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Abstract: Wetlands have and continue to undergo rapid environmental and anthropogenic
modification and change to their extent, condition, and therefore, ecosystem services. In this
first part of a two-part review, we provide decision-makers with an overview on the use of remote
sensing technologies for the ‘wise use of wetlands’, following Ramsar Convention protocols. The
objectives of this review are to provide: (1) a synthesis of the history of remote sensing of wetlands, (2)
a feasibility study to quantify the accuracy of remotely sensed data products when compared with field
data based on 286 comparisons found in the literature from 209 articles, (3) recommendations for best
approaches based on case studies, and (4) a decision tree to assist users and policymakers at numerous
governmental levels and industrial agencies to identify optimal remote sensing approaches based on
needs, feasibility, and cost. We argue that in order for remote sensing approaches to be adopted by
wetland scientists, land-use managers, and policymakers, there is a need for greater understanding
of the use of remote sensing for wetland inventory, condition, and underlying processes at scales
relevant for management and policy decisions. The literature review focuses on boreal wetlands
primarily from a Canadian perspective, but the results are broadly applicable to policymakers and
wetland scientists globally, providing knowledge on how to best incorporate remotely sensed data
into their monitoring and measurement procedures. This is the first review quantifying the accuracy
and feasibility of remotely sensed data and data combinations needed for monitoring and assessment.
These include, baseline classification for wetland inventory, monitoring through time, and prediction
of ecosystem processes from individual wetlands to a national scale.
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1. Introduction

Wetland processes include hydrological water cycling and biogeochemical processes, both of which
maintain wetland function, carbon storage and methane emission, biological productivity, and wetland
habitats, as described by the Ramsar Convention on Wetlands. As part of these abiotic and biotic
processes, a range of ecosystem services are provided that are beneficial to human populations through
local economy, and sustainability and resilience of communities [1]. These include provisioning services
(food, freshwater, fibre, and fuel), regulating services (climatic regulation, hydrological regulation,
pollution control, erosion protection, and mitigation of natural hazards), cultural services (spiritual,
educational, and religious), and supporting services (biodiversity, soil formation, and nutrient cycling).
Wetlands provide more ecosystem services and are valued more highly than any other terrestrial
ecosystem on Earth [1]. Detrimental changes in wetland extent and condition are therefore assumed
to reduce ecosystem services and value [2]. For example, monetary losses associated with the global
reduction of wetland area and cumulative ecosystem services between 1997 and 2011 was estimated to
be approximately 10 trillion USD per year [1].

Anthropogenic modification and pressures on wetlands are increasing exponentially [2]. There is
also a disconnect in understanding of wetland inventory, drivers of wetland change, and the integration
of wetland value into policy and decision-making efforts by government and industry [3]. Wise
management and use of wetlands require knowledge of the drivers of wetland changes that affect
all levels and scales of ecosystem function. These include direct loss and degradation from drainage
and land conversion, introduction of pollution and invasive species, and other human activities that
affect water quality and frequency of flooding and drying. Indirect drivers of wetland change include
climate change impacts and feedbacks, such as wildfires and drought, which are stochastic elements of
ecosystem change.

Holistic understanding and quantification of the cumulative impacts on wetlands requires not
only field assessment, but also the integration of modelling with remotely sensed data [4]. At the
most basic level, remotely sensed data are used to quantify the extent of wetlands and open water
areas over broad regions [5]. The accuracy of inventories of wetland area and type has improved
drastically since the 1980’s due to developments in remote sensing technologies and analytical methods.
Remote sensing is defined as the science of observing and recording information about objects from a
distance, without touching them, often from airborne or spaceborne platforms, but can also include
ground-based photography, imaging, and active survey (e.g., horizontally scanning lidar, radar).
Remote sensing approaches are also used to assess wetland ecosystem changes in area extent and
condition over time.

Field data collection has traditionally been used for thorough identification of local wetland
changes in processes over time. Ground-based information is necessary for understanding the impacts
of drivers but is often limited in area extent (local scale) and temporal coverage (visits per year and total
years monitored). For instance, academic field-based research initiatives typically progress through
funding cycles of three to five years. Similar timelines occur for government scientists associated with
changing government administrations and changing priorities. On the other hand, data acquisition
by satellites occur up to several times per week and over periods of years to decades, which are then
used to identify changes in the environment at local to national scales. Changes in wetland condition,
for example, can be determined through the analysis of spatial variations in the colour and texture of
vegetation, moisture characteristics, or surface water. By including multiple images, one may identify
indicators of cumulative drivers of wetland condition through changes in vegetation structure and
hydrological regime, which alter the colour and texture of images over time.

Remote sensing is also used to improve model outputs through parameterisation and/or evaluation
of one or more input drivers. The combination of the two (remote sensing and modelling) influence
decision-making processes because they include both the spatial and contextual/proximal dynamics,
which could be used to inform management decisions for up to thousands of wetland ecosystems. The
combination of remotely sensed and field data collections are imperative for quantifying direct and
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indirect drivers of wetland ecosystem change, implications to ecosystem services, and mitigation of
wetland disturbance. Despite this, there needs to be an explicit treatment of the methods of wetland
classification and how these classes are used to inform wetland value to support decision-making
procedures from local to federal levels of government (Figure 1). Such frameworks currently do not
exist in Canada nor in many other jurisdictions or countries.

Policy/Management Needs
(e.g. Development, Reporting)

Remotely sensed data

Fielci data
External Factors - Wetland Attributes
(e.g. Environment or Regulation) (e.g. Class, Form, Type, etc.)
M~ A
Evaluation
System

Ry

Decision-making or Reporting
Process

Figure 1. Linking policy and management needs for wetlands through an evaluation system used at
the local to federal level for decision-making and reporting by facilitating more accurate measures and
interactions of landscape level external drivers and wetland attributes.

Government agencies are exploring the utility of remotely sensed data within operational wetland
management and monitoring frameworks to improve the accuracy of baseline wetland inventory
data and knowledge of drivers of wetland ecosystem change. The desire is to improve wetland
management decisions and outcomes, however, slow adoption of procedures and practices often over
many years is due in part to the technical nature of remote sensing and the complexity of wetland
science. This includes a wide range of wetland applications and monitoring needs, various remote
sensing technologies used, and differences in the way in which data are collected, analysed, and
compared. While there have been numerous technical reviews on the use of remotely sensed data
for characterising wetlands, no study has provided scientists and decision-makers with a range of
accuracies that can be expected across wetland application areas. Because of this, standard procedures
for incorporating remotely sensed data into monitoring programs have not been implemented and the
use of remote sensing often remains ad hoc or for scientific/academic purposes.

To address these issues, this manuscript (Part 1 of a two-part series, both in this edition) provides a
statistically based assessment of the range of accuracies of remotely sensed data and derivative products
compared with field data, as determined from the literature. While this is not a thorough review of
optimal data analysis procedures (these are examined in Part 2), this will provide decision-makers with
a basic understanding of accuracy expectations and feasibility if remotely sensed data are included
within a wetland management framework. Feasibility is defined here as the expected accuracy and
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applicability of remote sensing technologies, including cost and scale (or minimum mapping unit)
requirements needed to infer spatio-temporal wetland attributes and ‘no net loss’ requirements [2].

Part 1 focuses on four key objectives: Objective (1) a synthesis of the history of remote sensing over
the last 50+ years for examining wetland extent, inventory, and processes of importance described in
the Ramsar Convention on Wetlands [2]; Objective (2) a feasibility study on the use of remotely sensed
data products compared with field data, determined from reported accuracies from 209 peer-reviewed
journal articles; Objective (3) recommendations for best approaches for the use of remote sensing
within an inventory and monitoring framework using boreal region case studies, where available.
Finally, Objective (4) a decision tree diagram and table to enable decision-makers to choose optimal
remote sensing approaches based on user needs, feasibility, and cost. This review provides an explicit
framework for the use of remotely sensed data for wetland monitoring in support of policy and
decision-making requirements within different levels of government and industry (Figure 1). In Part 2,
we provide a review of best practices for the most accurate assessment of wetlands and their functions.
Our review is broadly addressed to decision-makers interested in the ‘wise use of wetlands” and is
relevant for global wetland management and monitoring using remotely sensed data analytics. Both
parts of this compendium focus on boreal-region wetlands and peatlands, primarily from a Canadian
perspective, however, we broadly assessed and recommended analytical remote sensing methods
using examples from global inland and coastal wetlands, where they have not been used in a boreal
context, to ensure our review was far-reaching and comprehensive.

