.99) is then Φ(ξ,η) = T (t,−iξ,−iη). Therefore, a time-dependent transition

operator automatically implies a time-dependent weight function. Such time-dependencies

physically mean the existence of a time-dependent augmented quantization. Theoretically,

it is possible to use a time-dependent transition operator to describe a system that is initially

normal ordered at an initial time, t = t0, but antinormal ordered at a later time, t = t ′. This

can be demonstrated with T = e f (t)(~∂2
q/4mω+~mω∂2

p/4), where f (t) = 1−2t, for example.

5.3 The Driven Harmonic Oscillator

In Section 4.5, we used the simple harmonic oscillator Hamiltonian to find the transition

operator to convert to a damped system described by augmented qantization. We did this

by imposing that the ~→ 0 limit of the star brackets, 1
i~ [p,H]?γ

and 1
i~ [q,H]?γ

, must give the

classical equations of motion for the damped harmonic oscillator. The same procedure can
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be used to determine a transition operator that maps the classical simple harmonic oscillator

to a quantum driven harmonic oscillator, which has the classical equations of motion,

ṗ =−q+F(t) ,

q̇ = p .
(5.11)

Our objective is to demonstrate the proof of concept that we can recover equation (5.11)

in the ~→ 0 limit of the star brackets. Therefore, consider TF = ea(q,t)∂2
p . We choose a

transition operator of this form because additional derivatives and functions of q and p

result in non-commuting individual factors when expanding the transition operator as a

series, as demonstrated in equation (4.46). Such a transition operator containing additional

derivatives and functions of q or p can cause successive powers of F(t) to be present, and

hence cannot give equation (5.11) in the ~→ 0 limit of the ?T -bracket.

Recalling that f ?T g = T (T−1 f ?M T−1g), we have

lim
~→0

1
i~

TF

[
T−1

F p,T−1
F H

]
?M

= lim
~→0

1
i~

TF [p,H−a(q, t)]?M
,

=−q+
∂a(q, t)

∂q
,

and

lim
~→0

1
i~

TF

[
T−1

F q,T−1
F H

]
?M

= lim
~→0

1
i~

TF [q,H−a(q, t)]?M
,

= p .

Therefore,
∂a(q, t)

∂q
= F(t), implying a(q, t)=F(t)q+C(t), where C(t) is an arbitrary func-

tion of time. We note that C(t) may have physical consequences, but we are concerned with

a proof of concept demonstrating that a transition operator can be found for the driven
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harmonic oscillator, so we take C(t) = 0 for simplicity. Therefore,

TF = eqF(t)∂2
p , (5.12)

with the weight function of Φ(ξ,η) = e−qF(t)η2
. We further note that this transition operator

holds for an arbitrary potential, V (q), such that

ṗ =−∂V
∂q

+F(t) , (5.13)

q̇ = p . (5.14)

The transition operator of TF = eqF(t)∂2
p is equivalent to the Weierstrass transform (Appendix

B) [113] (for qF(t)> 0), hence

TFW (q, p,0) =
1√

4πqF(t)

∫
d p′W (q, p′,0)e−

(p−p′)2
4qF(t) . (5.15)

For illustrative purposes, let us consider a time-independent driving force, such that F(t) =

F0 [θ(q)−θ(−q)], where θ(q) is the Heaviside step function defined as [71]

θ(q) =
{

0 q < 0
1 q≥ 0 , (5.16)

and F0 is a constant. We will apply TF with this driving force to the first four energy

levels of the simple harmonic oscillator. We present this simple example to demonstrate the

effect that the driving force can have upon the probability densities for the momentum. By

varying F0, it will be possible to determine how more complicated driving forces will affect

the probability density.

The probability densities, Pn(p), for the momentum are shown in Figures 5.1 and 5.2.

The position probability density will not be affected because expansion of the transition
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operator and integration with respect to p yields terms of the form

∫
d p

d2nW (q, p)
d p2n = 0 (5.17)

for the simple harmonic oscillator Wigner function. This is the result of our assumption

that the transition operator only depends on a(q, t) and momentum derivatives.

Figure 5.1 illustrates small F0, while Figure 5.2 shows the effects of larger forces. We

see that as time progresses, the marginal probabilities spread in width and damp out oscil-

lations. Hence, if time-dependence is periodic, we would expect the marginal probabilities

in the momentum to also be periodic.

Using equation (4.82), the star product is

?F = I(1,2)e
(

q1+q2
2

)
F(t)(∂p1+∂p2)

2

e
i~
2 (∂q1∂p2−∂p1∂q2) e−q2F(t)∂2

p2 e−q1F(t)∂2
p1 . (5.18)

With equation (5.18), the equation of motion for the simple harmonic oscillator is

∂TFW
∂t

=
1
i~
[H +qF(t),TFW ]?F − qḞ(t)∂

2
pTFW ,

=
1
i~
[H,TFW ]?F + F(t)∂pTFW − qḞ(t)∂

2
pTFW

(5.19)

The right hand side of this equation of motion consists of three terms: the first is analogous

to the Moyal bracket between H and TFW , the second term illustrates that
∂TFW

∂t
is depen-

dent upon the change in momentum of the original system (noting that ∂p and TF commute),

while the third shows that the derivative of the force also dictates the time-dependence of

TFW . Equation (5.19) is similar in structure to the Fokker-Planck equation [114].

