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Abstract

Query Focused Summarization (QFS) summarizes a long document with respect to a given

input query. Creating a query-focused abstractive summary by using a neural network

model is a difficult task which is yet to be fully solved. In our thesis, we propose two

neural network models for the query-focused abstractive summarization task. We propose a

model based on the sequence-to-sequence architecture with a pointer-generator mechanism.

Furthermore, we also use the transformer architecture to design a model for the abstractive

summarization. Afterward, we train both our models with the Debatepedia dataset so that

the model can learn to summarize a long document with respect to a query. We evaluate

the output of our models against the human-created reference summary. Our transformer

model outperforms our sequence-to-sequence model in all ROUGE scores.
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Chapter 1

Introduction

1.1 Motivation

Summarization means creating short and concise sentences which contain the most rel-

evant information from a larger body of text. These sentences can be categorized into one of

the two ways based on the process - extractive or abstractive. An extractive model extracts

the most important sentences from the original document to create a response. For example,

we highlight the most important information of a document with a highlighter and use it

to create an extractive summary of the document. Conversely, an abstractive model creates

summary using words which may not be present in the original document. For example,

we highlight the most important information of a document, paraphrase the original high-

lighted information, and use it to create an abstractive summary of the document. Query

Focused Summarization (QFS) summarizes a long document with respect to a given input

query where the summary can be extractive or abstractive. For example, the query “how

was the cake?” would only create a summary based on the cake and not cover all the food

items that were served on the table.

With increase of data being stored worldwide, it becomes next to impossible to obtain

important information from this data manually. Moreover, this is tedious and economically

expensive for humans to generate summary from large text document. To overcome these

difficulties, researchers are trying to develop automatic summarization tools to summarize

large text documents with the help of a computer system to extract the required information.

In recent years, researchers refer summarization equivalent to machine translation because

1



1.3. THESIS OVERVIEW

summarization task has input document and output summary which are equivalent to source

and destination language respectively in a machine translation system. There are some deep

learning based popular translation models such as sequence-to-sequence (Sutskever et al.,

2014) and Transformer (Vaswani et al., 2017). These models have gained attention from

the researchers to use for the summarization task because of their ability of text generation.

However, researchers are improving constantly but yet to produce a model which is able to

summarize a document as accurately as human.

To become a part of this progress, we decide to develop a query focused abstractive

summarization model which can save man-hours, provide impartial summaries, and make

the search for information easier.

1.2 Goals

The goal of this thesis work is to design a neural network model for query-focused

abstractive summarization task which can make proper use of the query. We make the

following contributions:

• We design a neural sequence-to-sequence model for the query focused abstractive

summarization task. Our model uses a sequence-to-sequence architecture, which

has the usual encoder-attention-decoder architecture. In addition, we use a pointer

mechanism to copy words directly from the input sequence.

• We design another model which uses tensor2tensor for the abstraction of the docu-

ments. To the best of our knowledge, we are the first group to use the transformer ar-

chitecture to build a model for query focused abstractive summarization. This model

is computationally very fast and it can capture the context for longer sequences.

1.3 Thesis Overview

The rest of the thesis is organized as follows: Chapter 2 reports the current progress of

the summarization task and gives a brief description of various terms and concepts that are

2



1.3. THESIS OVERVIEW

used throughout this thesis. Chapter 3 presents our two proposed models and Chapter 4

describes the experiments and evaluation. Chapter 5 concludes this thesis work, along with

some future directions.

3



Chapter 2

Related Works and Background Studies

In this chapter, we give an overview of the related works and brief description of various

terms and concepts that are used throughout this thesis.

2.1 Automatic Summarization: An Overview of Previous Works

With data collection quickly becoming one of the most important industries, the ability

to automate the summarization of large text documents is a huge asset. In the following

section, some significant works on different summarization models have been stated which

we have studied for the purpose of achieving the goal of this thesis.

2.1.1 Extractive Summarization

Text preprocessing is a mandatory step for the summarization task, which changes the

text into a form that is easier to analyze. Luhn (1958) proposed an unsupervised approach

which introduces some new ideas, such as stemming and stop word filtering, which are

now understood as universal preprocessing steps for text analysis. Previously, researchers

emphasized on the frequency of a word in a document, as the number of occurrences of

a word in a document is a useful feature to measure its importance within the document.

Instead of working with words in a single document, Blei et al. (2003) proposed to work

with collections of discrete data such as corpora and multiple documents. Mihalcea and Ta-

rau (2004) introduced TextRank, which is a graph-based ranking model for text processing,

where every sentence is represented by a vertex and the similarity between two sentences is

represented by an edge. The vertex which is connected with more vertices is recognized as

4



2.1. AUTOMATIC SUMMARIZATION: AN OVERVIEW OF PREVIOUS WORKS

the most important vertex. Mihalcea and Tarau (2004) implemented the TextRank mecha-

nism in extractive summarization by extracting the key phrases, calculate the score of each

sentence by using Jaccard similarity between the sentence and key phrases, and the most

scored sentences were selected to create the extractive summary of the document.

In the recent years, Nallapati et al. (2016a) introduced Recurrent Neural Network (RNN)

based model for extractive summarization which can capture both salient and nonredundant

characteristics of a sentence. In this work, the task of extractive summarization is treated as

sequential classification task, where sentences are attended in the same sequence as they are

in the main document. Authors used the re-purposed version of the CNN/Daily Mail corpus

(Cheng and Lapata, 2016) for extractive summarization that was originally developed by

Hermann et al. (2015). This model achieved the state-of-the-art results for the extractive

summarization task at that time. Previously, most of the models were relying on human-

engineered features such as surface features, content features, event features, etc. To reduce

the dependency on the human-engineered features, Cheng and Lapata (2016) introduced a

data driven approach for the extractive summarization task, which had a hierarchical en-

coder and an attention based extractor. Authors also proposed a large scale dataset by

modifying the CNN/Daily Mail dataset which eliminated the lack of training data for ex-

tractive summarization. In order to solve the redundancy problem, Tarnpradab et al. (2017)

introduced hierarchical attention networks which were able to represent the document using

neural attention mechanism, along with some recurrent and convolution neural networks.

However, Vaswani et al. (2017) focused only on attention mechanism that connects the en-

coder and decoder, where the recurrent and convolution neural networks were ignored. This

attention based architecture is known as Transformer which outperforms the state-of-the-

art results for majority of the NLP tasks such as questions answering, summarization, and

machine translation (Liu et al. (2018), Lan et al. (2019)). Liu (2019) fine tuned Bidirec-

tional Encoder Representations from Transformers (BERT) for extractive summarization

and obtained better outcomes.

5



2.1. AUTOMATIC SUMMARIZATION: AN OVERVIEW OF PREVIOUS WORKS

2.1.2 Abstractive Summarization

Abstractive summarization is more challenging compared to extractive summarization

as we need to generate a sentence by paraphrasing, sentence compression, or creating new

words which might be absent in the source document. Rush et al. (2015) described a

sequence-to-sequence neural attention model which has an encoder-decoder architecture

with some recurrent networks. This model is able to take only one sentence and generate

abstraction of the sentence where the length of the output sentence is very short. Consider-

ing these problems, Nallapati et al. (2016b) proposed a system which could summarize two

sentences with a maximum of 120 words. They used encoder-decoder based architecture

with bidirectional neural net to reduce the perplexity by modifying Large Vocabulary Trick

(LVT), which was originally proposed by Jean et al. (2015). The most interesting part of

this encoder-decoder based architecture is to add a pointer layer in the decoder which can

decide which words need to be copied from the original document and which words need

to be generated based on the context. This pointer also keeps track of the words which

need to be copied. Repetition of same word being generated is one of the main challenge of

RNN based encoder-decoder architecture which was solved by Suzuki and Nagata (2017),

where an upper bound was set for the occurrence of each target vocabulary in the encoder

and control the output words in the decoder. However, the researchers have not looked

after the saliency, nonredundancy, information correctness, and fluency while developing

neural network based summarization models. Tan et al. (2017) addressed these problems

and proposed a novel sequence-to-sequence architecture for the abstractive summarization

task. They proposed a new graph-based hierarchical decoding algorithm which was able to

accept and generate longer sequences than the previous sequence-to-sequences models and

solve all the problems which are mentioned above.

6



2.2. ARTIFICIAL NEURAL NETWORKS

2.1.3 Query-Focused Summarization

Query-focused summarization refers to create a short summary of a document, where

a query is given to specify which information is needed to be focused in the summary.

Goldstein et al. (1999) presented some early methods which used selection method for

query-focused summarization. One of the main flaws of the selection mechanism is that it

considers only short queries. There are few methods for retrieving a portion of a passage

according to the context of a question, which are classified as the query-focused extractive

summarization (Otterbacher et al., 2009; Wang et al., 2013).

However, question answering can be categorized as query-focused summarization, where

the question is referred to as the query and the passage carrying the answer of the question

is termed as the source document which needs to be summarized in the context of the query.