2. Objective 1: History and Uses of Remote Sensing of Wetland Ecosystems

The science of remote sensing, in combination with knowledge from wetland sciences, is now,
more than ever, well-positioned to accurately quantify wetland extent, wetland condition, and the
changes in these attributes over time (addressed in Part 2). As such, remote sensing science has rapidly
expanded the capability to assess wetlands due to three key developments: (i) Global satellite data
coverage from Landsat series (1972 to current; National Aeronautics and Space Administration, NASA)
and now Sentinel (2014 to current; Copernicus Programme) are freely available. This has enabled
broad-area mapping of wetlands in both developed and developing countries, and the proliferation of
new methodologies to examine remotely sensed data. (ii) The breadth of wetland attributes measured
using remote sensing technology have increased dramatically in recent years, given advancements in
new technologies such as multi-spectral sensors (e.g., Sentinel-2) and multi-spectral lidar, computing
power and methods, and improved fidelity of spatial data products over time. (iii) Methodological
developments and the fusion of multi-disciplinary research have improved the integration of remotely
sensed data, field data, and modelling to measure proxy indicators of underlying processes related
to ecosystem condition and change over time. Historic use of airborne and satellite remote sensing
systems often used for studying the land surface through time, including wetlands, are introduced in
Figure 2. Single and multiple acquisition aerial photography have been used to characterise the earth’s
surface at a ‘snapshot’ in time since the 1940’s. The development of numerous optical (multi-spectral
and hyperspectral) remote sensing platforms accelerated during the mid to late 1980’s and into the
1990’s (Figure 2). Single acquisition airborne hyperspectral remote sensing systems became popular
during the 1990’s followed by Synthetic Aperture Radar (SAR) and airborne lidar from 2000, especially
towards the beginning of the 21st century.
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Figure 2. Historic use of airborne and satellite remote sensing systems often used for studying wetlands
through time. The year of inception and period of operation of each system and system type (e.g.,
multi-spectral satellite) is illustrated by different colours, and repeatability of data collection is identified
(hatched are planned, single, or planned repeated acquisitions; non-hatched represents repeating data
collections). See Part 2 for details on return intervals and pixel resolution. Acronyms include (from
top to bottom): Multi-Spectral (MS), Soil Moisture Active Passive (SMAP), European Remote Sensing
(ERS), Advanced Land Observation Satellite Phased Array type L-band Synthetic Aperture Radar
(ALOS PALSAR), Environmental Satellite Advanced Synthetic Aperture Radar (ENVISAT ASAR),
Japanese Earth Resources Satellite (JERS), National Aeronautics and Space Administration-Indian Space
Research Organisation (NASA-ISRO) Synthetic Aperture Radar (NISAR), Medium Resolution Imaging
Spectrometer (MERIS), Advanced Very High Resolution Radiometer (AVHRR), Moderate resolution
Imaging Spectroradiometer (MODIS), Landsat series Multi Spectral Scanner (MSS), Operational Land
Imager (OLI), Enhanced Thematic Mapper (ETM+), Thematic Mapper (TM), Satellite Pour 1'Observation
de la Terre (SPOT), Korea Multi-Purpose Satellite (KOMPSAT), IKONOS (no acronym, means “Image”
in Greek), Airborne Visible InfraRed Imaging Spectrometer (AVIRIS), Compact Airborne Spectrographic
Imager (CASI), Shortwave Airborne Spectrographic Imager (SASI), Reflective Optics System Imaging
Spectrometer (ROSIS), Multispectral Infrared Visible Imaging Spectrometer (MIVIS), Near Infrared
(NIR).
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Interestingly, the use of remotely sensed data for estimating wetland extent and type, according to
the Ramsar Convention on Wetlands [2], was relatively limited until about 2003 (Figure 3). This may
be due to a lack of interest in wetland environments compared with forests owing to their supposed
low ‘value’, whereby forest merchantable biomass was considered of high value (F. Ahern, personal
communication). By 2013, increasing research activities included data conflation, also known as fusion.
Conflation refers to the use of two or more remote sensing and geospatial datasets based on their
strengths so as to reduce redundant information.
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Figure 3. Frequency of articles published in peer-review journals that compared remotely sensed data
with measured wetland attributes over time. Articles were categorised into either remote sensing (RS)
and geographic information system (GIS) journals or in ecosystem science journals and the year of
publication. Also included is the frequency of publication of multiple sensor-conflation methodologies
within remote sensing and ecosystem science literature (n = 241 journal articles including accuracy
statistics examined). As of the writing of this article, a total of 1701 articles published in English use
remote sensing to examine global wetland characteristics (Web of Science).

Most early articles (~1973 to 1997) using remotely sensed data to study wetlands were
published in ecosystem process journals that were not dedicated to the study of remote sensing
methods’ development. Early articles focused on wetland mapping and characterisation using aerial
photography [6-11] or the use of chronosequence air photos to track wetland change [12-14]. Validation
of wetland extent and locational features using the civilian global positioning system (GPS) did not
occur at most sites until after May 2000, when Selective Availability of GPS satellites was turned off. Up
to that time, coarser resolution remotely sensed data products were often compared with delineated
air photos as validation (e.g., References [15,16]).

In 2002, Ozesmi and Bauer [17] wrote a seminal review of the use of remote sensing for the
study of wetlands, but it was not until early December 2008 that all Landsat data became freely
available on a United States Geological Survey (USGS) online archive, contributing to accelerated use
of Landsat data for monitoring wetland (and broader ecosystem) changes over time [18,19]. Later
on, increasingly complex methods and comparisons warranted publication in remote sensing or
information system and computer science journals [20,21] (Figure 3). These were added to the body
of literature at the exponential rate of growth observed in Figure 3 (k = 0.07, R? = 0.53, where k is
the growth constant, or the frequency of growth over a period of time and R2 refers to the coefficient
of determination for an exponential model). Publication of articles in ecosystem science journals
also increased exponentially, but at a reduced rate (k = 0.04, R> = 0.52, for a similar exponential
model). Additional sensors, including RADARSAT-2, which followed the success of RADARSAT-1,
and lidar became operationalized through the late 2000’s (Figure 2). These sensors were also important
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contributors to application development important for wetland characterisation, including water
extent and hydro-period [22,23], and topography and vegetation structure [24-27].

Remote sensing offers non-invasive methods for collecting information using either “passive’ or
‘active’ observation approaches. Passive sensors detect electromagnetic radiation emitted from the
sun that is absorbed, transmitted, or reflected from or through objects on the Earth’s surface (similar
to a photograph). The ability of objects to absorb, emit, transmit, or reflect radiation depends on a
combination of structural and biochemical attributes and the combined distribution of objects within a
pixel [28]. Multispectral remote sensing detects energy variations across several discrete wavelengths
or ‘bands’, while hyperspectral remote sensing can detect energy variations across several hundred
discrete bands, thereby providing even more information on structure and biochemistry (e.g., nitrogen,
water content) (e.g., Reference [29]). Advantages of passive remote sensing include potentially: long
time series (e.g., long-term USGS and NASA investment in AVHRR, Landsat, and MODIS) and up to
multiple acquisitions per week, inexpensive data collection (low to moderate resolution satellites), and
ease of application. However, these datasets, often with low spatial resolution data (>10 x 10 m pixels),
may not accurately capture wetland transition areas and edges due to mixed pixels (pixels containing
heterogeneous land covers or characteristics), resulting in uncertainty in changes of wetland extent.

Active sensors provide their own energy source by directing radiation towards a target and
measuring the properties of energy received. For example, airborne lidar systems rapidly emit laser
pulses (up to ~1,000,000 pulses per second) within one or more discrete wavelengths and measure the
timing between laser pulse emission and reception, and the intensity or amount of energy of the reflected
laser pulse [30]. Lidar is able to detect vegetation structural characteristics (e.g., References [24,26])
and ground surface elevation (e.g., References [26,31]) at high spatial resolution (typically one to tens
of laser pulse reflections per square meter). SAR emits and receives radio waves. The polarisation of
wave emission (either vertical or horizontal) allows differentiation of textural and moisture attributes of
the target related to its dielectric properties [32,33]. Therefore, SAR is particularly useful for detecting
variations in backscattered energy related to surface soil moisture characteristics, surface water, and
inundated emergent vegetation (e.g., Reference [34]). Advantages of active remote sensing include
potentially high spatial resolution and the capability to operate independently of natural light sources,
therefore offering less restricted operating times (i.e., active sensors can be operated day or night and
in the case of SAR, through clouds), but without broad area coverage [5]. Manufacturers may also
tailor the emitted radiation to specific applications; for example, avoiding red wavelengths for the
sensing of green vegetation as the majority of the emitted radiation will be absorbed by such targets.
This capability has numerous secondary advantages such as altering the emission wavelengths so
that clouds become transparent and providing the ability to penetrate above-ground features such as
vegetation, allowing the retrieval of structural characteristics. Disadvantages of active remote sensing
include cost of data acquisition depending on platform, though Sentinel-1 is freely available and
RADARSAT series costs are reduced by subsidies from the Canadian Government. In addition, active
remote sensing also may require advanced expertise and software tools and requires targeted planning
of data collections and acquisition.