5.4 Environmental Decoherence

When a quantum system is open, it may couple with its surroundings. As a result of this

interaction, it could lose its ability to form a coherent superposition; this process is known
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Figure 5.1: Small effects in the marginal probability density of momentum for an aug-
mented quantization of the simple harmonic oscillator. The augmented quantization maps
the simple harmonic oscillator to a quantum driven harmonic oscillator. The left column of
plots use F0 = 0.1 while the right column has F0 = 0.5, where F(t) = F0 [θ(q)−θ(−q)].
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Figure 5.2: Large effects in the marginal probability density for an augmented quantization
of the simple harmonic oscillator. The augmented quantization maps the simple harmonic
oscillator to a quantum driven harmonic oscillator. The left column of plots use F0 = 1
while the right column has F0 = 10, where F(t) = F0 [θ(q)−θ(−q)].
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as environmental decoherence, which we will refer to as decoherence.

Initially, before the decohering process occurs, the system possesses a set of states

that can be measured. After decoherence, many of the states will be unobservable, leav-

ing a smaller subset of states that are able to be observed. This process is known as

environmentally-induced superselection. For systems of macroscopic size, it is believed

that decoherence brings about the emergence of classical mechanics from quantum me-

chanics [59, 108, 115].

Open systems must be described by a density operator, rather than a state vector because

interaction between the system and the environment often results in an initially pure state

becoming a mixed state during time evolution. In the position representation, decoherence

manifests itself by the decay of off-diagonal elements of the density operator [108,115]. As

an example to see this, consider the system, S, entangled with its environment, E, such that

the composite system-environment is initially in the state [115],

|ψ〉= 1√
2
(|S1〉 |E1〉+ |S2〉 |E2〉) , (5.20)

where |Si〉 and |Ei〉 are states of the system and environment, respectively. Then, the density

operator is [115],

ρ̂ = |ψ〉〈ψ|= 1
2

2

∑
i, j=1
|Si〉〈S j|⊗ |Ei〉〈E j| . (5.21)

When analyzing decoherence, it is often desirable to remove the states of the environment

from the density operator ρ̂, such that the dynamics of the density operator corresponding

to the system can be directly studied. This is achieved using the mathematical technique

of the partial trace. It is valid because the partial trace accounts for Born’s rule and the

projection postulate [116, 117].

Let the density operator of two systems A, B be ρ̂AB. Also let |a1〉 , |a2〉 ∈ A, |b1〉 , |b2〉 ∈

B be normalized but initially non-orthogonal. Denoting the partial trace over system B as
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TrB, the partial trace of |a1〉〈a2|⊗ |b1〉〈b2| is [116]

TrB(|a1〉〈a2|⊗ |b1〉〈b2|) = |a1〉〈a2|Tr(|b1〉〈b2|) (5.22)

Therefore, with our example of S and E,

ρ̂S =
1
2

(
|S1〉〈S1|+ |S2〉〈S2|+ |S1〉〈S2| 〈E2|E1〉+ |S2〉〈S1| 〈E1|E2〉

)
. (5.23)

Often, 〈E2|E1〉 ∼ e−t/τd , where t is the time and τd is the time required for decoherence to

occur. As ρ̂S evolves, 〈E2|E1〉 → 0, so that after a sufficient period of time,

ρ̂S ≈
1
2

(
|S1〉〈S1|+ |S2〉〈S2|

)
. (5.24)

This indicates that the measurement of the density operator will show the system to be in

|S1〉〈S1| or |S2〉〈S2|, rather than, for example, |S1〉〈S2|.

Decoherence can also be analyzed in phase space by taking the Wigner transform of

the density operator. Within phase space, decoherence is exhibited through the decay of

interference terms of the Wigner function. Depending on the system modelled, decoherence

can also be represented by the diffusion in the position or the momentum [61,108,115,118–

121].

The length of time necessary for the off-diagonal elements to be suppressed is deter-

mined by the system, environment, and method of interaction. For instance, if the system is

a free electron being scattered by an environment of solar neutrinos, the decoherence time

could be approximately 32 million years, while a bowling ball being scattered by sunlight

could have a decoherence time around 10−28 s. In these cases, it is believed that decoher-

ence will result in the electron being unable to form a superposition, while decoherence

will cause the bowling ball to not just lose the ability to form a superposition, but also to

behave in a classical manner [108].
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5.4.1 Scattering Decoherence

To demonstrate decoherence in terms of the vanishing of interference and the effect

in phase space, we will consider scattering, which has been extensively treated in, for ex-

ample, [108, 115, 122–124]. Here, we briefly summarize the results presented in [108]

and [115], in which density operator of the system was determined. We will then show that,

in this situation, decoherence can be applied to augmented quantization with the transition

operator to produce an effective description of decoherence.

For simplicity, the scattered particle will be taken to be more massive than the scattering

particles, thus the system will have negligible recoil. It is also assumed that the system and

environment are initially separable, so that the total density operator can initially be written

as ρ̂SE = ρ̂S⊗ ρ̂E . If the scattering is isotropic, then, using the properties of the S-matrix and

scattering amplitudes, it is possible to find the equation of motion for the density operator.

Accounting for the number density µ(p′) of incoming particles whose magnitude of the

momentum is p′ and the speed of those particles v(p′),

∂ρ(q,q′, t)
∂t

=−F(q−q′)ρ(q,q′,0) , (5.25)

where ρ(q,q′, t) = 〈q|ρ̂(t)|q′〉 and F(q−q′) describes the rate (sometimes called localiza-

tion rate or decoherence rate) at which the spatial coherence between q and q′ vanishes,

which is related to the scattering amplitude.