This field of research has not been explored properly by the researchers previously due to

the difficulty of sentence generation mechanism. Hermann et al. (2015) presented a neural

network based model for question answering where they were able to generate full sen-

tences and authors modified the CNN/Daily mail dataset into a question answering dataset.

Later, Hermann et al. (2015) adopted their question answering model to the query-focused

summarization task. One of the main drawbacks of these models are they generate repeated

phrases during summarization which was reported by Chen et al. (2016). Nema et al. (2017)

solved this repeating phrases problem by using a diversity based attention mechanism. In

addition to a document attention model, Nema et al. (2017) also used a query attention

model. Besides, Nema et al. (2017) also presented a new dataset named Debatepedia for

their training purpose. In our thesis, we also use the Debatepedia dataset to train our models.

We also present a query-focused abstractive model which uses the Transformer (Vaswani

et al., 2017) architecture.

7



2.2. ARTIFICIAL NEURAL NETWORKS

2.2 Artificial Neural Networks

Artificial neural networks are used to solve computational problems in the way how the

brain operates. The basic block of a neural network is called neuron. In a neural network,

there are input and output layers, as well as hidden layers in most of the cases. The hidden

layers take the inputs, transform the inputs, and pass them to the output layer.

2.2.1 Build a Neuron

Figure 2.1 shows a 2-input neuron, where each input has a corresponding weight de-

noted by w1 and w2. Then each input is multiplied by its corresponding weight, summed

up the multiplication results, and add a bias to calculate the output value. The output can

be anything ranging from -inf to +inf. Hence, it is not possible to determine whether the

neuron should be activated or not based on the output value.

Finally, the output is passed through an activation function (Chen and Chen, 1995) to

decide whether the neuron should be activated or not. We apply a sigmoid function (Ito,

1991) over the output. Sigmoid function is a commonly used activation function in neural

networks, which converts the output into the range [0, 1], where 0.5 and above is considered

as 1 while below 0.5 as 0. If we do not use the activation function, the neural networks

cannot map the complicated data such as image, video, speech, etc. The value of a sigmoid

function can be defined as follows:

Sigmoid(x) =
1

1+ e-x

For example,

In1 = 1,W 1 = 0

In2 = 2,W 2 = 1

bias = 4

x = (1 × 0)+(2 × 1) + 4 = 0 + 2 + 4 = 6

8



2.3. DEEP LEARNING

+

In1

Output

In2

Activation Function 

Figure 2.1: A simple 2-input neuron.

h1

Output

Hidden Layer

h2

In1

In2

Input Layer

Figure 2.2: A simple Neural Network.

Sigmoid(6) = 0.9975

As the output of the sigmoid function is greater than 0.5, the neuron should be activated.

2.2.2 Build a Neural Network

Once a neuron is formed, a set of neurons are then connected to form a neural network.

The number of neurons to construct a neural network can be hundreds or even millions

which are arranged in a series of layers. The hidden layers stay in between the input and

output layers. The number of hidden layer can be zero or more. Figure 2.2 demonstrates a

simple neural network.

2.3 Deep Learning

Deep learning has become one of the popular research topics in computer science in

recent years. Training a neural network architecture with millions of examples is termed as

deep learning. Hence, neural networks are sometimes referred to deep neural networks as

9



2.4. BACKPROPAGATION ALGORITHM

well. Usually there are 3-4 hidden layers in a simple neural network while a deep neural

network usually can have tens or hundreds of hidden layers. Deep learning models with

neural network architectures are trained, so that the models can learn features automatically

by analyzing the labeled examples. Hence, deep learning requires a very large amount of

data in order to perform better.

Deep learning has a variety of techniques and models which are designed based on the

type of the problem, size and structure of the data. As deep learning requires training the

model with millions of data, the processing time is very important. Graphics Processing

Unit (GPU) can process a large amount of data at a rapid speed. A deep learning system

can be used in the following ways:

• Training from Scratch: We need to have a large amount of labeled data and a neu-

ral network architecture to train a deep network. Training a deep network can take

extensive amount of time to train.

• Transfer Learning: We can fine-tune pretrained deep networks by feeding new data

into the existing model. We can use the network to solve new tasks by making some

adjustments to the existing architecture.

The performance of a deep learning system increases with the increase of the amount

of data. In traditional machine learning approaches, the performance becomes constant

after certain steps, while the performance of the deep learning systems increases with the

increase of the amount of data.

2.4 Backpropagation Algorithm

Backpropagation is a supervised learning algorithm which is used during the training

process of an artificial neural network to minimize the cost for achieving the desired output

(Yu et al., 2002). In a neural network, we choose a random weight of an input initially to

start our training process. As a human, it is impossible for us to predict the accurate weight.

10



2.5. DIFFERENT NEURAL NETWORK ARCHITECTURES

We have to derive a function which can map the input to the output through trial and update.

To determine the error in each training step we use a backpropagation algorithm. We now

describe the a backpropagation algorithm with respect to the Figure 2.3. First, we start the

propagation forward. The steps of the forward propagation are described below:

• Choose some random weights for W1,W2,...,W8.

• Calculate the Output1 and Output2.

• Find the difference between the desired outputs and the calculated outputs. This

difference is termed as error.

Now we start backward propagation by changing the values of the weights in order to reduce

the error. The steps of the backward propagation are described below:

• Calculate the change of error with respect to the Output1 and Output2.

• Calculate the change of Output1 and Output2 with respect to its total input.

• Calculate the change of total input of Output1 with respect to W5.

• Calculate the change of total input of Output2 with respect to W8.

• Calculate the updated value of W5 and W8.

• Similarly, calculate the updated value of other weights.

After updating all the weights, we will again continue the forward propagation with the

updated values. We will continue this process until the error falls below the threshold. This

threshold for error has been determined at the beginning of the iteration.

2.5 Different Neural Network Architectures

In the following section, we describe some of the popular neural network architectures.

11



2.5. DIFFERENT NEURAL NETWORK ARCHITECTURES

h1In1
Output1

In2

Hidden Layer

h2
Output2

W1

W4

W5

W8

Output LayerInput Layer

Figure 2.3: Multi-layer Neural Network.

2.5.1 Convolutional Neural Network

Convolutional Neural Network (CNN) (Sermanet et al., 2012) is a type of neural net-

work which uses back-propagation algorithm during the learning phase. It was initially pro-

posed for hand-written and machine-printed character recognition tasks (Lawrence et al.,

1997). Furthermore, CNN has achieved massive success in image classification task such

as automatic photo tagging feature of Facebook. Recently, researchers have got some in-

teresting facts which encourage them to use CNN in natural language processing problems

(Dos Santos and Gatti (2014), Santos et al. (2015)). The following are the basic layers of a

CNN:

Convolutional Layer

CNN is a multi-layer neural network, where the hidden layers are called convolutional

layers. These layers take the input, transform the input, and then feed the transformed input

into the next layer. The layers can detect patterns by using filters. Each layer has a large

number of filters. Filters are represented by a matrix, which are moved over the original

matrix and multiplied with the corresponding index of the original matrix, and sums them

up to convolve the required features. In case of image processing, original matrix represents

the whole image. In figure 2.4, the left matrix represents the full image, the yellow portion

(3×3 matrix) inside the original matrix is the filter, and the right matrix represents the

convolved features after sliding the filter through the whole matrix.
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1 1 1 0 0

0 1 1 1 0

0 0 1 1 1
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×1
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×1×0

×0×0

×0

4 3 4

2 4 3

2 3 4

Original Vector

Convolved Feature

Figure 2.4: Example of a Convolution with a 3×3 Filter (Britz, 2015).

Pooling Layer

Pooling layers reduce the size of the spatial dimension by sub-sampling their inputs,

which is applied after the convolutional layers. They are normally inserted periodically

between two successive convolutional layers. This layer reduces the spatial size of the

input which leads to reducing the number of parameters in the network, in order to reduce

the amount of computation. Pooling is very important to provide a fixed size output matrix

and reduce the complexity of the output dimensions.

2.5.2 Using CNN in NLP

In most of the NLP tasks, the inputs are sentences or documents. The sentences are

usually represented as a matrix where each row corresponds to a word, where in image

classification task, the image is represented by a matrix where each entry corresponds to a

pixel. CNN performs better in classification, clustering, and regression tasks. For summa-

rization task, it is very important to get the position of a word in a sentence to understand

the context properly. Given this circumstance, CNN may not be a good fit for summariza-

tion task. Figure 2.5 shows a CNN model for sentence classification, where the sentence

13
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Figure 2.5: Illustration of a CNN architecture for sentence classification proposed by Zhang
and Wallace (2017).
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is represented by a 7× 5 matrix. There are three different regions with filter sizes: 2, 3,

and 4, where each region has 2 filters; 6 univariate feature maps are created by applying

convolution over the sentence matrix; 1-max pooling is applied over the maps and the maps

are concatenated together to create one feature vector; finally a softmax layer is performed

over the feature vector which maps the values into the range [0, 1]. The output of the soft-

max layer is used to classify the sentence; we use two binary output states to represent the

output (Zhang and Wallace, 2017).