The combination of active and passive sensors within a range of spectral, spatial, and temporal
resolutions, and the ability to develop complimentary data information, has also increased the
variety of wetland data products derived (e.g., References [35-37]) using data conflation frameworks.
The combination of information streams from different sensors has allowed users to characterise
wetland attributes that may be difficult to identify using single sensors. For example, the authors of
Reference [38] were able to identify ephemeral vernal pools by combining PALSAR L-band SAR, laser
return intensity from lidar data, and a Digital Elevation Model (DEM). In another study [39], vernal
pools were identified using colour infrared aerial photography and lidar data. Typically, vernal pools
are difficult to identify using single remote sensing technologies and therefore many of these are missed
within wetland classifications [40]. This is due to occlusion of the ground surface by tree canopies,
particularly problematic for optical imagery but can be sensed using lidar, an inability to quantify
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standing water within vernal pools using lidar data, observed using SAR, and an inability of lidar and
SAR for measuring tree species and texture, which can be mapped using optical imagery. Combining
sensors using data conflation methods improves the accuracy with which these are identified [38].
Other examples include: peatland microtopographic and moss species monitoring using a hydrological
framework based on high spatial resolution lidar and IKONOS optical imagery [41], classification of
bogs and fens using RADARSAT-2 with quad-polarimetry and Landsat OLI multi-spectral imagery
within an object-based image analysis framework [42], invasive species identification using multiple
spectral imagers such as MIVIS, AISA Systems, GeoEye, and Worldview-2 [43], and overland flooding
using a combination of Landsat TM, SPOT, and RADARSAT-1 [44], among others. With increased
data availability and long-term data acquisition periods [45] (Figure 2), data conflation has become the
state-of-the-art in remote sensing wetland science.

When comparing costs associated with field data collection, the average cost of acquisition and
processing of lidar data per acre of forest land is comparable to field data collection, estimated at
2.63 USD, for continuous collection of forest attributes. Forest inventory of tree structure: basal
area, density, and height, is estimated to be 2.46 USD, however these are for individual plots within
a forest management area [46]. Cost of wetland inventory, especially in remote areas, is likely to
be much higher, though areas measured may be smaller (described in Part 2). Table 1 provides an
overview (chronologically where possible) of wetland-related products derived from remote sensing,
as characterised by the four dominant wetland processes described by the Ramsar Convention on
Wetlands [2], and in addition, wetland extent and climate change impacts.
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Figure 4. Feasibility of 46 commonly used remote sensing platforms (x-axis) for 16 wetland application
areas (y-axis) following Ramsar Convention guidelines (Ramsar Convention on Wetlands, 2018) directed
to boreal wetlands, and presented as average validation accuracy (R? or users’ accuracy). This is
determined as percent correspondence with field data found within the literature. Grey represents
applications that were not discussed (per system) in the literature reviewed, and white represents
applications that were described but did not contain suitable statistics for comparison in this review.
Remote sensing systems are organised within each category (e.g., multi-spectral satellite) from highest

to lowest pixel resolution.
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Figure 5. Standard deviation (SD) of the range of accuracies presented where the same remote sensing
system was used for an application but differed in geographical area (presented by more than one
article). Numbers within boxes represent the number (n) of observations per platform and application.
In many cases, validation data were either missing (63 cases) or there was only one article found that
used a particular sensor for an application (99 cases). The remainder (187 cases) included multiple
assessments of the same application using the same remote sensing platform.
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Figure 6. Accuracy using multiple remote sensing platform data conflation methods. Symbols represent
local (e) (up to 100 km? with a focus on individual wetlands), regional (O) (up to 25,000 km? or covering
a region such as a province) and national (/) scales. Multiple symbols indicate that two articles used the
same sensors (only a maximum of two articles were found to use the same configuration of sensors in
the literature).

3. Objective 2: Feasibility of Remotely Sensed Data Products for Wetland Applications

3.1. Approach

To determine the feasibility of remotely sensed data for wetland applications, we accessed
articles that provided statistical comparisons (coefficient of determination or users” accuracy) between
derivative data products and field measurements with a focus on Canadian Boreal ecosystems. We
attempted to download all articles published (up to and including 2019) using Scopus, Web of Science,
and Google Scholar. In total, 364 articles were downloaded and 209 of these were selected based on
our requirements for field versus remote sensing comparison statistics (R?> and/or users’ accuracy).
This resulted in 286 comparison statistics for single sensor applications and 57 multi-sensor data
conflation comparisons with field data from the 209 selected articles, where often more than one result
was presented. Remote sensing derivative products were grouped into 16 application areas and then
classified based on Ramsar Convention on Wetlands [2] listed processes of importance for ecosystem
services. These include (in order): hydrological regime and water cycling, biogeochemical processes,
carbon storage and methane emission, and biological productivity. Within each application area and
for each sensor technology, we aimed to include as many comparisons between field measurements
and data derivatives as available within the literature, but at minimum, three or more comparisons.
Average and standard deviation (SD) of the accuracy between field measurements and data derivatives
were calculated. In some cases, the frequency of comparisons (n > 3) in the literature do not exist
and therefore, average n < 3 (or the single comparison for n = 1) is provided and standard deviation
is excluded.

The culmination of data from the literature is a crucial first step towards providing managers
with summary understanding of remotely sensed data derivative accuracy, however, we also note
that this methodology is not without limitations: (1) Field data are collected and geospatially located
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using a variety of methods and with different numbers of observations, which will yield different
accuracy statistics, (2) more recent articles often use more sophisticated algorithms and in many
instances, provide an improvement in accuracy over older methods, (3) data resolution within the
same sensors can vary, (4) some methods/algorithms may be site-specific and over-parameterised, thus
also yielding higher accuracies, (5) accuracy results may also depend on wetland type (for example,
accuracy is expected to be lower in forested wetlands relative to open water or palustrine, emergent
wetlands), and (6) the scale of the study, whereby accuracies may be reduced when methods are applied
across larger areas. These issues are highlighted where appropriate in the discussion of results. By
providing statistical assessment based on average, standard deviation, and the number of comparisons
represented, gaps in knowledge and uncertainties are elucidated.

3.2. Results: Feasibility of Remote Sensing for Wetland Applications

Analysis of the remote sensing applications, accuracy, and feasibility (Figure 4, Table 1) indicate the
increasing use of remote sensing over time and with various systems for wetland assessment and model
development. Aerial photography is used primarily for interpretive-based classification of landcover
and wetland class (e.g., bog, fen, marsh, swamp, shallow open water) and form (graminoid, shrubby,
treed), wetland species discrimination [8,11,230], and for tracking long-term wetland evolution [12,13].
Hyperspectral sensors dominate in applications that require detailed mapping of wetland class
and form [103] (Hymap and CASI), species identification [69,127] (CASI, MIVIS, AVIRIS, Hyperion),
productivity and foliar chemistry [162,166] (Hymap, CASI), water properties including extent, chemistry,
and turbidity [191,231] (MIVIS), and mine spill detection [227] (fluorometry). Due to its long-term
availability, passive multi-spectral remote sensing has the broadest demonstrated range of application
development for wetland comparison, including general landcover classification and more detailed
wetland class discrimination [78,161]. These include a range of older to most recent research activities
including improvements of the sophistication of algorithm development. Obvious gaps in use are
illustrated when characteristics of the ground surface (topography, soil moisture, surface geology,
and mine-spill detection) are of interest, due to occlusion or shadowing of underlying vegetation and
ground by vegetation canopies. SAR (e.g., RADARSAT series, Sentinel-1, PALSAR, Figure 3) dominate
in areas where surface water extent, hydroperiod, and soil moisture are important [38,178,232], and
are also used with success at finer spatial resolution and more recently deployed satellite missions
for landcover and wetland classification [83]. However, these systems have the most limited range of
applicability of any system based on the reviewed literature (7 applications versus 10.2 average number
of applications), although the ability of SAR to measure water is a critically important indicator of
wetland permanence. Lidar systems have been used across a wide range of applications, including
landcover and wetland classification [85,213], metrics associated with vegetation structure, productivity
and change [26], water levels [186,193], and topographic derivatives, including topographic positioning
of the land surface, surface geology, and wetland connectivity (Figure 4) [97,209,233].

The accuracy of the derivation of wetland extent and type and other attributes varies greatly
between remote sensing systems and applications (Figures 4 and 5). Unsurprisingly, greater
environmental complexity of wetland attributes (e.g., remote sensing of the water column, differentiation
of species types within heterogeneous environments) typically results in reduced accuracy. Furthermore,
some sensors record spectral or backscattered/reflected responses within a range or spectral resolution
appropriate for differentiating classes and features or attributes of interest. For example, SAR
easily differentiates inundated marshes from other wetland types [234-236], but fen and bog are not
easily differentiated with single-date imagery due to inseparable backscatter from similar physical
characteristics (e.g., tree species composition) [37,237-239]. This often results in lower classification
accuracies. However, if fen and bog wetland classes are combined into a single peatland land cover
class, then the accuracy improves (thus, differentiation of land cover versus wetland classes). The
highest accuracy is near 100% correspondence with field measurements, where airborne hyperspectral
remote sensing is used to classify exotic cordgrass [120], while the lowest accuracy of land cover
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classification, differentiation of wetlands from other land cover types, is 2% [56]. In Frey and Smith [56],
the MODIS global land cover product is compared with field data for permanent northern/boreal
wetlands in Siberia, illustrating potential challenges associated with regional application of a global
product and pixel resolution (~1 km) using this method. This also indirectly suggests the requirement
for parameterisation of wetland data products at local scales to improve accuracy. However, based on
broad pixel characteristics, the probability of wetland surfaces may be inferred (e.g., Reference [240]).
When validation results from individual articles representing all applications for wetland assessment
are combined within grouped remote sensing systems (e.g., aerial photography, hyperspectral, etc.)
and across variable conditions, average accuracies vary.