5.4.2 Long Wavelengh Limit

If the wavelength of the incoming particles is much larger than q− q′, equation (5.25)

reduces to [125]

∂

∂t
ρ(q,q′, t) =−Λ(q−q′)2

ρ , (5.26)
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Figure 5.3: Decoherence in the long wavelength limit applied to the simple harmonic os-
cillator wavefunction, ψ(q), so that ρ(q,q′) = ψ(q)ψ(q′). Here, we plot the n = 2 energy
level.

where Λ describes the decay of the coherence length q−q′ (decoherence rate). Therefore,

the density operator is [125]

ρ(q,q′, t) = ρ(q,q′,0)e−Λt(q−q′)2
, (5.27)

which we plot in Figure 5.3 for the simple harmonic oscillator. We see that time-evolution

will cause the off-diagonal terms of q 6= q′ to vanish.
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By applying the Wigner transform of equation (2.18) to equation (5.26), we find [108]

∂

∂t
W̃ (q, p, t) = Λ

∂2W̃
∂p2 , (5.28)

which is solved by the Wigner function (Λt > 0) [108],

W̃ (q, p, t) =
1√

4πΛt

∫
d p′W̃ (q, p′,0)e−

(p−p′)2
4Λt , (5.29)

and

W̃ (q, p′,0) =
1

2π

∫
dye−ip′y

ρ

(
q+

~y
2
,q− ~y

2
,0
)
. (5.30)

is the Wigner transform of ρ(q,q′,0) and is found by using the resolution of the identity

twice in equation (2.40).

Equation (5.29) describes time-dependent coarse-graining and is similar in form to the

Husimi distribution of equation (3.1). We can also understand equation (5.29) as converting

a Weyl-quantized system to an augmented quantization of the system as a result of the

introduction of decoherence through Gaussian-smoothing the Wigner function.

Given an arbitrary system initially described by W (q, p,0), we want to write a transition

operator, TΛ such that TΛW (q, p,0) solves equation (5.28). If we let

TΛ = eΛt∂2
p , (5.31)

then,

∂

∂t

(
TΛW (q, p,0)

)
= Λ∂

2
p TΛW (q, p,0) , (5.32)

showing that TΛW (q, p,0) = W̃ (q, p, t). As in Section 5.3, TΛ = eΛt∂2
p is equivalent to the

Weierstrass transform. Figures 5.4 and 5.5 illustrate the Wigner function for the simple har-
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monic oscillator undergoing decoherence and its resultant momentum probability density.

Figure 5.4: The transformed Wigner function of the n = 2 simple harmonic oscillator, such
that it incorporates decoherence. As shown, there is diffusion in the momentum.
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Figure 5.5: The probability of the momentum of the n = 2 augmented quantized simple
harmonic oscillator so that it includes decoherence. As the transition operator is only de-
pendent on derivatives of the momentum, the probability of position does not change, by
equation (5.17).

We note that the resultant star product for this simplification of decoherence is

?Λ = ?Me2Λt
←
∂ p
→
∂ p , (5.33)
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by using equation (2.88). Applying TΛ to equation (2.54), we have

H ?Λ TΛW = (E−Λt)TΛW , (5.34)

because T H = H +Λt (similar to Section 4.2.3). As t → ∞, we see that (E−Λt)→−∞.

This could suggest that the above method of analyzing decoherence with the Wigner func-

tion may only be valid for Λt� E if we want to use the original Hamiltonian H, rather than

the transformed Hamiltonian, T H, in the ?Λ formulation.

To derive equation (5.32), we assumed that we initially had a time-independent Wigner

function W , so that time-dependence arose through application of the transition operator

TΛ = eΛt∂2
p . Let us now consider W time-dependent initially, such that it solves the Moyal

bracket. Application of TΛ = eΛt∂2
p on the Moyal bracket yields,

i~TΛ

∂W
∂t

= [TΛH,TΛW ]?Λ

= [H,TΛW ]?M +2Λt[p,∂pTΛW ]?M .

(5.35)

Therefore

i~
∂TΛW

∂t
= [H,TΛW ]?M −2i~Λt∂q∂pTΛW − i~Λ∂

2
pTΛW . (5.36)

The term of [H,TΛW ]?M is the original evolution, while the other two terms are due to the

decoherence process.

5.4.3 Short Wavelength Limit

To conclude this Chapter, we will briefly consider the case that the wavelength of the

incoming particles is much shorter than the coherence separation, q− q′. In this limit,

equation (5.25) simplifies to,

∂

∂t
ρ(q,q′, t) =−Γtotρ(q,q′, t) , (5.37)
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where Γtot is the total scattering rate dependent on the momentum of the scattering particles,

their speed, and their cross section. Therefore

ρ(q,q′, t) = ρ(q,q′,0)e−Γtott . (5.38)

Using the Wigner transform, equations (5.37) and (5.38) become

∂

∂t
W̃ (q, p, t) =−ΓtotW̃ (q, p, t) , (5.39)

=⇒ W̃ (q, p, t) = W̃ (q, p,0)e−Γtott . (5.40)

Similar to the long wavelength case, we seek a transition operator such that W̃ (q, p, t) =

TW (q, p,0). If T = e−Γtott , then

∂

∂t

(
TW (q, p,0)

)
=−Γtot TW (q, p,0) (5.41)

showing that W̃ = TW . However, T = e−Γtott is not a valid transition operator as it is not a

differential operator. This demonstrates the possibility that not all decoherence phenomena

may be described with the transition operator and star products.