2.5.3 Recurrent Neural Network

Recurrent Neural Network (RNN) (Yao et al., 2013) is more important in NLP, since

RNN takes care of sequence rather than the individual items. RNN differs from other neural

networks by refactoring some layers into a cycle. In the normal neural network, all inputs

and outputs are independent to each other, where in RNN the current element is dependent

on the previous elements. For example, we take a sequence of two words. We are told to

predict the third word of the sequence. It would be a lot easier for the model to predict

the third word if it knew the first two words. RNN serves this purpose by keeping track

of the previous words in form of a memory which differs RNN from the traditional neural

networks. We will design a neural network with two hidden layers to solve the problem.

The first hidden layer takes the vector representation of the first word and produces an

output. The output is then passed to the second layer and this layer also takes the vector

representation of the second word as input. Both the inputs are added or concatenated. The

output is then passed through an activation function and predicts the next word. This is how

a node is computed in the next layer in RNN. This advantage is absent in traditional fully

connected neural networks.

If we are given the third word and told to predict the fourth word we need to use one

more hidden layer. The third hidden layer would take the output of the second layer and

add it with the vector representation of the third word. The operations in the second and
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Figure 2.6: A Loop in a Simple RNN (Olah, 2015).

third layer are quite similar. We can replace both the layers with another layer which could

be iterated twice to serve the purpose. In each iteration, the vector representation of the

next word and the output of the last layer is concatenated as the input of the iterated layer.

We can use this network for predicting next word, given a sequence of words with arbitrary

length. Figure 2.6 represents the loop of the network described above.

For learning purpose, we need to train this model through trial and error. We can store

the predicted word after each iteration and use them as new information in the next iteration

which retain the context of the words properly, and improve the prediction capability of the

network.

Suppose we have a song sequence of words and the words contain a variety of context.

It is easy to capture and store the context of a three word sequence after each training step.

But it is not possible if the sequence has hundreds of words in a sentence. In the broader

context, at some point, RNN cannot keep track of all the past information. This problem

of a standard RNN is termed as the vanishing gradient problem. This exception of RNN is

briefly described by Bengio et al. (1994).

2.5.4 Gated Recurrent Unit

Gated Recurrent Unit (GRU) was first introduced by (Cho et al., 2014), which adds to a

RNN and aims to solve the vanishing gradient problem of the RNN. GRU is a small neural

network which connects to a RNN after the output of each iteration. A GRU consists of

an update gate and a reset gate. These two gates can decide which information to carry
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Figure 2.7: A Gated Recurrent Unit (Kostadinov, 2017)

forward for passing on to the next iteration. The main advantage of using GRU is that they

can be used to keep track of long sequences without vanishing it, even if it is not relevant

to the prediction. Figure2.7 shows a basic structure of single GRU unit.

In the following section, we describe a GRU with an update and a reset gate by consid-

ering a simple GRU unit 1.

• Update Gate: We update the gate zt for each time step by the following formula:

zt = σ (W (z)xt + U (z)ht-1)

where xt is the input in time step t, and ht-1 is the activation output of the previous

time step. Both of them are multiplied by their corresponding weight (W(z), and U(z))

and added together. Then they are passed through a sigmoid activation function (Sibi

et al., 2013). The update gate decides which previous information should be passed

for the future. It also eliminates the risk of vanishing gradient by making a copy of

all the previous information.

1The equations are collected from https://towardsdatascience.com/
understanding-gru-networks-2ef37df6c9be
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• Reset Gate: The information which can be removed from the past information is

determined by this gate. We calculate this by the following formula:

rt = σ (W (r)xt + U (r)ht-1)

where xt is the input in time step t, and ht-1 is the activation output of the previous

time step. Both of them are multiplied by their corresponding weight (W(r) and U(r)),

and added together. Then they are passed through a sigmoid activation function.

• Current Memory Content: A memory content is required in the reset gate to store

the relevant information from the past which we need to use in the future. This is

calculated by the following equation:

h
′
t = tanh (Wxt + rt � Uht−1)

where xt is the input in time step t, and ht-1 is the activation output of the previous

hidden layer, and rt represents the reset gate. Both of them are multiplied by their

corresponding weight (W and U). As discussed earlier, each input representing a

word or character is represented as a vector in neural network. We then perform the

Hadamard product (Horn, 1990) between the reset gate and the weighted hidden layer

from the previous time step to determine what to forget from the past information.

Finally, we use a non-linear activation function, tanh (Karlik and Olgac, 2011), to

determine what to store from the previous information. For example, we are told to

design a model to rate a video game by analyzing the user’s review. Let us assume

the game is Fifa20. One of the reviews is as follows:

Fifa20 brings so many changes in the game....I feel like playing game in
real life.....As they have reduced the game speed, I don’t like the game
much.

We do not need the whole comment to rate the game, we just need to read the last
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sentence to predict the ratings from user’s perspective. The reset gate will remove

everything from the past and pass the last sentence to the next layer for the prediction.

• Final Memory: At the end, we need to calculate the final memory at the current time

step which is passed to the next layer. This is calculated by the following equation:

ht = zt � ht−1 + (1− zt) � h
′
t

Here, we do a Hadamard product between the update gate output (zt) and the output

from the previous time step (ht-1). Again, we do a Hadamard product between (1-zt)

and h
′
t . Finally, sum both the results.

It clearly shows that for every time step, the network calculates the relevant information,

passes the information to the next layer for further computation, and copy all the previous

information. This is how GRU eliminates the gradient vanishing problem of an RNN.

2.5.5 Long Short Term Memory Network

Long Short Term Memory (LSTM) network which was invented by (Hochreiter and

Schmidhuber, 1997), has become one of the most popular networks used instead of RNN

to solve the vanishing gradient problem. The LSTM unit contains three gates to let infor-

mation through after several calculations. Figure 2.84 represents a single LSTM unit.

The workflow of an LSTM network is described in the following section2:

• Forget Gate Layer: First, we have to determine which information is irrelevant to

our prediction and leave the irrelevant information out. The information we need to

forget is determined by the following equation:

ft = σ (W ( f )xt + U ( f )ht−1)

2The equations are collected from https://medium.com/@saurabh.rathor092/
simple-rnn-vs-gru-vs-lstm-difference-lies-in-more-flexible-control-5f33e07b1e57
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Figure 2.8: A Long Short Term Memory (Rathor, 2018).

where xt is the input in time step t, and ht-1 is the activation output of the previous

time step. Both of them are multiplied by their corresponding weight (W(f) and U(f))

and added together. Then they are passed through a sigmoid activation function.

• Update Gate Layer: In this layer, we need to determine which new information we

need to store in the current time step. First, we determine which value we need to

update using the following equation:

it = σ (W (i)xt + U (i)ht−1)

The new candidate values, Cttemp is calculated using the following:

Cttemp = tanh (W (c)xt + U (c)ht−1)

where tanh is an activation function for this layer which represents the output within

-1 and 1. Finally, the memory content in the current time step is determined by the
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following equation:

Ct = ft � Ct−1 + it� Cttemp

where Ct-1 is the memory content from the previous time step, and � represents the

Hadamard product operation.

• Output Gate Layer: Once we get the final memory content of the current step, we

need to decide what information we are going to pass through output. We determine

this using the following two equations:

ot = σ (W (o)xt + U (o)ht−1)

ht = ot � tanh (Ct)

2.6 Word Representation

It is an important task to convert the words into a form which we can use as the inputs

of a neural network so that the computer can understand them. In the current NLP research,

people use word embedding which was first proposed by Bengio et al. (2003). Word em-

bedding refers to a learned representation of words where the similar words have similar

representation. In word embedding, the words are represented as vectors in predefined vec-

tor space. In the test and validation phase, deep learning models are expecting the same

word representation that they have seen during the training phase. So it is better to use the

same embedding system throughout the model. In the following section we present some

of the popular word embedding techniques.

2.6.1 One-hot vector

One-hot vector is a method to represent words numerically which is also known as count

vectorizing. Here, we need to create a vector whose dimension is equal to the number of

unique words of a corpora. Each word is represented by a unique dimension has a 1 on that
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Football =

Word V

1 0 0 0 . . . 0

Soccer = 0 1 0 0 . . . 0

SoccerFootball

Figure 2.9: Vectors representation of word ’Football’ and ’Soccer’.

dimension and 0s in every other dimensions.

For example, we have two words – ‘Football’ and ‘Soccer’. They are represented using

the following two vectors (Figure2.9) where the dimension of each vectors is ‘V’. There are

two problems in this system. At first, football and soccer have the same meaning but seeing

their representation it is hard to determine whether they have similarity between them. And

then, we need to increase the size of the memory with the increase of the number of words

in the vocabulary as well.