High spatial resolution aerial photography, hyperspectral, and multi-spectral optical remotely
sensed data represent the highest average accuracies when compared with field data (Table 2). This is
especially the case when sensors such as aerial photography, hyperspectral (e.g., AVIRIS and CASI),
and multi-spectral (e.g., RapidEye) are used for classifying landcover and wetland classes. Aerial
photography, which often requires manual delineation of wetland areas, is also often considered ‘truth’
or validation data when field data are not available for quantifying wetland boundaries [112], though
it is not considered a method of field data comparison here. While high spatial resolution data provide
the most accurate estimates of class, vegetation species, and water extent, these datasets often have
limited repeatability, reduced availability, and shorter historical sampling periods (history) (Figure 1).
Sensor series such as Landsat TM, ETM+ and OLI are used for a range of applications (Landsat MSS
is not included here due to lack of comparisons for boreal wetlands) (Table 2). Benefits include a
long history of data acquisition (almost 40 years) and multiple acquisitions per year. In comparison,
Sentinel-2 has finer spatial resolution than Landsat series (10 m versus 30 m, respectively) with higher
accuracy of combined applications, but over a shorter period of operation. SAR are also primarily
for landcover and wetland class, and water extent, where average accuracies typically increase with
spatial resolution (Table 2). Improvements in data derivatives compared with field data are observed
in the use of RADARSAT-2 over innovations of RADARSAT-1, while Sentinel-1 also shows improved
accuracies compared with other coarser spatial resolution systems. Quantification of the combined
accuracy per sensor type and for a number of applications provides users and decision-makers with
general expectations of accuracy. This is useful when considering the analytical solutions for a broad
range of requirements from single sensors. However, we also caution that this is not without bias. For
example, direct comparisons between older and newer systems such as Landsat TM versus Sentinel-2
is inherently biased due to the availability of more sophisticated methods that can now be applied to
more recently collected data (e.g., Sentinel-2) and studies. Older studies may lack the sophistication of
computing resources available today and therefore, may reduce the average accuracy when included
with more recent activities for sensors that have been used for longer periods of time (e.g., Landsat,
IKONOS, RADARSAT-1, etc., Figure 1). In addition, methods of data collection and validation have
also improved as has the geolocation of field data, which may also influence relative comparisons.
Therefore, we suggest that standard deviation and numbers of comparisons also be considered when
examining average accuracies in Table 2, such that those sensors with high standard deviations of
applications and/or few comparisons be viewed with caution.



Remote Sens. 2020, 12, 1320 16 of 50

Table 2. Average, standard deviation, and number of data comparisons for combined applications
compared with field data for each sensor from the literature for boreal wetlands. * Comparisons indicate
that results were obtained from a single article (caution interpreting results should be exercised).

Standard Number of
Deviation Applications Data to Field
Accuracy (%) Comparisons

Average

Sensor Type Sensor Accuracy (%)

Land cover class
Aerial Wetland class
Photo 80.5 21.6 Vegetation Species
photography Water extent

Water quality

Landcover class
Vegetation Species
Trophic status
Bathymetry

MIVIS 86.5 12.1

Hyperspectral
Wetland class

Hymap 760 278 Vegetation Species

Wetland class
CASI 90.2 7.6 Vegetation Species
Chlorophyll-a

Landcover class
AVIRIS 85.5 9.7 Vegetation Species
Oil spill detection

Landcover class
Vegetation Species
Hyperion 54.9 26.9 Productivity
Habitat
Nitrogen

Landcover class
WorldView Wetland class
Series 80.0 176 Vegetation Species

Productivity

*

Wetland class
Pleiades 86.2 34 Landcover class

Satellite Wetland class

Multi-spectral

Vegetation Species
Quickbird 73.7 13.9 Change
Water extent

Land cover class
Wetland class
IKONOS 78.8 14.3 Vegetation Species
Productivity
Habitat

Wetland class
RapidEye 88.0 9.1 Water extent
Productivity

Landcover class
Wetland class
Vegetation Species
Change

SPOT 77.0 219

Landcover class
Vegetation Species
Sentinel-2 86.6 11.8 Water extent
Productivity
Trophic status

NP R PR PO, PQAaINNEFE,IDNND =N O N»—IU' R R R, PR R RERI RN, NOR, NN, PRRER PR =R =N
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17 of 50

Sensor Type Sensor

Average
Accuracy (%)

Standard
Deviation
Accuracy (%)

Applications

Number of
Data to Field
Comparisons

Landsat TM

74.0

23.0

Landcover class
Wetland class
Water extent
Productivity
Chlorophyll-a
Water turbidity
Vegetation
structure
Habitat

P NN RPFP, DN WO -

Landsat ETM+

71.5

10.8

Productivity
Trophic status

Landsat OLI

74.1

13.0

Wetland class
Vegetation Species
Productivity
Trophic status

W= W

MODIS

54.9

32.7

Landcover class
Wetland class
Turbidity
Productivity
Water flux
modelling

e e

AVHRR

58.0

36.6

Landcover class
Water flux
modelling

=N

MERIS

77.4

7.5

Landcover class
Chlorophyll-a
Trophic status

TerraSAR-X

88.3

9.4

Vegetation species
Water extent

Synthetic

Aperture Sentinel-1

93.4

29

Landcover class
Water extent

Radar
RADARSAT-2

86.7

6.3

Wetland class
Water extent

JERS-1

80.1

12.3

Landcover class
Water extent
Water salinity

[N ' Y G SO [ O R RSN OV S N Y

ENVISAT
ASAR

73.1

33.6

Water extent

S

RADARSAT-1

67.7

8.3

Landcover class
Wetland class

ALOS PALSAR

67.3

19.7

Landcover class
Wetland class
Water extent

RN W WN

ERS-1

66.0

15.2

Wetland class
Soil moisture

NN
¥ %

SMAP

70.1

23.4

Productivity
Soil

moisture/temperature

2
4+2*
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Table 2. Cont.

Average Standard Number of
Sensor Type Sensor Accurac & (%) Deviation Applications Data to Field
y e Accuracy (%) Comparisons

Landcover class 1
SIR-A 67.5 17.5 Wetland class 2
Water extent 1
Jason Series 975 2.2 Water extent 3

Wetland class
2
Change 1
Water extent 3

. . Wildland fire
Lidar Airborne lidar 74.3 15.7 Habitat }

Vegetation
5
structure 6
Elevation

Airborne Vegetation species 2
multi-spectral 84.6 10.6 Water extent 1
lidar Structure 1

Accuracies improve significantly when data conflation (fusion) methods are applied (Figure 6).
Data conflation approaches have become increasingly popular for remote sensing of wetlands over the
last 15-20 years (Figure 2). A number of data conflation approaches have been applied to wetland
mapping and monitoring, employing combinations of two and three of the following data sources:
optical imagery, lidar, and SAR [36,95,241-246], [45,98,247,248]. In addition, active sensors such as
SAR and lidar collect simultaneous properties of signal strength and timing (surface and vegetation
geometry). Therefore, multiple conflation approaches may be applied to a single sensor to produce
multiple derivatives. For example, signals from lidar systems also record the intensity of the energy
returned to the sensor, information on below canopy terrain attributes, and vegetation structural
characteristics (e.g., Reference [173]). Overall accuracies across all applications and for all individual
articles increase from 76% (SD = 18.9%) to 82.6% (SD = 11.2%) using data conflation. Several studies
have shown that data conflation approaches reduce overall wetland classification uncertainties with
respect to models produced by any single data source when analysed in isolation [45,242-245,249].
The incorporation of Landsat and SAR data are used most often with other remote sensing systems to
infer land class, wetland class, and water extent and level. This is due to the global extent, long-term
coverage and repeat interval of Landsat data, and the ability of SAR to accurately determine water
extent, level, and hydroperiod with rapid return intervals, variable pixel resolution, and sensing during
night and cloud-covered conditions (Table 1). Further, data conflation also reduces issues associated
with data temporal disparity [45], which is especially important when characterising hydroperiod.