In this Chapter, we have considered time-dependent augmented quantization by using

both global and local transition operators. We have shown that it is possible to recover

the classical equations of motion for the driven harmonic oscillator using a time-dependent

local transition operator. Further, we have demonstrated that the results in [108, 115] can

be written in terms of transition operators to describe a simplified version of decoherence.
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Conclusion

Quantum mechanics can be done in may ways, such as with operators or path integrals. In

this thesis, we have focussed on doing quantum mechanics in phase space so that classi-

cal phase space functions can be used. As a result, operators are no longer required; the

tradeoff is that it is necessary to introduce a binary non-commuting operation, known as

the star product. It is straightforward to use phase space quantum mechanics to understand

the physics of different quantizations and orderings; either the transition operator or the

weight function can be used to give the distribution function and star product for a given

quantization.

To conclude this thesis, we will first give a summary of the previous chapters and high-

light the main results. Next, some possible extensions and applications of our work will be

given. Then, we will consider the significance of our research in a broader context.

Summary

In Chapter 2, the operator quantization map was formally defined and it was shown that

the map for Weyl quantization (which is the basis of the original version of phase space

quantum mechanics) satisfies this definition. We then illustrated the main results of [13],

which showed that different quantizations can give different physical results.

Next, we reviewed the fundamentals of phase space quantization by discussing the

Wigner transform, Wigner functions, and the Moyal product. We showed that different

quantizations are described with different distribution functions and star products. To relate

the distribution functions and observables of different quantizations, the transition operator
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or the weight function could be used. Similarly, the transition operator can relate different

star products.

In Chapter 3, the Husimi distribution was illustrated. It was shown that coarse-graining

by ~ can be introduced using the transition operator. Hence, the Husimi distribution is

a prototypical example of using the transition operator to incorporate additional physical

effects in a quantum system.

To differentiate between quantizing a classical system and the introduction of addi-

tional physical features (such as coarse-graining or damping) during quantization, we used

the term augmented quantization. Hence, when coarse-graining the Wigner function of

the simple harmonic oscillator, we would say that the resultant Husimi distribution is an

augmented quantization of the simple harmonic oscillator.

We then briefly considered a possible generalization of the Husimi function, such that

the Wigner function was coarse-grained by a different parameter, as shown in equation

(3.27). We determined its corresponding transition operator and star product in equations

(3.30) and (3.31). This was a natural extension of the Husimi distribution and coarse-

graining.

As an example of coarse-graining, smoothing in the classical limit of the Wigner func-

tion was analyzed. We illustrated that the coarse-grained Wigner function for n→ ∞ can

yield a delta function-like phase space distribution.

In Chapter 4, the method of [33] to introduce damping within augmented quantization

was first summarized. They proposed a method to map an undamped classical harmonic

oscillator to a damped quantum harmonic oscillator. Using the classical equations of motion

for the damped harmonic oscillator, [33] found the star product and transition operator to

be equations (4.25) and (4.26), respectively.

We then showed that all transition operators of the form T = T (∂q,∂p), including the
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one proposed by [33], yield the ~→ 0 limits to the star brackets:

lim
~→0

[q,H]?T

i~
→ p = {q,H} ,

lim
~→0

[p,H]?T

i~
→−∂V

∂q
= {p,H} .

This demonstrated that transition operators T = T (∂q,∂p) are not able to provide extra terms

that would be present in the ~→ 0 limit, assuming the ?T -bracket described the equation of

motion. Hence, it was not possible to find a transition operator of the form T = T (∂q,∂p),

such that the ~→ 0 limit of the star bracket would give the equations of motion for damping.

Our ultimate goal was to introduce additional physics, such as damping, during quanti-

zation. We also required that, if the extra physics includes classical features, they must be

present in the ~→ 0 limit. This motivated us to generalize the transition operator by giving

it position and momentum dependence. With T = T (q, p,∂q,∂p), the star product was also

local:

?T =I(1,2)
{

T
(

q1 +q2

2
,

p1 + p2

2
,∂q1 +∂q2,∂p1 +∂p2

)
[?M(1,2)]

×T−1 (q1, p1,∂q1 ,∂p1

)
T−1 (q2, p2,∂q2,∂p2

)}
,

as displayed in equation (4.82).

Using this generalized transition operator, it was possible to introduce (small) damping

to the undamped harmonic oscillator with equation (4.52), if the equations of (4.57) and

(4.58) were satisfied. We then found the resultant star product for small damping, given

in equation (4.99). The effect of such a generalization of the transition operator and star

product was to introduce new physical effects that were not present in the original sys-

tem. Therefore, T = T (q, p,∂q,∂p) and its associated quantities can describe augmented

quantization.

Augmented quantization is not limited to coarse-graining or damping. Using the tran-

sition operator of equation (4.114) and star product of equation (4.115), we demonstrated
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that we could incorporate quantum gravity corrections from the generalized uncertainty

principle into an augmented quantization. Considering the simple harmonic oscillator as

an example, we illustrated that GUP-modified transition operator applied to the Wigner

function resulted in perturbative corrections to both the overall structure of the distribution

function and the momentum probability distribution.

In Chapter 5, time-dependence was introduced into the transition operator. With a local

time-dependent transition operator, it was possible to describe the augmented quantization

of a simple harmonic oscillator so that it was mapped to a driven harmonic oscillator. We

used the transition operator of equation (5.12), which gave the distribution function in equa-

tion (5.15) and star product of equation (5.18).

Employing a simplified description of scattering decoherence, we showed that the re-

sultant distribution function could be found with a transition operator, with the same results

of [108,115]. We presented the transition operator and star product in equations (5.31) and

(5.33).