2.6.2 Co-occurrence Matrix

This technique represents as its name. A giant (V ×V ) matrix is required if the size of

the vocabulary is V. If two words occur together in a corpora then that position is marked

with a positive entry and if there is no occurrence, then the position is marked with a 0. The

positive entry represents how many times the two words occur together. Again, the dimen-

sion puts a big question mark over this technique as the dimension is squared, compared to

the dimension of one-hot vector.

2.6.3 Word2Vec

The purpose of a neural network is to predict some targeted outputs given some contexts.

For example, if we consider finding the similarity between words or sentences to solve

a problem, then the above embedding methods will not help much because the one-hot

vectors do not carry any special characteristics which can determine the semantic similarity

between two words. The Word2Vec (Mikolov et al., 2013) is such a kind of embedding
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system which solves the problem of one-hot vector by predicting a word’s meaning based

on past appearances. They proposed two methods:

• Common Bag of Words (CBOW): The input of this model is the context of a word

and the model predicts the targeted word corresponding to the context. For example:

I eat rice.

We need to get the one-hot vector representation of the input words. Here, ‘eat’ is

the context. We need to pass the one-hot vector representation of the word ‘eat’ to a

neural network which has three layers - an input layer, a hidden layer, and an output

layer. The task of the neural network is to predict the word ‘rice’ based on the context

‘eat’. There are two weight matrices - one from the input layer to the hidden layer

with a dimension of [V ×N], and another from the hidden layer to the output layer

with a dimension of [N×V ]. Here, V=3 and N is the number of dimensions in which

we want to represent our word. Then the forward propagation works by multiplying

the inputs of each layer with their corresponding weights and calculating the hidden

layer inputs. There is no activation function in the hidden layer. One softmax layer

is used at the output layer to sum the probabilities achieved in the output layer. After

calculating the error, we need to re-adjust the weights to reduce the error. Figure 2.10

represents such an architecture. Here, x1,x2, ....,xV is the vector representation of a

single input word (context) and y1,y2, ....,yV is the vector representation of a single

target word.

Instead of using a single context, the network can operate with multiple context. Then

the one-hot representation of all the words are passed to input layer, and the rest of

the networks remains the same. One of the main problems of this approach is, if a

word has two different contexts they make an average of the contexts and represent

the target word with the averaged vector. For example, we have a word ‘drink’ and

the word ‘drink’ has two contexts - ‘tea’ and ‘coffee’. If the model averages the two
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Figure 2.10: A Simple CBOW model with only one word in the context (Karani, 2018).

contexts, we will not find the exact context ‘tea’ or ‘coffee’ when we are finding them,

we will get something in between which cannot predict the word ‘drink’ accurately.

• Skip-Gram Model: If we just flip the architecture of a CBOW model we will get

the skip-gram model. The aim of this model is to predict the context when a word

is given. The input layer with 1-context CBOW and calculations up to hidden layer

are the same. The target variable will change depending on the window size of the

context. As there will be more than one target vector, we will calculate the error sep-

arately for each of the target vectors. Then they are added element-wise to determine

the final error. Figure 2.11 demonstrates the skip-gram model. Here, x1,x2, ....,xV is

the vector representation of a single input word and y1,y2, ....,yC represent C target

words (contexts), which are related to the input word.

This model can produce two vector representation of a single word which eliminates

the problem of CBOW model.

2.6.4 FastText Embedding

FastText embedding is a popular way of representing words, which is proposed by (Bo-

janowski et al., 2017). This is an extension of word2vec embedding system, where the
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Figure 2.11: A Simple Skip-Gram model (Karani, 2018).

words are considered as several n-grams (sub-words) and fed to the model in order to ob-

tain the vector representation of the n-grams. Finally, the vectors representing the n-grams

are summed up to determine the vector representation of the word. For example, let us

consider the word “thesis”, which can be represented as a bag of character of 3-grams by

the following: < the, hes, esi, sis > . Here, ‘<’ and ‘>’ are boundary symbols, which are

used to distinguish the 3-grams from the word itself. If sub-word “the” is present in the

vocabulary, then it is represented as < the >, which helps to preserve the meaning of the

sub-words. By doing this, the rare words can be represented because their n-grams may

exist in any other words.

2.7 Sentence Representation

As we know how the words are represented to feed into the neural network, we need to

know how to represent a sentence. As a sentence is constructed by words, we can sum up the
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word embedding of the words which construct the sentence. But in this case, the sequence

of words and sentence semantics are completely ignored, which leads to this technique as

a wrong approach to represent a sentence. In the following, we discuss a couple of widely

used sentence embedding techniques:

2.7.1 Universal Sentence Encoder

Universal Sentence Encoder (USE) (Cer et al., 2018) maps texts into high dimensional

vectors for feeding the texts to a neural network. This model is trained on many data sources

and tasks, and allows it to dynamically accommodate many different natural language un-

derstanding tasks. Iyyer et al. (2015) trained the model with a deep averaging network

(DAN) encoder. In the DAN encoder, the input embedding of the words and bi-grams

are averaged together in order to send them through a feed-forward deep neural network.

Thus, the sentence embedding of a sentence is produced. Researchers use this network as

the computation time is linear to the input sequence. USE represents a sentence with a

512-dimensional vector.

2.7.2 Word Mover’s Distance

Our initial plan was to use USE to measure the semantic similarity between the query

and the sentences of a document. Unfortunately, USE did not perform well. In that case,

Word Mover’s Distance (WMD) (Kusner et al., 2015) came into rescue to help us to mea-

sure the semantic similarity between two sentences. WMD is able to determine both the

semantic and syntactic similarity between two sentences. WMD considers text documents

as a weighted point cloud of embedded words. The similarity between two sentences is

measured by the minimum cumulative distance, where the distance is calculated by the

space traveled by the words from one sentence to match the point cloud of other sentence.

We discuss the details of WMD in section 4.3.1.
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2.8 Evaluation of Automatic Summarization System

Once we generate the summaries with the neural network models, our main task is to

evaluate the system generated summaries to measure the performance of the system in terms

of generating summaries. We do this by comparing the system generated summaries with

the reference summaries (mostly they are human-created). Recall-Oriented Understudy for

Gisting Evaluation (ROUGE) (Lin, 2004) and Bilingual Evaluation Understudy (BLEU)

(Papineni et al., 2002) are the two widely used evaluation matrices for the summarization

task. We evaluate our models using ROUGE. There are four types of ROUGE matrices.

They are:

• ROUGE-N measures the n-gram overlap between the system generated summary

and the reference summary. Researchers mostly measure the unigram (ROUGE-1)

and bigram (ROUGE-2) overlap. ROUGE-N can be calculated using the following:

ROUGE-N =
∑sr∈Ri ∑gn∈sr Countmatch(gn)

∑sr∈Ri ∑gn∈sr Count(gn)

here, Sg is the generated summary sentence, sr is the reference summary sentence,

gn is the n-grams, Count(gn) is the maximum number of n-grams in the generated

summary, and Countmatch(gn) is the maximum number of n-grams in the generated

summary that matches with the reference summary (Lin, 2004).

• ROUGE-L measures the longest sequence of words that matches between the sys-

tem generated summary and the reference summary. LCS (Longest Common Sub-

sequence) is used to find the longest sequence, which allows in-sequence matches

rather than consecutive matches.

• ROUGE-W measures the consecutive in-sequence matches between the system gen-

erated summary and reference summary by assigning weights to the in-sequence

matches in LCS.
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• ROUGE-S measures the overlapping skip-bigram if any pair of words is in order and

maintain any arbitrary distance between the pair of words. For example, the skip-

bigram of the phrase “I love football” would be “I love, I football, love football”.

In our thesis, we use ROUGE-N and ROUGE-L for our evaluation. Let us see the example

for better understanding:

System Summary#1: I live in Lethbridge, Alberta.

Reference Summary#1: I live in Lethbridge.

First, we calculate the recall. Recall is used to measure how much of the reference

summary is captured by the system generated summary. We consider only the 1-gram

overlapping in this example. The recall for 1-gram is calculated by the following equation:

R−1recall =
no o f overlapping words

total words in re f erence summary
=

4
4

= 1.0

Now, consider the scenario, where the length of the system summary is way more than

the reference summary and the system summary has all the words of the reference sum-

mary. In this case, the recall would be 100% but the summary is not concise and the system

summary contains lots of irrelevant information. Let us consider a different system sum-

mary:

System Summary#2: I live in Lethbridge, which is in Canada.

So, the recall would be 1.0 but this time the system summary also contains some words

which are not required. In this case, we calculate the precision which captures how much

the system summary is relevant to the reference summary.

R−1Precision =
no o f overlapping words

total words in system summary
=

4
8

= 0.5

Precision and recall can be represented together by the following equation:

F1 = 2 × Precision × Recall
Precision + Recall
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We use only recall-oriented ROUGE-N for our evaluation as our models are able to produce

concise summary of a given document.