For wetland class identification, Landsat series average accuracies are 72% (SD = 36%, n = 6),
whereas when Landsat is included with other remote sensing systems, accuracies increase to 85.4%
(SD =7.3%, n = 7). Average accuracy increases when comparing wetland classification using SAR (all
systems) from 71.5% (SD = 13.3%, n = 11) to 78% (SD = 11.2%, n = 13) using combined multi-spectral
data conflation. The use of airborne lidar-derived DEMs of the ground surface also improves water
level accuracy determined from SAR and multi-spectral resolution imagery when compared with
water levels determined using coarser resolution DEM (averages = 90% (SD = 3.9%, n = 4) and
93% (SD = 1.3%, n = 3), respectively). However, it is unlikely that extreme temporal separations
in data acquisitions, particularly where data are sourced from different seasons, will produce such
favourable results when compared coincidentally within a landcover classification. For a single location
classification, use of multi-temporal data (e.g., including timing of vegetation phenologies) could
improve the classification [250]. In the case of water level accuracies, these improve significantly when
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using lidar-derived DEMs, especially in areas of complex topography and vegetation cover where
ASTER- and the NASA/National Geospatial-Intelligence Agency Shuttle Radar Topography Mission
(SRTM)-derived DEMs uncertainties are greater. Species differentiation and foliage biogeochemistry
using hyperspectral imagery is slightly improved when vegetation structure from airborne lidar data
is included (average = 84%, SD =9, n = 5).

4. Objective 3: Best Approaches for Wetland Inventory and Monitoring

Wetland inventory measures baseline wetland extent, indicators, and drivers of wetland condition,
whereas wetland monitoring tracks wetland inventory changes over time. Ultimately, wetland inventory
and remotely sensed data products are driven by end user-needs (Figure 1), for example, to assess
the effectiveness of wetland policy objectives, or provide information relevant to land-use managers
or local indigenous communities (e.g., Reference [23]). Value-added information or applications
are based on previous inventories and satisfying key wetland stakeholders, for example: Ducks
Unlimited Canada [251], previous guides to wetland inventories (e.g., Reference [252]) and forestry
ecosite guides [253,254], the Canadian Wetland Classification System [255], and Ramsar Convention
on Wetlands [2] at the international level. The following summarises the importance of key wetland
functions and processes with case studies on the optimal use of remote sensing within a Boreal
region framework.

4.1. Wetland Extent for Baseline Inventory and Long-Term Monitoring

To manage wetlands on a regional to national scale, wetlands are often categorised into wetland
types (wetland classification) and wetland distribution and extent (wetland inventory) [2,256]. Within
the context of the Alberta Wetland Classification System [257], wetland characteristics used to identify
wetland extent and baseline inventory include hydrological, biological, and where available, chemical
attributes. Attributes characterise a range of hierarchical levels of wetland class, form, and type required
for wetland extent and baseline inventory, also described in the Canadian Wetland Classification
System [258] (Figure 7). Class refers to the properties of the wetland and indicates overall genetic
origin and the nature of the wetland environment. Form divides wetland class based on surface
morphology, surface pattern, water type, and the characteristics of the underlying soil. Many wetland
forms apply to more than one wetland class, and some forms are subdivided into sub-forms. Finally,
type subdivides wetland forms and sub-forms based on physiognomic characteristics of vegetation
communities. Similar wetland types can occur in several wetland classes, whereas others are unique to
specific classes and forms. For example, geomorphological and hydrological gradients vary, causing a
blending of vegetation from one species community into another. This results in considerable natural
variability between land cover types [259] and a blurring of the boundaries between wetlands and
transition areas across space [260]. Variations in wetland definition, extent, and classification/inventory
within Canadian Provinces and Territories, and also between countries that have boreal wetlands (e.g.,
Alaska, Russia), can add considerable complexity to the definition and classification of a wetland [56].
For example, the issues with delineating swamps is noteworthy, while, unlike the broad definition used
within the Ramsar Convention guidelines, lakes and rivers are not included within this classification.
Throughout the Boreal region, both mineral- and peat-dominated wetlands can have tree cover > 25%,
while in areas of low relief, the distinction between swamp wetland and the adjacent forest is limited,
making clear distinction with peatlands a challenge.
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The use of remotely sensed data provides a spatial and statistical framework to characterise
the broad range of wetland ecosystem classes, forms, and types across all regions on Earth, and
particularly in remote areas where access is difficult. Early methods of wetland extent characterisation
and inventory included single sensor datasets with coarser pixel resolution, such that the spatial fidelity
of the data were not able to resolve medium to small wetlands or wetland edges [5,89]. For example, the
authors of Reference [56] found that the use of global AVHRR data products (1.1 km pixel resolution)
significantly underestimated the area extent of wetlands due to confusion with open water. Similarly,
the authors of Reference [73] found that AVHRR was not able to resolve detailed boreal wetland
characteristics observed in Landsat TM data. Frohn et al. [89] note that wetland identification using
moderate resolution (30 m pixel) Landsat TM data requires that wetland area exceeds 0.2 hectares, thus
missing many smaller, biologically important wetland ecosystems. Aerial photography is often used as
validation for wetland extent and type (e.g., References [10,51]), however, air photo interpretation and
discrimination of wetland class and form require manual delineation, which is time consuming over
large areas [114]. Photogrammetric methods require highly experienced photointerpretation, with
the potential for lack of consistency between individual interpreters. Use of multi-band imagery (e.g.,
multi-spectral or hyperspectral), and/or data conflation using multiple datasets (e.g., optical, lidar,
SAR) provides the ability to statistically compare and contrast the influence of ground surface features
on pixel spectra, structure, and reflectance/absorption characteristics, such that similarities across
bands and other spatial information can be grouped and classified (e.g., Reference [243]). Statistical
and data processing methods also ensure repeatability of methods through time and across broad
regions, such that wetland processes and drivers of change are compared and monitored. Typically,
binary wetland/non-wetland classes are highly accurate (>95% accuracy) with the expectation that
accuracies decrease with increasing complexity of wetland class, form, and type. The Canadian
Wetland Inventory requires a minimum mapping unit of 1 hectare, which further limits identification
of smaller wetlands [5]. Using Landsat TM data, Bourgeau-Chavez [50] also observed confusion
between wetlands bordering agricultural fields due to similarity of pixel absorption and reflectance
characteristics along edges.

Boreal wetland classes are diverse and complex. The ability to characterise and map wetland
species provides a systematic mechanism for identifying stages of succession in wetland environments.
These include ecosystem change via transitioning of mixed species, habitat mapping, improvements
to wetland class and type identification, and threats to the wetland environment, including invasive
species [262]. These are critically important for providing a quantitative measure of wetland stability
and value within the broader region. Accuracy of wetland extent, class/form, and surface characteristics
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determined using remote sensing has improved greatly since 2009 due to the proliferation of high
spatial resolution optical, lidar, and SAR data (Figure 3). Further, new methods for data fusion and
conflation using machine learning [66,239,263], decision tree approaches [264], and object-based image
analysis [265-267] have greatly expanded statistical approaches. Multi-spectral and hyperspectral
remote sensing are primarily used to determine species distribution, whereas lidar and SAR are used
to determine terrain and vegetation structural attributes, which may be related to woody species
type. Hyperspectral imaging spectrometers acquire data reflected and emitted in at least 20 narrow
wavebands, typically between 400 to 2500 nm, often at high spatial resolution for airborne systems. The
large number of spectral signatures allows for detailed analysis to be performed on each pixel within an
acquired image, enabling the determination of atmospheric column constituents, surface compositions,
and biogeochemical elements, which are especially useful for classifying wetland species [268,269].
However, classifications may rely more on indicator species that occur in the understory and other
wetland attributes, such as peat depth, that are particularly hard to discern with remotely sensed data
compared to prairie and tundra regions that have less diversity of wetland types and less complex
overlying vegetation structure.

Methods such as machine learning (e.g., random forest, [270]), incorporate multiple datasets via
conflation and have been employed for numerous wetland classification studies with varying degrees
of success. Typically, overall accuracies are greater than 70%, but can be as high as 99% depending
on the number of unique classes and datasets from multiple sensors [36,95,241-244]. Mahdianpari et
al. [271] applied random forest methods to SAR data from three sensors (TerraSAR-X, RADARSAT-2,
and ALOS-2), and one high spatial resolution multispectral image (RapidEye) collected in the Avalon
Peninsula, Newfoundland. Using a combination of SAR decomposition scenarios, accuracy of water
versus non-water classification was 96%. Similar filtering and SAR decomposition methods were
applied to determine the extent of herbaceous versus non-herbaceous vegetation, and shallow versus
deep water, with an overall accuracy of classification of 92% using all features combined within the
random forest framework. Identification of wetlands at the class level, and including upland, urban
areas, and shallow and deep water were classified with an overall accuracy of 95%. The greatest
confusion in the classification using random forest methods existed between bogs and swamps (77%
and 78% accuracy compared with field data). While wetland classes were accurately characterised,
the accuracy of the extent of wetland classification was not identified in this study. Machine learning
imputation and Support Vector Machine [272] supervised classification learning methods for land cover
and wetland class, form, and type have average accuracies of 80% and 79% respectively, and range from
72%-99% (random forest) (e.g., References [35,36,38,52,75,113,155,203,271]) and 73%-90% (Support
Vector Machine) (e.g., References [49,61,75,91,99,101,116]). These exceed the proposed minimum
accuracy requirements in regions such as Alberta Canada but require that training data capture the full
variability of each class identified by the classifier [273,274].