Tables 6.1 and 6.2 include all the quantizations and augmented quantizations discussed

within this thesis. We also show how each maps the function ei(θq+τp) to a phase space

(augmented) quantization.

Possible Extensions and Applications of Augmented Quantization

To determine the expectation value of an observable A(q, p) in phase space quantum

mechanics and Weyl-ordering, one uses [6]

〈A〉=
∫

dqdpA(q, p)?M W (q, p) =
∫

dqd pA(q, p)W (q, p) .

For other ordering possibilities, the method of determining the expectation value is less

clear. As an example, [31] presented the expectation value of an observable for a system
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Table 6.1: Quantizations discussed in this thesis. These have previously been studied in
great detail (see, for example, [5])

Quantization Transition Operator
Operator Ordering:

ei(θq+τp)→

Weyl 1 ei(θq+τp)

Standard ei~∂p∂q/2 ei(θq+τp)e−i~θτ/2

Antistandard e−i~∂p∂q/2 ei(θq+τp)ei~θτ/2

Normal e−~∂2
q/4mω−~mω∂2

p/4 ei(θq+τp)e~θ2/4mω+~mωτ2/4

Antinormal e~∂2
q/4mω+~mω∂2

p/4 ei(θq+τp)e−~θ2/4mω−~mωτ2/4

Born-Jordan sinc
(1

2~∂p∂q
)

ei(θq+τp)sinc
(1

2~θτ
)

Symmetric cos
(1

2~∂p∂q
)

ei(θq+τp) cos
(1

2~θτ
)

Table 6.2: Augmented quantizations discussed in this thesis. The Husimi distribution is
designed to coarse-grain the Wigner function [31]. Ref. [33] first proposed the damping
augmented quantization discussed in Section 4.2.2. The remainder are original and are
designed to incorporate specific physical effects during quantization. Note that a, b, c, and
d are functions of the position and momentum.

Augmented
Quantization

Transition Operator
Operator Ordering:

ei(θq+τp)→

Husimi e~∂2
q/4mκ+~mκ∂2

p/4 ei(θq+τp)e−~θ2/4mκ−~mκτ2/4

Generalized Husimi eη∂2
q/4mκ+ηmκ∂2

p/4 ei(θq+τp)e−ηθ2/4mκ−ηmκτ2/4

Damping up to O(γ)
(Section 4.2.2) e−

i~mγ

2 ∂2
p ei(θq+τp)e

i~mγ

2 τ2

Damping up to O(α2)

(Section 4.7) eγ(a∂q+b∂p+c∂2
q+d∂2

p) ei(θq+τp)eγ(iaθ+ibτ−cθ2−dτ2)

GUP e−
4α2

3 p3∂p+
8α2

3 p4∂2
p ei(θq+τp)e−

4α2
3 ip3τ− 8α2

3 p4τ2

Driven eqF(t)∂2
p ei(θq+τp)e−qF(t)τ2

Decoherence eΛt∂2
p ei(θq+τp)e−Λtτ2

described by the Husimi distribution as

〈A〉H =
∫

dqdpTHA?H THW ,

110



6. CONCLUSION

where TH is the Husimi transition operator and ?H is the Husimi star product. In contrast, [6]

suggested that the expectation value should instead be

〈A〉H =
∫

dqdpAe−~∂2
q/4mκ−~mκ∂2

p/4 THW .

It is not clear if, for an arbitrary transition operator, 〈A〉= 〈A〉T when considering aug-

mented quantization. Further, it is uncertain if

〈A〉T =
∫

dqd pTA?T TW

is correct when the transition operator is also a function of the position and momentum. This

question should be studied as it will help determine if any of the augmented quantizations

in this thesis suggest non-physical conclusions.

Another extension of our work is to study the theoretical ramifications of local transition

operators beyond observables. Let us consider, for example, mapping the simple harmonic

oscillator to a damped harmonic oscillator. As shown in [95], there are several methods

to quantize a damped harmonic oscillator, but many of them yield undesirable physical

implications, such as the violation of Heisenberg’s uncertainty principle.

We focussed on studying the equations of motion for the damped augmented quanti-

zation of the simple harmonic oscillator. Further work is therefore required to determine

if the damped local transition operator also results in non-physical implications. Similarly,

the other augmented quantizations incorporating the generalized uncertainty principle, driv-

ing forces, and decoherence should be further investigated to determine if they should be

modified or eliminated on non-physical grounds.

Quantum mechanics usually involves Hermitian operators to calculate physical results.

However, quantum mechanics has been generalized so that Hermiticity is no longer the

fundamental indication of whether a result is physical [100, 126–131]. There has also been

interest in using the Moyal product and phase space quantum mechanics to describe non-
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Hermitian quantum systems [65, 132, 133].

A possible application of the work in this thesis is to use complex transition operators as

a possible means to transition between Hermitian quantum mechanics and non-Hermitian

quantum mechanics. For instance, consider a non-Hermitian Hamiltonian H̃ = p2

2 + Ṽ (q),

where Ṽ (q) is complex. If T = e[Ṽ (q)−V (q)]∂2
p acts upon the real Hamiltonian H = p2

2 +V (q),

then T H = H̃.