2.9 Summary

In this chapter, we try to give a brief description about some of the significant works on

automatic text summarization. We have introduced the basic concepts of a neural network

and their functionality, and some word and sentence representation methods which convert

the texts into high-dimensional vector spaces before passing them as the input of a neural

network. We conclude the chapter by introducing the evaluation matrices to evaluate the

output of our proposed model which is presented in the next chapter. We also discuss the

model architectures, in addition to solving the query-focused summarization task using the

theories that we have discussed in this chapter.
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Chapter 3

Proposed Models

We propose two models for query-focused abstractive summarization. The first one is based

on the sequence-to-sequence architecture and the second one is based on the transformer

architecture. Our models take a document and a query as input and produce a summary of

the document with respect to the query.

3.1 Problem Definition

Suppose, we have a document d = w1,w2, ...,wn containing n words, a query q =

q1,q2, ...,qp containing p words. Our task is to find a summary y = y1,y2, ...,ym containing

m words where m is always less than n. We can formulate the problem by using the Bayes

formula:

y = argmaxt

m

∏
t=1

p (yt |y1, ....,yt−1, d, q)

3.2 Sequence-to-sequence Model

We have designed a model based on the sequence-to-sequence architecture with atten-

tion mechanism. The input of the model is the word embedding of the document and the

query, which are then passed as a sequence to the encoder and the encoder converts the

embedding vectors into corresponding hidden states. The hidden states are then passed to

the decoder. The decoder then generates the output summary as a sequence of words after

applying a soft attention layer over the hidden states. Different components and variables

which are used to design the model are discussed briefly throughout this section.
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3.2.1 Document Encoder

The input of the document encoder is a sequence of words and the encoder generates a

hidden state for each words. In our model, we use a bi-directional LSTM in the encoder.

We use a bi-directional LSTM because it is proved that the bi-directional LSTM can capture

a better context of a word rather than a unidirectional LSTM and achieved a better results

for some of the text generation tasks (Bahdanau et al., 2015). The LSTM take a sequence of

tokens as input and transform them into a sequence of hidden states. We need to calculate

the hidden state for both the readers, and combine the result using the following equations:

~ht = LST M( ~ht−1, E(~wt))

←−
ht = LST M(

←−−
ht−1, E(←−wt ))

ht = [~ht ,
←−
ht ]

Here, E(wt) denotes the embedding vector of the input word w at the time step t;←−wt is

word w in the reversed sequence. The dimension of the final hidden state is two times of

the embedding dimension of the input word in both unidirectional LSTMs.

We update the gates of the LSTM in every time step according to the following equa-

tions:

it = σ (W(i)Ext−1 + bi + Whiht−1) + bhi

ft = σ (W( f )Ext−1 + b f + Wh f ht−1) + bh f

ot = σ (W(o)Ext−1 + bo + Whoht−1) + bho

cttemp = tanh (W(c)Ext−1 + bc + W (hc)ht−1) + bhc

ct = ft � Ct−1 + it� cttemp

ht = ot � tanh (ct)
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Here, W represents the weight matrices and b represents bias vectors respectively which

are learnable parameters, t represents the current time step, x represents the input tokens

to the LSTM, E represents the word embedding of the input token, and c represents the

memory content of the LSTM. Both ht and ct are initialized as 0.

3.2.2 Query Encoder

As discussed earlier, we have a queryq = q1,q2, ...,qp containing p words. The query

encoder encodes the query into a hidden query state. As the length of the query is small

compared to the document, we choose to use uni-directional LSTM for the query encoder.

The hidden query state (hq
t ) at the time step t is updated according to the following equa-

tions:

hq
t = LST M(hq

t−1,E(w
q
t ))

q = hq
p

Here, E(wq
t ) represents the embedding vector of the input query word at the time step t, and

p is the length of the query. The dimension of the hidden query encoder is equal to the

dimension of the query embedding.

3.2.3 Decoder

The inputs of the decoder are the final states of the encoder and the query. We use the

same embedding matrix for the encoder and the decoder. The decoder generates an output

summary with respect to the query by making proper use of soft attention, and a pointer

mechanism. At first, we need to feed the query encoder to the decoder input at time step t.

This is similar to the question answer generation model described by Kumar et al. (2016).

Instead of GRU, we use LSTM in the decoder of our model as LSTM cells outperform the

GRU cells in terms of longer sequence (Britz et al., 2017). The hidden state of the decoder
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is updated by using the equation:

hdt = LST M(hdt−1, [ct , q, E(yt−1)])

here hdo = hnd , the final encoder state, n is the number of input word, y0 indicates the

initial prediction which is represented as the token < SOS >, ct is the current memory

content, q is the query, E(yt-1) represents the embedding of the predicted output at the

previous time step. The predicted output from the previous time step comes from the pointer

or generator. The main purpose of using the query in the hidden state of the decoder, is to

predict a word related to context of the query. By doing so, the generated output must

predict a word which is related to the context of the query.

The generator then generates an output word which belongs to the vocabulary, V. The

vocabulary distribution is done using the following equation:

Pvocab,t = so f tmax(Wd2vhdt + bd2v)

where the dimension of the vector Pvocab,t is equal to the size of the vocabulary V , W and b

are learnable model parameters, and softmax(vt) is calculated as follows:

so f tmax(vt) =
exp(vt)

∑r exp(vr)

for each element vt for vector v, vt can be found when we apply a linear transformation

on the decoder hidden state and the context vector, which is calculated by the following

equation:

vt = W 2
gen(W

1
gen[hdt ,ct ] + b1

gen) + b2
gen

Then we calculate the probability of the generated word w, being the target word as follows:

yt
gen = Pvocab,t(w)
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3.2.4 Attention Mechanism

The main problem of an encoder-decoder based model is that the encoder does not train

well, as the path between the encoder and the output is too far away to predict the target

word accurately. To solve this problem, we use an attention mechanism which is designed

based on the mechanism proposed by Bahdanau et al. (2015) for machine translation. In

the attention mechanism, the decoder not only takes the final encoding state as input, but

also focuses on the specific portions of the input document to find out the target word.

The inputs of the attention mechanism are all the encoder hidden states and the current

decoder hidden state. The attention layer then generates the context vector containing the

current memory content which is computed using the following equations (Hasselqvist and

Helmertz, 2015):

ct = ∑
i

αtihi

αti =
exp(eti)

∑r(etr)

eti = score(hi, hdt−1, E(yt−1), q)

score(h, s, x, q) = Vatttanh(Watt [h, s, x, q] + batt)

where hi denotes the encoder hidden state at index i, hdt-1 denotes the previous decoder

hidden state, E denotes the embedding vector of a word, Vatt ∈ Rdatt , Watt denotes a weight

matrix where Watt∈ Rdatt×(denc + ddec + demb + dq), batt is a bias vector. We concatenate the

query (q) while computing the score so that the attention layer can focus on the query

words.

3.2.5 Pointer-Generator Mechanism

One of the main drawbacks of the generator is that it may not generate some of the

query words. In this case, some target words need to be copied directly from the input

sequence based on their weights in the attention layer. Also, it is difficult to train a model
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to learn to output names as discussed earlier in this thesis. Another reason behind using

the pointer mechanism is to deal with unknown (< unk >) words during training (See

et al., 2017; Gu et al., 2016; Nallapati et al., 2016b). To solve these issues, the generator

mechanism is combined with a pointer mechanism. Nallapati et al. (2016b) introduced a

model named pointer-generator, which can help to solve the issues mentioned above. Later,

Merity et al. (2017) proposed the same model to solve the similar problem. We follow the

implementation provided by Hasselqvist et al. (2017).

The pointer mechanism has a switch which can determine whether to copy a word from

input sequence or generate a word from the vocabulary. The pointer switch is denoted by

pswt where pswt ∈ (0,1). The switching network calculates the probability of generating a

token from the vocabulary based on the context vector (ct) and current decoder hidden state

(hdt). They are passed through a sigmoid activation function. This can be represented using

the following equation:

pswtt = σ(vswt [hdt , E(yt−1), ct ] + bswt)

where, vswt∈ R(ddec + demb + ddoc) and bswt are learnable parameters. If this probability is

greater than 0.5, it means the switch is activated and ready to copy the word from the input

sequence, otherwise it uses the generator to generate the output.

We have to determine what is copied from the input sequence by using the attention

distribution. We select the word at the index (i
′
t) at the time step t,

i
′
t = argmax

i
αti

Here, the index i
′
t denotes the position of the word having the highest attention in the main

document. Then the embedding of the word is passed to the next decoding step. Finally,
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we retrieve the word from its embedding, which can be defined by:

yswtt = w(i
′
t)

The whole scenario can be described as follows:

yt = yswtt if pswtt > 0.5

yt = ygent if pswtt 6 0.5

3.2.6 Training Loss

Let us assume that we have a corpus and each sample of the corpus has a triplet

(Dn,Qp,Y m) where the length of the document is n, the length of the query is p, and the

length of the summary is m. The document (D) and the query (Q) is passed to the model

as input and the target of the model is to find the summary (Y ). Our sequence-to-sequence

model can compute the conditional log probability when any triplet from the input is given.