One complicating factor for species discrimination within boreal peatland environments occurs
due to mixing of overlying vascular and underlying moss species across small areas, often less than
1 m [163]. Furthermore, ground covers such as Sphagnum mosses are especially sensitive to changes in
hydrology and are therefore good indicators of changes in moisture availability and overall wetland
condition. Bubier et al. [84] used hyperspectral AVIRIS and CASI spectroradiometers to identify various
moss species including feather mosses and lichens (forest), brown mosses (rich fens), and Sphagnum
species (bogs and poor fens), and their separability within boreal peatland and forest environments.
One issue common to remote sensing is the ecological requirement that wetlands are classified based
on a suite of wetland plant indicators (typically understory plants). This becomes a challenge because
understory and ground cover plants are difficult to identify using remotely sensed data (e.g., peat
presence and depth, tree and shrub height). New advancements in multispectral airborne lidar
may alleviate structural vegetation requirements of plant indicators for wetland classification (e.g.,
References [26,128]). Understory peat and plant species may be discerned beneath tree/shrub canopies
due to the ability of lidar to sense ground surface characteristics beneath canopies, though this is yet to
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be examined and quantified due to the state-of-the-art of this new technology (Figure 8). While broad
area (provincial to national level) lidar data collections are becoming operational in many countries,
multi-spectral lidar currently remains a sampling tool for scaling and validation between field data
collections and lower resolution optical imagery via mixed pixel effects [176].

Composite
channels

- 1064 nm
[ s32nm 0
B 1550 nm

Figure 8. Multispectral lidar colour composite index of laser pulse intensities at 532, 1064, and 1550
nm for a patterned fen complex (red/blue strings, green flarks) with ombrotrophic bogs (red/fuchsia)
surrounded by forested uplands (dark green/blue). Wetland complex is located in the Scotty Creek
watershed, south of Fort Simpson, Northwest Territories, Canada.

4.2. Characterizing Wetland Hydrology, Hydroperiod, and Water Cycling

The hydrology of the wetland ecosystem is critically important for the maintenance of wetland
structure and function and differentiates it from proximal terrestrial ecosystems and deeper-water
environments [256]. Hydrological inputs (precipitation, surface water, groundwater), outputs (runoff,
evapotranspiration, groundwater outputs), and surface water properties (water depth, flow patterns,
duration and frequency of flooding) affect biogeochemistry and wetland biota [256,275]. Hydroperiod
is used to characterise wetland type, consistency of the hydroperiod pattern from year to year, and
wetland ‘stability” over time (e.g., Reference [276]). Hydroperiod also represents the cumulative water
balance by integrating between all inflows and outflows, while timing and periodicity can also be
influenced by land surface geology, terrain, and proximity to other wetlands/water bodies [231,256,277].
Mapping of surface water extent and level using remote sensing methods is of interest for classifying
shallow open water and wetland permanence over broad areas, and how these might change over
time. One of the unique properties of open water and bordering wetlands is that they are commonly
transitional with emergent/floating vegetation along the edges of the open water. As such, the water
and terrestrial boundaries are often diffuse. A challenge for remote sensing is to determine the edge of
standing water and the transition from wetland plant species to upland plant species.

SAR is used extensively for mapping water extents and relative water level change to establish the
hydroperiod (over multiple acquisition dates) [22,23,184,189,196,199,203,278,279]. When combined
with a high-resolution DEM from lidar or another sensor (e.g., SRTM), the combination of ground
surface elevation and open water extent can be used to estimate water level [23,118,186,189,265]. SAR
backscatter (defined as the reflected microwave radiation from an intentionally illuminated object)
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results in specular reflectance over calm water bodies as the backscattered signal is directed away from
the sensor. The backscatter of SAR over water bodies is unlike reflectance from land surfaces, where
intensity of the backscattered signal over land targets will vary based on the structure, texture, and
dielectric properties of the target and in water texture associated with waves. Therefore, water often
appears to be ‘dark’ (having low amounts of backscattered energy) and land appears to be ‘bright’
(greater amounts of backscattered energy) [280,281]. ‘Double-bounce” scattering is common over
wetlands with emergent vegetation, as incident radiation is first specularly reflected from the water
surface and then subsequently ‘brightly” reflected from nearby vegetation [271,282-284]. Further, the
length of SAR wavelengths and the penetration of the radar signal also enable observations of different
characteristics of wetland attributes. For example, X-band has the shortest wavelength (2.5 to 3.8 cm)
and the lowest ability to penetrate through tree canopies, while L-band has the longest wavelength
(15.0 to 30.0 cm), allowing the signal to penetrate through dense canopies. C-band has an intermediate
wavelength (3.8 to 7.5 cm) and is considered a compromise between the two [285]. The combination of
two or three bands may provide different scattering mechanisms including volume scattering (shorter
wavelengths) and double bounce (longer wavelength) associated with standing water under dense
vegetation in the same location [285]. Water extent accuracy, required for determining hydroperiod
over time and water level, requires accurate detection of the water’s edge. Accuracies can vary,
particularly for water bodies subject to greater annual variability in water extent. For example,
Montgomery et al. [23] found that horizontally polarized SAR data from Radarsat-2 more accurately
quantified wetland water extent and hydroperiod (93%) accuracy compared with 87% accuracy from
optical RapidEye imagery validated using field data in the Alberta prairie pothole region. In another
study, Crasto et al. [186] used Radarsat-2 and lidar data within a decision-tree approach to determine
water extent within the Mackenzie Delta, Northwest Territories, to an accuracy of 95%.

To identify soil moisture conditions within wetlands, SAR may also be considered for broad spatial
mapping of relative moisture conditions. Peatlands are differentiated by their water source: bogs are
fed exclusively by water sources from precipitation (ombrogenous), whereas fens accumulate water
from a variety of sources. As a result, fens are minerogenous as they accumulate minerals through
water that has been in contact with surface and subsurface soils, and bedrock [255]. For example,
boreal peatlands often have relatively stable water tables whilst simultaneously exhibiting permanently
saturated soil which promotes anaerobic conditions and reduces decomposition rates [286]. However,
peatlands in permafrost zones can be exceptions to this rule as they exhibit perennial ice that can
often be above the water table [10]. In general, the water table associated with bogs is well below
the surface, whereas for fens, the water table tends to be at or near the surface [255]. Conversely to
peatlands, water tables associated with mineral wetlands tend to fluctuate from near, at, or above the
ground surface as they receive water from a variety of different sources throughout the year [255,287].
Swamps, marshes, and shallow open water basins can be closed (or isolated) and therefore receive
water through precipitation and/or surface runoff exclusively. Less isolated wetlands can exhibit
complex groundwater—surface interactions and underground connectivity to other wetlands, lakes,
streams, or ponds [255]. Variable water levels increase anaerobic decomposition which influences water
chemistry, nutrient availability, and vegetation characteristics, such as community and structure [288].

SAR has been shown to be sensitive to surface soil moisture and is therefore a promising alternative
to monitoring wetness conditions in wetlands using field data campaigns. SAR can also penetrate
clouds and precipitation, and does not require sunlit conditions, making it ideal for examining soil
moisture conditions immediately following heavy precipitation events. However, the presence of
spatially variable vegetation and surface roughness also affect SAR backscatter, making soil moisture
extraction challenging in any natural environment. Various authors have demonstrated the ability
to extract soil moisture estimates using SAR in a variety of agricultural and natural environments
and is well-documented in a review [206], with many examples of additional contributions since
(e.g., References [289-292]). Within boreal peatlands of Canada and USA (Alaska) and Great Lakes
wetlands, References [205,262,293,294] assessed the use of SAR for estimating surface soil moisture in
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boreal forest environments with varying success (accuracy = 56% to 85%) depending on the sensor,
specific SAR parameters used, modelling technique, and specific forest conditions (e.g., burned sites,
vegetation density). Specifically in peatlands, Jacome et al. [295] tested several models with different
Radarsat-2 intensity variations with greatly varying results (accuracy between 0% and 80%), and using
a differencing technique (delta index between two dates) created very strong models (accuracy =
92%). Millard et al. [296] compared field-based measurements of soil moisture in a peatland across
several dates and found that date-to-date variability in models was high as a result of the varying
influence of vegetation. Millard et al. [66] also assessed the ability to temporally model and predict
soil moisture using SAR, but found that SAR contributed less to the models than non-spatial (but
temporally variable) covariates such as Drought Code.