In this thesis, we have predominantly considered phase space in terms of the position

and momentum. Alternatively, phase space distributions can be written in terms of α and

α, where [5]

α =
1√

2~mω
(mωq+ ip) ,

where ω has the same meaning as in Section 3.2. In this case, the measure of dqd p is

replaced by d2α = d(Reα)d(Imα), which is equal to (1/2~)dqd p. Using α and α, it

is possible to write the density operator in terms of coherent states 〈α|, |α〉 and the P-

representation of quantum optics, such that [134–136]

ρ̂ =
∫

d2
αP(α,α, t) |α〉〈α| ,

where P(α,α, t) is the P-representation. As shown in [5], the P-representation is equivalent

to the antinormal distribution in phase space quantum mechanics

In Section 5.2, we demonstrated a time-dependent transition operator that could make

a system normal ordered at one time and antinormal ordered at a later time. Hence, such a

time-dependent transition operator, or even a local transition operator, will introduce addi-

tional features into the P-representation. Therefore, when the P-representation is no longer

valid, it may be possible to utilize a time-dependent transition operator or a local transition

operator acting on the Wigner function to describe a larger range of quantum phenomena.

In Chapter 1, we identified that the techniques of phase space quantum mechanics have
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been used to investigated spin. To describe spin, it is necessary to analyze Wigner functions

and star products on the surface of a sphere [137]. The difficulty arises in part due to the

Poisson bracket in the Moyal product. In spherical coordinates, the Poisson bracket contains

a sinθ term that does not commute with the derivatives [138, 139].

A possible application of local transition operators is to directly encode the curvature

of the space. As a result, a local transition operator may be able to transform a Wigner

function on flat space to a distribution function on curved space. The star product would

then also incorporate the curvature of space. If this is possible, such transition operators

could be applicable to other curved surfaces beyond the sphere.

Significance of Results

In this thesis, we have explored augmented quantization and developed a local transition

operator/star product. The work presented is one of a few proposals that we are aware of

which consider the applications of position and momentum-dependent quantization.

Our original results deal with introducing a physical single feature into a local transi-

tion operator, namely damping, the generalized uncertainty principle, a driving force, and

decoherence. Considering damping in particular, it is unknown if our proposed augmented

quantization of the simple harmonic oscillator is a bona-fide quantization of the damped

harmonic oscillator. To verify if it is, it would be necessary to compare our augmented

quantization of the simple harmonic oscillator to experimental measurements of a quan-

tized damped harmonic oscillator. Only experiments will be able to validate or reject this

idea of using a local transition operator to describe some augmented quantizations.

We have considered only a small class of physical systems, though it should be possi-

ble to apply augmented quantization (or a modification thereof) to more systems, such as

those discussed in [95]. Therefore, it is anticipated that augmented quantization as well

as local transition operators and star products can open additional avenues of research into

understanding quantization and fundamental questions in quantum mechanics.
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[80] M. Błaszak and Z. Domański. Phase space quantum mechanics. Annals of Physics,
327(2):167–211, 2012.

[81] M. Bertelson, P. Bieliavsky, and S. Gutt. Parametrizing equivalence classes of in-
variant star products. Letters in Mathematical Physics, 46(4):339–345, 1998.

[82] M. Bertelson, M. Cahen, and S. Gutt. Equivalence of star products. Classical and
Quantum Gravity, 14(1A):A93–A107, 1997.

[83] B. Belchev and M. A. Walton. On Wigner functions and a damped star product in
dissipative phase-space quantum mechanics. Annals of Physics, 324(3):670–681,
2009.

[84] N. M. Temme. Special Functions: An Introduction to the Classical Functions of
Mathematical Physics. Wiley, 1996.

[85] R. L. Hudson. When is the Wigner quasi-probability density non-negative? Reports
on Mathematical Physics, 6(2):249–252, 1974.

[86] F. Soto-Eguibar and P. Claverie. Time evolution of the Wigner function. Journal of
Mathematical Physics, 24(5):1104–1109, 1983.

119



BIBLIOGRAPHY

[87] N. D. Cartwright. A non-negative Wigner-type distribution. Physica A: Statistical
Mechanics and its Applications, 83(1):210–212, 1976.

[88] H.-W. Lee. Generalized antinormally ordered quantum phase-space distribution
functions. Physical Review A, 50:2746–2749, 1994.

[89] R. W. Henry and S. C. Glotzer. A squeezed-state primer. American Journal of
Physics, 56(4):318–328, 1988.

[90] J. Garrison and R. Chiao. Quantum Optics. Oxford Graduate Texts. Oxford Univer-
sity Press, 2008.
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Appendix A

Derivation of Ordering Rules

In this Appendix, we will demonstrate the ordering rules of Weyl and of Born-Jordan quan-
tization, based on the procedure and properties outlined in [7] and [10]. It will also be
necessary to determine the weight function for standard ordering.

A.1 Weyl Ordering
Consider a classical function f (q, p). We can define a quantization map QΦ, such that

the quantization of f (q, p) is

QΦ f (q, p) =
1

(2π)2

∫
dbdadqdp f (q, p)Φ(a,b)eib(p̂−p)+ia(q̂−q) ,

=
1

(2π)2

∫
dbdadqdp f (q, p)Φ(a,b)e

i~
2 abeia(q̂−q)eib(p̂−p) ,

(A.1)

where Φ(a,b) is the weight function of Section 2.10 and we have used the simplified
Zassenhaus formula of eA+B = eAeBe−[A,B]/2 if [A, [A,B]] = [B, [A,B]] = 0.

With Φ(a,b) = 1, equation (A.1) reduces to the Weyl transform of equation (2.8). To
derive the order of operators in Weyl quantization, we will relate it to standard ordering.
This will simplify the resultant calculations.