The log-probability of Y m is: logP(Y m|Xm, Dn, Qp, θ) where the document (Dn) and the

query (Qp) are given. Here, θ is training parameter.

As we follow the pointer-generator mechanism of Hasselqvist et al. (2017), we also

follow the technique of finding the global minimum using their loss function. We can

define the total loss function during the training phase of our model by the following:

L =
1
Ns

(Lswt + Lattn + Lgen)

where Ns is the length of the target summary.

Let us calculate the total loss function of our training process. In the pointer-generator

mechanism, we need to train the model to decide when the switch of the pointer needs to be

activated in a supervised manner. To do so, we introduce an additional input xswt at the time

step t during training, which is set to 1 if we copy the t th word to the summary, otherwise

the output of the generator is used. The loss function for this phase can be calculated using
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the following equation:

Lswt =
Ns

∑
t=1

(xswtt (− logpswtt ) + (1− xswtt ) (− log(1− pswtt )))

We use this to train the pointer of the switching mechanism (pswtt ) to predict xswtt at the

time step t.

We define a loss over the softmax layer of the decoder to determine the loss during the

generation phase of the decoder.

Lgen =
Ns

∑
t=1

(1− xswtt )(− logPgent (w
∗))

here, w∗ is the t th word in the target summary where w∗ ∈Vgen. We multiply by (1−xswtt ),

which helps to avoid any addition to the loss when we choose to go on with the pointer

mechanism.

When the model decides to choose output by using the pointer mechanism, we use a

supervised attention. The loss function at this phase is defined using the following equation:

Lattn =
Ns

∑
t=1

xswtt (− logαti)

where, i is the index of the word αt in the input document. Finally, we sum up all the three

loss functions to get the final loss, L.

3.2.7 Training Details

At first, we initialize the weight matrices and the bias vectors, which we use throughout

our model. We use the uniform initialization proposed by Glorot and Bengio (2010) to

initialize the weight matrices, and initialize the bias vectors as zero vectors.

We use a pre-trained FastText embedding to initialize the embedding matrices. The

same embedding is used for both the input and the output words throughout the model.

The dimension of the embedding vector is 512. The size of the vocabulary is 50k which is
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denoted by V in the model description. A subset of V , named V gen, contains three special

tokens - <UNK >,< SOS >,< EOS >. <UNK > is used to represent a word which is ab-

sent in the vocabulary. < SOS > indicates the word which is fed at first in the decoder steps,

which actually means the start of the summary generation process. < EOS > indicates the

end of the input sequence.

In order to increase the training speed, we feed the last output word to the next decoder

step. In this case, we consider the last output from the target summary assuming that our

predicted output from the last time step is accurate. We follow the technique described by

Bengio et al. (2015).

We train our model on a machine using a TITAN GPU card along with 64GB of RAM.

We use a 10 fold dataset (Bengio and Grandvalet, 2004) to train this model by training

each fold, where each training phase contains 700 epochs on average. The whole training

process took 7 days to complete the training process. We use Tensorflow and Python to

implement our work.

As the document length of our dataset is very small, reducing document length will not

save significant amount of processing time.

3.3 Transformer Model

3.3.1 Extractive Phase

We use an unsupervised method to manipulate the Debatepedia dataset which was cre-

ated by Nema et al. (2017). We use Word Mover’s Distance (WMD) which finds the sim-

ilarity between the query and the sentences of a document. We choose the best ranked

sentence according to their score and create a new version of the document. We use this

new version of the document as the input of our transformer model. The workflow of this

approach is described below:

Word Mover’s Distance proposed by Kusner et al. (2015) is a widely used tool in ma-

chine learning which can take an input query and find out the documents related to the
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Figure 3.1: Finding the similarity between two sentences using WMD (Kusner et al., 2015).

query. WMD generally calculates the semantic similarity between two documents or two

sentences even if there are no common words between them. WMD can be illustrated below

for two semantically similar sentences 3.

• Obama speaks to the media in Illinois.

• The President greets the press in Chicago.

There is no common word between these two sentences. Therefore, if we calculate

the distance between them using common word-based metrices, we will get the maximum

distance between them. But, WMD can be very useful in this context by measuring the

similarity between two sentences even if there is no common word. However, they use

CBOW representation to find the word frequencies in the sentences, which is denoted as

d in the figure 3.1. WMD calculates the minimum “travelling distance”, where “distance”

represents the path to move the distribution of sentence 1 to the distribution of sentence 2.

We use the gensim’s4 WMD functionality to compute the similarity between the query

3http://vene.ro/blog/word-movers-distance-in-python.html
4https://markroxor.github.io/gensim/static/notebooks/WMD_tutorial.html
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and the sentences of the document.

3.3.2 Abstractive Phase

In the sequence-to-sequence model we use a sequence of words as input and transform

the input into an output sequence. But problem arises when we try to process the input

in parallel manner for GPU processing using recurrent and convolution neural networks.

These traditional neural networks cannot handle the long term dependencies either when

the input/output sequences are too long (Kolen and Kremer, 2001). When the input and

output are represented in a sequence of words and the calculations in the hidden layers are

computed in parallel, the number of calculation grows with the positional distance between

the input and output while trying to map the input sequence into the output sequence. Trans-

former (Vaswani et al., 2017) successfully reduces the number of calculations by using the

multi-head attention mechanism. Therefore, we use the transformer for the abstraction

phase of our model as the aim of both abstraction and machine translation is to generate

words. We now describe some of the attention mechanisms that we use throughout the

model for better understanding.

3.3.3 Positional Encoding

The main purpose of using transformer is to represent a model without using RNN or

CNN. In the sequence-to-sequence model, we encode each input word and decode that

encoders’ output at the same time step in the decoder. In the transformer, the authors

represent the time in the form of a sine wave which is fed as an extra input to represent

the time step. As the model is designed for translation task the position of the input word

is very important. Positional encoding helps the model to understand which portion of the

input the model is currently processing. Positional encoding can be fixed or learnt during

training. The authors prefer to use the fixed positional encoding as choosing any of them

does not affect the result. We use a pre-trained positional encoding which is trained based

on the following two equations proposed by the authors to let the model learn about the
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position of the currently processing word in the input sequence:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i + 1) = cos(pos/100002i/dmodel)

We add this positional encoding with the word embedding of the words to represent the

embedding vector of the words.

3.3.4 Self-Attention

The size of the embedding vector of the input words is 512, which are the inputs of

the first encoder. The inputs of the remaining encoders are the outputs generated from

the previous encoders. These vectors are passed through the two layers of the encoder

(self-attention and feed-forward). These vectors are passed through their own path and

these paths have dependencies in the self-attention layer. Therefore, various paths can be

processed in parallel which is the main advantage of the transformer architecture over the

sequence-to-sequence architecture.

We start from creating three vectors from each input embedding vector, which are - a

query vector (Q), a key vector (K), and a value vector (V ). These vectors are three different

projections of the input embedding vector and their size is smaller than the input embedding

vector. Here, the size of the word embedding is 512 and the size of W Q, W K, and WV is

64. The aim of the self attention mechanism is to calculate the importance of each word

with respect to other words. This is done using the following steps:

• Multiply the query vector and the key vector of the word.

• Divide the multiplication result by
√

dk, where dk represents the dimension of the key

vector.

• Apply softmax over the division results.
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• Multiply the softmax output with the value vector of the currently processing word.

These steps can be formulated using the following equation:

Sel f −Attention (Q, K, V ) = so f tmax (
QKT
√

dk
)V

We have to continue this calculation for all the words of the input sequence. For example,

we have two words in the sequence - ‘play’ and ‘cricket’. In the first step, we calculate the

importance of the words ‘play’ and ‘cricket’ with respect to the word ‘play’. At first, we

calculate the the score of the word ‘play’ with respect to the word ‘play’ following the steps

described previously. When we calculate the score of the word ‘cricket’ with respect to the

word ‘play’, we repeat the same steps, except we use the query vector of the word ‘play’

and key and value vector of the word ‘cricket’. As we are considering the query vector of

the first word, we get the importance of the second word of the sequence with respect to the

first word.

3.3.5 Multihead Attention

The transformer does not only look at each other at each position only but also uses

multihead attention mechanism. We have 8 different sets of query, key, and value vectors,

which contains all the information of the input embedding. There might be some informa-

tion missing when we calculate the self-attention with one set of projection vectors. These

sets are called head. The mechanism of multihead attention is described below:

• There are 8 attention layers which are also called heads. They represent the linear

project of key (K) and query (Q) into dk dimension and value V into dv dimension in

order to reduce the dimension.

headi = Sel f −Attention(QW Q
i , KW K

i , VWV
i )V

Where, W Q
i ∈ Rdmodel×dk , W k

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv .
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• Then we calculate the self-attention for all the heads using the following equation:

Sel f −Attention (Q, K, V ) = so f tmax (
QKT
√

dk
)V

We choose this dot-product attention because this takes less time and space compared

to the additive attention which is proposed by Kumar et al. (2016).