The first NASA satellite specifically designed to measure water content in the surface layer (top
5 cm) of the earth is the Soil Moisture Active Passive (SMAP; https://smap.jpl.nasa.gov/). Launched in
2015, the SMAP L-band SAR satellite aims to measure soil moisture every two days over a three-year
period [297]. Canadian SMAP research is targeted in the advancement of knowledge and monitoring
soil moisture and the freeze thaw status of soils in boreal environment (e.g., Reference [298]) and other
cold areas of the world (http://www.asc-csa.gc.ca/eng/sciences/smap.asp). A key product that combines
L-band brightness and NASA Land Catchment model is the SMAP Level-4 Surface and Root-Zone Soil
Moisture (L4_SM). While the spatial resolution of SMAP precludes this sensor from characterising
individual wetlands, it is useful for quantifying variations in regional soil moisture, trends, and possible
threats to wetland environments over time due to soil drying/drought [178]. This global product is
available from March 2015 to present at 3-hourly and 9 km resolution estimates of surface (0 to 5 cm
depth) and root zone (0 to 100 cm depth) soil moisture and land surface conditions [178]. Soil moisture
measurements are required to have an unbiased root mean square error (RMSE) of less than 0.04 m®m™3
(versus in situ measurements).

In addition to soil moisture inferred from SAR data and the potential to determine absorption of
near-infrared laser pulse energy (intensity) from surface water on soil from lidar [299], topography
may be used as a predictor for water accumulation in the environment. Wetlands form at the
convergence of surface and ground water largely associated with a local topographic depression and
low relief environment [25,275]; therefore, topographic position is an important indicator of wetland
characteristics [259]. In floodplain ecosystems, occasional connectivity to the river is important for
input of water during open-water and ice-jam flood events [300]. Beyond topography, local moisture
gradients are maintained in wetlands due to upper soil layer storage capacity, thermal properties, and
vegetation cover [301]. At local to regional scales, Devito et al. [275] state that topographical influences
on hydrological response units within areas of gentle slopes (where wetlands may form) tend to be
characterised by disorganised and inefficient drainage networks, large groundwater recharge, and
small, variable runoff. Increased runoff also occurs with increased topography and connectivity of
drainage networks, which provides greater efficiency of water movement [275]. Elevation information
can be used to describe surface saturation and connectivity in environments where the water table
follows topography, the underlying assumption of topographic position models from DEMs [150,302].
However, other local influences such as surficial geology and soils may be a more important indicator
of hydraulic gradients and water accumulation required for wetland and riparian formation, especially
within boreal wetlands [275,303,304].

At broader scales, SRTM (30-90 m horizontal resolution DEM of the ground surface) and
aerial photogrammetry are effective for determining medium- to large-sized geological (e.g., glacial)
landforms within agricultural fields in southern Alberta [223]. However, they also note that SRTM and
photogrammetry tend to be more problematic for smaller-scale geological features, which are often
occluded by dense tree canopies in boreal regions. Airborne lidar data provides the most accurate
and detailed ground surface elevation representation of any remote sensing technology because of the
ability of laser pulses to penetrate through the vegetation canopy to the ground surface. However,
vertical accuracies vary depending on ground surface characteristics and overlying vegetation. Lidar
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vertical accuracies on an unambiguous, non-vegetated surface range from <0.05 m to <0.20 m, and
<0.15 m to <0.60 m on vegetated surfaces [305]. Vertical inaccuracies in lidar data can have large
impacts on tracking of surface water flow paths in low relief environments with extensive peatlands,
and especially in treed sites. In the Oil Sands Region of central Alberta, the authors of Reference [26]
recorded average elevation vertical bias of 0.02 m (grass/herb) to +0.15 m (aquatic vegetation) (SD =
0.10 m, —0.22 m) along forest to wetland transition transects, and though this study is an early one,
it is expected that the technology has improved over time. Toyra et al. [213] achieved vertical root
mean squared error of ground surface elevation ranging from 0.07 to 0.09 m acquired during late
spring, leaf-on conditions within the Peace-Athabasca Delta, in northern Alberta. With regards to
hydrological feature classification, Evans and Lindsay [209] quantified gully depth to an accuracy
of 92%, while errors increased when using lidar to determine gully width. Connectivity of wetland
environments using DEMs of the ground surface becomes difficult in peatland environments, where
surface topography may be unrelated to hydraulic gradient within organic soils [304].

4.3. Remote Sensing of Wetland Biogeochemistry

Wetland classification and inventory recognise acidity-alkalinity and salinity as chemical properties
from which to determine wetland type. Peatland acidity is an index of hydrogen production through
cation exchange (unlike mineral wetlands where cation exchange is dominated by metals). The
more hydrogen produced, the more acidic a wetland becomes. For fens, particularly those that
receive carbon-rich groundwater, hydrogen production is buffered, resulting in a relatively basic
regime. Conversely, the low mineral content precipitation fed to bogs provides no buffer, thus
producing a more acidic environment. Topographic characteristics also impact runoff and groundwater
biogeochemistry. For example, the authors of Reference [306] observed linkages between lidar-derived
DEMs, topographic positioning (contribution area), and methylmercury concentrations within northern
forested wetlands.

Optical and hyperspectral remote sensing can be used to determine variations of chemical
constituents within the water column. Sass et al. [222] noted difficulties when using field methods
to identify the trophic status of water, especially associated with sampling over broad regions (low
temporal repeatability, high spatial variability) or small-scale sampling (low spatial variability, high
temporal repeatability). Long-term optical remote sensing, such as the Landsat series of satellites,
provide repeatability of water chemistry monitoring and trophic status within lakes > 5 ha [307]. Such
systems also do not require accuracy of edge detection, therefore use of freely available moderate
resolution remote sensing is appropriate for most purposes. Trophic status indicators include
chlorophyll-a [52,308], turbidity (Secchi disk depth), total phosphorus [216], and coloured dissolved
organic carbon or matter [28,221]. Sass et al. [222] found that red and red/blue wavelengths from Landsat
4/5 and 7 were the most accurate indicators of trophic status, including accuracies of approximately
80% (chlorophyll-a), 90% (turbidity), and (-)70% (Secchi disk depth).

Salinity affects wetland vegetation community structure and composition [287]. Saline fens occur
naturally in some parts of the boreal region, where surface water comes from deep saline aquifers.
Phillips et al. [309] note that similar saline conditions exist in post-mine oils sands reclamation, therefore
species found in these fens could be used to reclaim post-mine wetlands. Typically, healthy peatlands
exhibit low salinity, while some mineral wetlands provide a habitat for vegetation communities that
are adapted to survive in a highly saline environment [287]. On the Boreal Plains ecozone of central
Canada, calcareous bedrock and soil origins can results in peatlands with large ranges in salinity [310].
In either case, the electrical conductivity of surface water (where accessible) provides an index for
estimating wetland salinity type based on specified ranges.

4.4. Ecosystem Productivity and Change

Global peatlands are important long-term stores of carbon dioxide, containing approximately two
times as much atmospheric carbon dioxide as forests, on 3% of the land surface area [311]. However,
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peatlands can also be a source of methane, a potent greenhouse gas. Carbon dioxide, methane, and
nitrous oxide are calculated based on the International Panel on Climate Change guidelines [312].
Carbon dioxide emissions are calculated as the total emissions due to peatlands managed for peat
production and emissions from lands converted to flooded land. Peat production requires drainage
which results in decreased methane emissions and increased carbon dioxide emissions. In flooded
lands, the opposite emission relationship occurs (increase in methane, decrease in carbon dioxide
emissions). For wetlands converted to other land uses (e.g., land converted to Forest; land converted
to Settlement), above and below ground biomass, dead organic matter, and carbon stocks in soils are
estimated to calculate emissions and removals [312].

Some aspects of wetland productivity (growth), mortality, and biogeochemistry related to
photosynthesis can be inferred from absorption and reflectance of electromagnetic radiation and change
in canopy cover of the terrestrial environment. Ecosystem productivity is tightly coupled to the carbon
cycle, especially through growth (carbon dioxide uptake for photosynthesis) and mortality (aerobic
respiration), and therefore is also directly related to ecosystem change. Over broad regions, growth and
mortality are required for carbon accounting following the United Nations Framework Convention on
Climate Change (UNFCCC) framework [313-315]. Despite this, calculations are made for managed
lands only and do not include natural areas (forest, wetlands) [316]. In Canada, wetlands are considered
to be managed when significant changes have been made to the water table by humans. Therefore, this
includes peatlands under peat extraction or flooded lands (e.g., due to hydroelectric dams, [317], but
could also include peatlands that fall within a managed land area (e.g., national or provincial parks
or those areas undergoing logging, etc.). Wetland emissions and removals are also considered in a
land-use conversion sense (e.g., Wetlands remaining Wetlands, Lands converted to Wetlands, Land
(wetlands) converted to Forest). Unmanaged forests are not considered as a greenhouse gas sink or
source and are therefore excluded from the inventory. In the United States, all coastal wetlands (e.g.,
salt marshes) have been included as managed wetlands due to the intense anthropogenic modification
and affects upon them currently and in the past [318] and therefore, the emissions and removals are
counted for these wetlands in the inventory.