In equation (A.1), we see that if Φ(a,b)= e−
i~
2 ab, then the quantization map for standard

ordering is found:

QS f (q, p) =
1

(2π)2

∫
dbdadqdp f (q, p)eia(q̂−q)eib(p̂−p) . (A.2)

Therefore, the Weyl quantization map can be written in terms of the map for standard
ordering, such that

QW f (q, p) =QS

(
e

i~
2 ab f (q, p)

)
. (A.3)

Therefore,

QW f (q, p) =QS

(
e−

i~
2 ∂p∂q f (q, p)

)
. (A.4)
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A.2. BORN-JORDAN ORDERING

Hence, to determine the Weyl-ordered form of the operator counterpart of f (q, p) = qr ps,
we only need apply a differential operator and standard-order the result.

With f (q, p) = qr ps, we have

e−
1
2 i~∂p∂qqr ps =

min(r,s)

∑
k=0

(
− i~

2

)k

k!
(

r
k

)(
s
k

)
qr−k ps−k . (A.5)

Equation (A.4) can be used so that the Weyl-ordered analogue of qr ps is

QW (qr ps) =
min(r,s)

∑
k=0

(
− i~

2

)k

k!
(

r
k

)(
s
k

)
q̂r−k p̂s−k . (A.6)

Rearranging operators, we find equation (2.2),

QW (qr ps) =
1
2s

s

∑
`=0

(
s
`

)
p̂s−`q̂r p̂` =

1
2r

r

∑
`=0

(
r
`

)
q̂r−` p̂sq̂` , (A.7)

which describes Weyl-ordered operators.

A.2 Born-Jordan ordering
For Born-Jordan ordering, we need a weight function ΦBJ , such that the Born-Jordan

quantization map is

QBJ f (q, p) =
1

(2π)2

∫
dbdadqdp f (q, p)ΦBJ(a,b)eib(p̂−p)+ia(q̂−q) , (A.8)

This is related to the Weyl map by

QBJ

(
f (q, p)

)
=QW

(
f (q, p)ΦBJ(a,b)

)
. (A.9)

Let us consider a Fourier component,S f (q, p) = ei(aq+bp). Applying equation (A.9), we
have

ΦBJ(a,b)ei(aq̂+bp̂) =
∞

∑
n=0

∞

∑
m=0

(ia)n(ib)m

n!m!
QBJ(qn pm) (A.10)

We will now show that the weight function that corresponds to Born-Jordan ordering is
ΦBJ = sinc

(~
2 ab
)
. As

QBJ(qn pm) =
1

n+1

n

∑
k=0

q̂n−k p̂mq̂k , (A.11)
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we have

Φ(a,b)Î =
∞

∑
n=0

∞

∑
m=0

(ia)n(ib)m

n!m!
1

n+1

n

∑
k=0

e−i(aq̂+bp̂)q̂n−k p̂mq̂k . (A.12)

Summing over m and applying the simplified Zassenhaus formula to e−i(aq̂+bp̂), we find

Φ(a,b)Î =
∞

∑
n=0

n

∑
k=0

(ia)n

n!(n+1)
e

i~
2 abe−iaq̂e−ibp̂q̂n−keibp̂q̂k . (A.13)

We will now simplify e−ibp̂q̂n−keibp̂q̂k. Noting that

e−ibp̂ |q〉= |q+~b〉 (A.14)

we have

q̂e−ibp̂ |q〉= (q+~b) |q+~b〉 . (A.15)

We could write the left-hand side as

q̂e−ibp̂ |q〉=
(
[q̂,e−ibp̂]+ e−ibp̂q̂

)
|q〉 . (A.16)

Therefore,

[q̂,e−ibp̂] = ~be−ibp̂ . (A.17)

Expanding the commutator, we see that

q̂−~bÎ = e−ibp̂q̂eibp̂ (A.18)

Therefore, (
q̂−~bÎ

)k
= e−ibp̂q̂keibp̂ . (A.19)

As a result, equation (A.13) becomes

ΦBJ(a,b)Î = eiab~/2
∞

∑
n=0

n

∑
k=0

(ia)n

n!(n+1)
e−iaq̂(q̂−~bÎ)n−kq̂k . (A.20)

Applying an inverse quantization map, we find

ΦBJ(a,b) = eiab~/2
∞

∑
n=0

n

∑
k=0

(ia)n

n!(n+1)
e−iaq(q−~b)n−kqk . (A.21)
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By Mathematica,

n

∑
k=0

(q−~b)n−kqk =
qn+1− (q−~b)n+1

~b
, (A.22)

∞

∑
n=0

(ia)n

n!(n+1)
qn+1− (q−~b)n+1

~b
=

i
(

eia(q−~b)− eiaq
)

~ab
, (A.23)

we find that ΦBJ(a,b) = sinc
(~

2 ab
)
, as desired. The same result would have been found if

we had used

QBJ(qn pm) =
1

m+1

m

∑
k=0

p̂m−kq̂n p̂k (A.24)

instead.
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Appendix B

The Weierstrass transform

In Sections 3.2, 3.3, and 5.4, we used transition operators of the form, T = eb∂2
p , where

b ∈ R. In this Appendix, it will be shown that this transition operator acting on the Wigner
function W = W (q, p,0) is related to the heat equation, where W (q, p,b) = TW . We will
then show that the eb∂2

p Gaussian smooths the Wigner function, and is thus related to the
Weierstrass transform of mathematics and the Husimi distribution of physics.