• We packed together all the queries, keys, and values into three matrices and compute

the attention by concatenating all the layers output.

MultiHeadAttention(Q,K,V ) = Concat(head1, ...,headh)W O

where W O ∈ Rhdv × dmodel , Concat function concatenates 8 heads into one head which

is multiplied by the weight matrix WO.

Figure 3.2 illustrates the transformer architecture that is built out of N=6 identical layers.

3.3.6 Encoder

The architecture of a transformer is composed of six encoders and six decoders. The

encoders are almost similar to each other. Each encoder has two sub-layers. They are:

• Multi-head self-attention mechanism: The encoders’ input is the embedding of the

input words which pass through a self-attention layer. The purpose is to pass them

through a self-attention layer so that the encoder can look at the other words of the

input.

• Position-wise fully connected feed forward network: The self-attended layers are

passed through a fully connected forward neural network. This network attends at

each position. This network consists of two linear transformation, and a Rectified

Linear Unit (ReLU) (Li and Yuan, 2017) activation function. This network can be

43



3.3. TRANSFORMER MODEL

Figure 3.2: Single layer of Encoder (left) and Decoder (right) (Vaswani et al., 2017).
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defined using the following equation:

FFN(x) = max(0, xW1 + b1)W2 + b2

The workflow of the encoder can be divided into three stages which are described as

follows:

• The input of this step is the embedding of the input words. We add the word em-

bedding and the positional encoding in this stage. The size of both the embedding

vectors is 512.

• In this step we take the output of the previous step and pass the output through mul-

tihead attention layer to calculate the attention. Then we normalize the result using

the following function:

LayerNorm(x+ Sublayer(x))

Where, Sublayer(x) refers to the function implemented by each sub-layer itself. This

residual connection is applied over all the sub-layers in the model and the embedding

layers so that the dimension of the vectors remains the same throughout the model.

In our experiment we use, dmodel = 512

• We pass the output of the previous step through the feed forward network and apply

the normalization function in this stage also.

3.3.7 Decoder

The decoder of a transformer mechanism is also composed of six individual decoders.

Each of the decoders has three sub-layers:

• Multi-head self-attention mechanism: This layer has the same mechanism as the

encoders’ self-attention layer.
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• Position-wise fully connected feed forward network: This layer has the same

mechanism as the encoders’ feed forward network.

• Encoder-Decoder attention: Decoder has this extra attention layer which focuses

on the specific part of the input sentence. This attention mechanism uses the query

from the previous decoder layer, keys and values from the output of the encoder so

that the decoder can attend all the words of the input sequences.

The workflow of the decoder is identical to the encoder.

• In the first stage, we take the output embedding as the input.

• In the next stage, we use masked multihead attention so that the future words cannot

be the part of the attention.

• At the end the decoder predicts one word at a single time step. The decoder attends

all the previously generated words by the decoder which is similar to our sequence-

to-sequence model but computationally this model is much faster than the sequence-

to-sequence model.

3.3.8 Training Details:

We train our model using a TITAN GPU card along with 64GB of RAM. We use a 10

fold dataset to train this model by training each fold, making slight change to the base model

where each training phase contains 700 epochs on average. The whole training process took

6 days to complete.

We use the Adam optimizer(Bengio and LeCun, 2015) and use the equation described

by Vaswani et al. (2017) to determine the learning rate.

lrate = d−.0.5model × min(step num−0.5, step num × warmup steps−1.5)

where, warmup steps = 4000 and initial learning rate is 0.001. Here, learning rate is in-
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creasing linearly until the warmup steps and then decreasing the learning rate, which is

proportional to the inverse square root of the step numbers.

3.4 Summary

In this chapter, we propose two model architectures for the query-focused abstractive

summarization task. We also describe the training details of the models. In the next chapter,

we discuss the dataset which is used to train our models and the experimental results.
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Chapter 4

Experiments and Evaluations

In this chapter, we describe the dataset that we use for training our models, evaluate our

models, and comparison of our results with some baseline models.

4.1 Dataset

There are no standard datasets which are developed for the query-focused summariza-

tion task. We use the dataset created by Nema et al. (2017), which is known as Debatepedia.

This dataset contain a large number of debate topics consisting of pros and cons and quotes

on the topics. Nema et al. (2017) considered the debates which have at-least one query

per document. After filtering, there are 663 debates left in the dataset. These 663 debates

belong to 53 overlapping categories such as Politics, Religion, Environment, Law, Health,

Crime, Morality, etc. Here one debate topic can belong to more than one category5. Table

4.1 summarizes the dataset, where the information is taken from the analysis of the authors.

Table 4.1: Average length of documents/ queries/ summaries in the dataset (Nema et al.,
2017).

Average number of words per
Document Query Summary

66.4 9.97 11.16

A debate has 5 queries on average, while a query has 4 related documents on aver-

age. There are 12695 (Document,Query,Summary) triplets in the Debatepedia, which are

crawled by the authors to create this dataset. Table 4.2 shows some of the examples.

5For details: https://github.com/PrekshaNema25/DiverstiyBasedAttentionMechanism
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Table 4.2: Some examples of (Document, Query, Summary) triplet from the Debatepedia
dataset.

Document Snippet: The “natural death” alternative to euthanasia is not keeping someone
alive via life support until they die on life support. That would, indeed, be unnatural. The
natural alternative is, instead, to allow them to die off of life support.
Query: Is euthanasia better than withdrawing life support (non-treatment)?
Ground Truth Summary: The alternative to euthanasia is a natural death without life
support.
Document Snippet: Legalizing same-sex marriage would also be a recognition of basic
American principles, and would represent the culmination of our nation’s commitment to
equal rights. It is, some have said, the last major civil-rights milestone yet to be surpassed
in our two-century struggle to attain the goals we set for this nation at its formation.
Query: Is gay marriage a civil right?
Ground Truth Summary: Gay marriage is a fundamental equal right.

Nema et al. (2017) used 10 fold cross validation for all their experiments where the

training set has 80% of the data, test set has 10% of the data, and validation set has 10%

of the data. Before using the data we pre-process the data by removing different tags,

stop-words, and special characters. We use 10 fold cross validation for all our experiments.

4.2 Evaluation

ROUGE produces a value between 0 and 1. When the predicted summary is same as

the reference summary then it is represented by 1 and 0 represents the prediction is totally

wrong. For better understanding, we represent the value in %. If there are multiple refer-

ence summaries, the system calculates the ROUGE score separately for all the reference

summaries, and takes the highest score to represent the ROUGUE score for the evaluation.

In our evaluation, we use ROUGE-1, ROUGE-2, and ROUGE-L. We present some samples

of our system generated outputs in Appendix A.

4.2.1 Baseline Models

We compare the performance of our models with several baseline models. We im-

plement the pointer mechanism proposed by Hasselqvist et al. (2017). One of the main
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Table 4.3: ROUGE(1, 2, L) scores of the different models on the test set.

Model ROUGE-1 ROUGE-2 ROUGE-L
vanilla e-d-a 13.73 2.06 12.84
seq-to-seq-pointer 18.25 5.04 16.17
distraction 17.80 3.45 16.38
diversity 41.26 18.75 40.43
seq-to-seq (our) 30.03 12.20 20.12

drawbacks of the neural sequence-to-sequence models is that the generator cannot produce

some of the query words. We use the pointer mechanism to point to the words which needs

to be copied from the input sequence. Another reason behind using the pointer mechanism

is to deal with unknown (< unk >) words during training (See et al., 2017; Gu et al., 2016;

Nallapati et al., 2016b). To handle these issues, the generator mechanism is combined with

the pointer mechanism. We follow the implementation of the pointer mechanism proposed

by Hasselqvist et al. (2017). We refer to their model as seq-to-seq-pointer in the rest of

this section. We also compare our models with the current state-of-the-art model which

is proposed by Nema et al. (2017), which is referred to as the diversity model during the

comparison. Furthermore, we will compare our result with the result of the model proposed

by Chen et al. (2016) on the DUC-2007 dataset. We refer to this model as the distraction

model. Finally, we will compare our model with the vanilla encode-decode-attention model,

which is referred as the vanilla e-d-a. Our two models are identified as: seq-to-seq model

and transformer model. We take the average of the 10 folds to calculate the overall score of

the model.

4.2.2 Results

We calculate the ROUGE scores on the test set using previously mentioned models.

Table 4.3 reports the ROUGE scores of all the models.