Vegetation productivity and ecosystem change are inherently related to the resilience of wetlands
over time and serve as a proxy indicator of the alteration of underlying processes and drivers that may
be occurring within the wetland environment, including changes in hydrology, micro-climate, and
biogeochemistry. This can affect the intrinsic value of the wetland associated with use and non-use
values, whereby “use” values are related to ecological function, direct use, and option value. Direct
use values include ecological function and photosynthesis as important ecosystem services of the
wetland [319]. However, there is a trade-off between ecosystem productivity and ecosystem change,
such that external forcing mechanisms may cause wetlands to change more rapidly beyond normal rates
of succession (e.g., Reference [145]). Such changes and driving mechanisms/influencing factors need to
be determined so that cumulative influences on wetlands both proximal to and over broader areas
can be mitigated, where possible. Through remote sensing approaches, identification of ecosystem
productivity and change also mitigates against the ecosystem substitution paradox, which may be
applied to few wetlands when these are considered. In other words, this reduces the potential for less
valued ecosystems to be replaced by those that are more valuable [256], and uses a spatio-temporal
approach to examine productivity and change over broad regions.

Integrating remote sensing of peatland extent, depth, type, and wetness on an annual basis could
lead to improvements in estimation of non-mined peatlands on managed lands. Remote sensing could
also be integrated to provide estimates of wetland biomass and gain/loss in biomass due to specific
land-use changes. For example, Kross et al. [165] quantified changes in vegetation biomass/growth
compared with eddy covariance methods. Eddy covariance systems measure carbon dioxide and
water fluxes between the atmosphere and the terrestrial (and aquatic) biosphere and are considered
to be the ‘gold standard” methodology for estimating the net ecosystem production of an ecosystem
(e.g., Reference [320]), however, these are also spatially constrained to the local environment (e.g.,
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Reference [321]). Kross et al. [165] compared MODIS vegetation indices with gross primary production
estimated using eddy covariance methods within four northern peatlands. They found that the
Normalized Difference Vegetation Index (NDVI = the ratio of absorption of red radiation by green
leaves and reflectance of near-infrared radiation indicating green foliage amount) was slightly better
than the Simple Ratio vegetation index (SR = near-infrared band/red band), explaining between 39%
and 71% of the variability in gross primary productivity across four study sites, respectively. They
had less success comparing vegetation indices with net ecosystem productivity (between 25% and
53% using NDVI). Additional methods including using hyperspectral remote sensing of discrete
wavelengths (531 and 570 nm) show promise for estimating the efficiency with which vegetation uses
light for photosynthesis within forested environments [322-324] and with some success for chlorophyll
and nitrogen content in peatlands [162]. Further, Hopkinson et al. [128] directly compared biomass
accumulation (gross primary production) due to growth of jack pine trees by comparing multi-temporal
lidar data with plot allometry and eddy covariance methods. Within wetland environments, Cook
et al. [325] used biomass derived from airborne lidar and Quickbird data to determine carbon use
efficiency in comparison with eddy covariance-estimates of gross primary productivity and net primary
productivity within upland forest and wetland environments as input into a process-based ecosystem
model. Rapid succession and increased rates of growth and expansion of shrubs into northern wetlands
(primarily fen, but some into bogs) within the discontinuous permafrost zone were observed using
multi-temporal lidar data in Reference [145]. They also found that rates of permafrost thaw and
wetland expansion, due to tree mortality on permafrost plateaus, have accelerated in recent years,
since 1997/98, using a combination of aerial photography, IKONOS satellite imagery, and time series
lidar data. These studies illustrate the potential for using lidar to quantify three-dimensional changes
in wetland biomass components, especially for trees and shrubs, but requires further development of
change detection methods and testing for sedges and other ground cover species.

5. Objective 4: Optimal Remote Sensing of Wetland Applications based on User Needs, Cost, and
Feasibility

In this review, we recognize the need to connect remote sensing scientists with the needs of
end-users including wetland scientists, government agencies, and various stakeholders, such as
local communities and industry. Here, we present the connections between wetland processes often
measured by remotely sensed data, and proxy indicators and/or measurements of processes. While
remote sensing is useful for scaling observations to broader regions and over long periods of time, the
use of data and methods for specific applications also requires ground validation using measurement
plots, soil/water chemistry, habitats, and so on, so that measurements provide appropriate validation for
spatial observations. Furthermore, the appropriateness of various applications should be considered
based on minimum mapping units required by the end-user, which is affected by (a) the spatial accuracy
required for characterisation of a feature on a per-pixel basis required per application, and (b) the pixel
resolution of available sensors meeting the requirements for a particular application [5].

The minimum mapping unit is defined as the smallest feature/object that can be observed within
a pixel, however, this may also be expressed with regards to the spatial variability of features without
mention of pixel size. For example, water level assessment may require DEM with a minimum mapping
unit that adequately captures the variation in terrain, such that water levels are not significantly under-
or over-estimated (e.g., Reference [23]). In another example, local wetland changes over a period of
10 years along non-discrete or ‘fuzzy’ riparian boundaries may require a minimum mapping unit
equivalent to 2 m pixel resolution to detect spectral or structural changes between the two periods,
assuming a horizontal rate of change of 0.2 m per year, etc. Depending on the application, minimum
mapping units can also vary significantly, based on technical requirements and feasibility. Often,
high-resolution data and advanced methods can be used to define small features, which are ideal
for individual wetlands or parts, but are not feasible for applications over broader regions (e.g.,
References [5,258]). Figure 9 provides end users with a pathway for appropriately linking applications
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to remote sensing data depending on the requirement for an evaluation system described at the outset
in Figure 1. The criteria are based on variable minimum mapping units’ requirements per application
and scale, cost, and feasibility from the literature required to enhance the use of remote sensing for

policy and management of boreal wetland environments.
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Figure 9. Use of remote sensing optimal sensors for common wetland-related applications of (A)

government agencies, including National (left column), Provincial (middle column), and Municipal

governments (right column), and (B) industry and non-governmental organisations (NGOs) end-users

across various scales. Parentheses represent the minimum mapping unit for 2 x 2 pixels (in hectares

and square meters for small areas) per sensor, followed by cost of acquisition ranking (Free, Moderate

cost, High cost), and accuracy ranking, where A = highest accuracy, B = moderate accuracy, C =

lowest accuracy.
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National mandates often require quantifying wetland extent and class and typically rely on coarser
spatial resolution data products, with high temporal resolution, such that cloud-free images can be
composited (stitched together) over a period of time (e.g., Reference [326]). For provincial to local
wetland assessment, conflation of remotely sensed datasets should be included. Table 3 summarizes
applications as required by the Ramsar Convention on Wetlands [2], with additional information on
baseline inventory and requirements for monitoring, and the minimum mapping unit required to
achieve the desired accuracy at the federal, provincial, and local scales. In addition, the feasibility
of a variety of remote sensing technologies are provided based on the size of assessment and end
user requirements. When two or more technologies (or single active sensors able to simultaneously
produce geometric and thematic responses) are combined, the accuracy of the outputs generated
(e.g., applications required to understand processes and drivers) are greater than what is acquired
from just single technologies or data layers. Thus, Table 3 also provides a list of technologies that
could be combined within a conflation framework to answer a range of different questions and
cumulative impacts on one to thousands of individual wetlands. For example, the optimal combination
for quantifying and mapping process-attributes of individual wetlands for baseline inventory and
mapping should include: hyperspectral or high spatial resolution optical imagery for over-story
species recognition, airborne lidar data for vegetation structural characteristics and ground surface
topography mapping, and fine beam SAR data for water extent and, when applied over time with
elevation, an estimate of depth variability and hydroperiod. Rapinel et al. [72], for example, included
optical imagery from multiple high- and very high-resolution imagery, including aerial photography,
Quickbird, and SPOT-5 imagery, and structural vegetation and topographic information from airborne
lidar to assess wetland habitats and function to an overall accuracy of 86.5%.
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6. Conclusions

The wise use of wetlands mandated by the Ramsar Convention on Wetlands [2] requires that
inventory and monitoring of wetland condition and drivers of processes over time is holistic, including
not only traditional field survey, but also remote sensing, modelling, and community/traditional
ecological knowledge. Here, we provided a history on the use of remote sensing and demonstrated the
feasibility of remotely sensed data for understanding and quantifying not only wetland extent and
condition, but also condition and proximal circumstances that affect wetland processes and drivers of
ecosystem change. To provide context, Boreal wetlands and peatlands were used as examples within
the broader global wetland context. Remote sensing enables connections to be made between discrete
time periods, understanding that all ecosystems and drivers of ecosystem processes are in constant flux.
By using a diverse set of remote sensing tools and technologies, the wetland scientist, policymakers,
and industry (including land stewards, managers, resource extraction, or consultancy) will be able to
quantify aspects of the environment that are changing. This will provide decision-makers with the
ability to identify wetlands that are sensitive to direct and indirect drivers and implement means to
protect wetlands that provide critical ecosystem services. As a next step, remote sensing of wetlands
needs continued validation and evaluation to identify uncertainties in data and to fill in the ‘gaps’
in understanding, while community and indigenous engagement is also required to maintain the
relationship that exists between humans, wetlands, and the broader environment. The next frontier in
remote sensing of wetlands will be the explicit mapping of the interdependent variables described
here. In Part 2, we provide a review of the methodological analysis and best practices for the most
accurate assessment of wetlands for understanding processes, inventory, and for monitoring decisions.
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