Assuming b > 0, by differentiating TW with respect to b, we have

∂

∂b
TW = ∂

2
pTW . (B.1)

This is the heat equation (sourceless diffusion equation). In equation (B.1), b acts as the
time coordinate and p behaves as the spatial coordinate. We will now solve this equation to
evaluate TW .

Taking the Fourier transform F of equation (B.1) with respect to the momentum and
using the property [114],

F
{

∂
2
pW (q, p,b)

}
=−

(
k
~

)2

F
{

W (q, p,b)
}
, (B.2)

where k is the transform variable, then

∂ f (q,k,b)
∂b

=−
(

k
~

)2

f (q,k,b) . (B.3)

where we have let f (q, p,b) := F
{

W (q, p,b)
}

. The solution to equation (B.3) is

f (q,k,b) =C(k)e−k2b/~2
, (B.4)

and f (q, p,0) = F
{

W (q, p,0)
}
= C(k). Applying the inverse Fourier transform with re-

spect to k, we have [114]

W (q, p,b) =
1√
2π~

∫
dkC(k)e−k2b/~2

eikp/~ ,

=
1

2π~

∫
dk d p′W (q, p′,0)eik(p−p′)/~−k2b/~2

.

(B.5)
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Noting that [114],

∫
dk eik(p−p′)/~−k2b/~ =

√
π~2

b
e−

(p−p′)2
4b , (B.6)

substitution into equation (B.5) yields

W (q, p,b) =
1√
4πb

∫
d p′W (q, p′,0)e−

(p−p′)2
4b . (B.7)

This corresponds to the Gaussian smoothing of the momentum in the Wigner function.
Therefore,

eb∂2
pW (q, p,0) =

1√
4πb

∫
d p′W (q, p′,0)e−

(p−p′)2
4b . (B.8)

for b≥ 0.
Mathematically, equation (B.8) is known the Weierstrass transform of the Wigner func-

tion. The properties of this transform are discussed in, for example, [140].
It is possible to relate the Weierstrass transform to the Husimi distribution of Section

3.2 as the transition operator for the Husimi distribution is of the form TH = ea∂2
q+b∂2

p with
a,b > 0. Noting that TH is can be separated into a product of momentum derivatives and
position derivatives (TH = e~∂2

q/4mκe~mκ∂2
p/4), we can repeat the above steps for the position

to find that the Husimi distribution is the Weierstrass transform of the Wigner function
with respect to both the position and momentum. A similar argument can be made for the
generalization of the Husimi distribution of Section 3.3.
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Appendix C

Damping Transition Operator

C.1 Linear Damping
In Section 4.5, we presented coupled partial differential equations in (4.57) and (4.58)

that would determine the form of the transition operator to convert a Weyl-quantized simple
harmonic oscillator to one that included small damping. This system is underdetermined as
there are four unknowns but only two equations. It is thus possible to have two of a(q, p),
b(q, p), c(q, p), d(q, p) arbitrary and then solve equations (4.57) and (4.58) solely in terms
of the remaining two functions. Setting two of the functions equal to zero, we will present
the solution to equations (4.57) and (4.58) for each of the six cases.

With a = b = 0 and c = d = 0, we find that the resultant pair of differential equations
are inconsistent and no solution exists. Now consider a = c = 0. Then, the systems of
differential equations reduce to

∂d
∂q

+q
∂b
∂p

=−2p , (C.1)

−p
∂b
∂p
− ∂d

∂p
= 0 , (C.2)

yielding the solution which we determine with Maple (where we are doing indefinite inte-
gration),

b = g(q)+2
∫

dp
(

arctan
(

q
p

)
− d

du
f (u)|u=p2+q2

)
, (C.3)

d =−(p2 +q2)arctan
(

q
p

)
−qp+ f (p2 +q2) , (C.4)

with f (p2+q2) and g(q) being arbitrary functions. For a= d = 0, b= c= 0, and b= d = 0,
the non-zero functions in each of those remaining cases are equations (C.3), (C.4), and

a = g(q)+2
∫

dp
(

arctan
(

q
p

)
− d

du
f (u)|u=p2+q2

)
, (C.5)

c =−(p2 +q2)arctan
(

q
p

)
−qp+ f (p2 +q2) . (C.6)

In other words, the differential equations for the two non-zero parameters will have the
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same form as equations (C.1) and (C.2), whose solutions will be two of equations (C.3)-
(C.6). To determine the non-zero functions and form of f and g, it may be necessary to
consider additional constraints on the system.

C.2 Non-linear Damping
We will now present the solutions to equations (4.64) and (4.65) for quadratic damping.

For this case, f (p) = p2.
With a = b = 0 and c = d = 0, the system of differential equations is inconsistent, so

consider a = c = 0. We have

∂d
∂q

+q
∂b
∂p

=−2p2 , (C.7)

−p
∂b
∂p
− ∂d

∂p
= 0 . (C.8)

The solutions are (by Maple)

b = 4pq+F1(q)−2
∫

dp
d

du
F2(u)|u=p2+q2 , (C.9)

d =−4
3

q3−2p2q+F1(u)|u=p2+q2 , (C.10)

where F1 and F2 are arbitrary functions.
For the remaining cases, the differential equations for the non-zero parameters have the

same form as equations (C.7) and (C.8). Thus, when b or d are non-zero, they will still be
equal to equations (C.9) and (C.10). When a or c are non-zero, we have

a = 4pq+F1(q)−2
∫

dp
d

du
F2(u)|u=p2+q2 , (C.11)

c =−4
3

q3−2p2q+F1(u)|u=p2+q2 . (C.12)
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