The results show that we have improved the ROUGE scores a lot compared to the vanilla

e-d-a model. In fact, all our results are better except for the diversity model. As our main

goal is to design a model based on the transformer, our seq-to-seq model is a basic seq-
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Table 4.4: ROUGE(1, 2, L) scores of the different abstractive models on the test set.

Model ROUGE-1 ROUGE-2 ROUGE-L
Nallapati et al. (2016b) 28.97 9.46 25.24
Chopra et al. (2016) 28.97 8.26 24.06
transformer model (our) 33.18 19.75 20.87

to-seq model. The reason behind the failure of beating the score of the diversity model is

discussed later.

As we have done our abstraction using the transformer, we compare our model with

some abstractive models (Nallapati et al., 2016b; Chopra et al., 2016). Table 4.4 reports the

ROUGE scores. We can see our transformer model performs better than the other baseline

models.

4.3 Discussion

We observe that our sequence-to-sequence model does not achieve good ROUGE score.

One of the main reasons behind this problem is that the attention mechanism attends only

a few words at each time step. Mostly, they focus on the beginning of the document if

they find the query words at the beginning of the document. As a result, the summary

may capture the topic of the document properly, but they cannot generate the truthful sum-

mary by paraphrasing the main document. This problem is addressed by Hasselqvist et al.

(2017). This problem can be solved using the transformer. In self-attention mechanism of

the transformer, we calculate the score of each word in the input sequence with the current

processing word in order to determine how much focus needs to be given on the other parts

of the sentence. By implementing this mechanism, we increase the ROUGE score of the

transformer model.

A common problem of a sequence-to-sequence model is that the decoder can get the

same context vector as the input at several time steps, which forces the decoder to generate

the same word repeatedly. Nema et al. (2017) described a mechanism to solve this issue.

They proposed to introduce a checker before feeding the context vector to the decoder so
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that the successive context vectors are orthogonal to each other. They do this by removing

the contents from the current context if the contents are present in the previous context

vector in the same direction. This mechanism is known as the diversity mechanism.

Another problem with the Debatepedia dataset is that the average words in a query is

10. In some cases, the queries contain 3/4 words which do not even form a proper sentence.

The length of the documents are also very small compared to the CNN/Daily mail dataset.

Unfortunately, these two datsets are the only existing datasets in this field. Moreover, both

of them are not originally created for the query-focused abstractive summarization task.

4.4 Summary

In this chapter, we have discussed about the Debatepedia datset which we have used for

training our models. We also have show the results of our proposed models. Finally, we

have discussed the poor performance of our models and proposed some potential improve-

ment techniques. In the next chapter, we conclude our thesis with some future directions.
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Chapter 5

Conclusion & Future Work

5.1 Conclusion

We have designed two query-focused abstractive summarization models based on the

neural network in this thesis work. We have evaluated our models on the test set of the

Debatepedia datset and compare our results with several baseline models. Our aim of this

thesis work is to use the query effectively during summary generation of a long text docu-

ment. Our transformer based model achieves better results than the baseline models. Our

sequence-to-sequence model could not outperform the result of the diversity model. We

have noticed some issues in the output of our model, all of them are already discussed in

different research works. The issues are: (1) the summaries sometimes are not relevant and

truthful to the query, (2) sometimes the decoder produces same word repeatedly, and (3) the

length of the document and the query sometimes prevents to produce meaningful summary.

5.2 Future Work

Our proposed models obtain better performance than all the baselines models except the

diversity model. We have discussed the potential improvement areas of our current models

in Section 4.3. The improvements can be done by the following:

• The problem of generating summaries which are not related to the query can be solved

by using the co-reference resolution. This mechanism not only considers the identical

occurrences, but also takes similar occurrences of the same entity and focuses on all

the similar occurrences during attention.
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5.2. FUTURE WORK

• The repetition of words problem can be solved by using the diversity cell in the

decoder at each time step.

• In our transformer model, we can try to feed the query to the transformer architec-

ture along with the document which can improve the result of our transformer based

model.

• We can create a dataset for the query-focused abstractive summarization task consid-

ering the lack of availability of dataset for this particular work.
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Appendix A

Sample System Generated Summaries

Here, we show some system generated summary of our sequence-to-sequence and trans-
former models.

Sequence-to-Sequence Model:
Sample1:
Document Snippet: israel and the flotilla . chicago tribune editorial . june : video shows
the israeli commandos were surrounded and attacked as they reached the ship ’s deck . the
israelis tried to avoid a lethal confrontation . israeli authorities reportedly offered the ves-
sels the same deal that was accepted by at least one previous flotillas divert to the israeli
port of ashdod and unload the cargo for inspection . as long as the cargo does n’t contain
weaponry it will be shipped into the gaza strip by land .
Query: self-defense : were israeli soldiers protect themselves ?
Ground Truth Summary: israel commando acted in self-defense once on gaza flotilla.
System Generated Summary: israeli commandos acting in self-defense once on gaza.

Sample2:
Document Snippet: a boys school will usually have a largely male staff where women may
feel uncomfortable or denied opportunity and vice versa .
Query: teachers : do teachers work well in single-sex schools ?
Ground Truth Summary: teachers are often discriminated against in single-sex schools .
System Generated Summary: teachers are often discriminate against in co-ed schools .

Sample3:
Document Snippet: while sanctions may be having unfortunate effects on the mexican
people the impact of sanctions on the morale of the mexican people and their respect for
the united states can be mollified through various media sources broadcasting from the
united states to cuba . the intention of the sanctions to punish the mexican regime and to
helping protect the freedoms of cubans can be better explains to the mexican people through
these messages .
Query: are sanctions a faulty policy in the effort to democratize cuba ?
Ground Truth Summary: media helps soften mexican most impression of us sanctions.
System Generated Summary: media help softens cuban popular impressions of us sanc-
tion.
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Sample4:
Document Snippet: most farming fish are omnivorous so wild fish are caught to feeds
them . greenpeace estimates that for every pounds of farming salmon produced six pounds
of wild fish are caught to feeds the salmon .
Query: effect on wild fish : does fish farming harms wild fish ?
Ground Truth Summary: salmon farming does not stop the catch of wild fish.
System Generated Summary: salmon agriculture are often to stop .

Transformer Model:
Sample1:
Document Snippet: even if hiroshima was necessary the u.s. should have waited for word
on the devastation of hiroshima to filter out to the people and leadership of japan . if they
had waited and playing more diplomatic cards in the interim it would have been possible to
persuade japan to surrender.
Query: was it necessary to drop the third bomb on nagasaki ?
Ground Truth Summary: the us should have waited long before bombing nagasaki .
System Generated Summary: us should have waiting long before bombing nagasaki.

Sample2:
Document Snippet: irrespective of what kind of work they are doing this deprives them of
something so important that we make it compulsory for all children . although the maxi-
mum law requirements can often be provided by tutors on the set or sports academies it can
be hard to keeping performance and education in proper balance when one appears to bring
so many immediate rewards both in terms of notoriety and either .
Query: learning : does performing depriving child of valuable teaching experiences such
as time-spent on education ?
Ground Truth Summary: if children are work or perform they are not spending their time
in informal education .
System Generated Summary: if children are simply to know they not spending their time
in formal education .

Sample3:
Document Snippet: miscarriage can only occur after the implantation of the fertilised
egg into the uterus - and once this has happened emergency contraception does not work
anyway . this interpretation was upheld in followed a case came by the society for the
protection of unborn children and opposed by the departments of health . the possibility
of make the argument at all however does expose the inadequacy of the abortion act which
does not enshrine a woman s right to abortion but creates certain exceptions to the state s
basic continued right to controls her fertility .
Query: united kingdom : should emergencies contraception be banned throughout the
rubric of uk law ?
Ground Truth Summary: uk-specific argument : this arguments is irrelevant because
emergencies contraception does not cause miscarriage.
System Generated Summary: uk-specific argument : this is irrelevant because emergency
contraception does not causes miscarriage.
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Sample4:
Document Snippet: regional party organizations do not assign delegates on the basis of
population but through a confusing mix of political considerations . this means that two
states with the same size populations may be given very different numbers of delegates .
this means that the votes of citizens in different states count correctly and that states typi-
cally are value unequally .
Query: state interests : are state interests upholding in the primary election process ?
Ground Truth Summary: secondary elections delegates are not distributed fairly between
state.
System Generated Summary: primary election delegates is not distributed fairly between
all.

Sample5:
Document Snippet: if us troops leave there will no longer be a foreign target for terrorists
in iraq and from the region . certainly they may try to attack the united state and other
western countries through various means but his would be more difficult than fighting us
forces in iraq . withdrawing from iraq would deprive terrorists of as many opportunities to
strike as they presently enjoy .
Query: war on terror : is it wrong to think the war in iraq protect the homeland ?
Ground Truth Summary: iraq is only a jihadist-terrorist threat because we soldiers are
there to be targeted .
System Generated Summary: iraq is only a many threats because us troops are there to
be targeted .
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